" AD=A052 752

KANSAS STATE UNIV MANHATTAN DEPT OF COMPUTER SCIENCE F/6 17/2

PROJECT REPORT FOR FUNCTIONALLY DISTRIBUTED COMPUTER SYSTEMS DE--ETC(U)
FEB 78 V E WALLENTINE : DIA629-76-G-0108

UNCLASSIFIED

Fe

ARO=-13835,1-A-EL-PT=2

- AEEEENEEEEN

-

-

i

4. TITLE (and Subtitle)

PROJECT REPORT FOR FUNCTIONALLY DISTRIBUTED
COMPUTER SYSTEMS DEVELOPMENT: 'SOFTWARE AND
SYSTEMS STRUCTURE. PART II

7- AUTHOR(s)

Virgil E. Wallentine

9. PERFORMING ORGANIZATION NAME AND ADDRESS

Kansas State Universicy
Department of Computer Science
Manhattan, KS 66506

| ACSESSION for

uns Wiite Saction

1 108 Wit Sctin [
Y UMANNOORCED D
JUSTIFIGATION.

o.... ’
QISTRRETION/AVAILAILITY ¢O0EB
T Ot ATAIL. ead/er SPEGIAL

LS

A

DISTRIBUTJON STATEMENT A

Approved for public release;
Distribution Unlimited

R i

2=

=

UNCLASSTFIED @ Do —
SECURITY CLASSIFICATION OF THIS PAGE (Whon Data Entere F_/ml + .

REPORT DOCUMENTATION F_’ﬁ_E_==,=__ BEFORE COMPLETING FORM |

/12935 - EL“WJ:T -

. 5. TYPE OF REPORT & PERICO COVERED
ZFROJECT BEPORT FOR_FUNCTIONALLY DISTRIBUTED i January 15, 1976
“COMPUTER “SYSTEMS DEVELOPMENT SOFTWARE AND [/ Letobawy~dd, 1977
SYSTEMS STRUCTURE. PART 1II, 6. PERFORMING ORG. REPORT NUMBER

,{. i == 8. CONTRACT OR GRANT NUMBER(3)
N 'J virgil E./Wallencin{ 1
v
{ J /3 AAAG"zg-m—c?dloe
5. PERFORMING ORGANIZATION NAME AND ADDRESS 10, PROCRAN ELEMENT PROJECT. TASK

AREA § WORK UN T NUMBER

Kansas State University

Department of Computer Science _.L ¢¢
Manhattan, KS 66506 / (Z p

11. CONTROLLING QFFICE NAME AND ADDRESS Aﬁ
US Army Research Office / 7 Feb JllNENEY7 8
P 0 Box 12211 ‘
Research Triangle Park, NC 27700 93
T4. MONITORING AGENCY NAME & ADORESS(if ditferant from Controlling Ollice) 15. SECURITY CLASS. (of this report)
US Army Computer Systems Command
Attn: CSCS~AT Unclassified
Ft. Belvoir, VA 22060 15a. DECL ASSIFICATION/ DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17 DISTRIBUTION STATEMENT (of the abstract entered In Block 20, it different from Report)

18, SUPPLEMENTARY NOTES

The findings in this report are not to be construed as an official
Department of the Army position, unless so designated by other authorized
documents.

19. KEY WORDS (Conntinue on reverse side if necessary and identify by block number)

Computer Networks, Mini/Microcomputer Networks, Distributed Processing
Computer Message Systems, PASCAL, DBMS, Back-end System, MIMICS,
KSUBUS

20. ABSTR;;K(Caanu- on reverse side if necesaary and identily by biock number)

This is the second and final part of the report of research performed
by Kansas State University in multiple processor computer systems and
and networks. Part I covered the Design Phase of the effort; and this
report covers the follow-on implementation, integration, test, and demonstra-
tion of a prototype model of the network. The network modei consists of a
cluster of minicomputers and microcomputers with supporting software. The 4
model has been named MIMICS (MIni-MIcroComputer Svstem) and uses a high-
speed vendor-independent data bus, named KSUBUS, that was designed,

FORM
DD ,,2~ 73 1473 EO0ITION OF 1 NOV 65 1S 0BSOLETE Unclassified

SECURITY CLASSIFICATION 0' THIS PAGE (When Data Entered)

37._7. 4> 0w Al

A

UNCLASSIFIED

(20)

B:&developed, and built for this network. Network hardware included Interdata’s
85, 7/32, 8/32 and IBM 370/158.

The principal network software is a message system which is capable
of residing in a variety of computers. The hardware independence is
achieved by design and by coding the software in Concurrent PASCAL.

A specification of a distributed data base management system was
developed and implemented in the MIMICS network. A DBMS named TOTAL was
used in the prototype. The general problems of DDBMS were studied, and
solution syntheses are presented as well as a simulation model for a back-end

DBMS.V\\

\

UNCLASSIFIED

PROJECT REPORT
for

Functionally Distributed Computer Systems
Development: Software and Systems Structure

PART II

February 7, 1978

KANSAS STATE UNIVERSITY
Department of Computer Science
Manhattan, Kansas 66506

Project No. P-13835-A-EL
U.S. Army Research Office

GRANT NO. DAAD=-29-76-G=-0108

January 15, 1976 to October 31, 1977

DISTRIBUTION STATEMENT A l

Approved for public release; ‘
Distribution Unlimited t

PREFACE

This is the second of a two part report of the research
performed by Kansas State University in multiple processor
computer systems and networks. This investigation is
supported by a grant of $190,000 from the U.é. Army Research
Office, Research Triangle Park, North Carolina. The
University has provided matching funds in the amount of
$28,383.

The principal investigator is Dr. Virgil E. Wallentine,
assisted by faculty and graduate students of the Department
of Computer Science. The research was performed at Kansas
State University in coordination and cooperation with the
U.S. Army Computer Systems Command, Fort Belvoir, Virginia.
The term of the research grant was 15 January 1976 to 31
October 1977.

Part I report covers the research effort through the
Design Phase. Part I covers the effort thrgugh
implementation, integration, test, and demonstration of a
prototype model of the network. Chapters 1.0 and 2.9 are
identical in both Parts I and II so that they can be
self~contained documents. The appendices of Part II are

extensions of Part I for the same reason.

T

i |

i

L Rt

TABLE OF CONTENTS

t Page
1.0“'Cha§ter 1 Overview of the Project 1

F 2.0 Chapter 2 The Technical Development Plan 3

A 3.0 Chapter 3 Overview of Contributions 9

_ 4.0 Chapter 4 Implementation 15

| 5.0 Chapter 5 System Integration 35

? 6.0 Chapter 6 Prototype Operation 3,
7.0 Chapter 7 Documentation 41
8.0 Chapter 8 Project Summary and Extensions 55
Appendix 57

A. List of Articles and Publications
B. List of Reports
C. Vocabulary

D. Bibliography

g)

NUS—————

Page 1

CHAPTER 1

1. Overview of the Project (replicated from Part I)

The general nature of the research is the investigation
of multiple processor computer system; and networks. The
Principal Investigator, assisted by the faculty and graduate
research assistants, explored the alternative methods of
design of a functionally distributed computer network for
data processing. This research takes advantage of the
potential of mini- and microcomputer technology. The end
product is a prototype system that serves as a test bed for
testing the performance of typical data systems.

The research effort followed a phased approach:

Problem Definition
Solution Alternatives
Design
Implementation
Systems Integration
Prototype Operation

The work was concentrated 1in four specific problem
areas:

(1) software Utility - Software has been developed

to operate in a mul tivendor computer
environment. This involved the investigation
of the problems of multiple CPU software
portability, adaptability, conversion,
development, and maintenance. This area of the
program concentrated on a comparative analysis

of the techniques for achieving the desired

m

Page 2
portability in the areas of data processing
application programs, operating systems
dependence, and data base management systems.

(2) Data Accessigility - Techniques have been
developed to permit data bases to be
distributed across a network accessible to
local and regional query. These techniques
provide for the protection of the data bases
from unauthorized access. This distribution is
transparent to the user.

(3) Hardware Specification = Specifications have

been established for a high-speed (10

megabytes/second) bus to permit off loading

(onto a mini=- or microcomputer system) the

network control system. A prototype has also

been developed between Interdata machines.

(4) Network Control - Research has been done on
alternative network configurations.
Communications, message processing, and other
controls required for system balance and
hardware/software interface have been
developed. To test the viability of the
distributed system, a prototype has been

developed.

Page 3 |

CHAPTER 2

[

2. The Technical Development Plan (replicated from Part I)

2.1 Phase Schedule |

Phase Effort Started Completed

I Problem Definition 15 Jan. 1976 1 Feb. 1976

II Solution Alternatives 2 Feb. 1976 14 May 1976

TET Design 15 May 1976 15 Nov. 1976
iv Implementation 16 Nov. 1976 14 March 1977

\ Systems Integration 15 March 1977 1 July 1977

VI Prototype Operation 2 July 1977 1 Aug. 1977
VII Documentation 15 Aug. 1977 14 Sept. 1977

2.2 pPhase I - Problem Definition

The objective of this phase was to 1identify the
specific problem areas upon which research effort must be
applied.

Certain problems were identified in the KSU proposal
submitted to the Army. There were several alternative areas
of research outlined along with those problems. These
problems and research areas were then reviewed in the 1light
of recent experience, both here at KSU and in other
universities. From the review, new definitions of problems

were made and areas of research were described in more

definitive terms.

The review covered the following specific areas:

Page 4

a. Software Utility (Para. II, Section A of the

Proposal)

b. Data Accessibility (Para. II, Section B)

c. Hardware Specification (Para. II;:Section C)

d. Resources Control (Para. II, Section D)

e. Mini/Micro Technrnology Considerations (para. V,
Section B)

f. Hierarchical Systems (Para. V, Section B)

g. Dynamic Performance Monit5r (Para. V, Section
c)

h. Distributed Control of Networks (Para. V.,

Section D)1

2.3 Phase II - Solution Alternatives

The objective of this phase was to establish the
directior and approach to be used in the design effort.

Consideration was given to the various approaches to
achieve the project goal. The approaches were considered in
the light of problems identified during Phase 1I. This
consideration resulted in the selection of the researxch
direction believed most likely to achieve the project goal.
The selected approach and research direction were to be
coordinated with the U.S. Army Computer Systems Command, to
insure that follow=on design effort would be appropriate.
The solution alternatives provided direction 1in the

following design areas:

e B

Page 5
¥ a. Network Topology: Alternative configurations of

hardware and communications to be tested 1n a

prototype solution. Mini=- and microcomputers in

networks with large scale computers were to be
considered along with the attendant problems of
software interface, message processing, network

communications and network load balance.

b. Software: Software with and without

microprocessors to be considered, along with

portability, conversion, and maintenance of
software in the network environment.

Cc. Hardware: Technical and functional
characteristics of various commercially
available computing~ systems were considered.
The use of microprocessors to achieve hardware
compatibilities was considered, along with
reliability and performance.

d. Data Base System: Use of data base management
techniques was proposed. Alternatives included
design of a new DBMS suitable for use 1in
distributed networks, use of existing DBMS’s
such as IDMS (Cullinane Corporation), and
hardware/software modification of existing
DBMS“s. Solution synthesis was to take into

consideration the long term desires of the U.S.

Army and the constraints of the resources

available to the project.

-Page 6

2.4 Phase III - Design

The objactive of this phase‘ was to write a detailed
design specification for the prototype functionally
distributed network and a design specification for a data
base management system to xrun within the prototype. Using
the direction and approach developed during Phase II, the
Principal Investigator directed the developing and writing
of the design specification. During this phase, the
Principal Investigator published the “Functional
Specification" (CS 77=-04) to provide guidance and continuity
to the several Chief Investigators. The DBMS design

development and the network design development proceeded

independently.

2.5 Phase IV - Implementation

The objective of this phase was to construct and test

modules and document the various system designs produced

during Phase 1III. Graduate students working under the
supervision of the Chief Investigators programmed the
prototype system. Modern techniques of structured
programming were followed and all ef fort carefully
documented. As modules were completed and tested, results
and documentation were reviewed by the Principal

Investigator for compliance with basic design and conformity

to dncumentation standards.

Page 7

2.6 Phase V - Systems Integration

The objective of this phase was the integrated
operation of the prototype message system test bed and the
operation of a DBMS within that test bed environment. As
systems modules were completed, they were tested in
operation with other modules using both test data and
synthetic programs. When all modules were completed, the

system was tested, corrected, and refined.

2.7 Phase VI - Prototype Operation

The objective of this phase was the successful
operation of the prototype system and a DBMS wunder a
synthetic data processing 1load. File transfer protocol
programs and a DBMS were distributed across three machines
(Interdata 7/32, 8/32, and IBM/370) to test the viability of
the communications software (message system). Finally, a
small operating system (SOLO ([PBH 76]) (modified to run in a
small machine) and a 1line printer spooling system were
distributed across two Interdata machines to test the

operation of the KSUBUS.

2.8 Phase VII = Documentatinn

The objective of this phase was to complete

i ALl B = >y

=,

Page 8

\

documentation of the prototype system. Copies of reports by

the individual investigators were provided to the U.S. Army

in accordance with the terms of the grant. A complete

specification of the prototype system was prepared for

delivery as part of the set of final technical reports of

the project.

S g e e

Page 9

CHAPTER 3

3.0 Qverview of Contributions to 'the State-of=-the-art

The contributions of this research project can be

categorized 1n two basic areas-=-research and development.

They are further <characterized into work 1in the areas of

data base management, software utility, computer network

software, and computer interconnection hardware. The work
in each area is described in the following sections.
Abstracts of the documents produced in each area are given

in Section 7.0.

3.1 Summary of Network Control Software Activities

A network interprocess communication system was
designed, developed and constructed with a capability to
support a resource-sharing network. Its properties are
listed below. This system contains a set of protocols which
encompass the currently available protocols [wWAL 72] [CEK
4} [EML 73)- A new concept which supports multiple
physical lines on one 1logical 1line [RAW 77] i1in a message
switching system was developed in this project and included
in the system. This 1s a fault-tolerant software concept
which permits automatic recovery of data on logical lines in
the presence of physical line failures.

New concepts in function oriented protocols were also

developed (WJH 77] which permits the novice user to be naive

Page 10

in his/her application of interprocess communication. It

also permits a sophisticated programmer to treat slow-speed
lines as the critical resource. Finally, it provides the
system’s programmer a resource allocation and distribution

protocol. All of these new concepts are incorporated into

the MIMICS message system.

Architecture Features

- Network computers can be minicomputers

- Network computers can be heterogeneous machines (which
support a Concurrent PASCAL virtual machine)

- Control software is portable (via porting of Concurrent
PASCAL system)

-~ Message system functions are off-loaded 1into mini- or
microprocessor communication controllers

- The communications controllers are physically protected
from user level software

- High-speed data paths (10 megabytes/second transfer rate)
are supported between machines in a close cluster

- Low-speed, packet switched data paths are supported
between remote machines ",

- Different types of low—-speed line protocols can be used
- Different types of network topologies can be supported

- Data paths allow back=up routes in case hardware lines
fail

Software Implementation Features

- Network control software is written in Concurrent PASCAL

- The software is guaranteed to be free from a large class
of type=-conflict and run-time synchronization errors that
can plague systems software

- The software is structured to be portable

- The software i1s well structured, modular, and easy to read

Page 11l

- Its size is very close to the size as its counterpart in
assembly language

- The software is intended to be fault tolerant (of both
user software faults and data communications hardware

faults)

- The software is structured so that it can be expanded or
contracted to suit particular network structures

Message System User Features

- The network message system has a simple interface with the
local operating system in each network computer (in case a
network operating system is not used)

- User programs are isolated from all low-level data
transmission protocols

- User programs are 1identified by a 1logical name which
specifies their machine, unique task name, and a user
defined optional name; and two tasks can communicate when
they know each others® names and both agree on mode of
communication

- Basic operations are connect/disconnect and send/receive;

different options are allowed to accommodate either naive
users or system-programmer-type users

3.2 Summary of MIMICS Network Hardware

A high-speed vendor-independent bus (KSUBUS) has been

designed, developed, and constructed. It supports a new
concept [MAC 783] (MAC 78B] of “"clusters" of computers.
Within clusters, KSUBUS"s can be ‘"pipelined," without

degradation of performance when larger clusters of machines
are configured. The bus moves data memory=to-memory between
hosts in a «cluster and thus permits a communication

controller to contain the entire (of f=-loaded and secure)

network interprocess communication system.

bl

Py

Page 12

3.3 Summary of Software Utility Research Activities

In order to wutilize the message system software on

multiple machines and in multiple environments, the system

must be as portable, maintainable, and adaptable as

possible. The system was constructed in a hierarchy,

isolating at each 1level an adaptable function [WJH 78B].

Several such adaptations include high-speed bus control
(KSUBUS) , slow=-speed line protocol, and of f-loaded
functions. The system was c¢oded 1in Concurrent PASCAL
(CPASCAL) [PBH 75a] to accommodate-=-to the degree
possible=-=-both properties. The language’s roperties are
reviewed in reference [VEW 76]. |
Adaptability was tested in an experiment which assumed
no knowledge of the language or the system written in the
language. Students in an operating system class were able,
within a one semester three-credit course, to adapt the

single user operating system SOLO to a batch and two remote

input systems. This effort required about four (4) man
months. This phenomenal success is due to the
understandability of CPASCAL. Maintenance 1in our view is

also a function of understandability and thus a property of

a CPASCAL implementation of the message system.

Portability was tested by porting Brinch Hansen's
PDP-11l implemencation of CPASCAL to the Interdata l6- and
32-bit computers [DNN 76A) [DNN 76B) [DNN 77]) and to the NCR

8250 computer [DM 78]. In summary, all systems software

must be adapted in some way. CPASCAL is adapted by coding
the kernel, which is a three to four man month effort.

Productivity of system code and code size was measured

e N e i S

e ————

Page 13
4 in an experiment comparing CPASCAL to assembly code [JRR 73]
[REW 77]. Code written in CPASCAL produced effectively the
same size object c¢ode as that in the assembler code [RAY ‘

77). Correct CPASCAL code was produced in 30 to 40 percent

of the time it took to produce correct assembler code.

3.4 Summary of Data Base Activities

l. A simulation model of a back-end data base management
system was developed. This model was later enhanced to
describe a distributed DBMS operating in a multicomputer
environment. The model was used to analyze critical
performance characteristics of distributed data Dbase
management systems [CS 76-12].

2. The basic organization of distributed data Dbase
management systems has been studied to determine the
proper software structure for processor modes in a data

base network. Configurations with multiple hosts,

multiple back-ends and bi-functional machines have been
investigated. The information flow in distributed data
base systems has been specified.

3. Specifications for a distributed data base management
system conforming to the CODASYL philosophy have been
developed.

4. The problems of memory management, rollback and
recovery, deadlock, user=-transparent data access and

data movement have been studied for distributed data)

R

PR ——

Page 14

base systems. Procedures have been defined to cope with
these distributed data base design problems.

The state of the art and industry with respect to

distributed data base management systems has been
surveyed and chronicled.

A prototype distributed data base management system has
been implemented using the MIMICS communication software
and the TOTAL data base management system. The
prototype is intended to operate with the Interdata
8/32, Interdata 7/32, and IBM 370/158 serving as either
host or back=end processors.

The overall objective of this data base research has
been to explore the organizational, design, and
implementation problems of distributed data base
management systems. The intent of this research was to
provide a solid foundation for the realization of data

base management systems operating on a network of

computers.

m — —

Page 15

CHAPTER 4

4.0 Implementation Approach

This section consists of an overview of the structure

of the implementation. It also contains an overview of the

portability properties of Concurrent PASCAL-~-the
implementation language. Additionally, it contains an
evaluation of the software and hardware engineering

principles used in this project.

4.1 Distribution of Software

4.1.1 System Structure

The implementation must, as previously stated,
accommodate the message system (MS) (exchange) functions in
either a host computer or a communications controller (CC)
attached to the memory of a host via a KSUBUS. The
distribution of software processes between host and CC are
illustrated in Figure 4.1l. The application program, DBMS
task, and Network Resource Control (NRC) always reside in
the host while the message system (and its subsystems, the
cluster and packet system) may reside in the communications
controller (CC). In these diagrams, control information 1is

indicated by single lines (<====-=>) and data by double lines

(¢=====>)., Figure 4.la illustrates the elements of the
implementation which must reside in a host if it has no

associated CC.

m

Page 16
The application program 1issues high=level message

system calls (these are specified in Section 3). These MS
calling formats are interpreted by the user envelope which
synchronizes these requests with the message system
processes through a 8YSQ function in the local operating
system (LOS).

This SYSQ function 1is a System Control Block (SCB)
exchange mechanism for sophisticated processes such as the
user envelope and the message system processes. Its
functions are documented in Appendix 2, along with its usage
by both the message system and the user envelope. The SCBs
are fixed in size and contain all the information necessary
for the MS processes to execute the user level MS calls. As
shown in Figure 4.1, SYSQ is incorporated into the LOS of
the host. It is SYSQ which permits the off-loading of the
MS processing onto the CC. This off-loaded configuration is
shown in Figure 4.1b, where one CC is serving more than one
host.

It is important to note that a data base management
system (DBMS) is just another task (process) in our system,

a result of wviewing all functions (such as DBMS) as

resources and implementing full resource sharing. The DBMS
task issues high-level MS calls whose parameters are
interpreted by a system envelope and sent to the MS
processes via SYSQ. This permits the DBMS task to be
implemented in a variety of ways to accommodate

multiple~vendored DBMS systems. That 1is, the standardized

interface is the MS functions (calls).

The NRC functions as a task controller. That is, it

Page 17
controls those tasks in the host which are considered as
network resources. It does both file and task allocation to
a requested service. For example, it might allocate a DBMS
task to service application program data access requests.
That is, it could start the task and manufacture a network
task name (C.M.T.P.) to be referenced by the application
program. From that point, messages can be exchanged between
the DBMS task and the application program via the MS. This
protocol is exemplified in Figure 4.2. NRC also contains a
supervisory function for unusual conditions--for example, an
overflow of SCBs in SYSQ directed towards a task. The SYSQ
redirects these SCBs to NRC for processing under the
assumption the task is aborted. NRC will implement only
these functions in the first prototype of MIMICS. 1Its
expanded role in a distributed network operating system 1is
documented in report CS 77-4.

The basic system structure is hierarchical, as shown 1in
Figure 4.3A, in that the wuser level task is isolated from
network considerations by the 1lower levels. Each level is
in turn a lower 1level of network protocol. The user task
and envelope and the NRC were previously described. The
SYSQ monitor (a monitor is a Concurrent PASCAL concept which
can be viewed as a shared data structure for processes to
access) is the SCB exchange facility. The Message System
Processes receive MS requests in the form of SCBs from SYSQ.
The message system processes coordinate with their MS

counterparts 1in another network machine to synchronize

connection, command transfer, data transfer, and
disconnection between user processes. The status of this
it R

Page 18

coordination is maintained in the Message Monitor (MESS
TABLE). The Cluster System (CS) processes will exchange
commands and data between host memories in a cluster. They
access the message monitor to update message status. They
move data memory-to-~memory across one Or more KSUBUS s and
data movers. They wuse the packet monitor to synchronize
commands between nodes in a cluster. The data mover drivers
control the KSUBUS and data movers. The Packet System (PS)
processes coordinate with their PS counterparts in another
machine to move packets--error free--across remote
transmission lines. These processes support multiple
physical lines (controlled by the synchronous line control
drivers) within one logical line. This permits reliability
of the link, and recovery procedures are not neccary except
for loss of the final physical lirne on a logical line. The
PS processes also coordinate the exchange of command packets
(send and receive requests) among machines in a cluster.
The Packet Monitor is the shared data structure which stores
and routeé packets.

Further detail on the processes in tha message system
is presented in Figures 4.4 and 4.5. The MS processes are
presented in 4.4 and the PS rocesses are illustrated in
4.5. As shown in Figures 4.4 and 4.5, processes typically
access a monitor and are blocked there waiting for an event
to happen which will resume their execution. The data
accessed in the monitor (shared by all processes which
access the monitor) is typically operated on by the process

and then placed in the same or another monitor (as an event)

for another process. It then repeats the cycle.

| ' Page 19
The MSSENDREC process accesses SYSQ for requests on the

message system. On arrival, these requests are validated
against the connection table entries MSCONN. If a request
is active on this connection, the request is gueued in the
MESS TABLE. If not, it is made active in the MESS TABLE
which is the event that resumes MSSTART. MSSTART then calls

the PACKET MONITOR to start the "handshaking" protocol

(matching send and receive reguests) with MSCMDRCV which

coordirnates the mat=iing of MSSENDs, MSRECVs, and MSAUCs and
updates the MESS TABLE to reflect a "matching." The INMOVER
and QUTMOVER processes assemble and disassemble messages.,
respectively. The OUTMOVER awaits on a "matched" or "ready"
message status in the MESS TABLE. Then it <repeatedly
disassembles the user message 1into packets and transmits
them via the PACKET BUFFER (PBM). It only waits in the PBM
when no buffer space is available. The INMOVER process also
awaits on a "ready" status and then repeatedly assembles
packets into user messages. On completion of INMOVER ard

-

OUTMOVER functions, a "complete" status ‘is get in the MESS
TABLE. This is the event on wh%ch YSDONE is waiting. It
then resumes to clear this “complete"” request from the MESS
TABLE, make "active" any queued requests, and use SYSQ to
send an SCB t§ the user envelope to indicate the completion
of this message system request.

The PS processes are shown in Figure 4.5. Each process
either transmits or receives (or both) data to or from a
remote line control driver. This river governs the line

protocol. The procedure on sending is to get full buffers

(packets) from the packet monitor and pass them to the

Page 20
driver and then repeat the procedure. These drivers are
implemented in some “kernel" of an operating system. It
could be the LOS of a host or the multiplexor of an
implementation language (see reference [DNN 76A}). Several
types of processes are possible. The only regquirements are
that the protocol be consistent with the PBM entry points
(functions) and the protocol on the other end of the
connection. Figure 4.5 illustrates 1logical 1line 1 as a
user-defined protocol and logical 1line 2 as a prespecified
window protocol. It supports full-duplex (FDX), half-duplex
(HDX), and simplex protocols. ;

The window manages the sequence numbers on a logical
line. This enables maintenance of synchronism of sequence
counts when one physical 1line on a logical line is lost
(with no explicit recovery procedure necessary) . Each
process can be of type 1listener (receiving packets from a
driver), xmitter (sendiné packets to a driver), or both. In
FDX there is one listener process and one xmitter process.
In HDX there is only one process of type listener/xmitter.
A simplex process can be of type xmitter or listener, but

not both.

4.1.2 Implementation Considerations

The system was structured as a set of (concurrent)
cooperating processes to enhance ease of construction and

understanding and to permit off-loading of these processes

Page 21
to run in the host and cc simultaneously. The
implementation thus places the MS, PS, and CS processes in
the host (under the LOS) or in the CC. This implies that
the implementation language must be portable to hosts and
CCs, implemented under an LOS or on a "bare" machine (CC),
and supportive of concurrency.

At least two alternatives exist for implementing these
processes. First, the MS, PS, and CS processes can be tasks
under the host LOS. The interprocess communication system
of the LOS can then be used. However, this 1is not a
standard interface and the task switch times are typically
too long. Second, the processes can be pseudo-tasks within
the CC or within one task (partition) of the LOS. These
pseudo-~tasks can be created in two ways. These can be
processes 1in a high=level multitasking (HLMT) language

implemented in the CC or as a host LOS task; or they can be

implemented by a simple tasking monitor in the same
environment but written in a sequential language (typically
assembler level). Both can be achieved by first c¢oding in

the HLMT language. Then the language can be ported or the
coded version can be used to develop low=level coding in
what has been termed “"reliable machihe coding" (PBH 77].

Our approach is to wuse Concurrent PASCAL which has the

necessary préperties. These are illustrated in Section 4.2.

Implementation of SYSQ in the host is typically
achieved as a supervisor function (8VC). 1If the message
system is in the host, the MS processes access SYSQ
directly. However, if MS, PS, and CS are implemented in a

CC, the SYSQ function must cross the host-CC boundary.

e

e e Wi

r"—__————'"———""ﬁ ™

Page 22
Figures 4.6A and 4.6B illustrate this implementation. SYSQ
exists in both host and CC, and these SYSQs are connected by
asynchronous line control processes which transmit SCBs

between SYSQs.

The implementation of data movement between the user
task and the MS processes is implemented via the data mover
control. When the MS processes are 1in a CC, these data
movers are hardware devices which move memory-to-memory. 1In
the host resident version of the message system, the data
movement is performed by a software movement (an executive
task in the LOS) between host LOS partitions. No bther code
modifications are necessary to wutilize the MS, PS, and CS

processes in both versions.

4.2 Language - Concurrent PASCAL (CPASCAL)

The implementation language was chosen on the following
bases:

l. It is conducive to structured programming

2. It is conducive to structured multiprogramming

3. Its structure lends itself to portability

4. It supports dynamic linking and overlay
capability (to provide reconfiguration
capability)

CPASCAL (see [PBH 75B)) satisfies these criteria in the

following ways:

l. It has high=level control and (extensible) data
structures

[P ———————————

3 2. It is concurrent by nature with monitors (see
[CAH 74])) to synchronize processes

Page 23

3. 1Its concurrent p:ocess'multiplexor is small and
it can be implemented on a bare machine or as a
task in a multiprogramming operating system

4. The loading and execution of sequential PASCAL
(see [J&W 74]) programs can be controlled in a
CPASCAL procéss.

Concurrent PASCAL .was designed and implemented on a
PDP-11/45 by Per Brinch Hansen (see [(PBH 75B]) at the
California Institute of Technology. KSU personnel have
“ported” this language system to an Interdata 8/32. Other
portings are in progress [MB 76]. The PDP-11 version 1is
implemented on a ‘"bare" machine (no operating system
present), and the 8/32 implementation has Concurrent PASCAL
processes running within one task of a multitasking
operating system (0S=30/MT) (see [Int El). The
implementations by the ©Naval Underseas Laboratory are on
"bare" 16~ and 32-bit Interdata machines (see [Int A and
Bl]). The "bare" machine version has been used to i1mplement
the message system, packet system, cluster system, and SYSQ
monitor in the communication controllers (CCs). The OS
version will be used to implement these same functions in a
host which has no CC.

This variety of implementations is the reason that
CPASCAL must be portable. The basis for this portability is
the smallness of the kernel which supports multiplexing,
synchronization, and I/0. It is about 8K bytes on a 1l6-bit
Interdata machine. The portability of the language machine
(PASCAL stack machine) depends on the kernel, and the small

kernel can be ported by an interpreter or by compiler

Page 24

modification.

In order to support documentation understanding,
maintenance, and upgradability on the network software,
several CPASCAL manuals have been generated. Reference [VEW
76) is a tutorial of CPASCAL as wused in simple network
software modules. Reference [(WJH 76)] contains a tutorial on
PASCAL for FORTRAN programmers, and reference [DNN 76B] is

the documentation of the 8/32 "ported" version of CPASCAL.

4.2.1 Porting CPASCAL

In order to port CPASCAL, the kernel must be coded in a
low=level lancuage on the destination machine. This is
described in reference (DNN 76A]. In addition, the CPASCAL
and Sequential PASCAL (SPASCAL) compilers must be ported.
Both compilers are written in SPASCAL so that only the
kernel and the interpreter or c¢ode generator need to be
coded for the destination machine.

These porting strategies are illustrated in Figures 4.7
and 4.8. In Figure 4.7, it is clear that only the
interpreter and kernel need to be coded. Po;ting PASCAL to
the Interdata 8/32 was a four man month effort [DNN 77].
The second strategy shown in Figure 4.8 is to utilize the
first seven (7) passes of the modularized compilers. Two
additional strategies are clear. First, only the code
generator can be targeted for the destination machine. This

strategy was used at KSU to "port" CPASCAL to the lo=-bit

-

Page 25
Interdata computers. The alternative is to code macros for
the intermediate code produced by pass 7. A version of this
portable macro language is presented in reference [HNF 767] .
It is clear that compiled code is more efficient than
interpreted code if the 1interpreter is at a user level
language. However, if microcode storage is available on the
destination machine, a microcoded version of the interpreter

may well be more efficient. Since all these implementations

of PASCAL are available, it permits the most efficient

choice for a particular target machine.

4.2.2 Evaluation of Concurrent PASCAL as an Implementation
Language

It 1s <clear that the structured multiprogramming
concepts in CPASCAL rule out time-dependent exrors by
extending the concept of monitors to a true hierarchy of
access rights to system components. Further, its structured
programming constructs enhance correct sequential program
construction. Using these high-level 1language concepts,

production of “debugged” systems programs is higher than

when using an assembler level language.

CPASCAL s utility as a job control language can be
extended to languages other than SPASCAL. The particular
changes necessary are dependent on the implementation.
However, the minimum change is to moaify the interface to

accommodate the operating services required by the

Page 26
sequential programs to be executed. These functions must be
supplied in the kernel. In the case that the kernel resides
as a task under a local operating system (LOS), the service
calls to the LOS must be mapped into the interface routines.

There will always exist assembler programmers who can
write more efficient code than a high-level language
compiler can generate. The low-level constructs such as

addresses, registers, and interrupts permit great freedom.

Addresses, in particular, are important to efficient
accessing of data. Addresses (references) are copied
instead of data. The absence of references is the single

worst fault of CPASCAL. This forces two processes toO coOpy

any data they need to exchange from the private data of the
source process into shared data in a monitor and then into
the private data of the destination process. This 1is
considerable performance degradation from passing pointers.
Such use of references could be incorporated in CPASCAL if
they are used in a controlled manner [SIB 76].

Awkward coding forms are sometimes necessary in CPASCAL
due to the lack of “"trap" facilities (on conditions in
PL/I). That is, in many instances an asynchronous condition
may occur (such as an I/0 completion interrupt or an

unsolicited message) to which a process should respond
quickly. This case is «c¢oded in CPASCAL as an auxiliary
process which specifically waits for the condition (in a
monitor or the kernel) and then transmits the condition to

the user process. The wuser process must periodically

inspect the common monitor (an event monitor). Tt 1§ nor

yet clear whether language modification is warranted.

Page 27

F Several changes to the current implementation should be
incorporated (however, they are not critical to

implementation of network systems) . A software time=-out

facility must be added to the kernel for those devices (such
as synchronous lines) which do not present interrupts when
an excessive time has elapsed since initiation of an
external event. We also think it is important to take the
fixed level of priorities out of the kernel and permit gqueue

priorities to be set from a process.

In summary, CPASCAL 1is a very good implementation

language. The modifications suggested are not critical, and
more experience with the language will help to isolate any

other possible changes (SIL 77] ([LOH 77) -

4.3 Software Engineering Evaluation

This section summarizes the decisions and technigues
which had a major effect on the structuring of the software
which was produced. This 1is intended ¢to point out the
strengths of the software and to serve as recommendations
for future software work within the U.S. Army Computer
Systems Command. In retrospect five items stand out as
positive factors:

l. Use of a well=-structured program design language
(PDL) =~

Since the word "structured” is so overused, 1it

must be explained that the PDL included many

features not always included in so-called

Page 28

structured languages. Among these were closed
module specifications with parameters tagged as
to type and entry/return mode, PASCAL-like data
structures and definitions, use of monitor
structures to synchronize multiple processes in
use of shared data structures, PASCAL~like

pseudo-code but with limited nesting of control

structures and with use of "multiple-exit"
statements so as to limit duplicated code. The
PDL was easily translated into CPASCAL code.
Weak points were that the PDL was not formally
defined and there were no tools available for
processing the PDL in any way at all.

Use of a top-down modular design methodology==-

In spite of the widespread attention to top-down
design methods, there 1is the pitfall in real
situations of being able to identify low-level
modules of a system before the overall system
structure is evolved. As an example of this,
note that often when some network is presented,
the focus will be on low=level line protocols.
However, that type of approach may make network
functions subservient to line protocols instead
of vice-versa. After some initial sputtering,
we were able to develop a top-down design. The
benefits of the design approach were as follows:
=-=-The structure is in a layered form which

promotes easy off-loading of levels of the

software

o

-

'.....---------------------l
Page 29
~=-The structure allows for easy interchange of
low=level physical line protocols
-=-The modular form will allow restructuring of
the software to form variants of the network
which are fit for particular applications
~-The structure allowed prototype implementation
in incremental stages
3. Use of walk-thrus to review design=-=-
Like structuring, the concept of walk~thrus has
received much superficial attention. However,
without a well-defined structure for review and
| acceptance of the design, walk-thrus can be
guite useless. We used a structure related to
1 the method of informal proofs of programs,
' namely the identification and justification of
assertions about the program swaxecution
established at various break=points. This was
moderately successful, although one major error
in synchronization across machines was detected
after the walk=-thrus.

4. Use of CPASCAL as an implementation language--

This was an ideal choice for several reasons.

First, the design code was structured to

translate easily ¢to CPASCAL. Second, the

CPASCAL compiler provides verification of type

i

constraints and process synchonization far in
excess of that provided in any other existing

compiler. Hence, we <can guarentee the network

e

software to be free from a large class of errors ‘

Page 30

which are detected by the compiler. It is
interesting to note that it required
considerable effort ¢to get all the network
software 1in CPASCAL to compile; but once
compiled, integration and run-time checkout was
relatively easy. Third, the CPASCAL listings,
augmented with various access and data structure
diagrams, serve as a good level of

documentation.

S. Use of highly skilled personel=--

The programmers consisted of just a few very
skilled post-MS students, each working only part
time. All were familiar with CPASCAL, process
structuring and issues relating to correctness
of programs. It 1is doubtful i1if this project
could have been <completed using "entry level
programmers."

In additibn to the positive factors, some
negative items stand out also. The main
shortcoming was iack of supporting tools, other
than the CPASCAL compiler. The need for
automated tools was clearly evidenced in the
delays experienced in handling of documents,
diagrams, and source text files. Some tools
which should be used in any comparable software
project include:
==A document processor for all technical reports

and design documents, with a facility for
&

processing diagrams

2age 31

--A module design and development system. The

design part would maintain function
specification, intermodule information, and
status of modules. The development part would
maintain libraries of 1listings and it would
support separate compilation and te§ting of
selected subsets of modules
--An interactive test facility would allow
setting of variables, <calling of submodules,
output of intermediate results, and recording
of test status information
Parts of all of the above tools have been demonstrated in
other systems, but not in any single system both portable
and compatible with CPASCAL. KSU has begun development of
some parts of these tools for a CPASCAL system. During most
of the work of the project, however, operations covered by

these tools were done manually with the attendant delays and

unreliability.

4.4 Evaluation of Hardware (KSUBUS) Engineering

The requirements to connect closely coupled
heterogeneous minicomputers which support distributed data
bases are as follows:

a. to move information from one computer memory

to another

b. large amounts of it (64K bytes)

L.‘.‘n_

i

P
-

e

Page 32

Cc. with a minimum of supervision

d. at a very high rate of speed
e. without effecting program execution in any of
the computers significantly

f. from a multiplicity of computers

g. to a multiplicity of computers

h. simultaneously

i. allowing bypassing of broken links if possible

j. at very low cost

Briefly stated, these were the objectives for the
MIMICS network hardware. Requirements (d) and (e) implied
the use of Direct Memory Access (DMA) to the computers

N
involved, with some kind of DMA=-to-DMA cable connections.

-

However, requirements (f) and (g) foretoag'trouble, since
the number of DMAs which can be attached to an?‘%!rticular
computer is quite low-=-often in the 1=-2 range. First,
design proposals considered a form of electronic selector
switch to connect two DMAs with each other for the duration
of a block transfer sequence, but requirement (h) could not
be met without horrendous duplication of hardware.

Requirement (h) also implied LOTS OF CABLES, yet
requirement (i) implied dynamic rerouting when a path of the
network was disabled. Requirement t3) prohibits a
multiplicity of cables anyway!

The basic requirements (a), (b)» and (¢) called for
relatively autonomously operating hardware, and such was
easy to provide. However, since the number and kind of

computers which would be present in any particular network

were not given in advance, very modular design was reguired

Page 33

$§9 that changes <could be accommodated without major

redesign.
i The final design developed into sets of autonomous .
functional units, called Data Movers, communicating with
each other and with DMAs over a éommon short high~speed (5

MHz) bus called a KSUBUS. Each KSUBUS unit is attached to

nearby computers via a single DMA. Each Data Mover 1is
connected to a Data Mover on another KSUBUS via a

medium-length (z 50 foot) multiwire cable. Each Data Mover

contains sufficient hardware logic to transfer up to 65,536

2-byte units of information in & single block, given only]

the source and destination computers, the block length, and

the beginning memory addresses for the information.

The prototype system was implemented using larxge
handwired Douglas Electronic 1logic boards plugged into a
spare Interdata expansion chassis and connected to several
Interdata computers.

Following are comments in reference to requirements:

a. achieved

b. achieved - perhaps too well. No one at the

present time normally transfers anywhere

near that much information. However, the

logic difference between 131,072 bytes and
a smaller reasonable number, such as
perhaps 512 bytes, is only five or six
integrated circuit (IC) packages!
c. achieved ‘
d. 5 MHz = 7.5 MHz should be possible with a @

crystal change if the ICs meet the

g

h.

Page
manufacturer’s “typical" specifications,
on the average. Still higher speeds would
require some redesign and a better
fabrication method

achieved

achieved - depending on circumstances, from 1-15
computers can be connected to Data Movers
on a single KSUBUS

achieved

achieved - to a resolution of 200 nanoseconds.
The 1limiting factor is the speed of
computer memories accessed by the DMAs

achieved - by allowing Data Movers on the same
KSUBUS to communicate with each other
without affecting the attached computers

achieved = using equipment already available at
KSU. Slightly different equipment would

have simplified several ‘ecisions and

enhanced some of the results

34

F

Page 35

CHAPTER 5

5.0 System Integration

The complexity of the network software necessitated a
unigque system integration procedure. The most common
integration methodology is bottom=-up. Thus, the 1lowest
level modules are tested with all possible inputs.
Successively higher levels of modules are tested assuming
that lower levels of modules are erxor free. However, the
activity of the line control 1level (see Figure 4.5) of the
packet system is not predictable. (This is necessary for
the bottom=up procedure.)

The following integration methodology was used [PBH
77)]. Each message system monitor, class, and process was
individually tested. The composition of méssage system

components was then tested by adding one module at a time.

This combination of modules included “simulated"” user
processes and a data mover monitor. It also included
simulated line processes. This was necessary to achieve
predictable behavior at this level. This implementation

stage is shown in Figure 5.1.

Stage 2.1 of integration included a user envelope on a
COBOL program. This is shown in Figure 5.2. It includes
SYSQ and a data mover implemented in the local operating
system. This structure was then carried out across two
machines--an Interdata 8/32 and a 7/32. Figure 5.3 displays

the message system of f-1oaded to the communication

controller. This exact configuration was not tested due to

time c¢onstraints. However, the testing of the KSUBUS

s, S i

Page 36
integration was tested (described in Section 6.2). This

configuration will be tested shortly.

Stage 2.2 is shown inv Figure 5.4. This testing with
the IBM 370 version of the ressage system [RAY 77)] was
carried out without incident since the upper level testing
was extensive. Applications of these configurations are

described in Section 6.

4

Page 37

CHAPTER 6

6.0 Prototype Operation

6.1 Prototype Distributed DBMS

In order to demonstrate the viability of the message
system software in a heterogeneous machine environment, a
prototype distributed data base management system has been
constructed. The distributed DBMS utilized TOTAL as its
data Dbase manager and the message system as its
communication mechanism. The computer systems included in
the data base network are the Interdata 8/32, Interdata 7/32
and IBM 370/158. The intermachine connections are as shown
in Figure 6.1. The system has been designed so that all
machines can function as either host or back-end processors.
In the initial version of the prototype, the system yill
operate in a single user mode with fixed host and back=-end
processors. Expansion to a multi-user environment with the
processors acting as bi=-functional maéhines (performing both
host and back-end functions) is planrned in the near future.

The software structure of the distributed DBMS 1is
illustrated by the information flow resulting from a data
base request in the application program in Figures 6.2 and
6.3. The host interface (HINT) and back=-end interface
(BINT) programs serve to control and c¢oordinate the
communication between the application program and the data
base manager. The host interface is called from the
application program whenever it requires data base service.
The HINT program packs the data base request into buffers

and calls the host version of the message system to

o

-

Page 38

communicate with BINT on the back~end processor. When BINT
’
receives the message, it unpacks the message buffers and

calls DATBAS, the TOTAL data base manager. DATBAS returns
its status and data information to BINT upon completion of
the operation. BINT transmits the results of the data Dbase
command through HINT to the application program, which then

proceeds in its execution sequence.

Both HINT and BINT are implemented in COBOL and, for
purposes of the prototype, interface with COBOL application

programs.

6.2 Prototype KSUBUS Operation

The testbed chosen to demonstrate the speed and utility
of the KSUBUS is a distribution of operating systems
functions across the bus. The objectives are to test the
performance of the bus and to demonstrate such performance
on an operational system. The performance 1s tested during
the use of a file transfer rotocol (FTP) which is
implemented between a single user operating system (SOLO 0)
and a line printer spooling (SPOOLER) subsystem.

The modified SOLO resides on one machine (Interdata
7/16), and the SPOOLER resides in another machine (Interdata
85) which controls the bus. The control information for the
file transfer protocoi is passed across the asynchronous

control lines: and the file data can be moved either across

the high-speed KSUBUS or the slow-speed asynchronous 1lines.

Page 39

This topology is illustrated in Figure 6.3.

Since the «critical element of a DDBMS 1is the

connection, the data flow of the SOLO/SPOOLER system 1is
intended to display the performance characteristics of a
hos t/back~-end system, respectively. That 1s, a user at a
SOLO console requests a file transfer. It is then moved
from the SOLO disk to the SPOOLER disk and back again to the
SOLO disk. This same scenario is true of a user data base
query request at a host terminal. The request 1is
transmitted to the back-end and the data is returned. This
type of data flow is illustrated in Figure 6.4.

The objective of the performance teats 18 to
demonstrate the improvement in data transfer times when the
KSUBUS is utilized instead of conventional slow-speed lines,
such as those used in the prototype of the distributed data
base management system of Section 6.1. The performance of
the system in transferring data should be proportional to
the speed of the transmission medium. In the prototype
system, the system which moved data across the slpw-speed
lines achieved such efficiency. However, since the file
protocol moved data from disk=to-disk, the system only ran
at the speed of the disk even when data was moved across the
bus. (If all data had been transferred memory-to-memory
across the KSUBUS, only memory speeds would limit the system
performance.) Since data bases are typically disk resident,
this SOLO/SPOOLER system effectively displays the
performance of a . DBMS distributed across two machines

connected via the KSUBUS. Furthermore, as faster devices

are used for data base storage (such as charge=coupled

Page 40

devices) the same scenario will run faster--at the speed of

the devices. Thus, since the KSUBUS runs at memory speeds,

the performance of data base operations can be improved at

the same rate as the technology of storage devices improves.

Page 41
CHAPTER 7
7.0 Documentation
7.1 OQverview
In the pursuance of the supported research,
documentation of new concepts and theories and their
prototype systems is provided in four (4) areas: data base

management systems, hardware systems, software portability
systems, and network control systems. Table 7.1 contains an

enumeration of the documents in each area. The remainder of

this chapter contains the abstracts of the reports produced

within each of the four (4) areas.

Page 42

(s0-8L SDJ)
“ILNFWNOO0a Sd
(€£0-8L SD)
SYdsn SOIWIW
(v0-8L SDJ)
"HOYY SOIWIW
(ST-LL SI)
dNIT TOYdLNOD
(v0-LL SD)
NOISId SOIWIW
(€0-9L SD)
SWEda °TdWI

TOYLNOD
XHOMLIAN

(80-LL SD)
sSwgaa 4o
SL0ddSY N9IsAd
(LO-LL SD)
aNmIOvd/ LSOH-ILINW
(S0-LL SD)
AIIAODTY/ MOV ETIOE
(20-LL S2)
SWaad 3oo1avdd
(2Z-9L S2)
SWgda J0
MIIA INIYYISNYEL
(To-LL S2)
AIANNS SWHa
(¥T-9L SI)
SWAAd °NYW " WIW
(ET-9L SD)
*0ddS Swdad
(Z1-9L SD)
/N WIS aNd-)Ovd
(TT-9L SJ)
SWHAA-INIW
(80-9L SD)
*TYAd ANI-NOVd

SWALSAS
Jsvd vrva

(z1-LL SD)
*HO¥VY 'T¥OSYdD
(60-LL SI)
TYISYdD ,ONILIOJ,,
(9T-9L SI)
TYISYdD NSH
(z0-8L SD) (LT-9L S2)
STIVLAd NOISHAA TYISYID
(10-8L SO) (8T-9L SJ)
TYNNYW S,d93Sn TYDSYdS
(LZ-LL SO) (2T-LL SO)
MITAYIAO NOISIA "ONYT OMOVKW
JM0ddns ALITILN
TIYM@IVH TIYMLIOS

9L6T ARYYYEdI

N¥1d II

INIWIOYNVYIW I

LOdrodd SLMOdT
/

9.6T ¥IAWIOAA

JAYd 9L6T AVW
LIvd SIMOdHY
AAYWWNS SSIO0dd

SIH0dTd TYOINHOJL

SWALSAS ¥ILNIWOO

dLNdIdLsIa

ATIVYNOILONNA

1°L @19®5L

Page 43
Abstracts of Reports Produced in

Support of Army Grant DAAD=-29-76-G-0108

Cs 76=-03 Maryanski and Wallentine. Implementation of a

Distributed Data Base System. 18 pages.
February 1976.

-ABSTRACT=-

In this paper we present an overview of data base
management systems (DBMS), the motivation for distributed
data base systems (DDBMS), a set of possible network
topologies served by the distribution, the mechanisms
necessary to integrate (and communicate between) the DDBMS
system elements when distributed across a nonhomogeneous
network of minicomputers, and some implementation details on
a prototype system. The current prototype distributes the
DBMS and application program function across an IBM 370/158
arnd a (minicomputer) NOVA 2/10. In the near future, a third
machine, the Interdata 85 minicomputer, will be added to the
network. The DBMS used is a network system as specified by
CODASYL. The emphasis in this paper will be on the problems
posed by the heterogeneous machines and the intertask
(processor) communication system which is wutilized in the
distribution of data, programs, and control.

CS 76-08 Fisher, Maryarnski and Wallentine. Evaluation of
Conversion to a Back=-End Data Base Management
System. 18 pages. March 1976. Published 1in

the proceedings of the ACM Conference, 1976.

-ABSTRACT-

This paper presents a methodology for and an evaluation
of the feasibility of converting a typical data proce: sing
system to a data base management system. This methodology
is applied to a particular system. The data base management
system under evaluation uses a back-end minicomputer to
perform the data management functions. The evaluation 1is
made in terms of changes in system resources, program
requirements, and human factors. The results of this study
provide considerable insight into the problem of conversion
to a data base management system and suggest guidelines for
the evaluation of any proposed data base conversions.

R e R e

Page 44

Cs 76~11 Maryanski, Fisher, Wallentine, Calhoun and
Sernowitz. A Minicomputer Based Distributed

Data Base System. 20 pages. april 1976.

Published in the proceedings of the NBS-IEEE

Trends and Application Symposium: Micro and

Mini Systems, May 1976.

~ABSTRACT=-

This paper described a data base management system
under development at Kansas State University, intended for
use in a network composed primarily of minicomputers. The
report presents a description of the computers forming the
network and their intercomputer communication system. The
data base management system is a network type as specified
by CODASYL. An extension of a CODASYL-type DBMS to
multicomputer configurations is presented and several DBMS
network topologies are discussed. We then conclude with a
discussion of a completely distributed data base network.

Cs 76-12 Maryanski and Wallentine. A Simulation Model of
a Back-End Data Base Management System. 24
pages. April 1976. Published in the
proceedings of the 7th Annual Pittsburg

Modeling and Simulation Conference, April 1976.

-ABSTRACT-

This paper presents a simulation model of a back=-end
data base management system (DBMS). The purpose of the
model is twofold: to determine the effect of several
configuration parameters on system performance in a back-end
DBMS in general and to accurately describe a particular
back-end DBMS implementation. The essential concepts of
back-end data base management systems are described in this
report. A discussion of the workings of an implementation
of a back-end DBMS is also provided. GPSS§ has been used to
model the back=-end DBMS. Simulation studies are being
conducted to study the effects on c¢hanges 1in various
parameters on system performance. Results are given on the
relationship between such performance factors as the number
of DBMS tasks processed and CPU wutilization versus the
system parameters of levels of multiprogramming, task switch
times, type of machine interconnection, and line speeds.

S— ——

Page 45

Cs 76-13 Maryanski. Language Specification for a
Distributed Data Base Management System. 76
pages. May 1976.

=-ABSTRACT-

This document is a proposal for a distributed data base
management system (DDBMS). It represents the first phase of
the DDBMS design portion of Grant 108. It is very important
to note that this document is a proposal and also that the
next phase of the design is the development of the
functional specifications of the DDBHNS. Therefore, it is
essential that all interested parties respond with any
corrections, additions, deletions, suggestions, etc. by July
1, 1976.

As it can easily be observed from this report, the
implementation of the complete DDBMS will be an enormous
task. Estimates range from 7 to 20 up to 50 person years of
effort. A natural course is to design a full scale system
and proceed with the implementation in an incremental
manner. The implementation of a minimal prototype should be
achieved as soon as possible for purposes of feasibility
studies, tes ting, and morale. Another important
consideration is that based wupon the current resource
allocation to the data base portion of Grant 108, it 1is
unlikely that the Special Features described in Chapter VIII
can be included in the initial DDBMS design. '

in a Distributed
Data Base Management System. 48 pages. October
1976,

CS 76-14 Maryanski. Memory Management in

=-ABSTRACT-

A memory management scheme which incorporates an
additional level of memory into the traditional
primary=secondary storage hierarchy is proposed toxr
utilization in distributed data base management systems. In
this scheme, the memory of the back-end processor is used as
an additional memory buffer. An optimal three-level memory
management algorithm is presented along with an analysis of
its cost 1in terms of page replacement. The expected
performance improvement over the optimal algorithm for a
two=level memory system is determined. The performance
benefits of the three-level memory maragement are applicable
to most distributed processing systems.

Page 46

CS 76=16 Neal, Anderson, Ratliff, and Wallentine. KSU

Implementation of Concurrent PASCAL & A
Reference Manual. 74 pages. December 1976.

-ABSTRACT-

This manual is intended to serve in the following ways:

l. As an overview to the implementation approach

2. As 3 rcference manual for - the SOLO user on the
8/32

3. As a reference manual for the Sequential PASCAL
programmer using SOLO

4. As a configuration guide to the SOLO systems
maintenance personnel

This manual contains a description of the
implementation of Concurrent PASCAL as a task under 0S-32/MT
on an Interdata 8/32 computer. Further, it contains a

simple introduction to using SOLO under O0S-32/MT, a set of
device assignments and completion codes, an overview of the
SOLO console operation, a programmer’ s reference manual to
the interface between Seqguential and Concurrent PASCAL
programs, and an introduction to the Seguential PASCAL
program prefix. It contains the information on how to
reconfigure the KERNEL of Concurrent PASCAL and the virtual
disc of SOLO in terms of its dependence on 0S=-32/MT.
Finally, the appendices include an annotated prefix, the
SOLO utility manuals, a description of the compiler cross
reference implementation, 0S-32/MT utilities supporting the
PASCAL system, and packaging information.

€S 76=17 Wallentine and McBride. Concurrent PASCAL = A
Tutorial. 134 pages. December 1976.

-ABSTRACT-

Concurrent PASCAL was designed and implemented by Per
Brinch Hansen as a language to use to implement operating
systems. The definition of the 1language is contained in
reference [PBH 75B]. An introductory example of its use is
in reference [PBHA]. An excellent example of the utility of
the language is the implementation of the SOLO operating

system (PBH 76] as a Concurrent PASCAL program. This
document contains a set of smaller (but complete) and more
diverse applications of the 1language. The wutility of

Concurrent PASCAL is tested in applications such as priority
scheduling of resources, message systems, the data base
reader/writer problem data 1link control procedures, anc
network interprocess communication systems. Evaluations of
several good and not-so-good language features are included.

Page 47

CsS 76=-18 Hankley and Rawlinson. Seguential PASCAL
Supplement for FORTRAN Programmers: A Primer of
Slides. 161 pages. December 1976.

-ABSTRACT-

This report ~consists of pairs of slides which are
designed to serve as an instructional aid to introduce
programmers, who can read FORTRAN, to Sequential PASCAL as
running at KSU. [Sequential PASCAL is a variant of PASCAL
which was defined by P. Brinch Hansen and A. Hartman at
California Institute of Technology. SPASCAL differs from
Wirch’s definition of PASCAL in both restrictions and
extensions.] The slides can be wused as handouts or
transparencies for an intensive seminar on PASCAL, or they
can be wused for self-study. However, there is minimal
(almost no) narrative, only lists of features and notes and
sample programs. Typical FORTRAN programs are presented
along with the corresponding Sequential PASCAL program. The
examples are presented in a sequence designed to allow the
programmer to quickly grasp the similarities and differences
between the two languages. Differences are emphasized
through the wuse of illustrations and warning statements.
Programming examples are also used to introduce the user to
Sequential PASCAL capabilities which cannot be duplicated in
FORTRAN.

Cs 76~19 Neal. An Architectural Base for Concuxrent
PASCAL. 126 pages. July 15, 1977.

=-ABSTRACT=-

The programming language Concurrent PASCAL in 1its
design and implementation has exerted a substantial
influence upon the fields of operating systems and
concurrent programming. The work reported in this thesis
extends that influence to the field of computer architecture
by analyzing the model of concurrency which supports
Concurrent PASCAL. As background to the architectural
model, three implementations of Concurrent PASCAL are
discussed, including a description of the process of
transporting an implementation from one computer t¢ another
with its associated insights and problems. Details of the
architectural base include discussions of the control and
data models. The control model discussion centers around
state transitions and scheduling. The data model presents a
hardware stack mechanism for the execution of Concurrent
PASCAL programs, which is also suitable for other
block=structured languages within the framework of the
concurrent processing.

'-.--.------------------U---r4* _ S

Page 48

Cs 76-22 Maryanski, Fisher and Wallentine. A

User-Transparent Mechanism for the Distxribution
of a CODASYL Data Base Management System. 306
pages. December 1976.

-ABSTRACT=-

A software organization 1s presented to provide for
data definition and manipulation in a distributed data Dbase
management system. With the mechanism for distributing the
data base proposed here, the physical location of the data
is transparent to the user program. A Device Media Control
Language is specified for the assignment of control of and
access to a data base area to a set of processors.
Procedures for reassignment of the control and access
functions as well as the transfer of data between processors
are provided. The basic hardware and software requirements
for a computer network capable of supporting a distributed
data base management system are discussed along with a
specification of the software required for a processor in a
distributed data base network.

(9]
us
~4
~J
]
,_4

Maryanski. A Survey of Developments in
Distributed Data Base Management Svstems. 36
pages. January 1977. To be published in IEEE
Computer. February 1978.

=-ABSTRACT=-

Recently we have witnessed the advent of general
purpose data base management systems and rmportant advances
in computer networks. The combination of the two
technologies to produce distributed data base management
systems should be the next significant step in commercial
systems development. A completely generalized distributed
data base management system would reside on a heterogeneous
computer network with different data base systems available
at various processors. Communication and data transfer
would be possible between any nodes in the network. The
realization of this goal 1is still several years 1in the
furture. However, considerable progress in the area of
distributed data base systems has been made in both academic

and industrial environments.

This report described the principal problem areas in
distributed data base management system development.
Distributed data base systems share many design problems
with both single machine data base systems and computing
networks, as well as introducing several new dilemmas.

Recent research in these problem areas 1s presented to

Page 49

provide a picture of the state of the art of distributed
data base development. In addition, the current status of
the data Dbase industry with respect to distributed
processing is evaluated by reporting the current projects
and future plans of selected (anonymous) data base vendors.

Cs 77-2 Maryanski. A Deadlock Prevention Algorithm for
Distributed Data Base Management Systems. 27

pages. February 1977.

=-ABSTRACT~-

The problem of deadlock in distributed data base
management is analyzed in terms of performance effects of
potential deadlock handling schemes. The performance
tradeoffs of deadlock detection and deadlock prevention for
distributed data base management systems are compared.
Since the run-time overhead 1n deadlock prevention 1s
projected to be 1less than for deadlock detection, an
algorithm for preventing deadlocks in distributed data Dbase

systems 1s developed. The «c¢ritical information for the
deadlock prevention algorithm 1is maintained 1in a shared
record 1list. The shared record 1list contains all shared

access records for a set of tasks. Shared records lists are
maintained dynamically by the run-time system. A proof that
the algorithm prevents deadlocks in a distributed data Dbase
management system iIs provided along with a comprehensive
example.

Cs 77-4 Wallentine, Hankley, Anderson, Calhoun and
Maryanski. Cyverview of the Design of the MIMICS
Network Architecture. 142 pages. December 30,
197s.

~-ABSTRACT=-

The basis for MIMICS (MIni= MIcroComputer System) is
the utility of both mini- and microcomputers in the support
of a distributed data base system. The goal of the research
1s development of a prototype MIMICS on heterogeneous
computers. This report documents our approach to the design
of MIMICS in the areas of=-=-

l. mechanisms for accessing data in the network:
2. hardware interconnection facilities;
3. network interprocess (message) communication

Page 50

system; and
4. implementation apprvach.

The structure of this report is first to give an

overview of the MIMICS architecture. We then present the
results of our research 1into design considerations 1n a
distributed data base system. This is followed by an
overview of the message system (network interprocess

communication system) in MIMICS and details of the MIMICS
hardware architecture which we have developed for large

capacity computer-to-computer (memory=to=memory) data
transfer. Finally, we present our approach to
implementation. We discuss the structure of the
implementation of the design, the properties of that

structure, our approach to portability of systems, and some
concepts of the system’s implementation language (Concurrent
PASCAL) .

Cs 77=5 Maryanski and Fisher. Roll-back and Recovery in
Distributed Data Base Systems. 19 pages.
February 1977.

=-ABSTRACT=-

One of the ma jor obstacles to the widespread
development and utilization of distributed data base
management systems is the lack of an efficient recovery
technique. A methodology is presented here for recovery of
distributed data bases. The central operation of the
recovery technique is rollback of a data base application
task on the processor which controls access to the data.
The rollback procedure restores the data base to 1its
original state prior to the execution of the application
task and determines the set of applications tasks which may
have been effected by that task. Tasks that have not
operated upon data altered by tasks being rolled back are
not affected by the procedure. The rollback procedure
attempts to minimize the the time and space requirements for
recovery.

&s 7= Maryanski. Performance of Multi-Processor
Backend Data Base Systems. 177 pages. April
1977, Published in proceedings of the

Conference on Information Science Systems, The
John Hopkins University, Baltimore, Maryland,
April 1977.

Page 51
-ABSTRACT=-
The results of a simulation study intended to determine

the circumstances under which it is beneficial to operate a
data base management system with a multi-processor backend

are presented. The basic concept of backend data base
management systems and multi-processor backend systems are
provided as background material. The general structure of

the simulation model which has been implemented in GPSS 1is
outlined. The results of the study indicate that the amount
of CPU activity required by the data base management system
is a determining factor with respect to the need for a
multi-processor backend.

CsS 77-8 Fisher and Maryanski. Design Considerations 1in
Distributed Data Base Management Systems. 20

pages. April 1977.

=-ABSTRACT-

With the advent of Data Base Management Systems (DBMS)

and associated facilities (data dictionaries, query
languages, report writers, atc.) , the task of data
organization, management, and storage has been given to a
select group of specialists. These specialists (the Data

Base Administrators (DBA) provide the necessary control,
logging, and access information and software to the program.
Such activity relieves the programmers of this overhead
function allowing them to concentrate on the necessary
manipulations.

This paper focuses on some alternatives with respect to
a DBMS in terms of a centralized versus decentralized
environment. The first section of this paper deals with the
concepts and tradeoffs involved i1in considering the two
eénvironments. The second section of the paper then deals
with problems which are encountered in a distributed data
base management system. These problems include deadlock,
rollback and recovery, data conversion, redundancy, and
communication and operating system reguirements for
effective distribution.

€S 7/=9 Neal and Wallentine. Experience in Porting
Concurrent PASCAL. June 1977.

-ABSTRACT=-

—————

"F-----.--.I-.-.-llIIIIIIIIllIllIllIIﬂlllIl-III----.--—-._____________H

Page 52

The process of transporting Brinch Hansen's

implementation of Concurrent PASCAL to another minicomputer
is described. Applicable porting strategies are discussed
with emphasis on the design decisions made for a specific
transportation. Important design decisions include the use
of a virtual code interpreter and implementation 1n an
operating system environment. The problems o©of this
transportation are illustrated with accompanying suggestions
for a more portable system.

Cs 77-12 Fisher, Hankley and Maryanski. Porting Software
to Multiple Mini's: A DBMS Case Study. 23

pages. December 1976.

-ABSTRACT-

As minicomputer systems gain wider acceptance, the
objective of developing portable minicomputer software
becomes more compelling. Motivated by the task of making a
data Dbase management system available on different
minicomputer configurations, this paper addresses
minicomputer software portability. The need for designing
portable software is emphasized and guidelines for such
designs are developed. Alternative options are presented
for the case study of synthesizing a portable data base
management system, and the particular method selected is
discussed in detail.

Cs 77=-15 Rehme and Wallentine. MIMICS (asynchronous)}
Contrxol Line Protocol. 103 pages. December
1977.
-ABSTRACT=-

This report contains a description of the design and
implementation of an asynchronous control line drxiver in the
MIMICS network. The driver handles the functions necessary
for the transmitting and receiving of control information
between computers within a cluster of the network. 1In the
report we give a brief description of the MIMICS network and
how the driver is used 1in that network. We then describe
the use of asynchronous 1lines for communication, why they
were chosen for this particular project, and how they are
programmed on the Interdata 85 and the Interdata 7/l6. It
also tells how the computers were wired together to insure
that the interface bovards c¢ould detect abnormal conditions

Page 53

of the 1line. The implementation of the driver on the
Interdata machines using assembler language and PASCAL is
then presented, followed by a summary of the work completed
and some extensions to conclude the report.

Cs 77=-27 Goodell. Control Computer Local Driver Routines
in & Functionally Distributed Data Base

Management System. 1977.

=-ABSTRACT-

The Functionally Distributed Data Base Management
System links computers in one geographic location together
into a cluster and then forms a network with remote
(distant) clusters, providing a system where each machine in
the network operates in a specific computer area and each
data base in the system is managed by one specific machine.
To control this network, a second, smaller computer
(ultimately a microcomputer) is allied with each main or
host computer in the system. This control computer receives
and 1issues instructions from and to the host computer oOr
other control computers to arrange the movement of data from
the memory of one computer to the memory of any other
computer in the network. This project described 1local
driver routines which direct the handwired logic of local
data moving mechanisms. Included are detailed descriptions
of the actions regquired by each request and an explanation
of the software-hardware relationship.

CS 78=~01 Calhoun. Functional Description
KSUBUS and Associated Hardware.

£ the MIMICS

=-ABSTRACT=-

This document describes the overall functional
specifications and network architecture of the high=speed
KSUBUS and all of the associated hardware units: Direct

Memory Access, Data dMover (Transmitter, Receiver, and
Transmitter/Receiver), Remote Direct Memory Access, and
Universal Logic Interface. A description of each of the
buses comprising the KSUBUS is 1included. Data transfer

mechanisms and transfer rates are discussed.

An appendix derives the maximum data transfer on a
KSUBUS.

Cs 78=-02 Calhoun. Detailed Description of the MIMICS
KSUBUS Hardware.

~ABSTRACT-

This document gives a detailed description of the
KSUBUS and each of its associated hardware units: Dirxect
Memory Access, Data Mover (Transmitter, Receiver, and
Transmitter/Receiver), Remote Direct Memory Access, and
Universal Logic Interface. The Digital Design System 1is

also described.

Each module of every hardware unit designed at Kansas
State Unversity is described in detail.

CS 78=-03 Hankley, Wallentine, et al. MIMICS Message
System: Introduction and User’'s Guide.

-~ABSTRACT-

MIMICS (MIni=- MIcroComputer System) is a model for a
network of computers, possibly large machines, but normally
minicomputers. Communications functions within the network
are designed to be off-loaded into microcomputer
communications controllers. The MIMICS network was designed
to be able to support gquite arbitrary configurations of
distributed data bases. The MIMICS structure was 1intended
to eventually incorporate a distributed network operating

system (DNOS) ; however, the rototype design an
implementation includes just a network message handling
system. The message system (MS) consists of distributed

controi software and hardware which allows cooperating user
tasks, anywhere in the network, to send and receive large
blocks of text data wusing very simple operations and
protocols. This report presents a guide for users of the
message system. It is written assuming a "typical" machine
and using PASCAL-like notations to describe data structures
and parameters. Supplemental guides are available for users
on the Interdata 8/32 [DNN 76B] and IBM sS/370 [RAY 77]). A
companion report [HAW 78] provides a guide to the design and
CPASCAL implementation of the message system. The summary
report for the project presents an overview of all of these
related documents [WHC 77]). The guide is organized in four
parts. Section two presents the major features of the
MIMICS design. These help the user ¢to wunderstand the
system, but they are not absolutely necessary to the most
naive users. Section three presents the actual namin
conventions and explanations of how the message system 1s to
be used. Section four tabulates the specific calling forms
needed to wuse the message system. Section five presents
scenarios which illustrate different Kkinds of use of the

Page 55
message system.
CsS 78-04 Hankley, Wallentine, et al. MIMICS Message
System: Architecture and Implementation.

=-ABSTRACT-

This report contains the functional and implementation

documentation for the MIMICS message system. An overview of
the structure (in Concurrent PASCAL) and data flow is
presented. Functional specifications for each module in the

system are given. This is followed by detailed algorithmic
specifications. Concurrent PASCAL code for the system is
attached as an appendix.

CsS 78-05 Ratliff. Implementation of the MIMICS Packet
Switch.
N\
-ABSTRACT-

The MIMICS (MIni- MIcroComputer System) is a general
purpose network system developed at Kansas State Unviersity.
The structure of MIMICS is such that high-speed data
transfers among membezs of a “cluster” are controlled by the
cluster system, while transfers between distant machines
utilize common carrier hardware controlled by the "packet
switch." This report documents the implementation of this
packet switch. Cerntral to the understanding of the packet
switch implementation are the concepts of communications
across a logical line, not physical, and the concept of a
logical line window for easy recovery and flow control
across all physical lines which make up a logical line. The
packet switch 1is responsible for buffering incoming an
outgoing packets, routing packets based on destination
information in the packet, and scheduling packets based on
their priority. Enforcement of flow control and buffer
allocation insures that no one task can monopolize all of
the buffers and no one class of packets can completely
preempt transmission of other classes of packets. The type
of common carrier hardware wused, line discipline, packet
format and protocol wused are extremely well isolated and
rely largely on capabilities supplied by the operating
system on which the MIMICS system is to run.

Page 56

CHAPTER 8

8.0 Project Summary

The prototype message system software was written in
Concurrent PASCAL. Its documentation consists of two
overview documents [CS 76-03] [CS 76=11l], a design document
{CS 77-04]), a user’s manqel [cs 78=-03), an architecture
document [CS 78-04], and two functional specification
reports (CS 78-05] [CS77-15]. A 9-track tape contains the
software in virtual code 1ﬁich can be run on an Interdata
8/32 or 7/32 under 0S-32/MT or on a PDP~1ll with no operating
system support. o

Since the wuse (adapability) of Concurrent PASCAL 1is
enhanced by the use of the S%&O operating system, a 9-track
tape contains the SOLO system, the "ported" 8/32 system, the
"ported" 1l6-bit compilers, and spooling subsystem. A
tutorial on Sequential PASCAL and one on Concurrent PASCAL

are included. Two documents on the "porting" of Concurrent

PASCAL are also included.

The construction spe@ifications for the KSUBUS
prototype (and all of its associated interfaces) are
presented in reference [CS 78=02]. A user’ s manual [CS

77-27] and a basic architectujye guide [CS 78-01] are

-

included.

A 9-track tape is provided which contains the prototype
distributed data base system. Eléien (11) technical reports
have been published which isoclate performance

characteristics and mechanisms to achieve a distributed data

base system.
[4

In summary, twenty=-six reports (and three progress

Page 57
reports) were produced within the scope of this grant. A
prototype network message system was developed which

consists of 5000 1lines of Concurrent PASCAL code which

generates 50K bytes of machine code. A prototype high-speed

bus was developed which consists of the control interface,

the bus, and three local data movers. The software is

available on magnetic tape.

” —-‘“_.“1——-“ it

Page 58
Appendix A
Articles and Publications

Technical Reports, KSU .

Abstract :
Number Page Authors and Titles ;
Cs 76=-03 42 Maryanski and Wallentine.

Implementation of a Distributed Data

Base System. 18 pages. February

1976.
CsS 76=-08 42 Fisher, Maryanski and Wallentine.
Evaluation of Conversion to a

Back=-End Data Management System. lE
pages. Published in the proceedings
of ACM National Conference. October

1976.
CS 76-11 43 Maryanski, Fisher, Wallentine,
Calhoun and Sernowitz. A

Minicomputer Based Distributed Data
Base System. 20 pages. April 1976.
Published in the proceedings of the
ﬁ NBS-IEEE Trends and Application
Symposium: Micro and Mini Systems.

May 1976.

CS 76-12 43 Maryanski and Wallentine. A
Simulation Model of a Back—-Eand Data
Base Management System. 24 pages.
April, 1976. Published in the

proceedings of the Seventh Annual
Pittsburg Modeling and Simulation !

Conference. April 1976. Eﬂ
CS 76=-13 44 Maryanski. Language Specification

g for a Distributed Data Base]
Management System. 76 pages. May

1976. .

CsS 76-14 44 Maryanski. Memory Management in a i

Distributed Data Base Management ‘

System. 48 pages. October 1976.

CS 76-=16 45 Neal, Anderson, Ratliff and
Wallentine. KSU Implementation of
Concurrent PASCAL = A Reference

Manual. 69 pages. December 1976.
CS 76=17 45 Wallentine and McBride. Concurrent

PASCAL = A Tutorial. 129 pages.

—_

cs

cs

CS

Cs

CSs

CSs

CS

CS

CS

CS

Cs

CS

76=-18

76~19

76=-22

77=2

77-4

77=9

77=12

77=15

46

47

47

48

48

49

49

50

50

51

Page 59
December 1976.

Hankley and Rawlinson. Sequential
PASCAL Supplement for FORTRAN
Programmers: A Primer of Slides.
145 pages. December 1976.

Neal. An Architectural Base for

Concurrent PASCAL. 126 pages. July
15, 1977.

Maryanski, Fisher and Wallentine. A
User-Transparent Mechanism for the
Distribution of a CODASYL Data Base
Management System. 34 pages.
December 1976.

Maryanski. A Survey of Developments

in Distributed Data Base Management
Systems. February 1977.

Maryanski. A Deadlock Prevention
Algorithm for Distributed Data Base
Management Systems. February 1977.

Wallentine, Hankley, Anderson,
Calhoun and Maryanski. Progress

Report on Functionally Distributed
Computer Systems Development. 147
pages. December 1976.

Maryanski and Fisher. Roll-back and
Recovery in Distributed Data Base
Systems. 19 pages. February 1977.

9}
)

Maryanski. Performance
Multi-processor Backend Data Bas
Systems. 15 pages. April 1977,

l

©

Fisher and Maryanski. Design
Considerations in Distributed Data
Base Management Systems. 19 pages.
April 1977.

Neal and Wallentine. Experience 1in

Porting Concurrent PASCAL. June
LS .
Fisher, Hankley., and Maryanski.
Porting Software to Multiple Mini's:
A DBMS Case Study. 23 pages.
December 1976.

Rehme and Wallentine. MIMICS
(asynchronous) Control Line
Protocol. 103 pages. December

1977.

(o)

CS

(o]

CS

CS

Cs

77=-27

78=-01

78-02

78=-03

78-04

78=05

52

52

53

53

54

54

Page 60

Goodell. Control Computer Local
Driver Routines in a Functionally
Distributed Data Base Management

System. 1977.
Calhoun. Functional Description of

the MIMICS KSUBUS and Associated
Hardware.

Calhoun. Detailed Description of
the MIMICS KSUBUS Hardware.
>

Hankley, Wallentine, et al. MIMICS
Message System: Introduction and

User s Guide.

Hankley, Wallentine, et al. MIMICS
Message System: Architecture and

Implementation.

o

Ratliff. Implementation of t
MIMICS Packet Switch.

Appendix B

Date

Reports

Subject

- - P - D - = - P W D D WS WS s WD WP P D R D D AP D WD WS D D D P S D S . - . - -

March 24, 1976

T4
April 21, 19J6
May 20, 1976
September'l, 1976
July 1, 1976
January 27, 1977

September 15, 1977

January 30, 1978

Report of Monthly Review
Report of Monthly Review
Progress Report

Report of In=-process Review
Progress Report to ARO

Progress Report to ARO

Report of In-process Review

Final Technical Rgport to ARO

"--lll"----------.--------II-----t*

Appendilx

Page 02
e
Table 1 Vocabulary
In discussing the MIMICS network concepts and

implementation, 1t is essential to establish certain base

vocabulary. Several of these key words are explained in the

list which follows. Each word has been graded using the

following scheme:

(1)

(1)

(1)

(l) =====- means word is essential for network users

(2) ===-== means word is needed for discussion of

network concepts

(3) ====== word is related to network implementation

network = an interconnected set of computers.

MIMICS = a network designed to be implemented using

MIni- and MIcroComputers, but also with larger machines

in the network; developed at KSU under support from the

U.S. Army Computer systems Command.

connected - the network hardware 1s said to be

connected 1f it i1s possible for communication to tlow

from any one machine to any other machine 1in the
network, elther directly or indirectly via
intermedidate machines; MIMICS 1s intended to be

connected.

- two user tasks are said to be connected 1if
they have mutually established a "logical connection®
by appropriate matching MS_CONNECT calls; these tasks
may then communicate using MS_SEND and MS_RCV calls.
user task = an application task 1n one Of the network

host machines that communicates to some other user

i

i

el

(1)

(2)

(2)

(L)

Page 63
task, likely in a different machine, using the message

system.

message system - that software/hardware part of MIMICS

that supports network communciation by user tasks;
basic message system commands are CONNECT, DISCONNECT,
SEND, and RCV (receive); basic message system functions
are routing of messages, packetizing messages for
remote transmissions, buffering of packets, handling of
line protocol for packets and messages, and

reconstruction of packetized messages.

remote - two machines (or wuser tasks) are remote 1if

communciation between them must travel over low-speed
telecommunciations lines (e.g.., 2400A baud,
synchronous) ; messages between remote tasks are
packetized by the message system, i.e., broken into
packets 'fo} transmission and reconstructed at the
receiving machine; opposite of local.

local - two user tasks are local if either (i) they are
in the same machine or (ii) they are in machines
connected by high-speed "data movers" (e.g., 2 million
bits per sec):; messages between local tasks are not
packetized, then are sent as a block, memory=-to-memory
using the data movers; each group of local machines 1s
called a cluster; opposite of remote.

host = any computer in the network with user tasks 1in

it; warning=-this differs from usual data base

terminology as in a distributed data base application;

both the front-end and back=end computers would be

called network hosts; in MIMICS, hosts may be either

(2)

(2)

(1)

Page 64

minicomputers or maxicomputers.

off-loading - the removing of some operating system oOr

language support functions from a host machine to an

allied dedicated processor; the motivation for this 1is
that the off-loaded functions can execute truly
concurrently (i.e., simultaneously) with tasks in the
host, thus greatly improving the performance of the
host; in MIMICS, the message system is typically
off-loaded into a communications control (ccy
miCroprocessor; in the 370 architecture, the I/0
functions are off~loaded to special channel control
processors.

CC = communication controller; a microprocessor used in
MIMICS for off-loading the message system from a host
machine. l

message - basic unit o©of network communication; copied
by the message system from address space of a sender
user task into agreed upon place in address space of a
receiver user task:; in MIMICS, messages may have two
components, (i) a command part (up to 128 bytes of
data) and (ii) a data part (up to 64K bytes), but
either (not both) of the parts may be null.

routing - selection of the path between two host
machines over which communication will flow=-hence, the
selection of (i) which intermediate machines, i1f any,
are part of the path and (ii1) which actual
communication line, in case there is more than one, to
use between any two directly connected machines; in

MIMICS, each message system instance has a route table

| S ——

(3)

(3)

(L)

(3)

(3)

Page 65
with entries <name_of_another_machine_in_the_network:
line_route_to_next_machine_in_the_path> where the line
route . mber is a logic 1line, so that all physical
lines to an adjacent machine are used interchangeably.

logical line - a group of parallel physical

communications lines which directly connect two
adjacent computers, where the actual physical lines are
used interchangeably; warning--this means that packets

can flow "out-of-sequence," although user tasks never

observe this phenomenon.

KSUBUS ~ a special multiplexed hardware bus, designed

by M. Calhoun at KSU, to form a memory-speed connection
between a CC, one or two hosts which are on the bus, an
XR-data mover, and X- and R-data mover pairs which
connect to other KSUBUS s in the same cluster.

cluster - in MIMICS, a group of network machines that

are all interconnected by high-speed data movers; the

data parts of messages move at memory speeds from the
sender task to the receiver task.

c-node -~ a cluster-node; the group of one or two hosts
which are connected to the same KSUBUS; messages can
move memory=to-memory within K a c=node without
accompanying cluster protocol; warning==-in conventional
network terminology, any machine in the network would
be called a node, but that is different from the c=node
concept.

data mover - a special "Autonomous Functional hardware

Unit," designed at KSU, to work in conjunction with

other matching units to move data blocks

(3)

(3)

(3)

(3)

Page 66

memory-to-memory at memory speeds between machines in
the same cluster; XR-, X- and R-data movers; a data
mover can be enabled only by the CC on the same KSUBUS
as the data mover.

R = data mover - device which copies a block of data

from one area to another within machines on the same

KSUBUS, e.g., host-to-host or host=to-CC or CC-to~host.

X-data mover ~ device which "transmits" a block of data

to an R-unit on a c§nnected KSUBUS, where the source of
the data is either (i) memory of a machine on the same
KSUBUS with the X=-unit (called X=-mitting) or (ii) an
R-unit on the same KSUBUS as the X-unit (which 1is
called forwarding of the data).

R-data mover - device which receives data from an

X-unit on a connected KSUBUS and "moves" the data to
either (i) memory of a machine on the same KSUBUS as
the R~unit (called receiving) or (ii) to an X=unit on
the same KSUBUS (called forwarding; .
packet - a basic unit for communication over a
low-speed 1line; in MIMICS, the packets have the
following components:
beginning_part = 6=SYNs = DLE=-STX
packet_flow_control (4 bytes) =

RC===return control character

RN===return sequence character

N~===-0out sequence character

TL-=-text_length character
message_flow_control (12 bytes =

SEQ==-~-=~=-packet sequence number (2 bytes)

‘_——_—“

T----=----type of packet character

Page 67

ID==-=-=-=---message id character

TO_ID=----4 bytes

FROM_ID=-4 bytes
packet_text (0 to 128 bytes of data character plus
transparency characters as required plus extra SYN
characters as needed)
check_sum_part (2 bytes)
end_part = DLE-ETX
This comprises normally up to 156 characters, and
most likely several more, to transmit data text of up
to 128 bytes, so that the effective line baud rate is
less than the nominal baud rate. Transmission errors
and subsequent retransmission reduce the effective line

baud rate even further.

(2) buffering - mechanism for providing space (buffers,

actually ‘“"empty" buffers) and temporarily storing
information (also called buffers, or full buffers), so
that the related steps of storing and removing buffers

(actual contents of the buffers) can proceed

asynchronously, with the cumulative number of stores at

all times ahead of the cumulative number of removals.

Buf fers in MIMICS include:

(2) SYSQUE - buffer between user tasks and message system;

buffers requests to message system and responses back
to user tasks.
(2) protocol = an agreed upon form and sequence for

exchange of control information and data between

(3)

Page 68
processes to achieve a synchronized communication,

i.e., so that the information is correctly conveyed and
both processes know it; there are several sets of
protocol in MIMICS, including:

(1) SYSQUE protocol = protocol for both user

tasks and message system to both send and
receive SCBs, which are control blocks used
to implement passing of parameter information
for message requests and responses.

(1) Message system = set of parameters lists for

message system requests together with rules

for acceptable user task behavior.

(3) Synchronous line - rules of sequencing for

exchanging packets between remote line
drivers.

(3) CC_protocol = actually two sets of protocols;

- (1) rules for exchanging packets between
cluster - CCs (same as synchronous
line protoc».)} and

(ii) rules for controlling the data mover’s
copying of data blocks within the
cluster.

PASCAL - a programming language designed by N. Wirth
which promotes correct programs because (i) 1t promotes
structured programs (both flow of control and data
structures) and (ii) it enforces numerous compile time
checks not normally supported in other programming
languages (thus minimizing run=-time errors), and (1ii)

it allows code to be written in a very easily readable

(3)

(3)

form.

PASCAL - at the same time, a restriction of PASCAL to
enforce simple programs and an extension of PASCAL to
support a well=-structured mechanism for concurrent
programs using monitors; developed by P. Brinch Hansen;
ported to KSU for wuse in implementing a readable and

correct prototype of the message system.

monitor = a concept intrcduced by C. Hoare for
structured programming of concurrent processes; the

monitor consists of (i) a group of shared data
structures, (ii) a set of procedures (monitor entry
points) which operate on the shared data, (iii) and
initial state for the shared data, and (iv) the
convention that only one process may execute "in" the
monitor at any one time, so that the programmer does
not have to worry about difficulties of multiple
processes writing to the shared data at the same time:
monitors are implemented in CPASCAL; monitors in the

MIMICS implementation include:

SYSQUE - monitor of SCBs for message system

requests and responses

packet_buffer - monitor of packets to be sent or

just received

MESS_TABLE = monitor of active and queued SEND and

RCV requests

CONNECT_TABLE = monitor of user task connection

status information.

logical_line_window =~ monitor of packets actively

being transmitted, received, or acknowledged

(1)

(1)

(1)

(2)

Page 70
over low-speed lines; one for each logical
line

- event_control - monitors to control a process
which has to await availability of data in
either of two (or more) other monitors, since
a process in CPASCAL can normally wait on only
one monitor

- ¢cluster_monitor - monitor of request and responses
for activation of the data movers

NRC - Network Resource Controller; a network operating
system module needed to interface user tasks between
the local operating system in the host machine and the
network operating system; one for each host machine;
functions of this NRC include:
- supplying network names to each user task
= initiating tasks in a host upon request from the
NRC in some other host (based upon requests
from user programs)
~ disconnecting user tasks from the message system
when the task terminates without the
normally expected disconnect step

local operating system - the regular operating system

in any single host machine.

network operating system = the collection of all

operating software in all network machines including
all NRCs, all message system instances, all SYSQUEs,
etc.

user envelope = interface software to translate message

system calls in user programs to appropriate usage of

(1)

(1)

(2)

(3)

Page 71
the SYSQUE; in particular, the user envelope will need
to supply specific network names for all communications
requests.

network names (c.m.t.p.) = all communications in MIMICS

are directed using a network-wide naming convention
consisting of four bytes:

¢ = cluster character

m = machine

t = unique task identifying character, within
machine c.m.

p = port character: the port character
effectively identifies a communication subname
so that one task may carry one network
communication using two different ports and
keep messages to each port separate.

c, m, and t names for a task can be established by
interrogating the NRC.

local names = within a host, tasks will be identified

by names assigned by the local operating system; these
are not network names; warning==-it is necessary to
translate between local names and network names in
order to interface wuser tasks to both the local

operating system and the network operating system.

back=end =~ typically refers to a host computer
executing only a data base management function;

sometimes refers to the function inside a partition in
a host which executes application programs in other
partitions.

_packet buffer monitor = buffers packets to be sent over

(3)

(1)

Page 72

low-speed lines and received from a low-speed line.

line drivers =- buffers the packets as they are actually

being transmitted or received over a low speed line.

message table - buffers SEND and RCV requests that have

been accepted by the message system but not yet

completed.

i Page 73

- Appendix D
References

[cAH 74] Hoare,. C.A.R. Monitors: An Operating System
Structuring Concept. Communications of ACM, Vol.
17, No. 10, October 1974.

[CEK 74] Cerf and Kahn. "A Protocol for Packet Network
Inter-communication." IEEE Transactions on
Communications, Vol. Com=22, No. 5, May 1974.

[DM 78] Mounday., D. Porting CPASCAL to the NCR 8250.
Kansas State University M.S. Report, 1978.

[DNN 76A] Neal, D.N. An Architectural Base for Concurrent
PASCAL. (M.S. Thesis) KSU Department of Computer
Science, Technical Report CS 76-19, November
1976.

(DNN 76B] Neal, D.N., Anderson, G., Ratliff, J. and
Wallentine, V. KSU Implementation of Concurrent
_PASCAL - A Reference Manual. KSU Department of
Computer Science, Technical Report CS 76-16.

[DNN 77]) Neal, D. and Wallentine, V. Experience in
Porting Concurrent PASCAL. KSU Department of
Computer Science, Technical Report CS 77-9, June
1977.

[FIM 76] Maryanski, F.J. Design Considerations f¥%r a
Distributed Data Base Management System. KSU
Department of Computer Science, Technical Report
CS 76=14, September 1976.

[GVB 75] Bochmann, G.V. Logical vVerification and
Implementation of Protocols. Fourt Data
Communications Symposium, October 1975.

[INT A] INTERDATA INC. 16 Bit Series Reference Manual. ?
Pub. No. 29-398R03. ‘

{INT B] INTERDATA INC. MODEL 8/32 Processor User’s '
Manual. Pub. No. 29-428.

[INT C]) INTERDATA INC. ‘OS-32/MT Program Reference
Manual. Pub. No. B29-390R02.

[JHH 76] Howard, J.H. Signaling in Monitors. Proceedings 4
of 2nd International Conference on Software
Engineering (ACM/IEEE/NBS), (IEEE Cat. No. 76
CH1125=4 C), October 1976.

r 9

[JeWw 74) Jensen, K. and Wirth, N. PaSCAL = User Manual

and Report in Lecture Notes in Computer Science.
No. 18, Springer VJrlag, 1974.

[LOH 77]

(MAC 783]

[MAC 78B]

(MB 76]

[NW 71]

[PBH 73]

[PBH 75a)

(PBH 75B]

[PBH 76]

[PBH 77]

[RAY 78]

[REW 77]

[sIL

~J
~)
—

Page 74

Lohr, Klaus=-Peter. Beyond Concurrent PASCAL.

Proc. of 6th ACM Symposium on Operating Systems
Principles, November 1977.

Calhoun. M.A. Functional Description of the
MIMICS KSUBUS and Associated Hardware. KSU
Department of Computer Science, Technical Report
CSs 78=01.

Calhoun. M.A. Detailed Description of the MIMICS
KSUBUS Hardware. KSU Department of Computer

Science, Technical Report CS 78-02.

Ball, M. Personal Communication. Naval
Underseas Laboratory, San Diego, CA.

Wirth, N. The Programming Language PASCAL. ACTA
Informatica, Vol. 1, No. 1, 1971, pp. 35-63.

Brinch Hansen, P. Concurrent Programming
Concepts. ACM Computing Surveys, Vol. 5, No. 4,
December, 1973.

Brinch Hansen, P. The Programming Language
Concurxrent PASCAL. IEEE Transactions on Software
Engineering, Vol. 1, No. 2, June 1975, pp.
199-207.

Brinch Hansen, P. Concurrent PASCAL Report.
Information Science, California Institute of

Technology, June 1975.

Brinch Hansen, P. The SOLO Operating System.
Software Practice and Experience, Vol. 6, No. 2,
April=June 1976, pp. 141-206.

Brinch Hansen, P. The Architecture of Concurrent
Programs. Prentice-Hall, 1977.

Young, R. IBM System/370 Implementation of the
MIMICS Network Message System. KSU Department of
Computer Science, Technical Report CS 78=06, May
1977

Rehme, E. and Wallentine, V. MIMICS
(Asynchronous) Control Line Protocol. KSU
Department of Computer Science, Technical Report
CS 77=-15, December 1977.

Silberschantz et al. Extending Concurrent PASCAL
to Allow Dynamic Resource DManagement. IEEE
Transations on Software Engineering, Vol. SE=3,
No. 3, May 1977.

Silberschantz et al. Oon the Input/Output
Mechanism of Concurrent PASCAL. Proceedings of
the IEEE COMPSAC 77 Conference, November 1977.

r—————-—-——» :

Page 75
. {waL 72} Walden, D. a System for Interprocess
Communication 1in a Resource Sharing Computer
Network. Communications of the ACM, Vol. 15, No.
7, April 1972. »
t
[(WIH 76] Hankley, W.J. et al. Sequential PASCAL
Supplement (for FORT RAN Programmers). KSU

Department of Computer Science, Technical Report
CS 76-18, November 1976.

JAOTIART WAL #

AAUTIAN

WYH
NOT LY

/

\

W3ILSAS

L1
ISOH UT UoT3INQTIIAIST(3I2M3IIOS
Y1y aanbig
W3LSAS
S¥YHd 91LYq
dd0TaANT WALSAS
TOAILNCD
/// IMNOS™
AAOMILAEAN
J4013aANT ¥3SN
WALSAS
d99YSSaH

£ ANIHOYAW LSOH

JOYSSAn

I INITHOVYN

S—

DD/3SOH SSOIDY UOTINQTIISTQ SILPMIIJOS
g1°p 2anbr1a

ANOSAS ANV
WALSAS SNILRIFA0 TVOOT

¥ ¥3ANN SASSIAD0Yd

¢3 JINIHOYW ILSOH

\\ andsks
any

WILSAS ONILWVHE40 TYO0T

/
InOSAS

anNy
WHLSAS
ONILWVIHJO
TYO0T

WALSAS
SVd YIvQ

Jd0TIANT WILSAS

WILSAS

A \1' dOVSSIW

SLSOH ¥O0 S,20
YIHLO OL M D0

TOYLNOD
godnos™d
JROMLIN

IX JdNIHOVYW LSOH

Iv % . !
i |
{ l
{

”

3

r
CLUSTER Cl CLUSTER C2 i
MACHINE M1 MACHINE M2 '
USER USER
TASK NRC' NRC' TASK
(T1) (NM) MS MS (NM) {T2)

ALLOCATE
CMDPKT NAME
>C> > C T2.P1 »
RETURN AND START
CMDPKT O‘ NAME T2.P1
o ; : T2.P1
CONNECT (C1.M1.T1.P1, CMDPKT ’O‘ CONNECT (C2.M2.T2.P1,
|' C2.M2.T2.P1) Cl.M1.T1.P2)
[) -
| : . ?
RECEIVE (CMD/DATAL)
SEND (CMDPKT) ’O\ CMDPXT RECEIVE (CMDPKT)
T 0 ﬂ
I RECEIVE (CMD/DATA3) ’O'\ CMD/DA'I’Al RECEIVE (CMD/DATA2)
M
E SEND (CMD/DATA2) ’O/ CMD/DATA2 SEND (CMD/DATAL)
RECEIVE (CME/DATAS) ’O CMD/DATA3 O‘ RECEIVE (CMD/DATA4)
RECEIVE (CMD/DATA6) ’O SEND (CMD/DATA3)
RECEIVE (CMD/DATA7) |]
—p() |
®] 1
"BLOCKED" ‘1

Figure 4.2

Connection/Synchronization of

Type 2 Communication

b o N

NETWORK
RESQURCE
CONTROL
SYSQUE MESSAGE PACKET
MONITOR MONITOR MONITOR
” q
USER F r
ENVELOPE MESSAGE CLUSTER PACKET
SYSTEM SYSTEM SYSTEM
USER PROCESSES PROCESSES PROCESSES
TASK
s ey
ﬂgEEEEEEEEEEEEE;V — =
e e L SYNCHRONOQUS
(KSUBUS) LINE
AND CLUSTER
CONTROL CONTROL
Figure 4.3

Network (IPC) Network System

Implementation Structure

A @ ———

ckociodlh s

USER
ENVELOPE
SYSQUE
MONITOR
ﬁiﬁ:ﬂ? MESS TABLE
s onl MONITOR
;ﬁ; MS g&; IN ouT MS
R START i MOVER MOVER DONE
BMOV GETCMD GETDATA BMOV

PACKET BUFFER MONITOR

Figure

4.4

Message System Access Graph

SAILITIAYAYD O/I TaANIEA

B SR —— € anNI1
TVOISAHA TY¥OISAHd ~ Z 3NIT
- TYOISKHd
YANILSIT
PUTE e o L
s " “ 1 T¥OISAHd
XITIWIS YALLIWX AALLIWX YANILSI Xad
YALLIWX

Y Y & 5
SIEEEDSS 5
XQH : 5 &
W 0
n
wm v
YOLINOW T10201L0¥d B
MOANIM yasn S
N E
3 a
o W
- L]
e D>
wm
i T aNIT o
— = = qoroot %
il o
o

AD¥S ASVITI JHOLSH - TINALIO

=

DEH A

YOLINOW ¥3d4dNd IDIOVd

KO0 > m X

USER FUNCTION-ORIENTED

PROTOCOLS

MEMORY ALLOCATION PROTOCOLS

TASK CONTROL

PROTOCOLS

MESSACE (DATA) MOVEMENT

PROTOCOL

MEMORY-TO-MEMORY RESOURCE

ALLOCATION PROTOCOL

LINE CONTROL & RECOVERY

PROTOCOLS

Legend:
SQ = SYSQ in Local Operating System (Assembler Code)
SC = Subroutine Call
NRC = Network Resource Control

PB = Packet Buffers

Figure 4.6A

MIMICS Protocol and Interface Mechanisms

| COMMUNICATIONS
il CONTROLLER (CC)

NRC

HOST-CC
ASYNCH

SYSQUE
MONITOR

HOST-CC

SYSQUE

ASYNC MONITOR
CONTROL i R0
CONTROL
PROCESS
(DRIVER) BREACERS
USER N

| v
ASYNCHRONOUS MESSAGE
FULL-DUPLEX SYSTEM

LINES

Figure 4.6B

Implementation of SYSQUE Between Host

And Communications Controller

Compiler Coded in PASCAL

SOURCE
CODE

Machine Independent

OBJECT CODE

FOR VIRTUAL

PASCAL STACK
MACHINE

INTERPRETER IMPLEMENTATION
OF INTERPRETER

\\ KERNEL j AND KERNEL

()SER OR MICROCODE LSI

Figure 4.7

Portability of Concurrent PASCAL Using

The Interpretation Technique

e

PASS 6
OPTIMIZATION

PASS 7 PASS 8
REGISTER iyt LOCAL CODE
ASSIGNMENT GENERATION

MACHINE
ORIENTED /
REGISTER /
LEVEL
OBJECT CODE /
(MACRO'S) / ;

MACRO
PROCESSOR-
GENERATOR
MACHINE

LOCAL MACHINE
OBJECT CODE

KERNEL 3

Portability of Concurrent Pascal Using

Figure 4.8

Compiled Code

0S TASK 1

A —

(ALL PASCAL PROCESSES) |

0S 0S 0s 0s
TASK TASK TASK TASK .
1 2 MESSAGE SYSTEM N-1 N %
i PROCESSES e
PROCESS 5 PROCESS
1 DATA 2
MOVER :
< \ | >
MONITO
+

PASCAL KERNEL

0S-32/MT
INTERDATA 8/32
& — > SCB Flow
<{&———>Data Movement
Figure 5.1
Implementation Stage 1--
___All Message System and User Processes *
_ in One LOS Task--All Code in PASCAL .
(Simulate local, cluster, and remote communications)
|
i
[
f

0S TASK i

f ALL PASCAL PROCESSES
0S 0s 0s 0S
TASK TASK TASK | TASK
1 2 A-1 N
— MESSAGE SYSTEM USER
PROCESS B e ey PROCESS
1 2
A A A
’{\ - I ;
|
ﬂ l | PASCAL KERNEL I ﬁ
L i il
N e v o o= i/ SUBQ MONITOR N e o — g
= DATA MOVER N
{ \
\ EXECUTIVE _ TASK .
0S-32/MT
INTERDATA 8/32
€— —> SCB Flow
<&———> Data Flow
Figure 5.2

Implementation Stage 2.1--
Message System Processes in one LOS Task
and User Processes in Other LOS Tasks

sysey,

NOISSIWSNVYL
LANIVd

68’ VIVAYAINI

SO'1 18O U} B3EB3ad01d 19s)] []e Ppue
90 walsAg 93essay
—--¢ @9e3g uofiIBIusWATdu]

€°¢ 2an314

MOTd 408 €———>

motd eaeq H
(9T/L) T€/8 VIVAYAINI

ANIT HONASY

4
TANYAA 1y0SvVd
e
u $SAN0VA
% a2 yasn
W “
B _
D) i |
SASSAI0Ud qAA —J) | _
VWA |
WA1SAS Vi) . _
A9VSSAW E:Tmo/
N N
\ £
S e
YOLINOW | >
N ‘ o A SSAD0¥d
\ a DSAS e
YOLINOR 3 J & qasn
Omrwt S 7
A

TP S i iJ

ASVL
SO

jyse] 1SOH 03 }Sse] ISOH
--7°¢ 98e3g uoyiejuswaTduy

%°G sandyg

MOTJ BleQ <>

A

MoTq 43S € ——>
0LE/NA1 7€/8 VIVAYAINI
0LE/WA f IW/2€-SO
Cas ks -
1 i
L OQM\mo \\\\ agotaana V Mmzxmgq 4d0TIANT
\;/cmwm\ yasn _<om<m_ ¥asn
L] 7
mmoqm> umoqm>
~Nd 43S} zmmmm: v Vv
s -
A\I
ONTASV] - >>
-0aNdSd),
SISSHD
-04d mmmuom; $S400¥d S3SSAD0Ud
$Sd004d]| KALSXS asvd qsvd WALSKS SSA00¥d
ISHD NSWO| ¥asn }j[aovssanll viva viva d9VSSTN ¥asn
ANASVL ¥ ASVI T ASVIL u YSVI w NSV T MSVL
SO SO S0 S0 S0 S0

AD=A052 752 KANSAS STATE UNIV MANHATTAN DEPT OF COMPUTER SCIENCE F/6 17/2

PROJECT REPORT FOR FUNCTIONALLY DISTRIBUTED COMPUTER SYSTEMS DE--ETC(U)
] FEB 78 V E WALLENTINE DAAG29-T6-6-0108
UNCLASSIFIED AR0=13835, 1=A=EL~PT=2 NL

END

DATE

FILMED
8

.
J

- 2

INTERDATA

8/32

INTERDATA

7/32

Figure 6.1

Data Base Netwcrk Topology

IBM

370/158

Er v

APPLICATION
PROGRAM

HOST
INTERFACE
(HINT)

i

MESSAGE
SYSTEM

MESSAGE
SYSTEM

!

BACK-END
INTERFACE
(BINT)

y

BASE
DATA BAS DATA

MANAGER —p
(DATA BASE) ﬂ e

i

Figure 6.2

Information Flow in Distributed DBMS

R N N I L S eEpr——

€°9 @anbtg
;
VRIS ARIVIEIE STIA WY sO3d PIRG (X wa1sAS uOTIRIISUOWSA SNANSA (©
G8 ®3epaajul |
4 2uWT
p <4 i e
"1004sS 3d
Sl ¥IT00dS
I33UTId IAUTT
%STA 7T00dS
T
S ?
4 ,
uor3jatdwo) oy I193suery TONILNOD
FOgEu o 2114 snansx
ejeg : l
104 o114 104 VWA
sasuodsay % spuewmo)
snansA
v i
, !
ASTa 0105 L
ug a1vd
F SAT11d 0108 FTOSNOD
TNOO1 wa3sig burjeaadp ¥y3asn
1380 21HuUTS 0108
91/L ®e3jepaajug

T e

Interdata 7/16

r

SOLO Disk, File, and Program Structure

Job Process

Output Process

Input P :
f - £t File Transfer
Disk or Protocol "Disk or
Asynch Program Asynch
i Line Line
f Control" Control" 5
0s 0s 0s ;
Interface Interface Interface
l ﬂ : —u f
Protocol Page Page Page Protocol
Control Control ;
Information RUL I i Hathes Information

Data
Flow

KSUBUS
Data
Mover
(QUTPUT)

KSUBUS
Data

Mover Asynch

(INPUT) Lines
Interdata 85

e T e

Spoolin Disk Page Spoolout
Process Reclaimer Process
Process
* Sector
Cards Spoolin Allocation Spoolout Line Printer
Process Monitor (File System) Monitor Process
Cards Pages
. 1Sh?69
Card SPOOLER Line
Reader Printer
File
*Not implemented System
Figure 6.4

Distributed Spooler Operating System and Structure

