
AD —AO 52 752 KANSAS STATE t*1IV MANHATTAN DEPT OF COIeUTER SCIENCE FIG 17/2
PROJECT REPORT FOR FI.R4CTIONALLY DISTRIBUTED COWUTER SYSTEMS D(—ETC(U)
FEB 78 V £ WALL ENTItC DAAG2~~ 76 6—O1O8

UNCLASSIFIED ARO— 13835. 1—A—E L PT—2 NI.

I _.[!t’M U
I U!E1

_________I
__

WF1
_ __ P1_________

IJUI~D
_ _ _ _

_ _ ~~~~~~~~~~~~~~~~~~~

4. flTL.E (ai d Su~btIH.)

PROJECT REPORT FOR FUNCTIONALLY DISTRIBUTED
COMPUTER SYSTEMS DEVELOPMENT : SOFTWARE AND
SYSTEMS STRUCTURE . PART II

7. AUTHOR(.)

Virgil E. Wallentine

L PERFORMING ORGAN IZATION NAME AND ADDRESS

Kansas State Universicy
Departixient of Computer Science

• Manhattan, KS 66506

~cc~u~oi ~
wrn lilt. sacttss

~ tt IsdIss 0 D
~snfICAt$S. ...

_ _

•alumnlN/mlt*slLutT is..
is.. IfllL ud/v tflhiir

A
T

I DIS~~~ JT J ON STATEMENT A
Approved foi public release;

[_ DIa~Ibution Unlimited

I
,- .~~~

-
~~~~~~~~~~~~~~~~~~

_ _ _ _  

1
UNCLASSIFIED 

.. ,—.—- .

~~~~

.-.-..--.

SECURITY CLASS IF ICATIO N 3F T~nS PAGE C WP,,,n Data gnte,. / /?‘‘~ / ~ ç~d74 4~ f~j~~r ?(~ MZ~~ ‘~~~~ ~~ I
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM 1 7

~~~ I ~ wv , ~~~~~~ ~~~~ lN R5. c,. . I. ~ G N U US ERL~44~&1____________________________________________ S TYPE OF REPORT & PERIOD COVERED

~~~~ 

~[~~~~ JECT jEPORT FOR~~UNCTIONALLY ,~ ISTRIBUTED ~ F January 15, 1976

~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
SOFTWARE AND // ~)j~~I~1 tr1’-r—~~ , 1977

J
~~~~~TEMS STRUCTURE . TART II , 6. PERFORMING ORG. REPORT NUMBER

J 1. ..MLTb4ORISI
—

6. CONTRACT OR GRANT NUMBER(S)

~~~ ~~~ff~i1 E .) Wal1en~~~~~ 

~:1~ ~~~~~~~~~~~~ 76~ G~~~~~J 

/

9. PERFORMING O R G A N I ZA T I O N  NAME AND ADORESS 10. PROGRAM ELEMENT . PROJECT . TASK

Kansas State Universi ty  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~~ 
SCi~~flC~ 

/ ~~~~~~~ çZ$~Z$~ -

I t .  CONTROLLING OF FICE NAME AND ADDRESS

US Army Research O f f ic e  / ~_7 Feb~~~ ~~~~ 78
P 0 Box 12211 44. ~~~r 

~~~~~~• Research Triangle Park , NC 27700 ____________________________
14. MONITORI NG AGENC Y NAME & AOO RESS(I1 dlif .,.nt from Controlling OftIc.) 15. SECURITY CLASS. (Of this report)

US Army Computer Systems Command .

Attn : CSCS—AT Unclassified

Ft. Belvoir , VA 22060 ISa. OECLASSIFICATIO N, 00W NC RAOI N3
SCHEDULE

15. OI$T RIBLJ T ION STA TEMENT (of this R.pott)

• Approved for public release; distribution unl imited .

17 DISTRIB UTION STATEM ENT (~ l Ii. abstract .nher.d in Block 20, II diU.r.nI from R.pett)

IS. SUPPLEMENTARY NOTES

The findings in this report are not to be construed as an of f ic ia l
Department of the Army position, unless so designated by other authorized
documents .

19. KEY WORDS (Cnntin u. en rivers , aid. if n.c..sary ~~~ idantity by block numb.r)

Computer Networks , Mini/Microcomputer Networks , Distributed Processing
Computer Message Systems , PASCAL , DBMS , Back—end System , MIMICS ,
KSU BUS

20. AB ST RA ~çT (Continue en r.v.rs. aid. It n.c.eaaty and identify by block numb.?)

~~This is the second and final part of the report of
research performed

by Kansas State University in tuul.tiple processor computer systems and
and networks. Part I covered the Design Phase of the effort; and this
report covers the follow—on implementation , integration , test , and demonstra—
tion of a prototype model of the network. The network model consists of a
cluster of minicomputers and microcomputers with supporting software . The
model has been named MIMICS (MIni—MIcroComputer System) and uses a high—
speed vendor—independent data bus , named KSUBUS . that was designed , -

• DD 1 JAN 73 ~473 EDITION OF 1 NOV 65 IS O8SOL!TE Unclassified
SECURITY C L A S S I F IC A T I O N OF THIS PAGE (Wh en 1.1. F ile~•d~

.
~~~~~~~~

-..-.- - ..—,. - - .— 
_ I —. — a..- . . k ....~~. - - - .- - - --

‘~~~ -. ~~~~~ -—-— —a-



UNCLASSIFIED

(20)

~~~~ ~~~developed , and built for this netwotk. Network hardware included Interdata ’s
85, 7/32, 8/32 and IBM 370/158.

The principal network software is a message system which is capable
of residing in a variety of computers . The hardware independence is
achieved by design and by coding the software in Concurrent PASCAL.

A specification of a distributed data base management system was
developed and implemented in the MIMICS network. A DBMS named TOTAL was
used in the prototype. The general problems of DDBMS were studied , and
solution syntheses are presented as well as a simulation model for a back—end
DBMS .~~

UNCLASSIFIED
..1

~IIIi_ - L — - ~~~
--

~~~~
. 

~~~~~~~~~~~~~~~ ~~~~~~~~~~~ - -


- .--- --‘

PROJECT REPO RT

fo r

F un c t i o n a l l y D i s t r i b u t e d Co m p u t e r Sys tems
D e v e l o p m e n t : S o f tw a r e and Sys tems S t r u c t u r e

PART II

February 7 , 1978

K A N S A S STATE U N I V E R S I T Y
Department of Computer Science

M an h a t t a n , K a n s a s 6 6 5 0 6

P r o j e c t N o . P — 1 3 8 3 5 — A — E L
U . S . Army Resea rch O f f i c e

GRANT N O . DAAD — 2 9 — 7 6 — G — 0 1 0 8

D D C
J a n u a r y 15, 1976 to Octobe r 31, 1977 ~~~~~~~~~~~~~~

U1~~~~~~~~~
1978

U~~~~~

I~~~ ThI~~’1’J0N STATEMENT A
Apptov.d for public relecise;

L D1at~thutio~ Unlim ited

—

I

1.
PREFACE

- is
This is the second of a two part report of the research

pe r fo rmed by Kan sas St a te University in m u l t iple processor

compu ter systems and networks . This inves tigation is

supported by a grant of $190,000 f rom the U.S. Army Research

Office, Research Triangle Park, North Carolina . The

* Unive rsity has provided matching funds in the amount of

$28,3~~3.

The principal investigator is Dr. Virgil E. Wallentine,

ass isted by faculty and grad uate students of the Department

of Computer Science. The research was performed at Kansas

State University in coordination and cooperation with the

U.S. Army Computer System s Command , Fort Belvoir, Virginia.

The term of the research grant was 15 January 1976 to 31

October 1 9 7 7 .

Part I report covers the research effort through the

Design Phase. Part II covers the effort through

implementation .. ir.tegration.. test, and demonstration of a

prototype model of the network . Chapters 1.0 and 2.’) are

identical in both Parts I and 1 so that they can be

self—co ntained documents . The appendices of Part II are

extension s of Part I for the same reason .

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

, .  ~~~~~~~~~~~~~ 

~~~~~~~~
.- ‘ ———- --~~—- -

r
TABLE OF CONTENTS

Page

1.0 Chapter 1 Overview of the Project 1

2.0 Chapter 2 The Technical Development Plan 3

3.0 Chapter 3 Overview of Contributions 9

4.0 Chapter 4 Implementa tion 15

5.0 Chapter 5 System Integration 35

6.0 Chapter 6 Prototype Opera tion 37

7 . 0 Chap te r 7 D o c um e n t a t i o n 41

8.0 Chapter 8 Project Summary and Extensions 55

Appendix 57

A. List of Articles and Publications

B. Lis t of Repor ts

C. Vocabulary
-

0. Bib l iography

-
- _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

_ _ _

- ~~~~~~~
. - -

Page 1

CHA PTER 1

~ 1. Overv iew of the Project (replicated from Part I)

The general nature of the research is the investigation

of multiple processor computer systems and networks . The

Principal Investigator, assisted by the faculty and graduate

research assistan ts, explored the al terna tive m ethods of

design of a functionally distributed computer network for

data processing . This research takes ad vantage of the

potential of mini- and microcomputer technology. The end

prod uct is a prototype system that serves as a test bed for

j • testing the performance of typical data systems .

T he r es e a r c h e f f o r t fo l l owed a ph ased approach :

Problem Definition

Solution Alternatives
-

Design

Implementation

Systems Integration

Prototy pe Operation

The work was concentrated in four specific problem

areas :

(1) Software Utility — Software has been developed

to operate in a multivendor computer

environment. Th is involved the investigation

of the problems of multiple CPU software

portability, adaptability, conversion,

development, and maint enance. This area of the

program concen tra ted on a compara tive a n a l y s is

of the techniques for achieving the desired

~~~~~I
i~~ —

~~~~~ 
~~ —-~~~~~~~ - --~~~~~ —~~~~~~~~~- --

____________________ - - _
~

_ -___
1_ ~~~~~~~~~~~~~~~

- — - _ —
~~~~~~~~~~~~ ~~~~ ______________________________________________________________________

Page 2 - -

portability in the areas of data processing

application programs , operating systems

dependence, and data base management systems.

(2) Data Accessibility — Techniques have been

developed to permit data bases to be

distributed across a network accessible to

local and regional query . These techniques

provide for the protection of the data bases

fr om u n a u t h o r i z e d  access .  This  d i s t r i b u t i o n  is

t r a n s p a r e n t  to the  u s e r .

(3) Hardware Specification — Specifications have

been established for a high—speed (10

megabytes/second) bus to permit off loading

(onto a mini— or microcomputer system) the

network control system. A prototype has also

been developed between Interdata machines.

(4) Network Control — Research has been done on

alt er n at iv e  n e t w o r k  c o n f i g u r a t i o n s .

Communications, message processing, and other

controls required for system balance and

-
- 

hardware/software interface have been

developed . To test the viability of the

distributed system, a prototype has been

developed.

I ~~~ —- — -- - - -- -~~ - - — —~~~~~~ —-~~ - -— —-~~~~~-. -— - ~~—~~~~~~~~~~

- -



— - - - - 
- - 

____________  

—
~~~~ —

Page 3

CHA PTER 2

2. The Technical Development Plan (replicated from Part I)

2.1 Phase Schedule

Phase Effort Started Completed

I Problem DefinitiOn 15 Jan. 1976 1 Feb. 1976

II Solution Alternatives 2 Feb. 1976 14 May 1976

- - III Design 15 May 1976 15 Nov. 1976

IV Implementation 16 Nov. 1976 14 March 1977

V Systems Integration 15 March 1977 1 July 1977

VI Prototype Operation 2 July 1977 1 Aug. 1977

VII Documentation 15 Aug . 1977 14 Sept. 1977

2.2 Phase I — Problem Definition

The objective of this phase was to identify the

specific problem areas upon which research effort must be

applied .

Certain problem s were identified in the KSU proposal

submitted to the Army. There were several alternative areas

of research outlined along with those problems. These

problems and research areas were then reviewed in the light

of recent experience, both here at KS1I and in other

un iversities. From the review , new definitions of problems

were m ade and areas of research were descr ib ed in m ore

definitive terms .

The review covered the following specific areas:

— .— ~ —.——— ~~~~~~~ - ~~~~~~~~~~~~~~~~~~~~ -

-

-~
- — T : ~~~~~~~~~~~~ —

. -
~~
- -

—--- — -

Page 4

a . S o f t w a r e U t i l it y (P a r a . II, Section A of the

Proposal)

b. Data Accessibility (Para . II, Section B)

c. Hardware Specification (Para. II, Sect ion C)

d. Resources Control (Par-a . II, Section 0)

e. M i n i / M i cro Techn ology Co n s i d e r a t i o n s (p a r a . V ,

Section B)

f. Hierarchica l System s (Para. V1 Section B)

g. Dynamic Performanc e Monitor (Para . V, Section

C)

h. Distributed Control of Networks (Para. V,

Sect ion o) l

2 . 3 P h a s e II — Solution Alternatives

The objective of this phase was to establish the

directior . and approach t o be used in the design effort.

Consideration was given to the various approaches to

achieve the project goal. The approaches were considered in

the light of problems id entified during Phase I. This

consideratior. resulted in the selection of the research

direction believed mos t likely to achieve the project goal.

The selected approach and research direction were to be

coord inated with the U.S. Army Computer Systems Command , to

insure that follow—on design effort would be appropriate.

The solution alternatives provided direction in the

following design areas :

- -I - ~~~~~ L _..~.--—-- . - ~~~~~~~~~~~~~~~~~~~~~~~~~ • - - _

-_- ———~ —v~
,_-

~~
_
~~~

_
~-• •—~~~~~~~~~_.---. 

___
~

• “_ ‘•_~~
‘-v .,---

~~-
_ - -— 

-
_____________________________________________________________________________

~~1
Page 5

a.  N e t w o r k  T o po l o g y :  A l t er n a t i v e  c o n fi g u r a t i o n s of

h a r d w a r e  and c o m m u n i c a t i on s  to be te s ted  in a

p r o t o t y p e  s o l u t io n .  M i n i —  ano  microc omputers in

networks  with  la rge sca le  comp uters were  to be

considered along with the attendant problems of

software interface, message processing , network

c o m m u n i c a t i o n s  and n e t wor k. load b a l a n c e.

b. Software: Software with and without

microprocessors to be considered, along with

portability, convers:on , and maintenance of

software in the network environment .

c. Hardware: Technical and functiona l

characteristics of various commerciall y

available computing systems were cons idered .

The use  of mic rop roces so r s  to ach ieve  h a r dw a r e

compatibilities was considered, along with

reliability and performance.

- : d. Data Base System : Use of data base management

t echn iques  was proposed . Alternatives included

design of a new DBMS suitable for use in

distributed networks, use of existing DBMS s

such as IDMS (Cullinane Corporation) , and

hardware/software modification of existing

DBt4S~~s. Solution synthesis was to take into

considera tion the long term desires of the U.S.

Army and the constraints of the resources

available to the project.

_______________ 

_____________________________________________________________________ 

j
L - , - ~~~~~~~~~~~ 

- --
________ -- —---—---------- 



- - 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

•Page 6

2 . 4 Phase I I I -

The objective of this phase was to write a detailed

design specification for the prototype functionally

dis tribut ed network and a des ign spec ification for a da ta

base manag ement system to run within the prototype . Using

the d i r e c t i o n and a p p r o a c h developed d u r i ng Phase II, t he

Principa l Investigator directed the developing and writing

of the design specification. During this phase, the

Principal Investigator published the “Functional

Specification ” (CS 77—04) to provide guidance and continuity

to the several Chief Inves tigators. The DBMS deai9n

development and the network design development proceed ed

independently .

2 .5 Phase IV - j~~~iem eflta tion

The objective of this phase was to construc t and test

modu les and d o c u m e n t the v a r i o u s sy s t e m d e s i g n s produced

d u r i n g P h a s e I I I . Grad u a t e s t u d e n t s w o r k i n g u n d e r t he

supervision of the Chief Investigators pr ogrammed the

p r ot o ty p e s y s t e m . M o d e r n t e c h niq u e s of structured

prog ramm ing were followed and all effort carefully

documented. As modules were completed and tested, results

and documentation were reviewed by the Principa l

Investigator for compliance with basic design and conform i ty

to doc umentation standards .

_ _ _ _ _ - —--—-- ~~~
--

.~~~—~~
_ _ - --— — -

_
—--- - ----- - - - --—— --- -------—- - -- -

-
~~~~

Pag. 7

2 . 6  Phase V — ~~~stem S I n t eg r a t i o n

The o b j ect i v e  of t h i s  phase  was the in t e g r a t e d

opera t ion  of the p ro to type  message  sy s t em tes t  bed and th .

operat ion  of a DBMS within that test bed environment. As

sys tems  modules  were completed , they  were tested in

opera t ion  wi th  o the r  modu le s  us ing  both t e s t  d a t a  and

s y n t h e t i c  prog r a m s .  When  a l l  modules  were  completed , the

system was tested, corrected , and refined.

2 . 7  Phase  VI — Prot otype  Op e ra tio .fl

The objective of this phase was the successful

operation of the prototype system and a DBMS under a

synthetic data processing load. File transfer protocol

programs and a DBMS were distributed across three machines

(Interdata 7/32, 8/32, and IBM/370) to test the viability of

the communications software (message system) . Finally, a

small operating system (SOLO [P B H  7 b 1 )  (m o d i f i e d  to r un  in  a

small machine) and a line printer spooling system were

distributed across two Interdat,-’ ‘nachines to test the

operation of the KSUBUS .

2.8 Phase VII — Documentation

The objective of this phase was to complete

L ~



— 
-. 

~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Page 8

documentation of the prototype system . Copies of r epor t s by

the ind ividual investigator s were prov ided to the U.S. Army

in accordance with the terms of the grant . A complete

specification of the prototype system was prepared for

de l ive ry as part of the set of f i n a l t echn ica l repor t s of

the project.

- ~~~~~~~~~ - -~~~~- -~~~ -—- ---.‘- — -- -- —
~~~~~

- --
~~~~~~~~~~~~~~~~~~~~~~~ _ - .——-- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -- —-~~~~ ~~~~~~~~~ 
- -



Page  9

CHAPTER 3

3 . 0  Overv iew of C o n t rib u t i on s  to ~ he S t a t e — o f — t h e — A r t

The con tributions of this research- p r o j e c t  can be

ca t egor i zed  in two bas ic  a r e a s — — r e s e a r c h  and deve lopment .

They are furth er charac terized into work in the  a reas  of

data base management, software utility, computer network

software, and computer interconnection hardware. The work

in each area is described in the following sections.

Abstra cts of the doc uments produced in each area are given

in Section 7.0.

3.1 Summary of Network Control Software ~ctivities

A network inte rprocess communication system was

designed, developed and constructed with a capability to

suppo r t  a r e s o u r c e — s h a r i n g  n e t w o r k . Its properties are

l i s ted  b elow . Th i s  s y s t e m  c o n t a i n s  a set of protocols which

encompass  the current ly ava ilab le protocols (W AL 72] (CEK

74] (FAL. 72) . A new concept which supports multiple

• p h y s i c a l  l ines on one logical  l i n e  [ RA W 7 7 ]  in  a m e s s a g e

swi tching system was developed in this project and includ ed

in the system. This is a fault—tolerant softwate concept

which permits automatic recove ry of data on logical lines ~n

the presenc e of phys ica l l i n e  f a il u r e s .

New concepts in function oriented protocols were  a l s o

deve loped (WJ H 7 7 )  wh ich  p e r m i t s  t h e  n o v i c e  use r  to be n a i v e

I ’
‘ I  

• 
-

- -



—
~

-

~
- 

Page  10

±n h i s / h e r  a p p l i c a t io n  of in terprocess  comm un i c a t i o n.  I t

a lso  pe rmi t s  a s o p h i s t i c a t e d  programmer  to t r ea t  s l o w — s p e e d

lines as the critical resource. Finally, i t  provides  the

sys tem s programmer a resource alloca tion and d i s t r i b u t io n

protocol . All of these new concepts are incorporated into

the MIMICS message system.

Architecture Features

— Network computers can be minicomputers

— Ne twork c o m p u t e r s  can be he t e rogeneous  machines (which
support a Concurrent PASCAL virtua l machine)

— Control software is p o r t a b l e  ( vi a  po r t ing  of  Co n c u r r e n t
PASCAL system)

— Message system functions are off—loaded into mini— or
micr oprocessor communication controllers

The c o m m u n i c a t i o n s  c o n t r o l l e rs are  p h y s i c a l l y  p ro tec ted
from user level software

— High — s p e ed da t a  pa th s (10 megabytes/second transfer rate)
are support ed between machines in a close cluster

— Low— s peed , packet  swi t ch ed d a t a  pa ths  are s u p p o r t e d
between remote machines

— Different types of low—speed line protocols can be used

— Different types of network topologies can be supported

— Data paths allow back—up routes in case hardware lines
fa il

S o f t w a r e  I m p l e m e n t a t i on  F e a t u r e s

— Network control so ftware is written in Concurrent PASCAL

— The software is guaranteed to be f r e e  f rom a l a rg e  class
of type—conflict and r u n — t i m e  s y n c h r o n i z a t i o n  e r ro r s  t h a t
ca n plague systems sof twa re

— The software is structured to be por t ab le

— The software is w e l l  s t r u c t u r e d,  m o d u l a r ,  and easy  to read

~~~
- - - -— --

fl -

~~ ~

-

~~~~~~~~~~~~~~~~~~~~~ 
- - - - —

~~~~~
•- -- - —— -

- -

Page 11

— Its size is very close to the s i z e as i t s c ou n t e r p a r t in
assemb ly lan gu age

— The software is intended to be f a u l t t o l e r a n t (o f both
user s o f t w a r e f a u l t s and data communications hardware
fa ul ts)

— The software is structured so that it can be expanded or
con tracted to suit particular network structures

Message System User Features

— The ne twork m e s s a g e s y s t e m h a s a simple interface with the
local operating ~ystem in each network computer (in case a
n e t w o r k o p e r a t in g s y s t e m is not used)

— User programs are isolated from all low—level data
transmission protocols

— User programs are identified by a logical name which
specifies their machine, unique task name, and a user
defined optiona l name : and two tasks can communicate when
they know each others names and both agree or~ mode of
communicat ion

— Basic operations ar’s connect/disconnect and send/receive:
d i f f e r e n t o p t i o n s are allowed to accommodate either naive
users or s y s t e m — p r o g r a m m er — t y p e use r s

3 . 2 Summa ~~~ o f M I M I CS Network Hardware

A high—speed vendor—independent bus (KSUBUS) has been

d e s i g n e d , de ve loped , and cons tructed . It supports a new

con cept (MA C 7 8 A] (MAC 7 8 B) of “ c l u s t e r s” of computers.

W i t h i n cl us t e r s , K S U B U S S can be “ p i p el i n e d , ” w i t h o u t

degradation of performance when larger clusters of machines

are con figur ed . The bus moves data memory—to—memory between

hos ts in a c l u s t e r and thus permits a communicatior .

c o n t r o l l e r to c o n t a i n the e n t i r e (o f f — l o a d e d and s e c u r e)

network ir.terprocess communication system.

Li ~~~~~~ -
-—_____

-~~~~~~~~ - - -

Page 12

3.3 Summary of Software Utility Research Activi~~~~~

In order to utilize the message sys tem software on

multipl e machines and in multiple environments, the system

must be as portable, maintainable, and adaptable as

possible. The system was constructed in a hierarchy,

isolating at each level an adaptable function (WJH 78B].

Several such a d a p t a t i o n s inc lude h igh—speed bus cont rol

(KSUBUS), slow—speed line protocol , and o f f — l o a d e d

func tions . The system was coded in Concurrent PASCAL

(CPA SCAL) (PBH 75A] to accommodate——to the degree

possible——both properties. The lang uage s properties are

reviewed in r e f e r ence (y EW 7 6]

Adaptability was tested in an experiment which assumed

no knowledge of the language or the system written in the

language. Students in an operating system class were ab l e ,

w i t h i n a one semester three—credit course, to adapt the

single user operating system SOLO to a batch and two remote

Input systems . This effort required about four (4) man

m o n t h s . This phenomena l success is due to the

understandability of CPASCAL . Maintena nce in our view is

also a f u n c t i o n of understandability and thus a proper ty of

a CPASCAL imp lemen ta t i on of t h e messag e sys tem .

P o r t a b i l i t y was tested by po r t i ng Br inch H an s en ~~s

PDP—11 implementation of CPASCAL to the Interdata 16— and

32—bit computers (DNN 76A] [DNN 768] [DNN 77] and to the NCR

8250 c o m p u t e r [DM 7 8] . In s u m m a r y , a l l sys t ems s o f t w a r e

m u s t be a d a p t e d in som e w a y . CPASCAL i~ adap ted by coding

the ke rne l, wh ich is a t h r e e to f o u r man m o n t h e f f o r t .

Productivity of system code and code size was measured

_ •j
L ~~

- --
~~~~~~~~~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~ 

- -
~~~

- --
~~~~ 

--— ----- --



Page 13

~.n an experiment comparing CPASCAL to assembly code (JRR 7d]

(REW 77]. Code written in CPASCAL produced effectively the

same size object code as that in the  assemble r  cod e [ R.AY

7 7 ] .  Correct  CPA SCAL cod e was produced in 30 to 40 percent

of the time i t  took to produce  correct  a s semble r  code.

3.4 Summary of Data Base Activities

1. A simulation model of a back—end data base management

system was developed . This model was later enhanced to

describe a distributed DBMS op er at i r .g  in a mu1t~ com pu ter

environment. The model was used to analyze critical

performance characteristics of distributed data base

ma nagemen t s y s t e m s  (CS 7 6 — 1 2 ] .

2. Toe basic organization of distributed data base

management systems has been studied to determine the

proper software str ucture for processor modes in a data

base network . Configurations with multiple hosts,

mult iple back— ends and bi—functional machines have been

investigated. The information flow in dis tributed data

base systems has been specified .

3. Speci fications for a distributed data base management

system conforming to the COD~~SYL philosophy have been

deve loped .

4. The problem s of memory management, rollback and

recovery, deadlock, user—transparent data access  and

d a t a  movemen t  h a v e  been s t u die d  f o r  d i s t r i b u t e d  d a t a

— 
~~~~~~~ ~~~~~~~~~~~~~~~~ 


-

TIT ~~~~~~~

Page 14

base sys tems . P rocedure s have been d e f i n e d to cope w i t h

th es e d i s t r i b u t e d d a t a base des ign prob l ems.

5. The s t a t e of the a r t and i n d u s t r y w i th respect to

distributed data base management systems has been

surveyed and chronicled .

6. A pro totype distributed data base management system has

been implemented using the MiMICS comm unication software

and the TOTAL data base management system . The

prototype is intended to operate with the Interdata

8/32, Interdata 7/32, and IBM 370/158 serving as either

host or back—end processors.

7. The overall objective of this data base research has

been to explore the organizationa l~ design, and

implementation problems of distributed data base

manag ement s y s t e m s . The inten t of this research was to

provide a solid foundation for the realization of data

base m a n a g e m e n t sys tems ope ra t i ng on a n e tw o r k of

computers . ‘

I-

-
~~~~~

- - ---  —~~-

Page 15

CHAPTER 4

4.0 Implementation P~pp roach

This section consists of an overview of the structure

of the implementation. It also contains an overview of the

portability properties of Concurrent PASCAL——the

implementation language. Additionally, it contains an

evaluation of the software and hardware engineering

pr inc ip l e s  used in th is  p r o j e c t.

4 . 1  D i s t r i bu t i o n  of S o f t w a r e

4.1.1 System Structure

The implementation must, as previous ly stated,

accomm odate the messag e system (MS) (exchange) functions in

either a host computer or a communications controller (CC)

attached to the memory of a host via a KSUBUS . The

distribution of software processes between host and CC are

illustra ted in Figure 4.1. The application prog ram , DBMS

task, and Network Resource Contro l (NRC) always reside in

the host while the message system (and its subsystems, the

cluster and packet system ) may reside in the communications

controller (CC). In these diagrams , control information is

indicated by single lines (< >) and data by double lines

(<~~~~~~~ > ) .  Figure 4.la illustrates the elements of the

implementation which must reside in a host if it has no

associated CC. 

. --~~~ -- -~~~ 

~~~~~~ . - 

~T-~~~~ - __
- .~~~~-~-

- 1
P a g e 16

The app l icat ion program is sues h i g h — l ev e l message

Sys tem calls (t h e s e are s p e c i f i e d in Sect ion 3) . These MS

calling formats are interp reted by the user envelope which

synchronizes these requests with the message system

processes thro ugh a SYSQ f u n c t i on in the local opera t ing

sys tem (L O S) .

This SYSQ function is a System Control Block (SCB)

exchange mechanism for sophisticated processes such as the

user envelope and the message system processes . Its

func tions are documented in Appendix 2, along with its usage

by both the message system and the user envelope. The SCEs

are fix ed in size and contain all the information necessary

for the MS processes to execute the user level MS calls . As

shown in Figure 4.1, SYSQ is incorporated into the LOS of

the host. It is SYSQ which permits the off—loading of the

MS processing onto the CC. This off—loaded configuration is

shown in Figure 4.lb ,. where one CC is serving more than one

host.

It is important to note that a data base management

system (DBMS) is Just another task (process) in our system ,

a result of viewing all functions (such as JBMS) as

resource s and implementing full resource sharing . The DBMS

t ask issues h i g h — l e v e l MS call s whose pa ram eters are

interpreted by a system envelope and sent to the MS

processes via SYSQ . This permits the DBMS task to be

im plem en ted in a v a r iety of ways to accomm oda te

rnultiple—vendored DBMS systems. That is, the standardized

interface is the ~1S functions (calls) .

The NRC functions as a task controller . That is, it

~

~~~~~~ -~~~ --



— - ~-—--—-- -~~~~~~~~~~~ - 
— —----—-

--~ — -~~~~~ --—— ~~~~~~~~~~~~~~~~~~~~~ s—

Page 17

cont ro l s  those tasks in the host wh ich are considered as

ne twork r e s o u r c e s.  I t  does bo th  f i l e  and t ask  a l l o c a t i o n  to

a requested service. For example, it might alloca te a DBMS

task to service application program data access requests.

That is, it could start the task and manufacture a network

task name (C.M.T.P.) to be referenced by the application

program . From tha t point, messages can be exchanged between

the DBMS task and the application program via the MS. This

protocol is exemplified in Figure 4.2. NRC also contains a

supervisory function for unusual conditions——for example, an

overflow of SCBs in SYSQ directed towards a task. The SYSQ

redirects these SCB5 to NRC for processing under the

assumption the task is aborted . NRC will implement only

these funct ions in the first prototype of MIMICS. Its

expanded role in a distri buted ne twork  opera t ing  sys tem is

documented in report CS 77—4. -

The basic sys tem structur e is hierarchical, as shown in

Figure 4.3A, in that the user level task is isolated from

network considerations by the lower levels . Each level is

in turn a lower level of network protocol. The user task

and envelope and the NRC were previously described . The

S~~SQ monitor (a monitor is a Concurren t PASCAL concept which

can be viewed as a shared data structure for processes to

access) is the SCB exchang e facility. The Messag e System

Processes receive MS reques ts in the form of SCBs from S~~SQ.

The message system processes coordinate with their MS

counterparts in another network machine to synchronize

con nectLon , command transfer, data transfer, and

disconnection between user processes. The status of this

~— I t~ _L 
~
‘-

~
---

~~~

~~~~~~~



- ~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -

P a g e  18

coordination is maintained in the Message t~1onitor (MESS

TABLE) . The Cluster System (CS) processes will exchange

commands and data between hos t memories in a cluster. They

access the message monitor to update message status . They

move data memory—to—memory across one or more KSUBUS ’s and

data movers . They use the packet monitor to synchronize

commands between nodes in a clus ter. The da ta mover drivers

control the KSUBUS and data movers . The Packet System (PS)

processes coordinate with their PS counterparts in another

machine to move packets——error free——acros s remote

transmission lines. These processes support multiple

physical lines (controlled by the synchronous line control

drivers) within one logical line. This permits reliability

of the link , and recovery procedures are not neccary except

for loss of the fina l physical line on a logical line. The

PS processes also coordinate the exchange of command packets

(send and receive requests) among ma chines in a cluster .

The Packet Monitor is the shared data structure which stores

and routes packets .

Further detail on the processes ln th~ message system

is pres ented in  Figures 4.4 and 4.5. The MS processes are

p resen ted  in 4 . 4  and t he  PS processes  are i l l u s t r a t e d  in

4 . 5 .  As show n in F igu res  4 . 4  and 4.5, processes typically

access a monito r  and a r e  b locked  t h e r e  w a i t i n g  f o r  an event

to happen which will resume their execution . The data

accessed in the monitor (shared by all processes which

acc ess the monitor) is typically operated on by the process

and t h e n  p laced in the  same  or a n o t h e r  m on s t or  ( a s  an e v e n t )

for another process. it then repeats the cycle.

_ _  
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


I ‘--
~~~~~~~~~~~ -:~ 

-
~~~~

--_= ~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~
— - —

~
-

~
------ - -.-

~~-~~~~
-- - —~— - -- -~~~~~~~~~

-- .

Page 19

The ~1 SSEND RE C process a c c e s s es SYSQ f o r r e q u e s ts on t he

message system . On arrival, these requests are validated

aga inst the connection table entr:es MSCONN. If a request

is active on this connection, the request is queued in the

MESS TABLE . If not, it is made active ~n t h e MESS TABLE

wh ich is t h e e v e n t t h a t r e s u m e s M S S T A R T . MSSTART t h e n ca l l s

the PACKET M O N I T O R to start t he “handshaking ” protocol

(matching send and receive requests) with MSCMD RCV which

coordinates the mat~ :.ing of MSSENDs, MSRECVs, and MSACCs and

updates the MESS TABLE to reflect a ‘matching .’ The I NM OVE R

and OUTMOVER processes assemble and disassemble messages,

respectively . The OUTMO VE R awaits on a ‘matched ” or “ ready ’s

messag e status ~n the MESS TABLE. Then i~ repeatedly

disassembles the user message into packets and transmits

them via t h e P A CK ET B U F F E R (PBN) . It only waits in the PBM

when no buffer space is available. The :NMOVER process also

awa its or. a “ read y ” s t a t u s and t h e n r e p e a t e d l y a s s e m b l es

packets into user messages. On completion of INMOVER and

OUTMOVER functior.s, a “ complete ” status is set in the MESS

T BLE . This is the event on which ~ SD O N E is waiting . :t

then resumes to clear this “comp1ete ’~ request from the MESS

TABLE, make “active ” any queued requests, and use SYSQ to

send an SCB to the user envelope to indi cate the completion

of this message system request.

The PS processes are show n in Figure 4.5. Each process

e i t h e r tr a n s m i t s or r e c e i v e s (or b o t h) d a t a to or f r o m a

remote line control driver. This driver governs the line

protocol . The procedure on sending is to get ful l buffer s

~packets) from the packet monitor and pass them to the

~~~~ - j _  —~~~~— ~~~~~~~~~ 
- 

~~~~~~~~~~ - “-~~~~~~ - - -  __________—

~~

-~~~~---- ~~ - - - - -

~~~~~~~~~~

- - .
-,

Page  2 0

d r i v e r  and then  r e p e a t  the  proc edure . T he s e  dr iv er s  a r e

impl emented  in some “ke r nel ” of an ope rating system . It

could be the LOS of a host or the multiplexor of an

implementation language (see reference (OWN 76AD . Several

types of processes are pos9ible. The only requirements are

that the protocol be consistent with the PBM entry points

(functions) and the protocol on the other end of the

connection. Figure 4.5 illustrates logical line 1 as a

user—defined protoco l and logical line 2 as a prespecified

wind ow pro tocol. I t  supports full—dup lex (FDX), half—duplex

(MDX ), and simplex protocols.

The window manages the sequence numbers on a logical

line. Thi s  enables maintenance of synchronism of sequence

counts when one physical line on a logica l line is lost

(with no exp licit recovery procedure necessary) . Each

process can be of type listener (receiving packets from a

driver) , xmitter (sending packets to a driver), or both. Ir.

FDX there is one listener process and one xm itter process .

In  MDX there is only one process of type listener ’xmitter .

~ simplex process can be of type xmitter or listener, but

not both.

4 .1 .2 implementation Considerations

The system was structured as a set of (concurrent)

cooperating processes to enhance ease of construction and

understand ing and to permit off—loading of these processes

i— ~IL ~~~ - - ~~~~~~~~~~~~~~~ ~~~~ _I I s ~-~ - ~~~. .  — ~~~~~~~~~~~~ -~ — - —



_____ ___________________
-- ----

~~~~ - -

Page 2l

-
‘ to run in the host and CC simultaneously. The

implementation thus places the MS, PS, and CS processes in

the host (under the LOS) or in the CC . This implies that

the i m p l e m e n t a t i o n l a n g ua g e m u s t be p o r t a b l e to h o s t s and

CCs , implemented under an LOS or on a “bar e ” ma ch ine (C C) ,

and s u p p o r t i v e of concu r r ency .

At leas t two alternatives exist for implementing these

processes . Fir s t, the M S, PS , and CS processes car . be t a s k s

under the hos t LOS . The i n t e rp rocess c o m m u n i c a t i o n sys t em

of the LOS can then be used . H o w e v e r , th i s is not a

s t andard i n t e r f a c e and the t a sk s w i t c h t imes a r e t y p i c a l l y

too long . Second , the proc esses can be pseudo—tasks within

the CC or within one task (partition) of the LOS . These

pseudo— tasks can be created in two ways. These can be

processes in a high—level multitasking (HLMT) language

impleme nted in the CC or as a host LOS task; or they can be

implemented by a simple tasking monitor in the same

environment but written in a sequential language (typically

assembler level) . Both can be achieved by first coding in

the HLMT language. Then the language can be ported or the

coded version can be used to develop low— level coding in

wha t has been termed “ reliable machine coding ” (PaR 77].

Our approach is to use Concurrent PASCAL which has the

necessar y properties. These are illustrated in Section 4.2.

Implementation of SYSQ in the hos t is typically

achieved as a supervisor function (SYC). if the message

system is in the host, the MS processes access SYSQ

directly. However, if tlS, PS, and CS are imp lemented in a

CC, the SYSQ function must cros s the host—CC boundary.

L.
~~~~~~~~~~~~~~ 

-



Page 22

F igu re s  4 . 6 A  and 4 . 6 B  i l l u s t r a t e  this implementation. SYSQ

exis ts  in  bo th h o s t  and CC, and these  S~~SQs are connected by

asynchronous  l i ne  con t ro l  processes which transmit SCBs

between SYSQs .

The implementation of data movement between the user

task and the MS processes is implemented  via the  da t a  mover

control . When the MS processes are in a CC .. these data

movers are  h a r d w a r e  devices  which  move m e m o r y — t o — m e m o r y . In

the hos t  r e s i d e n t  v e r s i o n  of the  message  sys tem , the  da ta

mov ement is pe r fo rmed  by a s o f t w a r e  movement  ( a n  execu t ive

t a s k  in the LOS) be tween hos t LOS p a r t i t i o n s. No o ther  code

m o d i f i c a t ions a r e  necessary  to u t i l i z e  the M S,  PS ,  and CS

processes in both ve r s ions .

4 . 2  Lan~~~~~ e - Concurrent PASCAL (CPASCALI

The implementation languag e was chosen on the following

bases:

1. I t  is conducive  to s t r u c t u red p rogramming

2.  It is conduc ive  to s t ruc tu red  m u l t i p r o g r a m m i n g

3. Its structure lends itself to p o r t a b i l i t y

4 .  I t  s u p p o r t s  d y n a m i c  l i n k in g  and ove r l ay
ca p a b i l i t y  ( t o  p r o v i d e  r e c o n f i g u r a t i o n
capability)

CPA SCA L ( see  ( P B E  7 5 B ) )  satisfies these criteria in the

f o l l o w i n g  w a y s :

1. It has high—level control and (extensible) data
s t r u c t u r es

- -__
— ~- _~k__ ‘ ~~~~~~~ .~-



- ~~~
_
~~~~~ ‘L_ _ _ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — - -  _______________________-

Page 23

2 .  I t  is concur rent  by n a t u r e  w i t h  mon i to r s  (see
( CAH 7 4 ) )  to s y n c h r o n i z e  processes

3. I ts  concurren t  process m ul t i p l e x o r  is sma l l  and
it can be implemented on a bare machine or as a
t a s k  in a m u l t i p r o g r a m m ing o p e r a t i n g  sys tem

4. The loading and execution of s e q u e n t i a l  PA SCAL
(see LJ&W 74]) pr ograms can be controlled in a
CPASCAL process.

Concurrent PASCAL was designed and implemented on a

PDP—lI/45 by Per Brinch Hansen (see (PBH 75B]) at the

California Institute of Technolog~ . KSU personnel have

“ported” this language system to an interdata 8/32. Other

porting s are in progress (MD 76] . The PDP—ll version ~.s

implemented on a “ b a r e ” m a c h i n e  (no ope ra t ing  system

present), and the 8/32 implementation has Concurrent PASCAL

processes running within one task of a multitasking

operatiflg system (OS—30/MT) (see (Irit Cl). The

impl ementations by the Naval Underseas Laboratory are on

“bare ” 16— and 32—bit Interd ata machines (see [ mt  A and

B)). The “bare ” machine version has been used to implement

the message system , packet sys tem, cluster sys tem, and SYSQ

monitor in the communi cation controllers (CCs) . The OS

version will be used to implement these same functions in a

host which has no CC.

This variety of impl ementations is the reason that

CPASCAL mus t be portable. The basis for this portability is

the smallness of the k e rne l  w h i c h  suppor t s  multiplexing ,

synchronization, and I/O . it is about 8K b y t e s  on a 1 6 — bi t

i nt e r d a t a  m a c h i n e . The p o r t a b i l i t y  of the language machine

( P A S C A L  s t a ck  m a c h i n e)  depend s on the kernel, and the small

kernel can be ported by an interpreter or by compiler

I - ~~~ — -  I _ ___ ___ __ _ _ 
~~~~~~~ - - 

- :: -_~~~~~~~~~~~. - - .z
~~ ._ _.__ ___.~

_ _ __ _ _ _
- --- — -~~~~- — __1J

Page 24

m o d i f i c a t i o n.

in order to s u p p o r t d o c u m e n t a t i o n u n d e r s t a n d i n g,

ma intenance, and upgradability on the network software,

several CPASCAL manuals have been generated . Reference (yEW

76] is a tutorial of CPASCAL as used in simple network

s o f t w a r e mod ules . Reference (WjH 76] contains a tutorial on

PASCAL for FORT RAN programmers~ and r e f e r e n c e [D N N 76 8] is

the documentation of the 8/32 “ported” version of CPASCAL.

4.2.1 Porting CPASCAL

Ir. order to port CPASCAL, the kernel must be coded in a

low—level lanouage on the destination ma chine. This is

described in reference (DNN 76A]. In a d d i ti o n , the CPASCAL

and Sequen t i a l PASCAL (S P A S C A L) c o m p i l e r s m u s t be ported .

Both compilers are written in SP A S C A L so that only the

kernel and the interpreter or code generator need to be

coded f or the d e s t i n a t i o n mach ine .

These por ting strategies are illustrated in Figures 4.7

and 4 . 8 . Ir . F i g u r e 4 . 7 , it is clear that only the

interpreter and kernel need to be coded. Porting PASCAL to

the Interdata 8/32 was a four man month effort [DNN 7].

The seco nd s t r a t e g y shown in F i g u r e 4 . 8 is to u t i li z e t h e

first seven (7) passes of the modularized compilers. Two

additiona l strategies are clear . First, only the co~ e

generator can be targeted for the destination machine . This

stra tegy was us ed at KSU to “ por t” CPkSCAL to the lu—b it

~~~~~~~~~~ - ~~~~~~~~~~~~~~~~~ 
—-



~~~~~~~~~~~ I 
-~~~~~ --

Page 25

Interdata computers. The alternative is to code macros for

the intermediate cod e produced by pass 7. A version of this

portable macro languag e is presented in reference [H~1F 76)

It is clear that compiled code is more efficient than

interpreted code if the interpreter is at a user level

l a n g u a g e . However , i f mi crocode s torage is ava ila b le on the

destination mach ine, a mic rocoded version of the interpreter

may well be more efficient. Since all these implementations

of PASCAL are available, it permits the most efficient

choice for a particular target machine.

4.2.2 Evaluation 2.~
Concurrent PA SCAL as an i~~~le ment at i2 ~

Lang uage

It is clear that the structured multiprogramming

co ncepts in CPA SCAL r u l e ou t t i m e — d e p e n d e n t e r ro r s by

e x t e n d i n g the concept of m o n i t o r s to a t r u e hierarchy of

access rights to system compone nts. Further , its structurcu

programming constructs enhance correct sequential program

cons t r u c t i o n. Using these h i g h — l e v e l l a n g u a ge concep t s,

production of “debugged” sys tems programs is h i g h e r t h a n

when using a n assembler level l a n g u ag e .

CPASCAL s utility as a job control language can be

extended to languages other than SP ASCAL . The particula r

changes necessary are dependent on the implementation.

However, the minimum change is to modify the interface to

accommodate the o p e r a tin g s e r v i c e s r e q ui r e u by t he

~~~~~~~ :- -
~~~~~~~~~~~~~~~~~~~

-
~~

-

~~~~~ —



- _‘~~~~~~~~~~ ._:--—.-----—-- —- ‘~~a.- ~~~~~~ r rwr ‘~~~W Y I C d

Page 2 6

sequential programs to be executed . These functions must be

suppl ied in the kernel. In the case t h a t  the ke rne l resides

as a t a sk  under  a local ope ra ting  s y s t e m  (LOS ) , the  se rv ice

calls to the LOS mus t be mapped into the interface routines.

There  w i l l  a l w a y s  ex i s t  assembler  programmers  who can

write more efficient code than a high—level language

compiler  can generate . The low—level constructs such as

addresses ,  r e g i s t e r s,  and interrupts permit great freedom .

Addresses , in p a r t i c u l a r, are impor tan t  to e f f i c i e n t

accessing of data. Add resses (references) are copied

instead of data. The absence of references is the sing le

w o r s t  f a u l t  of CPASCAL . This  fo rces  two processes  to copy

any data they need to exchange from the private data of the

sou rce  proces s into shared data in a monitor and then into

the private data of the destination process . This is

considerable performance degradation from passing pointers.

Such use of r e f e r en c e s  could be incorporated in CPASCAL ~f

they are used in a con trolled manner (SIB 76].

Awkwa rd coding form s are sometimes necessary in CP. SCAL

due to the lack of “trap ” facilities (on conditions in

PL/I) . That is, in many instances an asynchronous condition

may occur (such as an I/O completion interrupt or an

unsolicited message) to which a process  should respond

qu ickly. This case is coded in CPASCAL as an auxiliary

process which specifically wa its for the condition (in a

monitor or the kernel) and then tra nsmits the condition to

the user process. The user process must periodically

inspec t  the common monitor (an event monitor) . It is not

yet clear whether language modification is warranted .

- ~~~~~~~~~~~~~~ -~~ - -



Page 27

Severa l changes to the current implem entation should be

incorporated (however, they are not critical to

impl emen ta t ion  of network s y s t e m s)  . A software time—out

f a c i l i t y  m u s t  be added to the kernel for those devices (such

as synchr onous lines) which do not present interrupts when

an excessive time has elapsed since initiation of an

external event. We also think it is impor tant to take the

f ixed level of pr ior ities ou t of the kernel an d perm it que ue

priorities to be set from a process.

In s ummary ,  CPA SCAL is a very good imp l e m e n t a t i o n

l a n g u a g e .  The m odi f i c a t io n s  sugges ted  a re  not critical , and

more experienc e with the lang uage will help to isolate any

other possible changes [S1L 7 7 ]  [LOll 77].

a.

4.3 Software Engineering Evaluation

This section summarizes the decisions and techniques

which had a major effect on the structuring of the software

which was produced . This is intended to point out the

strengths of the software and to serve as recommendations - :

for future software work within the U.S. Army Computer

Systems Command . In re t rospect f i v e  i tems s tand  ou t  as

positive factors:

1. Use of a well—struc tured program design language
(PD L.)——

Since the word “structured” is so overused , it

mus t be explained that the PDI., incl uded many

features not always included in so—called

-~ — - -- ., ~~~~~~~ -~~~~~~~~ .-~~~ - ~~~~~~~~~~~~ - —----- - - --- - -



- ~~~~~~~~— - - -  ~-- -

Page 28

structured languages. Among these were closed

module specifications with parameters tagged as

to type and entry/return mode, PASCAL—like data

structures and definitions , use of monitor

structures to synchronize multipl e processes in

use of shared data structures, PASCAL—like

pseudo—code b u t  w i t h  l imi ted nesting of control

s t ruc tu re s  and w i t h  use of “mul tiple—exit”

s t a t e m e n t s  so as to limit duplicated code. The

PDL was easily translated into CPASCAL code.

Weak points were that the PDL was not f o r m a l l y

defined and there were no tools available for

processing the PDL in any way at all.

2. Use of a t~ p—down m o d u l a r  desi~~ methodology——

in spite of t he  w i d e s p r e a d  a t t e n t i o n  to top— d own

design methods, there is the pitfall in real

s i t u a t i o n s  of  being able to identify low—leve l

modu les of a sys tem b e f o r e  t he  ov e r a l l  sys tem

s t r u c t u r e  is evolved . As an e x a m p l e  of th is,

note that often when some network is presented ,

the focus  will be on low—level line protocols .

However, that type of approach may make network

f u n c t i o n s  s u b s e r v i en t  to line pro tocols in s t e a d

of vice—versa. After some initial sputtering ,

we were abl e to develop a top—down design. The

benef its of the design approach were as follows :

— — T h e  s t r u c t u r e  is in a l aye red  form w h i c h

pr omotes easy  o f f — load ing  o f l eve l s  of the

s o f t w a r e

L 
~
, - - 

~~~~ 

-
--

- — --

~~~~~~~~~~~ 

— - -



- 
— - —

Page 29 - :

-— The structure allows for easy interchange of

l ow—leve l  phys i ca l l i ne  protocols

—— The modular form will allow res tructuring of

the sof tware to fo r m var ia nts of t he  network

which are fit for particular applications

——The structure allowed proto type implementation

in inc rementa l s tages

3 • Use of w a l k — t h r u s  to r ev iew d e s i g n — —

Like structuring , the concept of walk—thrus has

received much  s u p e r f i c i a l  a t t e n t i on .  Howeve r ,

without a well—defined structur e for review and

acceptance of the desig n, walk—thrus can be

quite useless . We used a structure related to

the method of informal proofs of programs ,

namely the identi fica tion and jus ti fication of

asser t ions  a b o u t  the  program ‘execution

established at various break—points . This was

moderatel y s u c c e s s f u l, although one major error

in synchronization acros s machines was detected

a f t e r  the walk—thrus.

4 .  Use of CPASCA L as an i mp l e m e n t a t i o n  l a n g u a g e — —

This was an ideal cho ice f o r  severa l  reasons .

F i r s t ,  the design code was structured to

translate easily to CPASCAL . Second , the

CPASCAL compiler provides verification of type

c o n s t r a i n t s  and process  s y n c h on i z a t i o n  f a r  in

excess of that provided in any other existing

c o m p i l e r.  Hence , we can gua r e n t e e  t h e  n e tw o r k

software to be free from a large class of errors

- ~~~~~
—-

~~ 
---- -

L_ _ — .  ~~~~~~~~~~~~~~



- .~~ ~~~~~ -

Page 30

which are detected by the compiler. It is

interesting to note that it required

cons ide r ab l e  e f f o r t to ge t  all the network

s o f t w a r e  in CPASC A L to compi le:  b ut  once

compiled , i n t e g r a ti o n  and  run— t im e c h e c k o u t  was

rela tively easy. Third, the CPA SCAL listings,

augmented  w i t h  v a r i o u s  access and data structure

diagrams, serve as a good level of

documentation.

5. Use of highly skilled personel——

The programmers consisted of Just S few very

skilled post—MS students , each working only part

time. All were familiar with CPASCAL , process

structuri’~g and issues relating to correctness

of programs . It is doubtful if this project

could have been completed using “entry leve l

programmers. ”

In addition to the  pos i t i ve  f a c t o r s , some

n e g a t i v e  i t ems  s t a n d  ou t  a l s o .  The m a i n

shortcoming was lack of supporting tools, other

than the CPASCAL compiler. The need for

automated tools was clearly evidenced in the

delays experienced in handling of doc uments ,

diagrams , and source text files . Some tools

which should be used in any comparable s o f t w a r e

project include:

——A document processor for all technical reports

and design documents, with a facility for

process ing  d i a g r ar r .~

~ -~~~— - — - - —-—~~~~~~~~
—

~~~~~~~~~ 

- -

~~~~~~~~~~
-

~~~~~~~~~~~~~~~
-—--— ,- - - .

~~ - ~~~~~~~~~~~~~~

~ sge 31

——1 module design and development system. The

design part would maintain function

specification, jr.termodule information, and

status of modules. The development part would

m a i n t a i n libraries of listings and it would

suppor t separa te compilation and testing of

selec ted subsets of modules

——An interactive test facility would allow

setting of variables, calling of submodules,

output of interm ediate results, and recording

of test status information

Parts of all of the above tools have been demonstrated in

o the r s y s t e m s, b u t not in any s i n g l e sy s t em both p o r t a b l e

and compatible with CPASCAL. KSU has beg un development of

some parts of thes e tools for a CPASCAL system. During most

of the work o f the pro jec t, however , opera t ion s covered by

these tools were done manually with the attendant delays and

unreliability .

4.4 Evaluation of Hardware jKSUBUS) Engineering

The requirements to connect closely coupled

he te rogeneous m i n i c o m p u t e r s which suppor t distributed data

bases are as follows :

a. to move information from one computer memory

to another

b. large amounts of it (64K bytes)

~~~~~ “ Tt~~~i. - J1T~~~~~ T .  - - - ~~~~~~ - - ~~~~~~ 
- 



~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~ ~~~~~~~ ~~~~~~~~~~

- -

Page 32

c. w i t h a m i n i m um of s u p er v i s i o n - —

d. at a very h i g h rate of speed

e. w i t h o u t e f f e c t ing program e x e c u t i o n in any of

the computers significantly

f. from a multiplicity of computers

g. to a multiplicity of computers

h. simultaneously

i. allowing bypassing of broken links if possible

j. at very low cost

B r i e f l y s t a t e d , these were the objectives for the

MIMICS network hardware. Requirements (a) and (e) implied

the use of Direct Memo ry Access (DMA) to the computers

invol ved, wi t h some k i n d ~f DMA—t o— DNA cable connections .

However, requirements (f) and (g) foretold trouble, since

the number of DMAs which can be attach ed to any~~~~zticular

computer is quite low——often in the 1—2 range. F~~rst,

design proposals considered a form of electronic selector

switch to connect two DMA5 with each other for the duration

of a block trans fer seque nce, but requirement (h~ could r.ot

be met without horrendous duplication of hardware.

Requi rement (h) also implied LOTS OF CABLES, yet

requirement (i) impli ed dy n a m ic r e r ou ting w hen a path of the

network was disabled . Requirement (j) prohibits a

multiplicity of cables ~nywa y~

The basic requirements (a), (b), and (c) called for

relatively autonomously operating hardware, and such was

easy to provide . However, since the number and kind of

com puters which would be present in any particular network

were not q~~ven in advance, very modular design was required

- ~~~~~~~~~~~~~~~~~ - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .—.- -- - -

Page 33

SO tnat changes could be accommodated without major

redesign.

The final design developed into sets of autonomous

f u n c tio n a l u n i t s, ca l l ed D a t a Move r s, comm u n i c a t i n g w i t h

each other and with DMAs over a common short high—speed (5

•
MHz) bus called a KSUBUS. Each KSUBUS unit is attached to

nearby computers via a single DMA . Each Data Move r is

connected to a Data Mover on another KSUBUS via a

med ium— length (z 50 f o o t) m u l t i w i r e cab le . Each D a t a Mover

c o n t a i n s s u f f i c i e n t h a r dw a r e logic to t r a n s f e r up to 6 5 , 5 3 6

2 — b y t e u n i t s of i n f o r m a t i o n in a s i n g l e b l o c k, g i v e n only

the sourc e and d e s t i n a t io n computer s~ the block l e n g t h, and

the b e gi n n i n g memory addresses f o r the i n f o r m a t i on .

The prototype sys tem was impl emented using large

handwired Douglas Electronic logic boards plugged into a

spare i nt e rd at a expans ion chass i s and co nnected to seve ra l

Interda ta computers .

Following are comments in reference to requirements:

a. achieved

b. achieved — perhaps too well. No one at the

presen t t i m e n o r m a l l y t r a n s f e r s an y w h e r e

near that much information. However, the

logic d i f f e r e n ce be tween 13 1 , 0 7 2 b y t e s and

a smaller reasonable number, such as

pe r h a p s 5 12 b y t e s, is on 1y f i v e or s~~x

in t e g r a t e d c i r c u i t (I C) p a c k a g e s !

c. ach ieved

d . 5 MHz — 7.5 MHz should be possible with a

c r y s t a l c h a ng e if the ICs meet the

~ -~~~~-~--- -. -ii -———- —
-

~~~~
-:• -

~~
--— --‘~- ________________________________________

Page 34

m a n u f a c t u re r s “ t y p i c a l ”  specifications,

on the average. Still hig her speeds would

require some redesign and a better

fabrica tion method

e. achieved

f. achieved — depend ing on circumstances, from 1— 15

compute r s  can be connec ted to D a t a  Movers

on a s i n g l e  K S U B U S

g. achieved

h. achieved — to a r~~so1ution of 200 nanos econds.

The limiting factor is the speed of

c o m p u t e r  m e m o r i e s  accessed  b y t h e  DM As

i. a c h i e v e d  — by allowing Data Movers on the same

K S U B U S  to com m un i c a t e  w i t h  each o t h e r

w i t h o u t  a f f e c t i n g  t h e  a t t a c h e d  c o m p u t e r s

j .  ach ieved  — u si n g  e qu ip n en t  a l r e a d y  a v a i l a b l e  a t

KSU. Slightly different equipment would

have simplified severa l ‘ecisions and

e n h a n c e d  some o f  t h e  r e su l t s

-~~~~~
—

~~~~~~~~—-.— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
———

___ _j

- -
~~~~~~~~~~

••
~~- -- ,•--

~~~~~—.--——“-- -
~~~~—-~~~-I - -

Page 35

CHAPTE R 5

5.0 System Integration

The complexity of the network software necessitated a

unique  sys t em i n t e g r a t i o n  p rocedure .  The most common

integration methodology is bottom—up. Thus , the lowest

level m o d u l e s  are tes ted wi th  a l l  possible i n p u t s .

Successively higher levels of modules are tested assuming

t h a t  lower levels  of modules  a re  error  f r e e .  H ow e v e r ,  the

a c t i v i t y  of the l ine  contro l  leve l  ( s ee  F i g u r e  4 . 5 )  of the

packe t  sy s t em is not predictable. (This is necessary for

the b o t t o m — u p  proc e d u r e .)

The following integration methodology was used IPBH

77]. Each m e s s a g e  sys t em m o n it o r ,  c lass,  and process was

in d iv id u al ly testec1 . The compos i t ion  of messag e sys t em

components was then  tes ted  by adding  one m o d u l e  a t  a t ime .

This combination of modules includ ed 
• 
“simulated ” user

processes and a data mover monitor . It also included

simulated line processes . This was necessary to achieve

predictable behavior at this level. This implementation

s tage  is shown in Figure 5.1.

Stage 2.1 of integration included a user envelope on a

COBO L pr ogram . This is shown in Figure 5.2. It includes

SYSQ and a da ta  mover  imp leme nted in the  local  o p e r a t i n g

s y s t e m . This s t r u c t u r e  was t h e n  ca r r i e d  ou t  across  two

m a c h i n e s — — a n  In t e r d a t a  8/ 3 2  and a 7 / 3 2 .  F i g u r e  5 . 3  d i s p l a y s

the message system off—loaded to the communication

c o n t r o l l e r .  Th i s  e x a c t  c on f i g u r a t ion  was  no t  t e s t e d  d u e  to

t ime c o n s t r a i n t s .  H o w e v e r,  the  t e s t i ng  of the  K~~UBUS 



P a g e  36

integration was tested (described in Section 6.2). This

configuration will be tested shortly.

Stage 2.2 is shown in Figure 5.4. This testing with

the iBM 370 version of the ressage system [ RA Y 77) was

carried out wi thout incident since the upper level testing

was extensive. Applica tions of these configurations are

described in Section 6.

L:. 
- - ~~~~~~~~~ . 

- -



— _

Page  37

CHA PTER 6

6.0 Prototype Operation

6.1 Prototype Di s t r i b u t e d  DBMS

In order to demonst ra te the  v i a b i l i t y  of the message

sys tem s o f t w a r e  in a he terogeneous  mach ine env i ronmen t,  a

prototy pe d i s t r i b u t e d  da ta  base m a n a g e m e n t  sy s t em has  been

constructed . The dis tributed DBMS utilized TOTAL as its

data  base m a n a g e r  and the  message  sys tem as its

comm un i ca t ion  m e c h a n i s m .  The computer  sys tems included in

the data base network are the Interdata 8132, Inte rdata 7/32

and IBM 370/158. The intermachine connections are as shown

in F i g u r e  6 .1 .  The s y s t e m  has  been des igned  so t h a t  a l l

m a c h in e s  can f u n c t i o n  as e i t h e r  hos t  or back—end  p rocessors .

In the initial version of the prototype, the system will

operate  in a s ing le  user  mode w i t h  f i xed  hos t and back—end

processors.  E x p a n si o n  to a m u l t i — u s e r  env i ronmen t  w i t h  the

pr oc essors ac t ing  as bi—functional machines (performing both

host  and b a c k — e n d  f u n c t i o n s )  is p l a n n e d  in the  near  f u t u r e .

The software sti ucture of the distributed DBMS is

illustra ted by the information f l o w  r e s u l t i n g  f rom a d a t a

base req ues t  in the appl ica tion program in F i g u r e s  6 . 2  and

6 . 3 .  The hos t i n t e r f a c e  ( H I N T )  and back—end  i n t e r f a c e

(81L4T) programs serve to control and coord ina te  the

communication between the application program and the data

base ma n a g e r .  The host  i n t e r f a ce  is cal led f rom the

a p p l i c a t i o n  program wheneve r  i t  r e q u i r e s  d a t a  base s e r v i c e .

The H I N T  p rogram packs the d a t a  base r eques t  i n t o  b u f f e r s

and ca l l s  the  hos t  v e r s id n  of the message  s y s t e m  to



F.— — —

~~~~~

——-——-

~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - ____________

Page 38

communica te  wi th  BIN T on the  back— e nd processor .  W h e n  BINT

receives the message,  i t  unpacks t he  message  b u f f e r s  and

calls  D •~.TBAS , the  TOTAL da t a  base m a n a g e r . DATB A S r e t u r n s

i ts  sta tus and da t a  in f o r m a t i o n  to BINT upon comple t ion  of

the opera t ion .  BINT t r a n s m i t s  the  r e s u l t s  of t he  d a t a  base

comma nd t h r o u g h  H I N T  to the a p p l i c a t io n  program,  which  then

proceeds in its e x e c u t i o n  sequence .

Both HINT and BINT are implemented in COBOL and , for

purposes of the prototype , interface with COBOL application

programs .

6.2 Prototype KSUBUS Operation

The testbed chosen to demonstrate the speed and utility

of t he  K S U B U S  is a d i s t r i b u t io n  of o p e r a t i n g  sys tems

f u n c t i o n s  across the  b u s .  The o b j e c t iv e s  are  to tes t t h e

p e r f o r m a n c e  of t h e  bus and to d e mo n s t r a t e  such p e r f o r m a n c e

or. an operationa l system . The performance is tested during

the use of a file transfer protocol (FTP) which is

implemented between a s i ng l e  user  o p e r a t i n g  s y s t e m  (SOLO 0)

nnd a l ine p r i n t e r  spool ing  (SPOOLER )  subsystem.

The m o d i f ie d  SOLO resides  on one mach ine ( I nt e r d a t a

7/16), and the SPOOLER res ides in a n o t h e r  m a c h i n e  (Interdata

85) which controls the bus . The control information for the

f i l e  t r an s f e r  protocol is passed across  the  a s y n c h r o no u s

cont ro l  l i n e s;  and t he  f i l e  d a t a  can  be moved e i t h e r  across

the  h i g h — s p e e d  K S U B U S  or th e  s low— speed a s y n c h r o n o u s  l in e s .

L - 1- - — -~~~~ •. . 
- - 

-



________ - • ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Page  39

This topology is illus trated in Figure 6.3.

Since the c ri t i c a l  e l em e n t  of a DDB M S is the

connec tion , the d a t a  f low  of t h e  SOLO/SPOOLE R s y s t e m  is

intended to d i sp l ay  the  p e r f o r m a n c e  c h a r a c t e r i s t i c s  of a

hos t /back—end sys t em , r e s p e c t i v e l y .  T h a t  is, a user  a t  a

SOLO console r eques t s  a f i l e  t r a n s f e r .  I t  is then moved

from the SOLO d i sk  to the  SPOO LE R d i s k  and back  a g a i n  to the

SOLO disk. This same scenario is true of a user data base

query  r eques t  at  a host  t e r m i n a l.  The r e q u e s t  is

transmitted to the back—end and the da ta  is returned . This

type  of data flow is illustrated in F i g u r e  6.4.

The objective of the p e r f o r m a n c e  t e s t s  is to

• demonstrate the improvement in data t r a n s f e r  t imes  when the

KS (JBUS is u t i l i z e d  ins tead of c o nv e n t i o n a l  s low— speed l i nes,

such as those used in the prototy pe of the distributed data

base management system of Section 6.1. The performance of

the sys tem in t ra ns f erring data should be proportional to

the speed of the transmission medium . In the  p r o t o t y pe

sys t em,  the system which moved d~~ta across the slow—speed

l ines achieved such e f f i c i e n c y .  However ,  s ince  the file

protocol moved d ata t rom d i s k — t o — d i s k ,  the  sy s t em on ly  r a n

at  the speed of the d i sk  even when da t a  was moved across  the

bus . ( i f  a l l  d a t a  had been t r a n s f e r r e d  m e m o r y — t o — m e m o r y

across the  K SUB tJS ,  on ly  memory  speed s would  l i m i t  t h e  s y st e m

per forma n c e . )  Since d a t a  bases  are t yp i c a l l y  d i sk  r e s i d e n t,

t h i s  SOLO/ SPOOLER s y s t e m  e f f e c t i v e l y  d i s p l a y s  the

p e r f o r m a n c e  of a - DBMS d i s t r i b u t e d  ac ros s  two r n a c h in e s

connected via t he  K S U B U S .  F u r t h e r m o r e,  as f a s t e r  d e v i c e s

a re  used fo r  d a t a  base  s t o r age  ( s u c h  as c h a r g e — c o u p l e d

— - •-J_~
_________ •_ - ___ — -—— . - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .— — - — - --~— -.••-- ••-•— -_ -~~---- •— — - —  —---~~ •- - - —•_—-



Page  4 0

dev i ce s)  the sam e scenar io  wil l  run  f a s t e r — — a t  the speed of

the dev i ce s .  Thus , since the  K S U B U S  r u n s  a t  memory speeds,

the per forma nc e of da t a  base o p e r a t i o n s  can  be improved  at

the same r a t e  as the technology of s t o r a ge  devices  improves .

I

~~~~~~


Page 4 1

CHAPTER 7

7.0 2ocumefltation

7.1 Overview

In the purs uance of the supported research ,

documen ta t i on of new concepts and theor ies and the i r

proto type systems is provided in f o u r (4) areas : da ta base

managemen t sy s t ems, h a r d w a r e sys t ems, s o f t w a r e p o r t a b i l i t y

sys tems , and ne twork control sys tems . T a b l e 7.1 con ta ins an

enumera t i on of the doc uments in each a r e a . The r ema inde r of

th i s chap te r con t a in s the a b s t r a c t s of the repor t s produced

wi th i n each of the fo ur (4) a r e a s .

-
~~~~~~~~~~~~~~~~~~~~~~~~ —



- 

- i

- -

Page 42

z
—~~~~~--~~~~~-- .— U ) - .. . , .

Z O U ) O H~~~4 o 0 r ~~ O Z 0
m i ~~~~~i~~~~~l~~~~~i U ) i~~~~~i

~~E-. 0~~O 0 N  ~~~~~~~~~~~~~~~~~~~2 0 N N .~ N S N 0 5
0 ~ Q U) U) 0

_ _ _ _  

. Q U ) 9 U )
~~~0 H 0 E ~~0 H 0H 0 ~~~~0

— x z ~~ Z Z ‘-~
•-

~Z ‘-4 0 — ‘-4 U)
H Z 0 Z Z ~

3
> 4 Zi

~ ~I . Z U) U) > 0 U)

• ~~~~~ >~~ ~~~ H C ~l .~~~~~0~~~~~> 4 4 ~~~ ~~~~~~~~~~~~~~~~~~~~~~~~ ~~
~ Z i ~ 0 U) -i J~ .-4 0 ‘-4 0 ‘-4 ~~ 0 Z ~4 0 0 ~ 0 E~ 0 ~ 0/ ~~

-~ Z > Z 0 .~ E~

r~ i I Z I i C ~~~~i l~~~~~~i~~~ I i ’~~~ i C f l I U)

0

I ~~~— — z - - . ~~~~~ — ~~~~~~~~-. m- .cj —

~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~4 U ) l  Z N 0 NZ N U ) N Z N 0 N~~~~ Z N 0 S 0N ~~~~ N Z N
0 U )  I U) I U) I U ) U ) U ) Z U )U ) U ) 0 U )~~~~U ) U ) U ) H U ) u 0 U)

~~ 0 _ 0 ~~~~0 x 0  • 0 U ) 0 Z .)~~~~0 E 4 0 H 0 0~~~~~>.p 

U) 0 ‘~~ 
I

o~~~z—- o~-m - - x --z—-~~ ~~~~~~~~~~~~~~~~~~
~ H ~ 0 ~~~~ c~ 0 0 cZ~~~cL.m Z m 0 Z 0 &~~0 0 Z 0 0

EW E.
-l U ) U )~~• H> .

~~

~ >4 x I ~‘-4

~~ z
U)

H O  U]
- •

~ E-’ ~~~ N 0 - ~~~~~~CN-

O s Z ~~~~ 0~~~

Z ~~~~~1~~~~~~~~ Z 0 E ~~0

O~ N N N

0 3 O~~~> I .~C i c ~~~i

U) Q U ) - U ) Q U )

N 

U] Z

0 0 0
1 0)  ~D ’ - 4

3’ Z O

C.)

— — —
~-4~~~~~ -4 0~~~ I —

>. ~1 ~ N~~~~~~~~~~~~~~~Q C’1

3 H

~~~

z I i 1 0 1 : i~~~~~ I
~~~~~ ~~~N ~~~ ~O U ) ’. O ( ~~~N N

~~~ H ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~O E ~’ H ‘~~U)~~~ O U ) 0 0 ) o U ) 0 U )~~ ’ U ) Q U )
~~~0 U ) C J U ) 0  U~~~~ C ) U ) C . )

3. 3.Z 0) 0

~~ ~



Page 4 3

Abs t r act s  of Repor ts  Produced in

Support of Army Grant DAA D—29— 76—G—0108

CS 76—03 Maryanski and Wallentine. Implementation of a
Distributed Data Base System . 18 pages .
February 1976.

— ABSTRACT—

In thi s pa per we prese nt an ov er v iew of data base
management systems (DBMS) , the motivation for distributed
data base systems (DDBMS), a set of possible network
topologies served by the distribution, the mechanisms
necessary to integrate (and communicate between) the DDBMS
sys tem e lements  w h e n  d i s t r i b u t e d  across a nonhomogeneous  —

ne twork  of m i n i c o m p u t e r s,  and some i m p l e m e n t a t io n  d e t a i l s  on
a prototype system . The current prototype distributes the
DBMS and application program function across an IBM 370/158
and a (minicomputer) NOVA 2/10. In the near future, a third
mach ine, the Interdata 85 mini computer , will be added to the
network. The DBMS used is a network system as specified by
C0DA SyL. The emphasis in this paper will be on the problems
posed by the heterogeneous machines and the intertask
(processor)  c o m m u n i c a t i o n  sys t em which is utilized in the
distribution of data, programs , and control.

CS 76—08 Fisher , Maryansk i and Wallentine . Evaluation ~~
Conversion to a Back—End Data Base t4anaqement
system . 18 pages. March 1976. Published in
the proceedings of the ACM Conference, 1976.

—ABSTRACT

This pa per prese nts a met hodolo gy for and a n eval ua tion
of the feasibility of converting a typical data proce- sing
sys t em to a d a t a  ba se  managemen t  s y s t e m . This  m e t ho d o l o g y
is applied to a particular sys tem. The data base ma nagement
s y s t e m  under  e v a l u a t i o n  uses a back—end minicom9uter to
per fo rm the d a t a  m a n a g e m e n t  f u n c t i o n s . The evaluation is
made in terms of changes in s y s t e m  r e s o u r c e s,  p r o g r a m
requirements, and human factors. The results of this study
provide considerable insight into the prob lem of conversion
to a data base management system and suggest guidelines for
the evaluation of any proposed data base conversions .

~~~~~-- 1~ 
- -

~~~~
—-—-

~~~~~~~~~
-

- ~ - -~ ~~~~~~~~~~~~~~~~~~~ ~~~~~~- —~~~~~

—-

~~~~~~~~~~~

- - 

1

Page 4 4

CS 76— 11 Maryanaki, Fisher, Wallentine, Calhoun and

Sernowitz. ~ Minicomputer Based Distributed
Data Base System. 20 pages. April 1976.
Published in the proceedings of the NBS—IEEE
Trends and Application Symposium : Micro and
Mini Systems, May 1976. j

—ABST RACT—

This paper described a data base managemen t sys tem
under development at Kansas State University , intended for
use in a network composed primarily of minicomputers . The
repor t presents  a de sc r ip t ion  of the computers forming the
network and their intercomputer communication system . The
data base manag ement system is a network type as specified
by CODASYL. An extension of a CODASYL—type DBMS to
multicompute r configurations is presented and several DBMS
network topologies are discussed. We then conclude with a
discussion of a completely distributed data base network.

CS 76—12 Maryanski and Wallentine . A Simulation ~~~~~~
a Back—End Data Base Management ~~~st ern . 24
pages. April 1976. Published in the
proceeding s of the 7th Annual Pittsburg
Modeling and Simulation Conference, April 1976.

—AEST RACT

This paper presents a simulation model of a back—end
data base management system (DBMS) . The purpos e of the
model is twofold: to determine the effect of several
configuration parameters on system per forma nce in a back—end
DBMS in general and to accurately describe a particular
back—end  DBMS i m p l e m e n t a t io n .  The e s s e n t i a l  concep t s  of
back— end data base m a n a g e m e n t  s y s t e m s  are  descr~ bed in this
report. A discussion of the working s of an implementation
of a back— end DBMS is also provided . GPSS has been used to
model the back—end DBMS. Simulation studies are being
conducted to study the effects on changes in various
parame ters on system performance. Resul ts are given on the
r e l a t i o n s h i p  be tween  such  p e r f o r m a n c e  f a c t o r s  as the number
of DB M S t a s k s  processed and CPU u t i l i z a t i o n  ve r sus  the
system parameters of levels of multiprogramming , task switch
times, type of machine interconnection, and line speeds.

- -



Page 45

Cs 76-13 Maryanski. Languag_e Specification 
~~~ .~~

Distributed Data Base Management System. 76
pages . May 19 7 6 .

—ABSTRACT- -

This document is a proposal f o r a d i s t r ib u t e d d a t a base
management sys tem (D D B M S) . It r e p r e s e nts th e f irs t pha se of
the DDBMS design portion of Grant 108. It is very important
to note that this document is a proposal and also that the
next phase of the design is the development of the
functional specifications of the DDBMS . Therefore, it is
essentia l that all interested parties respond with any
corrections , additions , deletions, suggestions , etc . by July
1, 1976.

As it can eas i ly be observed f r o m th i s r e p o r t, the
impl ementation of the complete D D B M S will be an enormous
task. Estimates range from 7 to 20 up to 50 person years of
effort. A natural course is to design a full scale system
and proceed with the implementation in an incremental
manner . The implementation of a minimal prototype should be
achieved as soon as possible for purposes of feasibility
studies, testing , and morale. Another important
consideration is that based upon the current resource
alloca tion to the data base portion of Grant 108 , it is
unlikely that the Specia l Features described in Chapter VIII
can be includ ed in the initial DDBMS design.

CS 76—14 Maryanaki. Memory Management in a Distributed
Data Base Management ~~ stem . 48 pages. October
1976.

- AEST RACT-

A memory management scheme which incorporates an
ad d i t± on a l level of memory in to the traditional
primary—secondary s to rage hierarchy is proposed for
utilization in dis tributed data base management systems . In
this sch em e, the memory of the back—end processor is used as
an a d d i t i o n al memory b u f f e r . An op t imal t h r e e — l e v e l memory
ma n ag ement a l g o r i t h m is p r e sen t ed along w i t h an analy s is of
its cost in terms of page replacement. The expected
performa r~ce improvement over the optimal alqorithm for a
t w o — l e v e l memory s y s t e m is determined . The performance
b e n e f i t s of the three—level memory manag ement are applicable
to most distributed processing systems.

- - -_ _

~

—.————-—— -.—.. ~~~-~~ —--——‘,,~~~ _ _ F •~ - _~~~~~~~~~

Page 46

CS 76—16 Neal, And erson, Ratliff, and Wallentine. ~~~
Implementation of Concurrent PASCAL = A
Reference Manual. 74 pages. December 1976.

—ABSTRACT—

This manua l ~.s intended to serve in the following ways:

1. As an overview to the implementation approach
2. As a ~~~ference manua l for

- the SOLO user on the
8/32

3. As a reference manua l for the Sequential PASCAL
programmer using SOLO

4. As a configuration guide to the SOLO systems
maintenance personnel

This manual contains a description of the
implementation of Concurrent PASCAL as a task under OS—32/MT
on an Interdata 8/32 computer. Further, it contains a
simple introduction to using SOLO under 05—32 /MT .. a set of
device assignments and completion codes, an overview of the
SOLO console operation, a programmer ’s reference manual to
the interface between Sequential and Concurrent PASCAL
prog rams, and an introduction to the Sequential PASCAL
program prefix. it contains the information on how to
reconfigure the KERNEL of Concurrent PASCAL and the virtual
disc of SOLO in terms of its depend ence on OS—32/MT.
Finally, the appendices includ e an annotated prefix , the
SOLO utility manuals, a description of the compiler cross
referenc e ~mplementation , OS— 3 2/MT utilities supporting the
PASCAL system , and packaging ~nformataon .

CS 76—17 Wallentine and McBride. Concurrent PASCAL
Tutorial. 134 pages. December 1976.

—ABST RACT—

Concurrent PASCAL was designed and implemented by Per
Brinch Hansen as a language to use to implement operating
systems. The definition of the language is contained in
referenc e (PBH 75B). An introductor y example of its use is
in r e f e r e n c e L P B H A J . An excellent example of the utility of
the language is the implementation of the SOLO operating
system [PBH 76] as a Concurrent PASCAL program. This
document contains a set of smaller (but complete) and more
d.ivers e application s of the language. The utility of
Concurrent PASCAL is tested in a p p l i c a t i o n s s u c h as p r i o r i t y
s c h e d u l i n g of r e s o u r c e s , m e s s a g e s y s t e m s , t he d a t a base
r e a d e r / w rit e r p rob l em d a t a l i nk cont ro l p r o c e d u r e s, and
network interprocess communication systems . Evaluations of
seve ra l good and n o t — s o — g o o d l an g uage f e a t u r e s a re inc l uded .

— —
~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- -~ .-.— -—- -—~~ -.--- —-— --.- .~~ -

Page 47

CS 76—18 Hankley and Rawlinson . Sequential PASCAL
Supplement for FORTRAN Programmers: A Primer of
Slides. 161 pages .  December 1976.

-ABSTRACT-

This report  - consists  of pa i rs  of s l ides which  a re
designed to serve as an ins t ruc t ional aid to int roduce
programmers, who can read FORTRAN , to Sequential PASCAL as
runn ing  at  KSU. (Sequential PASCAL is a v a r i a n t  of PASCAL
which was d e f i n e d  by P .  Brinch Hansen  and A .  Har tman  at
C a l i f o r n i a  I n s tit u t e  of Technology . SPASCAL d i f f e rs f rom
Wirch ’s d e f i n i t i o n  of PAS CAL in bo th  res t r ic t ions  and
e x t e n s i o n s . ]  The s l ides  can be used as handou t s  or
transparencies for an i n t ens ive  s e m i n a r  on PASCAL , or they
can be used for  s e l f — s t u d y .  However ,  t he re  is m i n i m a l
(a lmos t  no) n a r r a t i v e, onl y l i s ts  of f e a t u r e s  and notes and
sample programs . Typica l  FORTRAN programs are  presented
along w i t h  the corresponding Sequen t i a l  PASCAL program . The
examples  are p resen ted  in a sequence  des igned  to a l low the
programmer to quickly grasp the similarities and differences
between the two languages . Differences are emphasized
through the use of illus trations and warning statements .
Programming examples are also used to introduce the user to
Sequential PASCAL ca pabilities which cannot be duplicated in
FORTRAN.

CS 76— 19 Neal. An Architectural Base for  C o n c u r r e n t
PASCAL . 126 pages. July 15, 1977.

—ABSTRACT—

The programming language Concurrent PASCAL in its
design and i m p l e m e n t a t i o n  has  exerted a s u b s t a n t i a l
i n f l u e n c e  upon the f i e ld s  of opera t ing  sys tems  and
concurrent  p rogramming . The work reported in t h i s  thes i s
extends that influence to the field of computer architecture
by analyzing the model of concurrency which supports - -Co nc u r ren t  PASCAL . As b a c k g r o u n d  to the  a r c h i t e c t u r a l
model, three implementations of Concurrent PASCAL are
discussed , i n c l u d i n g  a de sc r ip t i on  of the process of
t r a n s p o r t i n g  an implementation from one computer to another
w i t h  i t s  a s soc ia t ed  i n s i g h t s  and p r o b l e m s .  D e t a i l s  of the
a r c h i t e c t u r a l  base i n c l u d e  d i scuss ions  of t he  con t ro l  and
da ta  mod els .  The cont ro l  model  d i s c u s s i o n  cen te r s  a round
state transitions and scheduling. The data model presents a
h a r d w a r e  s t a ck  m e c h a n i s m  fo r  the e x e c u t i o n  of C o nc u r r e n t
PASCAL programs, wh ich is also s uitable for other
block—structured lang uages within the framework of the
concurrent processing .



a- — - ~~~ --—- ~ -

Paqe 48

CS 7 — 22 Maryanski, Fisher and Wallentine . A

User—Transparent Mechani sm f o r  t h e  D i s t r ib u t i o n
of a COD ASY L Data Base Mana~~~nent ~~ stem . 3 b
pages. December 197b .

-ABST RACT-

~. s o f t w a r e  o r g a n i z a t ion  is presented to provide for
data definition and manipulation in a distributed data base
management system . With the mechanism for distributing the
data base propos ed here , the physical location of the data
is t r an s p a r e n t  to the user program. A Device Media Control
La nguag e ~.s specified for the assignment of control of and
access tu a data base area to a set of processors.
Procedures for reassig nment of the control and access
functions as well as the t r an s  f e r  ~~f d a t a  b e t w e e n  processors
are provided. The basic hardware and software requirements
fo r  a c o m p u t e r  n e t w or k  c a p a b l e  of s up p o r t i n g  a d i s t r i b u t e d
d a t a  base  m a n a g e m e n t  s y st e m  a r e  d i s c u s s e d  a long  w i t h  a
specification of the software required for a processor in a
distributed data base ne twork.

CS 77-1 Maryanski . ; Survey  of Developments !~Di s t r i b u t e d  Da ta B a s e  M an a ~~~men t Systems . 3b
pages . January 1977. To be published in I E E E
Computer. February 1978.

— ABSTRACT—

Recently we have witnessed the advent of general
purpose data base managt~ment systems and im p o r tan t  a d v a n c e s
in c om p u t e r  n e t w o r k s . The com b i n a t ion  of th e  two
t e c h no l oq i e s  to p r o d u c e  d i s  t r ib u t e d  d a t a  ba se  m a n a ~~em en t
system s should be the next se-inuf icant step in commercial
s y s t e m s d e v e l o p m e n t .  A comp letely generalized distributed
data base management system would  r e s id e  on a heterogeneous
computer network with different data base systems available

~t v a r i o u s  p r o c e s sor s .  C o m m u n i c a t i o n  and d a t a  transter
would  be p o s s i b le  b e t w e e n  a n y  node s  in t h e  n e t wo r k .  The
realization of this goal is still several years in the
f u r t u r e .  H o w e v e r ,  c on s i d e r a b l e  p r oj r e s s  in t h e  a r e a  of
aistributed data base sys tems has been made in both academic
and industrial environments.

This report described the principal problem areas in
distributed data base manageme nt system development .
Distributed data base systems share many design p r o b l e m s
with both sing le machine data base sys tems and compu tini
networks, as well as introducing several new dilemmas.

R e c e n t  r e se a r c h  in these problem areas is presented to

I
, ~~~~~

- - - — —  - ~~~~~~~~~~~~~ 
- 

~~~~


—~ — ~~~~~~~~~ --
~~~~~~~~~~~~~~~~~~

Page  4 9

prov ide a picture of the s t a t e  of the  a r t  of d i st r ib u te d
data base development. In a d dit i o n .. t he  c u r r e n t  s t a t u s  of
the da ta base industry with respect to distributed
processing is evaluated by reporting the current projects
and future plans of selected (anonymous) data base v e n d o r s .

CS 77 — 2 M ar y an s k i .  A Dead lock  P r e v e n t i o n  A l g o ri t h m  for
D i s t r i b u t e d  D a t a  Base Management ~~~stems . ~~ 7
pages .  Februa ry 1 9 7 7 .

-AB STRACT-

The problem of dead lock  in d i s t r i b u t e d  d a t a  base
m a n a g e m e n t  is a n a l y z e d  in t e rms  of p e r f o r m a nce e f f e c t s  of
p o t e n t i a l  dead lock  h a n d li n g  s c h e m e s .  The  p e r f o r m a n c e
t r a d e o f f s  of dead lock  d e t e c t i o n  and dead lock  pr ev e n t~~on f o r
d i s t r i b u t e d  d a t a  base  m a n a g e m en t s y s t e m s  are  compared .
Since the r u n — t i m e  ov erhead  in dead lock  p r e v e n ti o n  is
p ro j ec t ed  to be less t h a n  f o r  deadlock  d e t e c tio n,  an
a l g o r i t h m  f o r  p r e v e n tin g  dead l ocks in d i s t r i b u t e d  d a t a  base
sys tem s is d e ve l o p e d .  The c r i t i c a l  i n f o r m a t ion  f o r  t h e
dead lock prevention algorithm is ma i n t a i n e d  in a s h a r e d
record list. The shared  record l i s t  conta ins a l l  s h a r e d
access  record s for  a se t  of t a s k s .  Shared  records  l i s t s  a r e
m a i n ta i n e d  d y n a m i c a l l y  by the  r u n — t i m e  s y s t e m . A proo f t h a t
the  a l g o r i t h m  p r e v e n t s  deadlocks  in  a d i s t r i b u t e d  d a t a  base
m a n a ge m e n t  sy s t em is provided a l o n g  w i t h  a c o m p r e h e n siv e
e x a m p l e .

CS 7 7 — 4  W a l l en t i n e ,  Ij ank l e y , An d e r s on ,  C a l h o u n  and
M a r y a n s ki .  Overview of 

~~~~~~~~ 
Des ign of the ~1I.’-1 CS

N e t w o r k A r c h it e c t u r e . 142 pages . December 30 ,
- 19 7 6 . —

- B STRACT-

The b a si s fo r M I M I C S (M I n ~~— M i c r o C o m p u t e r S y s t e m) is
the u t i l i t y of both m i n i — and m i c r o c o m p u t e r s ~ n t h e s u p p o r t
of a dis t r i b u t e d d a t a base s y s t e m . The goa l of the research
is development of a prototype M I M I C S on h e t e r o g e n e o u s
c o m p u t e r s . T h i s repor t doc u m e n t s our a p p r o a c h to the d esi ~j n
o f MIMICS ~n the a r e a s o f — —

1. m e c h a n i s m s f o r ac c e s s i n g d a t a in t he n e t w o r k :
2. hardware interconnection facilities :
3. network in t e r p r o c e s s

-
(message) communication

- - - -

~

-

~

- ~~~~~~~~ ~~~~~~~~~~
-

Page 50

sys tem ; and
4 . i m p l e m e n t at i o n a p pr o a c h .

The s t r uct u r e of t h is r e p o r t is f i r s t to g iv e a n
overv iew of the M I M I C S a r c h i t e c t u re . We then p r e sen t the
r e s u l t s of our r e sea r ch into d e s i g n considerations in a
d i s t r i b u t e d d a t a base sy st em . This is fo l lowed by an
overv iew of the m e s s a g e sy s t em (n et w o r k i n t e rp roces s
c o m m u n i c a t i o n s y s t e m) in MIMI CS and d e t a i l s of the M I M I C S
hardware a rchitectu re which we have developed for large
ca pac i ty c o m p u t e r — t o — c o mp u t e r (m e m o r y — t o — m e m o r y) data
t r a n s f e r . F i n a l l y , we p resen t our ap proach to
implementation . We discuss the structure of the
imp l e m e n t a t i o n of the d e s i g n , the p rope r t i e s of t h a t
structure, our approach to portability of systems, and some
concepts of the system s implementation language (Concurrent
PASCAL) .

CS 77—5 Maryanski and Fisher. Roll—back ~~~ Recover.~ ~~
Distributed Data Base ~~ stems . 19 pages.
F e b r u a r y 1 9 7 7 .

—ABSTRACT-
-

One of the m a j o r obs tac les to the w idesp read
development and utilization of distributed data base
manag ement s y s t e m s is the lack of an e f f i c i e n t r ecovery
t e c h n i q u e . A me thodo log y is p r e s e n t e d he re fo r r e c ov e r y of
d i s t r i b u t e d d a t a b a s e s. The c e n t r a l o p e r a t i o n of the
recovery technique is rollback of a d a t a base a p pl i c at i o n
t a s k on the processor wh ich c o n t r o l s access to the d at a .
The r o l l b a c k p rocedure r e s to r e s the data base to its
orig inal s t a t e p r io r to the ex e c u t i on of the application
t a s k and d e t e r m i n e s the set of applications tasks which may
h a v e been e f f e c t e d by th a t t a s k . Tasks t h a t h a v e not
opera ted upon d a t a a l t e r e d by t a s k s be ing ro l l ed back a r e
not a f f e c t e d by the p r o c e d u r e . The r o l l b a ck p r o c e d u r e
attempts to minimize the the tim e and space requirements for
recovery .

~s 77—7 1’laryanski. Performance ~~ Multi—P~~~~~~~orBackend D a t a Base ~~~s te m s. 17 pag es. AprIT
1977. Published in proceeding s of the
Conferenc e on Information Science Systems , The
John H o p k i n s U n i v e r si t y , B a l t i m o r e , M a r y l a n d ,
April 1977.

-
I

L - — ~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - -- -- - - -- - -

Page 51

-ABST RACT

The r e su l t s of a s i m u l a t i o n s t u d y i n t ended to d e ter m in e
the c i r cums tances under wh ich i t is b e n e f i c i a l to opera te a
da t a base m a n a g e m e n t sys tem w i t h a m u l t i— p r o c e s s o r backen d
are presented . The bas ic concept of b ackend d a t a base
management sy s t ems and m u l t i — p r o c e s s o r backend sy s t ems are
provid ed as backg round m at e r i a l . The general s t r u c t u r e of
the s i m u l a t i o n model wh i ch has been implemented in GP SS is
ou t l ined . The r e s u l t s of the s tudy indica te t h a t the amount
of CP U a c t i v i t y r equ i r ed by the da t a base m a n a g e m e n t sys tem
is a d e t e r m i n i n g f a c t o r with respect to the need for a

• mu l t i—proces so r b ack end .

CS 77—8 Fisher and Maryanski . Des .~ g~ Considerations in
D i s t r i b u t e d Data Base Management Systems. ~~

H ~ pages . A p r i l 1 9 7 7 .

-ABST RACT-

With the advent of Data Base Management Systems (DBMS)

—
and associa ted f a c i l i t i e s (d a t a d i c tion a r i es , query
l a n g u a g e s , repor t w r i t e r s . e t c .) , the task of d a t a
o r g a n i z a t i o n, m a n a g e m e n t , and s to rage has bee n g iven to a H
select g r o u p of s pe c i a l i s t s . These spec i a l i s t s (t h e D a t a
Base Administrators (D B A) p rov ide the nec essary cont ro l ,
logging, and access information and s o f t w a r e to the p r o g r a m .
Such a c t i v i t y r e l i e v e s the programmers of t hi s overhead
f u n c t i o n a l l o wi n g them to c o n c e n t r a t e on the neces sa ry
m a n i p u l a t i o n s .

This paper focuses on some a l t e r n a t i v e s w i t h r e spec t to
a DBMS in terms of a c e n t r a l i z e d v e r s u s d e c e n t r a l i z e d
en v i r o n m e n t . The first section of this pa per deals with the
co nc e pts and t rad e o f f s i nvo lved in c on s i d e r i n g the two
e n v i r o n m e n t s . The second sec tion of the paper t h e n dea ls
w i t h probl ems w h i c h a r e encoun tered in a d i s t r i b u t e d d at a
base m a n a g e m e n t s y s t e m . These problems i n c l u d e d e a d lo c k ,
rollback and reco very, d a ta conve rs ion, redunda ncy, and
communication and operating system requirements for
e f f e c t i v e d i s t r i b u t i o n.

CS 7 7 9 Neal and Wallentine . Ex~~~rience ~~ Porti~~
Concurrent PASCAL. June r9?,.

-ABSTRACT—

j

—..- -~ -~ -- --
__________________________ __________________________ __________________________ _______

- ~~~~~~~~~~~~ -~~~

Page 52

The process of t r a n s p o r t i ng Br inch Ha nsen s
i m p l e m e n t a t i o n of C o n c u r r e n t PASC A L to ano ther m i n i c o m p u t e r
is desc r ibed . Ap p l i c a b l e porting s t r a t eg i e s are d i scussed
with emphasis on the desig n decisions mad e for a specific
transpor tation. important desig n decisions include the use
of a v i r t u a l cod e i n t e r p r e t e r and i mp l e m e n t a t i o n in an
ope ra t i ng sys t em e n v i r on m e n t . The problems of th i s
transpor tation are illustrated with accompanying suggestions
for a more portable system .

CS 77—12 Fisher, Hankley and Maryanski. Porting Software
to M u l t ip l e t ’lini s: A DBMS C a se Study . 23
pages . December 1976.

—AB STRACT-

As minicomputer systems gain wider acceptance, the
objective of developing portable minicomputer software
becomes more compelling . Motivated by the task of making a
d a t a base m a n a g e m e n t s y s t e m a v a i l a b l e on d i ff e r e n t
m i ni c o m p u t e r c on f i g u r a t i on s , t h i s paper add res se s
m i n i c o m p u t e r s o f t w a r e por tabi l i ty . The need fo r d e s i g n i n g
por table s o f t w a r e is e m ph a s i z e d and g u i d e l in e s fo r such
des igns are developed . A l t e r n a t iv e op t ions a r e p r e s e n t e d
for the case study of synthesizing a portable data base
ma n ag ement sys t em , and the p a r t i c u l a r method s e l ec t ed is
d i scussed in d e t a i l .

CS 7 7 — 1 5 Rehme and W a l l e n t i n e . MIMICS ~a s yn ch r o r ,o u s)
Control Lthe Pro toco l . 103 p a g e s . December
1977.

-AB STRACT—

This repor t c o n t a i n s a d e s c r i p t i o n of the d e sig n and
implementation of an asynchronous control l i n e d r i v e r ~ n t h e
M I M I C S n e t w o r k . The d r i v e r h a n d l e s the f u n c t io n s n e c e s s a r y
for the transmitting and receiving of control information
between computers within a cluster of the network. In the
report we give a brief description of the M I M I C S n e t w o r k and
how the driver is used in that network. We then describe
the use of a s y n c h r o n o u s l ines f o r communication, why they
were chosen f o r t h i s p a r t i c u l a r p r o j e c t, and how they ar e
programm ed on the Interdata 85 and the In t e r d a t a 7 / 16 . I t
a l so t e l l s how t h e c o m p u t e r s were w i r e d t o g e t h e r to i n s u r e
that the interface boards could detect abnormal conditions

~~ L . - - -
~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 



- - — ~~~~~~~~~~~~~ — 
-
~~~ 

-
~~

Page 53

of the line . The implementation of the driver on the
intercata ma chines using assembler language anc PASCAL is
then p resen ted , f o l l o w e d by a s ummary of the work comple t ed
and som e extensions to conclude the report.

CS 7 7 — 2 7 Goodell . Cont ro l C o mp ut e r Local D r i ver Rout ines
in a Functionally Distributed Data Base

• Mana~~~ment Sys tem. 1977 .

-ABSTRACT-

The Functionally Distributed Data Base Management
System links computers in one geographic location together

4 into a cluster and then forms a network with r emote
(distant) clusters, provid ing a system where each machine in
the n e t w o r k opera tes in a s p e c i f i c c o m p u t e r a rea and each
d a t a base in t h e s y s t e m is ma naged by one s p e c i f i c m a c h in e .
To con t ro l t h i s n e t w o r k , a second , s m a l l e r c o m p u t er
(u l t i m a t e l y a m i c r o c o m p u t e r) is a ll~~ed w i t h each m ai n or
hos t compu te r in t h e s y s t e m . This control computer receives
and i ssues i n s t r u c t i o n s f rom and to the hos t compu te r or
o ther control compu te r s to ~1r rang e the movement of d a t a f r o m
the memory of one compute r to the memory of any o the r
computer in the n e t w o r k . This p r o j e c t descr ibed local
d r ive r rou t ine s w h i c h direct the hand wired log ic of local
data moving mechanisms . Included are detailed descriptions
of the actions required by each reques t and an explanation
of the software—hardware relationship.

CS 7 8 — 0 1 C a l h o u n . F u n c t i o n a l D e s c r ip t i o n of t h e M C ~
KSUBUS and Associated Hardware.

-AB STRACT

This document describes the overall functiona l
s p e c i f i c a t i o n s and ne twork a r c h i t e c t u r e of the h i g h — s p e e d
K S U B U S and a l l of the a s s o c i a t e d h a r d w a r e u n i t s : D i r e c t
Memory Access , D a t a ~Iover (Tra n s m i t t e r, R e c eiv e r , and
Transmitter/Receiver) , Remote Direct Memory Access, and
U n i v e r s a l Logic I n t e r f a c e . A d e s c r i p t i o n of each of the
buses comprising the KSUBUS is included. Data transfer
mechanisms and transfer ra tes are discussed .

An a p p e n d i x d e r i v e s the m a x i m u m d a t a t r a n s f e r on a
KSUBUS.

- --~~~~~~~~
—

~~~
--

Page  54

CS 7 8 — 0 2  ca l ho un .  D e t a i l ed  Desc r ip t i on  of M I M i ~~~
KSUBUS Hardware.

-ABSTRACT-

This document  g ive s  a d e t a i l e d  desc r ipt ion  of t he
K SU B U S  and each of i ts  a s s o c i a t e d  h a r d w a r e u n i ts : D i r e c t
Memory Access,  D a t a  Mover  ( T r a n s mi t t e r,  Rece ive r ,  and
T r a n s m i t t e r / R e c e i v e r ), Remote  D i r e c t  Memory Access,  and
U n i v e r s a l  Logic In t e r f a c e .  The D i g i t a l  Desig n Sys tem is
also descr ibed .

Each  module  of every  h a r d w a r e  u n i t  des igned a t  Kansas
Sta te  U n v e r s i t y  is descr ibed in d e t a i l.

CS 7 8 — 0 3  Ha n k l e y ,  W a l l e n t in e ,  et a l .  M i M I C S  Mess~~a~
~1stem : I nt r o d u c t io r .  and U ser ’s G u i d e .

-ABSTRACT-

MIMIC S ( M I n i —  M i c r o C o m p u t e r  S ys t e m )  is a model  f o r  a
n e t w o r k  of compu te r s , poss ib ly  l a r g e  m a c hi n e s , b u t  no rmal l y
m~~nj c om p u te r s .  C omm u n i c a t i o n s  f u n c t i on s  w i t h i n  the n e t w o r k
a re  des igned  to be o f f — l o a d e d  i n to  m i c r o c o m p u t e r
communica tions controllers. The MIMICS network was designed
to be able to support quite arbitrary configurations of
distri buted data bases. The MIMICS structure was intended
to eventually incorporate a distributed network operating
sy s t e m  ( D N O S )  ; h o w e v e r ,  t h e  pr o t o t y pe des ig n a nd
implementation includes just a network message handling
s y s t e m .  The m e s s a g e  s yst e m  ( M B )  c ons i s t s  of d i s t r i b u t e d
con t ro l  s o f t w a r e  and  h a r d w a r e  w h i c h  a l l o w s  coope ra t ing  use r
tasks, anywhere in the network, to send and receive large
blocks  of t e x t  d a t a  u s ing  very  s i m p le o p e r a t i o n s  and
protocols. This report presents a guide for users of the
message system . It is written assuming a “typical’ machine
and u s i n g  PASCAL—like nota t ions to describe data structures
and parameters. Supplemental guides are available for users
on the :nterdata 8’32 [DNN 76B) and IBM S/370 [RAY 77).
companion r epo r t  [ H A W  7 8 ]  p rov ides  a g u i d e  to t h e  d e s i g n  and
CPASC A L i m p l e m e n t a t i o n  of  t he  m e s s a g e  s y s t e m . The  s u m m a r y
r epor t  f o r  the  project presents an overview of  a l l  of  these
r e l a t e d  d o c u m e n t s  ( W H C  7 7 ]  . The guid e is o r g a n i z e d  in f o u r
par t s . S e c tio n  two p r e s ent s  t h e  m aj o r  f e a t u r e s  of the
M I M I C S  d e s i g n .  These  h e l p  t he  u s e r  to u n d e r s t an d  the
sy st em . b u t  t h e y  a r e  not a b s o l u t e l y  n e c e s s a r y  to t~~e rn OS~~
n a i v e  u s e r s .  Sec tion  t h r e e  p r e s e n t s  t h e  a c t u a l  n a n ~~n .
c o n v e n t i o n s  an d e x p l a n a t i o n s  of how t h e  m e s s a g e  s y s t e m  ~~ to
be used . Se c t io n  f o u r  t a b u l a t e s  t h e  speci f i c  cal  l ir i g f~~rn~
needed t~ u~~e t h e  m e s s a g e  s y s t e m .  S.~ct ~~on f i v e  ~ r e s e rt ~
s c e n a r i o s  w h i c h  i l l u s t r a t e  d i f f e r en t  k i nd s  o f  use  of t h e

I
~~~~~ k I - - .- -JL~~~~ 

“
~~~~~~~ ~~~~~~~~~~~~ .~~~~~~~ -_________



F- 
- -

~~ 

— 
_ j

~J ~•_J--T:T~~
:____

~ 
- -

P a g e  55

message  s y s t e m .

CS 78—04 Hankley, Wallentine, et al. MIMICS Message
System : A r c h i t e c t u re  and I m p l e m e n t a t i o n.

— A B S T R A C T —

This report contains the functiona l and implementation
d o c u m e n t a t i o n  for  the M I M I C S  message  sys tem . An ove rview of
the s tr uc ture  ( i n  Conc u r r en t  P.k SCAL) and da ta  f l o w  is
presen ted .  F u n c t i o n a l  s p e c i f i c a t i o n s  f o r  each  module  in the
s y s t e m  a re  g i v e n .  This  is followed by detailed algorithmic
s p e c i f i c a t i o n s. C o n c u r r e n t  PASCAL code for  t he  s y s t e m  is
a t t a ched as an a p p e n d i x .

CS 7 8 — 0 5  R a t li f f .  Im p l e m e n t a t i o n  of the  M I M I C S  Packe t
Swi tch .

-ABSTRACT-

The MIMICS (MIni— MicroComputer System) is a general
purpose  network sys t em developed a t  Kansas State Unviersity .
The s t r uc t ure of M I MICS is such that high—speed data
t r a n s f e r s  among m embe~’s of a ‘c l u s t e r” a r e  c o n t r o l l e d  by the
c l u s t e r  sys tem , w h i l e  t r a n s f e r s  be tween  d i s t a n t  mach ines
u t i l i z e  common c a r r i e r  h a r d w a r e  c o n t r o l l e d  by the  ~p acke t
swi tch . ” This  repor t documen t s  the  impl e m e n t a t i o n  of th i s
pa cket swi t ch . C en t r a l  to the  u n d e r s t a n d i n g  of t he  packe t
swi t ch  i m p l e m e n t a t i o n  a re  the concepts  of communica t ion s
across a logical  line , not  p h y si c a l,  and t he  concept of a
logical line wind ow for ea sy recovery and flow con trol
across a l l  p h y si c a l  l ines  w h i c h  m a k e  up  a logica l  l ine . The
packet switch is responsible for buffering incoming and
ou tgo ing  packets, r o u t i n g  p a c k e t s  based on destination
informa tion in the packet, and s chedu lin g  pa ckets  based on
their priori ty . Enforcement of flow control and buffer
alloca tion ins ures that no one task can monopolize all of
the buffers and no one class of packets can completely
preempt transmission of other classes of packets . The type
of common carrier hardware used, line discipline, packet
for ma t and protocol  used a re  e x t r e m e l y  we l l  i so l a t ed  and —

re ly  l a r g e l y  on c a p a b i l i t i e s  s u pp l i e d  by t h e  op er a t i n g
sys tem on w h i c h  the  M MICS s y s t em  is to r u n .



Page 56

CH APTE R 8

8 . 0  Projec t  S ummary

The prototype message system software was w r i t t e n  in

Conc ur ren t  PASCAL . Its documentation consists of two

overview doc uments  [CS 7 6 — 0 3 ]  [CS 7 6 — i l ] ,  a des ign  document

(Cs  7 7 — 0 4 ] ,  a us er ’s man u,al (CS 7 8 — 0 3 ) ,  an a r c h i t e c t u r e

document  [CS 7 8 — 0 4 ] ,  and two f u n c tional specif icat ion

reports [CS 7 8 — 0 5 )  ( C S 7 7 — l 5 ) .  A 9 — t r a c k  tape  con ta ins  the

s o f t w a r e  in v i it u a l  code s~~ ich can be run  on an I nt e rda t a

8/32  or 7 / 3 2  under  O S — 3 2 / M T  or on a PD P— l1 w i t h  no ope ra t ing

sys t em s upport . ç

Since the use (adapability) of Conc urrent PASCAL is

enhanced by the use of the SOLO operating system, a 9—track

t ape  con ta ins  the SOLO sys tem 1 the “ ported ” ~/ 3 2  s y s t e m,  the

“ported ” 16—bit compilers, and spooling subsystem . A

tutorial on Sequential PASCAL and one on Concur ren t PASCAL

are included. Two docum ents on the “porting ” of Concurrent

PASCAL are also included .

The construction spe~~ifications for the KSUBUS

prototype (and all of its associated inter faces) are

presented in r e f e r e n c e  (CS 7 8 — 0 2 ]  . A user ’s m a n u a l  [CS

7 7 — 2 7 ]  and a bas ic  a r c h i t e c tu ~~e gu ide  (CS 7 8 — 0 1 ]  a re

included .

A 9 — t r a c k  t ape  is provided w h i c h  c o n t ain s  t he  proto type

d i s t r i b u t e d  d a t a  bas e s y s t e m .  El ’e~ren (11) t e c h n i c a l  r epor t s

have  been pub l i shed  which  i so l a t e  p e r f o r m a n c e

characteristics and mechanisms to achieve a distributed data

base s y s t e m .
9

In summary , twenty—six reports (and three progress

___I _ _ _ _ ___ —~----~— 
-
~~~~

--
~~~~~~~~~~~

-
~~~~~
- “

-~~~.--‘ —-
- - - - --—- -~~~~~ -~~~~~~ ---

Page 57

repor ts) were- produced wi th in the scope of th i s g r a n t . A

proto type ne twork message sys t em was developed which

consists of 5000 lines of Concurrent PASCAL code which

genera tes 50K by tes of machine code. A prototype high—speed

bus was dev~~1oped which consists of the control i n t e r f ace,

the bus , and th ree local da ta movers . The s o f t w a r e is

ava i l ab l e on magne t ic tape .

- ~~~~~~~~~~~- — - L:.~ —— ___

- - --- .~~~~-~~~~~~ ~~~~~~
-—

-

1

Page 58

Appendix A - -

Articles and Publications

Technical Reports , KSU

Abs t rac t
Number Page A u t h o r s and T i t l e s

CS 76—03 42 Maryanski and Wallentine .
I m p l e m e n t a t i o n of a D i s t r i b u t e d Da ta
Bas~ ~~~stem . 18 pages . F e b r u a r y
1976.

CS 76—08 42 Fisher, Maryanski and Wallentine.
E v a l u a t i on of Conversion to a
B a c k — E n d D a t a M a n a g e m e n t Sys tem. 18
pages. Published in the proceedings
of ACM National Conference . October
1976.

CS 76— 11 43 M a r y a nsk i , Fi s h e r , W a llen t i n e ,
Calhoun and Sernowitz. A
Minicomputer Based Distributed Data
Base ~y st em . 20 pages. April 1976.
P u b l i s h e d in the proceed ings of the
NBS—IEEE Trends and Application
Symposium : Micro and Mini Systems.
May 1976.

CS 7 6 — 1 2 43 M a r y an s k i and W a l l ent i n e . A
Simulation Model of a Back—End Data
Base Man~ gement System. 24 pages .
April , 1976. Published in the
proceedings of the Seventh Annual
P i t t s b u r g Mode l ing and S i m u l a t io n
C o n f e r e n c e . A p r i l 1976 .

CS 7 6 — 1 3 44 M a r y a n s k i. L a n g u a g e ~ p eci f i c a t io n
for a D i s t r i b u t e d Da ta Base
Mana ~~~ment Sys tem . 76 pages . May
1976.

CS 76—14 44 t4aryanski. Memo~~ Management in a
Distributed Data Base Management
System. 48 pages. October 1976.

CS 7 6 — 16 45 N e a l , Anderson , R a t l i f f and
Wallentine. KSU implementation of
Concur ren t PA SCAL = A R e f e r e n c e
M a n u a l . 69 p a g e s . December 1 9 7 6 .

Cs 7 6 — 1 7 45 W al l en t i n e and M c B r i d e . C o n c u r r e n t
PASCAL — A T u t o r i a l . 129 pages.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ .



Page 59

December 1 9 7 6 .

CS 76—18 46 Hankley and Rawlinsori . Sequential
PASCAL Supp lemen t  f o r  FORT RAN
Programmers: A Primer of Slides.
145 pages. December 1976.

Cs 76—19 46 N e a l .  An Ar c h i t e c t u r a l  Base ~~~
Concurrent  PASCAL . 126 pages . Ju ly
15, 1977 ~~~

Cs 76—22 47 Maryanski, Fisher and Wallentine . A
User— Transparent Mechanism for the
Distribution of a CODAS YL Da ta  Base
Management System. 34 pages .
December 1976.

CS 77—1 47  Ma r y a n s ki .  A Survey  of Developments
in Distributed Data Base Management
Systems. February 1977.

CS 77—2 48 Maryanski. A Deadlock Prevention
Algor i t hm fo r  D i s t r i b u t e d  Da ta  Base
Man a3ement  S~~~tems . F e b r u a r y  1977.

CS 7 7 — 4  4 8  W a l l en tj n e ,  H an k l e y ,  Anderson,
Calhoun and Maryanski. Progress
Report  on Functionally Distributed
Computer Systems Development. 147
p a g e s .  December  1 97 6 .

CS 7 7 5  49 Maryanski and Fisher . Roll—back and
Recovery in Distributed D a t a  Base
Systems. 19 pages . F e b r u a r y  1977.

CS 77—7 49 Maryanski. Performa~~~e
Multi—processor Backend Data Base
Systems . 15 pages. April 1977 ,

CS 7 7 8  50 Fisher and Maryanski. Des±gn
Cons ide ra t ions  in Distributed Data

- 
Base M a n a g e m e n t  Systems . 19 pages .
A p r i l  1977 .

CS 7 7 — 9  50 Nea l  and W al ler it i n e . E x p e r i e n c e  in
Por t ing  Concu r r en t  PASCAL . June
1977 .

CS 77—12 5]. Fisher, Hank ley , and Maryariski.
Porting S o f t w a r e  to M u lt ~ p1e M i n i .  s:

~ DBM S Case S t u d y.  23 pages .
December  19 7 6 .

CS 7 7 — 1 5  51 Rehm e and W a l l e n t i n e .  M I M I C S
~~ synchronou~~ Control Line
Protocol. 103 pages. December
197 7.

— - ~~~~
——------ - -— --

~~~.~~~~~~~~~~~~~~
---———

~~~~~~~~~~~~~~

,, 
~~~~~~~~~~~~~~~~~~~~


______________ - - ~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ -,-,--

Page 60

CS 7 7 — 2 7 52 Good eli. Control Computer Local -
-

Drive r R o u t i n e s in a F u n c t i o n a l ly
- D ist r i b ut e~~ Da ta Base Management
- System . 1977.

CS 78—0 1 52 Ca lhoun . Func t i ona l Descr ip t ion of
the MIMICS K S U B U S and Associated
Hardware .

CS 7 8 — 0 2 53 Calhoun. Detailed Description of
th e MIMICS K S U B U S Har dware .

CS 78 03 53 Hankley, Wallentine, et al. MIMICS ~~-

Mes~~~ge System : Introduction and
User ’s G u i d e .

CS 78—04 54 Hank ley, Wallentine , et a1. MIMICS
Message Sys tem: A r c h i t e c t u r e and
Implementation.

CS 7 8 — 0 5 54 R a t l i f f . Imp lemen ta t i on of the
MIMICS Packet Switch. —

~~~~~
- 
~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~ 

—

-~~

Page 61

Appe ndix B

Reports

•
Date Subjec t

*

March 2 4 , 1976 Report of Month ly R e v i e w

Apr i l 21, 19~~6 Report of Monthly Review

May 20, 1976 Progress Report

September 1, 1976 Report of In process Review

-

Ju ly 1, 1976 Progress Repor t to AR O

J a n u a r y 27 , 1977 Progress Repor t to ARC
- Sept ~~nber 15, 1977 Report of In—process Review
-

J a n u a r y 3 0 , 1978 Fina l T e c h n i c a l Report to ARC

- - ~~~~~~~~~~~~~~~~~~~~~~~~~~

P a g e e2

Appe n d ix C

Tab le 1 V oca b ul ~~~~

Ln discussing t he M I M I C S n et w or k concep t s and

im p l e m ent a t i on , i t is e s s e n t i a l to e s tab l i sh c e r t a i n base

vocabulary . Several of these key words are explained in the

lis t w h i c h f o l l o w s . Each word h a s been graded u s i n g t h e

following scheme:

(1) means word is e s s e n t i a l fo r n e t w o r k u s e r s

(2) means word is needed f o r d isc u s sio n of

n e t w o r k concep t s

(3) word is related to network imp lementatior

(L~ ~e~ work
— an interconnected set of computers.

(1) MIM I C S — a ne twork desiqned to be implemented using

MIni— and MicroComputers , but also with lartier machines

in t h e n e t wor k : d e v e l o p e d at K S U u n d e r s u p p o r t f rom t h e

U.S. Army Computer Systems Command.

(1) connec ted — t h e n e t w o rk h a r d w a r e is s a id to be

co nn e c t e d i f i t is p os s i b l e fo r commun ica t io n to f l o w

f rom any one m a c h i n e t o a n y o t h e r ma ch i n e in t h e

n e t w o r k , e it h e r d ir e c t l y or in d i r e c t l y v i a

intermedidate machines; M I M I C S is in t ended t o be

connec ted .

two u se r t a sk s a r e s a i d t o be con n e c t e d i f

t h ey h a v e m u t u a I ly es t a b l is he d a “ ~~~ ic al co nn e c t i on ’

b y a p p r o p ri a t e mu tchinq MS CO~~NEC’r c a l ls : these tasks

may the n communicate using ~~ SENO and N~~_ RCV calls.-

(U ~~~er t a s k — an applicat -ion task in one of the net~~ork

h o st mach j r~~s t h a t c~~n mu n i c a tes to some o t h e r u :~~’r

— _ ~~~~~~- - -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~
- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

-


~~~~~~~~~~~~~~~

Page 63

task , li k e l y  in a di f fe rent  ma chine , u s ing  the message

s y s t e m .

( 1) message  sys t em — t h a t  s o f t w a r e / h a r d w a r e  p a r t  of MIMICS

tha t  suppor ts ne twork communc ia t ion  by user  t a sks :

basic message  sys tem command s are CONNECT , D I S C O N N E C T ,

SEND , and RCV ( rece ive)  ; basic message  sys tem func t ions

are rou t ing  of messages , p ac k e t i z i n g  messages  for

remote transmissions~ buffering of packets, handling of

line protocol for packets and messages, and

r econs t ruc t ion  of packe t ized messages .

( 2 )  remote — two m a c h i n e s  (or  user  t a s k s )  are  remote  if

comm u nc iat ion  be tween  them m u s t  t r a v e l  over low—speed

t e l e co m m un c ia tj on s  l ines  ( e . g . ,  2 4 0 0  baud ,

synch ronous); messages  be tween  remote  t a sks  a re

packetized by the message system , i.e., broken into

pa ckets ~~~~ transmission and recons tructed at the

receiving machine; opposite of local.
I

( 2 )  local — two user  t a sks  a r e  loca l if  either  ( i )  they  are

in the same mach ine  or ( i i )  they  a r e  in m a c hi ne s

connected by h i g h — s p e e d  “ d a t a  movers ” ( e . g . ,  2 m i l l i o n

bi t s  per sec) : messages between local tasks are ~~~

pa cketi zed , then  are  sen t  as a bloc k , m e m o r y — t o — m e m o r y

using the data movers ; each group of local mach ines is

cal l ed a c l u s t e r;  opposi te  of r e m o t e .

( 1) host  — any compute r  in the  n e t w o r k  w i t h  u s e r  t a s k s  in

it; warning——this differs from usual data base

te rminology as in a d i s t r i b u t e d  d a t a  base a p p l i c a t i o n :

both the  f r o n t — e n d  and back—end computers would be

ca l l ed  ne twork  h o s t s ;  in M I M I C S ,  hos ts m a y  be e i t h e r

_~ L ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -



Page 64

minicomputers or maxicomputers.

( 2 )  o f f — l o a d i n ~ — the removing of som e ope rat ing  sys tem or

language suppor t f unc tions from a host mac hine to an

al l ied  ded ica ted  processor:  the  mot iva t ion  for  th i s  is

t h a t  the  o f f — l o a d ed f u n c t i on s  can execu te  t r u l y

concur ren t ly  ( i . e .,  s i m u l t a n e ou s l y )  wi th  tasks  in the

host,  thus  g r e a t l y  im proving the performance of the

hos t;  in 4IMI CS ,  the  message  s y s t e m  is t y p i c a l l y

o f f — loaded in to  a commun ica t i ons  control (CC)

microprocessor:  in t h e  370 a r c h i t e c t u r e ,  the I/O

f u n c t i o n s  are o f f — l o a d e d  to specia l  c h a n n e l  cont ro l

processors.

( 2 )  CC — communica t ion  con t ro l l e r :  a microprocessor  used in

MIMICS fo r  o f f — l o a d i n g  the  message system from a host

mach ine .

( 1) messa ge — bas ic  u n i t  of n e t w o r k  c o m m u n i c a t i o n ;  copied

by the  message  sys t em f rom address  space of a sender

user task  in to  agreed  upo n p lace  in address space of a

receiver  use r  t a s k;  in MIMICS, messages  m a y  h a v e  two

components , (i) a command part (up to 128 by tes  of

d a t a)  and ( i i)  a d a t a  p a r t  (u p  to 6 4 K  b y t e s) ,  bu t

e i t he r  (not bo th)  of the  pa r t s  may  be n u l l .

( 2 )  r o u t i n g  — se lec t ion  of the  p a t h  be tween  two hos t

m ach in e s  over w h i c h  c o m m un i c a t i o n  wi3 . i f l - o w — — h e n c e ,  the

se lec t ion  of ( i )  w h i c h  ~n t e rm e d ia t e  m a c h i ne s ,  if any ,

are  par t  of t he  p a t h  and ( i i )  w h i c h  a c t u a l

comm un i c a t i o n  l i ne,  in case t h e r e  is more  t h a n  one,  to

use  be tween  any  two d i r e c t l y  connected  m a ch in e s :  in

MIMICS , each message  s y s t e m  ins ta nc e h a s  a r ou t e  t a b l e  

~~~~~ 
-~ - --i-.~~.~~ . -- -

~~~~~~ 

-



r ~

— - .  - 

1

Page 65

wi th en t r ies  <name _o f _a n o t h e r_ mach inc_ in_ the_ network :

line_ route_ to_ n e x t _ ma chine _ in~~the_ p a th >  w h e r e  the l ine

route  - inber is a logic l ine,  so t h a t  all p h y s i c a l

lines to an adjacent machine are used interchangeably.

(3 )  logical  l ine  — a gro up of parallel phys ical

communications lines which directly connec t two

a d j a c e n t  computers~ where  the  a c t u a l  p h y s i c a l  l ines are

used i n t e r c h a n g e a b l y ;  w a r n i n g — — t h i s  means  t h a t  packets

• can f low “ o u t — o f — s e q u e n c e, ” a l t h o u g h  user  t a sks  never

observe th i s  phenomenon .

(3) KSUEUS — a special multiplexed hardware bus , designed

by M. Calhoun at KScJ , to form a memory—speed connection

between a CC, one or two hos ts which are on the bus , an

XR— d a ta mover ,  and X— and R—data mover pairs which

• connect to o t he r  KSUBUS s in the  same cluster .

(1) cluster — in MIMICS, a group of network mac hines that

are al l  in t e rconnec ted  by h i g h — s p e e d  da t a  movers ;  the

da ta  par ts  of messages  move at  memory spe ed s f r o m  the

sender  task  to the  rece iver  t a s k .

( 3 )  c—node — a clus te r—node ;  the  g r o u p  of one or two hosts

which  are connected to the  same K S U B U S ; messages  can

move memory—to—memory  wi th in  • a c—node w i t h o u t

accompa ny ing  c lus ter protocol:  w a r n i n g — — i n  c o n v e n t i o n a l

n e t w o r k  t e rmino logy,  a n y  m a c h i n e  in t h e  n e tw o r k  would

be ca l led  a node ,  b u t  t h a t  is d i f f e r e n t  f r o m  the  c—node

concept .

( 3 )  d a t a  mover — a special “Autonomous Functional hardware

U n i t , ” d e s igned  at  K S U ,  to work  in conjunction with

o the r  m a tc h i n g  u n i t s  to move d a t a  b locks

- i ~~~~~~~~~~~~~~~~~~~~~~ ,- -~~~- --— -~~~-~~ ~~~—~~~~~
-

- -
-

-
- 

~~~~~- - - -  —--- -~~ . - ~~~~~~~ - - - - - - - - - -  . - -. -~~~~~~~~


— —--— ‘ -.— —~ —— - — . —
“—

~
‘—— ~~~~~~~~~~~~ - —•--—~~~ -

Page 66

memory— to — m emory at memory speeds between mach ines in

the same clus ter; XR— , X— and R—data movers; a data

mover can be enab led only by the CC on t he same K SU BtJ S

as the data mover .

(3) X R = data mover — device which copies a block of da ta

from one area to another w i t h i n ma ch ines on the same

K SU B U S , e . g . , hos t—to—hos t or h o s t — t o — C C or C C — t o — h o s t .

(3) X — d at a mover - device which “ t r a n s m it s ” a block of data

to an 9 — u n i t on a connected K SU B U S , whe re the source of

the da ta is e i t h e r (i) memory of a mach ine on the same

K S U B U S w i t h the X — u n i t (c a l l e d X — m i t t i n g) or (i i) an

9—uni t on the same KSUBUS as t h e X — u n i t (w h i c h is

called forwarding of the data) .

(3) R— d a t a mover — device w h i c h receives d a t a f r o m an

X — u n i t on a connected K SU B U S and “moves ” the data to

ei the r (i) memory of a m a c h i n e on the same K SU B U S as

the R — u n i t (ca l led r ece iv ing) or (i i) to an X — u n i t on

t h e sam e K SUBUS (c a l l e d f o r w a r d in g ~

(3) packe t — a bas ic u n i t fo r com m un i c a ti on over a

low—speed l ine; in MI M ICS , the p a c k e t s h a v e the

f o l l o wi n g components :

beg inning _ par t = 6 - S Y N s — DLE—STX

packe t_ f low_ cont ro l (4 b y t e s) =

RC———retur n control character

R N — — — r e t u r n s equence c h a r a c t e r

N — — — — o u t s e q u e n c e ch a r a c t e r

T L — — — t e x t_ l eng th c h a r a c t e r

mes s age f l o w_ contro l (12 b y t es =

SEQ p a c k e t s e q u e n c e n u m b e r (2 b y t e s)

L __
__L _ _~~ ~~ -- ~~ ~~~~~~~~~~ ~~~~~ —‘ - ~— ~~ - — - -_---—• _--~~i

_ i_ ~T’
-

~~
- - -

—,--.-— —
— -

~--~~~~-- ~~~~~~~~~~~~~ —‘—- —‘— ~~~~~~~
—a-

~~~
‘1

Page 67

T t ype  of packe t c h a r a c t er

ID message  id c h a r a c t e r

TO_ID———— 4 bytes

FROM_ ID——4 bytes

packet_ t e x t  ( 0  to 128 by tes  of da t a  cha rac t e r  p lus

transparency charac ters as re qu ired plus ex tra SYN

characters  as need ed )

check_ sum _par t  (2  b y t e s)

end_par t  = DLE—ETX —

This comprises normal ly  up to 156 c h a r a c t e r s ,  and

mos t likely several more, to transmit data text of up

to 128 b y t e s ,  so t h a t  t he  e f f e c t i v e  l ine  baud  r a t e  is

less than  the  n o m i n a l  baud  r a t e .  Transmiss ion  e r rors

and subsequent retransmission reduce the effective line

baud  r a t e  even f u r t h e r.  -

(2) buffering — m e c h a n i s m  for  p rov id ing  space ( b u f f e r s ,

ac tually “ empty ” buffers) and temporarily storing

information (also called buffers , or full buffers), so

tha t the related steps of storing and removing buffers

(a c t u a l  c o n t e n t s  of the  b u f f e r s )  can proceed

a s y n c h r o n o u s l y ,  w i t h  the  c u m u l a t i v e  nu m b e r  of s tores  a t

a l l  times ahead of the c u m u l a t i v e  numbe r of removals .

B u f f e r s  in M I M I C S  inc lude :

(2) SYSQUE — b u f f e r  be tween  u s e r  t a s k s  and  m e s s a g e  s y s t e m:

b u f f e r s  r e q u e s t s  to m e s s a g e  s y s t e m  and r e sponses  back

to user  t a s k s .

( 2 ) p~ otocol — an agreed upon form and s e q u e n c e f o r

exchange of con trol information and data between

L



- -  
- _ .~~~~~~~~~~ J _ T ~~ -~~~~~~~~~~~~~~~~ - -

0

Page  68

processes to a c h i e v e  a synchroni z ed communica t ion,

i . e . ,  so t h a t  the i n f o r m a t i o n  is co r r ec t ly  conveyed and

both processes know i t :  the re  a r e  s eve ra l  se ts  of

protocol in M I M I C S ,  inc luding :

(1) SYSQUE protocol — protocol for  both user

tasks  and message  sys t em to both  send and

rece ive  SCBs, which  a re  con trol blocks used

to i m p l e m e n t  pass ing  of parameter information

for  message  reques t s  and responses .

( 1) Message  sys tem — set  of pa r ame te r s  l i s ts  f o r

message system reques ts together with rules

for  a c c e p t a b l e  user  t a s k  behav io r .

(3) Synchronous line — ru l e s  of s equenc ing  for

excha ng ing  pa ckets  be tween  remote  l ir .e

drivers .

( 3 )  CC pro tocol  — a c t u a l l y  two sets of protocols:

( i )  r u l e s  for  e x c h a n g i n g  p a c k e t s  be tween

cl uster — CCs ( s a m e  as s y n c h r o n o u s

li ne pr otoc i~ and

(ii) rules for controlling the data mover ’s

c op y ing of da ta bl oc ks w i t h in th e

c l u s t e r .

( 3 )  PASCAL — a p rog ramm ing l a n g u a g e  d e s i g n e d  by N .  W i r t h

which promotes correct prog rams because ( i)  i t  promotes

structured programs (both flow of con trol and data

str uctures) and (ii) it enforces numero~~s compile time

checks  not n o r m a l l y s u p por t e d  in o t h e r  p r o g r a m m in g

l a n g u a g e s  ( t h u s  m i n i m i z in g  r u n — t i m e  e r ro r s ) ,  and ( l i i )

i t  a l l o w s  code to be w r it t en  in a v e r y  e a s i l y  r e a d a b l e

--~~~~
_ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~


1-

Page 69

form .

(3) PASCAL — at the same t ime , a restriction of PASCAL to

en force s imple pr og r am s and an ex tens ion of PASCAL to

suppor t a w e l l — s t r u c t u r e d m e c h a n i s m for concur rent

programs using moni to r s; developed by P . Br inch Ha nsen;

ported to K SU fo r use in imple m enting a rea dable and

correct pro to type of the message sys tem .

(3) moni tor — a concept in t roduced by C. Hoare for

s t r u c t u r e d programming of concur ren t processes : the

moni tor consists of (i) a gr o u p of shared da ta

s t r u c t u r e s, (i i) a set of p rocedures (moni tor en t ry

poin t s) which opera te on the shared d a t a, (i i i) and

initial state for the shared data, and (iv) the

• convention that only one process may execute “ in ” the

moni to r at any one time, so t h a t th e programmer does

not have to worry about difficulties of multiple

processes writing to the shared data at the same time:

monitors are implemented in CPASCAL ; monitors in the

MIMICS implementation include:

— SYSQUE — m onitor of SCBs for message system

requests and responses

— packet_buffer — monitor of packets to be sent or

just rece ive d

— MESS_TABLE — monitor of active and queued SEND and

RCV requests

— CONNECT _ TABLE — moni to r of user t a s k connec t~.on

s t a t u s i n f o r m a t i o n.

— log ica l_ l ine_w i n d o w — m o n i t o r of p a c k e t s a c t i v e l y

being t r a n s m i t t e d, r e c eiv e d, or acknowledged

-
._

~~~~~~~~~
- --- -~~~~~~~~~~~~~~~~~~~::~~~~~~~~~~~ -



Page  70

over low—s peed lines: one for each logical

line

— event_control  — moni tors  to con trol a process

which  has to a w a i t  a v a i l a b i l i t y  of da ta  in

ei ther  of two (or  more) other mon itors , s ince

a process in CPASCAL can n o r m a l l y  w a i t  on only

one moni tor

— clus te r_moni to r  — m o n i t o r  of reques t  and re sponses

for act iva tion of the dat a  mov er s

(1) NRC — Network Resource Controller: a network operating

sys tem module  needed to inter f ac e  user  t a sks  between

the local opera t ing  s y s t e m  in  the  hos t mach ine  and the

ne twork  o p e r a t in g  sys t em ; one for  each hos t m a c h in e ;

functions of this NRC include:

— s u p p l y i n g  ne twork name s to each user t ask

— i n i t i a t i n g  tasks  in a hos t upon r eques t  f rom the

NRC in nome other  hos t (based upon reques ts

fro m user progra ms )

— d i sconnec t ing  use r  t a s k s  f r o m  the  message  s y s t e m

when the task terminates without the

normally expected disconnect step

( 1) local opera ting  sys tem — the r e g u l a r  o p e r a t i n g  s y s t e m

in any s ing le  hos t m a c h i n e .

( 1) ne twork  operat ing sy stem - the col lection of a l l

operating software in all network machines inc lud ing

a l l  W R C s ,  a l l  message  s y s t e m  ins ta nces ,  a l l  SY S Q U E s ,

e tc .

( 2 )  user  envelop e — i n t e r f a c e  s o f t w a r e  to t r a n s l a t e  m e s s a g e

s y s t e m  c a l l s  in user  p rograms  to a p p r o p r i a t e  u s a g e  of

~~~~~~~~~~ - - —
~~~~~~~~~~~~~~~~~~~~~~~~~~

-
~~- _ ~~~~~ _ — -

~~~~~~~~~~
T :___

Page 71

the SY SQU E ; in par t icu l ar~ the user envelope wi l l need

to supply s p e c i f i c ne twork names fo r all communica t ion s

requests .

• (1) network names (c.m.t.p.) — all communica t ions in M I M ICS

are dir ec ted using a ne twork—wide nam ing convention

consisting of f o u r by tes:

c = c lus te r charac ter

m = m a c h i n e

• t = un ique task identifying character, within

ma chine c.m.

p = port character : the port character

effectively identifies a communication subname

so t h a t one t a sk may c a r ry one ne twork

communication using two d i ff e r e n t ports and

keep messages to each port s e p a r a t e .

c, m, and t names for a task can be e s t ab l i shed by

i n t e r r o g a t i n g the N R C .

(1) local names — within a host, tasks wil l be id e n t i f i ed

by names ass igned by the loca l o p e r a t i n g s y s t e m : these

are not ne twork names : w a r n i n g — — i t is neces sary to

t r a n s la t e be tween local names and n e t w o r k name s in

order to i n t e r f a c e user t a sks to both the local

Opera ting sys tem and the network operating system .

(2) back—end — typically refers to a host computer

e x e c u t i n g only a da ta base m a n a g e m e n t f u n c t i o n :

sometimes r e f e r s to the f u n c t i on ins ide a p a r t i t i o n in

a host w hi c h executes application programs in other

partitions.

(3) ~packet buffer monitor — buffers packets to be s en t over

~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~ TJ~~ 
-



- 
— -

Page 7 2

l ow— s peed l ines and received f rom a low—speed l ine .

( 3 )  l ine d r i v e r s  — b u f f e r s the packe ts as they  are  a c tu a l l y

being transmitted or received over a low speed line.

(1) message table — buffers SEND and RCV reques ts  t h a t  have

been accepted by the message  sy s t em bu t  not ye t

completed .

L ~~~~~~~~~~~ ~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~ 



- - 
- —~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-
~~~

Page 73

Append ix D

References
-

[CAM 74] Hoare,.C.A .R. Monitors: An Opera ting System
Structuring Concept. Communications of ACM , Vol.
17 , No. 10, October 1974.

[CEK 74] Cer f and Kahn . “A Protocol for Packet Network
Inter—communication.” IEEE Transactions on
Communications , Vol. Com—22, No. 5, May 1974.

[DM 78] Mounday, D. Porting CPASCAL to the NCR 8250.
Kansas State University M.S. Report, 1978.

[DNN 76A] Neal, D.N . An Arch itectural Base for Concurrent
PASC AL. (M . S . T h e s i s) K S U D e p a r t m e n t of Compute r
Science, Techn ica l Report CS 7 6 — 1 9 , November
1976.

(D N N 7 6 B] N e a l , D . N . , Ande r son , G . , R a t l i f f , J . and
W a l l e n ti ne , V. KSU Implementation of Conc urrent
PASCAL — A R e f e r e n c e M a n u a l . KS U D e p a r t m e n t of
Computer Sc ±ence, Technical Report CS 76—16.

[DNN 77] Neal, D. and Wallentjne , V. Exper ience in
Por t i ng C o n c u r r e n t PAS CAL . KSU Department of
Computer Sc ien ce , Techn ica l Repor t CS 7 7 — 9 , J une
1977.

[FJZ1 76] M ar y an s k i, F .J . D e s i g n Cons idera t ions f~~r a
Distributed Data Base Manag ement System . KSU
Department of Computer Science, Technical Report
CS 7ó—14, September 1976.

(GVB 75] Bochmann, G.V. Logical Verification and
Implementation of Protocols. Fourth Data
Communications Symposium , October 1975.

(INT A] INTERDATA INC . 16 Bit Series Referenc e Manual.
Pub . No. 2 9 — 3 9 8 R 0 3 .

LINT B] INTERDATA INC. MODEL 8/32 Processor User ’s
Manual. Pub. No. 29—428.

(INT C] INTERDATA INC. OS—32/MT Program Reference
M a n u a l . Pub . No. B 2 9 — 3 9 0 R 0 2 .

IJHH 76] Howard, J.H. Signaling in Monitors . Proceedings
of 2nd I n t e r n a t i o n a l C o n f e r en c e on Software
Engineering (ACM/1EEE/NBS), (IEEE C a t . No. 7b
C}U125—4 C), October 1976.

1’
(J&w ~ 4 1 Jensen , K . and W i r t h , N . P a S C A L — User Manual

and Repo r t in L e c t u r e N otes in Computer Science.
No. 18 , S p r i n g e r V A r l a g , 1 97 4 .

--- -~~
- - -

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ --~~~~~~~~~~
- - -~~

- 
--•



- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ 

- —- — —
~ ~~~

— --— —‘ -_ -

Page 74

[LOM 7 7] Lohr, K l a u s — P e t e r . Beyond Concur ren t PASCAL .
Proc. of 6 t h ACM Symposium on Operating Systems
Principles, November 1977.

(MAC 7 8 A] C a l h o u n . M . A . Functional Descript ion of the
MIMICS KSUBUS and Associated H a r d w a r e . K SU
D e p a r t m e n t of Computer Science , Technica l Report
Cs 7 8 — 0 1 .

(MAC 7 8 B] Ca lhoun . M .A. Detailed Description of the MIMICS
K S U B U S H a r d w a r e. KSU D e p a r t m e n t of Computer
Science, Technical Report CS 78—02.

(M B 7 6] Ba l l , M. Personal Communication. Naval
Underseas Laboratory, San Diego, CA.

(NW 71] Wj r t h , N. The Programming Language PASC AL . ACTA
Informatica, Vol. 1, No. 1, 1971, pp. 35—63.

[PBH 73] Br inch H an s e n, P . Concu r r en t P r og r a m m i n g
Concepts . ACM Computing Surveys, Vol. 5, No. 4,
December, 1973 .

(PBH 751] Brincl-i Hansen, P. The Programming Language
C o n c u r r e n t P A S C A L . I E E E T r a n s a c t i o n s on Software
Engineering , Vol. 1, No. 2, J u n e 1975, pp .
1 9 9 — 2 0 7 .

[PBH 7 5 B] Br inch H a n s e n , P . C o n c u r r e n t P A S C A L R e p o r t .
I n f o r m a t i o n Sc ience, C a li f o r n i a Ins t i t u t e of
Technology, June 1975.

[PBH 76] Brinch Hansen, P. The SOLO Operating System.
Software Practice and Experience, Vol. 6, No. 2,
A p r i l — J u n e 1976 , pp . 1 4 1 — 2 0 6 .

(PBH 7 7] Br inch H a n s e n , P. The Architecture of C o n c u r r e n t
Prog r ams. p r e n t i c e — H a l l, 1 97 7 .

[RAY 7 8) Young , R . IBM System/370 imp lementation of the
MIMICS Network Messag e System . KSU Department of
Computer Science, Technical Report CS 78—06 , May
1977.

[REW 77] Rehme, E. and Wallentine, V. MIMICS
(As y n c h r o n o u s) Control Line Protocol. KSU
Department of Computer Science, Technical Report
CS 7 7 — 1 5 , December 1 97 7 .

[SIB 77] Silberschantz et al. Extend ing Concurrent PASCAL
to A l l o w D y n a m i c R e s o u r c e Manag emen t. EE E
Transations on Software Engineering, Vol. SE—3,
No. 3 , May 1977 .

(sit 7 7] S ilb e r s c h an tz et a l . On the I n p u t / O u t p u t
M e c h a n i s m of C on c u r r e n t P A S C A L . P roceed ing s of
the IEEE COMPSAC 77 Conference, Novembe r 1977.

‘
I--.— k -

Page 75

(WAL 7 2] Walden, 0 . A S y s t e m for int e rp rocess
Comm unication in a Resource Sharing Computer
Network . Communications of the ACM , Vol. 15 , No.
7 , A p ri l 1972 .

(WJH 76] Hankley, W.J. et al. Sequential PASCAL
Suppl ement (fo r FO RT RAN P r o g r a m m e r s) . KS~J
Depar tmen t of Computer Scienc e, Technical Report
Cs 7 6 — 18 , November 1976 .

r

—---_- --_ .- — -- -
~
-

~~~~~~~~~~~~~~~~~~~~~ 
—.— -• —

---- —--- —~ -— — --—- -——-—- — — •—--~~
-
~~~~~

~

V

—

- .

-

1~~)

- —--- — ---,-- ---—
-
~~~~~~~~~~~~~~~~~

----
~~~

--- ------------ ------ . --- -
- - - - -

-—.

0

0

0
_ _ _ _ _

0 0
-

‘I
~~Z I V ~~~~~~~E.I O C~o~~~c~J I - 0

0 3~~~~~~~ I ~~~~~~~~~~~~0 E~~
C/

~~ > CI~

~~~~~~~ ~1
\ 

I

- ~~~~~~~~~~~~~~~~~~~~~ - - 
--—

~~ 
-



-

. 

-

•

CLUSTER Cl CLUSTER C2

MACHINE Ml MACMINE M2

USER USER
TASK NRC’ NRC ’ TASK
(Tl) (NM ) MS MS (N M ) (T2)

REQUEST
TASK 

ALLOCATE

~O~~~
M
~~

T
~~~O 1~Ø/ RETURN 

/ AND START

RETURN ~~~~~ ~
CMDPrr

<J’~
~Afr~ T2 . P1

NAME /~~ 4

CONNECT (C1.M1.T1.P1 , CMDPKT CONNECT (C2•!~.2.T2.P1,
C2.M2.T2.Pl) C1.Ml.T1.P2)

I —

- -

RECEIVE (CMD /DATAI)

SEND (CMDPKT) CMDPKT RECEIVE (CMDPKT)

RECEIVE (CMD/DATA3) CMD/DATA1 RECE IVE (CMD,’DATA2)
M
E SEND (CMD/DATA2)

ø~çy C~~~ DATA2 SEND (cMD/DATA1)

RECEIVE (CME/DATA5) CMD/DATA3 RECEIVE (CMD/DATA4)

RECEIVE (CMD/DATA6) SEND (CMD/DATA3)

RECEIVE(CMD/DATA7)

“BLOCKED”

P -

Figure 4.2

Connection/Synchronization of

Type 2 Communication

~~~~~ — - - c- --- - - -
, ~~~~~ -



______________ - - - ‘-~
-
~--‘-~-: ~~~~~~~~~~~~~~~~~~~~~~ —~~~~~ --- —,~~~—--- - — —— — -—-~~~~ -----—--—---—--- --- - —‘I

NETWORK
RESOURCE
CONTROL -

I11IT USER ff1 nil niT
ENVELOPE MESSAGE CLUSTER PACKET

_____________ 
SYSTEM SYSTEM SYSTEM

USER PROCESSES PROCESSES PROCESSES

— 

TASK

TER

J

~~~~~L

Figure 4 . 3

Network (IPC) Network System

Implementation Structure

_ _ _

~~~
1_.___

~
___________ _~~r ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 



USER
ENVELOPE

SYSQUE
MON ITOR

A _ _ _ _ _ _ _

1 MESS TABLE
TABLE 

I MONITOR
MONITOR

-

. 

MS 

1
t?

~~Tt 
_[ START 

~~~ 
j MOVER MOVER DONE

BMOV GETCMD GETDATA BMOV

PACKET BUFFER MONITOR

Figure 4 . 4

Message System Access Graph

_ _ _ _ _ _ _ _ _

— —.————~~~--~~
--

~~~~~~
—— 

~~
_ _

2:~~- - _-—.’~-- - -  
~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

x

—

~~~~~~~~~~~~~~~

~ /~~— 
_ _ _ _ _  .

~~~

,

H N..A H
Z

~~~~~~~~~~~~~~~~ ‘N~ H

2 ~~ ~~ 
4 - .

— 

~~~~
—

~~i / _ _ _ _ _ _ _

~~
_ _ _ _ —

_ _ _

V

_ _ _ _ _

0 0

Figure 4 . 5 1

Packet System Access Graph

-
—

~
~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —

---
~~~~~~~~~~~ -~~~~~~~


-~~~ ~~ -•— —~~~~~~ --~
-

~~~~~~~~~~~~~~~~ —~~~-.~-~~~~~~~ _ _ - - ~~ -~~~~-- 
-
~~~~~~~~~~~ - ——--—--—~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~

— —
USER FUNCTION-ORIENTED

— —
TASK

~
‘ PROTOCOLS TASK

(SC)

USER MEMORY ALLOCATION PROTOCOLS USER
ENVELOPE — ENVELOPE

SQ

SQ NBC —
TASK CONTROL

— NRC
PROTOCOLS -

SQ

— ~~ SSAGE ~~ATM MOVEMENT
— MS

PROCESSES PROTOCOL

CS

OFF-
PB CLUSTER MEMORY-TO-ME MORY RESOURCE cs LOADABLE
CB SYSTEM ALLOCATION PROTOCOL

I ’

—
LINE CONTRQL & RECOVERY

—

PROTOCOLS ~~~~~~~~~

Legend:

SQ ~ SYSQ in Local Operating System (Assembler Code)

SC ~ Subroutine Call

NRC = Network Resource Control

PB Packet Buffers

Figure 4.6A -

MIMICS Protocol and Interface Mechanisms

--- - I - - —~.---------—- ~~~~~~~~~~~~ ~~~~~~~~~~~~ -

-
--— - - .—

~~~ ,.—--—.---— .~~~~~~i~
- _~~~

.__
~~~ ;__ - - ---- r~~—~- --— - 

-

I COMMUNICATIONS
HOST CONTROLLER (CC)

ASYNCHRONOUS MESSAGE
FULL-DUPLEX SYSTEM

LINES

Figure 4 .6B

Implementation of SYSQUE Between Host

And Communications Controller -

L
-- ---

~~~~~~~~~~~~~~~~~~~~
-——- -

~~

- - -

- ~~~~~~~~~~~~~~~~~~~~~~~~ 
- - -—— - -

~
—-.---— - ——— - 

~~~~~~~~~~~~~~~~~ 
———--- -

~~——~~~~~~---.~~- — — -

DISK

INTER-

_ _ _ _ _ _ _ _

Compiler Coded in PASCAL

~~~~~~~~~ Machine Independent

PASCAL
SOURCE OBJECT CODE
CODE FOR VIRTUAL

PASCAL STACK —

MACNINE

Figure 4 .7

Portability of Concurrent PASCAL Using

The Interpretation Technique



_____ --

PASS 6
OPTIMIZATION

PASS 7
REGISTER 

— LOCAL CODE
ASS IGNMENT +(~GENERATION~~~IoN

/
MACHINE

ORIENTED
REGISTER 

/LEVEL
OBJECT CODE /

(MACRO’S ) /

MACRO
PROCESSOR- /

GENERATOR /MACHINE

LOCAL MACHINE
OBJECT CODE

KERNE L

Figure 4.8

Portability of Concurrent Pascal Using

Compiled Code

4 
_____ 

‘ 1

L 
- -



-~~
-- --‘.-—

~~~~~~~~~~~~ --- ~~~~~~~~~~~~~~~~~~~ 
-

- - -

OS TASK I

(L L PASCAL PROCE SSES)

OS OS OS OS

TASK TASK TASK TASK
2 MESSAGE SYSTEN N—i N

USER PROCESSES USER

PROCESS + PROCESS

1 2

(M OVER
)

\MONIT~~

+

SYSQ
- — —

MONITOR
— — — -

PASCAL KERNEL

OS—32/ ~fr

INTERDA TA 8/32

— -~~ SCE Flow

>Data Movement

Figure 5.1

Implementation Stage 1——
-. All Message System and User Processes
-

in One LOS Task-—Al l Code in PASCAl
(Simulate local , cluster , and remote communications)

L ~~~~~~~~
— - -- - -~~~ - -

— ~. -
~~~~~~ ~~~~~

OS TASK i

ALL PASCAL PROCESSES

OS OS Os Os
TASK TASK TASK TASK

1 2 A-i N

USER M E S S A G E  S Y S T E M  USER
PROCESS 

~ R 0 C E S S E s PROCESS
1 - - 2

‘1’ it’
4’ ___________________ I

~~~~~~~

—

I PASCAL KERNEL

— — __ .~~~ __
SYSQ MONITOR —

:

- DATA MOVER

EXECUTIVE TASK
OS—32/~IT

INTERDATA 8/32

— ~ SCB Flow

c~i —> Data Flow

Figure 5 .2

Implementation Stage 2 .1——
Message System Processes in one LOS Task

and User Processes in Other LOS Tasks

L -
~~~~~~~~~

. -_ , - - —— 
~~~~~~~~~~~~~~~~~~~~~~~~ - - —~~~~ —— — -~~


z
0
H

H
Z E-’ Z

_ _ _ _ _ _
‘~~~ - ~~~-t .__

1x~J &4 ~.- C., ~~ 0
C’, tJ~I.
~~

~~

/~~~~~~~

0

_

>~ l
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ W 0

I.~~
-

‘ ‘ •
IJ-~

.1. .

4

-
- -

-

C’,
S z

z
C’,z

____ 0
C’, 1

C’, C’,
—S
X

~~~~~ 
_ _ _ _ _

~~~~~~~

. \
~~~~~~~~ Ic

• 

_ _ _ _ _ _ _ _  
ri—

—
C~~ n~

______________ 
~~~~~ 

_ _ _ _ _~f3 . . ,>

•

0
___-

-

I

ai
I-I 0 4.1— .. —4 C~~~u)

~~

E4 J
Ct) .E-~~Cfl~~~

O~~ U)

C’, E
0 1 —

3
C’, 0 —

Ct) C~J >.
~ ~~~ — ç~

C’, 0 Ct) I IIu, c-’~C’, X C~
_ / 0 C~ ~~0 S

.
— 0

1 -

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

1 1 11

-~~~~~~~~~~~~~

.

——
-

=- - _ _ _ _ _ _ _ _ _ _ _

~~~~~~~~

~-



- 

AD AOS2 752 KANSAS STATE IMIV MAPI4ATTAN DEPT OF COMPUTER SCIENCE F/S 17/2
PROJECT REPORT FOR FW4CTIONALLY DISTRIBUTED C0*UTER SYSTEMS DC— -ETC (U)
FEB 78 V E WALLENTIPC DAAG29—76 c—oioe

UNCLASSIFIED - ARO—13835.1—A—E L—PT—2 NI.

r



IBM

370/158

I~~~RDATA

8/32

INTERDATA

7/ 32

Figure 6.1

Data Base Network Topology

A —i------ ~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ —



r
•1 APPLICATION I

PROGRAM

H I +
~~~~1 l

HOST
INTE RFACE

(HINT)

_ _ _ _ _ _

I
MESSAGE
SYSTEM

MESSAGE
SYSTEM

BACK-END] I
INTERFACE

(BINT)

DATA BASE

H

Figure 6.2

Infortnation Flow in Distributed DBMS

-
-~~~

-
~~

_____ ____ -—- - -~~~~~ —-~~~~~~~~~~~~~~~~~

_ _ _ •

~~~~~~~~~~~~~~~~~~~~~~~~~~ ~1

C —o o
4) C)
(5 4I~~ ’ 0
C (

~E 4 )a s —  o

4 ) 0  ~~~O

4

(5
4J
5

~5 ~4 t n

o ~~o .0

p
~~~~~

p QJ~~
p

I

. -Iii ’ I
g

_ _ _ _

~~~~~~~

‘5

ii
_ _ _ _ _ _  _ _ _  _ _ _  

p.l~~~~~~~



r~T~ 
-•- -

~~~~~~~~~

Interdata 7/16

SOLO Disk, File, and Program Structure

Job Process

Input Process . Output Process
File Transfer

“Disk or Protocol “Disk or
Asynch Program ASYnCh
Line Line

• Control” Control”

OS OS OS
Interface Interface Interface

_ _ 4 * . _ _ _ _

Protocol Protocol
Control

[
~~a~
j IBuffe~I I [Bufferl

Control
Information _______ _______ ____ Information

Data Data
• Flow Flow

KSUBUS XSUBUS
Data Data

Mover Asynch Mover
(INPUT) Lines (OUTPUT)

•
. Interdata 85

Spoolin ,.-6 ;•;g~N~ Spoolout
Process Reclaimer) Process

_____ Process

* Sector
Cards Spoolin Allocation Spoöl.out Line Printer
Process Monitor (File System) Monitor Process

Cards Pages Pages Lines

TR~:r I ~~~~~~~~~~~~~~~~~ SPOO~~
R7 ~~~~~~~~~eJ

*NQt implemented System

Figure 6.4

Distributed Spooler Operating System and Structure

_____ •1
•~~~~~~~~ ••~~~~ -~~~~~ ~~~~~~~~~~ — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ,— - . — -

