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INTRODUCTION

The purpose of this paper 1is to study the properties of
large buoyant H2/a1r diffusion flames via a computer model
(Mikatarian et al., 1972) which treats the axisymmetric turbu-
lent mixing of co-flowing streams, including the effects of
nonequilibrium chemistry. It is assumed that hydrogen is
"vented" through large vertical stacks, ignited via a pilot
flame (Figure 1), and burned in the atmosphere. This type of
flame exists, for example, during the disposal of large
quantities of hydrogen used for testing space shuttle engilne
components. At the North American Rockwell/Rocketdyne Division,
mass flows ranging from 10 to 150 1lb/sec of H, are exhausted
through stacks greater than 2 feet in diameter. Because these
flames are so large, buoyancy will have a considerable effect
on their properties, particularly flame lengths. Calibration
of the above computer model 1s accomplished via comparisons
between predictions and laboratory data (Kent and Bilger, 1973;
Kent, 1972) on small H2/air diffusion flames, and the predicted
effects of buoyancy are evaluated by comparing calculations

with data on buoyant flame lengths.

In what follows we first discuss the details of the model,

including the governing equations, the eddy viscosity formulation,




and the results of a recent review of the literature on reaction
rate coefficients for the H2/02 system. Next we compare pre-
dictions using the present model with the H2/a1r laboratory
diffusion flame data and other models which use different
formulations to describe the turbulent transport of momentum,
energy, and mass. Finally, the buoyant flame calculations are
presented and the results discussed in terms of (1) those con-
ditions for which buoyancy will have a significant influence on
flame properties and (2) the comparison with measured buoyant

flame lengths.

GAS DYNAMICS/CHEMISTRY MODEL

The model utilized for the present study is a modified
version of the Low Altitude Plume Program (LAPP) which was
originally developed by Mikatarian et al. (1972) to compute the
properties of afterburning rocket plumes; see, for example,
Pergament and Jensen (1971) and Jensen and Pergament (1971).
Some of the more important assumptions employed in this model

are:

® The influence of external winds on the flame is

negligible, i.e., the flow is axlisymmetric.

® Turbulent mixing 1s characterized by an eddy

viscosity model.

° There is no influence of turbulence on chemical

reaction rates, i.e., "laminar" chemistry is assumed.
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@ There is no direct influence of

buoyancy terms.

Governing Equations

The free shear layer equations, with
buoyancy term in the momentum equation, a
stream function-type coordinates (the coo

in the program).

turbulence on the

the addition of the
re written below in

rdinate system used
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The stream function, ¥ , 1is defined by#¥*

¥ 37 = Pur (4a)
v 3= - pur (4p)

Egs. (1) through (4) are solved via finite-difference
techniques, subject to specified values of u, T , and Fy
at the outer boundary (free stream) and a symmetry condition
( 3u/3¥ = 0 , etc. ) on the flame axis. Both momentum and
energy equations are handled by an explicit difference scheme,
while the species continuity equations are solved via a mixed
implicit/explicit technique. The diffusion terms are treated
explicitly, while the chemistry terms (i.e., &i) are treated
implicitly. Thus, the solution to Eq. (3) at each step, Ax ,
is obtained by linearizing the chemistry terms and inverting
the resulting matrix. The diffusion terms then form part of

the known column matrix on the right-hand side of the matrix

equation.

Turbulence Models

It is not our purpose in this paper to determine the "best"
description of turbulent mixing to use for the large buoyant
flames under consideration. Suffice it to say that we have

chosen the simplest formulation for this study, i1.e., an eddy

¥Note that this definition results in a stream function which
is proportional to the square root of the mass flow. i




viscosity model based on Prandtl's mixing length theory. The
potential advantages of using one or two equation turbulent
kinetic energy (TKE) models to describe turbulent transport in
nonreacting flows has been fully discussed in the NASA/Langley
Free Shear Layer Conference (1973). There are no similar
published comparisons for reacting flows with large energy
release, although data are available (e.g., Kent (1972) and
Rhodes (1977)) which could form the basis for such a comparison.
These data have, in fact, been utilized by Rhodes (1977) to
initiate such turbulent mixing model comparisons for flows with
combustion. In this regard 1t should also be mentioned that
the second-order closure techniques for describing turbulent
shear flows, developed by Donaldson and Varma (1976), have
recently been extended to flows with combustion by Fishburne

et al. (1977) including multi-step chemical reactions and
incorporation of the effect of turbulence on chemical reaction

rates (so-called "turbulent" chemistry).

The turbulence model utilized in the present study is a
modification of the original Prandtl eddy viscosity model due
to Donaldson and Gray (1966) who correlated data on supersonic
and subsonic nonreactive jets into still air. The expression

used in the code is

o
u = §(rl/2—ri)p|uo—ue {5)




where K (a "compressibility" correction) is a function of

Mach number evaluated at the half-radius (Ml/z)‘
< .
For Ml/2 S g 2is
= & 2
K = 0.0468 + Ml/z( 0.046M, ,, + 0.0256M1/2) (6a)
For Mx/z >l
K = 0.0248 (6b)

The above expression is consistent with the observed decrease

in mixing rate with increasing Mach number,

Smoot (1976) has recently correlated mixing coefficients
for coaxial submerged (zero external velocity) and co-flowing
jets — and has, by analyzing additional data, reconfirmed the
overall validity of the above expressions for predicting
centerline veloclty decay. In addition, he has correlated some
nonreactive temperature and concentration data and shows
turbulent Prandtl numbers to vary from about 0.85 to 1.0,
However, as we shall demonstrate in the next section, agreement
between data and predictions of centerline velocity and
temperature for flows with combustion does not necessarily

imply that the radial profiles of these properties will be

correctly predicted.
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Ho/0, Chemistry

The Hy/0, reaction mechanism and rate coefficients used
in the present calculations are given in Table I. The rates
listed under "PRESENT VALUES" were used to obtain most of the
results. During the course of this study, however, a recent
literature survey by Kurzius (1975) became available to us.
The rates listed under "NEW RECOMMENDED VALUES" are essentially
those recommended by Kurzius, except that the three-body rate
coefficients have been modified slightly to account for a
single third-body efficiency (Kurzius assigned different effi-
ciencies for each species acting as a third body). The orig-
inal sources for the rate coefficient data are given in the

Appendix.

During the course of thils study, calculations were made
using both sets of rate coefficients given in Table I. The
resulting flame propertles were found to be nearly identical,
primarily because one-atmosphere Hp/air diffusion flames are

nearly in local thermochemical equilibrium,

Scaling Buoyant Flame Properties

The appropriate scaling parameters for bucyant flames can
be obtained by nondimensionalizing the momentum equation (Eq.(1l)).
If we define Xx = x/djy a = u/uy r = r/dy , p = o/P5 »

¥2 = y2/p,u,r? , the momentum equation becomes (for dp/dx = 0 ):
b B g
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The Froude number is defined as

2
uJ/d1
g

Fr = (8)
which represents the ratio of the acceleration of the fluid to
the acceleration of gravity. Thus, buoyancy effects should
be important for large, low-speed flames (low values of Fr).
Later in this paper we will show quantitatively the values of
Fr at which buoyancy effects start to become important for
vertical Hp/air diffusion flames. Similar normalizations are
possible for the energy and species continuity equations, but
scaling can only be achieved under conditions where local

thermochemical equilibrium prevails; i.e., the flame properties

are mixing-controlled.

In summary, suitably normalized buoyant turbulent flame
properties will be independent of size under conditions where:
® Eddy viscosity 1s proportional to a length scale.

° Froude numbers are identical.

@ The flow is in local thermochemical equilibrium.
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COMPARISONS BETWEEN MODEL PREDICTIONS AND LABORATORY Hy/AIR
FLAME DATA

The measurements of Kent and Bilger (1973) on laboratory
Ho/air diffusion flames provide an excellent data base to test
the present gasdynamics/chemistry model under conditions where
buoyancy is not important. Figure 2 shows the experimental
setup and the conditions of those tests whose results are com-
pared with the present model. This setup resulted in a favor-
able axial pressure gradlient; the free stream velocity variation
over the length of the test section is given by Kent and Bilger
(1973), together with measured velocity profiles at the nozzle
lip. Because the LAPP code was not designed to handle initial
boundary layer profiles, a code, based on that developed by
Patankar and Spalding (1967), incorporating a two equation TKE
turbulence model was utilized for the initial part of the cal-
culations. This code generated the profiles given in Figure 3,
which were the initial conditions for all the calculations

reported herein.

Figure U4 shows that predicted centerline temperatures are
in reasonable agreement with the data up to the point of near-
maximum temperature (data were only obtained to x/r‘j SHR208 N
The axlal pressure gradient 1s seen to significantly influence
centerline temperatures only at values of x/rj > 240 « At
these large downstream distances the difference between center-

line and free stream velocity becomes sufficiently small for




the accelerating flow to influence the overall mixing rate
(see Eq. (5)). These calculations were made for Pr = 0.7
(with the standard assumption of Le = 1.0 ). Also shown in
Figure 4 (and in subsequent figures) are results assuming

Pr = 1.0 3 the range 0.7 < Pr < 1.0 1s that generally
reported in the literature (see, e.g., Smoot (1976)). From
Egs. (2) and (3) we note that an increase in Pr from 0.7 to
1.0 decreases the rate of transport of mass and energy by
similar amounts. From the results shown in Figure 4, it would
appear that Pr = 0.85 would give nearly a perfect fit to the
data. However, there is no Justification for assuming that
this is the "best" constant value to use for the complete
flowfield, and, in fact, 1t 1s not our purpose to back out any
empirical constants from this analysis. Figure 5 shows that
the axlal H, and Hy,0 mole fractlons are predicted reasonably
well by the theory. Again, the predictions for Pr = 0.7

and 1.0 bracket the data.

A more rigorous test of the theory is how well the radial
profiles of temperature and species concentrations are pre-
dicted. Figure 6 compares predicted temperature profiles for
Pr = 0.7 and 1.0 with the dgta. Only for x/rJ = 80 are
the predictions in good agreement with the data. At farther
downstream stations, the flame width is drastically under-

estimated, i.e., the predicted overall mixing rate is too high.
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This point i1s emphasized in Figure 7 which shows that, for
most of the flame, N, is predicted to diffuse more rapidly than
indicated by the data¥*, although, again, predictions on the
centerline are in good agreement with the data. It 1is apparent
that the discrepancy between theory and experiment cannot be
fixed by changing the empirical constants K or Pr . A
variation in turbulent length scales across the flame would
appear to be needed, with possibly a varying ratio of momentum
to energy/species length scales. This obviously cannot be
accomplished with the present eddy viscosity model. Use of

the one or two equation TKE turbulence models, or a second-
order closure model, may well give a better representation of

these radial profiles.

Figures 8a and 8b compare radial temperature profiles
calculated with the present theory with those calculated by
Rhodes et al. (1974) and the data. Their calculations are
based on an integral (rather than finite-difference) method
for solving the differential equations and assume equilibrium
chemistry. The turbulent mixing model solves a differential
equation for the turbulent kinetic energy and assumes a form
for the length scale as a function of radial distance (a one

equation TKE model). The authors also describe a "fluctuating"

¥No, mole fraction data were obtained by summing Xy_, Xy o »
and on and subtracting from unity. 2 <
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model which formulates the average density as an "average over
the instantaneous concentration groups which contribute to the
average element concentration at a point." This "fluctuating"
model represents an attempt to account for the "unmixedness"
of turbulent flows. No firm conclusions can be reached from
the results shown in Figures 8a and 8b regarding the relative
advantages of these models. The present theory, using a mixing
length eddy viscosity model with nonequilibrium chemistry,
agrees with these data at least as well as the theories of
Rhodes et al. (1974). Figure 9, however, shows that the
"fluctuating" model of Rhodes et al. (1974) does a better job
of accounting for the radial species mole fraction profiles
than the present model at x/rj = 160 . At x/rj = 320 ,
however, (not shown in this paper) the "fluctuating" model does

not agree with the data as well as the "steady" model.

Figures 10 and 11 compare temperature and species mole
fraction radial profiles predicted by the present model with
predictions using the second-order closure model for reacting
shear layers (RSL), developed at A.R.A.P. by Fishburne et al.
(1977), with and without the influence of turbulence on the
reaction rates (i.e., "turbulent" versus "laminar" chemistry).
The most interesting result of these comparisons is a qualita-
tive one; the "turbulent" chemlstry model predicts a nonzero

flame thickness (as indicated by the amount of overlap of the
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Hy and Op profiles) which is more in accord with the data than
either the "laminar" chemistry results or the present model.
The latter two models predict almost no overlap in these
profiles, consistent with the classic "flame sheet" assumption.
Similar results were obtained by Rhodes et al. (1974) using

their "fluctuating" model (as shown in Figure 9).

BUOYANT FLAME CALCULATIONS

A series of calculations was made with the present model
for vertical stack flames with exit diameters ranging from
0.5 cm to 68 cm, resulting in Froude numbers which vary between
9 x 106 to J<H = 10“. Figure 12 shows calculated centerline
temperature distributions (assuming Pr = 0.7) for three model
stacks and the North American Rockwell C-1 stack. If buoyancy
is neglected, the temperature is seen to scale with nondimen-
sional axial distance. As noted earlier this is expected for
one atm turbulent Hp/air flames, since the chemistry is near-
equilibrium. When buoyancy is included in the calculations,
slight departures from the universal profile occur at Fr =
9 x 105 , As Fr is further reduced, rather substantial
departures from the scaled curve are observed — but primarily
in regions downstream of the temperature peak, where the
acceleration due to buoyancy starts to have an important effect
on the overall entrainment rate. As noted in Figure 12 this

effect occurs downstream of the location where all the H2 is

13




burned. It 1s interesting to observe that, while a two order
of magnitude increase in Fr only shifts the location of
maximum temperature by a relatively small amount, it ﬁas a
drastic influence on the temperature decay rate. This in turn
will influence the radial profiles and flame widths (not shown
here) and will have important implications for the prediction

of such observables as flame radiation.

Experimental data showing the effects of buoyancy on
diffusion flames are generally reported in the form of "flame
length" as a function of Froude number. One typical definition
of flame length is the axial distance to the point having a
mean composition which 18 stoichiometric. This turns out to be
quite close to the position of maximum temperature. In order
to judge how well the model predicts flame lengths defined in
the above manner, we first compared our predictions with the
data of Kent and Bilger (1973) for no buoyancy, i.e., Fr + o ,

The results are given in the following table:

FLAME LENGTH, Lg/dy

Predicted (Present Model)

Pr = 1.0 167
Pr = 0.7 110
Measured (Kent and Bilger (1973)) 135

As expected from the axial temperatures and mole fractions

shown in Figures 4 and 5, the predictions bracket the data.
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These lengths are, of course, greater than those for diffusion

flames with zero external (air) velocity.

Bilger and Beck (1974) have compiled experimental data
from Baker (1972), Hawthorne (1949), and Lavoile and Schlader
(1973) showing the influence of Froude number on Ho/air diffusion
flame lengths*, in addition to reporting their own measurements.
Comparisons have been made (Figure 13) between the measured
flame lengths and predictions from the present model. Figure 13
shows that, for Pr = 0.7 , the flame lengths are underpredicted;
but using Pr = 1.0 1in the model brings the theory into quite
reasonable agreement with the data. These results indicate that
the buoyancy effects are correctly accounted for by the model,
even though predicted radial profiles of temperature, mole
fractions, etc. are subject to the same uncertainties discussed
in the previous section. A detaliled comparison between the
present model and the radial profile data of Bilger and Beck
(1974) should give additional insight into the analysis of

buoyant diffusion flames.

CONCLUDING REMARKS
A model which treats the axisymmetric turbulent mixing of

co-flowing streams, including nonequilibrium chemistry, has been

*A translation of a Russian paper by Bayev et al. (1974) also
contains Hp/air diffusion flame length data as a function of
Fr . Unfortunately, the data have been normalized in such a
manner that ready comparisons with the present model are not
possible.
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applied to the prediction of buoyant Hp/air diffusion flame
properties. Turbulent mixing is described via the formulation
of Donaldson and Gray (1966), which 1s based on Prandtl's

original eddy viscosity model.

The adequacy of the model for no buoyancy has been tested

by comparisons between calculations and the laboratory Hp/air
diffusion flame data of Kent and Bilger (1973). Based on this
comparison, and calculations performed by other researchers
using different computer models and descriptions of turbulent

transport, the following observations are made:

o Predictions of centerline temperatures (up to the
axial location of peak temperature) and species mole
fractions are in good agreement with the data.
Calculations assuming turbulent Prandtl numbers of

0.7 and 1.0 have been shown to bracket the data.

® Radial profiles of temperature and species mole
fractions are not in good agreement with the data;
radial turbulent transport 1s less rapid than pre-
dicted by the model. This indicates that a constant
turbulent length scale across the flame (used in
most eddy viscosity models) cannot adequately account
for radial turbulent transport for flows with large
energy release. (This conclusion should apply as
well to internal flows with combustion, afterburning

rocket exhaust plumes, etc.)
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@ Calculations by Rhodes et al. (1974), using a one
equation TKE turbulence model and Fishburne et al.
(1977) using the A.R.A.P. second-~order closure
reacting shear layer (RSL) code (which includes the
influence of turbulence on chemical reaction rates)
have not demonstrated a substantial improvement
over the present model in accounting for the radial
profile data. In a qualitative sense, however, the
"turbulent" chemistry model of Fishburne et al.
(1977) and the "fluctuating" model of Rhodes et al.
(1974) are improvements since both predict flame
zone widths that are more in accord with the data.
The present model, the "laminar" chemistry model of
Fishburne et al. (1977), and the "steady" model of
Rhodes et al. (1974) all predict a very narrow
flame width — approaching the "flame sheet" common

in describing diffusion flames.

A parametric series of buoyant flame calculations and
comparisons with measured flame lengths have been made with

the following results:

° Flame properties scale with nondimensional distance

for PFr > 106 .
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® The most dramatic effect of buoyancy is to influence
the temperature decay rate downstream of the

temperature peak, after all the H, has been burned.

® Predicted flame lengths for Pr = 0.7 and 1.0

bracket the value measured by Kent and Bilger (1973)

for no buoyancy, Fr -+ « .,

® The predicted influence of Fr on buoyant flame
lengths 1s consistent with available data. A
turbulent Prandtl number of 1.0 is required in the
model to predict the correct magnitude of flame

length. Use of Pr = 0.7 underpredicts the data.

This study of Hp/air diffusion flames is continuing. The
two equation TKE turbulence model developed by Rodl and Spalding
(1970) will be incorporated into the LAPP code and the calcu-
lations repeated to determine if measured radial profiles of
temperature, species mole fractions, etc. can be accounted for
and if predicted buoyant flame lengths are consistent with the

available data.

NOMENCLATURE

c specific heat

dJ Jet diameter

D eddy diffusion coefficient
Fy Xy/W 3 also Yy/Wy

18
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Fr

N x O M@

Le

Froude number, ug/dJ g
acceleration of gravify

static enthalpy

eddy thermal conductivity
constant in eddy viscosity formulation, Eq.
turbulent Lewis number, pDcp/k
diffusion flame length

Mach number

static pressure

turbulent Prandtl number, ucp/k
radial distance from flame axis
jet radius

turbulent Schmidt number, u/pD
static temperature

axial velocity

normal velocity

molar rate of production of ith specles
molecular weight of mixture
molecular weight of ith species
axial distance

mole fraction of ith species
mass fraction of 1P'h species
density

stream function

eddy viscosity

19
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Subscripts

e free stream

a inner mixing zone; also ith species
J Jet exit

o centerline

1/2 evaluated at half-width; value of r where u = (ug+ug)2
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Figure 13. Influence of Froude number on flame length.
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