OF 3 52759				Contraction of the second seco	1		There is a		
	-79) -79)	-	4	四					
						-124	12 15 m		
				-2005-					
3	24 C						12 Million		
	The second					·····································		aginonare A. T. Aginonae Agino	
						ана санана с ана санана с ана санана с ана санана с			1

USAAMRDL-TR-77-32

FINITE ELEMENT ANALYSIS FOR COMPLEX STRUCTURES (HELICOPTER TRANSMISSION HOUSING STRUCTURAL MODELING)

0 R. W. Howells, J. J. Sciarra ▶ Boeing Vertol Company (A Division of The Boeing Company) Boeing Center, P. O. Box 16858 - Location Philadelphia, Pa. 19142 C 1 AD

January 1978

Final Report for Period July 1975 - May 1977

Approved for public release; distribution unlimited.

Prepared for

- ev wanderstellinger

APPLIED TECHNOLOGY LABORATORY

U. S. ARMY RESEARCH AND TECHNOLOGY LABORATORIES (AVRADCOM) Fort Eustis, Va. 23604

APPLIED TECHNOLOGY LABORATORY POSITION STATEMENT

This work was conducted to develop and demonstrate a comprehensive, finite element analytical technique with the capability for analyzing and improving designs of helicopter transmission housings made of metal and/or composite materials. Because the components in a transmission system operate in a complex dynamic environment wherein all components interact and influence each other, a comprehensive analysis method was necessary to analyze the housing as a unique component of the system.

This report is considered to provide a reasonable insight for improving transmission design by improving the design and performance of its housing. The analysis methods and their results are being used with other transmission R&D programs at the Applied Technology Laboratory.

Gim Shek Ng of the Technology Applications Division served as project engineer for this effort.

DISCLAIMERS

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission, to manufacture, use, or sell any patented invention that may in any way be related thereto.

Trade names cited in this report do not constitute an official endorsement or approval of the use of such commercial hardware or software.

DISPOSITION INSTRUCTIONS

Destroy this report when no longer needed. Do not return it to the originator.

UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered) READ INSTRUCTIONS BEFORE COMPLETING FORM 19 REPORT DOCUMENTATION PAGE 2. JOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER USAAMRDL TR-77-32 TITLE (and Sublide) FINITE ELEMENT ANALYSIS FOR COMPLEX STRUCTURES (HELICOPTER TRANSMISSION Final Report. Jul 75 - May 77 HOUSING STRUCTURAL MODELING) ORT NUMBER D210-11232-1 TRACT OR GRANT NUMBER(.) AUTHOR(+) Advanced Power Train Technology Group-DAAJ02-75-C-0053 Men R. W. Howells J. J. Sciarra ORGANIZATION NAME AND ADDRESS ELEMENT, PROJECT, TASK Boeing Vertol Company (A Division of The Boeing Company) Boeing Center, P.O. Box 16858 Philadelphia, Pennsylvania 19142 1. CONTROLLING OFFICE NAME AND ADDRESS 62209A 1F262209AH ,76 0079 50 (17 REPORT DA Applied Technology Laboratory Jan U.S. Army Research and Technology Labora-6P. tories (AVRADCOM) Fort Eustis, VA 23604 4. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office) SECURITY CLASS UNCLASSIFIED 154. DECLASSIFICATION/DOWNGRADING 16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited. 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report) 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Transmissions Structural Analysis Loads Analytical Technique 20. ABSTRACT (Continue on reverse elde if necessary and identify by block number) The objective of the Finite Element Analysis for Complex Structures program was to develop and demonstrate a comprehensive, finite element analytical technique with the capability and flexibility for analyzing helicopter transmission housings made of metal and/or composite materials. The work encompassed the study of thermal distortion and stress, stress and deflection due to static and dynamic loads, load path definition, dynamic response (over) DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered) 403 682 JOB

UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE (When Data Enterod)

20. Abstract (Continued)

and the control of structural energy distribution. The results were used to optimize strength and weight, and to assess operational housing life, failsafety/safe life, and reliability. Some emphasis was placed on heat transfer analyses. Additional objectives were to integrate this housing analysis method with existing methods to form a comprehensive transmission analysis, and to validate these design tools so that they might be applied to future transmission configurations.

This program and the resulting technology represent a major step toward the long-range objective of a highly reliable, minimum weight, advanced technology transmission system. Prerequisite to the achievement of this goal is the extension of technology to meet the new analytical design techniques required. Significant research has been devoted to improving individual transmission components such as gears, bearings, and lube systems. However, a transmission is a complex dynamic system wherein all components interact and influence each other; hence a comprehensive, unified analysis is necessary to optimize the components as a system for the unique operating environment characteristic of a specified transmission.

A finite element model and analytical methods were applied to analyze a CH-47C helicopter's forward rotor transmission and also to define design modifications for structural optimization. All work conducted is compatible with the nationally available NASTRAN finite element computing program, Levels 15.5 and 16.0, so that structural load paths, stresses, natural frequencies, mode shapes, and thermal effects can be determined from a multi-purpose standardized source. Operating stresses and distortion of the housing have been experimentally measured and correlated with values predicted by NASTRAN in order to validate the model.

> UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

PREFACE

This report covers the work accomplished during the 23-month period from July 1975 through May 1977.

The work outlined herein has been performed under U.S. Army Contract DAAJ02-75-C-0053 and under the technical cognizance of Mr. Gim Shek Ng, Applied Technology Laboratory, U.S. Army Research and Technology Laboratories (AVRADCOM), Fort Eustis, Virginia.

This program was conducted at the Boeing Vertol Company under the technical direction of Mr. A. J. Lemanski (Program Manager), Chief of the Advanced Power Train Technology Department. Principal Investigators for the program were Mr. John J. Sciarra (Project Engineer) and Mr. Robert W. Howells.

CCESS OF IN		• ••			-
215	-	e \$21	ritien.	1	1
	SUT	\$563	105	10	3
DE				1	3
SYNAN SULLEN					
USI IF IGA (IWA.					
87			hy		*
BISTAIBETION	WAN.	A 310		Y-al	in In
BY DISTAIBETION DIST.	/ AVAH	ANIC	11	Yal tiel	A
BY DISTAIBETION Dist.	/#¥84	ANIC	N 1	Y-81	AL .
BY DISTAIDETION Dist.	/ AVAH	ANIC ERd /		Y-81	A
BY DISTAIDETION Dist.	/#¥14	ANIC		Y-91	A A

TABLE OF CONTENTS

	Page
Preface	1
List of Illustrations	4
List of Tables	10
Introduction	11
Background	13
Analytical/Computer Methodology	25
Design Analysis of Transmission Housing	30
I. Definition of Model	30
II. Extension of Model for Internal Components	38
III. Thermal Distortion and Thermal Stress	42
1. General	42
2. Uniform Temperature Analysis and Test	48
3. Gear/Bearing Thermal Simulation	58
4. Inermal Mapping Studies	70
IV Static and Dynamic Strong Analyzic	100
Static and Dynamic Stress Analysis	100
	122
	130
	130
Vulnerability/Survivability of a Helicopter Transmission $\dots \dots \dots$	135
	138
	142
	148
	152
	162
Recommendations	164
	105
	168
Appendix A – Review of Optimization Techniques	169
Appendix B – Sample Calculations for Heat Generation	181
Appendix C – Sample Output for Induced Misalignments Program	185
Appendix D – Fin Study	189
Appendix E – Bearing Numbering System Convention and Loads	202
Appendix F – Upper Cover S-83	207
Appendix G – Sample S-71 Run	212

-

b

3

30

PRECEDING PAGE BLANK-NOT FILM

LIST OF ILLUSTRATIONS

Figure		Page
1	Breakdown of Direct Maintenance Costs	12
2	CH-47C Forward Rotor Transmission	14
3	CH-47C Forward Rotor Transmission Case -	
	a. Left Side View	15
	b. Right Side View	15
	c. Front View	16
	d. Aft View	16
	e. Top View	17
	f. Bottom View	17
4	Example of Main Transmission Weight Breakdown	18
5	Measured and Theoretical Stress in Thin Rimmed Bevel Gears	19
6	Example of a Pinion and Gear Misalignment Under No Load	21
7	Load Distribution Across Face Width for Various Contract Conditions	21
8	Spur Gear Load Distribution Factor – c _m	22
9	Influence of Tooth Alignment Error on Gear Noise	22
10	Effect of Misalignment on Service Life	23
11	Flow Diagram of Transmission Housing Analysis	29
12	Boeing Vertol CH-47 Helicopter Forward Rotor Transmission Housing and NASTRAN Model	36
13	CH-47C Forward Transmission Internal Components	37
14	Change in Backlash Due to Axial Movement	39
15	Change in Backlash Due to Temperature Change	40
16	Change in Root Clearance Due to Temperature Change	40

Figure		Page
17	Shaded Lines Indicate Bearing Outer Race/Housing Interfaces	41
18	Emergency Oil-Off Capability Goals	43
19	Sequence of Development Required to Arrive at a Factory Sealed Advanced Technology Transmission	43
20	Model for Thermal Analysis	44
21	Flow Diagram of NASTRAN Thermal Analysis	46
22	Comparison of NASTRAN and Experimental Stresses for Free Rectangular Plate with Thermal Loading	47
23	CH-47 Forward Transmission Case Uniform Temperature Analysis, Static Deformation Due to Elevated Temperatures	49
24	Forward Rotor Main Transmission Housing P/N 114D1089	50
25	CH-47C Forward Rotor Transmission Housing in Dispatch Oven	51
26	Control and Data Monitoring Panel for Dispatch Oven	52
27	Measurement Procedure – Bar-Type Dial Indicator Gage	52
28	Measurement Procedure – Outside Micrometer	53
29	Measurement Procedure – Depth Gauge	53
30	Measurement Procedure – Vernier Caliper	54
31	Measuring Instruments	54
32	Transmission Housing Dimensional Changes as a Function of Temperature	56
33	Flow of Heat Generation Analysis	59
34	"Basic" Computer Program for Heat Generated by Spiral Bevel Gears (Hewlett Packard Minicomputer)	61
35	Sample Computer Output for Various Assumed Coefficients of Fiction	61

5

-454

Figure

10.100

and a start and a start the

36	Fiction Heat Generation Versus Load; 218 Angular-Contact Ball	
	Bearing 10,000 RPM, 5 Centistokes Oil, Jet Lubrication	63
37	Lubrication Pattern – CH-47 Transmission	64
38	Illustration of Internal Conductive Heat Paths of Specimen Transmission $\ .$	65
39	Illustration of Radiation/Natural Convection and Forced	
	Convection (Oil) Heat Paths of Specimen Transmission	66
40	Transmission Heat Sources	67
41	Gear Computer Program (R20) for Calculating Heat Generated	
	by Spiral Bevel Mesh. Sample Output CH-47C Forward Transmission	68
42	Typical Computer Output for Calculating Thermal Power	
	by Gear Teeth	69
43	Bearing Heat Generation CH-47 Forward Transmission 100%	
	Torque, 3000 HP	71
44	Illustration of Radiation/Natural Convection and Forced Convection	
	(Oil) Heat Paths of Specimen Transmission	73
45	Conceptual Drawing and Sample Calculations	75
46	Typical Thermal Map of CH-47 Forward Transmission (Reference 12)	76
47	Induced Displacements at Housing/Bearing Interface Due to	
	Temperature – 185 ^o F (85 ^o C) Oil Out	79
48	Displacement of Internal Components Due to Imposed Temperature	
	Distribution (Thermal Map Data 185 ^o F (85 ^o C))	79
49	Theoretical Temperature Projection for Given Heat Rejection Rates	
	and Power Levels (Based on CH-47 Forward Transmission Efficiency	
	of 98.0 rercent) (Reference 12)	84
50	Effective Area of a Finned Cylindrical Surface	86
51	Isotherms Around a Cylinder Cooled by a Fluid Flowing Normal to its	
	Axis, as Revealed by an Interference Photograph. Re = 1,260	86

Figure		Page
52	Fin Cooling Requirement to Eliminate Oil Cooling	93
53	Example – Heat Flow Problem	96
54	Thermal Map of Test 1 at 100 Percent Torque.Correlation with NASTRAN Results (Circled)	97
55	Bevel Gear Mesh Patterns at Different Axial Positions of Pinion	99
56	Model for Dynamic/Static Stress Analyses	101
57	Flow Diagram of NASTRAN Stress Analysis	102
58	Sample Rotor Loads Program Output (CH-47C Forward Rotor at 243 RPM, 50,000 lb Gross Weight, 150 kts – 3-Per-Rev and Steady (1g) Loads	103
59	Application of Dynamic Rotor Loads to Housing Model (3-Per-RevHub Vibratory Loads, CH-47C Forward Transmission, 50,000 lb,150 kt)	104
60	Application of Static Loads to Housing Model (Static Hub Loads, 1g Level Flight CH-47C Forward Transmission, 50,000 lb, 150 kt)	106
61	Deflection Versus Load Characteristics for Ball Bearings	107
62	CH-47C Forward Transmission Support Bearings	107
63	CH-47C Forward Transmission Bearing System (Nonlinear Stiffness)	108
64	Bearing Spring Rate (K) for CH-47C Forward Transmission Input Pinion (Pinion RPM: 7,460)	109
65	Bearing Spring Rate (K) for CH-47C Forward Transmission Sun Gear (Pinion RPM: 7,460)	110
66	Sign Convention for Hub Loads	112
67	Ultimate Forward Rotor Head Loads; Symmetric Drive and Pullout, Nose-up Pitching (Case 4 – Flight Condition 2B, 33,000 Lb Gross Weight)	113

Figure

68	Ultimate Forward Rotor Head Loads; Yawing (Case 5 – FlightCondition 6B, 33,000 Lb Gross Weight)
69	Ultimate Forward Rotor Head Loads; Recovery from Rolling Pullout, Counterclockwise (Case 6 – Flight Condition 5, 33,000 Lb Gross Weight)
70	Bearing Loads Applied to Case Due to Mesh Excitations (lb) Calculated by Beam Model Dynamic Analysis of Internal Components 116
71	Displacement of Internal Components Due to Ultim ate Load Condition . 119
72	Housing Deflection for Various Materials
73	CH-47C Forward Transmission Bearing Load Distribution Structural Elements with Highest Strain Density Indicated
74a	NASTRAN Orthographic Plot of Areas of Highest Strain Densityfor Upper Cover124
74b	NASTRAN Orthographic Plot of Areas of Lowest Strain Densityfor Upper Cover124
75	Sample Output for Fully Stressed Design of CH-47C Forward Transmission Upper Case
76	Lamina Notation
77	Typical Plots of CH-47C Forward Transmission for EvaluatingRadar Cross-Sectional Area139
78	The Unexpected Causes Most Helicopter Component Failures 142
79	Crack Growth Data for the Application of Fracture Mechanics to Defect Tolerant Design
80	Analytical Model for Application of Fracture Mechanics to Defect- Tolerant Design
81	Weight Study for Safe Crack Growth – HLH Pitch Arm
82	Crack Study

T		
H1	011	re
	Su	10

and any share was and

Р	a	g	e	
-	-			

The second second second second second

83	NASTRAN Finite Element Model of CH-47C Forward Pylon Model for Crashworthiness Evaluation of Transmission System	150
84	Crashworthiness of CH-47C Forward Transmission as Indicated by NASTRAN "Deformed" Plot	150
85	Earth Gouging (Plowing) of Fuselage Under Longitudinal Impact	151
86	Schematic Diagram of Idealized Aircraft with Transmission Concentrated in Upper Fuselage	151
87	Schematic Diagram of Closed-Loop Test Stand	153
88	Strain Gage Locations for Stress Testing	154
89	Test Stand Instrumentation Console	155
90	Test Housing Stiffened by Attachment of Doubler Plates	157
91	CH-47 Forward Transmission Case with Modifications (Cross Hatched Areas) to Wall Thickness for Selective Stiffening	158
A-1	Example Structure Geometry	173
A-2	Example Structure Applied Loads	173
A-3	Elements Thickness (Inches) as a Function of the Number of Cycles	174
A-4	Vibration Reduction Through Structural Modification, Energy Method. Elastic Modes Only	177
A-5	Forward Pylon Spectrum – Original and DFR Modified	177
A-6	Portal Frame Model and Modes	179
E-1	Forward Transmission CH-47C Hub Loads Converted to Bearing Loads	202

LIST OF TABLES

Table		Page
1	Areas of Investigation	24
2	Summary of CH-47 Forward Transmission Housing NASTRAN Model	34
3	Equipment Used to Perform Uniform Temperature Testing	55
4	Lubrication per Gear/Bearing Yielding Convective Cooling CH-47 Forward Transmission	63
5	Heat Generated by Components	70
6	Oil-In/Oil-Out Temperatures	72
7	Measurement of Thermal Growths (Case Elements)	77
8	Dimensional Growth Parameter Evaluation	77
9	Thermal Deflection and Stress Summary	80
10	Coefficients for Calculation of Heat Transfer from Cylinders with Different Cross Sections to an Air Flow Normal to Their Axes	87
11	Results of Fin Cooling Study	92
12	Deflection and Stress Summary	120
13	Stress Comparison – Original and Composite Augmented Housing	134
14	A-Kill Vulnerable Area Tabulation	137
15	Static Stress Summary – Measured and Predicted Values for Baseline Housing	160
16	Static Stress Summary (Measured Values) for Baseline and Stiffened Housing	161
17	Dynamic Stress Summary	161

10

Window March 191

INTRODUCTION

The design of a helicopter drive system presents a difficult challenge. The continually escalating requirement for improved power-to-weight ratio capability is further complicated by the additional demands for extended service life, improved reliability/maintainability, better survivability/vulnerability and reduced vibration/noise levels. Faced with such an array of design constraints, the helicopter drive system design team must consistently push technology beyond the state of the art.

In addition to these technological advancements, a major goal for helicopter improvement is to reduce operating cost. Since 30 percent of the total helicopter direct maintenance cost is associated with the drive system, drive system cost is a significant part of the total operating cost (Figure 1). Service life duration of the major transmission components is a prime contributor to the operating cost. The most effective way to reduce the drive system cost is to extend the average service life of major transmission components (gears, bearings, splines, retention hardware, interface connections and joints, and lubrication system components). Increased life will reduce spares procurement, maintenance requirements, depot facilities, and labor.

Considerable research has been devoted to investigating and improving individual transmission components such as gears, bearings, and lubrication systems. Conversely, helicopter transmission housings had not previously received the attention necessary to define fully and optimize their functional requirements, and a gap in transmission technology existed in this area. Complex structures such as rotor transmission housings used in current helicopters are not generally designed for stiffness characteristics, however they have high strength margins for safe life and seldom exhibit gross structural failures. However, since the housing provides structural support to the internal components, its physical characteristics significantly affect overall transmission performance and life in terms of internal bearing capacity, gear capacity, fretting, misalignments, and load maldistributions. Therefore, the full benefits of advancements achieved in component technology cannot be realized in practice until the housing has been optimized.

A major constraint in meeting cost improvement goals is the deflections of the present housings under operating load conditions. Housing deflections under load have been identified as a cause of accelerated wear and surface deterioration of gears, bearings, splines, retention hardware, and interface connections and joints. In addition, these deflections result in excessive gear misalignment which greatly increases the dynamic force (excitation) at the gear meshes, resulting in vibration and noise generation. Reduction in the magnitude of these housing deflections by structural optimization and/or advanced materials offers great promise for both prolonging the life of the transmission components and substantially reducing the vibration and noise level without a system weight penalty.

To continue to improve transmission analysis capability, a detailed understanding of the structural and thermal aspects of the transmission housing must be developed and integrated with the existing component analyses. This effort for further research in the stress and dynamic characteristics of a helicopter transmission housing uses the finite element technique. The effects of thermal growth, structural deformation and operational housing life can be accurately studied. Along with structural design, fabrication and/or modification, and testing, this program also attempts to analyze the housing for fail-safe/safe-life design.

Figure 1. Breakdown of Direct Maintenance Costs

BACKGROUND

To provide an understanding of the configuration, functional requirements, and design criteria for a helicopter transmission, a brief description is included here. A typical contemporary helicopter main transmission housing is composed of three major parts with essentially separate functions: the upper cover, the ring gear, and the case. An example of this configuration, the CH-47C forward rotor transmission is shown in Figure 2. The upper cover supports the rotor shaft and provides lugs for mounting the transmission to the airframe. Hence, the rotor system loads are transmitted through the upper cover into the airframe. The case contains and supports the main bevel gears and may also include a tail rotor or sync shaft drive, lube pump, or accessory drives. The transmission may also have a separate sump for containment of the lubricant, as does the CH-47C, or it may use an integrally closed lower portion of the case for this purpose. The stationary ring gear, which connects the upper cover and case, contains the planetary gear system. The entire housing also performs the functions of sealing in the lubricant, providing passages for lubricant delivery, protecting critical transmission components, and dissipating heat by conduction and radiation. Figure 3 shows the transmission case in detail, since much of the work herein is concentrated on analysis of the case.

The upper-cover design criteria, in order of importance, include ultimate, fatigue, and crash load conditions. The gear case design criteria include stiffness for gear mounting and fatigue loads in certain areas. The ring gear must provide adequate strength to react the planetary gear loads and to support the case and must provide sufficient stiffness to maintain planet/ring gear tooth alignment. The requirement for oil containment exists for all of the housing parts.

Because of the complex geometry and the many functions that the typical housing must perform, transmission housings have traditionally defied analysis. Due to the lack of analytical methods for predicting and optimizing its many functional load paths, transmission housings have evolved as generally thickwalled cast or forged structures made of aluminum or magnesium. With the increasing power, size and weight of helicopter transmissions, the resulting over-design produces undetermined, but probably substantial, weight penalties. Figure 4, which presents a weight breakdown for a typical helicopter transmission, shows that the housing weight is 24% of the total transmission weight. It is recognized that minimum wall thickness in nonstructural areas is limited by the casting process. Nevertheless improvements in weight can be realized in the thicker structural support regions.

Figure 3. CH-47C Forward Rotor Transmission Case - a. Left Side View

Figure 3. Continued – b. Right Side View

2 H VARABURAR

pre-

Figure 3. Continued - c. Front View

Figure 3. Continued – d. Aft View

Figure 3. Continued – e. Top View

Figure 3. Continued – f. Bottom View

Figure 4. Example of Main Transmission Weight Breakdown

Considerably more significant application of such a structural load path analysis can be made to advanced transmission concepts employing fabricated housings, composite materials, and other advanced concepts, which will permit greater design flexibility. For example, major load paths could be selectively reinforced while the thickness of non-load carrying regions of the housing wall could be reduced to the minimum necessary for containment of the lubricant.

A basic requirement of a helicopter transmission is dimensional stability of each gear-mesh, which implies dimensional stability of the housing and bearing mounting locations. Because of the influence of the housing stiffness on the transmission internal components, it must be optimized during the development of an advanced technology transmission system. Also, initial knowledge of the dynamic stability of the system must be obtained to avoid resonances and the accompanying vibration/noise.

Analytical evaluation of the load-carrying capacity of bevel gears involves assumptions regarding the nature of the tooth bearing for the specific gear mountings under load. A uniform stress distribution across the tooth and rigid mounting is typically assumed. Unless these assumptions are accurate, actual stresses may vary considerably from the calculated values, resulting in a possible life reduction. During manufacture of bevel gears, the desired tooth contact pattern is established from observation of the pattern obtained under light load in a gear tooth pattern checker. It is possible to vary the length, width, and position of a tooth bearing by selection of grinding wheel diameters and grinding machine settings. This procedure is known as developing the tooth bearing contact pattern. With gear mountings that are rigid, the behavior of the tooth bearing under load is usually more predictable, and thereby can be developed using previous experience. However, in the case of aircraft applications, the mounting designs are markedly different in that rigidity is sacrificed in favor of weight reduction. Therefore, it is seldom possible to accurately predict, during the design stage, the size and position of the tooth contact pattern required at no load in order to obtain the desired bearing pattern in the final gear mountings. A study of the mounting design and operating conditions together with a judgement based on experience must be utilized to establish the initial tooth bearing. From this point, the development of the final tooth bearing is accomplished by actual trial of the gears in their final mountings.

Predicted improvements in the load capacity for gears and bearings may be offset in practice by poor load distribution resulting from misalignment caused by the deflection of mounting surfaces within the housing (Figure 5). The detrimental effects of misalignment on gear teeth is documented by the AGMA (Reference 1). Gear tooth bending and surface contact stresses are proportional to load distribution factors (Km, Cm). These factors evaluate the effects of nonuniform load distribution.

Figure 5. Measured and Theoretical Stresses in Thin Rimmed Bevel Gears

1. American Gear Manufacturers Association Standard 210.02.

They are dependent upon several factors including gear mesh misalignment due to housing distortion caused by loads and thermal variations (Figures 6 and 7). The effect of different rates of misalignment is shown in Figure 8. F represents the face width having 100-percent contact for^ma given tangential load and misalignment error. Uneven load distribution caused by significant shaft misalignment will result in tooth pitting and scuffing failures. Gear mesh misalignment is also important from the aspect of vibration/ noise generation (Figure 9, Reference 2).

Shifting of the gear tooth contact pattern may also be caused by differential thermal growth. When two bevel gears are properly mounted, and given that the gears have been properly manufactured and the bearing/gear positioning shim stack "heights" are properly assembled, the cone centers are coincident (at room temperature). Since the gears and bearings are made of steel and the housing and bearing cartridges are made of magnesium, differential thermal expansion (thermal coefficient of mag approximately twice that of steel) would cause the relative positions of the bevel pinion and gear to change. The cone centers would not be coincident at operating temperature and the tooth pattern and stress distribution across the tooth would change.

Housing deflection also has detrimental effects on the performance of the shaft seals. The operational effectiveness and life of a helicopter transmission seal is dependent upon a number of interdependent factors such as rubbing velocity, pressure, temperature, dimensional and finish conditions of the shaft surface, nature of the sealed medium, housing deflections, and shaft deflections. All of these factors become proportionally critical in high speed applications. "Leakers" pose hazards including fire, personnel injury due to slippery surfaces, and objectionable appearance. Severe seal leaks can result in depletion of the oil supply. Studies of advanced helicopter transmission concepts indicate that shaft speeds will be increased and time between overhauls for transmissions will be extended. These requirements will have a direct effect on shaft seal design by imposing more stringent performance requirements and extended useful life. Reduction of deflections and vibrations will help achieve this goal.

Experience to date has been associated with reduced bearing lives due to varying system stiffness. Present bearing life equations assume that the bearing is rigidly supported, operates under no misalignment, and operates under a constant and uniform load. In helicopter applications, these assumptions are not true and therefore calculated lives are not precise.

^{2.} George C., GEAR NOISE SOURCES AND CONTROLS, Detroit Diesel Allison, Division of General Motors Corporation.

Figure 6. Example of a Pinion and Gear Misalignment Under No Load

21

NAMES AND ADDRESS

Figure 9. Influence of Tooth Alignment Error on Gear Noise

and the second of the second second second

Early bearing failures have resulted from shaft misalignment (edge loading) and nonuniform housing support (local hard spots). Present methods of bearing analysis, which include complex computer programs, have very limited capabilities of evaluating the effect of structural shapes and flexibility on An example of this type of problem has been exbearing life. perienced during the testing of a large swashplate bearing (Reference 3). This bearing was sized by the best available computer programs and modified in an attempt to account for structure deflection. After 239 hours of testing, two bearings failed due to distress caused by the ball riding over the edge of the inner and outer races. Investigation of the failure revealed that relatively large structure deflection (0.016 inch ring separation) resulted in high local loading and excessive race depth requirements. The severe effect of misalignment on bearing life is further shown in Figure 10.

In order to reduce this type of failure, special consideration must be given to the uniform, rigid support of critical components. Reduced shaft and housing deflection will result in better performance and life of gears, bearings, and seals. Therefore, analytical methods must be developed which will permit evaluation of important design parameters, allow tradestudies, and provide guidance to designers. The specific topics being investigated under this program and the areas of anticipated benefit are summarized in Table 1.

Figure 10. Effect of Misalignment on Service Life (REFERENCE 4)

- Lenski, J. W., HLH SWASHPLATE FAILURE ANALYSES, Boeing Vertol Inter-Office Memorandum 8-7462-1-40, dated 10 July 1974.
- 4. Leibensperger, R. L., WHEN SELECTING A BEARING LOOK BEYOND CATALOG RATINGS, Machine Design, April 1975, Pages 142-147

TABLE 1. AREAS OF INVESTIGATION

	САРАВІЦІТҮ	POTENTIAL IMPROVEMENTS	PA RAMETER AFFECTED
Thermal Analysis	Evaluate Misalignment	Improved Load Capacity Improved Load Distribution Reduced Vibration/Noise Longer Life of Components	Weight Reliability Reliability Reliability
	Predict Heat Flow	<pre>Develop Oil-Off Operating - Capability - Develop Higher-Temperature Integral Cooling System</pre>	Survivability Vulnerability
	Predict Stress	Structural Efficiency	Weight
	Analytical Technique	Optimize New Transmission During Initial Design	Weight, R/M, V/S and Producibility
Stress Analysis	Evaluate Misalignment	Improved Load Capacity Improved Load Distribution Reduced Vibration/Noise Longer Life of Components	Weight Reliability Reliability Reliability
	Analyze Load Paths	Improved Load Capacity Improved Fail-Safety	Weight Survivability
	Predict Stress	Structural Efficiency	Weight
	Analytical Technique	Optimize New Transmission During Initial Design	Weight, R/M, V/S and Producibility

ANALYTICAL/COMPUTER METHODOLOGY

For the work conducted under this contract, the finite element technique using the NASTRAN computer program was selected for structurally analyzing the housing stresses, dynamic response, deflections, and thermal effects, as well as strength, weight, and fail-safe/safe life.

The development of this approach results in an advanced tool for analyzing a transmission housing through the use of finite element techniques. Since NASTRAN is used, the results indicate the feasibility of using NASTRAN as a versatile transmissions design tool, specifically in the areas of:

- 1. Thermal distortions, cooling requirements.
- 2. Stress Analysis
 - A. Maneuver Loads
 - B. Crashworthiness simulation using inertia relief capability of NASTRAN (Rigid Format 2).
- 3. Dynamic analysis due to n per rev hub excitations.
- Weight reduction through optimization schemes such as strain energy distribution or fully stressed design analysis.
- 5. Design of conceptual transmissions.
- Reduction of bearing misalignment by developing a stiffer case and evaluating geometry and slope changes. Reduction of load maldistribution across gear teeth and improved gear life by similar means.
- Consideration of fail-safe/safe life, survivability and vulnerability by, for example, simulating a crack in the model.
- 8. Assess radar cross-section by evaluating scale plots of the transmission drawn at any specified orientation.
- 9. Effects of nonlinear behavior of bearings.

The contractor has utilized pre- and post-processor computer programs compatible with NASTRAN to improve its utility. Examples of such programs are SAIL II (an input data generator) and S-83 (strain energy analysis). The automatic generation of grid point coordinates, element connectivity, etc., is essential for complex Boeing has developed a sophisticated finite models. element input capability for use with NASTRAN entitled SAIL II (Structural Analysis Input Language). This preprocessor allows the user to take advantage of any pattern that occurs in the data by making available straight-forward techniques for describing algorithms to generate blocks of data. Grid points and element connections may be generated. This program, although proprietary to the contractor, has been utilized, and is available for purchase by industry. An alternative for nodal generation and/or connectivity would be user generated WATFOR computer programs which would punch-out the NASTRAN input bulk data cards. Although the contractor has used SAIL II and feels that this program is more versatile, other users of NASTRAN can conduct the same work by alternate methods. The Boeing Vertol SAIL II computer program will be compatible for use with NASTRAN Level 16.

For ease of identification a complex model is typically subdivided into several regions and the grid points in each region are labeled with a specific, but arbitrary, series of numbers. Although these grid point numbers act only as labels, they effect the bandwidth of the stiffness and mass matrices. In order to minimize the matrix bandwidth for most efficient running of NASTRAN, the BANDIT computer program (Reference 5) can be used to automatically renumber and assign internal sequence numbers to the grid points. The output from BANDIT is a set of SEQGP cards that are then included in the NASTRAN bulk data deck, and which relate the original external grid numbers to the internal numbers.

After reviewing many of the structural optimization methods in existence (see Appendix A), strain energy and stressratio resizing techniques were employed. For applications such as helicopters where weight is critical, it is more appropriate to evaluate the strain density (strain energy/volume) distribution within a structure which provides guidance for structural optimization. A strain density analysis for dynamics applications has been

an person of the state of the

Everstine, G., BANDIT - A COMPUTER PROGRAM TO RENUMBER NASTRAN GRID POINTS FOR REDUCED BANDWIDTH, Naval Ship Research and Development Center Technical Note AML-6-70, February 1970.

developed by Boeing Vertol under ARO Contract DAHC04-71-C-0048 (Reference 6). Expanding upon this work, a postprocessor program (S-83) compatible with NASTRAN has been developed for analysis of the strain density distribution throughout a structure for dynamics application and is based on the concept that for a given load condition, a uniform strain density under distortion yields a maximum stiffness/ minimum weight structure. This program uses stress data output by NASTRAN, calculates the strain density of each element, and tabulates these from highest to lowest. By employing the ALTER feature of NASTRAN, a checkpoint tape containing the stresses for each element is generated. The post-processor program uses the data stored on the checkpoint tape to calculate the strain density of NASTRAN plate elements and tabulates the elements in descending order of strain densities. The structural elements with the highest strain density are the best candidates for effective optimization since a minimal weight change will yield a maximum benefit. By locally altering the housing wall to change the mass and stiffness in these areas of high strain density, the structure can be optimized. This strain density distribution concept can also be utilized statically to identify structural load paths and to evaluate the efficiency of the housing structural design (stiffness/ The S-83 strain density computer program can be weight). used for both static and dynamic analyses (including thermal effects). Under modal distortion for a given natural frequency, a uniform strain density yields a The maximum lowest eigenvalue/minimum weight structure. computer model, pre- and post-processor programs, and all computer data and format are compatible with NASTRAN (commercial or Schwendler version). The capabilities of NASTRAN for automated plotting and analysis of composite materials are also utilized.

In order to be able to realistically determine thermal distortions/stresses for a new or conceptual transmission case, it is necessary to calculate the output of the heat sources which are the gear meshes and bearings. Since this capability does not exist in NASTRAN, the results of the existing Boeing Vertol computer program, which have been extensively used and thoroughly validated for the analysis of bearings (SO4) and gears (R20 bevel, R23 spur and helical), were applied to calculate power dissipation and the resultant heat generation. Using these results as the driving potential for the thermal analysis, NASTRAN was then run for a steady-state heat

 Sciarra, J., USE OF THE FINITE ELEMENT DAMPED FORCED RESPONSE STRAIN ENERGY DISTRIBUTION FOR VIBRATION REDUC-TION, U.S. Army Research Office - Durham, Final Report Contract DAH-C04-71-C-0048, July 1964. solution (heat balance) using the housing model. Cooling was provided by modeling the oil flow and incorporating it into the solution. Nodal temperatures were punched out automatically on cards in a format compatible with NASTRAN input. A thermal distortion/stress analysis followed using the same basic model. This was accomplished using Rigid Format 1 (Static Analysis) of NASTRAN.

The use of computer programs that are proprietary to Boeing Vertol presents no gap in the final product to be delivered under this contract. The bevel gear program (R20) is based on Gleason commercially available dimension sheet methods, and the spur/helical gear program (R23) is based on standard AGMA information. The rolling element bearing analysis program (S04) was purchased by Boeing Vertol from Mr. A. B. Jones, bearing consultant, and is also commercially available to other users. Furthermore, most industrial and commercial potential users of the finite element structural analysis method have their own gear/ bearing analyses.

The present NASTRAN transmission model uses elements with a solid homogeneous cross-section which allow for both membrane and bending stiffness. The material properties are isotropic. These conditions represent the solid cast structure of current helicopter transmissions. However, the following options exist within NASTRAN to allow analysis of structures made of composite materials:

- A solid homogeneous cross-section element with anisotropic material properties.
- Sandwich plate elements that can reference different materials for membrane, bending, and transverse shear properties, each of which may have either isotropic or anisotropic material properties.
- A general element whose properties are defined directly by the user in terms of influence coefficient or stiffness matrices.

The particular element chosen is dependent upon the type of composite material to be represented. The NASTRAN model may also be modified to analyze fabricated truss type structures.

The flowchart presented in Figure 11 summarizes the overall transmission housing analysis. The previously existing work and the items developed herein have been identified, and it is shown how the work herein contributes to the overall design goals.

a second of a contraction the second

Figure 11. Flow Diagram of Transmission Housing Analysis

and and

29

Wither and the state

DESIGN ANALYSIS OF TRANSMISSION HOUSING

I. DEFINITION OF MODEL

The contractor selected the forward main rotor transmission of the CH-47C helicopter for consideration under this program. A NASTRAN finite element model of the CH-47 forward rotor transmission constructed by Boeing Vertol (under USAAMRDL Contract DAAJ02-74-C-0040) for vibration/ noise reduction studies and correlated with data from the HLH/ATC noise reduction program (References 7 and 8) was used and improved for the thermal and stress analyses herein. This model is described briefly below and in more detail in References 9 and 10.

The transmission model was used both as a baseline conceptual housing for generalized studies, along with simpler models to illustrate cooling fins and bearing races/gear interfaces for heat transfer analyses, as well as being used for a specific analysis of the operating conditions experienced by an actual CH-47C transmission. This generalized conceptual housing model was used to address various transmission design areas and to develop a general tool for specific application to the redesign of the CH-47C forward transmission. The conceptual baseline was used to develop the design constraints necessary to meet the goals of this contract and to demonstrate the analytical

- 7. Hartman, R. M., and Badgley, R., MODEL 301 HLH/ATC TRANS-MISSION NOISE REDUCTION PROGRAM, Boeing Vertol Company, USAAMRDL TR 74-58, Eustis Directorate, U.S. Army Air Mobility Research and Development Laboratory, Fort Eustis, Virginia, May 1974, AD784132.
- Hartman, R. M., A DYNAMICS APPROACH TO HELICOPTER TRANS-MISSION NOISE REDUCTION AND IMPROVED RELIABILITY, Paper Presented at the 29th Annual National Forum of the American Helicopter Society, Washington, D.C., May 1973, Preprint No. 772.
- Sciarra, J. J., Howells, R. W., and Lemanski, A. J., HELI-COPTER TRANSMISSION VIBRATION AND NOISE REDUCTION PROGRAM, USAAMRDL Contract DAAJ02-74-C-0040, Interim Report, October 1975.
- Howells, R. W., and Sciarra, J. J., FINITE ELEMENT ANALYSIS USING NASTRAN APPLIED TO TRANSMISSION VIBRATION/NOISE REDUCTION, NASA TMX-3278, September 1975.

and the stand and the stand of the stand

technique developed through design of a housing to meet the design constraints selected. Several areas of potential improvement needing further consideration have been identified:

- Housing Material Desirable Properties
 - Inherently high stiffness and strength.
 - Good high temperature strength to provide gear and shaft support even when running under emergency lube conditions and under operating temperatures of 350°F.
 - Use material forms like composites or rolled sheet which lend themselves to very thin sections in areas where oil containment is the main requirement.
 - The housing material strength/elongation properties should accept the hydraulic ram effect that cracks castings after ballistic impact.
 - Should not support combustion as magnesium does.
 - Inherent cooling capabilities.
- Housing Construction and Geometry
 - Minimize interfaces, doubled thicknesses, and bolted joints.
 - Simplify the rotor load path and minimize bending as far as possible.
 - Locate gears as rigidly as possible by reacting their loads through a direct, short and rigid load path. Locate bearings to minimize bending loads on the support structure.
 - Insure rigid support locations at housing/ rotating component interfaces.

The above design features and the increasing performance demands placed upon helicopter transmissions have led to interest in the possible use of advanced composite materials for transmission housings. Although composites have been applied with much success for many aircraft parts, their use for transmission housings is new. Many design areas must be addressed: load path definition for orientation of non-isotropic material properties; fabrication, tooling and machining methods; thermal properties, etc. A USAAMRDL/BHC program (Reference 11) was previously conducted to evaluate carbon/epoxy as a possible transmission Machining of the carbon/epoxy material housing material. was found to be difficult, and grinding had to be used almost exclusively to finish the composite housing. Also, the thermal conductivity and structural integrity of the carbon/epoxy housing was found to be poor. Stiffness was slightly improved as evidenced by gear development testing. The lack of success of this particular program should not deter the pursuit of composites as a housing material. Conversely, the problems encountered during the program indicate the need for accurate analysis and careful design as well as the development of acceptable fabrication procedures.

For example, structural failures occurred at bonded joints in tension. Such a design does not utilize the properties of composites properly and must be avoided. Another example is the concern over the low thermal conductivity of nonmetal composites. Graphite/polyimide has a lower thermal conductivity than magnesium by a factor of about 25 to 1, thus heat dissipation from the housing will be less than that of a magnesium equivalent and areas of higher temperature will be more localized. Since convection cooling through a magnesium case accounts only for an estimated 15% of the total heat rejection, the estimated weight penalty for the cooling system resultant is not prohibitive.

The second probable effect of the thermal conductivity difference is in the areas immediately adjacent to the bearings. Bearing heat will not be carried away as fast as it is with a magnesium housing. The coefficient of thermal expansion of molded polyimide with chopped graphite rein-forcement is 6 x 10 ⁶ inch/inch°F, which is very close to steel (6.5 x 10 6). The effect on the bearing should be beneficial under conditions of both normal operation and lube interruption. That is, the temperature of the outer race should remain closer to the inner race under all conditions and thus eliminate the temperature gradient across the bearing, which is responsible for bearing seizure under abnormal conditions. Also, the housing will not expand away from the outer race when the thermal growth coefficients are matched. This will also tend to maintain a constant internal clearance and stabilized operating conditions in both normal and abnormal lubrication situations. The conclusion is that molded chopped graphite

Battles, Roy A., DYNAMIC TESTING OF A COMPOSITE MATERIAL HELICOPTER TRANSMISSION HOUSING, Bell Helicopter Company, USAAMRDL TR 75-47, Eustis Directorate, U.S. Army Air Mobility Research and Development Laboratory, Fort Eustis, Virginia, September 1975, AD A015521.
composite bearing supports, with thermal coefficients matched to bearing materials, will improve the ability to operate at design conditions as well as at abnormal lube conditions.

The finite element analysis considered herein is an essential tool necessary to handle the composite material properties most efficiently. Such analyses in combination with advanced materials promise to yield helicopter transmissions with substantially improved performance and lower life-cycle cost.

By utilizing the existing model of the CH-47C forward rotor transmission, the contractor has been able to:

- Cost-effectively conduct the thermal/stress analysis presented herein.
- Concentrate effort on the application of the model to derive useful information rather than on model building.
- Directly apply results of other related contracts.

Further reasons for selecting this model include:

- Model validation has provided confidence in its accuracy.
- Use of a widely accepted and throughly validated computer program (NASTRAN).
- Extensive computer-generated plotting capability used to debug the model.
- Cross-checking of the model, design drawings, and hardware.
- Good correlation of the model and hardware weights (Table 2).
- Test data is available from previous Boeing Vertol programs for model validation and correlation.
 - Housing displacements from HLH/ATC noise reduction program (Reference 7).
 - Housing temperatures from thermal mapping program (Reference 12).
- Hardware is available for further testing and modification.

12. Tocci, R. C., Lemanski, A. J., and Ayoub, N. J., TRANS-MISSION THERMAL MAPPING, Boeing Vertol Company, USAAMRDL TR 73-24, U.S. Army Air Mobility Research and Development Laboratory, Fort Eustis, Virginia, May 1973, AD 767875.

HOUSING	
TRANSMISSION	
FORWARD	
F CH-47	IODEL.
SUMMARY O	NASTRAN M
TABLE 2.	

MODEL PARAMETERS

	NUMBER	NUMBER		NUMBI	ER					CPU TIME
GKII	S.I.NTOA O	ELEMENTS		DEGREES OF	FREEDON	5		BANDWLDT	H	(HOURS)*
			TOTAL	SINGLE-POIN CONSTRAINT	T OMIT R	ETAINED	FULL	REDUCED	COLUMNS	
Upper Cover	160	202	960	184	614	162	34	162	0	.20
Ring Gear	216	192	1296	216	828	252	•	252	0	.1
Case	477	540	2862	529	2024	309	61	309	0	9.
TOTAL	853	934			∫ [₽]					
*RIGID FORMAT	I NO I J	BM 370			Dyna Anal	umic Lysis				
					uo	ıİy				
	99 99	COMPARISO	N OF C	ALCULATED A	ND ACTU	IAL WEIGH	HTS*			
		W	ODEL		HARD	WARE		DIFF	ERENCE	

34

	COMPARISON OF CALCULAT	EU AND ACTUAL WEIGHTS*	
	MODEL	HARDWARE	DIFFERENCE
Sump	3.7 kg (8.2 lb)	5.5 kg (12.2 1b)	**
Case	25.1 kg (55.4 lb)	24.6 kg (54.2 lb)	+ 2.2%
Ring Gear	34.9 kg (77.0 lb)	34.9 kg (77.0 lb)	0% (Lumped Masses
Upper Cover	62.8 kg (138.5 lb)	64.1 kg (141.4 lb)	- 2.0% for Teeth)
* (Case weight bas	sed on AZ91C cast magnes	sium alloy, density .06	5 lb/in ³ ; upper cover hoth ner MII_HDBK_EB

weight based on 2014-T6 forged aluminum, density .101 1b/in3 , both per MIL-HDBK-5B 1 September 71.)

**Model excludes internal passageways.

The Boeing Vertol CH-47 forward rotor transmission housing is composed of three major sections: upper cover, ring gear, and case (including sump). The upper cover provides lugs for mounting the transmission to the airframe and transmits the rotor system loads. The case contains and supports the main bevel gears. The ring gear, which connects the upper cover and case, contains the planetary gear system. This natural division of the housing was adhered to for ease of modeling (Figure 12).

The geometric grid points for the model were defined from design drawings and by cross-checking on an actual housing. CQUAD2 (Quadrilateral) and CTRIA2 (Triangular) homogeneous plate (membrane and bending) elements were used to connect the grid points and to build the NASTRAN structural model. A Boeing Vertol preprocessor program (SAIL II - Structural Analyses Input Language) for the automatic generation of grid point coordinates and structural element connections was used. This preprocessor allows the user to take advantage of any pattern which occurs in the data by providing straightforward techniques for describing algorithms to generate blocks of data. The extensive computer generated plotting capability of NASTRAN was used to debug the structural model.

For ease of identification the housing was subdivided into several regions, and the grid points in each region were labeled with a specific, but arbitrary, series of numbers. Although these grid point numbers act only as labels, they effect the bandwidth of the stiffness and mass matrices. In order to minimize the matrix bandwidth for most efficient running of NASTRAN, the BANDIT computer program (Reference 5) was used to automatically renumber and assign internal sequence numbers to the grid points. The output from BANDIT is a set of SEQGP cards that are included in the NASTRAN bulk data deck and which relate the original external grid numbers to the internal numbers.

The model includes grid points representative of the structure where the shafts are supported by their bearings. These grid points are used to apply the dynamic and static loads to the housing. Each geometric grid point has six possible degrees of freedom (three translational and three rotational). To conveniently evaluate the motion normal to the housing surface, numerous local coordinate systems were defined and oriented such that the displacements and accelerations calculated at each grid point could be referred to as a coordinate system having an axis normal to the housing surface. One degree of freedom, rotation about the normal to the surface, was constrained since the stiffness for this component is undefined for NASTRAN plate elements. The other two rotational degrees of freedom were omitted. All translational degrees of freedom were retained to accurately represent the motion of the actual housing. The model parameters are summarized in Table 2.

-

Figure 13. CH-47C Forward Transmission Internal Components

II. EXTENSION OF MODEL FOR INTERNAL COMPONENTS

The original transmission model included the complete housing structure (Figure 12) as well as the internal dynamic components (Figure 13). The model of these internal components was used to calculate the dynamic forces that were subsequently applied analytically to the housing model at the bearing locations. The structural aspects of the internal components were not considered. Since for static load conditions the internal components provide additional structural constraints on the housing, the effect of these internal components must be accounted for in the thermal and structural models. The effects of bevel, sun lower and upper planetary gears, and supporting structure were considered. It is generally not necessary to model these components in full detail, since only their gross effect on the housing is desired. A simple beam representation is adequate.

Including the internal components in the thermal model was neither necessary or desirable. The bearing outer races (steel $\leq s = 7.5 \times 10^{-6} \text{ in/in/}^{OF}$), which are the case/internal component interface, are press fit into the housing. Elevated temperatures cause the magnesium case $(\checkmark m = 15.0 \times 10^{-6} \text{ in/in/}^{\circ}\text{F})$ to expand away from the outer race and may even result in a "floating" fit at operating temperature. This situation was experienced in Reference 12, where it was necessary to key the outer races of the spiral bevel pinion bearings in their case liners to prevent rotation that would be permitted by increased clearances caused by thermal expansion/growth. This condition, plus the internal tolerance within a bearing, precludes the transmittal of radially outward thermal loads into the housing. Furthermore, it is not possible for the bearing races to impose radial restraint upon the housing expansion. Thus, no representation of the internal components in the radial direction is necessary. In the axial direction, thermal growth of the shafting is absorbed in the form of reduced gear backlash, Thus, no axial loads are generated unless the temperature exceeds that necessary to reduce the backlash to zero. In such a situation, the housing loads would be of little interest since the gears would distress and fail. Figures 14, 15 and 16 indicate the changes in bevel gear backlash and root clearance due to elevated temperatures. Allowing for these effects, a high temperature transmission must be designed to maintain adequate backlash as well as bearing clearances.

The only significant property of the internal components in the static stress model is the radial resistance of the bearing outer races to compressive (radially inward) forces acting on the housing.

Figure 14. Change in Backlash Due to Axial Movement

and have

is an investigation

Figure 15. Change in Backlash Due to Temperature Change

Figure 16. Change in Root Clearance Due to Temperature Change

bearing races offer no resistance to radially outward forces on the housing. A problem arises here due to the nature of the beam element. No capability exists in NASTRAN for a beam which will act in compression only. Thus, a beam model of a bearing race will also act to impose unwanted restraint on the housing directed radially inward. This could be circumvented by first analyzing the housing model without including the beams representing the races and thereby defining those housing/bearing interfaces with radially inward deflections. A beam model could then be inserted at these points to resist the radially inward forces and the analysis could be rerun. Figure 17 indicates the bearing/housing interfaces.

Figure 17. Shaded Lines Indicate Bearing Outer Race/Housing Interfaces

III. THERMAL DISTORTION AND THERMAL STRESS ANALYSIS

1. General

A complete thermal analysis must consider thermally induced deflections and stress as well as heat transfer characteristics. The capability for predicting the thermal distortion of a transmission housing under operating conditions is important from the aspects of load capacity improvement and avoidance of premature component distress. The sensitivities of bevel gear load capacity to tooth pattern and of bearing performance to mounting tolerances, both of which are affected by the dimensional stability of the housing, are The thermally induced stress distribution well known. in the housing must be known and then superimposed upon the stress due to static/dynamic loads. Only with such a detailed knowledge of the housing stress can a structural design be optimized for maximum efficiency. Furthermore, in line with the long range objective of an integrally lubricated transmission, a thermal analysis is required for predicting the heat flow characteristics of the transmission housing. Since such a transmission will operate at higher temperatures than current conventionally cooled systems, the effects of thermal distortion and stress will become more critical. Such studies also bear directly on the development of transmission capability to endure relatively long periods of emergency hot running after loss of lubricant (Figure 18). The sequence of development required to arrive at an integrally lubricated transmission is shown in Figure 19. Test results have also indicated that thermal growth may be a contributor to premature gear distress at present operating temperatures. Thermal growth, being proportional to both temperature change and component size, becomes more critical with larger transmissions (e.g., HLH) and higher temperatures (e.g., sealed-lube systems). Thus, advanced transmission designs will need improved thermal analyses to alleviate such problems.

The investigations documented herein indicate the relative contribution to distress of transmission components when subjected to differential thermal growth. The results of this analysis indicate the work required to arrive at acceptable drive system mission reliabilities when differential thermal growth takes place in hot running helicopter transmissions for continuous and emergency periods of time. The finite element transmission housing model discussed in a previous section is ideally suited for application to a thermal analysis. Figure 20 describes the thermal model of the housing.

Sealed Advanced Technology Transmission

and the second

- AUTOMATIC GENERATION OF GRID POINTS AND ELEMENT CONNECTIONS.
- USE SAME GRIDS FOR STRUCTURAL AND THERMAL ANALYSIS.
- HOUSING MADE OF PLATE ELEMENTS
- METAL OR COMPOSITE MATERIAL.
- THERMAL DISTORTION AND THERMAL STRESS.
- GEAR/BEARING ANALYSIS TO DETER-MINE HEAT GENERATION, USE AS DRIVING POTENTIAL FOR MODEL.
- HEAT TRANSFER BOUNDARY CONDI-TIONS AT EXTERNAL SURFACES DETERMINED FROM ENVIRONMENT.
- THERMAL (HEAT TRANSFER) ANALYSIS DEFINES TEMPERATURE FIELD.
- DEFINE RESPONSE (DEFORMATION) AT GEAR MESHES AND BEARINGS DUE TO HEAT GENERATED.
- STRUCTURAL OPTIMIZATION.
- VALIDATION OF ANALYTICAL TOOLS FOR APPLICATION TO ADVANCED TRANSMISSION DESIGN.

the group of the state of the same

Figure 20. Model for Thermal Analysis

Steady-state heat transfer analyses may be accomplished with the existing finite element model of the CH-47C forward transmission housing using the NASTRAN program. The NASTRAN heat flow capability analysis is compatible with the structural analysis capability. Using the same model (grid points, coordinate system, elements, constraints and sequencing) as used for a structural analysis, the steady-state temperatures at each grid point may be calculated and provided directly in punched form for later use in a thermal stress/deformation analysis (static structural analysis). This NASTRAN housing model may also be modified to handle a thermal analysis of fabricated housings and/or composite materials such as metal-matrix, which will be particularly valuable for application to advanced transmission development.

Input to the model for a thermal analysis requires knowledge of the thermal boundary conditions at specified locations on the housing. The driving potential for a thermal analysis is the power dissipation by bearings and gears at operating conditions. This originated from other Boeing Vertol computer programs. The temperature distribution obtained from the steadystate temperature analysis can then be input to NASTRAN to provide a thermal stress (static) analysis. Thermal stresses and distortions result. The thermal distortions obtained are of particular use in determining the adequacy of clearances for a longer life transmission. The thermal analysis is outlined in Figure 21.

A sample NASTRAN thermal stress analysis presented below shows good correlation and indicates the feasibility of using NASTRAN for thermal analyses. The model, a rectangular plate, is given a temperature gradient which causes internal loads and elastic deflections. The temperature load is constant in the y direction and symmetric about the y-axis. Since membrane elements are used to model the structure, it is necessary to remove all rotational degrees of freedom and translational degrees of freedom normal to the plate. The symmetric boundary conditions were modeled by constraining the displacements normal to the planes of symmetry. Figure 22 shows a comparison of stresses predicted by NASTRAN and the experimentally measured stresses.

-

and a group of the second state

Figure 21. Flow Diagram of NASTRAN Thermal Analysis

Figure 22. Comparison of NASTRAN and Experimental Stresses for Free Rectangular Plate With Thermal Loading

13. NASTRAN User's Manual Level 15, June 1972

10.10

person and a second of the

2. Uniform Temperature Testing

The initial phase of the thermal work was the application of a uniform temperature distribution over the housing model. This was done analytically using NASTRAN (Rigid Format 1) for temperatures representative of current operating (160°F), projected operating (350°F), and projected loss-of-lubricant emergency operating (700°F) conditions, and required a total of 40 minutes execution time on an IBM 370 computer. Although the thermal stresses are invariant, boundary fixity was found to influence the point-by-point distortions and to make interpretation difficult. Studies were made to resolve this, and the housing was analyzed for thermal stresses and distortions. The thermally induced deformations were defined (Figure 23).

For model validation, the baseline housing was heated to temperatures in the range of 160°-400°F. By measuring selected dimensions of the housing at normal and elevated temperatures, this testing experimentally determined the thermal distortion of the transmission case. Correlation with the dimensional changes predicted analytically by NASTRAN provided confidence in the thermal model for further analysis.

Thermocouples were installed on the CH-47 forward rotor transmission housing at five locations dispersed over the housing and representative of various wall thicknesses occurring in the housing. The points for dimensional inspection were defined to provide representative distortions and to be readily accessible for measurement under elevated temperature conditions. The thermocouple locations and points for dimensional inspection are shown in Figure 24.

After measuring and recording the room temperature dimensions, the housing was placed in a 204 kW walk-in type electric oven (Figure 25) and heated to each of the following three approximate target temperatures: $160^{\circ}F$, $280^{\circ}F$, and $400^{\circ}F$. The temperature at each thermocouple was recorded continuously on paper tape. After the temperature in the oven stabilized, the housing was allowed to "soak" at the elevated temperature for approximately one hour to insure a thorough and uniform heating. During soaking the temperatures indicated by the five thermocouples remained constant and within a $\pm 5^{\circ}F$ band, indicating a uniform heating of the housing.

After soaking, the specified housing dimensions were measured. The housing remained in the oven during measurement in order to minimize heat loss, but the

.

Sampe Marchine F

3 34

· ...

(which the state of the second

Figure 24. Forward Rotor Main Transmission Housing P/N 114D1089

Figure 25. CH-47C Forward Rotor Transmission Housing in Dispatch Oven

oven doors were partially open and the oven was turned off. During the measurement, the housing temperature was continuously recorded on paper tape and the tape was annotated to show the temperature at the time each dimensional check was made (Figure 26). Typically, about four dimensions could be measured at the 160°F range and about two dimensions at the 400°F range before the housing temperature decreased substantially. The experimental setup is shown in Figures 27 through 30.

The instruments used for the measurements are shown in Figure 31. Table 3 summarizes the equipment used in the testing and indicates the reliability of the dimensions taken. When evaluating the reliability of the dimensional data taken at elevated temperatures, consideration must be given to the facts that some growth of the inspection gages occurred when taken into the oven and also the inspector had to work in an uncomfortably hot environment.

The experimental data obtained is plotted in Figure 32 as the change in linear dimensions versus temperature. Also shown in the figure are the theoretical changes in the dimensions as predicted both by the NASTRAN thermal analysis and by a simple linear thermal expansion calculation. The agreement of the data and analytical methods confirms the validity of the model, which can thus be used with confidence to predict deformations of the housing.

Figure 26. Control and Data Monitoring Panel for Dispatch Oven

Figure 27. Measurement Procedure - Bar-Type Dial Indicator Gage

Figure 28. Measurement Procedure – Outside Micrometer

Figure 29. Measurement Procedure - Depth Gage

Figure 30. Measurement Procedure - Vernier Caliper

and the set of another dealers and

EQUIPMENT USED TO PERFORM UNIFORM TEMPERATURE TESTING TABLE 3.

en 2

REMARKS	Sives a very reliable dimension.	Gives a reliable dimension.	Gives a reliable dimension, but an unmachined surface was checked.	Gives a reliable dimension.	Gives a reliable dimension, but an unmachined surface was checked	Gives a reliable dimension, but the geometry of the surfaces checked made proper orientation of the caliper difficult.
RELIABILITY RATING*	8-9	7-8	6-7	6-7	2-6	2-3
MEASURING INSTRUMENT	Bar type dial indicator snap gage	11- to 12-inch outside micrometer	8- to 9-inch depth gage	0- to 24-inch Vernier caliper	8- to 9-inch outside micrometer	0-to 24-inch Vernier caliper
INSPECTION POINT	1 & 2	3 & 4	ъ б	7	ω	σ

*Estimated reliability level for inspection points using a 1 to 10 rating scale, 10 being the most reliable.

Oven - Despatch Oven Company, Minneapolis, Minnesota

Style	S-300	Type	Electric	(Walk In)
Volts	P-400 G-110	Phase	ъч	
K.W.	204	Amps	H-268	
Temp (Max)	550 ⁰ F		M-14.85	
Serial No.	71826			

6

3. Gear/Bearing Thermal Simulation

The temperature distribution throughout a new transmission is obtained during the design phase from heat transfer analyses for both the housing and internal components. The heat output of the gears and bearings are the heat sources within the transmission and are the forcing functions for the thermal analysis. Since the development of a completely rigorous analysis of gear/bearing heat generation was beyond the scope of this contract, within the transmission and are the forcing functions for the thermal analysis. Since the development of a completely rigorous analysis of gear/bearing heat generation was beyond the scope of this contract, approximate methods were applied. Nevertheless, the methods used for the component heat generation yielded results which were within 6% of independent calculations based on oil-in/oil-out cooling.

The dynamic and kinematic parameters output by existing Boeing Vertol computer programs (SO4 rolling element bearings, R20 bevel gears, and R23 spur/helical gears), in conjunction with information derived from a review of References 14, 15, and 16, were used to predict temperatures. Figure 33 defines the data flow for the heat generation analysis. The results of this work were used for correlation with measured thermal data and, in the next section, as input to the finite element model for a thermal analysis of the housing. A thermal distortion/stress analysis was accomplished using NASTRAN Rigid Format 1 (Static Analysis). Figure 21 indicates the overall scheme of the thermal analysis.

The computer programs used to predict gear temperatures are based on an analysis of the temperature at a gear mesh, or the flash temperature, which is used to determine the average temperature generated over several mesh cycles. It had previously been assumed that the power loss per mesh was between .5% and .75%. The .5% estimate gave an error of 9% based on a comparison of oil-in/oil-out heat dissipation. Using the computer program results, however, the power loss calculated for

- 14. Buckingham, E., ANALYTICAL MECHANICS OF GEARS.
- 15. Harris, T., ROLLING BEARING ANALYSES.
- 16. Rumbarger, J., and Filetti, E., HIGH TEMPERATURE HELICOPTER MECHANICAL TRANSMISSION TECHNOLOGY, Franklin Institute Research Laboratories, Phila., Pa., FIRL Final Report F-C3229, December 1971.

•

the bevel mesh was .2% for a better system correlation of 6%. As an alternative, a gear temperature formulation from Reference 17 was also attempted:

$$cos \ \emptyset_n \ cos \ \Psi_1 \ cos \ \Psi_2$$

Efficiency =
$$cos \ \emptyset_n \ cos \ \Psi_1 \ cos \ \Psi_2 + f \ sin \ \Xi$$

where R_1 = Pinion = 7.55/2 Large End Pitch Diameter R_2 = Gear = 13.278/2 Large End Pitch Diameter n = RPM Pinion = 7460 V = Pitch Line Velocity = fpm V_S = Sliding Velocity Between Basic Racks, fpm θ_n = Pressure angle of basic rack = 22.5° ψ_1 = 25° ψ_2 = 25° Σ = Shaft angle = 99° f = Assumed coefficient of friction f = 0.01

 $V = .5236 R_1 n = (.5236) (3.775) (7460) = 14745.36$

For any shaft angle $v_s = v \sin (\cos \psi_2) = 16069$. fpm = 14,745.36 sin 99°/cos 25°

$$EFF = \frac{(.92388) (.906308)^2}{\left[\cos (22.5)\right] (.906308)^2 + f \sin 99^\circ}$$
$$EFF = \frac{.75887}{.75887 + (.01) (.987688)} = 98.7\%$$

HEAT GENERATED = (.013) (3600) (42.42) = 1758 BTU/MIN

17. Buckingham and Ryffel, DESIGN OF WORM AND SPIRAL GEARS.

A computer program in the "BASIC" language with sample results (BTU/MIN) for various assumed coefficients of friction is also included (Figures 34 and 35). Reference 18 was also utilized.

```
10
     INPUT P1, P2, P3, P4
     A=COS(P1)*COS(P2)*COS(P3)
20
     FOR I=1 TO 50
30
     E=0.01*I
40
50
     E=E*SIN(P4)
60
     E = E + A
70
     E = A/E
80
     PRINT P1;P2;P3;P4;E
90
     E=1-E
100 B=E*3600*42.42
110 F=0.01*I
    PRINT "COEFF OF FRICTION="F; "BTU/MIN="B
120
130 NEXT I
140
    END
AVERAGE POWER LOSS =
                     0.769 HP =
                                  32.590BTU/MIN
```


122.0	, 20	.,25.,99.		
22.5		25 25	99	0.988488388
COEFF	OF	FRICTION =	= 0.01	L BTU/MIN= 1757.961316
22.5		25 25	99	0.977238794
COEFF	OF	FRICTION=	0.02	BTU/MIN= 3475.909312
22.5		25 25	99	0.966242373
COEFF	OF	FRICTION=	0.03	BTU/MIN= 5155.194742
22.5		25 25	99	0.955490674
COEFF	OF	FRICTION=	0.04	BTU/MIN= 6797.10824
22.5		25 25	99	0.944975617
COEFF	OF	FRICTION=	0.05	BTU/MIN= 8402.88363
22.5		25 25	99	0.934689474
COEFF	OF	FRICTION=	0.06	BTU/MIN= 9973.701007
22.5		25 25	99	0.924624852
COEFF	OF	FRICTION=	0.07	BTU/MIN= 11510.689.64
22.5		25 25	99	0.914774669
COEFF	OF	FRICTION=	0.08	BTU/MIN= 13014.93069
22.5		25 25	99	0.905132146
COEFF	OF	FRICTION=	0.09	BTU/MIN= 14487.4597
22.5		25 25	99	0.895690784
COEFF	OF	FRICTION=	0.1	BTU/MIN= 15929.26905

Figure 35. Sample Computer Output for Various Assumed Coefficients of Friction

Faires, V., DESIGN OF MACHINE ELEMENTS, The MacMillan Company, New York, 4th Edition, 1965.

The output from computer program SO4 has been applied to predict the temperatures of rolling element bearings. Some work has been done in this area by Rumbarger and Filetti (Reference 16). Since the heat generated by the bearings is comprised of two parts, the shearing of the interface oil film and by the friction of the rolling elements, two separate calculations must be combined (Figure 36). Also, the heat generation is a function of load, sliding velocity, and coefficient of friction. Sample procedures for calculating the heat generated by both angular contact ball bearings and roller bearings are outlined in Appendix B.

Lubrication characteristics of the CH-47C forward transmission have been determined. Table 4 indicates the oil flow for forced convective cooling of the internal components, and Figure 37 indicates the orifice locations numbered according to Table 4. The stabilized thermal power at the bearings and gears act as heat sources for a NASTRAN analysis including conductivity, natural and forced convection, and radiation (Stefan-Boltzmann Law) (Figures 38 and 39). Resulting overall temperatures can then be used in a NASTRAN static analysis in order to determine thermal distortions and stresses.

Thermal power has been determined for all gear meshes (Figure 40). Samples of the computer output for the CH-47C forward transmission are shown in Figure 41 (bevel gear program R20) and Figure 42 (spur and helical gear program R23).

A tabulation of the heat generated by the CH-47C forward transmission internal components is provided in Table 5.

LUBRICATION PER GEAR/BEARING YIELDING CONVECTIVE COOLING

TABLE 4.

CH-47 FWD TRANSMISSION.

0.12	44	0.27	40	000	Spur Gear 0.0
0.19		0.27	40	0.0	Ball Brg 0.0 Ball Brg 0.0
0.16	-	0.27	40	0.0	Roller Brg 0.0
0.16	-	0.27	40	0.0	Ball Brg 0.0
0.17	-	0.27	40	0.0	Ball Brg 0.0
0.16	1	0.61	51	0.0	Roller Brg 0.00
0.20	9	2.64	11	0.0	Planet Gear 0.05
0.20	4	1.76	1	0.05	Sun Gear 0.05
0.15	4	1.76	0	0.05	Ball Brg 0.05
0.21	2	0.54	0	0.04	Spur Gear 0.04
0.38	-	4.42	1	0.16	SB Gear 0.16
0.22	1	0.27	0	0.04	Roller Brg 0.04
0.13	S	1.32	1	0.05	Planet Brg 0.05
0.15	9	2.64	1	0.05	Planet Brg 0.05
0.20	9	6.25	80	0.07	Spher Brg 0.07
0.11	ı	0.44	-	0.05	Spher Brg 0.05
0.15	1	0.27	0	0.04	Roller Brg 0.04
0.12	1	0.27	-	0.040	Ball Brg 0.040
INCHE	HOLES	@ 60 PSI	61	SIZI	LUB'D SIZI
DIAMET	OF	FLOW GPM	E	ORFIC	PART ORFIC
TARGE	.on		ES	INCH	INCH
ZONE			LEK,	D TAME	

12,000 I T SPINNING FRICTION HEAT FRICTION HEAT LOAD FRICTION HEAT 4,000 6,000 8,000 10,000 VISCOUS **BEARING THRUST LOAD (LB) TOTAL FRICTION HEAT** 2,000 0 2,000 • 18,000 16,000

63

-

Friction Heat Generation Versus Load; 218 Angular-Contact Ball

Figure 36.

Bearing 10,000 RPM, 5 Centi-

stokes Oil, Jet Lubrication

Figure 37. Lubrication Pattern – CH-47 Transmission

64

and the second
12.146

Figure 39. Illustration of Radiation/Natural Convection and Forced Convection (Oil) Heat Paths of Specimen Transmission

new proves of the property and

Figure 40. Transmission Heat Sources

and a subscript of super-

and a

RAYMOND J. DRAGO BEVEL GEAR SURFACE LOAD CAPACITY ANALYSIS CONTACT STRESS - G-FACTOR SCORING HAZARD

CH-47C FWD BEVEL MESH RUN FOR J. S. 4/14/76

PINION GEAR NORMAL PRESSURE ANGLE 22.50000 99.00000 SHAFT ANGLE MEAN SPIRAL ANGLE 25.00000 NUMBER OF TEETH 29.00000 51.00000 TRANSVERSE DIAMETRAL PITCH OUTER 3.84100 20.00000 MAXIMUM SURFACE FINISH (MICROINCHES) EFFECTIVE FACE WIDTH 2.18800 7.55012 13.27779 PITCH DIAMETER PITCH ANGLE 31.65230 67.34764 14745.01000 PITCH LINE VELOCITY FPM REDUCTION RATIO 1.75862 6.09984 CONE DISTANCE OUTER = 7.19384 MEAN = STRESS: 3600.000 POWER 7460.00000 4241.96000 SPEED 53487.03000 TORQUE 30414.20000 8056.61700 TANGENTIAL TOOTH LOAD CONTACT RATIO - FACE 1.50491 1.25868 - PROFILE - MODIFIED 1.96189 1.01942 INERTIA FACTOR KO = 1,000 KV = 1,000 KM = 1,100 KS = 0,714 CS = 1,000 CF = 1,000 CF1.000 2800.00000 ELASTIC COEFFICIENT PROFILE CURVATURE RADIUS - PITCH POINT 1.69785 6.59948 - CRITICAL POINT 1.87387 6.42346 1.544348 LENGTH OF CRITICAL LINE OF CONTACT 1.000000 LOAD SHARING RATIO DISTANCE BETWEEN TOOTH MIDPOINT AND CRITICAL POINT -0.017148 0.094451 CONTACT GEOMETRY FACTOR 211021.3000 MAXIMUM CONTACT STRESS SCORING HAZARD: THERMAL CONSTANT, C1 41.00000 41.00000 1.00000 THERMAL FACTOR, CG 1.97082 6.32651 PROFILE CURVATURE RADIUS AT CRITICAL POINT 1.46105 LENGTH OF CRITICAL LINE OF CONTACT LOAD SHARING RATIO 0.70570 0.18285 DISTANCE FROM TOOTH MIDPOINT TO CRITICAL POINT GEOMETRY FACTOR, G 0.00178 TEMPERATURE RISE AT CRITICAL POINT 215.50340 AVERAGE POWER LOSS = 7,3178 H.P. = 310,6389 BTU/MIN

HEAT GENERATED

and the second second of the second second of the

Figure 41. Gear Computer Program (R20) for Calculating Heat Generated by Spiral Bevel Mesh. Sample Output CH-47C Forward Transmission
TAN.	SCORNG	FRICT.	TEMP.	FINAL	FILM	INST	ANTANEOUS
LOAD	FACTOR	COEFF.	RISE	TEMP.	THCK.	POW	ER LOSS
LBS.			F DEG	F DEG	MICRO	HP	BTU/MIN
0.	0.0026	0.0600	0.00	200.00	0.000	0.00	0.00
4773.	0.0009	0.0600	18.64	218.64	12.245	1.23	52.24
4773.	0.0000	0.0600	0.00	200.00	13.624	0.00	0.00
4773.	0.0008	0.0600	16.91	216.91	15.053	1.29	54.74
682.	0.0020	0.0600	9.15	209.15	22.210	0.47	20.05
0.	0.0026	0.0600	0.00	200.00	0.000	0.00	0.00
682.	0.0023	0.0600	10.61	210.61	13.603	0.39	16.52
1364.	0.0020	0.0600	15.59	215.59	12.821	0.69	29.46
2046.	0.0017	0.0600	18.17	218.17	12.536	0.92	38.80
2728.	0.0014	0.0600	19.00	219.00	12.438	1.05	44.50
3410.	0.0012	0.0600	18.41	218.41	12.436	1.10	46.50
4773.	0.0009	0.0600	18.63	218.63	12.246	1.23	52.22
4773.	0.0007	0.0600	13.74	213.74	12.589	0.93	39.25
4773.	0.0005	0.0600	8.99	208.99	12.935	0.62	26.17
4773.	0.0002	0.0600	4.38	204.38	13.282	0.31	12.99
4773.	0.0000	0.0600	0.10	200.10	13.632	0.01	0.31
4773.	0.0002	0.0600	4.47	204.47	13.984	0.32	13.73
4773.	0.0004	0.0500	8.72	208.72	14.338	0.64	27.26
4773.	0.0006	0.0600	12.86	212.86	14.694	0.97	40.93
4773.	0.0008	0.0600	16.91	216.91	15.053	1.29	54.72
4092.	0.0010	0.0600	18.58	218.58	15.725	1.39	58.85
3410.	0.0012	0.0600	19.21	219.21	16.481	1.39	59.08
2728.	0.0014	0.0600	18.73	218.73	17.358	1.31	55.38
2046.	0.0016	0.0600	17.06	217.06	18.428	1.12	47.68
1364.	0.0018	0.0600	14.00	214.00	19.859	0.85	35.92
682.	0.0020	0.0600	9.15	209.15	22.210	0.47	20.05

Figure 42. Typical Computer Output for Calculating Thermal Power Generated by Gear Teeth

TABLE 5. HEAT GENERATED BY COMPONENTS

MESHE	5 (GEAR	S, FIGURE 40)	IDENTIFICATION
6	66.1	396.6	UP Sun-Planet
4	120.7	482.8	LP Sun-Planet
6	25.7	154.2	UP Planet-Ring
4	32.6	130.4	LP Planet-Ring
1		1145	Spiral Bevel

2309.05 BTU/MIN

BEARINGS (FIGURE 40)	FRICTION	VISCOUS	TOTAL	TYPE
Pinion No. 16	34.8	23.8	58.6	Roller
Pinion No. 15	109.5	25.6	134.9	Ball
Pinion No. 13	128.0	40.7	168.7	Roller
Lower Sun No. 17A	15.2	5.8	21.0	Upper Ball
Lower Sun No. 17B	.14	5.8	5.9	Lower Ball
Lower Sun No. 9	55.6	19.7	75.3	Roller
LP No. 10	411.6	18.0	429.6	Roller
UP No. 4	409.8	5.0	414.8	Roller
Rotor No. 1	21.2	1.1	22.3	Ball
Rotor No. 2	8.7	.6	9.3	Roller
	1194.5	146.1	1340.4	BTU/MIN

TOTAL	= $3649.4 \frac{BTU}{MIN} = 86.03 HP$
TOTAL HP	= 3600., % Lost = 2.39
EFFICIENCY	= 97. 6%
TCTAL HEAT GENERATI	$ED = 4262.6 \cdot 60 \frac{SEC}{MIN} = 218964. \frac{BTU}{HR}$

The heat generated by all the bearings as well as other pertinent data is shown in Figure 43. In order to obtain a comparative relationship, an assessment of the heat capacity of the transmission oil was made. The following oil-in/oil-out temperatures shown in Table 6 were obtained by experiment (Reference 12).

Figure 43. Bearing Heat Generation CH-47 Forward Transmission 100% Torque, 3600 HP

いちちょう ちょうちょう ないないない

TABLE 6. OIL-IN/OIL-OUT TEMPERATURES

T _{IN} °F	TOUT °F	FLOW GPM	ΔT °F		
160	185	24.81	25	Baseline	
256	286	24.81	30	Red Line	
348	398	24.81	50	100% Cooler Bypass at 40% Torgue	

Using $\Delta T = 30^{\circ} F$ from previous experience and from the above information, let:

q_{cf} = coefficients of friction Then, $q_{cf} = WC (\Delta T) \frac{Btu}{hr}$ for oil cooling,

Where C = specific heat

Then, C = 0.485 Btu/lb °F for MIL-L-7808 oil

and W = oil flow, lb/hr

Hence, $W = \frac{gal}{\min}$ (24.) * 231 $\frac{in.^3}{gal.}$ * 60 min * .0347 $\frac{lb}{lb} = \frac{1}{in.^3}$

= 11543 <u>lb</u> hr

and $q_{cf} = (11543) (.485) (30^{\circ}F) = 167,945 \frac{Btu}{hr}$

Assuming a surface area of 29 FT^2 , the following major types of cooling occur (Figure 44):

OIL COOLING	93.5%,
AIR COOLING	1.7%,
RADIATION	4.8%.

If $q_{cf} = 167,945$ Btu/hr = 93.5% of total, the transmission total heat generated = 167,945/.935 = 179,620Btu/hr.

Figure 44. Illustration of Radiation/Natural Convection and Forced Convection (Oil) Heat Paths of Specimen Transmission

From the calculation of heat generated shown in Table 5, 218,964 Btu/hr was obtained. Thus, this heat loss is apportioned as follows:

AIR COOLING	3,723	Btu/hr	(Natural	Convection)
RADIATION	10,511	Btu/hr		
OIL COOLING	204,730	Btu/hr		
	218 964	Btu/hr		

If a .5% power loss had been assumed for the spiral bevel mesh, one would have obtained 196,044 Btu/hr (compared to 179,620) or 9% error. This gives a 97.9% efficient transmission. Reference 12 indicates a 98.6% efficient transmission. This again is good correlation.

The conceptual design analysis of a heat generating bearing race and gear with oil cooling was conducted using the heat transfer capabilities of NASTRAN. The model and resulting temperatures are summarized in Figure 45. Using a similar procedure, a thermal study using the thermal power of the gear meshes and bearings as input was made for the CH-47C forward transmission for the baseline configuration (100% torque). The resulting temperatures were correlated with the thermal mapping test results (oil-out, 180°F + 10%, 100% torque) for the steady state temperature distribution. Correlation of this predicted and test data provided confidence in the analytical techniques. This predicted and measured housing temperature distribution could then be utilized as input to the housing thermal model, and the housing thermal distortion and stress for these temperatures could be calculated.

HOLLOW, .2 IN. = THICK (Mg) $A_{RODS} = 1 \text{ IN.}^2 \text{ (STEEL)}$ OIL = MIL-L-7808

 $K_{MG} = 88.5 \frac{BTU}{HR/FT/^{0}F} \frac{1}{60} \frac{HR}{MIN} \frac{1}{12} \frac{FT}{IN} = .123 \frac{BTU}{MIN/IN./^{0}F}$

K_{STEEL} = 26.4/60*12) = .0367 <u>BTU</u> MIN/IN./⁰F

INPUT OIL (50, SPECIFIED) = 150°F OIL (60, CALCULATED) = 193°F OUTPUT OIL (CALCULATED, 70) = 204° OIL (CALCULATED,

80) = 193⁰

INPUT OIL (GEAR MESH, SPECIFIED) = 150°

4. Thermal Mapping Studies

A previous experimental program measured the temperatures and produced a complete thermal map of a CH-47C forward rotor transmission under various loads and inlet oil temperatures. Figure 46 is a diagram of the specimen transmission in the closed loop test stand. Measurements between selected points on the transmission housing were made at room temperature and operating temperatures. The results, shown in Tables 7 and 8, indicate that significant thermal growth had occurred.

Figure 46. Typical Thermal Map of CH-47 Forward Transmission (Reference 12)

76

and a second provide the second se

DIMENSIONS OR DIAMETERS*	LOCATIONS*				
Dl (Dia.)					
D2 (Dia.)	1222,119				
D3 (Dia.)	Around Planetary Stages				
D4 (Dia.)					
D5 (Dia.)	Rotor Shaft Radial Bearing Housing				
D6 (Dia.)	Pump Housing				
D7 (Dia.)					
D8 (Dia.)	Sync Shaft				
D9 (Dia.)	Sync Shaft Coupling				
Xl (Dim.)	Point thru Rib at Cone $\underline{\mathscr{Q}}$ S/B and $\underline{\mathscr{Q}}$ Shaft at D7 Diameter				
X2 (Dim.)	Diagonal: \underline{g} S/B Cone and Sump Flange at Bearing C				
X3 (Dim.)	Between B and C Bearings on $\underline{\emptyset}$ Shaft and Come $\underline{\emptyset}$ S/B				
Zl (Dim.)	S/B Cone Center and Plane 2				
Z2, 1 (Dim.)	Outer Points				
Z2, 2 (Dim.)	Inner Points				
Z3 (Dim.)	Between Planes 4 and 5				

TABLE 7. MEASUREMENTS OF THERMAL GROWTHS (CASE ELEMENTS)

TABLE 8.

.

E 8. DIMENSIONAL GROWTH PARAMETER EVALUATION

-

DIMENSION	l _c (inches) at T _c Cool		l _h (inches) at Th Hot		∆T T=Th-Tc	$\frac{\Delta 1}{l_c} / \Delta T$	COEFFICIENT OF EXPANSION
IDENTITY	lc	T _C (°F)	lh	Th	(°F)	(°F) x 10 ⁶)	k x 10 ⁶
Dl (Mag.)	24.860	73	24.900	190	117	13.8	15.1
D2 (Steel)	24.826	73	24.842	190	117	5.5	6.53
D3			NOT MEAS	SURED			
D4 See Note	24.877	73	24.940	190	117	21.6	13.1
D5 (Alum. Aly.)	10.500	73	10.516	215	142	10.7	13.1
D6 (Alum.)	5.579	73	5.595	215	142	20.2	13.1
D7 (Mag.)	12.501	73	12.533	230	157	16.3	15.1
D8 (Mag.)	12.444	73	12.470	230	157	13.3	15.1
D9 (Steel)	2.643	73	2.645	180	107	7.07	6.53
X1 (Mag.)	15.520	73	15.558	260	187	13.1	15.1
X2 (Mag.)	10.638	73	10.718	250	177		15.1
X3 (Mag.)	9.690	73	9.710	250	177	15.2	15.1
21 (Mag.)	7.864	73	7.899	240	167	26.6	15.1
22, 1 (Steel)	4.275	73	4.261	220	147	22.3	6.53
Z2, 2 (Steel)	3.243	73	3.237	220	147	12.6	6.53
Z3 (Alum.)	15.634	73	15.682	210	137	22.4	13.1

NOTE - Measured on adjacent aluminum.

1 ALL BAR

and the particular and the

redrig generation that

The presence of

To further investigate the effects of temperature upon a transmission housing, the thermal distortions and stresses were calculated using the NASTRAN model and thermal map data from Reference 12 for the following conditions:

OIL-OUT	TORQUE (%)
185 ⁰ F <u>+</u> 10%	100
286 ⁰ F. <u>+</u> 10%	100
400 ⁰ F <u>+</u> 10%	100

The temperature within each oil-out condition was independent of torque. The NASTRAN static analysis (Rigid Format 1) was used to calculate the thermal distortions and stresses, and dimensional stability of critical housing points and misalignment effects were evaluated.

The computer-generated plot in Figure 47 shows the regions of the housing where it interfaces with the bearings. The vectors plotted indicate the displacements at each grid point due to the applied temperature distribution for the 185°F oil-out condition. By evaluating the distortion of the bearing interface at each end of the respective supporting shafts individually and then evaluating the relative distortion between the shaft ends, the thermally induced misalignment of the pinion shaft and the bevel/sun gear shaft was calculated. By comparing the relative misalignment between the pinion and gear shafts, the overall effect of temperature upon the gear mesh alignment may be assessed.

A NASTRAN post-processor program uses the grid point displacement and geometry data to calculate the induced misalignments. A sample output for the 185°F case is provided as Appendix C. This program indicated that the induced slopes of the pinion and bevel/sun shafts are .0003 in./in. and .0004 in./in., respectively (Figure 48). Also, the displacements at the pinion and bevel gear pitch diameters are .005 and .008 inch, respectively.

Figure 47. Induced Displacements at Housing/Bearing Interface Due to Temperature – 135^oF (85^oC) Oil Out

Figure 48. Displacement of Internal Components Due to Imposed Temperature Distribution (Thermal Map Data 185^o F (85^oC))

At the 400°F condition, the pinion and sun/bevel gear shaft slopes are .0007 and .0009 inch, respectively; the displacements at the pitch diameters are .013 and .015 inch respectively. Depending upon the type of shaft support bearings, shaft slopes of these magnitudes can be detrimental to bearing performance. Similarly, the displacements at the gear mesh point are undesirable, but they must be further studied to establish a quantitative effect on gear performance. The thermal deflections and stresses are summarized in Table 9.

TABLE 9. THERMAL DEFLECTION AND STRESS SUMMARY

LOND CONDUMIN	SHAFT SLOPE	(IN./IN.)	MESH DISPLACEMENT (IN.		
(°F)	PINION	GEAR	PINION	GEAR	
185	.0003	.0004	.0051	.0080	
286	.0005	.0007	.0087	.0111	
400	.0007	.0009	.0130	.0150	

LOAD CONDITION (^O F)	MAXIMUM STRESS (PSI)	NOMINAL RANGE (PSI)	
Uniform Temperature (160 ⁰ F)	2000	100- 600	
185 Thermal Map	3200	200-2500	
286 Thermal Map			
400 Thermal Man			

5. Thermal Studies

For the thermal analysis the following heat rejection means were identified:

- Conduction (to a heat sink; e.g., airframe)
- Radiation
- Convection
 - Natural (free)
 - Forced (oil)
- Changes of State

Reference 12 indicated that the amount of heat rejection by conduction, radiation, and natural convection was small in comparison to the forced convection due to lubricant cooling. Little data is available regarding heat absorption due to change of state. In one test, smoke-off (change of state) was recorded at 240°F with aggravated smoke-off (vaporization) at 300°F. The following equations were useful as a basis for the thermal studies:

Radiation: The Stefan-Boltzmann Law:

 $q_r = A \epsilon \sigma (T_1^4 - T_2^4) = A \epsilon \sigma ((t_1 + 460)^4 - (t_2 + 460)^4)$

where, q_r = heat rejection rate, Btu/hr

- A = black gray body (specimen transmission)
 surface area, ft = 29 ft²
- T1 = black-gray body surface temperature (equal to oil-out temperature), °R
- T₂ = temperature of surroundings (test cell wall temperature - ambient air temperature), 560°
- e = emissivity/absorptivity constant; optimistically assumed at 0.9
- $\sigma = \text{Stefan-Boltzmann constant assumed at 0.173} \\ \times 10^{-8}$

which becomes

$$q_r = 4.5153 \times 10^{-8} ((t_1 + 460)^4 - (t_2 + 460)^4)$$

• Convection:

Natural Convection

$$q_{cn} = h A (t_1 - t_2)$$

where q_{cn} = heat rejection, Btu/hr

A = specimen transmission surface area = 29 ft²
h = 0.22
$$(t_1 - t_2)^{1/3}$$

D = specimen transmission average diameter = 2 ft
 t_1 = specimen transmission surface temperature
°F or °R

t₂ = ambient air temperature, same degree unit

which becomes

 $q_{cn} = 6.38 (t_1 - t_2)^{4/3}$ <u>Forced Convention (0i1)</u> $q_{cf} = WC (t_1 - t_3)$ where W = oil flow, 8775 lb/hr $C = 0.485 Btu/lb/^{\circ}F$ $t_1 = specimen transmission oil-out temperature, ^{\circ}F$ $t_3 = specimen transmission oil-in temperature, ^{\circ}F$

Based on test results $(t_1 - t_2) = \Delta t = 30^{\circ}F$, and $q_{cf} = 8775 \times 0.485 \times 30 = 127,676$ Btu/hr heat rejected by oil for 100 percent CH-47C transmission power.

The same test indicated an efficiency for the CH-47 forward rotor transmission of 98.6 percent. At 100 percent CH-47C forward transmission power (3600 SHP), the heat rejection rate is 128,000 Btu/hr (2134 Btu/ min). For 75 percent and 50 percent powers, the heat rejection rates are 96,000 Btu/hr (1600 Btu/min) and 64,000 Btu/hr (1067 Btu/min) respectively. The family of curves in Figure 49 indicates the three specimen power levels and heat rejection rate versus average case temperature. When the oil cooler is fully bypassed and heat rejection is accomplished by natural convection and radiation alone, the case temperatures theoretically would reach those points indicated by the intersection of the curves with the zero percent ordinate. However, an analysis of the aft transmission test does not bear this out. With the evidence of smoke-off beginning at 240° F and terminal temperature at 320°F, it appears that other means of heat rejection are operating. Otherwise, the case temperature would reach approximately 430°F. The straight line intersection, both the lowest curve and 240°F and the zero percent ordinate at 330°F, represents a cutoff of case temperature rise to match test experience.

After conducting the initial model development and validation, studies were performed to evaluate a closed transmission system with no external cooler. Such factors as air flow and use of cooling fins were considered. The housing model was modified to include cooling fins of various configuration and total area. Fin cooling assuming an oil-out temperature of 200°F was investigated.

Assuming the conservative .75% power loss figure for the spiral bevel mesh, a study of forced convection (air) to eliminate the oil-cooling lines (204,730 Btu/ hr) was conducted. For the conceptual study, assume that a transmission housing is represented by a 2-footdiameter by 3-foot-high cylinder. The Nusselt number for the flow perpendicular to the longitudinal axis, from Reference 19, is

$$Nu_d = .43 + C (Re_d)^m$$

where Re_d , the Reynold's number, $= \frac{u_m d}{r}$ and

u_m = mean air velocity (ft/sec)

d = cylinder diameter (ft)

* = kinematic viscosity of air (ft²/sec)

 Eckert and Drake, HEAT AND MASS TRANSFER, McGraw-Hill, 1959.

In order to determine u_m for an unfinned transmission, assume the ambient temperature to be $100^{\circ}F$.

$$\vartheta$$
 = 18.1 x 10⁻⁵ FT²/SEC,
K = .01565 BTU/HR FT ^OF (Thermal Conductivity),
C = .0239
m = .805
(From Reference 19)

The Nusselt number may also be expressed as

$$\operatorname{Nu}_{d} = \frac{\operatorname{hd}}{\operatorname{K}} = \frac{2\operatorname{h}}{.01565}$$

where h = film heat transfer coefficient (Btu/hr ft² °F). Then h = $\frac{.01565}{2}$ Nu_d = $\frac{.01565}{2}$ [.43 + C(Re_d)^m] h = $\frac{(.01565)}{2}$ [.43 + .0239 $\left\{\frac{2 u_m}{18.1 \times 10^{-5}}\right\}$.⁸⁰⁵ h = .0034 + .3363 (u_m) .⁸⁰⁵

Assuming conservatively that the effective area of the cylinder is the frontal area (Figure 50), then,

$$Q = h A_{eff} \Delta T = h (9.42) (200^{\circ} F - 100^{\circ} F) Btu/hr$$

Here the cylinder surface temperature is assumed to be $200^{\circ}F$, and the ambient temperature = $100^{\circ}F$.

This gives

 $h = \frac{204748}{942} = 217.4$

Hence,

$$u_m = 3101.0 \text{ ft/sec} = 2114 \text{ mph}$$

The Reynold's number in Figure 51 is low (1260). Here the Reynold's number is 7,144,750; at high Reynold's numbers, the film heat transfer increases on the back of the cylinder. In fact, at Re = 50,000, h is the same on the front and back.

Figure 50. Effective Area of a Finned Cylindrical Surface

Figure 51. Isotherms Around a Cylinder Cooled by a Fluid Flowing Normal to its Axis, as Revealed by an Interference Photograph. Re = 1,260

Repeating the calculations gives

 $u_{m} = 1308.7 \text{ ft/sec} = 892.2 \text{ mph}$

If the shape of the transmission is considered (Table 10), then

$$u_{m} = \log^{-1} \left[\frac{4.142 - \log C}{m} - 4.04 \right]$$
 ft /sec

yields:

CONFIGURATION	u _m (ft/sec)
17-11×-150	4273
2	13058
3	6314
4	1328

TABLE 10. COEFFICIENTS FOR CALCULATION OF HEAT TRANSFER FROM CYLINDERS WITH DIFFERENT CROSS SECTIONS TO AN AIR FLOW NORMAL TO THEIR AXES (Reference 19)

Cross section	Red	c	m	Configuration
→ []	5,000-100,000	0.0921	0.675	1
$\rightarrow \Diamond$	5,000-100,000 5,000-100,000	0.222	0.588	2
-0	5,000- 19,500	0.144	0.638	
→ ()	19,500-100,000	0.0347	0.782	4

Such air velocities are not only impossible, but they would cause a heat increase by converting internal skin friction into heat. As a second resort, fins may be added. In fact, they can be combined with a forced air flow.

A conceptual design is made for the previous cylinder to find the number of fins 2 inches long and 1 inch thick that would be required in a forced air flow of 50 ft/sec (34 mph).

$$Q_1$$
 (with fins) = $2 \pi \gamma_1$ b K $\sqrt{\beta}$ (ΔT) Z =

Heat Loss Per Fin, BTU/HR

where:

$$Z = \frac{I_{1} (\Upsilon_{2} \sqrt{\beta}) K_{1} (\Upsilon_{1} \sqrt{\beta}) - K_{1} (\Upsilon_{2} \sqrt{\beta}) I_{1} (\overline{\Upsilon_{1}} \sqrt{\beta})}{I_{1} (\Upsilon_{2} \sqrt{\beta}) K_{0} (\Upsilon_{1} \sqrt{\beta}) + K_{1} (\overline{\Upsilon_{2}} \sqrt{\beta}) I_{0} (\Upsilon_{1} \sqrt{\beta})}$$

$$\beta = \frac{2h}{Kb},$$

$$K_{mg} = 100 \text{ Btu/hr ft °F (Conductivity of Magnesium)}$$

$$\gamma_{1} = 12 \text{ in.}$$

$$\gamma_{2} = 14 \text{ in.}$$

$$b = 1 \text{ in. (see Figure 50)}$$

Let

 $T_{AMBIENT} = 100^{\circ}F,$ $T_{SURFACE} = 200^{\circ}F, \text{ and}$ V = 50 ft/sec (Forced Convection), $I_{1}, I_{\circ}, K_{1} \text{ and } K_{\circ} \text{ are Bessel functions.}$

Now,

$$Re_{d} = \frac{(50) (2)}{.000181} = 552,486$$

$$Nu_{d} = .43 + .0239 (552486)^{.805} = \frac{2h}{.01565}$$

$$= 1002.66 = \frac{2h}{.01565}$$

$$h_{d} = 7.845 \text{ Btu/hr ft}^{2} \text{ °F}$$

Using the previous method of calculation, the forced convective cooling of the cylinder with no fins is:

 $Q_0 = (7.846) (18.84) (100) = 14781.9 BTU/HR$ With the addition of one fin,

$\beta = \frac{(2) (7.846) (12)}{(100) (1")} =$	= 1.883, $\sqrt{\beta}$ = 1.3722,
$\gamma_{t}\sqrt{\beta} = \frac{12}{12} (1.3722) = 1.37$	722, $\gamma_{2}\sqrt{\beta} = 1.6009$
$Q_1 = (2\pi) (1') (1/12) (100)$	(1.3722) (100) Z =
7184.8 Z per fin. Now	
I_1 (1.6009) = 1.086	K_1 (1.3722) = .3368
$I_1 (1.3722) = .862$	K_1 (1.6009) = .2406
I_0 (1.3722) = 1.531	K_{0} (1.3722) = .2541
$Z = \frac{(1.086)(.3368) - (.2406)}{(1.086)(.2541) + (.2406)}$	(.862) = $.1584$ = 2458 (1.531) .6443

Hence, $Q_1 = 1766$ Btu/hr per fin

In order to eliminate the oil cooling of 204,748 Btu/hr, it would require 116 fins. For a 3-foot high, 1-inchthick fin, this is impossible. Hence, the air velocity of 50 ft/sec (34 mph) must be increased. On the other hand, the thickness of the fins could be decreased.

If = 100 ft/secV $\operatorname{Re}_{d} = \frac{(100)}{000181} = 1,104,974$ $Nu_d = .43 + .0239 (1,104,972)^{.805} = 1751.5 = \frac{2h}{.01565}$ = 13.7 h $Q_0 = 25810.8$ for no fins $= \frac{(2) (13.7) (12)}{(100) (1)} = 3.288 , \sqrt{\beta} = 1.81$ β $\gamma_{1}\sqrt{\beta} = 1.81, \gamma_{2}\sqrt{\beta} = 2.117$ Hence $Q_1 = (2\pi)$ (1') (1/12) (100) (1.81) (100) Z = 9477.1 I_1 (2.117) = 1.78 K_1 (1.81) = .180 I_1 (1.81) = 1.33 K_1 (2.117) = .121 I_0 (1.81) = 2.00 $K_{0}(1.81) = .144$ $Z = \frac{(1.78) (.180) - (.180) (1.33)}{(1.78) (.144) + (.121) (2.00)} = \frac{.1595}{.4983} = .320$ $Q_1 = 3033$ Btu/hr per fin. This gives 68 fins (b = 1 ft) which is again impossible. If V = 25 ft/sec = 17 mph, Q1 = 1008 Btu/hr, 203 fins, 1 in. thick, which is clearly impractical. In summary: FIN COOLING NUMBER HEIGHT (ft) V (ft/sec) (Btu/hr) OF FINS 16.9 203 25 1008 1766 116 9.7 50 5.7 3033 68 100

Now, let b = .5 in. (fin thickness) and let V = 50 ft/sec.

$$Re_{d} = \frac{(50)}{.000181} = 552,486$$
 as before

Hence,

h = 7.846

$$\beta = \frac{(2)(7.846)(12)}{(100)(.5)} = 3.766, \ \sqrt{\beta} = 1.94,$$

 $\gamma_{1\beta}^{1/2} = 1.94, \ \gamma_{2\beta}^{1/2} = 2.263$

Hence, $Q_1 = (2 \pi)$ (1) ($\frac{.5}{12}$ (100) (1.94) (100) Z = 5078.9 Z

11	(2.263)	=	2.035	ĸı	(1.940)	=	.1527
1 ¹	(1.940)	=	1.5086	ĸı	(2.263)	=	.1003
I.	(1.940)	=	2.1926	ĸ	(1.94)	=	.1235

 $Z = \frac{(2.035) (.1527) - (.1003) (1.5086)}{(2.035) (.1235) + (.1003) (2.1926)} = \frac{.1594}{.4712} = .3383$

 $Q_1 = (.3383) (5078.9) = 1718$ Btu/hr

This gives 119 fins, which is again impractical. Some results from a computer program to predict fin cooling with forced air flow across a cylinder (Appendix D) are summarized in Table 11.

V (<u>ft/sec</u>)	LENGTH (in.)	THICKNESS (in.)	COOLING (Btu/hr)	NUMBER OF FINS	HEIGHT OF FINS (ft)
50.	. 2.	.1	1505	136	1.1
50.	2.	.2	1629	126	2.1
50.	2.	.3	1676	122	3.05*
50.	2.	.5	1716		Impractical*
50.	2.	1.0	1747		Impractical*
20.	2.	.1	782	262	2.2
20.	2.	.2	815	251	Impractical*
20.	2.	.3			
20.	2.	.5			
20.	2.	1.0			

TABLE 11. RESULTS OF FIN COOLING STUDY

*The accumulative height of the fins must be less than the height of the cylinder (3 feet).

Figure 52 shows the feasibility of using thin fins with forced air convection to replace external oil cooling (V = 50 FT/SEC). A fan delivering a nominal 20 ft/sec with 262 2-inch fins, .1 inch thick, is in the realm of possibility also. It is noteworthy that fin cooling is insensitive to fin thickness above about 0.6 inch.

Figure 52. Fin Cooling Requirement to Eliminate Oil Cooling

93

and a state of the second state of the

AD-A052 759 BOEING VERTOL CO PHILADELPHIA PA FINITE ELEMENT ANALYSIS FOR COMPLEX STRUCTURES (HELICOPTER TRAN-ETC(U) JAN 78 R W HOWELLS, J J SCIARRA UNCLASSIFIED D210-11232-1 USAAMRDL-TR-77-32 NL												
2 OF 3						18 81					TA TA	
傳輸							Ser.			KUMERAN KENSE Interpretation Registration Registration Registration Registration		·[W·W]·
Me -		彩台										
			ENTERING STREET		a 4	00					TTUN	
					NA NA NA						* Description * Description D	
No constants Desta 2010 No constants	Antonio antoni	En Anti-Anti-Anti-Anti-Anti-Anti-Anti-Anti-	Englished One-P. The State of the State of	Mich Disconstructure Investoriage and in- Disconstructure Disconstructu	A set of a s							
			national sectors Produced and a sector produced and a sector									100 miles
		SSSIFIED ARDS2759 CONTACT ARD	SSSIFIED FINITE ELI JAN 78 R D210 2 of 3 Ab52759 3 3 3 4 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 6 3 6 3 6 3 7 3 6 3 6 3 7 3 6 3 7 3 7 3 8 3 9 3 10 3 10 3 10 3 10 3 10 3 10 3 10 3 10 3 10 3 10	FINITE ELEMENT A JAN 78 R W HOWE 0210-11232 2 of 3 Apszerse 2 of 3 Apszerse 1	FINITE ELEMENT ANALYSI JAN 78 R w HOWELLS, J D210-11232-1 2063 Absorber Scorber Image: Absorber Scorber Image: Absorber Scorber Image: Absorber Scorber Image: Absorber Scorber Image: Absorber Scorber Image: Absorber Scorber 2063 Absorber Image: Absorber Scorber Image	FINITE ELEMENT ANALYSIS FOR OUT	FINITE ELEMENT ANALYSIS FOR COMPLEX JAN 78 R w HOWELLS, J J SCIARRA D210-11232-1 US 2 or 3 Roszrso Image: Complex D210-11232-1 Image: Complex D210-11232-1 Image: Complex D210-11232-1 Image: Complex D210-11232-1 Image: Complex D210-11232-1 Image: Complex D210-11232-1 Image: Complex D210-11232-1 Image: Complex D200-11232-1 Image: Complex D200-11232-1 Image: Complex D200-11232-1 Image: Complex D200-11232-1 Image: Complex D200-11232-1 Image: Complex D200-11232-1 Image: Complex D200-11232-1 Image: Complex D200-11232-1 Image: Complex D200-11232-1 Image: Complex D200-11232-1 Image: Complex D200-11232-1 Image: Complex D200-1123-1 Image: Complex D200-11232-1 Image: Complex D200-11232-1 Image: Complex D200-1123-1 Image: Complex D200-1123-1 Image: Complex D200-11232-1 Image: Complex D200-11232-1 Image: Complex D200-1123-1 Image: Complex D200-1123-1	FINITE ELEMENT ANALYSIS FOR COMPLEX STRUCT JAN 78 R w HOWELLS, J J SCIARRA D210-11232-1 USAAMROL Cor 3 Image: Struct and the str	FINITE ELEMENT ANALYSIS FOR COMPLEX STRUCTURES OF ANALY	FINITE ELEMENT ANALYSIS FOR COMPLEX STRUCTURES (HELICO DAAJ02: ISSIFIED ISSIFIED O210-11232-1 O210-11232-1 O210-11232-1 O210-11232-1 O210-11232-1 O210-11232-1 Image: Solution of the state of	FINITE ELEMENT ANALYSIS FOR COMPLEX STRUCTURES (HELICOPTER TI JAN 78 R & HOWELLS, J J SCIARRA ISSIFIED ISSIFIED O210-11232-1 USAAMROL-TR-77-32 Image: Solution of the structure of the	FINITE ELEMENT ANALYSIS FOR COMPLEX STRUCTURES (HELICOPTER TRAN-ET JAN 78 R W HOUELLS, J J SCIARRA USAAMROL-TR-77-32 SSIFIED Image: Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2" Image: Colspan="2">Colspan="2" Image: Colspan="2">Colspan="2" Image: Colspan="2">Colspan="2" Image: Colspan="2">Colspan="2" Image: Colspan="2">Colspan="2" Image: Colspan="2">Colspan="2" Image: Colspan="2">Colspan="2" Image: Colspan="2" Image: Colspan="2" <thimage: <="" colspan="2" th=""> Image: Colspan</thimage:>

The relative importance of forced convection cooling (oil), natural convection (air cooling), and radiation was determined from Reference 12. For example,

- (1) For oil cooling:
 - $q_{CF} = WC \Delta T = 167,800 Btu/hr$
 - $W = Oil Flow = 11,532 \ lb/hr = 24 \ gal/min,$

 $C = .485 \text{ BTU/LB/}^{O}\text{F}$ for MIL-L-7808 Oil,

 $\Delta T = (Oil-Out Temperature) - (Oil-In Temperature) = 30^{\circ}F$

(2) For natural convection:

$$q_{CN} = .22 (\Delta T)^{4/3}$$
 (A)
= .22 (100)^{4/3} (29) = 2961.3 Btu/hr

where ΔT is the difference between the ambient and surface temperatures (200°F - 100°F), and

A = Surface Area = 29 ft^2

The above formula is valid for a cylinder with a 2-foot diameter.

(3) For radiation:

$$q_{r} = A\varepsilon\sigma \left[(t_{1} + 460^{\circ}F)^{4} - (t_{2} + 460^{\circ}F)^{4} \right]$$

= 8564 Btu/hr
$$t_{1} = {}^{\circ}F \text{ of Oil-Out} = 200^{\circ} \text{ (Assumed Surface Temperature)}$$

$$t_{2} = {}^{\circ}F \text{ of Ambient Air (100^{\circ}F)}$$

$$\sigma = \text{Stefan-Boltzman Constant (Black-Grey Area)}$$

$$= .173 \times 10^{-8} \text{ Btu/hr/ft}^{2}/^{\circ}R^{4}$$

ε = Emissivity/Absorptivity Constant = .9

Therefore, the oil cooling is the most significant means of heat removal; and on a percentage basis:

Oil Cooling = 93.5% Air Cooling = 1.7% Radiation = 4.8%

A thermal analysis of the cooling fin conceptual design was completed using NASTRAN for three conditions: Temperature specified at root, heat input at root, and a combination of these two conditions. The theoretical and computer solutions were obtained. The model consisted of a metal fin of triangular crosssection attached to a plane surface to help carry off heat for the latter (Figure 53). Further detail including the computer output is provided in Appendix D.

A heat transfer analysis was made of the entire CH-47C forward transmission case. Included were forced convective oil cooling, thermal conductivity and heat generated by the input pinion/sun gear bearings. The NASTRAN run was made in order to print and punch out the temperature distribution. This was followed by a thermal stress/distortion analysis. The following was determined:

- (1) NASTRAN Level 15.5.1 (Reference 20) will not work when starting from a structural checkpoint tape. It is necessary to punch out the input data using "ECHØ = PUNCH, SØRT" in the case control, and "ALTER 4,138", "ENDALTER", in the executive control.
- (2) The cost of a heat transfer analysis is only 8% that of a full stress analysis and is only 2% that of a dynamic analysis.
- (3) Computer core requirements are half those of a statics or dynamics solution.
- (4) Correlation (Figure 54) yielded somewhat low values where oil cooling was applied.
- (5) Forced convective oil cooling in NASTRAN is limited. For a given oil flow, downstream temperatures of the oil are the same as the upstream temperatures (Reference 21).

20. NASTRAN User's Manual Level 15.5, 1976

^{21.} Thornton, E., and Wieting, A., COMPARISON OF NASTRAN AND MITAS THERMAL ANALYSIS OF A CONVECTIVELY COOLED STRUCTURE, 1975 Fourth NASTRAN User's Experiences.

NOTE: THE COOLING FIN IS ASSUMED TO BE INFINITELY LONG. FOR SYMMETRY, THE Y-Z SURFACES ARE LEFT UNCONSTRAINED.

Figure 53. Example - Heat Flow Problem

Figure 54. Thermal Map of Test 1 at 100 Percent Torque. Correlation with NASTRAN Results (Circled)

(6) Thermal stresses calculated using the punched output were similar to those obtained previously and shown in Table 9. The maximums were <u>+</u>2000 psi.

After conducting the thermal analysis, an assessment of the effects of the dimensional instability of the critical housing points on the bevel gear mesh was attempted. The exact effect of housing distortion on the load capacity of the bevel gear mesh is an extremely complex subject and has been the topic of discussion among gear experts for some time. Axial movement, lateral movement, and induced misalignment, of both the pinion and gear members must be determined, then the results of all of these changes for each individual member must be evaluated to determine the relative effect on each member. Further complications are introduced by the changes in backlash and clearances due to the thermal growth of the gears themselves. In order to provide some indication of the effect of temperature distortion on the gear mesh, the backlash and mesh pattern (i.e., load distribution) were assessed.

The transmission housing flange which serves as the mounting surface for the input pinion cartridge experienced an outward thermal growth of 0.029 to 0.032 inch when the housing was subjected to the 185°F temperature distribution from Reference 12. Considering the bearing stack-up, mounting, and method of transfer of axial load from housing to gear shaft, the result is an axial outward movement of the bevel pinion of 0.019 to 0.022 inch. Using the backlash versus axial movement plot in Figure 14, this axial movement causes an increase in the backlash of the gear mesh of about 0.007 to 0.008 inch, which is on the order of a 100% increase.

Actual bevel gear mesh patterns corresponding to varying axial positions of the input pinion are shown in Figure 55. It is evident from these patterns that the axial movement has a significant effect on the mesh pattern. Figure 5 indicates that even a properly patterned gear mesh with a full contact pattern experiences a peaked stress distribution which exceeds theoretical predictions based on an assumed uniform stress distribution. Any deviation from this correct pattern will aggravate this stress peak and could lead to premature failure.

NO-LOAD (BENCH) PATTERN

FULL-LOAD PATTERN

"ZERO" POSITION

"ZERO" POSITION

0.022 INCH AXIAL MOVEMENT OF PINION OUT OF MESH

CONTACT PATTERN

0.004 INCH AXIAL MOVEMENT OF PINION OUT OF MESH

Figure 55. Bevel Gear Mesh Patterns at Different Axial Positions of Pinion

IV. STATIC AND DYNAMIC TRANSMISSION STRESS ANALYSIS INCLUDING IN-FLIGHT DYNAMIC ROTOR LOADS AND LOAD PATH DETERMINATION

An analytical method for accurately defining the stress distribution and load paths in a helicopter transmission housing has been investigated. Previously, the designer had little guidance for selection of the design with best structural efficiency. With continually increasing power requirements, the weight penalties imposed by nonoptimum structural configuration may be significant.

Because of the many functions performed by a transmission housing and its complex geometry, analysis is difficult. Using a NASTRAN finite element housing model, however, a static/dynamic stress analysis may be conducted and structural deformations predicted (Figure 56). Furthermore, methods for structural optimization can be applied to reduce stress, vibration and weight.

The work documented herein includes static and dynamic stress analyses and considers rotor loads, g-loads, and steady-state gear/bearing loads imposed on a transmission housing. The NASTRAN computer program can also readily handle fabricated and/or composite structures as well as conventional cast metal materials. This is accomplished through the ability of NASTRAN to use as input a 6 x 6 material property matrix and an orienting angle for each element to define the direction of the property orientation. The flow diagram for the stress analysis is shown in Figure 57.

By applying representative loads to the housing model, the stress distribution throughout the housing can be calculated for varying conditions. The static and dynamic stress thus calculated can be superimposed upon the thermal stress distribution to provide an accurate overall picture of both the steady-state and the time-dependent (fatigue producing) stresses occurring in the housing of an operating transmission. From this combined stress distribution, the structural load paths can be identified and the structural portions of the housing segregated from the nonstructural portions. By utilization of structural optimization methods, wall thickness changes can be recommended and weight reduction evaluated.

Vibratory 3-per-rev hub loads and steady 1g loads were calculated using a proprietary Boeing Vertol rotor loads analysis computer program (L-02). A sample of the computer output is summarized in Figure 58. The calculated 3-per-rev dynamic hub loads which were applied to the housing model via the rotor shaft support bearings are shown in Figure 59.

Figure 56. Model for Dynamic/Static Stress Analyses

-

Figure 57. Flow Diagram of NASTRAN Stress Analysis

and a second and a group of a second the second

3/Rev Sine Component

3/Rev Cosine Component

ADVANCED ROTOR AEROELASTICITY PROGRAM LO2 CH47C 150KTS FWD RTR 72-123-01

JUKTS	FWD	RIR	12-	-123-0.	L				
		LOW	ER	ROTOR	HUB	FORCES	AND	MOMENTS	
			1	HARMO	ONIC	COMPON	ENT (OF	

1	HARMONIC	COMPO

					HARM	HARMONIC COMPONENT OF						,1-g Loads			
	F	IXED	HUB FORCES	5	11			FIXED	HUB M	OMENTS	/				
	FX		FY		1 1	FZ		MX		MY	/	MZ			
0	2.5641D	02	2.9696D	02	2.5	038D	04	-1.3761	D 04	8.4337D	04	-7.1915D	05		
3C	-1.1319D	03	4.5407D	01	-8.7	918D	02	-1.8189	D 02	-1.0776D	04	-9.6423D	03		
35	-3.7297D	02	-9.4752D	02	-3.4	093D	03	-1.2021	D 04	-1.7310D	04	1.5865D	03		
3R	1.1918D	03	9.4861D	02	3.5	209D	03	2.1803	0 04	2.0390D	04	9.7719D	03		
6C	-6.8316D	01	3.1825D	02	3.7	131D	02	5.7416	D 03	1.0213D	03	-3.0808D	02		
6S	-3.3351D	02	-2.7621D	02	8.0	052D	02	9.8234	D 03	2.5336D	03	7.1321D	03		
6R	3.4044D	02	4.2140D	02	8.8	244D	02	1.1378	D 04	2.7318D	03	7.1387D	03		
9C	-1.3672D	02	-1.6253D	02	2.8	826D	02	5.9121	0 03	-3.0823D	03	2.2133D	03		
95	6.0188D	01	-1.8969D	02	3.8	605D	02	6.3592	D 03	3.5924D	03	1.4223D	03		
9R	1.4938D	02	2.4980D	02	4.8	180D	02	8.6829	D 03	4.7335D	03	2.6309D	03		
12C	2.5247D	01	-1.6117D	01	3.5	492D	02	1.1906	D 03	1.4538D	03	-3.2988D	03		
125	1.6117D	01	2.5247D	01	1.3	993D	02	-1.5995	0 03	9.0104D	02	1.3221D	04		
12R	2,9952D	01	2.9952D	01	3.8	151D	02	1.9940	0 03	1.7104D	03	1.3626D	04		

AZIMUTHAL VARIATION OF VIBRATORY

	FI	XED	HUB FORCES	5			FIXED HU	JB N	IOMENTS			
	FX		FY		FZ		MX		MY		MZ	
0	-1.3117D	03	1.8501D	02	1.3531D	02	-5.3450D	03	1.0168D	04	-1.1036D	04
15	-1.2836D	03	-9.1719D	02	-2.5177D	03	-1.2413D	04	1.1793D	03	4.1752D	03
30	-3.3959D	02	-1.0922D	03	-3.8118D	03	-2.2932D	04	-2.0469D	04	-2.8265D	03
45	7.9081D	02	-6.5883D	02	-2.4677D	03	2.0246D	03	-2.3486D	04	6.6773D	03
60	1.2256D	03	4.1925D	02	1.3172D	03	1.9209D	04	-5.2181D	03	3.8221D	03
75	5.6612D	02	3.9700D	02	3.4089D	03	2.9679D	04	9.8031D	02	1.6687D	04
90	5.2672D	02	4.2347D	02	3.7790D	03	1.3829D	04	2.1334D	04	-3.1549D	03
105	-1.7428D	02	1.2435D	03	1.5684D	02	-2.4053D	04	1.5511D	04	-1.4344D	04
120	-1.3117D	03	1.8501D	02	1.3531D	02	-5.3450D	03	1.0168D	04	-1.1036D	04
135	-1.2836D	03	-9.1719D	02	-2.5177D	03	-1.2413D	04	1.1793D	03	4.1752D	03
150	-3.3959D	02	-1.0922D	03	-3.8118D	03	-2.2932D	04	-2.0469D	04	-2.8265D	03
165	7.9081D	02	-6.5883D	02	-2.4677D	03	2.0246D	03	-2.3486D	04	6.6774D	03
180	1.2256D	03	4.1925D	02	1.3172D	03	1.9209D	04	-5.2181D	03	3.8221D	03
195	5.6612D	02	3.9700D	02	3.4089D	03	2.9679D	04	9.8031D	02	1.6687D	04
210	5.2672D	02	4.2347D	02	3.7790D	03	1.3829D	04	2.1334D	04	-3.1549D	03
225	-1.7428D	02	1.2435D	03	1.5684D	02	-2.4053D	04	1.5511D	04	-1.4344D	04
240	-1.3117D	03	1.8501D	02	1.3531D	02	-5.3450D	03	1.0168D	04	-1.1036D	04
255	-1.2836D	03	-9.1719D	02	-2.5177D	03	-1.2413D	04	1.1793D	03	4.1752D	03
270	-3.3959D	02	-1.0922D	03	-3.8118D	03	-2.2932D	04	-2.0469D	04	-2.8265D	03
285	7.9081D	02	-6.5883D	02	-2.4677D	03	2.0246D	03	-2.3486D	04	6.6774D	03
300	1.2256D	03	4.1925D	02	1.3172D	03	1.9209D	04	-5.2181D	03	3.8221D	03
315	5.6612D	02	3.9700D	02	3.4089D	03	2.9679D	04	9,8031D	02	1.6687D	04
330	5.2672D	02	4.2347D	02	3.7790D	03	1.3829D	04	2.1334D	04	-3.1549D	03
345	-1.7428D	02	1.2435D	03	1.5684D	02	-2.4053D	04	1.5511D	04	-1.4344D	04
AVE	1.2686D	03	1.1678D	03	3.7954D	03	2.6866D	04	2.2410D	04	1.5515D (04

ROTOR HORSEPOWER

2.7956D 03

Figure 59. Application of Dynamic Rotor Loads to Housing Model (3-Per-Rev Hub Vibratory Loads, CH-47C Forward Transmission, 50,000 LB, 150 KT).

Contraction of the State of States of the States

Another Boeing Vertol finite element computer program (D82) determines shaft deformations due to mesh excitation and translates these deformations into vibratory internal bearing loads for use in the structural analysis program. These vibratory internal loads have been thoroughly investigated in Reference 9 and will not be pursued further here, but the results will be applied. Natural frequencies and mode shapes for the housing have been calculated and stored on magnetic tape and are used for both of the above dynamic stress analyses. Applying the vibratory 3-per-rev hub loads and the dynamic loads due to the internal components, the NASTRAN vibratory response analysis (Rigid Format 11) was used to calculate dynamic response and stresses of the housing.

Steady-state loads of two types were considered: 1g steady level flight loads and transient g-loads for three flight maneuvers including the ultimate. All of these loads, which include both forces and moments, are applied to the housing model via the bearings. The three maneuver conditions are calculated similarly to the inertia relief capability of NASTRAN. The static stress distribution for the housing using each of these load conditions is calculated using NASTRAN static analysis (Rigid Format 1). Application of the calculated steady 1g hub loads is shown in Figure 60.

Furthermore, the effect of bearing nonlinearity was investigated. Since the bearings deflect nonlinearly under load (Figure 61), the load paths generated under a static loading would be different if the bearings were assumed to be linear elastic. This could be analyzed using the nonlinear feature of NASTRAN called piecewise linear analysis (Rigid Format 6). The bearings retaining the CH-47C forward transmission pinion and sun gear have nonlinear stiffnesses. The bearings (13 to 16, 9 and 17) are shown in Figure 62. Other nonlinear bearings are shown in Figure 63. These are bearings 1 and 2 for the rotor shaft, the upper planetary spherical roller bearings 4 and the lower planetary spherical roller bearing The stiffness of the bearings is a function of ro-10. tor torque and may be calculated. This variation in stiffness as a function of percentage of torque for the pinion-sun gear bearings is shown in Figures 64 and 65.

Since the bearings are a small portion of the transmission housing model, a separate computer run could be made assuming the bearings to be linear. The load paths for the linear case can be compared to the nonlinear load paths to ascertain the differences. The costs of the two computer runs would be considered in the evaluation. It is probable that the nonlinearity of the bearings is of

NOTE: AS THE LOAD INCREASES, THE RATE OF THE INCREASE OF DEFLECTION DECREASES, THERE-FORE PRELOADING (TOP LINE) TENDS TO REDUCE THE BEARING DEFLECTION UNDER ADDITIONAL LOADING.

INPUT PINION SUPPORT BEAM

SUN GEAR SUPPORT BEARING

Figure 62. CH-47C Forward Transmission Support Bearings

107

Figure 63. CH-47C Forward Transmission Bearing System (Nonlinear Stiffness).

108

The second of the second states

Figure 64. Bearing Spring Rate (K) for CH-47C Forward Transmission Input Pinion (Pinion RPM: 7,460)

109

Figure 65. Bearing Spring Rate (K) for CH-47C Forward Transmission Sun Gear (Pinion RPM: 7,460)

-

no consequence in static and maneuver loadings. However, the nonlinearity of the bearings, which is a function of rotor torque, does affect the natural frequencies of the internal components. These natural modes, when excited by the mesh frequencies, would change the dynamic loading on the case. But even in this dynamic situation, it would be erroneous to overemphasize the nonlinear stiffnesses since the bearings act only in compression, not in tension, which is significantly more nonlinear.

Three maneuver conditions were selected for sample static stress analyses of the CH-47C forward transmission case. The sign convention for these hub loads is shown in Figure 69 and the loads are:

- Symmetric dive and pullout, noseup pitching (Figure 70)
- Yawing (Figure 71)
- Recovery from rolling pullout (counterclockwise) (Figure 69)

Three-per-rev dynamic loads and stresses on the case were determined. Since the natural frequencies of the case start at about 600 Hz, there is no magnification of the 12 Hz exciting frequency (3/rev). The coupled bending/ torsion natural frequencies of the internal components start at 560 Hz; so once again, there is no magnification of the loads. Figure 55 shows that the sine and cosine components as output by the rotor loads computer program (Figure 54) had to be applied to the hub in separate runs. A bearing computer program used these separate load conditions to calculate nonlinear bearing loads. In Figure 73, the bearing dynamic loads on the case are illustrated except for the pinion ball bearing in the X-direction (64 lb) and the gear duplex ball bearing load in the Zdirection (24 lb). However, these loads were applied to the NASTRAN model. The sine and cosine bearing loads were combined into single polar loads for the NASTRAN dynamic stress analysis. At a rotor shaft speed of 243 rpm, the dynamic stresses due to mesh excitations were calculated.

(1)	Lower Planetary First Harmonic	1565 Hz (LPI)
(2)	Lower Planetary Second Harmonic	3131 Hz (LP2)
(3)	Spiral Bevel Fundamental	3605 Hz (SB1)
(4)	Lower Planetary Third Harmonic	4697 Hz (LP3)

111

.

-

The vibratory loads (exclusive of phasing) are shown on Figure 70 for the above four mesh excitations. Other mesh excitations and sidebands exist, but microphone data indicates the predominance of the above. The maximum dynamic stresses indicated by NASTRAN's prodigious output are approximately:

- (1) 600 psi for the LP1 Excitation
- (2) 500 psi for the LP2 Excitation
- (3) 200 psi for the SBl Excitation
- (4) 250 psi for the LP3 Excitation

This is based on an assumed equivalent viscous damping of 3% (6% structural). The values of these loads are contingent on the natural frequencies of the internal components which also include the nonlinear bearing stiffnesses and the gear tooth mesh stiffness (spiral bevel pinion/gear).

Bearing loads for 1g (high-speed level flight) and three maneuver conditions were calculated from hub loads. The hub loads for these conditions are given in Figures 60, 67, 68 and 69. All bearing loads calculated using these hub loads as well as the bearing number convention are given in Appendix E.

Maximum stresses for the static analyses of the case are summarized here:

1. lg, Steady Flight, + 3000 PSI

2. Ultimate Maneuver, + 15,000 to 25,000 PSI

3. Yawing Maneuver, + 20,000 PSI

4. Recovery from Rolling Pullout, + 5,000 PSI

These are "eyeball" numbers and are isolated areas on the case. However, assuming an allowable of +26,000 psi for AZ91 magnesium, there exists the possibility of high stresses on the case for certain maneuvers. Deflections for the critical shaft support bearing/ housing interface locations were evaluated. Figure 71 is a schematic of the bevel pinion and sun/bevel gear shaft showing the predicted deflections and slopes due to an imposed ultimate load condition for a magnesium and steel housing, respectively. The steel housing was evaluated in order to establish a basis for comparison. The displacements allowed by the magnesium housing are four to five times that of the steel housing. Table 12 summarizes the critical deflection information.

It is evident from Figure 72, which plots deflection versus torque for various housing materials, that the magnitude of the housing displacements can be reduced substantially by the use of stiffer materials. Actual deflection test data is shown for the magnesium housing. A steel housing is apparently very desirable from the stiffness aspect, although obviously unacceptable for aircraft application because of its weight. However, the metal matrix material provides good stiffness characteristics at only a small weight penalty. Furthermore, the slight weight increase can be traded-off against the much improved properties of the composite material and selective stiffening can be utilized, with the net result of a substantially stiffer housing with no weight penalty.

MAGNESIUM CASE

STEEL CASE

Figure 71. Displacement of Internal Components Due to Ultimate Load Condition

a se vine and the set

LOAD CONDITION	SHAFT	SLOPE	MESH DISPLA Cm (i	CEMENT -
	PINION	GEAR	PINION	GEAR
ULTIMATE				
Magnesium	.0017	.0005	.0429 (.0169)	.0091 (.0036)
Steel	.0004	.0001	.0094 (.0037)	.0018 (.0007)
STEADY FLIGHT (lg)				
Magnesium	.0006	.0002	.0147 (.0058)	.0030 (.0012)
Steel	.0001	.0000	.0033 (.0013)	.0005 (.0002)
				1

TABLE 12. DEFLECTION AND STRESS SUMMARY

LOAD CONDITION	TYPICAL MAGNESIUM HOUSING STRESS - kPa (PSI)
ULTIMATE	± 103425 to ± 172375 (± 15000 to ± 25000)
STEADY FLIGHT (lg)	<u>+</u> 20685 (<u>+</u> 3000)
YAWING MANEUVER	<u>+</u> 137900 (<u>+</u> 20000)
RECOVERY FROM ROLLING PULLOUT	<u>+</u> 34475 (<u>+</u> 5000)

I

-

STRUCTURAL OPTIMIZATION

Structural optimization has been accomplished utilizing strain density and stress-ratio resizing techniques. A strain energy analysis was developed by Boeing Vertol under ARO sponsorship (Reference 6). Expanding upon this work, a post-processor program (S-83) compatible with NASTRAN was developed for analysis of the strain energy density distribution throughout a structure and is based on the concept that for a given static load a uniform strain density throughout yields a maximum strength/minimum weight structure. The program tabulates each structural element from highest to lowest strain density and with this guidance the elements of high strain density can be altered to modify the structure. Furthermore, NASTRAN Level 16 includes both a strain energy and a "fully stressed design" capability, which resizes all elements in a structure for a given load condition using a specified allowable stress and a stress-ratio resizing algorithm.

A review of mathematical optimization methods, such as described in AGARD LS-70, was conducted and the applicability of these methods to this program was assessed (Appendix A). Although numerous analyses are available, few are presently suitable for application. Hence, the strain energy and fully stressed design methods were selected as the best available methods for use herein.

A strain energy density distribution analysis for structural optimization was conducted using S-83 for the transmission case structure to determine a maximum strength/minimum weight design. The ultimate load condition was used. These results may be used for either adding material or removing material. The area for adding material for a more uniform strain density was found to be in the vicinity of the junction of the input cartridge and case.

A stiffness/weight optimization for the upper cover was also conducted. Nonlinear and azimuthally varying roller and ball bearing loads for the ultimate flight condition were used. The upper cover is a better candidate for the application of optimization techniques because of its relatively high weight (145 lb as compared to 55 lb for the case), and because it transmits the hub loads. Figure 73 shows the model as well as the nonlinear bearing loads. Selective structural element plots generated by NASTRAN for 30 structural areas of highest and lowest strain density are indicated in Figure 74. NASTRAN distorts some of the structural elements in orthographic plotting; however, these plots are still of use in visualizing the general areas of the higher and lower strain densities. Two criteria were used as indicators for stiffness

124

and a group of the destablished

improvement: 1) stress reduction and 2) bearing outer race misalignment. There are different types of misalignment, such as out of roundness of the outer race, outer race warped azimuthally, the line of centers not geometrically centered for pairs of gears, or outer race tilted. The latter criterion was chosen because of its ease of calculation from the NASTRAN output.

The optimality principle of maximum stiffness for a minimal weight states that for two similar structures under the same loading with the same weight, the structure with the more uniform strain density is stiffer. It follows that when all the strain densities are equal the structure is the stiffest possible. For the typical case of multiple loadings, the optimality principle must be modified such that the largest strain density in each element for all load conditions is the same throughout the structure. The largest strain density is not necessarily caused by the same loading condition in all the elements (Reference 23). In addition, the analytical process is iterative. There may also be side constraints such as displacements, member sizes and stress limitations. Finally, the final optimized design may not be readily producible, or it may be too expensive to manufacture.

This implies that some compromise is needed for all these conditions. For simplicity it is assumed that one iteration with the addition of material in the areas of highest strain density using S-83 with NASTRAN is the best practical start. The sample S-83 output for the upper cover at the ultimate flight condition is given as Appendix F (Table F-1), which includes the principal stresses as well as the element numbers and strain densities. This output is used to illustrate both the addition and the removal of material for stiffness optimization on a weight basis. For 2014-T6 aluminum, the ultimate stress in tension and compression is 65,000 psi; the yield stress in tension is 55,000 psi; and the yield stress in compression is 58,000 psi. From Table F-1 all the stresses are within these The principal stresses are proportional to the limits. strain density, or more precisely the "square" of the principal stresses in the matrix sense ($\sigma T \sigma$) is proportional to the strain density. Hence the strain density method is somewhat similar to the fully stressed design method (FSD).

The results of adding material are summarized in Table F-2. The weight penalty was 15.7 lb. The thickness of the 30 most highly strained elements was approximately doubled. Most stresses were reduced and the misalignment was reduced in general. For example, the maximum stress went from 39,781 psi to 33,500 psi and the fore-to-aft roller bearing

 Venkayya, Knot, and Reddy, ENERGY DISTRIBUTION IN AN OPTIMUM STRUCTURAL DESIGN, AFFDL-TR-68-156. misalignment went from .0031 in./in. to .0027 in./in. For stiffness both added and removed (approximately half removed from the least strained elements), the weight penalty was 2.64 lb. The maximum stress was 34,367 psi, and the fore-toaft misalignment was .0027 in./in. as before. This is shown in Table F-3. For weight off only (Table F-4), the cover was 13 lb lighter, the maximum stress went up to 40,293 psi, and the fore-to-aft misalignment was .0033 in./in. It appears that adding stiffness is the best choice.

A fully stressed design analysis of the CH-47C forward transmission upper cover was conducted using NASTRAN Level 16. Two iterations were done and a value of .001 was selected for ϵ , where:

 $\begin{bmatrix} \sigma - \sigma_{l} \\ \sigma \end{bmatrix} = \varepsilon \sigma \text{ is a}$

 σ is a calculated stress, and σ_ℓ is a defined stress limit (tension, compression and shear). Another input parameter, γ , was selected as unity, where:

$$P_{NEW} = \frac{P_{OLD}}{\alpha} \left[\alpha + (1 - \alpha) \gamma \right], P_{NEW}$$
 is the new

property, P_{OLD} is the old property and

 $\alpha = MAX \left(\frac{\sigma}{\sigma_g}\right)$, for all structural elements.

Y is an iteration factor which limits the property change in a single iteration, and if less than unity, improves the stability of the iterative process.

The maximum change in any property is limited by ${\rm K}_{\rm MAX}$ and ${\rm K}_{\rm MIN}$, where

K_{MIN} < $\frac{P_{NEW}}{P_i}$ < K_{MAX}'

and P_i is the initial value of the property. If K_{MAX} and K_{MIN} are unspecified no limits are imposed. K_{MAX} and K_{MIN} were not specified for the test run here; hence, some unrealistic thicknesses for the upper cover resulted. Nevertheless, it is felt that this new feature in NASTRAN is useful for weight reduction. In the test case for example, the results were:

Original Weight = 145 lb

Iteration no. 1 = 26.5 Lb

Iteration no.
$$2 = 34.8$$
 Lb

A sample of the output thicknesses for each iteration is given in Figure 75. Since no restrictions were imposed on the

Figure 75. Sample Output for Fully Stressed Design of CH-47C Forward Transmission Upper Cover

127

ITERATION NO. 1

ORIGINAL

ITERATION NO. 2

PQUAD2	62	-	1.02	PQUAD2	62	.02519	5 0.0	PQUAD2	62	1.034	545 0.(0
PQUAD2	63	-	1.02	PQUAD2	63	.10092	0.0 0.0	PQUAD2	63	1.042	184 0.0	0
PQUAD2	64	I	1.02	PQUAD2	64 1	.09032	2 0.0	PQUAD2	64	1.062	302 0.0	0
PQUAD2	65	٦	1.02	PQUAD2	65 1	1.06372	6 0.0	PQUAD2	65	1 .045	590 0.0	0
PQUAD2	99	٦	1.02	PQUAD2	66 1	.08475	3 0.0	PQUAD2	99	1 .067	577 0.0	0
PQUAD2	67	٦	1.02	PQUAD2	67]	. 20363	0.0 0	PQUAD2	67	1.109	700 0.0	0
PQUAD2	68	٦	1.02	PQUAD2	68 3	.22239	8 0.0	PQUAD2	68	1.165	720 0.0	0
PQUAD2	69	1	1.02	PQUAD2	69	. 31954	0.0 6	PQUAD2	69	1.209	197 0.0	0
PQUAD2	20	٦	1.02	PQUAD2	70 1	. 39029	8 0.0	PQUAD2	70	1 .467	042 0.0	0
PQUAD2	11	1	1.02	PQUAD2	71 1	. 25715	4 0.0	PQUAD2	71	1.298	760 0.0	0
PQUAD2	72	-	1.02	PQUAD2	72]	21048	7 0.0	PQUAD2	72	1 .176	155 0.0	0
PQUAD2	73	1	.56	PQUAD2	73 1	14286	2 0.0	PQUAD2	73	1.358	966 0.0	~
PQUAD2	74	ч	.56	PQUAD2	74]	. 23467	1 0.0	PQUAD2	74	1.361	105 0.0	0
PQUAD2	75	1	.56	PQUAD2	75 1	25786	2 0.0	PQUAD2	75	1 .359	176 0.0	0
PQUAD2	76	٦	.56	PQUAD2	76 1	26679	4 0.0	PQUAD2	76	1.384	103 0.0	0
PQUAD2	17	1	.56	PQUAD2	17 1	24541	6 0.0	PQUAD2	77	1.501	577 0.0	0
PQUAD2	78	٦	•56	PQUAD2	78 1	.13841	1 0.0	PQUAD2	78	1.113	375 0.0	~
PQUAD2	61	1	.56	PQUAD2	19 1	. 18846	7 0.0	PQUAD2	79	1.288	0.0 200	0
PQUAD2	80	٦	.56	PQUAD2	80 3	.22353	6 0.0	PQUAD2	80	1.346	0.0 0.0	0
PQUAD2	81	-	.56	PQUAD2	81 18		3 0.0	PQUAD2	81	1.159	173 0.0	0
PQUAD2	82	1	.56	PQUAD2	82]	.11913	5 0.0	PQUAD2	82	1.369	0.0 003	0
PQUAD2	83	٦	56	PQUAD2	83]	. 29290	1 0.0	PQUAD2	83	1 1.33	144 0.0	0
PQUAD2	84	٦	.56	PQUAD2	84]	23387	8 0.0	PQUAD2	84	1.623	164 0.0	~
PQUAD2	85	1	.50	PQUAD2	85]	.29467	5 0.0	PQUAD2	85	1 .685.	123 0.0	0
PQUAD2	86	٦	.50	PQUAD2	86]	.41862	7 0.0	PQUAD2	86	1.657	226 0.0	0
PQUAD2	87	ч	.50	PQUAD2	87]	. 30032	8 0.0	PQUAD2	87	1.480	216 0.0	~
PQUAD2	88	1	.50	PQUAD2	88 1	. 29967	8 0.0	PQUAD2	88	1.529	0.0 810	~
PQUAD2	68	-	.50	PQUAD2	E 68	. 43235	3 0.0	PQUAD2	68	1.732	762 0.0	~
PQUAD2	06	٦	.50	PQUAD2	E 06	. 26104	0.0 6	PQUAD2	06	1.358	331 0.0	~
PQUAD2	16	٦	.50	PQUAD2	91 1	. 16852	7 0.0	PQUAD2	16	1.309.	155 0.0	~
PQUAD2	92	ч	.50	PQUAD2	92 1	06338	1 0.0	PQUAD2	92	1.048	786 0.0	~

Figure 75. Continued.

(Argentalian St.

.

deflections in the analysis, some deflections became unrealistically large (e.g., .6 in.).

The new strain energy capability of NASTRAN Level 16 has been applied to the CH-47C forward transmission upper cover. The output results are given in Table F-5. The strain energy output is calculated for Rigid Format 1 (Static Analysis) only by placing "ESE (Print, Punch) = ALL" in the case control of the NASTRAN deck. This not only prints out the strain energy for each element, but also punches it on cards. This deck may then be used in a post-processor to sort the strain energies, to list the percentage of total strain energy, and to calculate the accumulated percentage. The limitation that strain energies can be calculated only in Rigid Format 1 can be circumvented so that they may also be calculated in Rigid Format 3 (normal mode analysis) by utilizing a post-processor to reformat punched "ASET" displacements for a given mode shape from Rigid Format 3 into "SPC" input for a Rigid Format 1 run.

APPLICATIONS

COMPOSITE MATERIALS

Current cast light alloy (magnesium) transmission housing technology does not provide an optimum support structure for power train dynamic components under operating loads. These structures, limited by current materials and processing techniques which do not permit structural design optimization, exhibit excessive deflections and displacements under load. The metal industry, especially the light metals industry, has been seeking alloys with higher strength-to-weight and modulusto-weight values. New alloys and new processing methods have achieved small improvements, but the gains are no longer proportionate to the effort required to attain them. Since all of the widely used structural metals reach a limit of specific strength at about 1 million inches and a limit of specific modulus at about 100 million inches, research is being devoted to ways of getting around these specific strength and specific modulus barriers. High-modulus fiber-reinforced composite materials offer promise in providing the solution. These materials provide the needed capability for selectively stiffening the housing structure for reduced deflection and for detuning to reduce vibration/noise levels.

Studies conducted by Boeing have indicated the overall desirability and payoff to be gained from using these high specific strength, specific modulus materials for helicopter transmission housings. For example, increasing the housing wall stiffness reduces the resulting static and dynamic displacements for a specified load condition. This is evident from

F = Kx

where F = applied static or dynamic load

K = stiffness

x = displacement

Plots of displacement versus load for various materials (Figure 72) indicate that the magnitude of housing displacements can be reduced substantially by using the stiffer metal matrix materials. Steel is also shown in the figure as a point of reference.

A number of composite systems have evolved, such as boron/ epoxy, graphite/epoxy, boron/aluminum, graphite/aluminum, FP/ aluminum (FP is a trade name of Dupont's polycrystalline Al₂O₃ fiber) and FP/magnesium. Each of these has its own peculiar advantages and limitations. Several metal matrix candidate systems exhibit specific strength in the range of 2 to 3 million inches and specific moduli of 400 to 500 million inches. Metal matrix composites offer unique combinations of improved performance and reliability, in comparison to organic composite systems, due to improved shear strength, compressive strength, resistance to environmental degradation, and improved design flexibility. Also, the metal matrix composites offer better high-temperature capability for elevated temperature applications such as helicopter transmission housings. With improved design concepts, more sophisticated use of materials can be made, and greater weight savings realized by selectively strengthening critical areas of the casting. Reinforcing these highly-loaded areas by imbedding high strength filaments would produce a more efficient design and a more serviceable part. Weight limitations and the potential of significantly reduced maintenance dictates that the use of advanced metal matrix composites for many critical structural applications be examined carefully.

The work reported herein indicates the use of finite element methods utilizing NASTRAN in conjunction with other programs for the analysis of composite materials to define optimum material configurations and orientations. Micromechanics, lamina theory, and the total constitutive relation for a laminated plate provide the basis for analysis and design of composite structures. The theory of composites also includes:

- Thermal stress calculation
- Equivalent coefficients of thermal expansion
- The determination of the strains and stresses in each layer of the laminate
- Transverse shear stress analysis, interlaminar shear stress
- Laminate interaction diagram depictions based on the maximum strain theory of failure
- Optimization of layups

These analyses are available in the form of operational computer programs. Two of these programs, which may be used as pre- and post-processors to NASTRAN, are summarized below.

The "Point Stress Laminate Analysis" (S71) computer program (Reference 24) defines material properties of anisotropic composite materials by computing equivalent orthotropic material properties suitable for use in a NASTRAN analysis. This may also be used after the NASTRAN analysis as a postprocessor to obtain interlaminar and laminar stresses. Figure 76 illustrates the lamina or layer coordinate system (1-2) that is transformed to the laminate (X-Y) axis system.

Reed, D. L., POINT STRESS LAMINATE ANALYSIS, Document FZM-5494, AFML, Advanced Composite Division, WPAFB, Ohio, April 1970.

132

a garage

The resultant stresses and moments of the laminate are also shown. These represent a system that is statistically equivalent to the stress system that is acting on the laminate. The program will accommodate up to 400 layers, and a point stress analysis can be performed and thermal loads and point stresses may be calculated.

A second computer program for the analysis and optimization of laminated composites is "COOP" (Reference 25). Optimization is achieved by minimizing an objective function, which consists of terms involving laminate weight, cost, stiffness and strength. A materials property table is included in the program with an option to input any material and its properties. Margins of safety are calculated using four different failure criteria. Buckling loads for inplane end load and shear can also be calculated. The program prints out the inplane and bending matrices for the selected lamina. The program takes the elastic moduli E11, E22, G12, α_1 , α_2 and the Poisson's ratios, μ_{12} , μ_{21} , of the individual layers within the laminate and computes the elastic moduli E_x , E_y , G_{xy} , α_x , α_y , μ_{xy} and μ_{yx} for the final laminate. The 1-2 axes reter to the layer coordinate system and the x-y axes to the laminate system. The x-y axes correspond to the x-y loading directions. The program uses the classic laminated plate theory (References 26 and 27) in the calculation of the elastic constants, stresses and strains.

An analysis of the CH-47C forward transmission housing using a finite element NASTRAN model to determine the optimum locations and orientations of composite materials for selective stiffening of the lower housing structure was conducted. Static loads representative of operating conditions were applied to the model. Based on a combination of a strain energy and fully stressed design analyses the goal is to achieve maximum stiffness. The NASTRAN preprocesser, Point Stress Laminate Analysis, was used to study the optimum fiber configuration and to define the anisotropic material properties. The determination of the areas for stiffening is contingent on the load condition. Equivalent orthotropic material properties for a quasi-isotropic graphite composite material $(0^{\circ}/\pm 45^{\circ}/90^{\circ} \text{ lamina})$ were obtained using computer program S-71. A sample output for this run is attached as Appendix G. The selective addition of this quasi-isotropic composite material to the transmission case stiffening was

- 25. Dobyns, A., COMPUTER PROGRAM FOR ANALYSIS AND OPTIMIZATION COMPOSITES, Users Document, October 1976.
- 26. Tsai, S. W., Adams, D. F., and Doner, D. R., ANALYSIS OF COMPOSITE STRUCTURES, NASA Report CR-620, November 1966.
- 27. Ashton, J. E., Halpin, J. C., Petit, P. H., PRIMER ON COMPOSITE MATERIALS: ANALYSIS, Technomic Publishing Company, 1969.

based on the strain density distribution. The finite element model was augmented to incorporate the orthotropic material properties and a static analysis was conducted. Using the ultimate load condition, Table 13 summarizes the comparison that was made.

ELEMENT IUMBER	ORIGINA Mg (E = 6.	L STRESSES 5 x 10 ⁶ PSI	WITH QUASI-C COMPOSITE IN HIGHEST STRA (E = 10.5 x HIGH-DENSITY	AREAS OF IN DENSITY 10 ⁶) - GRAPHITE
	max	min	max	min
2272	448	-957	460	-781
2242	728	-1219	812	-1084
2273	-330	-871	-303	-630
149	-3.6	-720	-34	-735
1065	-78	-963	-36	-943
2062	13702	-10206	6489	-3670
2092	12921	-9229	6552	-2667
2097	2283	-4533	1984	-2562
112	997	-1115	1266	-896
2100	-3630	-30426	-989 -	14833
2063	25040	-7062	11530	-1181

TABLE 13. STRESS COMPARISON - ORIGINAL AND COMPOSITE AUGMENTED HOUSING

The original stresses have generally been cut to about half their original values. Another observation is that the addition of material must be done very selectively in patches, rather than over broad areas, in order to achieve maximum benefit from the strain energy method.

The use of composite materials for transmission housings will allow stiffer yet lighter structures. Further, vulnerability is reduced due to the better ballistic tolerance of composite materials and survivability is improved. It is possible to extend the operation of a marginally lubricated bearing if thermal gradients from inner to outer races can be reduced, thus preventing loss of internal clearance. The low thermal conductivity of the composite housing will impede heat flow from the outer race and tend to equalize the outer-inner race temperatures. If material properties can also be adjusted to approximate the coefficient for expansion of the bearing race, an ideal condition for maintaining bearing clearance exists.

VULNERABILITY/SURVIVABILITY OF A HELICOPTER TRANSMISSION

The minimum vulnerability/survivability standard for a contemporary transmission requires continued safe operation for at least 30 minutes after damage from any single hit by a 7.62mm projectile at a range of 100 meters. More specifically, they are designed to operate at the power required for flight at the speed for maximum range at sea level standard conditions and primary mission gross weight for not less than 30 minutes after depletion of the main lube system lubricant.

The work conducted herein will prove valuable in designing transmissions to meet both the current goals and future, more stringent goals. The vulnerability/survivability benefits to be derived are concentrated in two areas - the housing and the internal gear/bearing system. The analytical methods provided by NASTRAN provide more accurate load path definition and hence allow the designer to build-in improved load path redundancy. Also, the housing can be designed for the efficient use of composite materials with properties that eliminate the brittle fracture characteristics displayed by magnesium when subjected to hydraulic shock loads. Through NASTRAN, a stiffer case can be designed which will improve the load capacity of the gears and bearings by decreasing misalignment and, therefore, theoretically allow the use of smaller components. This would reduce vulnerability by reducing the vulnerable area of the transmission. This size reduction is not likely to materialize in practice for sometime since the effect of misalignment on load capacity is not yet defined with sufficient confidence to permit trade-offs between size and misalignment. The immediate practical benefits will thus be confined to somewhat higher capacity at the sizes determined by current design methods, which will contribute to better survivability.

Further significant advances in survivability result from an improved understanding using the NASTRAN analyses of the thermal conditions existing during normal and emergency lossof-lubricant conditions. In addition the gears must be designed with sufficient clearance to allow thermal expansion at the gear tips and roots. It is possible to extend the operation of a marginally lubricated bearing if thermal gradients from inner to outer races can be reduced, thus preventing loss of internal clearance. The low thermal conductivity of a composite housing, for example, impedes heat flow from the outer race and tends to equalize the outer-inner race temperatures. By using a NASTRAN model to approximate the coefficient of expansion of the bearing race, an ideal condition for maintaining bearing clearance exists. Survivability/vulnerability in transmission systems is concerned with the loss of lubrication, radar cross section, and fail-safety. The latter two areas are discussed further in subsequent sections. It has been shown that the heat rejection rate of fins can be calculated by the NASTRAN thermal analyzer for an elimination or a reduction of external oil lines for cooling. Elimination of the oil lines and placement of the cooler in proximity to the case would reduce the vulnerable area of the CH-47 from 11.4 to 6.5 square feet. Using a system that could by-pass the cooler in an emergency would further reduce the vulnerable area to 4.1 square feet. If the sump is armored the vulnerable area becomes 2.3 square feet, and a nonlubrication capability would reduce this to 0.6 square feet. Since experience has shown that no ballistic damage has caused drive system severances, the potential exists for a highly survivable helicopter with the elimination of the vulnerability of the lubrication system. The NASTRAN thermal analyzer is a valuable analytical tool for such a design problem. problem.

It is clear from Table 14, which relates the CH-47 vulnerable area to combat kills, that the drive/lube system is the most vulnerable area. Analysis indicates that the larger the area, the greater the potential for a "kill". Complete loss of oil from a transmission due to a .30- or .50-caliber hit in the cooling system will occur in approximately 20 to 30 seconds. Because of the high heat rejection rate and the large loads carried by the transmission, complete loss of oil is considered to be an A-kill, while total cooling loss with no oil loss is considered to be a B-kill. Of particular concern is the ability of a helicopter to continue its flight for a limited period after loss of transmission lubricant. Boeing Vertol has accumulated considerable experience with nonlubricated operation of components. Much of this has been under actual conditions of oil starvation, while other experience was obtained with tests under simulated oil system failures. These tests indicate that the bearings are the first items to show distress and that tapered roller bearings and ball thrust bearings in particular are susceptible to damage at high speeds and high loads. Spiral bevel gears appear to be the next most vulnerable item, although their damage may be partially ascribed to adjacent bearing failure. The establishment of an emergency nonlubricated capability of 30 minutes or more will reduce the K-, A-, and B-kill helicopter transmission categories to almost zero and thereby save personnel and aircraft.

Subsystem	CH-47 VULNERABLE AREA, Ft2	RELATIVE CAUSAL KJ Analysis	LLL DISTRIBUTION(%) Combat Data
Crew	0.37	1.28	1.67
Power Plant	5.85	20.30	21.70
Flight Controls	8.47	29.35	16.60
Drive/Lube	11.40	39.54	40.00
Fuel	2.75	9.53	16.70
Rotor	I		1.67
Electrical	I	1	1.67
TOTAL	28.84	100.0	100.0

TABLE 14. A-KILL VULNERABLE AREA TABULATION

and the second

man

RADAR CROSS-SECTION

The computer-generated plotting capability afforded by NASTRAN is useful for assessing the cross-sectional area projected by a structure when observed from any viewpoint. Typical radar cross-sectional areas, assuming a transparent fuselage, are plotted in Figure 77 for the CH-47C forward transmission at various angles. Any other orientation may also be evaluated simply by specifying the angular orientation about three axes. Utilizing the plotting scale factor, the cross-sectional areas presented can be calculated from the plots.

The reinforcement and modification to the wall thickness considered herein have no effect on the radar cross-section of the housing since the basic size and geometry are unchanged. However, the modeling capability would be valuable for determining the best housing geometry for minimum overall cross-section during the design or major redesign of a transmission housing.

FAIL-SAFE/SAFE-LIFE DESIGN

Many helicopter fatigue critical components are designed for safe life, whereby they are assigned a service life in operational hours and removed from service at this elapsed time to preclude catastrophic failure. This approach is effective in preventing failure due to statistical variations in the flight spectrum, loads and strength. However, most helicopter component failures are caused by the unknown, the unpredictable, or the unexpected (Figure 78), such as material defects, manufacturing and maintenance errors, pilot errors or battle damage. Current philosophy is to design helicopters to be tolerant of such defects so that the risks from unanticipated causes may be minimized. Defect tolerance, a design concept whereby an incipient or partial failure will not result in catastrophic failure, can be achieved by either providing an alternate load path with a short but sufficient life (fail-safe) or permitting the planned and timely detection of fatigue damage or operational deterioration (safe crack growth).

Figure 78. The Unexpected Causes Most Helicopter Component Failures

A fail-safe structure can be either active or passive. The passive system uses one load path always carrying a load and one path normally not loaded but becoming loaded if the first path fails. The active system uses two paths always sharing the load, but each is capable of taking over the entire load. The results of the NASTRAN model analysis can be used to study the fail-safety of the housing by evaluating load path redundancy, that is the ability of the housing to continue to transmit all loads even when one load path is severed. Load paths can be artificially severed within the model, and the stresses in the remaining load paths recalculated under this condition using the modified model. Methods of exact analysis of modified structures, based on matrix manipulations to modify the initial analysis, have been developed in an effort to preclude a complete reanalysis and the associated cost (Reference 28).

 Melosh, R. J., Johnson, J. R., and Luik, R., STRUCTURAL SURVIVABILITY ANALYSIS, Philco Ford and AFFDL, Paper Based on Contract AF33(615)-5039. This approach is an extensive subject in itself, however, and has been bypassed herein. Checking of stresses and deflections determines if adequate gear contact and bearing alignment is maintained. Comparison of stresses with allowables indicate the degree of fail-safety.

The alternative approach, safe crack growth, is based on fracture mechanics. It may utilize a periodic inspection or an integral detection system with an obvious failure indicator. In both approaches, parts are sized so that the rate of fatigue crack growth from a defect would be slow enough to assure inspection and detection before any component failure. Defect tolerance is achieved through a sub-threshold crack growth concept for an assumed defect size. This defect may be an inclusion inherent in the material, or it may be introduced during manufacture or in-service. Using this concept, the component is sized to a stress level sufficiently low to assure that the defect will not propagate during the life of the component. No inspections other than those specified for normal aircraft maintenance are required.

The fracture mechanics analysis uses the mean of scatter crack growth data, a crack simulation model, and the maximum load in the mission profile. Crack growth rate characteristics of metals are measured by testing standard compact specimens. Typical test results are shown in Figure 79, where data is presented as crack growth rate versus the stress intensity factor range (ΔK) where:

$$\Delta \mathbf{K} = \Delta \sigma \sqrt{\pi a} \qquad \mathbf{f} (\mathbf{a})$$

and

 $\Delta \sigma = \text{range of applied fatigue stress,} \\ (\sigma \max - \sigma \min)$

- a = crack size parameter

A significant characteristic of the data is that there is a point, designated the ΔK threshold, below which fatigue crack growth is extremely slow or negligible. Generally, the threshold stress intensity factor range will differ with material. For a given material, the threshold stress intensity is primarily influenced by stress ratio and temperature. Data indicates that environment and loading frequency do not significantly influence the threshold stress intensity range versus stress ratio curve. This "mean-of-scatter" curve is representative of medium strength steels and titaniums. The ultimate tensile strengths of the materials tested to define the curve are in the approximate range of 85 ksi to 180 ksi. Substitution of the threshold stress intensity factor range in the equation for ΔK allows determination of the maximum crack size which will not propagate at a given stress level. This maximum crack size will vary depending on the crack model (i.e., on f (a)) selected for analysis. Parametric charts may be generated for selected crack models which will define the size of nonpropagating cracks at various stress range conditions. It is useful to convert $\Delta \sigma$ to steady and alternating stresses, and this type of presentation for the surface flaw defect is shown in Figure 80.

Figure 79. Crack Growth Data for the Application of Fracture Mechanics to Defect Tolerant Design

USING THE EQUATIONS OF FRACTURE MECHANICS, THE THRESHOLD STRESS LEVELS ASSOCIATED WITH VARIOUS CRACK GEOMETRY MODELS CAN BE DISPLAYED IN FORMATS AS SHOWN

Realizing that additional safety normally compromises performance, studies were made to assess this penalty. One example of this weight penalty due to the safe crack growth approach is presented for a pitch housing. The 30 hour post-indication crack period requires an 11% heavier section than would a safe life version of the same part as shown in Figure 81.

TIME FROM DETECTION TO FAILURE (HOURS)

Figure 81. Weight Study for Safe Crack Growth - HLH Pitch Arm

With the above background, it is apparent that application of the NASTRAN finite element model to the stress/fatigue analysis of transmission housings should lead to better understanding of crack propagation and the safe crack growth characteristics of a structure. Previous experience with stress determination at a crack head using finite elements has indicated a need for an extrapolation post processer computer program, since the stress results for quadrilateral or triangular structural elements are assumed to exist at their C.G. Using this extrapolation scheme has led to good correlation with analytical results for circular, elliptical and V-notch cracks. The ability to include temperature in the analysis is also useful. A simulated .1 inch longitudinal crack was introduced into the NASTRAN model at a highly stressed area under an ultimate loading. The crack could have resulted from manufacturing imperfection, fatigue, or missile impact. In general, local stresses increased reflecting load redistribution by the crack, and the crack surfaces separated radially by .032 inch. A summary comparison of stresses before and after introduction of the crack is given in Figure 82.

ELEMENT	THICKNESS (INCHES)	MAX σ (PSI)	MIN o (PSI)	MAX σ (PSI)	MIN σ (PSI)
A	0.72	21600	- 8200	25040	- 25571
В	0.31	17705	- 32076	13702	14000
C	0.10	4288	- 4288	- 3253	- 4533
D	0.45	- 6333	- 43606	- 5677	- 25574
E	0.31	15811	- 11911	12921	- 12118
		CRACK		NO	CRACK

Previous fail-safe/safe-life considerations were primarily applied to the fuselage, hub, and rotor blades (References 29 and 30). The criteria should be more specifically defined with respect to transmissions for improved future designs. As applied to helicopter transmissions, safe-life criteria (fatigue failure, crack propagation) should be primarily applied to the cover and retention mountings. Experience has determined that the retention and mounting hardware have a relatively high incidence of fatigue failure for the CH-47C forward transmission (Reference 31). However, with the advent of new composite materials, safe-life criteria should be extended to the transmission case. Since the cover transmits the steady and vibratory hub loads to the aircraft airframe through the retention lugs, a NASTRAN analysis of the cover/ retention lugs yields useful safe-life information. In addition, since the drive system is one of the heaviest components of a helicopter, a post-processor program such as S-83 to calculate the strain density distribution for weight optimization is useful for weight reduction. The strain density/stress analysis of NASTRAN would also indicate the load paths for fail-safe considerations and would improve crack-growth characteristics by tending to equalize the stress distribution.

^{29.} Feldt, G. V., and Russell, S. W., FAIL-SAFE/SAFE-LIFE IN-TERFACE CRITERIA, Technology Incorporated, USAAMRDL TR 75-12, Eustis Directorate, U.S. Army Air Mobility Research and Development Laboratory, Fort Eustis, Virginia, April 1975, AD A009519.

^{30.} Needham, J. F., FAIL-SAFE/SAFE-LIFE INTERFACE CRITERIA, Hughes Helicopters, USAAMRDL TR 74-101, Eustis Directorate, U.S. Army Air Mobility Research and Development Laboratory, Fort Eustis, Virginia, January 1975, AD006131.

^{31.} USAAMRDL TR 75-56B.

CRASHWORTHINESS

Two indices which have been utilized to assess the overall crashworthiness of an aircraft are the levels of acceleration experienced by the occupants and the preservation of the integrity of the occupied cabin areas during a specified crash condition. The former index reflects such characteristics as fuselage design and occupant restraint systems and is not within the scope of the work reported herein. However, the latter index is directly affected by the design of a helicopter drive system. The attachment of large masses such as engines, transmissions, and rotors to the upper fuselage aggravates the collapse of the structure and often results in loss of occupiable volume and crushing injuries or entrapment of occupants.

Helicopter transmissions, due to their location typically being above or adjacent to the crew or passenger cabin areas, pose a direct hazard to occupants during a crash situation and must be designed with inherent retention strength in excess of the ultimate crash load requirements. Several design criteria relative to restraining the transmission from entering occupied areas must be satisfied to insure crashworthiness: retention of. the transmission in the airframe, sufficient strength of the airframe support structure to preclude total collapse, and integrity of the transmission structure including retention of the internal components in the housing. The first two criteria necessarily address topics such as strength of attachment points, strength of mounting bolts and dissipation of kinetic energy by the helicopter structure by elastic and plastic energy absorption. The strength of the fuselage structure can be accurately assessed using a NASTRAN model with loads representative of those occurring at the transmission mounting legs placed at the airframe attachment points. The third criterion, structural integrity of the housing itself, is the focus of the work discussed herein. The NASTRAN model of the transmission housing was used. Hub loads and inertia loads were applied to the transmission, these loads were converted to bearing reactions on the housing model, and a NASTRAN static stress analysis was performed. The strength of the transmission supporting legs and the structural integrity of the housing when loads representative of crash conditions are applied were evaluated.

The contractor's current experience with crashworthiness testing has indicated that loads between 40 and 100g should be considered. Assuming a specified initial flight condition for a given helicopter, the velocity at impact can be calculated. Then, after establishing the duration of the crash load impulse based on recent extensive crashworthiness testing, the acceleration and hence the force at impact may be determined. Utilizing these loads in the NASTRAN inertia relief analysis, the housing displacements and stresses due to crash loads may be calculated. A comparison of stresses with allowables provides an evaluation of the crashworthiness of the housing and its support structure. The strain energy distribution after impact is a source of information for structural improvement for crashworthiness.

A crashworthiness study was conducted for a CH-47C forward pylon using the inertia relief feature of NASTRAN (Rigid Format 2). The weight of the fuselage section was 5882 lb and extended rearward to Station 160. The forward transmission was attached at 4 points (cover legs) and weighed 1081 lb. Above this was a 683-1b hub assembly with three blades attached (1000 lbs). The angle of impact was 10°, and the impact time was $\Delta T = .25$ sec. The initial altitude was 55 feet, giving a deceleration of 7.4 g's. These numbers reflect a recent crash test at Boeing Vertol conducted under Contract DAAJ02-76-C-0015. The inertia relief capability of NASTRAN is linear elastic, whereas a true crashworthy analysis is elastoplastic. However, NASTRAN gives a first-cut solution. The model was completely free and "SUPORT" cards were used to avoid stiffness matrix singularity. Six nonredundant degrees of freedom were constrained. "CONM2" cards were used for the mass distribution. The original model is shown in Figure 83; the model after impact is shown in Figure 84, indicating the nose plowing into the ground but with no resultant transmission housing impacting into the crew area. Figure 85 shows this earth gouging pictorially. Figure 86 illustrates the need for a crashworthiness study of the transmission housing due to its location above the occupied area. The analytical results obtained in this first-cut solution agreed with the test results under Contract DAAJ02-76-C-0015 (Crashworthiness Study) in that the housing remained intact with only the nose collapsing. NASTRAN (Rigid Format 2) was difficult to interpret because the inertia loads of the concentrated masses of the forward pylon were not printed out. In addition, "SPC" cards could have been used instead of "SUPORT" cards since the inertia-impact loads are self-equilibrating. A second interpretation of crashworthiness would be the integrity of the transmissions internal components after impact.

Figure 83. NASTRAN Finite Element Model of CH-47C Forward Pylon Model for Crashworthiness Evaluation of Transmission System

Figure 84. Crashworthiness of CH-47C Forward Transmission as Indicated by NASTRAN "Deformed" Plot

Figure 85. Earth Gouging (Plowing) of Fuselage Under Longitudinal Impact

Figure 86. Schematic Diagram of Idealized Aircraft With Transmission Concentrated in Upper Fuselage

EXPERIMENTAL PROGRAM

INTRODUCTION

The experimental work performed under this contract involved two separate test programs. The uniform temperature testing of a baseline transmission case was described previously. The testing described in this section was concerned with the measurement of housing stresses due to operating loads.

OBJECTIVE

The stresses occurring in both a baseline and a modified version of a CH-47C forward rotor transmission when subjected to steady-state operating loads were measured to experimentally determine the effect of selectively stiffening a transmission housing. The results were evaluated to determine the effectiveness of the analytically predicted structural changes for reducing peak stress levels. The criterion for this stiffening process was the uniformity of the strain density distribution.

Test Stand

The transmission was statically and dynamically tested in the Boeing Vertol closed-loop test stand (Figure 87). This stand employs four components to close the torque loop. First, a set of helical gears increases the output or rotor shaft speed to the input or synchronization shaft speed. A torque device connects this gear shaft to a bevel gearbox. The bevel gearbox closes the loop to the input shaft of the transmission and also connects to a variable speed clutch and an electric motor which drives the system. This closed-loop test stand provides the capability of running a transmission over its full design torque and speed range under controlled conditions, including rotor lift, drag, and pitching moments.

Data Acquisition

Strains were recorded utilizing twelve strategically located strain gages which were affixed to the exterior surface of the transmission housing. The strain gage locations are presented in Figure 88. The instrumentation console is shown in Figure 89.

Test Configuration

The transmission used in this program was a CH-47C forward rotor transmission, except as structurally modified per the strain density analysis described below. The baseline transmission was installed in the closed-loop test stand and

Figure 89. Test Stand Instrumentation Console

-

load representative of steady-state flight loads (lift, drag, pitching and torque) were applied. Strain gage data was recorded for both static (nonoperating) and dynamic conditions with the transmission operating at a synch shaft speed of 7460 rpm. This procedure was then repeated except that the transmission case was selectively stiffened by the addition of contour doubler plates to allow for a more uniform strain density.

Areas for improving the existing housing were determined analytically by the finite element and strain energy methods developed. The optimization of a housing structure should consider both the addition and the removal of material. Nevertheless, no material was removed from the housing for the purpose of the testing presented herein, since at the time of the design process there was no logical criteria for selecting the areas for weight reduction in an existing transmission. A fully stressed design (FSD) capability now exists in NASTRAN Level 16. An FSD analysis, conducted for the housing subsequent to the testing, indicated several areas for reducing wall thickness and hence weight but no additional hardware was built. The casting process dictates the minimum practical thickness allowed. Also, a structure is generally designed using limit loads and requiring that there is no permanent deformation. These two criteria set a limit on the minimum weight. The latter stress analysis would determine a strain density distribution, which, when made uniform would yield a stiffer cover/case.

The criterion for a maximum stiffness structure for a given weight is the uniformity of the strain density distribution (Reference 32). In practice, this strain density distribution, which is a tabular computer listing of the structural element's strain density from highest to lowest, indicates the most efficient areas to add material in order to obtain a more uniform distribution for greater strength. The areas of highest and lowest strain density were determined using the S-83 computer program. The areas in highest strain were determined for all the flight conditions calculated (lg high-speed level flight, ultimate, yawing, recovery from rolling pullout), and the areas of the housing which were modified are shown in Figure 90. Furthermore, the analysis confirmed that both the undesirable structural and vibration/noise characteristics were closely associated with similar areas of high strain energy. Hence, the structural changes recommended herein are compatible with those recommended for vibration/noise reduction studies in Reference 9. The modified transmission housing hardware is shown in Figure 91.

1

32. Howells, R. W., Sciarra, J. J., and Ng, G. S., THERMAL AND STRUCTURAL ANALYSIS OF HELICOPTER TRANSMISSION HOUSINGS USING NASTRAN, NASA TMX-3428, October 1976.

Figure 90. Test Housing Stiffened by Attachment of Doubler Plates

.

Figure 91. CH-47 Forward Transmission Case With Modifications (Cross Hatched Areas) to Wall Thickness for Selective Stiffening

and the state of the

Test Results and Correlation

The static loading condition simulated rotor shaft loads at 150 knots high-speed level flight (lg) with 25,000 lb lift, 260 lb drag, 84,000 in.-lb pitch (positive noseup) and -720,000 in-lb of rotor shaft torque. The measured stress values for the baseline housing at this static load condition are summarized in Table 15 and compared with the values predicted by the NASTRAN model. Except for element number 156 and the two questionable strain gages noted, the predicted and measured values correlate quite well. The sense of the stress, tension or compression, is indicated correctly and the magnitudes are within a reasonable experimental scatter. The values predicted by NASTRAN for the ultimate load condition are also shown in this table.

A comparison of the magnitudes of the measured static stresses for the baseline housing and the stiffened housing modified according to the strain energy method is shown in Table 16. Of the ten gages that functioned during the test, six showed substantial reduction, three showed essentially no change, and only one increased. The net result was a significant overall decrease in the stress levels. Since the strain energy method utilizes the matrix equivalent of the square of the strains (e.g., analogous to $1/2 \text{ K}_X^2$ for a simple elastic system), it is appropriate to examine the stress magnitudes.

The baseline and stiffened housings were also tested dynamically at an input pinion speed of 7460 rpm and with the same lg load condition applied. The dynamic strains/stresses for all ten strain gages were reduced by the addition of the stiffener plates, which were located by strain density principles. Readings were made by taking peak-to-peak readings from an oscilloscope. The stress magnitudes for the baseline and modified housings, which are compared in Table 17, indicate an overall reduction of stress levels.

In addition to the normal experimental error due to equipment tolerances and data recording, the placement of the strain gages was quite critical. The finite element model predicts average stresses at the centroid of each element. Since these stresses can vary substantially across the element, the strain gages were placed as close to the center of each element as possible. Furthermore, the magnitudes of the strains measured were quite small and hence relatively sensitive to small inaccuracies.

	BA	SELINE	HOUSING STRESS (PS	SI)
LOCATION - (ELEMENT NO.)	NASTRA PREDICTED	N (lg)	MEASURED (lg)	NASTRAN PREDICTED (ULTIMATE)
141	-157		-214	-449
149	-228		79 Gage Erratic	-667
153	-455		-150	-1297
156	-124		780	-317
165	807		598	2319
1065	127		Gage Lost	371
2062	2095		624	6123
2092	1892		-78 Gage Questionable	5442
2097	1485		1404	4265
2242	146		150	544
2272	41		195	675
2273	568		598	1641

TABLE 15. STATIC STRESS SUMMARY - MEASURED AND PREDICTED VALUES FOR BASELINE HOUSING

a chief and a start good is the start of the

LOCATION	lg MEASURED STRESS MAGNITUDE (PSI)		
ELEMENT NO.)	BASELINE HOUSING	STIFFENED HOUSING	CHANGE
141	214	215	1
149	79	Gage Lost	
153	150	72	-78
156	780	156	-624
165	598	514	-84
1065	Gage Lost	Gage Lost	
2062	624	150	-474
2092	78	78	0
2097	1404	1125	-279
2242	150	215	65
2272	195	195	0
2273	598	514	-84
	Average Change of	E Stress Magnitude =	= -156

TABLE 16	16.	STATIC STRESS	5 SUMMARY	(MEASURED	VALUES)
		FOR BASELINE	AND STIFF	ENED HOUS	ING

TABLE 17. DYNAMIC STRESS SUMMARY

-

LOCATION	MEASURED STRESS			
(ELEMENT NO.)	BASELINE HOUSING	STIFFENED HOUSING	CHANGE	
141	260	208	-52	
153	293	260	-33	
156	325	260	-65	
165	195	130	-65	
2062	260	234	-26	
2092	260	234	-26	
2097	325	260	-65	
2242	260	208	-52	
2272	325	182	-143	
2273	260	156	-104	
	Average Change of	f Stress Magnitude =	-63	

161

17 2 Partas

CONCLUSIONS

- Based on the Thermal/Static/Dynamic Analyses conducted, it is apparent that NASTRAN can be used as an effective tool for transmission analysis and design. In fact, there presently exists no other comprehensive analytical tool. The heat transfer/thermal stress capability of NASTRAN is applicable to lubrication/cooling analysis. The stress/ dynamic capability is applicable to analyzing existing configurations and in optimizing new configurations.
- 2. It is possible to construct an accurate finite element model of a transmission utilizing engineering drawings as evidenced by the plotting and weight generator capabilities of NASTRAN. Essentially the same model can be used to evaluate static, dynamic, and thermal load conditions.
- 3. The ability of NASTRAN to accurately predict thermal distortions of a transmission housing has been verified by correlation with test data.
- 4. When analyzing the housing structure, the effect of the internal components (i.e. gears, bearings, shafts) must be considered. It may be necessary to model these components either in detail or in a simplified manner. Furthermore, in some instances such as the thermal growth analysis it may be possible to ignore the internal components.
- 5. By evaluating the displacements of the housing model (grid points) at the bearing/housing interfaces, the shaft slopes and displacements at the gear mesh can be determined. Although the magnitude of these displacements can exceed .010, further evaluation is needed to establish the precise effect on life and performance.
- 6. There are numerous theoretical techniques for structural optimization, but practical methods suitable for application to the design process are minimal. The strain energy method and the Fully Stressed Design (FSD) method appear to be the only methods available which are readily useable by a designer.
- 7. The NASTRAN model predicts stresses which correlate with the experimentally measured stress values.

- 8. The structural modifications determined from the strain energy method were effective in reducing the overall stress levels. This was confirmed from measured data and analysis.
- 9. NASTRAN, used in conjunction with other pre- and postprocessor programs, has shown that composite materials can be effectively employed, at least in theory, to stiffen transmission housings. Also, the thermal characteristics of a composite housing, which have been the topic of concern for sometime, can be defined.
- 10. Numerous aspects of the vulnerability/survivability problem can be investigated using finite element modeling. This has been demonstrated for such topics as radar crosssection, loss-of-lubricant emergency operation, failsafety, crack growth, and crash worthiness.

RECOMMENDATIONS

Based on the results of this effort, it is recommended that:

- 1. Further study be conducted to establish the precise effect of displacement and misalignment of gears on the life and performance of a helicopter transmission.
- 2. A further and quite extensive program be conducted to review existing optimization methods, to select the best or develop a new method, and to formulate a practical computer-aided design procedure.
- 3. Research be concentrated to perfect the manufacturing technology necessary to utilize composite materials, particularly metal matrix materials, for the selective stiffening of helicopter transmission housings.
- Analyses for the prediction of heat generation at gear meshes and rolling element bearings be refined and extended.
- Designers be encouraged to apply the finite element methods indicated herein to future helicopter transmissions.

REFERENCES

- 1. American Gear Manufacturers Association Standard 210.02.
- 2. George, C., GEAR NOISE SOURCES AND CONTROLS, Detroit Diesel Allison, Division of General Motors Corporation.
- Lenski, J. W., HLH SWASHPLATE FAILURE ANALYSES, Boeing Vertol Inter-Office Memorandum 8-7462-1-40, dated 10 July 1974.
- 4. Leibensperger, R. L., WHEN SELECTING A BEARING LOOK BEYOND CATALOG RATINGS, Machine Design, April 1975, Pages 142-147.
- Everstine, G., BANDIT A COMPUTER PROGRAM TO RENUMBER NASTRAN GRID POINTS FOR REDUCED BANDWIDTH, Naval Ship Research and Development Center Technical Note AML-6-70, February 1970.
- Sciarra, J., USE OF THE FINITE ELEMENT DAMPED FORCED RESPONSE STRAIN ENERGY DISTRIBUTION FOR VIBRATION REDUC-TION, U.S. Army Research Office - Durham, Final Report Contract DAH-C04-71-C-0048, July 1974.
- 7. Hartman, R. M., and Badgley, R., MODEL 301 HLH/ATC TRANS-MISSION NOISE REDUCTION PROGRAM, Boeing Vertol Company, USAAMRDL TR 74-58, Eustis Directorate, U. S. Army Air Mobility R&D Laboratory, Fort Eustis, Virginia, May 1974, AD 784132.
- Hartman, R. M., A DYNAMICS APPROACH TO HELICOPTER TRANS-MISSION NOISE REDUCTION AND IMPROVED RELIABILITY, Paper Presented at the 29th Annual National Forum of the American Helicopter Society, Washington, D.C., May 1973, Preprint No. 772.
- Sciarra, J. J., Howells, R. W., and Lemanski, A. J., HELICOPTER TRANSMISSION VIBRATION AND NOISE REDUCTION PROGRAM, USAAMRDL Contract DAAJ02-74-C-0040, Interim Report, October 1975.
- Howells, R. W., and Sciarra, J. J., FINITE ELEMENT ANALYSIS USING NASTRAN APPLIED TO TRANSMISSION VIBRATION/NOISE REDUCTION, NASA TMX-3278, September 1975.
- 11. Battles, Roy A., DYNAMIC TESTING OF A COMPOSITE MATERIAL HELICOPTER TRANSMISSION HOUSING, Bell Helicopter Company, USAAMRDL TR 75-47, Eustis Directorate, U.S. Army Air Mobility R&D Laboratory, Fort Eustis, Virginia, September 1975, AD A015521.

- 12. Tocci, R. C., Lemanski, A. J., and Ayoub, N. J., TRANS-MISSION THERMAL MAPPING, Boeing Vertol Company, USAAMRDL TR 73-24, Eustis Directorate, U.S. Army Air Mobility Research and Development Laboratory, Fort Eustis, Virginia, May 1973, AD 767875.
- 13. NASTRAN User's Manual Level 15, June 1972.
- 14. Buckingham, E., ANALYTICAL MECHANICS OF GEARS.
- 15. Harris, T., ROLLING BEARING ANALYSES.
- 16. Rumbarger, J., and Filetti, E., HIGH TEMPERATURE HELICOPTER MECHANICAL TRANSMISSION TECHNOLOGY, Franklin Institute Research Laboratories, Philadelphia, Pa., FIRL Final Report F-C3229, December 1971.
- 17. Buckingham and Ryffel, DESIGN OF WORM AND SPIRAL GEARS.
- 18. Faires, V., DESIGN OF MACHINE ELEMENTS, The MacMillan Company, New York, 4th Edition, 1965.
- 19. Eckert and Drake, HEAT AND MASS TRANSFER, McGraw-Hill, 1959.
- 20. NASTRAN User's Manual Level 15.5, 1976.
- 21. Thornton, E., and Wieting, A., COMPARISON OF NASTRAN AND MITAS THERMAL ANALYSIS OF A CONVECTIVELY COOLED STRUCTURE, 1975 Fourth NASTRAN User's Experiences.
- 22. Patton, H., MODEL YHC-1B FORWARD TRANSMISSION DEFLECTION TEST, Gleason Works Test Report #1842, 1962.
- Venkayya, Knot, and Reddy, ENERGY DISTRIBUTION IN AN OPTIMUM STRUCTURAL DESIGN, AFFDL-TR-68-156.
- 24. Reed, D. L., POINT STRESS LAMINATE ANALYSIS, Document FZM-5494, AFML, Advanced Composite Division, WPAFB, Ohio, April 1970.
- 25. Dobyns, A., COMPUTER PROGRAM FOR ANALYSIS AND OPTIMIZATION COMPOSITES, Users Document, October 1976.
- Tsai, S. W., Adams, D. F., and Doner, D. R., ANALYSIS OF COMPOSITE STRUCTURES, NASA Report CR-620, November 1966.
- Ashton, J. E., Halpin, J. C., Petit, P. H., PRIMER ON COMPOSITE MATERIALS: ANALYSIS, Technomic Publishing Company, 1969.
- Melosh, R. J., Johnson, J. R., and Luik, R., STRUCTURAL SURVIVABILITY ANALYSIS, Philco Ford and AFFDL, Paper Based on Contract AF33(615)-5039.

- 29. Feldt, G.V., and Russell, S. W., FAILSAFE/SAFE-LIFE INTERFACE CRITERIA, Technology Incorporated, USAAMRDL TR 75-12, Eustis Directorate, U.S. Army Air Mobility R&D Laboratory, Fort Eustis, Virginia, April 1975, AD A009519.
- 30. Needham, J.F., FAILSAFE/SAFE-LIFE INTERFACE CRITERIA, Hughes Helicopters, USAAMRDL TR 74-101, Eustis Directorate, U.S. Army Air Mobility R&D Laboratory, Fort Eustis, Virginia, April 1975, AD A009519.
- 31. Mack, J.C., and Rumberger, W., ADVANDED HELICOPTER STRUC-TURAL DESIGN INVESTIGATION - Volume II - Design Application Study for Free Planet Transmissions, Boeing Vertol Co., USAAMRDL-TR-75-56B, Eustis Directorate, U.S. Army Air Mobility Research and Development Laboratory, Fort Eustis, Virginia, March 1976, AD A024478.
- 32. Howells, R. W., Sciarra, J. J., and Ng, G. S., THERMAL AND STRUCTURAL ANALYSIS OF HELICOPTER TRANSMISSION HOUSING USING NASTRAN, NASA TMX-3428, October 1976.
- 33. AGARD Lecture Series No. 70 on Structural Optimization, AGARD-LS-70, October 1974.
- 34. Dwyer, W., Rosenbaum, J., Shulman, M. and Pardo, H., FULLY-STRESSED DESIGN OF AIRFRAME REDUNDANT STRUCTURES, AFFDL-TR 68-150, October 1968.
- 35. Dwyer, J. W., Emerton, R. K. and Ojalvo, I. V., AN AUTOMATED PROCEDURE FOR THE OPTIMIZATION OF PRACTICAL AEROSPACE STRUCTURES (Volume I - Theoretical Development and User's Information), AFFDL-TR 70-118, March 1971, Air Force Flight Dynamics Lab, Wright-Patterson AFB, Ohio.
- 36. Schmit, L. A., STRUCTURAL DESIGN BY SYSTEMATIC SYNTHESIS, Proceedings of the Second Conference on Electronic Computation, ASCE, Volume 89, August 1963.
- 37. Sciarra, J. J., USE OF THE FINITE ELEMENT DAMPED FORCED RESPONSE STRAIN ENERGY DISTRIBUTION FOR VIBRATION REDUC-TION, presented at ARO-D Military Theme Review, The Helicopter and V/STOL Aircraft Research Conference, U.S. Army Research Office, NASA-Ames Research Center, Moffett Field, California, AD-751809, September 1972.
- 38. Venkayya, V. B., Khot, N. S., and Reddy, V. S., OPTIMIZA-TION OF STRUCTURES BASED ON THE STUDY OF STRAIN ENERGY DISTRIBUTION, AFFDL-TR 68-150, 1968, Pages 111-153.

BIBLIOGRAPHY

- 1. Gellatly, R. A., and Laszlo, B., OPTIMAL STRUCTURAL DESIGN, AFFDL-TR 70-165, April 1971.
- Prager, W., and Marcal, P. V., OPTIMALITY CRITERIA IN STRUCTURAL DESIGN, AFFDL-TR 70-166, May 1971.
- Sciarra, J. J., APPLICATION OF A COMBINED DIRECT STIFFNESS AND MOBILITY METHOD TO VIBRATION ABSORBER STUDIES, ASME/ MDD Vibrations Conference, Paper 67-V1BR-65, March 1967.
- Sciarra, J. J., HELICOPTER FUSELAGE VIBRATION PREDICTION BY STIFFNESS/MOBILITY METHODS, 37th Shock and Vibration Symposium, Orlando, Florida, October 1967.
- Sciarra, J. J., DYNAMIC UNIFIED STRUCTURAL ANALYSIS METHOD USING STIFFNESS MATRICES, AIAA/ASME 7th Structures and Materials Conference, April 1966.
- Turner, M. J., DESIGN OF MINIMUM MASS STRUCTURES WITH SPECIFIED NATURAL FREQUENCIES, AIAA Journal, Volume 5, Number 3, March 1967, Pages 406-412.
- Venkayya, V. B., Khot, N. S., Tischler, V. A., and Taylor, R. F., DESIGN OF OPTIMUM STRUCTURES FOR DYNAMIC LOADS, Third Conference on Matrix Methods in Structural Mechanics, Wright Patterson Air Force Base, Ohio, October 1971.
- Rubin, C. P., DYNAMIC OPTIMIZATION OF COMPLEX STRUCTURES, AIAA Dynamics and Aeroelasticity Specialists Conference, New Orleans, La., April 1969.
- Zarghamee, M. S., OPTIMUM FREQUENCY OF STRUCTURES, AIAA Journal, Volume 6, Number 4, April 1968, Pages 749,750.
- Fox, R. L. and Kapoor, M.P., STRUCTURAL OPTIMIZATION IN THE DYNAMICS RESPONSE REGIME: A COMPUTATIONAL APPROACH, AIAA Dynamics and Aeroelasticity Specialists Conference, New Orleans, La., April 1969.
- 11. McCart, B. R., Haug, E. J. and Streeter, T. D., OPTIMAL DESIGN OF STRUCTURES WITH CONSTRAINTS ON NATURAL FREQUENCY, AIAA, Volume 8, Number 6, June 1970.

APPENDIX A

REVIEW OF OPTIMIZATION TECHNIQUES

The goal of the helicopter designer has always been a structure that meets all operational requirements and also is of minimum weight. Loads are first determined for the critical conditions (e.g., maneuver, gust, landing, etc.) and the structure is sized for strength based upon these loads. Modification of this original "first cut" structure will generally be required, and thus an iterative procedure is involved. A key step in this procedure is the optimization of the major structural components for strength, based upon the loads applied during a given cycle.

The classical approach to structural optimization has been engineering judgement. Since the development of finite element techniques has made possible the analysis of complex structures, the enormous number of structural elements and side constraints make the number of possibilities for structural changes large. The design trend now evolving is for automated sizing methods which will optimize the complex structures for some specified constraint criteria (e.g., weight, stiffness, displacements, and natural frequency). Typically the general layout, structural component construction, and materials are assumed to be already selected; the optimum member sizes are to be determined. Other factors such as weight penalty, location, and ease of manufacture must also be considered.

There are many schemes which have been put forth for both static and dynamic optimization. These encompass both direct and indirect (optimality criteria) methods. AGARD LS-70 (Reference 33) reviews several of these methods, including

- 1. Linear programming
- 2. Nonlinear programming (direct search)
- 3. Geometric programming
- 4. Sieve-search
- 5. Inscribed hyperspheres
- 6. Fully stressed design
- 7. Energy methods
- AGARD Lecture Series No. 70 on Structural Optimization, AGARD-LS-70, October 1974.

In addition, several other publications covering structural optimization (see the List of References) were reviewed with the objective of assessing the applicability of these methods and the feasibility of integrating them into the analytical technique for this program. Generally, the theoretical development of these optimization techniques is much further advanced than their practical application to the design of large, complex structures. Sample applications of these methods are typically limited to simple structures such as trusses since the methods become unwieldy for structures representative of those found in practice. As a consequence of the abundance of analytical techniques and lack of a solid practical design method, the need for a separate and quite extensive program is indicated which would have the objectives of reviewing existing optimization methods, selecting the best or developing a new method, and formulating a practical computer-aided design procedure based on the method selected.

The purpose herein is not to develop new methods of structural optimization but rather to select a method from those currently available and apply it. No conclusive evidence is available to show that one method of optimization is clearly superior. However, it is currently believed that while mathematical programming methods are suitable for detailed component optimization they are not practical for the overall optimization of large, complex structures, where optimality methods can be applied more efficiently. Two of the many existing optimality methods, strain energy density (SED) and fully stressed design (FSD), appear to be at least as good as the others and have been applied in practice to the design of some relatively large structures. These two methods have been selected for consideration in this program.

Fully Stressed Design (FSD)

NOTE: Selected portions of this discussion have been taken from NASTRAN documentation.

The Fully Stressed Design (FSD) technique, using the stressratio algorithm to drive the design toward a fully stressed state, is probably the most popular resizing method for strength optimization (Reference 34). NASTRAN Level 16 includes a method of design optimization for linear static analysis (Rigid Format 1) based on this relatively simple fully stressed design strategy. The traditional FSD iterative procedure is based upon the intuitive belief that a given structural configuration, subject to stress constraints only, is of minimum weight when the stresses in all the elements are at prescribed limits under at least one design loading

^{34.} Dwyer, W., Rosenbaum, J., Shulman, M. and Pardo, H., FULLY-STRESSED DESIGN OF AIRFRAME REDUNDANT STRUCTURES, AFFDL-TR 68-150, October 1968.

condition (Reference 35). According to this concept, the cross-sectional properties of each structural element are resized independently at each design iteration to produce a limit stress (zero margin of safety) somewhere within the element -- assuming that in each iterative cycle the internal load distribution is unaffected by the changes in its crosssectional properties. This assumption is strictly true only for statically determinate structures. This was demonstrated by Schmit (Reference 36) who found some optimum designs which were also fully stressed. Most practical structures, including a transmission housing/ring/cover/internal components assembly, are redundant.

For indeterminate structures of low redundancy, the above assumption is not badly in error, and a few repetitions of the algorithm will produce a stress distribution throughout the structure which has very nearly a zero margin of safety in every element (i.e., a "fully stressed design"). The procedure will converge more slowly (if at all) in structures of high redundancy, and modifications of the basic strategy may be required to achieve convergence. Furthermore, there is no assurance that the fully stressed design of a highly redundant structure will be an optimum design in any meaningful sense. It is relatively easy to construct examples in which the procedure converges to a "pessimum" design. Consider, for example, the simple case of two parallel rods that are rigidly connected together at their ends and which differ only in their allowable stresses. Since in this case the stresses in the two rods are equal regardless of their areas, the algorithm will increase the area of the weaker rod at the expense of the stronger, and in the limit only the weaker rod will remain.

Practical modifications such as minimum element size requirements are introduced into the basic iterative resizing procedure. Additional complexities associated with members carrying combined bending and membrane loads and biaxial stress states require special attention. When there are no minimum element size requirements to be satisfied, the nonuniqueness of fully stressed designs is most evident since there are at least as many FSD's as there are combinations of statically determinate member formations capable of supporting the specified loads. This raises some doubt as to the convergence of

- 35. Dwyer, J. W., Emerton, R. K. and Ojalvo, I. V., AN AUTO-MATED PROCEDURE FOR THE OPTIMIZATION OF PRACTICAL AERO-SPACE STRUCTURES (Volume I - Theoretical Development and User's Information), AFFDL-TR 70-118, March 1971, Air Force Flight Dynamics Lab, Wright-Patterson AFB, Ohio.
- Schmit, L. A., STRUCTURAL DÉSIGN BY SYSTEMATIC SYNTHESIS, Proceedings of the Second Conference on Electronic Computation, ASCE, Volume 89, August 1963.

related synthesis methods. Although attempts have been made to develop general convergence criteria, no definitive statements concerning the failure of convergence to a single design by FSD based iterative methods can be made.

From the above discussion it is seen that a fully stressed design algorithm cannot be used uncritically. Nevertheless, FSD is very attractive because of its basic simplicity and it will produce excellent designs in many practical cases. FSD based procedures have delivered practical and efficient aircraft structural designs. Furthermore, in many instances where theoretical optimums were computed, it was found that they were also fully stressed. The relative simplicity of the application of FSD techniques also accounts for their further development and use.

In a sample case for a three-spar, five-bay, swept box beam shown in Reference 34, convergence is rapid for two types of FSD design: an average stress method and a nodal stress method. Results for both types of analysis were similar. The weights of the two structures change very little after the initial resizing, as indicated in the following table.

	NODAL STRESS (1b)	AVERAGE STRESS (1b)
Start	179.5	179.5
1 Cycle	119.9	118.9
3 Cycles	119.5	118.5
20 Cycles	119.2	119

Three load conditions were used. For an allowable stress, it was required that the Henky-Von Mises effective stress

 $\sigma_{e} = (\sigma_{X}^{2} - \sigma_{X} \sigma_{X} + \sigma_{Y}^{2} + 3\tau_{XY})^{1/2}$

be less than 60,000 psi. The structure and loadings are shown in Figures A-1 and A-2.

For each of the two fully stressed designs the skin thicknesses were initially set at a uniform 0.16 in. Twenty redesign cycles were run in each case, and the resulting cover gages are plotted in Figure A-3.

A fully stressed design may not always be the lightest possible structure satisfying the strength and minimum gage constraints. Work is being done in this area using true optimization procedures (i.e., those which focus directly upon the weight of the structure and attempt to minimize it subject to the aforementioned constraints). Currently, the more promising approaches include the penalty function and the gradient search techniques. To date, however, those fully stressed

Figure A-3. Element Thickness (Inches) as a Function of the Number of Cycles

designs which have been shown to be nonoptimum have fallen into a very restricted class, and even for this group they have been fairly close to optimum. In view of the much greater computer time required for the penalty function and the gradient search techniques, the FSD approach is considered to be an acceptable practical compromise for the present.

The physical quantities involved in the NASTRAN FSD design algorithm are properties, stresses and stress limits. The properties may include thicknesses, cross-sectional areas or moments of inertia. Most NASTRAN elements have several independent properties. They also have several types of stresses and several places where stresses can be evaluated. The stress limits include those for tension, compression, and shear. As an example, the design iteration algorithm of the simple case of an element with one property is presented:

Let

$$\mathbf{X} = \mathrm{Max} \left| \frac{\mathbf{\sigma}}{\mathbf{\sigma}_{i}} \right| , \qquad (1)$$

where σ = stress, η = stress limit, and where the search for a maximum value is extended over all user-identified stress components and locations and also over all designated loading cases. The new property for the element is evaluated from the old property by the formula

$$A_{\text{new}} = A_{\text{old}} \left[\frac{\alpha}{\alpha + (1 - \alpha) \gamma} \right], \qquad (2)$$

where Υ is a parameter selected by the user. For $\Upsilon = 1$ (the default value), Equation 2 becomes

$$A_{\text{new}} = A_{\text{old}}$$
(3)

If the product **or** A were invariant, Equation 3 would give

$$\sigma_{\text{new}} = \frac{A_{\text{old}}}{A_{\text{new}}} \sigma_{\text{old}} = \frac{1}{\alpha} \sigma_{\text{old}}$$
(4)

so that the value of $\boldsymbol{\sigma}_{\text{new}}$ would just be equal to the limit stress in this special case.

For $\Upsilon = 0$, it is seen that $A_{new} = A_{old}$, and for values intermediate between zero and one the property is changed by less than a factor of \varkappa . Thus Υ is a parameter which moderates the property changes at each iteration and may be used to improve the convergence of the algorithm.

For NASTRAN elements with more than one cross-sectional property, all of the properties are changed according to a fixed rule. For example, in the case of the BAR, the moments
of inertia are changed in direct proportion to the change in the area. This is equivalent to the assumption that each BAR has a thin-walled cross-section whose thickness is being changed uniformly. The procedures for elements with more than one cross-sectional property cannot be used for the detailed design of individual elements. The incorporation of more elaborate procedures in NASTRAN has been foregone due to the inherent limitations of the fully stressed design algorithm. Indeed, it is not clear that any fully automated general purpose design procedure can successfully cope with the simultaneous requirements of overall and detailed design.

Strain Energy Density

Strain energy techniques have been applied mainly to the dynamic optimization of structures by shifting eigenvalues (natural frequencies) away from exciting frequencies. The objective for an aircraft in particular is a maximum eigenvalue shift for a minimum weight change. The mode shape is used to find the strain energy content of the components of the structure. It can be shown analytically that a complex structure can most efficiently be designed dynamically by ensuring that the modal density differential is uniform throughout the structure. The density differential of a structural element is the difference between the strain density and the kinetic energy per unit volume (kinetic density). In most cases, the strain density may be used as an approximation of the density differential since the kinetic density is relatively small. This objective may also be stated alternatively as: (1) Find the least weight structure with the largest, lowest natural frequency, or (2) Find the least weight structure for a specified natural frequency.

A method for optimizing a structure for a given dynamic loading has been described by Sciarra (Reference 37). This method has been applied to a medium size helicopter (Boeing Vertol Model 347) in high-speed level flight. The results are shown in Figure A-4. The excitations of the fuselage are the n per rev hub loads which are approximately 10% of the gross weight. It is seen that the heights of the sticks that are representative of the vibratory response levels are reduced after proper optimization. Figure A-5 shows that the second natural frequency (73.4) has been moved away from the exciting frequency (79.5). These results are for the forward pylon only. This type of experience is directly applicable to the design of an optimum transmission housing.

37. Sciarra, J. J., USE OF THE FINITE ELEMENT DAMPED FORCE RESPONSE STRAIN ENERGY DISTRIBUTION FOR VIBRATION REDUCTION, presented at ARO-D Military Theme Review, The Helicopter and V/STOL Aircraft Research Conference, U.S. Army Research Office, NASA-Ames Research Center, Moffett Field, California, AD-751809, September 1972.

Figure A-4. Vibration Reduction Through Structural Modification, Energy Method. Elastic Modes Only

The dependency of the static strain energy distribution on the loading condition makes trade-offs necessary. However, if the first eigenvalue (natural frequency) is maximized for a minimum weight, this would make the optimization independent of the loading. This can be seen in a violin string as its tension is increased yet its weight is constant. Also, different eigenvalues (first, second, etc.) give different optimal designs. As an example, optimal designs for different eigenvalues of the portal frame are shown in Figures A-6 and A-7. The finite element models, the first four mode shapes, and the optimal designs for the first four modes are shown.

The strain density distribution concept is also utilized statically to identify structural load paths and to evaluate the stress efficiency of the structural design (stiffness/ weight). Venkayya (Reference 38) uses the finite element method in an iterative cycle to find a minimum weight, maximum strength design for a given static load condition of a structure. The resizing of the structural elements of the complex model is contingent on the strain density distribution. The optimality principle is that the strain density should be uniform. A resizing mechanism establishes this uniformity. Since competing objectives are involved in the optimization, tradeoffs are necessary. For example, different static load conditions give different optimal designs. The optimization analysis of a structure is also nonlinear, and an iterative loop should be employed.

The beauty of the strain energy method is that strain energy is easily obtained using finite elements. If the displacements and rotations of a structural element's nodes are obtained and called $\{X\}$, a column matrix, then $1/2 \{X\}^T$ [K] $\{X\}$ is the strain energy of the particular structural element where $\{K\}$ is the stiffness matrix.

^{38.} Venkayya, V. B., Khot, N.S., and Reddy, V. S., OPTIMIZATION OF STRUCTURES BASED ON THE STUDY OF STRAIN ENERGY DISTRIBUTION, AFFDL-TR 68-]50, 1968, Pages 111-153.

CONCLUSIONS REGARDING STRUCTURAL OPTIMIZATION

- 1. There are numerous theoretical techniques for structural optimization, but practical methods for application to the design process are minimal.
- 2. Structural optimization for this contract was performed using strain energy. FSD, as it appears in NASTRAN Level 16 was also evaluated herein. The FSD method appears to be a feasible approach to structural optimization.
- 3. A further and quite extensive program is necessary to review existing optimization methods, to select the best or develop a new method, and to formulate a practical computer-aided design procedure.

APPENDIX B

SAMPLE CALCULATIONS FOR HEAT GENERATION

Sample calculations for CH-47 input pinion spiral bevel angular contact ball bearing no. 15 (Reference 15).

$$C_{\rm S} = 400 \text{ i } Z \text{ } D^2 \cos \alpha \left[\frac{2 f_{\rm i} (1 - \gamma)}{2 f_{\rm i} - 1} \right]^{1/2}$$

C_S = Basic Static Capacity, 1b

Y

Fs Cs

i = Number of Rows,

Z = Number of Rolling Elements Per Row

$$f_i = \frac{r_i}{D}$$
, Inner Race Curvature (From S04)

$$\gamma = \frac{D \cos \alpha}{d_m}$$

= Z

fi

 $M_{f} = f_{i} F_{c} d_{m}$, Bearing Friction Torque (From Palmgren) in.-lb

F_c = Static Equivalent Load, Lb (From S04)

z, y from Table B-1

 $F_{\mathbf{B}} = F_{\mathbf{a}} = Applied Axial Load, Lbs (From S04)$

TABLE B-1. VALUES OF z AND y

Ball Bearing Type		z	У	
Deep groove	$\alpha = 0^{\circ}$	0.0009	0.55	
Angular contact	$\alpha = 30^{\circ}$	0.001	0.33	
Angular contact	$\alpha = 40^{\circ}$	0.0013	0.33	
Thrust	$\alpha = 90^{\circ}$	0.0012	0.33	
Self-aligning	$\alpha = 10^{\circ}$	0.0003	0.4	

For Bearing no. 15 at 100% torque, 7460 rpm

 $C_{s} = (400) (1) (14) (1.125)^{2} \cos 25^{\circ} \left\{ \frac{2 (.52) \left[1 - \frac{(1.125) (.91)}{6.1} \right]}{2 (.52) - 1} \right\}^{1/2}$ = 30287 lb where i = 400D = 1.125 $\alpha = 250$ f = 52 $d_{m} = 6.1$ $f_i = .001 \left[\frac{6111}{30287} \right]^{.33} = .00059$ M = (.00059) (6050) (6.1) = 21.8 in.-lb= Mechanical Friction Torque M_v = Viscous Friction Torque (in.-1b) = (1.42) (10⁻⁵) $f_0 (V_0 N)^{2/3} d_m^3$ $V_0 = Centistokes$ (e.g. 3 cs at 200°F, MIL-L-7808) N = RPM (e.g., 7460) f_{o} = Factor (Table B-2) $M_V = (1.42) (10^{-5}) (2) (3 * 7460)^{2/3} d_m^3 = 5.1 in.-lb$ $M_{TOTAL} = M_{1} + M_{V} = 21.8 + 5.1 = 26.9 \text{ in.-lb}$

$$HP = (26.9) (7460) = 3.18 HP$$

63025

Heat Generated by Bearing no. 3 = (42.42) hp = 134.9 Btu/min

TABLE B-2. VALUES OF fo

Bearing Type	Mist Lubrication	Oil Bath Lubrication* Grease Lubrication	Vertical Mounting Flooded Oil Lubrication Jet Lubrication
Deep-groove ball bearings (single row),	e4. odd 1.	. og grita	and an isan in
Self-aligning ball bearings (double row),	0.71†	1.52	34
Ball thrust bearings			
Filling-slot ball			
bearings (single row),	1	- 2	4
bearings (single row)			
Angular-contact ball bearings (double row)	2	4	8
Single-row, tapered			
Spherical roller thrust bearings	1.52	34	68
Cylindrical roller bearings (single row)	11.5	23	46
Spherical roller bearings (double row)	23	46	812.
Tapered roller bearings (double row)			

* Oil level reaches center of lowest rolling element in a horizontal mounting. † Lower values pertain to light series; higher values pertain to heavier dimension series. Sample calculation for CH-47 input pinion roller bearing heat generation (Reference 15).

SPIRAL BEVEL INPUT PINION GEAR

Assume for roller bearing no. 1 the Palmgren relation M_{ℓ} (Bearing Friction Torque) = f_1 (bearing factor) *

 F_{β} (bearing shaft force) * d_m (pitch diameter)

or M_{ℓ} = (.0003) (15485 lb) (6.5 in.) = 30.4 in.-lb The f₁ chosen is for cylindrical roller bearings.

Now assume for lubricated roller bearing viscous friction torque (M_V) the Palmgren relation:

 $M_V = 1.42 \times 10^{-5} f_0 (v_0 N)^{2/3} d^3$ where

fo is a factor depending on the type of bearing and the method of lubrication (e.g., 2.5 for single-row cylindrical roller bearings),

m

 v_0 = centistokes (e.g., 3 cs @ 200°F, MIL-T-7808)

N = rpm (e.g., 7067)

or $M_v = (1.42) (10^{-5}) (2.5) (3 \times 7067)^{2/3} (6.5)^3$

 $M_{v} = 7.47 \text{ in.-lb}$

MTOTAL = Mg + My = 37.87 in.-1b $HP = \frac{2\pi N M_{TOTAL}}{2\pi N M_{TOTAL}}$ $HP = \frac{(37.87)(7067)}{63025} = 4.2$ (33000) Heat Generated = (42.42) * HP = 178 Btu/min (1 HP = 42.42 Btu/min)

SAMPLE OUTPUT FOR INDUCED MISALIGNMENT PROGRAM APPENDIX C

GEAR/BEARING MISALIGNMENT PROGRAM

* * NASTRAN POSTPROCESSOR * * * R HOWELLS - POWER TRAIN TECHNOLOGY - APRIL 1976

CH-47C FWD XMSN INPUT PINION SHAFT - 185 DEG F DISPLACEMENTS

INPUT DATA SHAFT END A (NEAREST TO MESH)

GRID POINT LOCATIONS

180.00000 8.63400	210,00000 8.63400	240.00000 8.63400	270.00000 8.63400	300.00000 8.63400	330.00000 8.63400
5.25000	5.25000	5,25000	5.25000	5.25000	5,25000
2183	2213	2243	2273	2303	2333
8.63400	8,63400	8.63400	8.63400	8,63400	8,63400
0,00000	30,00000	60,00000	90,00000	120,00000	150,00000
5.25000	5,25000	5,25000	5,25000	5,25000	5,25000
2003	2033	2063	2093	2123	2153

GRID POINT DISPLACEMENTS

185

0.170870E-01	-0.485268E-02	0.142121E-01	0.162203E-012333	0.124864E-03	0.663771E-02	153
0.182980E-01	-0.233294E-02	0.156825E-01	0.161314E-012303	-0.203897E-02	0.645397E-02	1123
0.193844E-01	0.224429E-03	0.146945E-01	0.156672E-012273	-0.415390E-02	0.806837E-02	6003
0.190957E-01	0.198647E-02	0.130264E-01	0.152158E-012243	-0.552632E-02	0.998941E-02	690
0.179840E-01	0.268117E-02	0.111082E-01	0.153296E-0.2213	-0.600609E-02	0.110801E-01	5033
0.167519E-01	0.227474E-03	0.992758E-03	0.579231E-021838	-0.618340E-02	0.113391E-01	003

INPUT DATA SHAFT END B (FARTHEST FROM MESH)

GRID POINT LOCATIONS

14.93400	14.93400	14.93400	14.93400	14.93400	14.93400
180.00000	210.00000	240.00000	270.00000	300.00000	330.00000
5.25000	5.25000	5.25000	5.25000	5.25000	5.25000
2180	2210	2240	2270	2300	2330
14.93400	14.93400	14.93400	14.93400	14.93400	14.93400
0.00000	30.00000	60.00000	90.00000	120.00000	150.00000
5.25000	5.25000	5.25000	5.25000	5.25000	5.25000
2000	2030	2060	2090	2120	2150

GRID POINT DISPLACEMENTS

0.296103E-01	0.300765E-01	0.317044E-01	0.319164E-01	0.310136E-01	0.296469E-01
-0.392253E-04	-0.135791E-03	0.190447E-03	0.105983E-02	0.885209E-05	-0.189538E-02
0.106174E-01	0.119787E-01	0.119395E-01	0.108191E-01	0.115511E-01	0.146958E-01
0.285838E-012180	0.298825E-012210	0.304151E-012240	0.303579E-012270	0.298701E-012300	0.289240E-012330
-0.538079E-02	-0.672642E-02	-0.594121E-02	-0.432274E-02	-0.205687E-02	-0.517965E-03
0.164125E-01	0.122303E-01	0.868517E-02	0.836684E-02	0.977630E-02	0.104025E-01
2000	2030	2060	2090	2120	2150

COORDINATES OF SHIFTED CENTER RELATIVE TO ORIGINAL CENTER

SHAFT END A

186

0.030159 DEL ZMAV = 14.964150 ZMAV =YMAV = -0.0019060.030280 XMAV = 0.001922 TOTAL MOVEMENT OF CENTER=

INDUCED MISALIGNMENT OF SHAFT CENTERLINE

INDUCED DISPLACEMENT OF CENTERLINE AT GEAR PITCH DIAMETER (INCHES) = 0.0051 0.0165 8.5300 ANGULAR MISALIGNMENT OF CENTERLINE (DEGREES) = DISTANCE FROM END B TO PITCH DIAMETER (INCHES)= DISPLACEMENT INPLANE (INCHES) = 0.0018 0.0003 SLOPE (INCHES/INCH) =

GEAR/BEARING MISALIGNMENT PROGRAM

* * * NASTRAN POSTPROCESSOR * * * R HOWELLS - POWER TRAIN TECHNOLOGY - APRIL 1976

CH-47 FWD XMSN BEVEL/SUN SHAFT - 185 DEG F DISPLACEMENTS

INPUT DATA SHAFT END A (NEAREST TO MESH)

GRID POINT LOCATIONS

-11.82000	-11.82000	-11.82000	-11.82000	
180.00000	225.00000	270.00000	315.00000	
2.76000	2.76000	2.76000	2.76000	
5180	5225	5270	5315	
-11.82000	-11.82000	-11.82000	-11.82000	S
0.00000	45.00000	90,00000	135.00000	DISPLACEMENT
2.76000	2.76000	2.76000	2.76000	GRID POINT
0000	5045	0609	5135	•

-0.712806E-02	-0.634546E-02	-0.628018E-02	-0.649203E-02
-0.727532E-02	-0.302717E-02	0.276363E-02	0.621650E-02
0.206404E-02	-0.216408E-02	-0.163536E-02	0.339357E-02
-0.683615E-025180	-0.744948E-025225	-0.759006E-025270	-0.730030E-025315
0.538151E-02	0.106174E-02	-0.424765E-02	-0.764268E-02
0.881108E-02	0.118179E-01	0.110788E-01	0.718600E-02
5000	5045	5090	5135

187

INPUT DATA SHAFT END B (FARTHEREST FROM MESH)

GRID POINT LOCATIONS

1111 6.65000 105.00000 -2.50000 1291 6.65000 285.00000 -2.50000 1126 6.65000 120.00000 -2.50000 1306 6.65000 300.00000 -2.50000
1156 6.65000 150.00000 -2.50000 1336 6.65000 315.00000 -2.50000 1156 6.65000 150.00000 -2.50000 1336 6.65000 330.00000 -2.50000

~

GRID POINT DISPLACEMENTS

1006	0.121318E-01	0.725121E-02	0.845410E-021186	0.798424E-02	-0.114257E-01	0.494371E-02	
1021	0.143274E-01	0.660257E-02	0.764045E-021201	0.559498E-02	-0.105817E-01	0.607704E-02	
1036	0.165635E-01	0.523497E-02	0.680431E-021216	0.335056E-02	-0.910392E-02	0.767339E-02	
1051	0.184163E-01	0.324386E-02	0.597465E-021231	0.168826E-02	-0.707772E-02	0.900514E-02	
1066	0.196033E-01	0.766614E-03	0.527885E-021246	0.857107E-03	-0.476823E-02	0.961411E-02	
1081	0.199327E-01	-0.192911E-02	0.497104E-021261	0.632963E-03	-0.240560E-02	0.994351E-02	
1096	0.194779E-01	-0.456673E-02	0.488035E-021276	0.941892E-03	-0.807089E-04	0.101606E-01	
1111	0.184315E-01	-0.697892E-02	0.486161E-021291	0.186135E-02	0.206281E-02	0.102035E-01	
1126	0.167749E-01	-0.901279E-02	0.493198E-021306	0.318318E-02	0.390694E-02	0.102208E-01	
1141	0.146862E-01	-0.104744E-01	0.499127E-021321	0.485608E-02	0.542861E-02	0.102245E-01	
1156	0.125542E-01	-0.113389E-01	0.459605E-021336	0.691309E-02	0.655730E-02	0.100023E-01	
1171	0.103333E-01	-0.116645E-01	0.446441E-021351	0.934163E-02	0.716400E-02	0.946140E-02	
COORDI	NATES OF SHIFT	ED CENTER RELATIVE	TO ORIGINAL CENTER				

-0.006920 DEL ZMAV = -11.826910 ZMAV =0.010005 YMAV = XMAV=0.003445TOTALMOVEMENTOFCENTER= SHAFT END A XMAV =

SHAFT END B XMAV =

188

0.007312 DEL ZMAV = -2.492688 ZMAV = 0.012033 YMAV = XMAV = 0.002047 TOTAL MOVEMENT OF CENTER=

INDUCED MISALIGNMENT OF SHAFT CENTERLINE

0.0202 ANGULAR MISALIGNMENT OF CENTERLINE (DEGREES) = 0.0033 0.0004 DISPLACEMENT INPLANE (INCHES) = SLOPE (INCHES/INCH) =

0,0080 INDUCED DISPLACEMENT OF CENTERLINE AT GEAR PITCH DIAMETER (INCHESO= DISTANCE FROM END B TO PITCH DIAMETER (INCHES) = 5.8800

APPENDIX D FIN STUDY	SCIARRA, KP=29, PAGES=35, LINES=60, RUN=CHECK, LIST=SUBS	V=5 XL2=12.5 INITIALIZATION V=FT/SEC, XL2 (DISTANCE FROM CENTERLINE TO END OF FIN)=INCHES, T(FIN	T=.5) THICKNESS)=INCHES	DO 6 K=1,2 # OF THICKNESSES	DO 4 I=,21 # OF FIN LENGTHS	WRITE(6,1)V, XL2, T	I FORWAT(' V=',Fl0.1,' XL2=',Fl0.3, ' T=' Fl0.3)	XXVU=.43+.0239*(RE)**.805	H=.01565*XNU/2.	BE=2.*H/)100.*T/12.)	A=SQRT (BE) - FOR 1 FT, OTHERWISE A=SQRT (CYLINDER RADIUS*BE)	B= (XL2/12*) *A	I]=I	I0=0	CALL BESI(B, II, C, IER)	WRITE(6,2)B,II,C,IER	CALT DECL(3, T, D, TED)	CALL BESI (A, IO, E, IER)	WRITE(6,2)A, IO, E, IER	CALL BESK(A,II,F,IER)	WRITE(6'2) A, I, F, IER	CALL BESK(8, II, G, IER)	WRITE(6,2)B,II,G,IER	01=5236. #T#A IO/11/100	ANS=C+F-G+D	BOI =C+H+G+F	01=01+ans/Bot	xnum=204748./01	HT=XNUM+T/12.	WRITE(6,3) Q1, ANS, BOT, XNUM, HT	3 FORWAT(' BTU/HR=',F15.2,2X,'TOP=',E15.5,2X,'BOT=',E15.5,2X,2E15. 15)
	*JOB						-									•	•														e

V=5. — REINITIALIZE 5 XL2=XL2+.50 _ INCREMENT V=5 INCREMENT 5 T2=12.5 _ REINITIALIZE 6 T2=12.5 _ INCREMENT 5 T0P END FIGN FIGN <th></th> <th>BESI 350 I0 I0 BESEL FUNCTIONS BESI 390 I1 BESEL FUNCTIONS BESI 400 BESI 400 BESI 410 BESI 420 BESI 420 BESI 420 BESI 420 BESI 420 BESI 420 BESI 420 BESI 420 BESI 430</th> <th>BESI 440 BESI 520 BESI 530 BESI 570 BESI 580 BESI 590 BESI 600 BESI 610</th> <th>BESI 620 BESI 630 BESI 640 BESI 650 BESI 660 BESI 670 BESI 680 BESI 730 BESI 740 BESI 750 BESI 750</th> <th>BESI 770 BESI 810 BESI 850 BESI 860 BESI 890 BESI 900 BESI 910 BESI 920</th>		BESI 350 I0 I0 BESEL FUNCTIONS BESI 390 I1 BESEL FUNCTIONS BESI 400 BESI 400 BESI 410 BESI 420 BESI 420 BESI 420 BESI 420 BESI 420 BESI 420 BESI 420 BESI 420 BESI 430	BESI 440 BESI 520 BESI 530 BESI 570 BESI 580 BESI 590 BESI 600 BESI 610	BESI 620 BESI 630 BESI 640 BESI 650 BESI 660 BESI 670 BESI 680 BESI 730 BESI 740 BESI 750 BESI 750	BESI 770 BESI 810 BESI 850 BESI 860 BESI 890 BESI 900 BESI 910 BESI 920
0100400 58001004095800100409580021204595800	0 V=5 REINITIALIZE 1 5 XL2=XL2+.50 INCREMENT 2 V=5 REINITIALIZE 3 XL2=12.5 REINITIALIZE 3 XL2=12.5 INCREMENT 6 T=T+.50INCREMENT 6 END *EVENTEE *EVENTEE	TEXECUTE 17 SUBROUTINE BESI(X,N, BI,IER) 18 IER=0 19 BI=1.0 10 IF(N)150,15,10 11 IE (X)160,20,20 12 IF (X)160,17,20 13 IF (X)160,17,20 14 IF (X)160,17,20	 1 KELUKA 2 TOL=1.E-6 1 F(X-12.)40,40,30 3 IF(X-FLOAT(N))40,40,110 4 XX=X/2. 5 OTERM=1.0 1 F(N) 70,55 5 D0 60 1=1,N 5 I FI=I 	 IF (ABS (TERM) -1. E-68) 56,60,60 56 IER=3 56 IER=3 56 IER=3 56 C0 TERM=TERM*XX/FI 56 60 TERM=TERM*XX/FI 57 70 B1=TERM 58 XX=XX*XX 59 D0 90 K=1,1000 50 IF (ABS (TERM)-ABS (B1*TOL))100,100,80 72 TERM=TERM*(XX/FK) 	 90 BI=BI*TERM 100 RETURN 110 FN=4*N*N 111 FX=170.0)115,111,111 111 IER=4 111 IER=4 111 IER=4 112 X=1./(8.*X) 115 XX=1./(8.*X) 116 Y=1. 117 Y=1. 118 Y=1. 118 Y=1. 119 Y=1. 110 Y=1. 110 Y=1. 111 Y=1.<!--</th-->

190

and the second of the second of the

13 and

												Kc)	K, BESSEL FUNCTIONS	1.7																										
BESI 930 BESI 940	BESI 950	BESI 960	BESI1000	BESILO10	BESI1020	BESI1030	BESI1140	BESI1050	BESI1060	BESI1070	BESI1080	BESK 410	BESK 420	BESK 430	BESK 440	BESK 460	BESK 470	BESK 480	BESK 490	BESK 500	BESK 510	BESK 520	BESK 530	BESK 540	BESK 550	DECK 570	DESK 580	BESK 590	BESK 600	BESK 610	BESK 650	BESK 660	BESK 670	BESK 680	BESK 690	BESK /00	BESK /10	BESK 760	BESK 770	RECK 780
IF(ABS(TERM)-ABS(TOL*BI))140,140,120 120 FK=(2*K-1)**2	TERM=TERM*XX*(FK-FN)/FLOAT(K)	130 BI=BI+TERM	GO TO 40	140 PI=3.141592653	BI=BI*EXP(X)/SQRT(2.*PI*X)	GO TO 100	150 IER=1	GO TO 100	160 IER=2	GO TO 100	END	SUBROUTINE RESK(X,N,BK, IER)	DIMENSION T(12)		IU TEBEI	LO LETT DE LETT	11 IF (X) 12.12.20	12 IER=2	RETURN	20 IF (X-170.0) 22, 22, 21	21 IER=3	RETURN	22 IER=0		25 A=EXP(-X) B-1 /Y			DO 26 L=2.12	26 T(L)=T(L-1) +8	IF (N-1) 27, 29, 27	27 G0=A*(1.2533141415666418*T(1)+.088111278*T(2)091390954*T(3)	2+.13445962*T(4)22998503*T(5)+.37924097*T(6)52472773*T(7)	3+.55753684*T(8)42626329*T(9)+.21845181*T(10)066809767*T(11)	4+* 000189383*1 (17)) *C	IF (N) 20, 28, 29	Notimed Notice	20 CF13F17 F523141+ 460003704m(1) - 146660304m(2) - 140000104m(2)	29 GITM*(I.20001417.400992/0*1(I)140090900*1(2)+.12004200*1(3) 217364316*T(4)+.28476181*T(5)45943421*T(6)+.62833807*T(7)	366322954*T(8)+.50502386*T(9)25813038*T(10)+.078800012*T(11)	4- 010824177*T(12))*C
m 4	5	9	2	80	σ.	0	-	~	-				_	~ .				-	_				_		_						-				-					

-

BESK 790	. BESK 800	BESK 810	BESK 850	BESK 860	BESK 870	BESK 880	BESK 890	BESK 900	BESK 910	BESK 920	BESK 930	BESK 940	BESK 950	BESK 960	BESK 970	BESKI010	BESK1020	BESK1030	BESK1040	BESKI050	BESK1060	BESK1070	BESK1080	BESK1090	BESK1100	BESKIIIO	BESK1120	BESK1130	BESK1170	BESKI180	BESK1190	BESK1200	BESK1210	BESK1220	BESK1230	BESK1240	BESKI 250	BESK1260	BESK1270	BESK1280	BESK1290	BESK1300
IF (N-1) 20,30,31	30 BK=G1	RETURN	31 D0 35 J=2,N	GJ=2, *(FLOAT(J)-1.) *G1/X+G0	IF (GJ-1.0E70) 33, 33, 32	32 IER=4	GO TO 34	33 G0=G1	35 G1=GJ	34 BK=GJ	RETURN	36 B=X/2.	A=.57721566+ALOG(B)	C=B*B	IF (N-1) 37,43,37	37 GO=-A	X2J=1.	FACT=1.	HJ=,0	D0 40 J=1,6	RJ=1./FLOAT(J)	X2J=X2J*C	FACT=FACT*RJ*RJ	HJ=HJ=RJ	40 G0=G0=+X2J*FACT* (HF-A)	IF(N) 43, 42, 43	42 BK=G0	RETURN	43 X2J=B	FACT=1.	HJ=1.	G1=1./X+X2J*(.5+A-HJ)	D0 50 J=2,8	X2J=X2J*C	RJ=1./FLOAT(J)	FACT=FACT+RJ+RJ	HJ=HJ+RJ	50 G1=G1+X2J*FACT*(.5+(A-HJ) *FLOAT(J)	IF (N-1) 31, 52, 31	52 BK=G1	RETURN	END
122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140	141	142	143	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159	160	161	162	163	164

SAMPLE OUTPUT

5.0 XL2= 12.500 T= 0.500 V= 0.80107E 00 1 0.43353E 00 0 1 0.41365E 00 0 0 0.11534E 01 0 0.76902E 00 0.76902E 00 BESSEL FUNCTION INPUT/OUTPUT 0.76902E 00 1 0.91479E 00 0 0.80107E 00 1 0.86003E 00 0 0.76902E 00 0 0.59285E 00 0 # OF FINS HEIGHT OF FINS (FT) BTU/HR= 65.83 TOP= 0.40840E-01 BOT= 0.12490E 01 0.31102E 04 V= 10.0 XL2= 12.500 T= 0.500 0.12959E 03 0.10582E 01 1 0.60672E 00 0.10159E 01 1 0.57636E 00 0 0 0.10159E 01 0 0.12751E 01 0 0.10159E 01 1 0.58592E 00 0.10582E 01 1 0.54592E 00 0.10159E 01 0 0.41158E 00 0 0 0 BTU/HR= 114.85 TOP= 0.40844E-01 BOT= 0.94584E 00 0.17827E 04 0.74280E 02 V= 15.0 XL2= 12.500 T= 0.500 0.12455E 01 1 0.75161E 00 0.11957E 01 1 0.71127E 00 0 0 0.11957E 01 0 0.1127E 00 0.11957E 01 0 0.13907E 01 0 0.11957E 01 1 0.43751E 00 0.12455E 01 1 0.40489E 00 0 0 0.11957E 01 0 0.32037E 00 0 BTU/HR= 159.08 TOP= 0.40849E-01 BOT= 0.80387E 00 0.12871E 04 0.53630E 02 V= 20.0 XL2= 12.500 T= 0.500 0.13983E 01 1 0.88452E 00 0 0.13424E 01 1 0.83415E 00 0 0.13424E 01 0 0.15038E 01 0 0.13424E 01 1 0.34951E 00 0.13983E 01 1 0.32164E 00 0 0 0.13424E 01 0 0.26296E 00 0

 0.13424E 01
 0
 0.26296E 00
 0

 BTU/HR=
 200.44
 TOP=
 0.40853E-01
 BOT=
 0.71629E 00
 0.10205E 04
 0.42563E 02

 V=
 25.0
 XL2=
 12.500
 T=
 0.500

 0.15296E 01
 1
 0.10114E 01
 0

 0.14684E 01
 1
 0.95068E 00
 0

 0.14684E 01
 1
 0.2503E 00
 0

 0.14684E 01
 1
 0.2503E 00
 0

 0.14684E 01 1 0.29033E 00 0.15296E 01 1 0.26588E 00 0 0 0.14684E 01 0 0.22277E 00 0

 BTU/HR=
 239.79
 TOP=
 0.40857E-01
 BOT=

 V=
 30.0
 XL2=
 12.500
 T=
 0.500

 0.16460E
 01
 1
 0.11350E
 01
 0

 0.1580LE
 01
 1
 0.10637E
 01
 0

 0.65501E 00 0.85386E 03 0.35577E 02 0.15801E 01 1 0.17286E 01 0 0.15801E 01 1 0.24747E 00 0 0.16460E 01 1 0.22564E 00 0 0.15801E 01 0 0.19280E 00 0 BTU/HR= 277.62 TOP= 0.40862E-01 BOT= V= 35.0 XL2= 12.500 T= 0.500 0.60888E 00 0.73752E 03 0.30730E 02 0.17513E 01 1 0.12571E 01 0.16812E 01 1 0.11747E 01 0 0 0.16812E 01 0 0.18417E 01 0 0.16812E 01 1 0.17513E 01 1 0.21487E 00 0 0.19514E 00 0 0.16812E 01 0 0.16948E 00 0 BTU/HR= 314.21 TOP= 0.40866E-01 BOT= 0.57244E 00 0.65162E 03 0.27151E 02 V= 40.00 XL2= 12.500 T= 0.500 0.18479E 01 1 0.13786E 01 0 0.17740E 01 1 0.12848E 01 0

1

11-1 that I work and

THEORETICAL SOLUTION

A metal fin of triangular cross section is attached to a plane surface to help carry off heat from the latter. Assuming dimensions and coordinates as shown in the accompanying figure, find the steady-state temperature distribution along the fin if the root (i.e., wall) temperature is u_w and if the fin radiates freely into air of constant temperature u_{ar} .

We shall base our analysis upon a unit length of the fin, and shall assume that the fin is so thin that temperature variations parallel to the base can be neglected. We also assume that θ is so small that $\cos \theta$ may be replaced by 1.

Now consider the heat balance in the element of the fin between x and $x + \Delta x$. This element gains heat by internal flow through its right face and loses heat by internal flow through its left face and by radiation through its upper and lower

surfaces. Through the right face the gain of heat per unit time is

Area X thermal conductivity X temperature gradient

$$= \left[\left(1 \times \frac{bx}{a} \right) (k) \left(\frac{du}{dx} \right) \right]_{x + \Delta x} = \left[\frac{bkx}{a} \frac{du}{dx} \right]_{x + \Delta x}$$

Through the left face the element loses heat at the rate

$$\left[\frac{bkx}{a}\frac{du}{dx}\right]x$$

Tarough the surfa ... exposed to the air the element loses heat at the rate

Area X outer conductivity X (surface temperature - air temperature)

$$= \left(2 \times 1 \frac{\Delta x}{\cos \theta}\right) (h)(u - u_a) = 2h(u - u_a)\Delta x$$

Under steady-state conditions the rate of gain of heat must equal the rate of loss, and thus we have

$$\left[\frac{bkx}{a}\frac{du}{dx}\right]_{x+\Delta x} = \left[\frac{bkx}{a}\frac{du}{dx}\right]_{x} + 2h (u - u_{a})\Delta x$$

Writing this as

$$\frac{x\frac{du}{dx}}{\Delta x} \frac{x+\Delta x}{\Delta x} - \frac{x\frac{du}{dx}}{x} - \frac{2ah}{bk}(u-u_a) = 0$$

and letting $\Delta x \rightarrow 0$, we obtain the differential equation

$$\frac{d(xu')}{dx} - \frac{2ah}{bk}(u-u_a) = 0$$

If we set

$$U = u - u_a$$
 and $\alpha^2 = \frac{2ah}{bk}$

this becomes

$$\frac{d(xU')}{dx} \qquad \alpha^2 U = 0$$

The general solution of this, according to the theory of Sec. 8.3, is

$$U = u - u_a = c_1 J_0(2\alpha i \sqrt{x}) + c_2 Y_0(2\alpha i \sqrt{x})$$

or, using the modified Bessel functions,

$$u - u_a = c_3 I_0 (2\alpha \sqrt{x}) + c_4 K_0 (2\alpha \sqrt{x})$$

Since $K_0(2\alpha x)$ is infinite when $x = 0, c_4$ must be zero, leaving

$$u-u_a=c_3I_0(2\alpha\sqrt{x})$$

When x = a, $u = u_{W}$, and thus

$$u_w - u_a = c_3 I_0(2\alpha \quad a)$$
 or $c_3 = \frac{u_w - u_a}{I_0(2\alpha \quad a)}$

Therefore

$$u = u_a + (u_w - u_a) \frac{I_0(2\alpha - x)}{I_0(2\alpha - a)}$$

-

JANUARY 21, 1976 NASTRAN 2/1/73 PAGE 1

NASTRAN EXECUTIVE CONTROL DECK ECHO

HEAT, FLOW ID HEAT APP SOL 1.0 TIME 5 CEND

COOLING FIN

JANUARY 21, 1976 NASTRAN 2/1/73 PAGE 2

-

CASE CONTROL DECK ECHO

CARD COUNT

- TITLE#COOLING FIN 1
- OUTPUT 2
- 3 THE RMAL#ALL
- 4 ELFORCE #ALL
- SPCF#ALL 5
- 6 SUBCASE 1 LABEL #TEMPERATURE SPECIFIED 7
- 8 SPC#100 SUBCASE 2 9
- LABEL#HEAT INPUT AT ROOT 10
 - LOAD#10
- 11 12 SPC#7
- 13 SUBCASE 3
- 14 LABEL#TEMPERATURE SPECIFIED AND HEAT INPUT AT ROOT
- 15 LOAD#10
- 16 SPC#100
- 17 BEGIN BULK

JANUARY 21, 1976 NASTRAN 2/1/73 PAGE 3

COOLING FIN

CARD																	
COUNT	. 1		2		3	4		5		6		7		8		9	10
1-	CHBDY	101		200		AREA4	1		5		7		2				&CH1
2-	&CH1	101		105		107	102										
3-	CHBDY	102		200		AREA4	2		7		9		3				&CH2
4-	&CH2	102		107		109	103										
5-	CHBDY	103		200		AREA4	1		4		6		2				&CH3
6-	&CH3	101		104		106	102										
7-	CHBDY	104		200		AREA4	2		6		8		3				&CH4
8-	&CH4	102		106		108	103										
9-	CHBDY	105		200		AREA4	5		11		13		7				&CH8
10-	&CH8	105		111		113	107										
11-	CHBDY	106		200		AREA4	7		13		15		9				&CH7
12-	&CH7	107		113		115	109										
13-	CHBDY	107		200		AREA4	4		10		12		6				&CH5
14-	&CH5	104		110		112	106										
15-	CHBDY	108		200		AREA4	6		12		14		8				&CH6
16-	&CH6	106		112		114	108										
17-	CHEXA2	201		1		10	12		13		11		4		6		&E201
18-	&E201	7		5													
19-	CHEXA2	202		1		12	14		15		13		6		8		&E202
20-	&E202	9		7													
21-	CWEDGE	301		1		1	5		4		2		7		6		
22-	CWEDGE	302		1		3	8		9		2		6		7		
23-	GRID	1				0.0	2.		.2								
24-	GRID	2				1.	2.		.2								
25-	GRID	3				2.	2.		.2								
26-	GRID	4				0.0	1.		.1								
27-	GRID	5				0.0	1.		.3								
28-	GRID	6				1.	1.		.1								
29-	GRID	7				1.	1.		.3								
30-	GRID	8				2.	1.		.1								
31-	GRID	9				2.	1.		.3								
32-	GRID	10				0.0	0.0		.0								
33-	GRID	11				0.0	0.0		.4								
34-	GRID	12				1.	0.0		.0								
35-	GRID	13				1.	0.0		.4								
36-	GRID	14				2.	0.0		.0								
37-	GRID	15				2.	0.0		.4								
38-	GRID	101				0.0	2.		.2								
39-	GRID	102				1.	2.		.2								
40-	GRID	103				2.	2.		.2								
41-	GRID	104				0.0	1.		.1								
42-	GRID	105				0.0	1.		.3								
43-	GRID	106				1.	1.		.1								
44-	GRID	107				1.	1.		.3								
45-	GRID	108				2.	1.		.1								
46-	GRID	109				2.	1.		.3								
47-	GRID	110				0.0	0.0		.0								
48-	GRID	111				0.0	0.0		.4								
49-	GRID	112				1.	0.0		0.0	1							
50-	CRTD	112				1	0.0		4								

JANUARY 21, 1976 NASTRAN 2/ 1/73 PAGE 4

many and many many many many the second the

.

CARD COUNT . 1 1 . 1 . 10 51- GRID 114 2. 0.0 0.0 . . 10 12 . 10 12 11 . 10 12 . 10 12 . 10 . . . 10 10 . <				s o	RTED	вu	LK DA	ТА	ЕСНО		
COUNT . 1 2 3 4 5 6 7 8 9 10 51- GRID 114 2. 0.0 0.0 8 9 10 52- GRID 115 2. 0.0 .4 5 1 10 12 13 11 10 12 13 11 <td>CARD</td> <td></td>	CARD										
51- GRID 114 2. 0.0 0.0 52- GRID 115 2. 0.0 .4 53- MAT4 1 7.6 54- MAT4 2 2. 55- PHBDY 200 2 56- QHBDY 10 AREA4 1.063 10 12 13 11 57- QHBY 10 AREA4 1.063 12 14 15 13 58- SPC 7 101 70. 60- SPC 7 103 70. 61- SPC 7 104 70. 62- SPC 7 106 70. 64- SPC 7 107 70. 65- SPC 7 110 <	COUNT	. 1	2	3	4		5 6		7 8	9	10 .
52- GRID 115 2. 0.0 .4 53- MAT4 1 7.6	51-	GRID	114		2.	0.0	0.0				
53- MAT4 1 7.6 54- MAT4 2 2. 55- PHBDY 200 2 56- QHBDY 10 AREA4 1.06.3 10 12 13 11 57- QHBDY 10 AREA4 1.06.3 12 14 15 13 56- QHBDY 10 AREA4 1.06.3 12 14 15 13 58- SPC 7 101 70.	52-	GRID	115		2.	0.0	.4				
54- MAT4 2 2. 55- PHBDY 200 2 56- QHBDY 10 AREA4 1.063 10 12 13 11 57- QHBDY 10 AREA4 1.063 12 14 15 13 58- SPC 7 101 70. 59- 59C 7 103 70. 60- SPC 7 103 70. 59- 59C 7 103 70. 61- SPC 7 104 70. 59- 59C 7 105 70. 61- SPC 7 106 70. 59-	53-	MAT4	1	7.6							
55- PHBDY 200 2 56- QHBDY 10 AREA4 1.063 10 12 13 11 57- QHBDY 10 AREA4 1.063 12 14 15 13 58- SPC 7 101 70. 12 14 15 13 59- SPC 7 102 70. 10 60- 10 10 10 10 60- SPC 7 103 70. 10 60- 10	54-	MAT4	2	2.							
56- QHBDY 10 AREA4 1.0&3 10 12 13 11 57- QHBDY 10 AREA4 1.0&3 12 14 15 13 58- SPC 7 101 70. 12 14 15 13 58- SPC 7 102 70. 12 14 15 13 59- SPC 7 102 70. 14 15 13 60- SPC 7 103 70. 105 10. 14 15 13 61- SPC 7 103 70. 10. 10. 10. 11 14 15 13 62- SPC 7 104 70. 11. 10. 11 14 11 1	55-	PHBDY	200	2							
57- QHBDY 10 AREA4 1.0&3 12 14 15 13 58- SPC 7 101 70. 59- SPC 7 102 70. 60- SPC 7 103 70. 59- <td>56-</td> <td>QHBDY</td> <td>10</td> <td>AREA4</td> <td>1.0&3</td> <td></td> <td>10</td> <td>12</td> <td>13</td> <td>11</td> <td></td>	56-	QHBDY	10	AREA4	1.0&3		10	12	13	11	
58- SPC 7 101 70. 59- SPC 7 102 70. 60- SPC 7 103 70. 61- SPC 7 104 70. 62- SPC 7 104 70. 63- SPC 7 106 70. 63- SPC 7 106 70. 64- SPC 7 107 70. 65- SPC 7 109 70. 66- SPC 7 110 70. 67- SPC 7 110 70. 67- SPC 7 110 70. 67- SPC 7 111 70. 68- SPC 7 112 70. 70- SPC 7 113 70. 71- SPC 7 115 70. 72- SPC 70 10 1 400. 74- SPC 70 12 1 40	57-	QHBDY	10	AREA4	1.0&3		12	14	15	13	
59-SPC710270.60-SPC710370.61-SPC710470.62-SPC710570.63-SPC710670.64-SPC710770.65-SPC710870.66-SPC710970.67-SPC711070.68-SPC711170.69-SPC711270.70-SPC711370.71-SPC711470.72-SPC711570.73-SPC70101400.74-SPC70121400.75-SPC70141400.	58-	SPC	7	101		70.					
60- SPC 7 103 70. 61- SPC 7 104 70. 62- SPC 7 105 70. 63- SPC 7 106 70. 63- SPC 7 106 70. 64- SPC 7 107 70. 65- SPC 7 108 70. 66- SPC 7 109 70. 67- SPC 7 110 70. 68- SPC 7 111 70. 69- SPC 7 112 70. 70- SPC 7 113 70. 71- SPC 7 114 70. 72- SPC 7 115 70. 71- SPC 7 115 70. 73- SPC 70 10 1 400. 11 400. 74- SPC 70 12 1 400. 15 1 400.	59-	SPC	7	102		70.					
61- SPC 7 104 70. 62- SPC 7 105 70. 63- SPC 7 106 70. 64- SPC 7 107 70. 65- SPC 7 108 70. 65- SPC 7 108 70. 66- SPC 7 109 70. 67- SPC 7 110 70. 68- SPC 7 111 70. 69- SPC 7 112 70. 70- SPC 7 113 70. 71- SPC 7 114 70. 72- SPC 7 114 70. 72- SPC 7 115 70. 73- SPC 70 10 1 400. 74- SPC 70 12 1 400. 15 1 400.	60-	SPC	7	103		70.					
62-SPC710570. $63-$ SPC710670. $64-$ SPC710770. $65-$ SPC710870. $66-$ SPC710970. $67-$ SPC711070. $68-$ SPC711170. $69-$ SPC711270. $70-$ SPC711370. $71-$ SPC711470. $72-$ SPC711570. $73-$ SPC70101400. $74-$ SPC70121400. $75-$ SPC70141400.	61-	SPC	7	104		70.					
63- SPC 7 106 70. 64- SPC 7 107 70. 65- SPC 7 108 70. 66- SPC 7 109 70. 67- SPC 7 109 70. 67- SPC 7 110 70. 68- SPC 7 111 70. 69- SPC 7 112 70. 70- SPC 7 113 70. 71- SPC 7 114 70. 72- SPC 7 115 70. 73- SPC 70 10 1 400. 74- SPC 70 12 1 400. 13 1 400. 75- SPC 70 14 1 400. 15 1 400.	62-	SPC	7	105		70.					
64- SPC 7 107 70. 65- SPC 7 108 70. 66- SPC 7 109 70. 67- SPC 7 110 70. 68- SPC 7 111 70. 69- SPC 7 112 70. 70- SPC 7 113 70. 71- SPC 7 113 70. 71- SPC 7 114 70. 72- SPC 7 115 70. 73- SPC 70 10 1 400. 74- SPC 70 12 1 400. 13 1 400. 75- SPC 70 14 1 400. 15 1 400.	63-	SPC	7	106		70.					
65- SPC 7 108 70. 66- SPC 7 109 70. 67- SPC 7 110 70. 68- SPC 7 111 70. 69- SPC 7 112 70. 70- SPC 7 113 70. 71- SPC 7 113 70. 72- SPC 7 114 70. 72- SPC 7 115 70. 73- SPC 70 10 1 400. 11 400. 74- SPC 70 12 1 400. 13 1 400. 75- SPC 70 14 1 400. 15 1 400.	64-	SPC	7	107		70.					
66- SPC 7 109 70. 67- SPC 7 110 70. 68- SPC 7 111 70. 69- SPC 7 112 70. 70- SPC 7 113 70. 71- SPC 7 113 70. 72- SPC 7 114 70. 73- SPC 7 115 70. 73- SPC 70 10 1 400. 11 400. 74- SPC 70 12 1 400. 13 1 400. 75- SPC 70 14 1 400. 15 1 400.	65-	SPC	7	108		70.					
67- SPC 7 110 70. 68- SPC 7 111 70. 69- SPC 7 112 70. 70- SPC 7 113 70. 71- SPC 7 114 70. 72- SPC 7 115 70. 73- SPC 70 10 1 400. 11 400. 74- SPC 70 12 1 400. 13 1 400. 75- SPC 70 14 1 400. 15 1 400.	66-	SPC	7	109		70.					
68- SPC 7 111 70. 69- SPC 7 112 70. 70- SPC 7 113 70. 71- SPC 7 114 70. 72- SPC 7 115 70. 73- SPC 70 10 1 400. 74- SPC 70 12 1 400. 13 1 400. 75- SPC 70 14 1 400. 15 1 400.	67-	SPC	7	110		70.					
69- SPC 7 112 70. 70- SPC 7 113 70. 71- SPC 7 114 70. 72- SPC 7 115 70. 73- SPC 70 10 1 400. 74- SPC 70 12 1 400. 13 1 400. 75- SPC 70 14 1 400. 15 1 400.	68-	SPC	7	111		70.					
70- SPC 7 113 70. 71- SPC 7 114 70. 72- SPC 7 115 70. 73- SPC 70 10 1 400. 11 1 400. 74- SPC 70 12 1 400. 13 1 400. 75- SPC 70 14 1 400. 15 1 400.	69-	SPC	7	112		70.					
71- SPC 7 114 70. 72- SPC 7 115 70. 73- SPC 70 10 1 400. 11 1 400. 74- SPC 70 12 1 400. 13 1 400. 75- SPC 70 14 1 400. 15 1 400.	70-	SPC	7	113		70.					
72- SPC 7 115 70. 73- SPC 70 10 1 400. 11 1 400. 74- SPC 70 12 1 400. 13 1 400. 75- SPC 70 14 1 400. 15 1 400.	71-	SPC	7	114		70.					
73- SPC 70 10 1 400. 11 1 400. 74- SPC 70 12 1 400. 13 1 400. 75- SPC 70 14 1 400. 15 1 400.	72-	SPC	7	115		70.					
74- SPC 70 12 1 400. 13 1 400. 75- SPC 70 14 1 400. 15 1 400.	73-	SPC	70	10	1	400.	11	1	400.		
75- SPC 70 14 1 400. 15 1 400.	74-	SPC	70	12	1	400.	13	1	400.		
	75-	SPC	70	14	1	400.	15	1	400.		
76- SPCADD 100 7 70	76-	SPCADD	100	7	70						

NO ERRORS FOUND - EXECUTE NASTRAN PROGRAM

***USER	INFORMATION	MESSAGE	3023,	В	#	8
				С	#	0
				R	#	7

***USER INFORMATION MESSAGE 3027, SYMMETRIC REAL DECOMPOSITION TIME ESTIMATE IS 0 SECONDS.

***USER INFORMATION MESSAGE 3035

TEMPERATURE SPECIFIED

JANUARY 21, 1976 NASTRAN 2/1/73

SUBCASE 1

PAGE 5

TEMPERATURE VECTOR

ID&5 VALUE	1.643016E 02	4.000000E 02		7.000000E 01	7.000000E 01	
ID64 VALUE	1.621151E 02	4.000000E 02		7.000000E 01	7.000000E 01	
ID&3 VALUE	1.628307E 02	4.000000E 02		7.000000E 01	7.000000E 01	
ID&2 VALUE	8.183005E 01	1.628307E 02	4.000000E 02	7.000000E 01	7.000000E 01	7.000000E 01
ID&I VALUE	6.367873E 01	1.621151E 02	4.000000E 02	7.000000E 01	7.000000E 01	7.000000E 01
ID VALUE	8.183005E 01	1.643016E 02	4.000000E 02	7.000000E 01	7.000000E 01	7.000000E 01
TYPE	s	s	s	s	s	S
OINT ID.	1	2	13	101	107	113

COOLING FIN

HEAT INFUT AT ROOT

TEMPERATURE VECTOR

SUBCASE 2

PAGE 6

JANUARY 21, 1976 NASTRAN 2/1/73

	5	2		1	1		
ID&5 VALUE	1.063039E 0	1.967352E 0		7.000000E 0.	7.000000E 0		
ID&4 VALUE	1.051158E 02	1.960978E 02		7.000000E 01	7.000000E 01		
ID&3 VALUE	1.053896E 02	1.960730E 02		7.000000E 01	7.000000E 01		
ID&2 VALUE	7.446457E 01	1.053896E 02	1.960730E 02	7.000000E 01	7.000000E 01	7.000000E 01	
ID&I VALUE	6.761646E 01	1.051158E 02	1.960978E 02	7.000000E 01	7.000000E 01	7.000000E 01	
ID VALUE	7.446457E 01	1.063039E 02	1.967352E 02	7.000000E 01	7.000000E 01	7.000000E 01	
TYPE	s	s	s	s	s	s	
OINT ID.	1	1	13	101	107	113	

COOLING FIN

TEMPERATURE SPECIFIED AND HEAT INPUT AT ROOT

TEMPERATURE VECTOR

SUBCASE 3

PAGE 7

JANUARY 21, 1976 NASTRAN 2/1/73

ID&5 VALUE	1.643016E 02	4.000000E 02		7.000000E 01	7.000000E 01	
ID&4 VALUE	1.621151E 02	4.000000E 02		7.000000E 01	7.000000E 01	
ID&3 VALUE	1.628307E 02	4.000000E 02		7.000000E 01	7.000000E 01	
ID&2 VALUE	8.183005E 01	1.628307E 02	4.000000E 02	7.000000E 01	7.000000E 01	7.000000E 01
ID&1 VALUE	6.367873E 01	1.621151E 02	4.000000E 02	7.000000E 01	7.000000E 01	7.000000E 01
ID VALUE	8.183005E 01	1.643016E 02	4.000000E 02	7.000000E 01	7.000000E 01	7.000000E 01
TYPE	S	S	s	s	s	S
POINT ID.	٦	1	13	101	107	113

-

JANUARY 21, 1976 NASTRAN 2/1/73 PAGE 8

CONSTRAINT

SUBCASE 1

TEMPERATURE SPECIFIED FORCES OF SINGLE-POINT

2.634587E 02 -2.372213E 02 -2.523816E 02 ID&5 VALUE ID&4 VALUE 2.629077E 02 -1.178183E 02 -1.261608E 02 ID&3 VALUE 5.178735E 02 -1.181779E 02 -1.262208E 02 ID&2 VALUE 5.178735E 02 -3.617007E 01 -1.181779E 02 -1.262208E 02 ID&1 VALUE 2.629077E 02 -6.017391E 01 -1.178183E 02 -1.261608E 02 ID VALUE -2.634587E 02 -3.617007E 01 -2.372213E 02 -2.523816E 02 TYPE S S S S POINT ID. 10 101 107 113

COOLING FIN

JANUARY 21, 1976 NASTRAN 2/1/73 PAGE 9

SUBCASE 2

HEAT INPUT AT ROOT

FORCES OF SINGLE - POINT CONSTRAINT

JE ID&5 VALUE	E 01 -9.098994E	5 01 -9.678828E	
ID&4 VALU	-4.507506E	-4.827695E	
ID&3 VALUE	-4.521060E 01	-4.829364E 01	
ID&2 VALUE	-1.382976E 01	-4.521060E 01	-4.829364E 01
ID&I VALUE	-2.307132E 01	-4.507506E 01	-4.827695E 01
D VALUE	382976E 01	.098994E 01	.678828E 01
TYPE I	s -1	s-9	5- S
POINT ID.	101	107	113

COOLING FIN

TEMPERATURE SPECIFIED AND HEAT INPUT AT ROOT

FORCES OF SINGLE - POINT CONSTRAINT

SUBCASE 3

PAGE 10

JANUARY 21, 1976 NASTRAN 2/1/73

POINT ID.	TYPE	8	VALUE	ID&I VALUE	ID&2 VALUE	ID&3 VALUE	ID&4 VALUE	ID&5 VALUE
10	s	1.63	34588E 02	1.629078E 02	3.178735E 02	3.178735E 02	1.629079E 02	1.634588E 02
101	s	-3.61	17007E 01	-6.017891E 01	-3.617007E 01	-1.181779E 02	-1.178183E 02	-2.372213E 02
107	s	-2.37	72213E 02	-1.178183E 02	-1.181779E 02	-1.262208E 02	-1.261608E 02	-2.523816E 02
113	s	-2.52	23816E 02	-1.261608E 02	-1.262208E 02			

-

JANUARY 21, 1976 NASTRAN 2/1/73 PAGE 13

SUBCASE 1

TEMPERATURE SPECIFIED

Z-FLOW HEAT FLOWS Y-FLOW Δ -4.256780E (-4.256780E (-4.253181E (ELEMENT TEMPERATURE GRADIENTS AN -9.680086E -9.644125E -9.680086E -9.644125E -4.253181E X-FLOW Z-GRADIENT Y-GRADIENT 4.798138E 01 4.816029E 01 4.816029E 01 4.798138E 01 2.116040E 02 2.116040E 02 2.117830E 02 2.117830E 02 2.117830E 02 2.116040E 02 X-GRADIENT INITE EL-TYPE HBDY HBDY HBDY HBDY HBDY HBDY HBDY 54 101 102 103 104 105 105 ELEMENT-ID

COOLING FIN

JANUARY 21, 1976 NASTRAN 2/1/73 PAGE 16

2

SUBCASE

-FLOW

HEAT INPUT AT ROOT

FLOWS HEAT Q AN GRADIENTS FINITE ELEMENT TEMPERATURE

ELEMENT-ID	EL-TYPE	X-GRADIENT	Y-GRADIENT	Z-GRADIENT	X-FLOW	Y-FLOW	2
101	HBDY	1.837518E 01			-3.693361E 01		
102	HBDY	1.844365E 01			-3.707123E 01		
103	HBDY	1.844365E 01			-3.707123E 01		
104	HBDY	1.837518E 01			-3.693361E 01		
105	HBDY	8.106319E 01			-1.629348E 02		
106	HBDY	8.112543E 01			-1.630599E 02		
107	HBDY	8.112543E 01			-1.630599E 02		
108	HBDY	8.106319E 01			-1.629348E 02		

COOLING FIN

TEMPERATURE SPECIFIED AND HEAT INPUT AT ROOT

NASTRAN 2/1/73 PAGE 19 21, 1976 JANUARY

INITE

-

SUBCASE 3

FLOWS

H

Ω

z

Z-FLOW

Y-FLOW EAT 01 01 02 02 02 02 02 -9.644125E -9.644125E -9.680086E -9.680086E X-FLOW A S ELEMENT TEMPERATURE GRADIENT Z-GRADIENT Y-GRADIENT X-GRADIENT 4.798138E 01 4.816029E 01 4.816029E 01 4.7798138E 01 4.7798138E 01 2.116040E 02 2.117830E 02 2.117830E 02 2.1117830E 02 2.1116040E 02 101 102 103 104 105 105 107 ELEMENT-ID

-4.253181E 0 -4.256780E 0 -4.256780E 0 -4.255780E 0

APPENDIX E

CH-47C FORWARD TRANSMISSION

BEARING NUMBERING SYSTEM CONVENTION AND LOADS

This appendix gives the bearing numbering system convention and loads for the CH-47C forward transmission. Figure E-1 shows the forward rotor hub loads converted to bearing loads.

Figure E-1. Forward Transmission CH-47C Hub Loads Converted to Bearing Loads.

Hub loads are converted to bearing loads and applied to the transmission.

1. Cover, Ring and Transmission Case, Cases 3, 4, 5, and 6.

2. Transmission Case Only, 3 Per Rev (Cases 1 and 2).

LOADS ON COVER S-70 SIGN CONVENTION

COVER

2	ROLLER	FX	FY	FZ	M _X	м _Y	
Case	3	7479.	1918.5	0.	-11.5	45.584	1 - g
	4	130420.	4746.7	0.	-35.3	1158.3	Symmetric Dive and Pullout, Noseup Pitching
	5	0.	-11511.	0.	102.	0.	Yawing
	6	-45960.	-50717.	0.	446.7	-408.7	Recovery From Rolling Pullout (cc)
		$-\mathbf{F}_{\mathbf{Z}}$	-F _Y	F _X	Mz	-M _Y	
1	BALL						
Case	3	-7222.7	-1621.5	25038.	-5851.5	25766.	
	4	-106100.	-3018.8	97282.	-11006.	381890.	
	5	0.	22536.	64855.	87003.	0.	
	6	38390.	41421.	54066.	146850.	-136000.	

9 ROLLER	Fx	FY	FZ	м _х	My	
100% TORQUE	-5802.4	+7082.9	0.	-27.757	-30.377	Z
Case 1 3C	-59.8	73.	0.	3	3	1
2 35	-9.9	12.	0.	05	05	x
3	-4471.3	5458.	0.	21.4	-23.4	× /
4	-13055.	15936.	0.	62.4	-68.3	\checkmark
5	-10880.	13280.	0.	52.0	-57.	SHAFT
6	-8703.6	10624.	1	41.6	-45.6	SYSTEM
	-F _Z	Fy	Fx	Mz	-M _Y	
	After	changing	S-04 si	igns.		
D BALL (Upper)						
100% TORQUE	+52.220	+2349.7	2364.0	2457.3	-124.05	
Case 1 3C	.54	24.2	24.3	25.3	-1.3	
2 3S	.09	4.0	4.02	4.2	2	
3	40.2	1810.7	1821.7	1893.6	-95.6	
4	117.5	5286.8	5319.	5528.9	-279.1	
5	97.9	4405.7	4432.	4607.4	-232.6	
6	78.3	3524.5	3546.	3686.	-186.1	
<pre> (1) BALL (Lower) </pre>						
100% TORQUE	-12.942	68.971	63.020	-67.641	-15.741	57
Case 1 3C	13	.71	.65	7	16	
2 35	02	.11	.11	11	03	
3	-10.	53.1	48.6	-52.1	-12.13	
4	-29.1	155.2	141.8	-152.2	-35.42	
5	-24.2	129.3	118.2	-126.8	-29.51	
6	-19.4	103.4	94.5	-101.5	-23.6	

SHAFT SYSTEM LOADS ON CASE

SUN GEAR

13 ROI	LLER	Fx	^F Y	$\mathbf{F}_{\mathbf{Z}}$	MZ	м _Y	escroe (G
100% TC	ORQUE	0.	-12826.	1187.	336.07	51.847	Z
Case 1		0.	-132.	12.2	3.5	.53	1
2		0.	-21.8	2.02	.6	.09	x
3		0.	-9884.	914.7	259.	40.	Y
4		0.	-28860.	2670.8	756.	116.6	
5		0.	-24050.	2225.6	630.	97.2	SHAFT
6		0.	-19240.	1780.5	504.1	77.8	SYSTEM
		-F _X	-Fy	-F _Z	+M _Z	-M _Y	
14 bai	LL						
100% TC	ORQUE	-61.523	0.	0.	36.355	10.315	
Case 1		63	0.	0.	.37	.11	
2		10	0.	0.	.06	.018	
3		-47.4	0.	0.	28.	8.0	
4		-138.4	0.	0.	81.8	23.2	
5		-115.4	0.	0.	68.2	19.3	
6		-92.3	0.	0.	54.5	15.5	
(15) BAI	LL						
100% TC	ORQUE	6111.5	0.	0.	1260.0	359.48	
Case 1		63.	0.	0.	13.	3.7	
2		10.4	0.	0.	2.1	.61	
3		4709.	0.	0.	970.9	277.	
4		13750.	0.	0.	2835.	808.8	
5		11460.	0.	0.	2362.	674.	
6		9167.	0.	0.	1890.	539.	1

SHAFT SYSTEM LOADS ON CASE

PINION

11 2 2 4

16 ROLLER	F _X	Fy	FZ	MZ	м _ұ	
100% TORQUE	0.	3325.	-2558.	122.50	70.313	
Case 1	0.	34.2	-26.3	1.3	.724	
2	0.	5.6	-4.3	.2	.12	
3	0.	2562.	-1971.	94.4	54.2	
4	0.	7481.	-5756.	275.6	158.2	
5	0.	6234.	-4796.	229.7	131.8	
6	0.	4987.	-3837.	183.8	105.4	

SHAFT SYSTEM LOADS ON CASE

PINION

Hay and a starter

APPENDIX F UPPER COVER S-83

TABLE F-1.ORIGINAL UPPER COVER S-83 OUTPUT INCLUDING
PRINCIPLE STRESSESOriginal 145.16 Lb

			STRAIN D	ENSITY
ELEMENT	PRINCI	AL STRESSES	STRAIN DENSI	TY
ID	MAJOR	MINOR		
			CTRIAZ'S	ORDER
				NUMBER
6010	0.1929363E 05 -	.6726012E 04	0.237423E	02 14
6017	0.1991434E 05 -	3359676E 04	0.214135E	02 16
6016	0.1974698E 05 -	-3229855E 04	0.209637E	02 17
5020	0.1775009E 05 -	2069270E 04	0.163002E	02 20
51	0.1103957F 05 -	1075971E 05	0.148515E	02 22
53	0.1371005E 05 -	.5616359F 04	0.127445E	02 17
5018	0.16457835 05 (.6583102E 04	0.117373E	02
5016	0.1188723E 05 -	.5525008E 04	0.101371E	02
6018	0.14822905 05 0	.5492383F 04	0.947626E	01
5022	0.25916765 04 -	1297479E 05	0.933707F	01
52	9186133F 03 -	1425274F 05	0.9323885	01
5021	0.8909863F 04 -	-7739383E 04	0. 868484F	01
321	0.1038435E 05 ·	-5922156F 04	0.863536F	01
4010	0.2555133F 04 -	1244055F 05	0.862681F	01
5005	0.1034370F 05	-5340793F 04	0.809730F	01
50	0.50098245 04	- 6059434E 04	0.7238825	01
4017	- 1541250E 03	1153795E 05	0.6297455	01
5017	0 11854575 05	27846055 04	0.6201456	01
24	0 11444715 05	5421707E 03	0.0000021	
20	0.11440715 05 0	11400005 05	0.6062635	01
0005	405/36/2 04 -	11102645 05	0.5/90/82	
305	5559152E 04 -	-11192302 05	0.5581302	
4010	0.18625395 03	-1045707E_05	0.548150E	01
320	0.108/4/95 05 0	-5804180E 03	0.5459675	01
322	0.3665918= 04 -	.8474012E 04	0.498397E	01
41	0.10620325 05 0	0.1699746E 04	0.497133E	01
6011	6968164E 03 -	1007954E 05	0.465205E	01
5011	0.7153555E 04 -	-4701324F 04	0.449025E	01
56	0.9766148F 04 0	0.10947115 04	0.428067E	01
59	0.89837195 04 0	.63463285 03	0.369269E	01
25	0.7C79301E 04 -	3410879F 04	0.365915E	01
58	0.8966762E 04 0	0.1116159E 04	0.359016E	01
310	0. E473172E C4 -	3258750E 03	0.350603E	01
42	0.5892863E 04 -	.4609344E 04	0.347373E	01
38	0.6592012E 04 -	3457495E 04	0.331684F	01
501C	0.6704359F 04 -	3218500E 04	0.327587F	01
4018	1540317E 04 -	.8464039F 04	0.313639E	01
317	0.7650547E 04 0	.1121319E 04	0.259174E	01
44	0.72267665 04 0	.3475788E 04	0.231467E	01
29	0.62616055 04 -	.1516281E 04	0.225908E	01
318	0.67151455 04 0	.4630820F 04	0.224296E	01
4011	0.60306565 C4 -	.1833245E 04	0.222092E	01
316	0.67030045 04 (.4199781E 04	0.2141625	01
6015	0.6835988E 04 (.21235095 04	0.2007975	01
805	0.1724153E C4 -	. 5739316F 04	0.200462E	01
803	0.65979885 04 0	.3736415E 04	0.200410E	01
311	3485824E 04 -	.6646590E 04	0.199274E	01
4005	0.6748668E 04 (.2173870E 04	0.195719E	01
315	0.58626918 04 0	.4862328E 04	0.191414E	01
49	0.56924065 04 -	.1081181E 04	0.178186E	01
47	0.6223191E 04 0	.6351509E 03	0.174577E	01
5014	0. 6263949E 04	.1902500E 04	0.1686115	01
43	0.4938375E 04 -	.2046125E 04	0.166140E	01
54	0.41471917 04 -	-2748627E 04	0-151803F	01
27	0.83524125 03 -	- 52966685 04	0.150082F	01

			STRAIN DENSIT	~
ELEMENT	PRINC	IPAL STRESSES	STRAIN DENSITY	•
ID	MAJOR	MINOR	CTRIA2	
6010	0.1236197E 05	4846574E 04	0.101787E 02	
6018	0.1522380F 05	0.3706184F 04	0.100112E 02	
5018	0.1460096E 05	0.5791551E 04	0.923232F 11	
5016	0.1093799E 05	5441570F 04	0.887858E 01	
5020	0.1143777F 05	3987061F 04	0.834387E 01	
6016	0.1186350F 05	2392672E 04	7.7819455 1	
6317	0.1247090E 05	4167932E 03	0.756884E 01	
4010	0.3317330E 04	1055119E 05	0.6867075 01	
5022	0.3035895F 04	1053075E 05	0.6671175 01	
4^17	2714^63F 03	1148384F 05	0.6190685 01	
321	0.8583773E 04	4761949F 04	0.5804975 01	
51	0.7533613F 04	53507115 04	0.5265685 01	
5005	1.7266691E 14	4879516F ^4	0.470360F 01	
4016	0.4418789E 03	9495762E 04	0.442796E 01	
305	4996363F 04	9563023E 04	0.4121545 01	
5021	0.4699344F C4	6427461F "4	391781 51	
5211	3.67683525 34	4239629E 04	0.389141F 01	
26	J.4203598F 04	J.8969414F 93	J. 3841J4- J1	
5017	0.9166375E 04	0.80181256 03	0.3812945 11	
23.	J. 8689625F J4	5321230E 03	0.3746795 01	
320	0.89983285 04	0.5498516E 03	3.3722855 31	
322	0.31995295 04	/0021024 04	0.3488985 1	
5010	0 73305515 04	7 3 3 3 4 3 6 3 3	3.3202135 31	
3010	2 47934735 04	- 20239576 04	0.3169375 01	
56	0 82205005 04	0 43960735 03	0.3126725 11	
52	1.1983789F 04	- 7241656F 04	0-3112176 01	
44	2.83757895 24	1.3939224F 04	0-309762F 01	
41	0.81558555 04	C.1956995F C4	0.287487F 11	
6211	8183811E 23	7971926F 24	0.286398F 01	
6005	3227536F 04	7754586F 04	0.2614665 01	
58	0.7470883F 04	0.8660132E 03	0.2500975 01	
4718	15915115 34	7467382F 34	0.242203E 01	
29	0.66125865 04	1179699F 04	0.238064F 01	
59	0.70512385 04	0.6109241F 03	0.225718E 01	
25	1.5352754E 14	2916354E ^4	0.223398F 01	
317	0.6891234E 04	0.7669395F 03	0.213710E 01	
4011	0.56475515 04	1422088E 04	0.1854135 01	
4075_	0.6370203E 04	0.3452069E 04	0.184534E 01	
311	2397738E 04	6536789E 04	0.184204E 01	
42	3.375881 DE 34	3818315F 04	0.1794215 01	
6020	0.5424484F 14	1626640F 04	0.178987E 11.	
. 316	0.6152207F 04	0.3435745F 04	0.173538E 01	
49	0.5014969E 04	2129531E 04	0.1731405 01	
6015	0.52008165 04	1413939E 04	0.1602086 01	
318	0.35499961 34	J. 3432393E 34	0.1456J3E J1	
54	0.20097355 04	- 40903455 04	0 1202045 01	
	0. 50406078 04	0 30227555 04	0.1343060 01	
40	0.16020745 04	- 43957105 04	0.1252435 01	
806	0.16666145 04	- 43014205 04	0.1224495 01	
315	1.4873141E 04	0.34556775 04	0.110820F 01	
5314	3.5323883F 14	3-1381842F 34	0-108619F 01	
55	0.3498023E 04	2263901E 04	0.106242F 01	

÷

TABLE F-2.UPPER COVER S-83 RESULTS WITH STIFFNESS ADDEDTO EQUALIZE THE STRAIN DENSITY160.83 Lb

208

for a star of the second of the

TABLE F-3.UPPER COVER S-83 RESULTS WITH STIFFNESS BOTH
ADDED AND REMOVED147.80 Lb

				STR	RAIN	DEI	V S	II	Y
ELEMENT	PRINCIPA	J. STRESSES			STRAIN	DENSI	ITY		
ID	MAJOR	MINOR			CT	RJAZ			
6010	0.1236197E 05	4846574E	04		0.101	787E ()2		
6018	0.1522380E 05	0.3706184E	04		0.100	112E (02		
5018	0.1460096E 05	0.5791551E	04		0.923	232E (21		
5016	0.1093799E 05	5441570E	04		0.887	858E (01		
5020	0.1143777E 05	3987061E	04		0.834	387E (01		
6016	0.1186350E 05	2392672E	04		0.781	945E (01		
6017	0.1247090E 05	4167930E	03		0.756	884E (01		
4010	0.3317330E 04	1055119E	05		0.686	707E (01		
5022	0.3035895E 04	1053075E	05		0.667	117E (01		
4017	2714063E 03	1148384E	05		0.619	068E 0	01		
321	0.8583773E 04	4761949E	04		0.580	497E (01		
51	0.7533613E 04	53507115	04		0.526	568E 0	1		
5005	0.7266691E 04	4879516E	04		0.470	360E 0	01		
4016	0.4418789E 03	9495762E	04		0.442	796E (01		
305	4996363F 04	9563023F	04		0.412	154E (1		
5021	0.4699344E 04	6427461E	04		0.391	781E (01		
6011	0.6768352E 04	- 4239629E	04		0.389	141E (1		
26	0.9200598E 04	0.8069414F	03		0.384	104E (11		
5017	0.9166375E 04	0 90191255	03		0 381	294F (11		
53	0.9100575E 04	- 5321230E	03		0.301	679F (1		
320	0.00090232 04	5321230E	03		0.374	2955 0	1		
320	0.31005205 04	0.3490310E	03		0.3/2	20JE C			
322	0.31993292 04	~.7002102E	04		0.340	2155 0	1		
5010	0.8056563E 04	~. 7003340E	03		0.328	2136 0	1		
5010	0.7339551E 04	2023957E	04		0.320	23/E C	I		
38	0.6/824/3E 04	2882902E	04		0.316	82/E (1		
56	0.8229500E 04	0.4386072E	03		0.312	672E (1		
52	0.1983789E 04	7241656E	04		0.311	217E C	01		
44	0.8375789E 04	0.3939224E	04		0.309	762E 0	01		
41	0.8155855E 04	0.1956995E	04		0.287	487E C	01		
6011	8183811E 03	7971906E	04		0.286	398E ()1		
6005	3227536E 04	7754586E	04		0.261	466E 0	01		
58	0.7470883E 04	0.8660132E	03		0.250	097E (01		
4018	1591511E 04	7467082E	04		0.242	203E 0	1		
29	0.6612586E 04	1179699E	04		0.238	064E 0)1		
59	0.7051238E 04	0.6109241E	03		0.225	718E C	1		
25	0.5352754E 04	2916354E	04		0.223	398E 0	1		
317	0.6891234E 04	0.7669395E	03		0.213	210E C	1		
4011	0.5647551E 04	1422088E	04		0.185	413E 0	1		
4005	0.6370203E 04	0.3452069E	04		0.184	534E C	1		
311	2397708E 04	6536789E	04		0.184	204E C	1		
42	0.3758810E 04	3818315E	04		0.179	421E 0	1		
6020	0.5424484E 04	1626640E	04		0.178	980E 0	1		
316	0.6152207E 04	0.3435745E	04		0.173	538E 0	1		
49	0.5014969E 04	2129531E	04		0.173	140E 0	1		
6015	0.5200816E 04	- 1413939E	04		0.160	208E 0	01		
318	0.5549996E 04	0.3402393E	04		0.145	603E 0	1		
54	0.2609735E 04	- 40963495	04		0.144	154F 0	1		
50	0.3040607E 04	- 3622755F	04		0.130	306F	1		
46	0.53409165 04	0.30200345	03		0.139	OOLE C	1		
6008	0 16039765 04	- 4305710F	04		0.131	2425 0	1		
0008	0.10038/02 04	4395/19E	04		0.125	243E (T		
805	0.1000014E 04	4301430E	04		0.122	069E (1		
315	0.48/3141E 04	0.3455677E	04		0.119	829E C	1		
5014	0.5023883E 04	0.1381842E	04		0.108	619E 0	1		
55	0.3498023E 04	-,2263901E	04		0.106	242E C	1		

209

were and all and the service grows and

	REMOVED				132.1 Lb			
					STRAIN	DENS	IJ	r Y
ELEMENT	PRINC	CIPAL	STRESSES		STRAIN	DENSITY		
ID	MAJOR		MINOR		C	RJAZ		
6010	0.1956978E	05	7544402E	04	0.253	3414E 02		
6017	0.2018899E	05	2928082E	04	0.215	769E 02		
6016	0.2003551E	05	3226973E	04	0.215	354E 02		
5020	0.1853384E	05	2371160E	04	. 0.179	329E 02		
53	0.1474734E	05	5956566E	04	0.146	603E 02		
51	0.1116325E	05	9763926E	04	0.13	179E 02		
5018	0.1719305E	05	0.6939863E	04	0.128	185E 02		
5022	0.3829840E	04	1440469E	05	0.122	2211E 02		
5016	0.1252716E	05	5260559E	04	0.107	519E 02		
6018	0.1539315E	05	0.5878719E	04	0.102	2357E 02		
52	0.2666102E	04	1335970E	05	0.989	767E 01		
5021	0.8886637E	04	8663668E	04	0.962	2622E 01		
4010	0.3135535E	04	1291580E	05	0.961	717E 01		
321	0.1084443E	05	6065684E	04	0.930	981E 01		
4017	2627344E	03	1287309E	05	0.779	369E 01		
5005	0.1037427E	05	4913027E	04	0.779	138E 01		
50	0.8713559E	04	5619422E	04	0.657	653E 01		
305	5835727E	04	1184445E	05	0.624	505E 01		
6005	4422484E	04	1195999E	05	0.616	865E 01		
26	0.1150239E	05	0.5356055E	03	0.613	054E 01		
320	0.1148042E	05	0.5374883E	03	0.610	630E 01		
322	0.4463922E	04	8797250E	04	0.580	296E 01		
4016	0.5957070E	03	1070056E	05	0.565	999E 01		
6011	8747656E	03	1051063E	05	0.502	343E 01		
5017	0.1060345E	05	0.1499875E	04	0.498	775E 01		
44	0.1067296E	05	0.4420555E	04	0.495	074E 01		
5011	0.7433371E	04	4606508E	04	0.466	076E 01		
5010	0.8824934E	04	2439926E	04	0.463	287E 01		
41	0.1012871E	05	0.1877117E	04	0.448	721E 01		
56	0.9982266E	04	0.1293656E	04	0.444	039E 01		
310	0.8977410E	04	9949414E	03	0.415	077E 01		
58	0.9446078E	04	0.1058836E	04	0.400	468E 01		
38	0.7407105E	04	3429916E	04	0.392	896E 01		
59	0.9202398E	04	0.5126563E	03	0.390	469E 01		
25	0.6988113E	04	3387402E	04	0.357	633E 01		
4018	1930869E	04	8794379E	04	0.335	506E 01		
311	3484292E	04	8140113E	04	0.288	929E 01		
4005	0.7777238E	04	0.4787438E	04	0.286	354E 01		
29	0.7116492E	04	1420547E	04	0.280	860E 01		
4011	0.6875289E	04	1656828E	04	0.272	067E 01		
317	0.7770340E	04	0.1213876E	04	0.266	460E 01		
42	0.5207668E	04	3975205E	04	0.266	002E 01		
316	0.6974750E	04	0.4563543E	04	0.236	093E 01		
318	0.6806883E	04	0.4351590E	04	0.222	652E 01		
6015	0.7143563E	04	0.1989109E	04	0.219	553E 01		
315	0.6537805E	04	0.4678027E	04	0.216	723E 01		
805	0.1809063E	04	5818906E	04	0.208	150E 01		
803	0.6553496E	04	0.3729751E	04	0.198	012E 01		
54	0.4690391E	04	3151950E	04	0.196	DOGE OI		
49	0.590/6/6E	04	11/2/9/E	04	0.193	364E 01		
5020	0.5//913/E	04	1295853E	04	0.189	525E 01		
5014	0.6533008E	04	0.1865928E	04	0.183	DADE OI		
214	0.5952234E	04	0.5/96028E	03	0.160	ACAE OI		
514	0.51030635	04	1402026E	04	0.156	AUAE UI		

TABLE F-4. UPPER COVER S-83 RESULTS WITH ONLY STIFFNESS

210

Star -

1.14
TABLE F-5. SAMPLE STRAIN ENERGY OUTPUT FOR CH-47C FWD TRANSMISSION UPPER COVER NASTRAN LEVEL 16

ELEMENT STRAIN ENERGIES

* TOTAL FOR ALL TYPES # 7,8207930E 03 ELEMENT-TYPE # QUAD2 PERCENT OF TOTAL STRAIN-ENERGY 0.2887 ELEMENT-ID 2.257979E 01 0.1084 1 8.476082E 00 0.0814 2 6.368781E 00 0.0871 3 6.808832E 00 0.0634 4 4.959671E 00 0.0289 5 2.260995E 00 0.0424 6 3.314654E 00 0.0455 7 3.556217E 00 0.0724 8 5.658769E 00 0.0587 9 4.591954E 00 0.0435 10 3.398863E 00 0.1559 11 1.219447E 01 0.1217 12 9.520355E 00 0.1228 13 9.603554E 00 0.2336 14 0.827014E 01 0.2281 15 1.783812E 01 0.3786 16 2.961180E 01 0.4617 17 3.610527E 01 0.3952 18 3.091107E 01 0.2052 19 1.604617E 01 0.1420 20 1.110542E 01 0.1632 21 1.276445E 01 0.2283 22 1.785712E 01 0.1956 23 1.529993E 01 0.6260 24 4.895911E 01 0.0596 61 4.659048E 00 0.2683 62 2.098515E 01 0.4482 63 3.505397E 01 0.1542 64 1.205874E 01 0.5324 65 4.163676E 01 0.5821 66 4.552327E 01 1.4038 67 1.097861E 02 2.3568 68 1.843174E 02 3.5182 69 2.751477E 02 1.8758 70 1.467004E 02 0.6420 71 5.067717E 01 0.2557 72 1.999974E 01 0.7255 73 5.673958E 01 0.4941 74 3.864603E 01 0.5113 75 3.998790E 01 0.9100 76 7.116743E 01 0.3582 77 2.801283E 01 0.7527 78 5.886792E 01 0.6768 79 5.292776E 01 0.3467 80 2.711314E 01 0.4489 81 3.510774E 01 1.2392 82 9.691559E 01 0.8276 83 6.472322E 01 1.2258 84 9.587067E 01 2.0393 85 1.594803E 02 86

.

retraine grategies o

APPENDIX G

SAMPLE S-71 RUN

SAMPLE PROBLEM QUASI-ISOTROPIC SCIARRA 4/9/76

		***	INPUT	DATA	***			
KEY1	-	0						
KEY2	-	1						
KEY 3	=	0						
KEY4	-	1						
KEY 5	-	0						
THE	NUMBER	OF	LAYERS	IN T	E LAMI	NATE	IS	4
THE	NUMBER	OF	MATERI	AL TY	PES IS	1		
THE	NUMBER	OF	LOADIN	G CON	DITIONS	IS	1	

SAMPLE S-71 RUN TO PROVIDE INPUT TO NASTRAN. HIGH MODULUS GRAPHITE, QUASI-ISOTROPIC. 4/13/76 COST \$1.32

INCLUDING THERMAL COEFFICIENT OF EXPANSION GOOD TO 350°F.

*** MATERIAL DATA ***

 MATYPE
 E1
 E2
 U1
 G
 ALPHA1
 ALPHA2
 ALPHA6

 1
 0.2500000E
 08
 0.1700000E
 07
 0.3000000E
 00
 0.6500000E
 06
 -3.3000000E-06
 0.19499999E-04
 0.0

*** LAYER DATA ***

LAYER NO.	MATYPE	ORIENTATION	THICKNESS	
1	1	0.0	0.08000	
2	1	45.00000	0.09000	
3	1	-45.00000	0.05000	
4	1	90.00000	0.0800	
	1 2 3 4	LAYER NO. MATYPE 1 1 2 1 3 1 4 1	LAYER NO. MATTPE ORIENTATION 1 1 0.0 2 1 45.00000 3 1 -45.00000 4 1 90.00000	LAYER NO. MATTPE ORIENTATION THICKNESS 1 1 0.0 0.08000 2 1 45.00000 0.093000 3 1 -45.00000 0.06600 4 1 90.00000 0.0800

*** ALLOWABLE STRAIN DATA ***									
MATYPE	LIMIT STRAIN 1 = DIRECTION	LIMIT STRAIN 2 = DIRECTION	LIMIT STRAIN SHEAR	LIMIT STRAIN 1 = DIRECTION	LIMIT STRAIN 2 = DIRECTION	LIMIT STRAIN SHEAR			
	COMPRESSION	COMPRESSION	NEGATIVE	POSITIVE	POSITIVE	POSITIVE			
1	0.0	0.0	0.0	0.0	0.0	0.0			

*** OUTPUT DATA ***

 COMPOSITE PROPERTIES

 A MATRIX
 B MATRIX
 D MATRIX

 0.33688E 07
 0.10937E 07
 0.25789E-02
 -0.22506E 06
 0.0
 -0.37509E 05
 0.34696E 05
 0.38842E 04
 0.38512E-04

 0.10937E 07
 0.33688E 07
 0.58628E 00
 0.0
 0.22506E 06
 -0.37509E 05
 0.38842E 04
 0.38512E-04

 0.25789E-02
 0.58628E 00
 0.0
 0.22506E 06
 -0.37509E 05
 0.38842E 04
 0.38512E-04

 0.25789E-02
 0.58628E 00
 0.11375E 07
 -0.37509E 05
 0.0
 0.38512E-04
 0.87551E-02
 0.37579E 04

(A/T) INVERSE MATRIX

0.10527E 08 0.34179E 07 0.80592E-02 0.10618E-06 -0.34474E-07 0.17527E-13 0.34179E 07 0.10527E 08 0.18321E 01 -0.34474E-07 0.10618E-06 -0.54648E-13 0.80592E-02 0.18321E 01 0.35548E 07 0.17527E-13 0.54648E-13 0.28131E-06

AVERAGE LAMINATE ELASTIC CONSTANTS

and the part of the state of the state of the

(A/T) MATRIX

EX = 0.94177E 07 EY = 0.94178E 07 UX = 0.32467E 00 GXY = 0.35548E 07

. . .

1347-78