

OFFICE OF NAVAL RESEARCH Contract N00014-75-C-1179 Task No. NR 056-607 TECHNICAL REPORT NO. 19

"RAMAN SCATTERING OF NEAT AND MIXED CRYSTALS OF IrF₆: THE JAHN-TELLER INTERACTION IN THE GROUND STATE"

by

E. R. Bernstein and J. D. Webb

Prepared for Publication in

Molecular Physics

Department of Chemistry Colorado State University Fort Collins, Colorado 80523

March 1978

Reproduction in whole or in part is permitted for any purpose of the United States Government.

Approved for Public Release; Distribution Unlimited.

REPORT DOCUMENTATION PAGE REPORT DOCUMENTATION PAGE Reference in the server and t	INCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE (When Dece Entered)	
2. GOVT ACCESSION NO. 3. RECIPTENTS CARLOS CONVERTING CARDING NUMBER 4. CONTRACT STATEMENT (CITAL Report) 4. CONTRACT CONTINUE AND ADDRESS 5. ARSTRACT (Continue on review did if necessary and Manual for Marked States 5. ARSTRACT (Continue on review did if necessary and Manual for States) 5. ARSTRACT (Continue on review did if necessary and Manual for States) 5. ARSTRACT (Continue on review did if necessary and Manual for States) 5. ARSTRACT (Continue on review did if necessary and Manual for States) 5. ARSTRACT (Continue on review did if necessary and Manual for States) 5. ARSTRACT (Continue on review did if necessary and Manual for States) 5. ARSTRACT (Continue on review did if necessary and Manual for States) 5. ARSTRACT (Continue on review did if necessary and Manual for States) 5. ARSTRACT (Continue on review did if necessary and Manual for States) 5. ARSTRACT (Continue on review did if necessary and Manual for States) 5. ARSTRACT (Continue on review did if necessary and Manual for States) 5. ARSTRACT (Continue on review did if necessary and Manual for States) 5. ARSTRACT (Continue on review did if necessary and Manual for States) 5. ARSTRACT (Continue on review did if necessary and Manual for States) 5. ARSTRACT (Continue on review did if necessary and Manual for States) 5. ARSTRACT (Continue on review did if necessary and Manual for States) 5. ARSTRACT (Continue on review did if necessary and Manual for States) 5. ARSTRACT (Continue on review did if necessary and Manual for States) 5. ARSTRACT (Continue on review did if necessary and Manual for States) 5. ARSTRACT (Continue on review did if necessary and Manual for States) 5. ARSTRACT (Continue on review did if necessary and Manual for States) 5. ARSTRACT (Continue on review did if necessary and Manual for States) 5. ARSTRACT (Continue on rev	REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS
TR -19 Treat read Submitty Treater and Submitty Treate	REPORT NUMBER 2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
Precent Schuro Paran Scattering of Neat and Mixed Crystals of Inff: Ind Jahn-Teller Interaction in the Ground Protocol (Inff: Ind Jahn Teller Interaction in the Ground State) Paroneus Inff: Inf	(4) TR -19 /	
Baman Scattering of Neat and Mixed Crystals of F6: The Jahn-Teller Interaction in the Ground State Technical Mebret: 	4. HITE (and Subilite)	TYPE OF REPORT & PERIOD COVERED
The Jahn-Teller Interaction in the Ground The Jahn-Teller Interaction in the Ground in Place 20, If different from Report The Jahn-Teller Effect Vibrations in Crystals The Ground State Phonons The Automatic Control in the State Interactions Jahn-Teller Iffect I is found that $\frac{1}{12}(e_g)$ and $\frac{1}{12}(f_g)$ ground state. The Vibrations for the Tags The Automatic Control in the Control in the Report The Automatic Control in the Control in the Report The Supplementation in the Report The Supplementa	Raman Scattering of Neat and Mixed Crystals of	Technical Penet
States	TrF1: The Jahn-Teller Interaction in the Ground	rechinical kept
Contract and address of the second and the second and the second address of the second	State	6. PERFORMING CAO. REPORT NUMBER
E. R./Bernstein J. D./Webb Nodd14-75-C-1179 PEAROMANING ONCANIZATION NAME AND ADDRESS Department of Chemistry Colorado State University Port Collins, Colorado 80523 NR 056-607 NAVE FOR COLLING OFFICE NAME AND ADDRESS Office of Naval Research Arlington, VA 22217 Arlington,	7. AUTHOR(.)	8. CONTRACT OF SAME HUMBER(.)
 PERFORMING ORGANIZATION NAME AND ADDRESS Department of Chemistry Colorado State University Fort Collins, Colorado 80523 In CONTROLLING OFFICE NAME AND ADDRESS Office of Naval Research Arlington, VA 22217 IN MONTORING AGENCY NAME & ADDRESS(II different from Controlling Office) IS SECURITY CLASS. (of dis report) Unclassified IS SECURITY CLASS. (of dis report) Approved for Public Release; Distribution Unlimited. IS SUPPLEMENTARY NOTES IS SECURITY CLASSIFIED IS ABSTRACT (Continue on reverse side If necessary and Identify by Mack number) Raman Scattering data for neat and mixed crystal IrF₆ samples at 77 K (S) are reported. It is found that No (S) (S) (S) (M 102-014-(S01)) ID 'ONN', 1473 CONTON OF IND VISIS OFFICE S/M 0102-014-(S01) IS ADDRESS (S) 4 (A (29)) UNCLASSIFIED S/M 0102-014-(S01) 	E. R./Bernstein D. D./Webb	NØØØ14-75-C-1179
Department of Chemistry Colorado State University Fort Collins, Colorado 80523 11 CONTROLLING OFFICE NAME AND ADDRESS Office of Naval Research Arlington, VA 22217 14 MONITORING AGENCY NAME & ADDRESS(// different from Controlling Office) 15 SECURITY CLASS. (of this report) Unclassified 16 DISTRIBUTION STATEMENT (of the Abstract entered in Block 30, If different from Report) Approved for Public Release; Distribution Unlimited. 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 30, If different from Report) 18 SUPPLEMENTARY NOTES 19 KEY WORDS (Continue on reverse side If necessary and Identify by block number) Raman Scattering Jahn-Teller Effect I'F Ground State Phonons 20. ABSTRACT (Continue on reverse side If necessary and Identify by block number) Raman scattering Excitation Interactions Jahn-Teller Effect I'S found State Phonons 20. ABSTRACT (Continue on reverse side If necessary and Identify by block number) Raman scattering data for neat and mixed crystal IFF ₆ samples at 77 K are reported. It is found that $\frac{V(s)}{V(s)}(e_g)$ and $v_S(t_{2g})$ both ovidence non- vanishing Jahn-Teller interactions for the $F_{8g}(A_{2g})$ ground state. The UNCLASSIFIED S/M 8102-014-6801 SCURITY CLASSIFIED S/M 8102-014-6801 SCURITY CLASSIFIED S/M 8102-014-6801 SCURITY CLASSIFIED S/M 8102-014-6801	9. PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK
Colorado State University Fort Collins, Colorado 80523 NR 056-607 1: CONTROLING OFFICE NAME AND ADDRESS Office of Naval Research Arlington, VA 22217 Mar 178 / Mar 178 / Ma	Department of Chemistry	AREA & WORK UNIT NUMBERS
11. CONTROLLING OFFICE WARE AND ADDRESS Office of Naval Research Arlington, VA 22217 14. MONITORING AGENEY NAME & ADDRESS(II different from Controlling Office) 14. MONITORING AGENEY NAME & ADDRESS(II different from Controlling Office) 15. DISTRIBUTION STATEMENT (of the Report) Approved for Public Release; Distribution Unlimited. 17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, II different from Report) 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side II necessary and Identify by block number) Raman Scattering Jahn-Teller Effect Vibrations in Crystals 17. ABSTRACT (Continue on reverse side II necessary and Identify by block number) Raman Scattering data for neat and mixed crystal IrF ₆ samples at 77 K are reported. It is found that $\frac{1}{12}$ (eg) and vs (t2g) both avidence non- vanishing Jahn-Teller interactions for the rag ($\frac{4}{A_{29}}$ ground state. The S/M 0102-014-6601 DD 1 10M 1473 EDITION OF 1 NOV 88 IS OBSOLETE S/M 0102-014-6601 Camma (%) 4404992	Colorado State University Fort Collins, Colorado 80523	NR 056-607
Office of Naval Research Arlington, VA 22217 14. MONITORING AGENCY NAME & ADDRESS(II dillerent from Controlling Office) 15. SECURITY CLASS. (of this report) Unclassified 16. DISTRIBUTION STATEMENT (of this Report) Approved for Public Release; Distribution Unlimited. 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, II different from Report) 18. KEY WORDS (Continue on reverse side II necessary and Identify by block number) Raman Scattering Supplementary NOTES 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side II necessary and Identify by block number) Raman Scattering Supplementary NOTES 10. ABSTRACT (Continue on reverse side II necessary and Identify by block number) Raman Scattering Excitation Interactions Jahn-Teller Effect Vibrations in Crystals IFF ₆ Ground State Phonons 10. ABSTRACT (Continue on reverse side II necessary and Identify by block number) Raman scattering data for neat and mixed crystal IrF ₆ samples at 77 K U(S) are reported. It is found that $\frac{V(S)}{V(S)}(e_g)$ and $v_{25}(t_{29})$ both revidence non- vanishing Jahn-Teller interactions for the $ray (4A, 29)$ ground state. The SIM 0102-014-6601 SIM 0	11. CONTROLLING OFFICE NAME AND ADDRESS	Mar 78
APTINGEON, VA 22217 14. MONITORING AGENCY NAME & ADDRESS(II dillerent from Controlling Office) 15. SECURITY CLASS. (of this report) Unclassified 16. DISTRIBUTION STATEMENT (of this Report) Approved for Public Release; Distribution Unlimited. 17. DISTRIBUTION STATEMENT (of the abstract missed in Block 20, II different from Report) 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side II necessary and Identify by block number) Raman Scattering Jahn-Teller Effect 19. ABSTRACT (Continue on reverse side II necessary and Identify by block number) Raman Scattering Excitation Interactions Jahn-Teller Effect Vibrations in Crystals 10. ABSTRACT (Continue on reverse side II necessary and Identify by block number) Raman Scattering data for neat and mixed crystal IrF ₆ samples at 77 K (S) are reported. It is found that $\frac{V(S)}{V(S)}(e_g)$ and $\frac{V(S)}{V(S)}$ ground state. The Vanishing Jahn-Teller interactions for the $\frac{V(A_{2g})}{V(A_{2g})}$ ground state. The SVM 0102-014-6601 SVM 0102-014-6601 SVM 0102-014-6601 SVM 0102-014-6601	Office of Naval Research	13. NUMBER OF PAGES
14. WONITORING AGENCY NAME & ADDRESS(II dillorent from Controlling Office) 16. SECURITY CLASS. (of this report) Unclassified 16. DISTRIBUTION STATEMENT (of this Report) Approved for Public Release; Distribution Unlimited. 17. DISTRIBUTION STATEMENT (of this report) 18. SECURITY CLASS. (of this report) Unclassification/ Down GRADING 16. DISTRIBUTION STATEMENT (of this report) 18. SECURITY CLASS. (of this report) Interaction of the abstract entered in Block 20, If different from Report) 18. SECURITY CLASS. (Continue on reverse side II necessary and Identify by block number) Raman Scattering Ration on reverse side II necessary and Identify by block number) Raman Scattering Asstract (Continue on reverse side II necessary and Identify by block number) Raman Scattering Scheedule Continue on reverse side II necessary and Identify by block number) Raman scattering data for neat and mixed crystal IrF ₆ samples at 77 K V(S) Asstract (Continue on reverse side II necessary and Identify by block number) Raman scattering data for neat and mixed crystal IrF ₆ samples at 77 K </td <td>Arington, VA 2221/</td> <td>33</td>	Arington, VA 2221/	33
Unclassified Is. DESTRIBUTION STATEMENT (of this Report) Approved for Public Release; Distribution Unlimited. 17. DISTRIBUTION STATEMENT (of the observed in Block 20, If different from Report) 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side If necessary and Identify by block number) Raman Scattering Excitation: Interactions Jahn-Teller Effect Vibrations in Crystals IrF ₆ Ground State Phonons 20. ABSTRACT (Continue on reverse side If necessary and Identify by block number) Raman scattering data for neat and mixed crystal IrF ₆ samples at 77 K (5) are reported. It is found that $\frac{1}{120}(e_g)$ and $v_5(t_{2g})$ both avidence non- vanishing Jahn-Teller interactions for the $r_{8g}({}^4A_{2g})$ ground state. The (4) A (2g) DD 10AM 73 1473 EDITION OF THEVESIS OFFOLER S/M 0102-014-6601 D 4044 972	14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office)	15. SECURITY CLASS. (of this report)
Is. DECLASSIFICATION/DOWNGRADING Is. DESTRIBUTION STATEMENT (of the Report) Approved for Public Release; Distribution Unlimited. 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different from Report) Is. SUPPLEMENTARY NOTES Is. Supplementary modeleasing and Identify by block number) Raman Scattering data for neat and mixed crystal IrF6 samples at 77 K Is. Supplementary and Identify by block number) Raman scattering data for neat and mixed crystal IrF6 samples at 77 K Is. Supplementary and Identify by block number) Raman scattering data for neat and mixed crystal IrF6 samples at 77 K		Unclassified
16. DISTRIBUTION STATEMENT (of this Report) Approved for Public Release; Distribution Unlimited. 17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, If different from Report) 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Raman Scattering Excitation: Interactions Jahn-Teller Effect Vibrations in Crystals 10. ABSTRACT (Continue on reverse side if necessary and identify by block number) Raman Scattering Excitation: Interactions Jahn-Teller Effect Vibrations in Crystals IrF ₆ Ground State Phonons 20. ABSTRACT (Continue on reverse side if necessary and identify by block number) Raman scattering data for neat and mixed crystal IrF ₆ samples at 77 K are reported. It is found that $\frac{1}{122}$ (eg) and $\frac{1}{123}$ (for the response of		15. DECLASSIFICATION DOWN GRADING
 16. DISTRIBUTION STATEMENT (of the Report) Approved for Public Release; Distribution Unlimited. 17. DISTRIBUTION STATEMENT (of the abstract entered in Black 20, If different from Report) 18. SUPPLEMENTARY NOTES 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and identify by black number) Raman Scattering Excitation Interactions Jahn-Teller Effect Vibrations in Crystals IPF G Ground State Phonons 20. ABSTRACT (Continue on reverse side if necessary and identify by black number) Raman scattering data for neat and mixed crystal IrF₆ samples at 77 K are reported. It is found that ¹/₄₂ (eg) and ¹/₄₂ (both ovidence non- vanishing Jahn-Teller interactions for the ¹/₈₉ (⁴A₂₉) ground state. The DD ¹/₁/_{AN 73} 1473 CONTION OF 1 HOV 65 IS OBSOLETE SUM 0102-014-65011 Summa (⁸/₈) 44044 972		JOREDULE
 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse elde II necessary and identify by block number) Raman Scattering Excitation: Interactions Jahn-Teller Effect Vibrations in Crystals IrF₆ Ground State Phonons 20. ABSTRACT (Continue on reverse elde II necessary and identify by block number) Raman scattering data for neat and mixed crystal IrF₆ samples at 77 K		
19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Raman Scattering Excitation Interactions Jahn-Teller Effect Vibrations in Crystals IrF ₆ Ground State Phonons 20. ABSTRACT (Continue on reverse side if necessary and identify by block number) Raman scattering data for neat and mixed crystal IrF ₆ samples at 77 K V(a) are reported. It is found that $\frac{1}{22}(e_g)$ and $\frac{1}{25}(t_{2g})$ both ovidence non- vanishing Jahn-Teller interactions for the $r_{8g}({}^{4}A_{2g})$ ground state. The UNCLASSIFIED STN 0102-014-6601 SECURITY CLASSIFICATION OF THOSE AS IS OBSOLETE O amma (8g) 4604 972	18 SUPPLEMENTARY NOTES	
Raman Scattering Jahn-Teller Effect IrF6 Ground StateExcitation Interactions Vibrations in Crystals Phonons20. ABSTRACT (Continue on reverse side it necessary and identify by block number)20. ABSTRACT (Continue on reverse side it necessary and identify by block number)20. ABSTRACT (Continue on reverse side it necessary and identify by block number)20. ABSTRACT (Continue on reverse side it necessary and identify by block number)20. ABSTRACT (Continue on reverse side it necessary and identify by block number)20. ABSTRACT (Continue on reverse side it necessary and identify by block number)20. ABSTRACT (Continue on reverse side it necessary and identify by block number)20. ABSTRACT (Continue on reverse side it necessary and identify by block number)20. ABSTRACT (Continue on reverse side it necessary and identify by block number)20. ABSTRACT (Continue on reverse side it necessary and identify by block number)20. ABSTRACT (Continue on reverse side it necessary and identify by block number)20. ABSTRACT (Continue on reverse side it necessary and identify by block number)20. ABSTRACT (Continue on reverse side it necessary and identify by block number)20. ABSTRACT (Continue on reverse side it necessary and identify by block number)20. ABSTRACT (Continue on reverse side it necessary and identify by block number)20. ABSTRACT (Continue on reverse side it necessary and identify by block number)20. ABSTRACT (Continue on reverse side it necessary and identify by block number)20. ABSTRACT (Continue on reverse side it necessary and identify by block number)20. ABSTRACT (Continue on reverse side it necessary and identify by block number) <t< td=""><td>19. KEY WORDS (Continue on reverse eide if necessary and identify by block number)</td><td></td></t<>	19. KEY WORDS (Continue on reverse eide if necessary and identify by block number)	
20. ABSTRACT (Continue on reverse elde II necessary and identify by block number) Raman scattering data for neat and mixed crystal IrF_6 samples at 77 K V(2) (s) are reported. It is found that $\frac{V(2)}{42}(e_g)$ and $\frac{V(3)}{42}(t_{2g})$ both "vidence non- vanishing Jahn-Teller interactions for the $r_{8g}({}^{4}A_{2g})$ ground state. The (4) A(2g) DD FORM 1473 EDITION OF 1 NOV 65 IS OBSOLETE S/N 0102-014-66011 SECURITY CLASSIFICATION OF THIS PAGE (When Dete Enter gamma(8g) 4444 992	Raman Scattering Jahn-Teller Effect IrF ₆ Ground State Excitation Interactions Vibrations in Crystals Phonons	
Raman scattering data for neat and mixed crystal IrF ₆ samples at 77 K $V_{(2)}^{(2)}$ are reported. It is found that $\frac{V_{(2)}}{\frac{1}{2}}(e_g)$ and $\frac{V_{(5)}}{\frac{1}{2}}(t_{2g})$ both ovidence non- vanishing Jahn-Teller interactions for the $r_{8g} \begin{pmatrix} 4 \\ A_{2g} \end{pmatrix}$ ground state. The $(4) A \begin{pmatrix} 2g \end{pmatrix}$ DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE S/N 0102-014-6601 SECURITY CLASSIFICATION OF THIS PAGE (When Determined $gamma \begin{pmatrix} 8g \end{pmatrix} 4464 992 $	20. ABSTRACT (Continue on reverse side if necessary and identity by block number)	
Raman scattering data for neat and mixed crystal IrF ₆ samples at 77 k V(2) $V(3)$ $V(3)are reported. It is found that \frac{1}{42}(e_g) and \frac{1}{45}(t_{2g}) both ovidence non-vanishing Jahn-Teller interactions for the r_{8g}({}^{4}A_{2g}) ground state. The(4) A(2g)DD , FORM 1473 EDITION OF 1 NOV 65 IS OBSOLETES/N 0102-014-6601$ SECURITY CLASSIFICATION OF THIS PAGE (When Data Enter gamma(8g) 4444 992	V	
are reported. It is found that $\frac{V(2)}{V_2}(e_g)$ and $\frac{V(3)}{V_3}(t_{2g})$ both ovidence non- vanishing Jahn-Teller interactions for the $\Gamma_{8g}({}^{4}A_{2g})$ ground state. The (4) A(2g) DD , FORM 1473 EDITION OF 1 NOV 65 IS OBSOLETE S/N 0102-014-6601 SECURITY CLASSIFICATION OF THIS PAGE (When Deter Enter Oamma(8g) 4044 992	Raman scattering data for neat and mixed cry	stal Irf samples at 77 K
vanishing Jahn-Teller interactions for the $r_{89} \begin{pmatrix} 4 \\ A_{29} \end{pmatrix}$ ground state. The DD FORM 1473 EDITION OF I NOV 65 IS OBSOLETE S/N 0102-014-6601 SECURITY CLASSIFICATION OF THIS PAGE (When Date Enter Damma (89) 4444 992	are reported. It is found that $\frac{V(2)}{2}(e_g)$ and $\frac{V(3)}{2}$	t _{2g}) both ovidence non-
DD 1 JAN 73 1473 EDITION OF I NOV 65 IS OBSOLETE UNCLASSIFIED S/N 0102-014-6601 SECURITY CLASSIFICATION OF THIS PAGE (When Doirs Enter Damma (8g) 404 992	vanishing Jahn-Teller interactions for the rag	(4) A (2g) ground state. The $(4) A (2g)$
Damma (88) 444 992 Lu	DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE 5/N 0102-014-6601 SECURITY CLA	UNCLASSIFIED
	Jamma (83) 4444	4992 Lu

UNCLASSIFIED

COUNTY CLASSIFICATION OF THIS PAGE (When Date Entered)

20. (continued...)

 $< \circ^{n} =$ \Rightarrow linear Jahn-Teller parameters for these modes are $D_2 A = 0.001$ and $D_5 = 0.02$. The v_5 Jahn-Teller interaction is large enough to quench an expected exciton splitting of 20 cm^{-1} almost completely. The v_2 Jahn-Teller interaction is small enough so that exciton interactions predominate; however, normal $v_2 \neq 0$ sharp line exciton structure is not observed. Anomolous phonon behavior is observed and discussed with respect to other hexafluoride phonon data. The non-Jahn-Teller active modes v_1 , v_3 , v_4 , v_6 are found to behave in a fashion consistent with other members of this series.

approx 1/20 cm

G BET SUBTION	118	With Lettice	A
ISTIFICATION Y GISTRUBHTION/AVAILABIL® Y CODES DHL AVAIL LOS & SPEEKL	C (af SUUNCED	gatt Sectors	a
DISTRIBUTION AVAILABLE" Y DODES DHEL AVAIL LIS & STERIAL	STIFICATION		1
	T	ween thinky 5	89ES

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

I. INTRODUCTION

Raman scattering and infrared absorption studies have been the important experimental methods in understanding the Jahn-Teller (JT) effect in the ground states of paramagnetic transition metal hexafluoride systems.¹⁻⁶ Raman spectroscopy is, however, the superior experimental technique in this instance as selection rules allow direct observation of the relevant vibrational modes $[v_2 (e_g), v_5 (t_{2g})]$. Experimental studies reported here encompass Raman spectra of the ground state manifold of neat and mixed crystals of IrF₆ at 77 K.

The JT interaction in the ground state of IrF_6 is thought to be small.^{1,3,7} Weinstock and Goodman predict, on the basis of an approximate calculation which includes only t_{2g} orbitals, that the JT interaction is two orders of magnitude smaller than that in ReF_6 .³ There exist two experimental observations which support the contention that JT interactions are small in the ground state of IrF_6 :

1) Unlike $\operatorname{ReF}_6^{3,6}$ and OsF_6^3 , for which large ground state JT effects have been identified, the $[v_2 (e_g) + v_3 (t_{1u})]$ combination band observed in the infrared absorption spectrum of IrF_6 is not broader than that found for non-JT active hexafluorides such as WF₆; and

2) The v_5 (t_{2g}) frequency of IrF₆ fits into the general MF₆ frequency systematics for non-JT active systems. In JT active hexafluorides (e.g., ReF₆³ and 0sF₆³), the v_5 frequencies obviously do not fit hexafluoride systematics.

These data do not, however, indicate how much smaller the JT interaction actually is. The main purpose of the present paper is to address this question.

Available Raman spectra of IrF_6 vapor⁴ are not as informative as they might be since important but weak vibronic features may have been missed due to poor signal-to-noise ratio. Such was found to be the case in the ReF_6 spectrum.^{5,6}

There are three distinct advantages to a low temperature, solid state Raman study over gas phase work. First, larger Raman signals obtain due to the increased molecular density. Second, better spectral resolution is achieved due to the absence of rotational structure and most hot bands. Third, as discussed in reference 6 for neat ReF_6 , a low-lying electronic state (<u>ca</u>. 30 cm⁻¹ for ReF_6 and <u>ca</u>. 5 cm⁻¹ for IrF_6) can have important effects on observed vibrational exciton band structure. In the absence of JT vibronic coupling (e.g., v_1 (a_{1g}), v_3 (t_{1u}), v_4 (t_{1u}), v_6 (t_{2g})) it is apparent that vibrational and electronic excitons are independent, giving rise to sharp k = 0 vibrational exciton structure much like that which is observed for non-paramagnetic (non-JT) hexafluoride neat crystals.⁸ If vibronic coupling is important, however (e.g., v_2 (e_q) and v_5 (t_{2g})) and the low-lying electronic state is thermally populated, a much more complicated overall spectrum is found. This spectrum consists of band-to-band transitions, 6,8,11,12 hot bands, and interference effects between exciton and JT splittings.⁶ Interestingly enough, this additional complexity in the ν_2 and ν_5 bands may serve as a diagnostic for recognizing small or obscured JT effects.

In addition to JT active modes, the present study yields information concerning non-JT active modes (v_1 (a_{1g}), v_3 (t_{1u}), v_4 (t_{1u}), v_6 (t_{1u})) and phonons of neat IrF₆.

-2-

II. EXPERIMENTAL

The samples used in these Raman studies were the following: neat IrF_6 , 3% IrF_6/WF_6 , and 5% IrF_6/MoF_6 . The details of sample preparation and crystal growth are given in reference 9.

The Raman apparatus consisted of an Ar^+ laser (Spectra Physics 170) with special optics to permit use of the 5287 Å line, an f/5.8 0.5 m double monochrometer (McPherson 285) with 1800 gr/mm holographic gratings, micropositioning devices for maximizing the Raman signal and diffraction limited focusing and collection optics. The sample was mounted in a small Pyrex dewar to allow 77 K spectra to be obtained. The detector was a cooled photomultiplier tube (RCA C31034A-02) operated in the photon counting mode. The 5287 Å Ar^+ laser line was used as the exciting source to minimize sample absorption. Typical experimental parameters were the following: 0.5-1 W of 5287 Å laser power, and 0.5-2 cm⁻¹ slitwidths. Calibration was achieved by recording Fe-Ne hollow cathode emission lines¹⁰ over the entire spectral region studied. Accuracy of sharp lines is + 0.1 cm⁻¹.

-3-

III. RESULTS AND DISCUSSION

A summary of the 77 K Raman spectrum of neat IrF_6 is given in Table 1. A summary of the 3% IrF_6/WF_6 and 5% IrF_6/MoF_6 data is given in Table 2. A survey of Raman spectrum of neat IrF_6 is presented in Figure 1; more detailed spectra are given in Figures 2-8.

Before proceeding to the principal theme of the paper, which concerns the JT interaction in the ground state of IrF_6 and the information which the v_2 (e_g) and v_5 (t_{2g}) data give in this regard, some other aspects of the spectra will be discussed. A number of these points bear indirectly on the JT discussion.

A. <u>Phonons</u>. The frequency of observed phonons of neat IrF_6 may be found in Table 1 (see Figure 2 also). According to the theory presented in reference 8, these frequencies should be similar to those of WF₆.

Using the notation of reference 8 in which T_i and L_i label the translational and librational (rotational) phonon modes, a comparison shows that L_4 (L_5 and/or T_7), and T_5 are missing from the IrF_6 spectrum and that "extra" peaks are found at 61.0 and 63.9 cm⁻¹. It might be noted that the ReF₆ spectrum is also missing the same phonons, but apparently does not have the additional peaks that IrF_6 has.⁸ The "extra" phonons in IrF_6 cannot be explained as being (T_3 and/or L_7) which is the only missing phonon in the WF₆ spectrum. Although the absence of a peak may be rationalized as being caused by variations in scattering intensity, appearance of a peak where none is predicted seems a more serious discrepancy. Thus, it is concluded that the detailed behavior of some of the phonons of IrF_6 does not coincide with the behavior of those of WF₆, UF₆, or MoF₆.

-4-

The paramagnetic nature of IrF_6 suggests two possible reasons for this difference: magnetic interaction or a Jahn-Teller effect. Alternatively, the fact that Ir is in a different periodic group than W suggests that differences in phonon behavior might be correlated with differences in IrF_6 and WF_6 electronic distribution and structure. Lower temperature Raman spectra (77 K - 1.6 K) might shed additional light on this subject.

B. v_1 (a_{1g}), v_3 (t_{1u}), v_6 (t_{2u}). Assignments for non-JT active vibrations v_1 , v_3 , and v_6 may be made by comparison with the gas phase data (Table 3). The totally symmetry vibration v_1 is observed, as expected, close to the gas phase value.¹¹

Assignment of the $v_3 \vec{k} = 0$ components at 692.6, 707.3, and 741.3 cm⁻¹ is consistent with the gase phase v_3 value of 719 cm⁻¹, large dipole-dipole type exciton interactions,¹¹ and the broad (90 cm⁻¹) band observed at $2v_3$.

Intensity of the 692.6 and 706.3 cm⁻¹ v_3 components has been increased, apparently by Fermi resonance with v_1 (see Figure 3); the 741.3 cm⁻¹ component is less intense by more than an order of magnitude. Intensity of v_6 is low; nonetheless it can be observed at 221.1 cm⁻¹, an increase of 15 cm⁻¹ over the gas phase value of 206 cm⁻¹. Such an increase in the v_6 frequency is consistent with other hexafluoride data.¹¹

The v_1 , v_3 , and v_6 data corroborate the discussion in Section I concerning the behavior of non-JT active vibrations and low-lying electronic exciton bands in that sharp <u>k</u> = 0 structure is observed and no hot bands are found.

C. v_2 (eg). The peaks at 647.7 and 643.0 cm⁻¹ in neat IrF_6 may be identified as v_2 components by a comparison with the gas phase v_2 frequency of 645 cm⁻¹. A notable characteristic of the neat IrF_6 v_2 spectrum is its broad, band-like nature (Figure 4). As discussed above, this is indicative of

-5-

a JT interaction in the v_2 coordinate. Observation of two v_2 components in the neat IrF_6 spectrum may be interpreted in either of two ways: these peaks are maxima in the v_2 exciton density-of-states function, or they are associated with a JT splitting of v_2 . The data appear to support the former view. Figure 5 shows the $v_1 + v_2$ peak for neat IrF_6 ; considerations in reference 12 indicate that the band shape for $v_1 + v_2$ should approximate the exciton densityof-states function for v_2 . Thus, similarity of the $IrF_6 v_2$ and $v_1 + v_2$ band shapes with those of MoF_6 , WF_6 and UF_6 supports the first interpretation. Additionally, the v_2 spectrum of IrF_6 in a WF_6 mixed crystal (Figure 6), as would be expected if exciton interactions are dominant in the neat crystal, is quite different from that observed in neat IrF_6 .

Both neat and mixed crystal spectra of IrF_6 imply that the JT interaction is small for the v_2 mode. A rough upper limit on the magnitude of the interaction may be set by supposing that the 6 cm⁻¹ bandwidth of v_2 in 3% IrF_6/WF_6 (Table 2) is due to a ~3 cm⁻¹ JT splitting. Using Child's¹³ perturbational expression, a D₂ <0.001 is obtained.

D. v_4 (t_{1u}), v_5 (t_{2g}). The gas phase IrF₆ data (Table 3) suggest that the 264.4 cm⁻¹ peak in neat IrF₆ is a v_5 component and that those at 278.6 and 287.6 cm⁻¹ are v_4 components. The assignment of the major feature at 298.5 cm⁻¹ requires more detailed considerations (Figure 7). As in the v_2 spectrum, the broad bandwidths observed here are indicative of a JT effect.

The proximity of v_4 and v_5 in the gas phase (276 and 267 cm⁻¹, respectively) suggests that crystal-induced Fermi resonance between v_4 and v_5 might be important. In neat UF₆, for example, v_4 and v_5 each appear to be repelled ~15 cm⁻¹ by a Fermi resonance interaction.¹¹ If such were the case in neat IrF_6 , then the peak at 298.5 cm⁻¹ might be assigned as a Fermi resonanceperturbed v_4 component. It may be seen, however, that the Fermi resonance

-6-

interaction is not as important in the present case because the v_5 peak at 264.4 cm⁻¹ lies quite close to the v_5 gas phase value (267 cm⁻¹). The peak at 298.5 cm⁻¹ may thus tentatively be assigned as a v_5 component, consistent with its Raman intensity and broad line width. Presumably the difference in behavior of UF₆ and IrF₆ is related to a larger molecular distortion in the UF₆ crystal.

Verification of JT split v_5 components appearing at 298 and 264 cm⁻¹ can be found in mixed crystal data (Table 2 and Figure 8). As has been noted previously for ReF₆ ground state v_2 and v_5 modes,⁶ the virtual identity of pure and mixed crystal features conclusively points to a JT interaction. Thus the 34 cm⁻¹ v_5 splitting observed in both pure and mixed IrF₆ crystals can be assigned as due to a linear JT interaction.

In linear JT theory, which should be applicable in this case, the 264.4 cm⁻¹ feature is designated as v_5 ($J_5 = 3/2$) and the 298.5 cm⁻¹ peak is v_5 ($J_5 = 1/2$). The linear JT parameters are: $D_5 = 0.02$ and $v_5^0 = 276$ cm⁻¹.¹³ Note that the v_5^0 value is similar to the v_5 (287 cm⁻¹) observed in the Γ_{7g} ($^{2}T_{2g}$) electronic state of IrF_6 ¹⁴ and thereby strengthens the assignment. The gas phase spectra of v_5 must then contain only the $J_5 = 3/2$ component. It should be noted that a roughly 10 cm⁻¹ quadratic JT shift of v_5^0 (Q[a_{1g}] -0.08) could be assigned for the ground state v_5 based on a comparison with the Γ_7 v_5 value.⁶,14,15</sup> However, since the shift is small and the comparison to $v_5(\Gamma_7)$ is not quantitatively reliable, we hesitate to make a firm assignment of a quadratic JT effect at present.

The prediction of Weinstock and Goodman noted in Section I that the JT effect is vanishingly small in the ground state of IrF_6 seems to be more nearly correct for the v_2 mode than for the v_5 mode. A possible reason for the larger JT interaction in the v_5 mode is configuration interaction of e_g and charge-transfer¹⁶ states with the t_{2g} states; Weinstock and Goodman did not account for these in their calculation.³

IV. CONCLUSION

The principal conclusions of these Raman studies of IrF_6 in various solids are that an easily observable Jahn-Teller interaction is present in the v_5 (t_{2g}) vibrational mode of the r_{8g} (⁴A_{2g}) ground state of IrF_6 (D₅ = 0.02) and that a vanishingly small Jahn-Teller effect is found in the v_2 (e_g) mode (D₂ \leq 0.001).

It is also found that the phonon frequencies in neat IrF₆ are not completely consistent with those of other (non-paramagnetic) hexafluorides.

REFERENCES

1.	H. H. Claassen, B. Weinstock, J. Chem. Phys. <u>33</u> , 436 (1960).
2.	H. H. Claassen, J. G. Malm, H. Selig, J. Chem. Phys. <u>36</u> , 2890 (1962).
3.	B. Weinstock, G. L. Goodman, Adv. Chem. Phys. <u>IX</u> , 169 (1965).
4.	H. H. Claassen, H. Selig, Israel J. Chem. <u>7</u> , 499 (1969).
5.	H. H. Claassen, G. L. Goodman, J. H. Holloway, H. Selig, J. Chem. Phys. 53, 341 (1970).
6.	G. R. Meredith, J. D. Webb, E. R. Bernstein, Mol. Phys. <u>34</u> , 995 (1977).
7.	M. S. Child, Mol. Phys. <u>3</u> , 605 (1960).
8.	E. R. Bernstein, G. R. Meredith, Chem. Phys. <u>24</u> , 289 (1977).
9.	E. R. Bernstein, G. R. Meredith, J. Chem. Phys. <u>64</u> , 375 (1976).
10.	H. M. Crosswhite, J. Res. Nat. Bureau Stand. <u>79A</u> , 17 (1975).
11.	E. R. Bernstein, G. R. Meredith, Chem. Phys. 24, 311 (1977).
12.	E. R. Bernstein, G. R. Meredith, Chem. Phys. 24, 301 (1977).
13.	M. S. Child, J. Mol. Spec. <u>10</u> , 357 (1963).
14.	E. R. Bernstein, J. D. Webb, Mol. Phys., in press.
15.	E. R. Bernstein, J. D. Webb, Mol. Phys., in press.
16.	E. R. Bernstein, J. D. Webb, Mol. Phys., in press.

the second s

Stokes Shift	: (cm ⁻¹)	I(a)	FWHH (cm ⁻¹) ^{(b})	Assignment
25.7		-	1		т ₁)
30.0		-	1		L ₁ , T ₂
34.3		-	1		L_2, T_6
61.0		-	2		Phonons (c)
63.9		-	-		
65.2		-	2		L ₃ (?)
80.5		-	2		L_6, T_4
221.1		VW	-		ν ₆
264.4		W	10		$v_5 (J_5 = 3/2)$
278.6		W	-	1	, i i i i i i i i i i i i i i i i i i i
287.6		W	-	}	ν ₄
298.5		W	16		$v_5 (J_5 = 1/2)$
643.0		м	3	1	, i i i i i i i i i i i i i i i i i i i
647.7		М	4	}	ν ₂
692.6		W	1)
701.2		S	<u><</u> 0.5		v ₁ v ₃
707.3		W	1		
741.3		VW	-		
1343.7		W	_	1	
1348.1		W		5	v ₁ + v ₂
1402.7		W]		201
1435.6		W	90		$v_1 + v_3, 2v_3$
1472.4		VW			

Table 1. Summary of neat IrF₆ Raman spectrum at 77 K. The accuracy of the sharp lines is ± 0.1 cm⁻¹.

(a) (b) (c)

Intensity: VW = very weak; W = weak; M = medium; S = strong. FWHH = full width at half height. The assignments which are made are in analogy with the assignments for WF₆ in reference 8. T_j are translational phonons and L_j are librational (rotational).

me winder / are

	Stokes Shift (cm ⁻¹)	FWHH (cm ⁻¹) ^(a)	Assignment
IrF ₆ /WF ₆	263.6	-	$v_5(J_5 = 3/2)$
	297.6	-	$v_5(J_5 = 1/2)$
	644.3	6	ν ₂
	702.0	<1.4	v ₁
IrF ₆ /MoF ₆	263.8	6	v ₅ (J ₅ = 3/2)
	297.6	4	$v_5(J_5 = 1/2)$
	701.8	<1.2	vı

Table 2. Summary of Raman spectra of IrF_6 in various mixed crystals at 77 K.

(a) FWHH = full width at half height.

and the second second and the second s

v ₁ (a _{lg})	v ₂ (e _g)	v ₃ (t _{lu})	v ₄ (t _{lu})	ν ₅ (t _{2g})	v ₆ (t _{2u})
701.7	645	719	276	267	206

the second second and the second second second second second

Table 3. Gas phase values of the vibrational frequencies of $IrF_6^{(a)}$.

(a) Reference 5.

4 Z

Figure 1.

Survey Raman spectrum of neat IrF_6 at 77 K. The ordinate is a logarithmic scale. A rough idea of relative intensities can be obtained by noting that the intensity of v_1 (701.2 cm⁻¹) is ~10⁵ cps while the background is ~10² cps.

Figure 2.

Raman spectrum of neat IrF_6 at 77 K in the phonon region.

al the second second

Figure 3.

The 77 K Raman spectrum of neat IrF_6 in the region of the totally symmetric vibration, v_1 . Note the sharp and relatively intense $v_3 \vec{k} = 0$ components. Their intensity has been enhanced by crystal-induced Fermi resonance with v_1 .

Figure 4.

The Raman spectrum of the ν_2 (eg) vibration of neat IrF_6 at 77 K.

Figure 5.

The Raman spectrum of ν_1 + ν_2 in neat IrF $_6$ at 77 K. Note the resemblance to ν_2 in Figure 5.

and a server dented a server

Figure 6.

The Raman spectrum of the v_2 (e_g) vibration of \rm{IrF}_6 in a mixed crystal (3% $\rm{IrF}_6/\rm{WF}_6)$ at 77 K.

and prover interference and

Figure 7.

The Raman spectrum of the vibrational bending region (v_4 and v_5) of neat IrF_6 at 77 K. Note the broad nature of the bands in contrast to those in Figure 3.

and shake the state of the state

Figure 8.

1 6 1

The Raman spectrum of the Jahn-Teller split v_5 (t_{2g}) vibration of IrF_6 in a mixed crystal (5% IrF_6/MoF_6) at 77 K. $2v_6$ (h) is a peak due to the host, MoF_6 .

the state of the s

TECHNICAL REPORT DISTRIBUTION LIST

No. Copies No. Copies Office of Naval Research Defense Documentation Center Arlington, Virginia 22217 Building 5, Cameron Station 2 Attn: Code 472 Alexandria, Virginia 22314 Office of Naval Research U.S. Army Research Office Arlington, Virginia 22217 P.O. Box 12211 6 Attn: Code 102IP 1 Research Triangle Park, N.C. 27709 Attn: CRD-AA-IP **ONR Branch Office** 536 S. Clark Street Naval Ocean Systems Center Chicago, Illinois 60605 San Diego, California 92152 1 Attn: Dr. Jerry Smith Attn: Mr. Joe McCartney ONR Branch Office 715 Broadway New York, New York 10003 Naval Weapons Center Attn: Scientific Dept. 1 China Lake, California 93555 Attn: Head, Chemistry Division **ONR Branch Office** 1030 East Green Street Naval Civil Engineering Laboratory Port Hueneme, California 93041 Attn: Mr. W. S. Haynes Pasadena, California 91106 Attn: Dr. R. J. Marcus 1 **ONR Branch Office** Professor 0. Heinz 760 Market Street, Rm. 447 Department of Physics & Chemistry San Francisco, California 94102 Naval Postgraduate School Attn: Dr. P. A. Miller 1 Monterey, California 93940 **ONR Branch Office** Dr. A. L. Slafkosky 495 Summer Street Scientific Advisor Boston, Massachusetts 02210 Commandant of the Marine Corps (Code RD-1) Attn: Dr. L. H. Peebles 1 Washington, D.C. 20380 Director, Naval Research Laboratory Office of Naval Research Arlington, Virginia 22217 Attn: Dr. Richard S. Miller Washington, D.C. 20390 Attn: Code 6100 The Asst. Secretary of the Navy (R&D) Department of the Navy Room 4E736, Pentagon Washington, D.C. 20350 1 Commander, Naval Air Systems Command Department of the Navy Washington, D.C. 20360 Attn: Code 310C (H. Rosenwasser) 1

12

1

1

1

1

1

1

TECHNICAL REPORT DISTRIBUTION LIST

<u>No.</u>	Copies	No	. Copies
Dr. M. A. El-Sayed University of California Department of Chemistry Los Angeles, California 90024	1	Dr. G. B. Schuster University of Illinois Chemistry Department Urbana, Illinois 61801	1
Dr. M. W. Windsor Washington State University Department of Chemistry Pullman, Washington 99163	ı	Dr. E. M. Eyring University of Utah Department of Chemistry Salt Lake City, Utah	1
Dr. E. R. Bernstein Colorado State University Department of Chemistry Fort Collins, Colorado 80521	1	Dr. A. Adamson University of Southern Califor Department of Chemistry Los Angeles, California 90007	nia 1
Dr. C. A. Heller Naval Weapons Center Code 6059 China Lake, California 93555	1	Dr. M. S. Wrighton Massachusetts Institute of Tec Department of Chemistry Cambridge, Massachusetts 0213	hnology 91
Dr. M. H. Chisholm Princeton University Department of Chemistry Princeton, New Jersey 08540	1	Dr. M. Rauhut American Cyanamid Company Chemical Research Division Bound Brook, New Jersey 08805	1
Dr. J. R. MacDonald Naval Research Laboratory Chemistry Division Code 6110			
Washington, D.C. 20375	1		

-

and the second second and the second s

· · · ·

To Same