
i / AQ—A 0b2 751 KANSAS STATE UNIV MAI*4ATTAN DEPT oc COMPUTER SCIENCE F/I 17/2
PROJECT REPORT FOR FUNCTIONALLY DISTRIBUTED COMPUTER SYSTEMS OE——ETC (U)
OCT 77 V £ WALLENTINE DAAG29—76— —Oloe

UNCLASS IFIED ARO—13835. 1—A—EL—PT—I NI.

_ hill

_ _ _

rr

~

n_______
Ia & N D

—





j 
_ _

.

4. TITLL (end SubtStI.) PART I
PROJECT REPORT FOR FUNCTIONALLY DISTRIBUTE D

I COMPUTER SYSTEMS DEVELOPMENT : SOFTWARE AND
SYSTEMS STRUCTURE

7. AUTHOR(s)

I Virgil E. Wallentine

I 9. PERFORMING O RGA N IZ A T I O N  NAME AND AO ORESS

Kansas State University
Department of Computer Scienc e
Manhattan , KS 66506

I
1
I

1~
IMIs i.ctI.i

• $
~~

I
~~ 0 r~ n r ~

‘

a
- ..•. 

~~~~~~~~ 
r 7

I I I
LI APR 17 1918

~~~~~~~~~~~ NU$
F ~~ t. ~V*H.. aa~/ir $PE$~AL
_

~~~~ 

D

$ DISTRIBUT ION !TAT~~~E~~ A
Approved for pubIic~ release;

Distribution Unlimited 
—

— - . _ ;
.~~~

_
~
.• 

— 

• .“—. ~~~~~~~~~~~~~~~~~



UNCLASSIFIED
SECURITY C LASSIF ICATION OF TH IS PAG E ~~~~~~ flita Fntered)

R EAD INSTRUCTIONSRE~~~~~~~~ DOCUMENTATION PAGE BEFORE COMPLETIN(~ FORM 
Is. ,suv i ~~~~~~~~~~~~~~ J.—~R~~~IPIENTS CA T A L~~G NUM&ERPORT MUM

a ~~~~ ~~L / F - r. /

( 
~~~~~~~~~~~~~~~ 

—- •  

-7
• 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

5~~4y £ OF REP RT & PERIOD COVERED

• ~ROJECT REPORT FOR EUNCT IONALLY DISTRIBUTED /~.COMPUTER .~YS TEMS ~ E~ELOPMEN T: SOFTWARE AND rC .15 ~~
~YSTEMS ~STRUCTURE . ~~~~~~~~~~

_
~
_

•• 

6 •rlnII U .~~~J 4PORT NUMBER

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  

‘/ ~1
_ t I,  7?

8. CONTRACT OR GRA ~ 1 NUMBER(s)

~~~~~~~~~~W~~~~~~ine 

~~~~ 
L2~ 29-76~~~~ lO8]~~~~~

~ p~~~~~o~~~
j
~~~ OR G A N IZ A T I O N NAM E AND AO3 RESS 10. PROGRAM ELEMENT. PROJ ECT . T A S K

AREA & WO RK UNIT NUMBERS
Kansas State University
Department of Computer Science / ( .

~
3
Z~7~

/2 1/Manhattan , KS 66506 ____________________________

US Army Research Office Q ~~ 77 /
II. CONTROLLIPi G OFFICE NAME AND ADDRESS _____________________

P 0 Box 12211 ______________
Research Triangle Park , , NC 27700 72 pages

1~~~~~0NITORING AGENCY NAME & A DORESS(:i daferent from Controlling Office) IS. SECU RIT I’ CLASS. (of this t.pore)

US Army Computer Systems Command Unclassif iedAttn: CSCS—AT _____________________________
Ft. Belvoir , VA 22060 ISa . DECL *551 FICATION! DOWNGRADING

SCHEDuLE

I~~~~DIST RI8UTION STATEMENT (of this Report)

Approved for public release; distribution unlimited .

*7. DISTRIBUTION STATEMENT (of the abstract entered In Block 20. if d if f e r e n t  f rom Report)

I8. SUPPI..EMENTARY NOTES

The findings in this report are not to be construed as an official
Department of the Army position, unless so designated by other authorized
documents .

19. KEY W ORDS (Continue on reverse aide if necessary and identify by block number)

Computer Network PASCAL
Compute r Message System DBMS
Mini/Micro Computer Network Back—End System
Distributed Processing MIMICS

~~~~ KSUBU S
STRACT (Continu, on reverse side If t~ecesaaty and Identify by block numb er)

This is the first of a two—part report of the research performed by Kansas
State University in multiple processor computer systems and networks. This
report covers the research e f f o r t  through the design phase . The known
problems are defined and alternative solutions are developed . An al ter-
native solution is selected for the building of a prototype network

S OBSOLETE Unclassi fiedDD 
~~~~ 

1473 EDITION OF I NOV 65 I 

SECURITY CLASSIFICATION OF THIS PAGE (I~~en Dale EnI•rrd)



I
I
I

PROJECT REPORT

I for

Functionally Dist r ibuted Computer Systems
Development: Software and Systems Structure

PART I

KANSAS STATE UNIVERSITY
Department of Computer Science

Manhattan, Kansas 66506

Project No . P~~.3835_A~EL
U.S. Army Research Office D 0 C

GRANT NO DAAD—29-76—G-0108 

•

• January 15, 1976 to September 15, 1977 D

1~[ DISTRIBU~~ON STATEMENT A
Approved for public release;

Distribution Unlimited

— - 
. •

~ 
V _~~~~~~~~~~ _

-, - • 
••  • • • 

~~~~
- •~~~~~

.• 4 .~~~



PREFACE

This Is the first of a two—part report of the research performed by

Ka nsas State  Uni versity in multi p le processor compute r systems and networks .

This investigation is supported by a grant of $190,000 from the U.S. Army

Research Office, Research Triangle Park, North Carolina. The University

has provided matching funds in the amount of $28,383.

The principal investigator is Dr. Virgil E. Wallentine, assisted by

faculty and graduate students of the Department of Computer Science. The

research was performed at Kansas State University in coordination and

cooperation with the U . S .  Army Computer Systems Command , Fort Belvoir ,

Virginia. The term of the research grant was 15 January 1976 to 15 Sep-

tember 1977.

This Part I report covers the research e f fo r t  through the Design

Phase. Part II will follow and wi ll cover the e f fo r t  through implementa-

tion, integration , test, and demonstration of a prototype model of the

network.

I
I
I

• V

V. 
.. .

~~~
.. .v—~’. •~~ - - -

:
-—‘

~~~
—- 

~~~



A

• TABLE OF CONT ENTS

Page

1.0 Chapter 1 Overview of the Proj ect

2.0 Chapter 2 The Technical Development Plan 3

3.0 Chapter 3 Problem Definition 8

4.0 Chapter 4 Solution Alternatives 15

5.0 Chapter 5 Design

Appendix

A. List of Articles and Publications

B. List of Reports

I C. Vocabulary

D. Bibliography

1~

I

1~
I
I

— 

— — 
—.~~~ --•—— — — — — ~~~~~~~~~~~~~~~ — —--— 

ar -~~~~— ‘ ~~~~~ 

— 

h~e-Ij~~~~~t~,.r 1



CHAPTER 1

1. Overview of the Project

The general nature of the research is the investigation of multiple

processor computer systems and networks. The Principal Investigator ,

assisted by the faculty and graduate research assistants, explored the

alternative methods of design of a functionally distributed computer net-

work for data processing. This research takes advantage of the potential

of mini— and micro—computer technology . The end product will be a proto-

type system that serves as a test bed for testing the performance of

typical data systems.

The research effort followed a phased approach:

Problem Definition

Solution Alternatives

Design

Implementation

Systems Integration

Prototype Operation

The work was concentrated in four specific problem areas:

(1) Software Utility — Software has been developed to operate in a

multi—vendor computer environment. This involved the investigation of the

problems of multiple CPU software portability, adaptability, conversion,

development , and maintenance. This area of the program concentrated on a

comparative analysis of the techniques for achieving the desired portability

in the areas of data processing application programs , operating systems

dependence, and data base management systems.

1

- _______  ______ 

- V . .
~~~~~

.
-’~~~~~~

--.
~~~•



I
2

(2) Data Accessibility — Techniques have been developed to permit

dat a bases to be dist r ibuted across a network accessible to local and reg ional

query . These techniques provide for the protection of the data bases from

unauthorized access.

(3) Hardware Specification — Specifications have been established for

mini— and micro—computer hardware characteristics to support minimum require— -

ments for performance , security, reliability and fai l—soft  capability.

(4) Network Control — Research has been done on alternative network

configurat ions.  Communications , message processing, and other cont rols

required for system balance and hardware/software interface have been

developed . To test the viability of the distributed system , a protot ype

will be developed and submitted to a series of performance tests.

V ~~~~~ 
~~~~~~~~~~~~~~~~~~~ V



I
3

CHAPTER 2

2. The Technical Development Plan

2.1 Phase Schedule

Phase Effort  Started Completed

I Problem Definition 15 January 1976 1 February 1976

II Solution Alternatives 2 February 1976 14 May 1976

III Design 15 May 1976 15 November 1976

IV Implementation 16 November 1976 14 March 1977

V Systems Integration 15 March 1977 1 July 1977

VI Prototype Operation 2 July 1977 1 August 1977

VII Documentation 15 August 1977 14 September 1977

2.2 Phase I — Problem Definition

The objective of this phase was to identify the specific problem areas

upon which research ef for t  must be applied .

Certain problems were identif led in the KSU proposal submitted to the

Army. There were several alternative areas of research outlined along

with those problems . These problems and research areas were then reviewed

in the light of recent experience, both here at KSU and in other universities.

From the review, new definitions of problems were made and areas of research

were described in more definitive terms.

The review covered the following specific areas :

F a. Software Utility (Para. II, Section A of the Proposal)

b. Data Accessibility (Para. II, Section B)

J c. Hardware Specification (Para . II , Section C)

I U
V. — 

- I •~ ~4a ~.ee ~~~



I
I

d. Resou rces Control (Para. II , Section D)

e. Mini—micro Technology Considerations (Para . V , Section B)

f. Hierarchical Systems (Para. V, Section B)

g. Dynamic Performance Monitor (Para . V , Section C)

h. Distributed Control of Networks (Para. V, Section

2.3 Phase II — Solution Alternatives

The objective of this pha se was to establish the di r ection and approach

to be used in the design effort.

Consideration was given to the var ious app roach es to ach ieve the pro j ect

goal. The approaches were considered in the light of problems identified

during Phase I. This consideration resulted in the selection of the research

direction believed most likely to achieve the project goal. The selected

approach and research direction were to be coordinated with the U .S .  Army

Computer Systems Command , to insure that follow—on design e f for t  would be

appropriate. The solution alternatives provided direction in the following

design areas:

a. Network Topology: Alternative configurations of hardware and communi-

cations to be tested in a prototype solution. Mini— and microcomputers in

networks with large scale computers were to be considered along with the

attendent problems of software interface, message processing, network communi-

cations and network load balance.

b. Software: Software with and without micro—processors to be considered ,

along with portability, conversion, and maintenance of software in the network

environment.

1Proj ect Management Plan for Functionally Distributed Computer Systems V

Development: Software and Systems Structure , Project No. P—13835—A—EL , U.S.
Army Research Office , Grant No. DAAD—29—76—G—0108 , Feb . 3, 1976 , p. 7.



5

c. Hardware: Technical and functional characteristics of various

commercially available computing systems were considered . The use of micro-

processors to achieve hardware compatibilities was considered , along with

reliability and performance.

d. Data Base System: Use of data base management techniques was

proposed . Alternatives included design of a new DBMS suitable for use

in distributed networks, use of existing DBMS ’s such as IDMS (Cullinane

Corporation), and hardware/software modification of existing DBMS’s.

Solution synthesis was to take into consideration the long term desires

of the U.S. Army and the constraints of the resources available to the

project.

2.4 Phase III — Design

The obj ective of th is phase was to wr ite a deta iled design specification

f or th e prototype fu nctionally dist r ibuted network and a design specification

for a data base management system to run within the prototype. Using the

direction and approach developed during Phase II , the Principal Investigator

d irect ed the developing and wr iting of the design specification . During this

phase, the Principal Investigator published the “Functional Specification”

to provide guidance and continuity to the several Chief Investigators. The

DBMS design development and the network design development proceeded indepen-

dently.

2.5 Phase IV — Implementation

The objective of this phase is to construct and test modules and docu-

ment the various system designs produced ‘during Phase III. Graduate students

working under the supervision of the Chief Investigators will program the pro—

- 4
totype system. Modern techniques of structured programming will be followed and



6

all e f f o r t  carefully documented . As modules are completed and tested ,

results and documentation will be reviewed by the Principal Investigator for

compliance with basic design and conformity to documentation standards .

2.6 Phase V — Systems Integrat ion

The objective of this phase will be the integrated op€r ation of the

prototype test bed and the operation of a DBMS within that test bed environ-

ment. As systems modules are completed , they will be tested in operation

with other modules using both test data and synthesis programs . When all

modules are completed , the system will be tested , corrected , and refined

as dictated by performance under a load of various synthetic programs.

Synthetic programs will provide the various system load conditions due

both to data processing and to system communications and configuration .

System modification will be made in order to achieve an optimal system

performance under the synthesized load conditions .

2.7 Phase VI — Prototype Ope ration

The objective of this phase is the successful operation of the prototype

syst em and a DBMS under a syn thet ic  dat a processing load f or collection of

statistical data. A synthetic program will be developed as a cooperative

effort between KSU and U.S. Army Computer Systems Command , Advanced

Technology Directorate. Various host/back—end systems configurations will

be tested using a DBMS agreed upon by both KSU and USACSC.

2.8 Phase VII — Documentation

The objective of this phase will be to complete documentation of the

prototype system , DBMS, and to collect statistical data. Copies of reports

of the Individual investigators will be provided to the U.S. Army in

accordance wi th the terms of the grant. A complete specification of the

-~~ ~— “
, .V •-.~~~ :,~~ •-~



7

I prototype system will be prepared for delivery as part of the final

technical report of the project. Similarly , documentation of the DBMS

will be included .

I

F
1~ .

1~
— “ —--—-— —

V 

~~~~~~ -



8

CHAPTER 3

3. Phase I — Problem Definition

3.1 Phase Objective

The objective of this phase was to identify the specific problem areas

for research .

3.2 Summary

Two basic problem areas were defined as follows:

a. The development of a design specification for a distributed data

base management system.

b. The development of a prototype mini—computer network onto which

maxicomputer functions may be off—loaded . In the network development, advan-

tage will be taken of micro—processors to handle network operation overhead .

Additionally, consideration will be given to the portability of software.

Areas for specific study were identified as follows:

a. Line protocol for remote system (micro design level) and minicomputer

implementation

b. Line protocol (micro—processor implementation)

C. Network control language

d. Network control system

e. Micro interface control for local system

f. Portability of network operating system

g. DBMS intertask communications

Ii. Local network protocol software

1. Synthetic Programming



9

A plan for development of DBMS specifications was established as

follows:

a. DBMS language specifications based on CODASYL standards

b. DBMS functional specification

c. Incorporation of portability specification

d. Software distribution

e. Communications interface

f. Incorporation of network considerations

3.3 Problems and Solutions

It was originally intended to design and implement a distributed data

base management system (DDBMS). In practice, the implementation of a complete,

por table, secure DDBMS is beyond the scope of this research effort. It was

decided to write specifications for such a system as indicated in Section 3.2

above. But rather than implement that system, an existing DBMS will be used.
1

1Progress Report on Functionally Distributed Computer Systems Development:
Software and Systems Structure , Project No. P—13835—A—EL , U.S. Army Research
Office, Grant No. DAAD—29—76—G—0108, May 20, 1976, p. 45.

I.
_ _ _ _ _ _  V _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

V. V 
- - * ~r~~

- .- - ~~~~



I

10

CHAPTER 4

4. Solution Alternat ives

4.1 Phase Objective

The objective of this phase was to establish the direction and approach

to be used in the design effort.

4.2 Summary

The primary goal for the design phase is to define a prototype mini-

computer network consisting of three machines. The approach is to proceed

with a relatively unrestricted design of both software and hardware mechan-

isms.1 As a result of initial studies, several research papers have been

produced. These are documented in the appendices of the Progress Report

dated May 20, 1976. Based on these studies, approaches to specific problems

were formed as follows:

a. Network connectivity requirements and design objectives were

described . The hardware and software structure to meet those requirements

was proposed.

b. The problems of program portability were studied , and a portable

language was proposed.

c. The problems of network usability were examined, and an Extensible—

Contractible Network Control Language was proposed .

d. Techniques for performance evaluation were considered . These areas

are discussed in more detail in the following section .

~Progress Report on Functionally Distributed Computer Systems Development :
Software and Systems Structure , Project No. P—13835—A—EL , Grant No. DAAD—29—76—
G—0108 , May 20, 1976, p. 5.

- _ 
_ _ _ _ _ _ _ _  

_ _ _ _  _ _ _ _  

I 
~ 



I
11

The primary concern in constructing a network of minicomputers is the

interconnectivity of machines and software which permits the system to be

configured to meet a particular data processing requirement. This configur—

ability can only be achieved when a variety of intermachine connections is

available and the associated software to control these network links has

been developed .2

An approach to intermachine communication is illustrated in Figure 1.

The system consists of clusters of minicomputers interconnected by memory—

to—memory adapters (MMA ’s). These MMA ’s, which operate at memory speeds,

eliminate the need for packetizing within a cluster. The clusters are con-

nected via a packet—switching system, since it is assumed a minimal data

3capacity is necessary.

The approach to the control software can be viewed as a hicrarchical

system, as shown in Figure 2. The design includes several vendor supplied

local operating systems (Extended Machines (EMS)) which control the

heterogeneous machines. The interface between network resources and EMs

resources is the Network Resource Control which transforms network resource

allocation/deallocation into local operating system (EMs) commands. The

NRC is connected to requestors (User Processes and Command Language Processors)

of network resources via the network IPCS. These requests will achieve the

process, file, and general resource allocation control. The Network Machine

handles batch or interactive requests and synchronizes job steps. In the

produced, only data base and program construction user processes will be

demonstrated . This is, only rudimentary NM and NRC functions will be developed.

2 lbid., pp. 2 , 3.

3rbid., p. 15.

•1
~~~~~‘•.~ • ,4



I
12

Cluster 1

Cluster 3

Cluster 2

Figure 1. Cluster Network

~~~~~~c~~t~~l 
~~~~~~~~~ogram

Network Machine User Processes —

(NM) Application Program Processes
Data Base Management Processes

Inter—process Communication System
(IPCs)

NRC1 ——— NRC1

EM
1 

EMi

Figure 2. Hierarchy of Network Software

V .- 

-~~
-
~~~~~~~~

- 
~~~~~~~~~~~~~~ 



13

In order to functionally distribute data base systems , control software,

and application programs to heterogeneous machines, it is critical that these

programs be portable. The approach to the portability problem is to include

portability as an initial design goal. The design for portability includes:

a. Structured design (reported in the Workbook on Structured Programming)

b. A portable high—level language is to be used in implementation.

Concurrent PASCAL has been chosen due to its portability, concurrency , and

job control characteristics.4 We will “port” it to the Interdata 8/32 to

test its portability and utility. It is already available on the PDP—ll.

4.3.3 Network Usability

The utilization of a computer network is not only dependent on the

utilization of programs, but also on the utility of its user interface.

When computers with different operating systems or architectures are linked

to form complex networks for resource sharing, the user must become familiar

with multiple job control languages. It is desirable to link computers to

provide new capabilities, but it is not desirable to add complexity to usage.

The approach is to design an Extensible—Contractible Network Control Language

(ENCL). This language is to be extensible to permit the user to create an

easy—to—use, powerful control language for his application . This language -

must also provide a contraction feature so that the translator of the language

can be constructed to be efficient . A second use of the contraction feature

is protection. The systems security can alleviate the ability to access and

possibly destroy certain protected resources from a particular user or class

of users.

4Brinch Hansen, The Programming Language——Concurrent PASCAL. lEE Tran—
actions on Software Engineering, Vol. 1, No 2 (June 1975), pp. 199—207.



14

4.3.4 Performance Evaluation

There are three basic reasons for conducting computer performance

evaluation studies:

a. To size and select a new system

b. To predict the effects of changes in the present system

c. To tune the present system

Synthetic programs have been shown to be valuable tools in all of these

types of performance evaluation studies. The approach has been to survey

the current literature and examine the elements of current synthetic pro-

grams which could be distributed across a network. Then several models

ware developed for extending synthetic programs to various networks. This

approach is further discussed in Appendix 6.2.2 of the Progress Report dated

May 20 , 1976.



15

CHAPTER 5

5. Design

5.0.1 Overview

The basis for MIMICS (Mini—Micro—Computer System) is the utility of

both mini— and microcomputers in the support of a distributed data base

system. The goal of the research is development of a prototype MIMICS

which accommodates hardware and software interconnection of heterogeneous

computers under a common (portable) command language (and structure).

This language must accommodate the user at his own level and permit allocation

of computing resources in a unified manner using the software connection

(network message system) facility . This report documents our approach to

the design of MIMICS in the areas of——

(1) mechanisms for accessing data in the network;

(2) hardware interconnection facilities;

(3) network inter—process (message) communication system;

(4) network command language.

The structure of this chapter is first to give an overview of the

MIMICS ar ch itectu re , then the concepts , followed by a detailed description.

A table of definitions of terms used in MIMICS documentation is presented

at Appendix C. It is important that the reader study this table before

proceeding . In section 5.1 the results of our research into design considera—

tions in a distributed data base system are presented . Section 5.2 contains

an overview of the message system (network inter—process communication system)

in MIMICS. Both user and system views are presented . Section 5.3 presents



1
16

the MIMiCS hardware architecture which has been developed for large capacity

computer—to—computer (memory—to—memory) data transfer. Section 5.4 contains

an overview of a preliminary design of a distributed network operating system

under a workload described in a network control language . Both the structure

of the design and the language are presented .

5.0.2 Introductory Concepts

The motivation for MIMICS is support of distributed processing.

Figures 3, 4, and 5 show several topologies which must be supported in

MIMICS technology. The links between computers are tradeoffs of economy

and performance. The objectives are to provide high—speed buses (a KSIJBUS

in MIMICS) between geographically close machines, to provide direct slow—

speed links (telephone lines——switched or leased) between machines geograph-

ically separated but which communicate heavily, to provide slow—speed links

(which are used l ightly) which are very economical (store—and—forward

through intermediate machines), and finally to permit off—loading of a good

portion of the network message system on a communications controller (CC).

The approach is to support a cluster topology (see Figure 1) wherein

all machines in a cluster are connected by memory—to—memory adapters across

a high—speed bus ( t ransfer  rate is 10 Megabytes per second), then to permi t

one or more machines (CC) in a cluster to be store—and—forward functions.

A view of the internal structure of a cluster -is shown in Figure 6 with

four (4) hosts (Hl—H4) and three (3) CC ’s. The CC’ s contain the network

message system and may serve one or more hosts via a direct connection to the

host memory. It is this link (double lines in the figure) through which data

flows. The hosts and the CC and the various CC’s are also connected via a

control line (single line in the f igure) over which coordination signals are

passed . Data can flow directly between the memories of any two machines in

- - V V 
--V — - - -— - -

~~~~~
-—--

~~~~
-- --—-~~ V —



I
17

HOST HOST
1 11

BACK-
END

‘ .5
1

B1- 

\

BI_

DATA BASE J + 1 

BI-
FUNCT 1 FU NCT 2 FUNCT J

..5 ~..5
DATA BASE DATA BASE DATA BASE

1 2 J

FIGURE 3
DBMS NETWORK WITH BI-FUNCTIONAL MACHINES

~ .E~ •. ~



I
18

I

HOST HOST HOST J

END

• I

DATA BASE

FIGURE ‘4
MULT I PLE HOST CONFIGURAT ION

- - 
V 

- 
~~~~~~~~~~ ~~~~

-. -



- 19

H O S T

BACK- BACK- BACK-
END END END
1 2

. 

. K

DATA BA SE DATA BASE DATA BASE

FIGURE 5
MULTIPLE BACK-END CONFIGURATION

V V 

- V ~~~~~~~~~~~~ ~~~~~~~ -



-V— — i  
20

_ _  _ _ _ _

-L~------~

>-

C

_  
_

r

~~~~~~~~~~~~~~

•

p 4 V •.- - -~ ~~~~ ~~~~~~~~ 
V V~ V -



V 
21

the cluster under the coordinated control of the data movers (X ’s and R’s) by

the CC’s. Entry and exit from the cluster is through a remote line attached

to CC3.

In MIMICS a full resource sharing philosophy is supported . That is, all

resources such as file system, editors, data base management systems (DBMS’s),

application programs, systems programs, etc. are processes. Resources are

requested (and utilized) by sending messages (and receiving responses) to the

process which is the resource. For example, an application stores data in a

file by se nding a message , which co nsist s o f that fi le , to a fi le syste m

process or a DBMS.

Support for network inter—process communication via the message system

is a hierarchy of functions, as shown in Figure 7. Processes are to be

executed under the supervision of a Distributed Network Operating System.**
The message system consists of MS, PS , and CS. MS (message system) supervises

coo rdination of message “handshaking” protocol. It uses PS (packet system)

to packetize and transmit messages across remote lines, and it uses CS

(cluster system) to move data memory—to—memory within a cluster .

The first prototype of MIMICS will include the MS . PS , and CS elements

executing on three clusters with three machines in one cluster . The DNO S

will not be implemented . However , MIMICS will support a ful ly distributed

data base system. The rest of this document details the individual elements

V of MIMICS.

5.1 Design Considerations for a Distributed Data Base System

The emphasis of the data base portion of the G—108 research has been

placed upon the study of design problems . In previous work conducted under

**The design of the elements of DNOS are described in Section 5.4.
However , the f i rs t  prototype of MIMICS will not contain this element .



I
22

1

/~ T~~1~~~~~Nos

/ CLUSTER

I
, 

~~~~~~~~ I
’

N / S  CS
M

S PS V
~~ VVV~ /

~4~~~

V 
—

— 
%

CS)MS 
NN~

/ CLUSTER ‘N° 
‘N

/ IPC //

I GLOBAL
DNOS / IPC ~~~ M S 1  N/ PS

/ -

I

DNOS

I _ _ _

_ _ _ _ _ _ _  
NETWORK USER TASK

CLUSTER / 
- NOS — —  NETWORK OPERAT iNG

r~c MS 
/ SYSTEM

~~ \cs 
N DNOS -- DISTRIBUTED NOS

“ ‘ N~ \ 
S / PS -— PACKET SYSTEM

S ‘ — CS -- CLUSTER SYSThM
IPC —— INTER—PROCESS

COMMUNICATION

FIGURE 7 FUNCT iONS

DISTRIBUTI ON OF MIMICS

______ _______ 

-

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



V V 
V 

23

this grant , the basic structure of the back—end and distributed data base

systems was presented , along with performance projections for back—end DBMS.

The topics of memory management, deadlock, and backup and recovery are

considered in terms of their significance in a distributed DBMS . In addition ,

a mechanism for distr ibuting a CODASYL DBMS in a network is specified . The

work on memory management and deadlock is outlined in Sections 5.1.1 and 5.1.2

of this report. Reference [FJM 761 contains a detailed discussion of this

topic. The distribution mechanism for a CODASYL DBMS is described briefly

in Section5.l.3. The study of backup and recovery has led to an investigation

of the recovery methods currently employed by users of commercially available

data base systems. A survey of selected users of ADABAS, IDMS, IMS , SYSTEM

2000, and TOTAL was conducted . A summary of the survey results appears in

Section 5.1./4.

5.1.1 Memory Management

In a back—end DBMS, there are three levels of memory available for data

accessed by an application program. As shown in Figure 8, the memory levels

are the memories of the host and back—end machines and secondary storage. In

a configuration where the host and back—end are connected via a ‘~igh—speed

link, such as the KSUBUS1, the back—end memory can serve as a buffer between

the host memory and secondary storage. Pages ~n the back—end memory are

retained until the buffer is full and a new page must be obtained from second-

ary storage. Pages are written onto secondary storage only if they have been

modified by the application program.

1Progress Report on Functionally Distributed Computer Systems Development:
Software and Systems Structure , Project No. P—l3835—A—E—L , Grant no. DAAD—29—
76—0—0108, Dated December 30, 1976.

1•’
V — —:~ V

-V
~~

•
~~ 

•~ V •
V
’ - V V 

V 

- 
V 

V - V - V V V ~V . V
V —



I
- 

24

__________________________ _________________

HOSTMEMORY CPU 
MACHINE

BACK-ENDMEMORY CPU MACHINE

_  
V

SECONDARY
STORAG E

. . .

Memory Hierarchy in a Back—End DBMS

Figure 8

~~~~~~~~~~~ ~~~~~~~~ ~~~ 

V - 1 — V T V  

~~~~~~~~~ 
- 

- - -  ~~~~~~~~~~~~~~~~~~~~~



25

In the report appearing in Reference EFJM 76], the performance in terms

of page faults involving secondary storage transfers is analyzed for a back—

end DBMS. The report considers page faults both with and without buffering

in the back—end memory. The exact difference between the two—level (no

buffering) and the three—level (buffering) memory management schemes is

dependent upon the page replacement algorithm used . An optimal page replace-

ment algorithm for the three—level memory system has been developed . The

algorithm replaces the page in memory that has the lowest replacement cost.

This cost of replacement is based upon the probability of the page being

referenced in the future and whether the page has been modified since its

retrieval. A page that has been modified requires two secondary storage

transfers (a write and a read) if it is to be retrieved at a later time.

A page that has not been modified requires only one transfer if it is accessed

at a later time since it is not written back to secondary storage upon replace-

ment. For the case of equal probability of future reference, the replacement

cost of a modified page is twice that of an unchanged page.

If the probabilities of future reference are known or can be estimated, 
V

the optimal page replacement algorithm can be applied in a back—end DBMS.

Under this algorithm the expected replacement cost per page is——

n n
C = (B — Zp

2(i)/B) (1 + Ep(i)p(W
1
))

i m  i m

where

p(i) is the reference probability of the ith page ;

n is the number of available pages;

m is the size of back—end memory in pages;

the pages are ranked in order of expected replacement cost;

p(W~) is the probability of the ith page being rewritten to the

data base;



• 1
26

and B = Zp(i).
i m

When the three—level memory management scheme using the optimal back—

end algorithm is compared with the conventional two—level arrangement with

Aho, Denning, and Ullinan ’s optimal algorithm, the following reduction in the

expected page replacement cost is obtained:

CR = (Bh - ~~
2(j)/B ) (l + Ep (i)p(wi))

i %

n n
— (B — Ep (1)/B) (1 + Zp(1)p(W.))

i m  i m

where

is the number of pages in the host memory ;

m is the number of pages in both the host and back—end memories ;

Bh = Ep(i).
i m h

The optimal page replacement algorithm requires a knowledge of future

page references . For a reasonably static environment such as the daily cycle

of a data processing installation, page behavior information can be obtained

from journal files. A complete discussion of back—end memory management can

be found in Reference [FJM 76].

5.1.2 Deadlock

In any system involving shared data access, the possibility exists for

two or more tasks to become deadlocked . Two tasks are in a deadlock state

if each task is waiting for a resource (in this case some unit of data) tha t

is held by the other task. Figure 9 i l lustrates a deadlock situation.

In a data base environment , the likelihood of deadlock occurring is quite

low . However , a mechanism must exist to properly handle a deadlock situation 
V

- —I-- 
- 

V - — V_~ - — ~~~~~ —
V 

~~~~~~~~~~~~~~~~~~ V 
V -‘ -p’ - 

~~~~~~~~~~~~~~~~~



27

Task K Task M

Step Acticn Step Action

K0 Request record A M0 Request record B

K1 Receive record A M1 Receive record B

Lock record A N2 Lock record B

K
3 

Request record B N
3 

Request record A

1(
4 Receive record B N4 Receive record A

Lock record B N
5 

Lock record A

K
6 

Process M
6 

Process

1(
7 Release record A M

7 
Release record B

Release record B H
8 

Release record A

The sequence of steps

K0, N0, K1, K2, M1, M2, 1(3. M3

leads to deadlock of Tasks K and M.

Deadlock Example

Figure 9

L~
V

p - .
~~
, V~~ V~4~~~~4 —



I
28

if the DBMS is to function properly. There are two basic approaches to

solving the deadlock problem——deadlock prevention or deadlock detection .

Deadlock prevention i’wolves delaying any data base request that may result

in a deadlock until sufficient resources have been freed to preclude the

possibility of deadlock. In a deadlock detection scheme , no action is required

until the deadlocked tasks have been denied data access for an unusually

long time. (That is, the tasks have “timed out.”) Once the deadlock condi-

tion has been detected , one of the blocked tasks is forced to yield its

resources (it is “rolled back”). The other task is then free to access the

data which it had previously been denied . When this task frees the resources

responsible for the deadlock, the blocked task is restarted .

An analysis of deadlock prevention in a distributed DBMS indicates that

information regarding the potential data access conflicts of each task must

be maintained . In order to maintain the conflict information , the creation -
‘

or demise of a data base task at any node in the network must be transmitted

to all other tasks in order to determine if any new potential conflicts have

developed or disappeared . In addition , the locking or unlocking of data by

a task must be transmitted to all tasks that have potential conflicts with

this task.

The only type of overhead for a deadlock detection policy is the “rolling

back” of one of the deadlocked tasks. Rollback involves the reversal of all

operations performed by that task up to some point (either a checkpoint or

task initiation). The problem with a rollback operation is that the task

being reversed may have modified data used by other tasks in the network.

Since this data is no longer valid , these tasks must also be rolled back.

This procedure can have a cascading effect throughout the system. The process

V -- - ~~~~~~~ V _ _ _ _ _V

~

•

~~~~~~~~~~~~~~~~~~ 

- -



29

of rollback requires that the portion of the data base being modified by

the rollback be closed to all other users until the completion of the roll-

back operation. In a DBMS distributed over a large area with low—speed

linkages, the communication delay can become prohibitive.

A comparison of the overhead involved in deadlock detection and preven-

tion produces a fairly constant overhead and in many cases results in pre-

ventive measures being taken when deadlock would not occur . On the other

hand , a detection scheme has no effect unless deadlock occurs . However, the

recovery procedure in a dist r ib ut ed DBMS can result in substantial system

degradation .

Deadlock prevention appears to be the safer approach to the problem.

Consequently, a deadlock prevention algorithm for distributed data base

systems has been developed as part of our data ba~c rc3carch . The algorithm

involves the identification of a set of records that may be updated by more

than one task. A list of shared records is maintained for each task. The

shared record list is used to determine if requests for locking a record may

lead immediately to a deadlock situation. The details of the algorithm may

be found in Reference [FJM 76].

5.1.3 Mechanisms for Distributing a DBMS

The technique for operating on a data base in a host—back—end environment

is well established at this time. However, the extension to an environment

with several back—end processors requires additional facilities. The problems

that arise are the identifications of the proper back—end machine and the

movement of data and processor functions among machines in the network. A

mechanism has been developed for allowing distributed data access with the

exact physical location of the data remaining transparent to the application

program.

-J



I
30

The distribution mechanism is based upon the concept of logical pro-

cessor functions. Each processor in the DBMS network may act as host or

back—end machine with the ability to execute a certain set of application

programs (a host function) or to control access to a particular portion of

the data base (a back—end function). The Data Base Administrator (DBA)

ass~gns the logical functions to the processors. A Logical—to—Physical

Processor Map maintains the current status of the processors in the network .

The actual execution of commands in a distributed DBMS is controlled

by information in the ALL (Area Logical Location) Table. The DMCL (Device

Media Control Language) indicates the location in terms of its logical

back—end processor for each area in the data base. The ALL is created by

processing DMCL statements. The physical location of the data is determined

through the Logical—to—Physical Processor Map.

The problems of moving data among machines under system control or

by physically transferring disk packs have been studied carefully. Pro-

cedures for the movement of data in a distributed DBMS are provided in 
V

Technical Report CS 76—22.

5.1.4 Survey of Commercial Data Base Systems

In the interest of studying the problems of backup and recovery in

a distributed DBMS, the need for practical experience was felt. In order

to gain information on recovery methods as practices in data processing

environments, a survey of 15 data base users (3 users each of ADABAS, ADMS ,

INS, SYSTEM 2000, and TOTAL) was undertaken.

The results of the survey indicate that most DBMS users attempt to

maintain simplicity of both the operational as well as the software aspects

of their recovery operations . In general , they minimize the interaction

between data bases , thus reducing the cascading effect  of task rollback .



31

Most users rely upon special software (often not supplied by the DBMS vendor)

for backup and recovery . They are justifiably concerned with the reliability

and integrity of their data base systems. It is apparent that considerable

research into the topic of backup and recovery for distr ibuted data bases is

required . Work on this subject has been initiated and the results will be

compiled in a technical report .

5.2 Message System

5.2.1 Purpose of the MIMICS Message System

The purpose of the message system (hereafter ref err ed to as “MS”)

is to support communication of messages between user tasks , either in the

same machine or in connected machines in the network. Figure 10 illustrates

two user tasks, arbitrarily shown in distinct machines. Each task has a

message area consisting of a command data buffer (inaxirilJm 128K bytes) and

a text data buffer (maximum 64K bytes). User task 1 issues a receive

request to its MS. Then , if all the necessary preconditions are met , the

MS’s cooperate to copy the contents of the message buf fe r s  from user 1 into

the areas in the user 2 data space. The various preconditions include the

following :

a. Both tasks have to be correctly “connected” to each other . (Both

MS’s must agree on this.)

b. Both tasks must have correctly identified both their own “task.port ”

name and the other “cluster.machine.task.port” name.

c. The send_request and receive_request must agree in mode of communi-

cation .

d. The receive message buffers must be of sufficient size to receive

the sent message parts (although a message need not have both parts——one part

or the other can be nu l l ) .



I

I ::
_  

32

I
I 

~~~~~~~~~~~~ I / I 
~ ~

_

— 
~~aC\ / / c_,

00 I._ ,.
__ /

CN 
V
~1~

V ~~~
__

V /
— I , C...)

vi ~~ I
~~~~~~~ ~~~~~ 

I’ —

— —
LU .—

--.-.. -.
U-
U. ~~LU
m LL LU

U) U~ LU
I-

C/) — —
~~ I.- ( J  -, ~~~~= U..

LU ~~ 
Ci

Cl) 0 LU I
C.) I— ‘

F 

-

_ _ _ _ _ _U,

~~~~~~~~~~~~~~~~~~~~~~ 
-
~~



I
33

e. The requests must have been issued in the proper synchronization

time frame (which varies with the mode of communication).

f. The network path between MS1 and MS2 must be functional.

The mechanism by which the message is actually copied depends upon

the physical connection between the two MS’s, but this is immaterial to

the user tasks. They do not need to know how the data is transferred .

For the sake of general interest though , at least three dif ferent  mech-

anisms are involved , as illustrated in Figures 11, 12, and 13.

Warning: The basic design of the message system incorporates no

facility for translation of characters in case the host machines use

different character sets, although this can be incorporated in the line

drivers in particular MS’s. Also, there is no facility to pad or compress

data bytes in the case that different hosts have different size bytes.

Again , that can be incorporated in particular cases.

5.2.2 Interface to the Local Operating System

The relation between a user task and the message system can be viewed

in finer detail , as in Figure 14. User task calls to the message system

are implemented using a “SYSQUE_monitor” function. Calls to the SYSQUE

cause a small SCB (SYSQUE control block) to be built and queued for sub-

sequent receipt by some other task, such as the MS or the user task. The

SCB contains a pointer to a parameter block in the user space which contains

the actual parameter values for the MS call and space for the result para—

ineler values to be stored by the MS.

Certain other system—type support functions are required (such as initia-

tion of tasks and clean up after abnormal termination of a user task). For



1
I

HOST1 I
USER TASK 1 USER TA SK 2

LCOMMAND I COMMAND I
\ [ TEXT 1 I TEXT]

RF IIFST REG~ JEST

MESSAGE DATA FLOW IN MIMICS : -

FIGURE 11: USER TASKS WITH A CoMMoN CC.
(E liHER SAME HOST OR TWO HOSTS ON SAME KSUBUS)

V V _ _ _  — - - —- -- - - ---_ _ _ _ _ _ _ _ _ _ _ _ _

p ~~ ~~~~~~~ ~V.rV , -



35

HOST 1 HOST 2
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 1

I I I I
I 

_ _ _ _ _ _ _ _ _ _ _ _ _  
I

I I I

USER TASK 1 I USER TASK 2
F- I I —1
I COMMAND I COMMAND

I L ____ ‘.—

TTEXT ] I I 
[ TEXT

R QUE I R~QUE~T

Lf
~~~~~~~\..

J

_

L7
~~~~~ JJ~~J

—_____________ _________________ KS IJ RIJS

~~~~~~~~~~~~~~~~~~~~~~~~

V 

FIGURE 12: MESSAGE DATA FLOW IN MIMICS :
USER TA SKS IN THE SAME CL USTER , BUT NOT

THE SAME CC, 
-

— V~~•~~~~~~~~~ V •
VVV

~~~.V - V - — — __________________________________ — 
V

~V V~V~
V
~~

V —~ - ~~~~~~~~~~~ ~~~~~~~~ -~



36

HOST 1 HOST 2

USER TA SK 1 USER TA SK 2

COMMAND 
~ 

rCOMMAND I
TEXT ] ITEXT

REQUEST REQUEST

- KSUBUS _______________________ _____

CC CC

MS 1 / SYNCHRONOUS_LINE MS 2
PAC KET — PACKET

POOL 
_________  

POOL

FIGURE 13: MESSAGE FLOW IN MIMICS :
USER TASKS IN DIFFERENT CLUSTERS V

V — V~ ~~~~~~~~ V V ~~~ 
- - V V

V 
— 

~~V~f VV~~~ - 
- 

• V ~~~~~ ~~~~~~, ~~~~~~~~~~~~~~~~~~~~~~ V



- V —

I

37

LOCAL NAME = N

NRC TASK I
USER TASK: C1,M1.Ti.P1

REQUEST

USER_TASK ENVELOPE [ COMMAND 1 TASK___________  IN THE LOCALREQUEST
V ~ I OPERATING SYSTEM

-REQUEST I PARAMETER ____________ ~ ~
BLOC K 

~ 
TEXT_J’ \ J

_ 
/

REQUESTT
~

REQUEST SCB WHICH ‘ I
POINTS TO PARAMETE
BLOCK 

RESPONSE SCB
III

______________________________ Iii

F SYSQUE TASK 
Ill
III ~ INTERFA CES WITH
l~~ S LOCAL OPERATING

I il ’

i~ 
I

COPY OF SCB_V_ ._.
~~ 

,~, J SYSTEM

RESPONSE SCB
iF,
‘I,

______________________ 
I,,

V 4-’ DESIGNED TO BE
MACHINE INDEPENDENT

MS

~ DATA ACCESS

I.

FIGURE 14: RELATION BETWEEN USER TASK AND MS

I.
V - — — - I -

V —
V V~~~~~~~~ ~ V~V V ~~~~VV . V _ ~~~~~~~~~~~~



38

these functions an additional task is introduced : the NRC (for network

resource controller).

For the in itial design , it is assumed that each user task has a

section of code appended called the “user task envelope.” The user envelope

will translate MS calls In the user task to appropriate intertask calls to

SYSQUE. The user envelope requires a relatively knowledgeable author who

is familiar with intertask calls in the local operating system, with SYSQUE

protocol, and with MS conventions. Once the envelope is available, MS calls

in the user task can be created with little concern for interface details .

(At some later time, we propose that a special task should be created to

trap and translate all user task calls to the MS so that the user envelope

might be reduced or removed.)

Separating the envelope , SYSQUE , and NRC conventions as indicated , the

core MS is designed to be easily portable to various machines .

The SYSQUE and NRC have several features which depend upon the local

operating system:

a. A call to SYSQUE is an intertask call which requires support of

the local operating system.

b. User tasks may communicate to the SYSQUE under their local operating

system names, but they must be identified to the MS by their full network

names .

c. User tasks may request to wait on completion of various MS operations.

This must be supported by the local operating system.

d. If a user task terminates abnormally, the message system must be

informed .

e. If a task , say c2 .m2. t2 , wants to start a task , say cl.ml.tl  V 
-
~

- ~— - - -- _ _ _ _ _ _ _ _ _ _ _ _ _



V 39

(that is, in a different machine), that requires recourse to the local

operating system in machine cl.ml .

5.2.3 Establishing a Network Name

Before a user task can use the message facility , it must establish a

name by call to “NRC_ID.” It is not permissible for the user task to assume

a name without informing the NRC . When the user task is done with the message

facility, it must relinquish its network name by a call to “NRC_RELEASE_ID. ”

5.2.4 Connection and Disconnection

Before a user task, with network name cl.ml.tl., can send and/or receive

messages, it must mutually establish a logical connection with some other

“twin” task. First , the user task selects a port name , say “p1, ” so that it

can identify itself as “cl .ml. t l.p l” for communication with c2 .m2. t2 .p 2.

Hence , it must also know the name of the twin—task with which it will

communicate. (The task c 2 .m 2 . t 2 .p 2 is assumed to exist and also to request

a connection to cl.ml.tl .pl .  However , it is possible to request the NRC to

initiate a twin task.)

Knowing these names , the task issues an “MS_CONNECT” request. It is

an option to send a command packet (128 bytes) of data as part of the request;

it is required to provide a buffer for receipt of 128 bytes of text from the

other task. The mode types are discussed further later; both requests must
V 

- specify corresponding modes. The two connection requests must occur within

a time “window” (which is both a parameter of the message systems and a func—

tion of the physical separation between the M S’s). Either task may issue the

first request.

After issuing the connect request, the task may continue to execute

other unrelated functions and it may periodically check either R or the

- ~~~ V~V 
~~~~~~~ 4~

VV~~~~~~~~~ -



I
40

event variable , or it may wait upon the comp letion (or denial) of the request

by issuing an “MS_WAIT .”

Either of two connected tasks may break the connection by issuing an

MS DISCONNECT . Normally the disconnection request should not be issued until

all send and receive requests have been completed . The GLOBAL mode breaks

t he connection entries in both MS’ s; the LOCAL mode only tags the connection

entry in the local MS, which allows the twin task to finish receiving and

processing the last message. The twin task must disconnect within a speci-

fied time window or else the tagged local disconnect will generate a GLOBAL

disconnect.

5.2.5 Modes of Communication

Before specifying all of the send/receive requests, let us present

several of the options in flow control for messages.

a. When a task passes a send/receive request to the MS. the request

parameter block actually has a pointer to the message buffers (command and

data). The request can either be queued to wait in the local MS or it can

immediately initiate the protocol to start flow of the message. Thus, a

queued receive buffer merely waits for an initiate send buffer to start the

data flow (this is called rendezvous at the receiver); similarly, a queued

send buffer merely waits for an initiate receive buffer to signal that the

data flow may proceed (this is called rendezvous at the sender) .

b. Because of varying loads in the local operating systems , MS re~ V~ 
- - s

are not processed instantaneously when they are issued . It is possible that

an initiate request from one task can be transmitted to the twi:~ task before

the corresponding request is queued . To allow for this , the u S  provides a

“grace ” period (on the order of say 20 seconds) for an initiate request to

V 3

____________ - - V - — —  -



41

wait for a matching request (which itself can be either queued or initiate);

if the tnatcning request is not logged within the grace period , the initiate

request is denied (or aborted) .

c .  Messages within a cluster are always synchronized by the message

system. That is , for an “in itiate” send buf fe r , the command data buf fe r  is

f i r s t  sent , and then an acknowledgment is returned to the sending MS to

send the text b u f f e r .

For messages between remote tasks, the user has the option that

a send initiate can be sent without synchronization by the MS. That is,

the buffers are packetized and sent without checking the receive buffers.

The motivation for this is that there may be a long turn around time for

packets over the remote line. Of course, then the receiving task is obli-

gated to provide the n receiving buffers.

d. Rather than provide a queued message buffer to await an initiate

request, it is also possible to inspect the request packet directly (by

queuing an “ACCEPT_UNEXPECTED COMMAND” request) and then to issue the appro-

priate queued send or receive request which will complete the message flow.

To illustrate these various options and their combinations, several

message communication time sequence diagrams are shown in Figure 15.

5.2.6 Send and Receive Requests

The send and receive requests are MS_SEND and MS_RCV respectively.

As indicated bef ore , messages may have two components (cmd and text), but

either part may be null (cmdlen=O or textlen 0) . The user task may wait

upon either of these as discussed in Section 5.2.4. Note that there is no

send class QUEUED + UNSYNC; an “unsync” send is always transmitted issue—

diately. Similarly , there is no receive class INITIATE + UNSYNC; it is pre-

sumed that the sender will initiate as soon as it is ready. If necessary in



- I
42

FI GURE 15(1): MODES OF COMMUN ICATIOTh

MESSAGE SEQUENCE DIAGRAMS

EXAMPLE (A)

USER 1: M USER 2:
E RCV, QUEUED , SYNC

SEND, INITIATE : POSSIBLE QUEUED
SYNC REQUEST WITH JPERIOD

COMMAND PACKET )~~POS S IBLE GRACE
ACK OR NAK J PER IOD

OF REQUEST

SIGNAL SEND Er TEXT DATA

EVENT (PR OVIDED ACK WAS RECEIVED )

S—) SIGNAL RCV
EVENT

EXAMPLE (B) I
USER 1: USER 2:

SEND, QUEUED , SYNC 
¶jf

E RCV, INITIATE , SYNC

POSSIBLE
QUEUED PERIOD

POSSIBLE +—: REQUEST

GRACE PERIOD
(COMMAND PACKET WITH ACK ) OR NAK

SIGNAL SEND4J TEXT DATA

EVENT (PROVIDED ACK CASE) V

—+ SIGNAL RCV
EVENT

~L.
V 

- - ~~~~~~~~~~~~~~~~~~~~~~~~



I
43

EXAMPLE (C) I i

M USER 2:USER 1: 
[I

SEND, INITIATE , UNSYNC 
E 

RCV, QUEUED, UNSYNC

:~~possIBLE QUEUED

COMMAND PACKET & REQUEST ~~.~PER I OD
- 

‘I:~~POSSIBLE GRACE
SIGNAL ,( j  TEXT DATA 4 I.~~PER IODSEND
EVENT 

~~~~~~IBLE SIGNAL RCV
ABORT EVENT

EXAMPLE (D)

USER 1: I I USER 2:
V I  M

SEND, INITIATE, SYNC ‘ACCEPT _UNEXPE CTED —

L 

:COMMAND, QUEUED

REQUE ST WITH COMMAND PACKET)L~*SIGNAL MS_AUC EVENT

ACK OF REQUEST4 •(—RCV, QUEUED, SYNC

___________________________________________________________________________________________________SIGNAL4—E TEXT DATA

SEND EVENT •—*SIGNAL RCV EVENT

FIGURE 15(2)

— _~•_-__~ 
.~~~:V VVV V - — —  —.

V  

-



I
I

EXAMPLE (E)

USER 1: USER 2:
1

ACCEPT UNEXPECTED

COMMAND, QUEUED — 1~. J,E
RCV, INITIATE, SYNC

S I G N A L  MS AUC4___ ‘

~~~~ 

REQUEST 
• ,~ ._...)

W I T H
SEND, INITIATE, SYNC COMMAND PACKET

S1,I4AL SEND EVENT J TEXT DATA
.—_~..SIGNAL RCV EVENT

(F)
IT
II
IM F

USER 1: E USER 2:

SEND, INITIATE , SYNC REQUEST WITH

~COM AND PACKET RCV, INITIATE, SYNC

SIGNAL SEND EVENT4 ILI TEXT DATA
~ SIGNAL RCV EVENT

FIGURE 15(3)

J

V 
V V _ 

~~~~~~~~ VVV ~~~~V V 
V~~~~~~ ~~~~~~~~~ _V ~~~~ V — V -~~~~~

- ~~~~~~~ ~~~~ V~~~~~• 
V 

V ~~~ — ~~~~~ ~~~~~~~



45

I
EXAMPLE (G) I

M
E

USER 1 V USER 2:

.4 REQUEST V 

. RCV, INITIATE , SYNC

~
, POSSIBLE

• I GRACE

SEND,- >~~ 
PERIOD REQUEST WITH

INITIATE , COMMAND PAC KE T
SYNC

SIGNAL SEND4.J~ 
TEXT DATA 
)~~SI GNAL RCV EVENT

FIGURE 15(n)

V 
. ~~~~~~~~~~~~~ ~ V 

•~ V VV ~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



I
46

V the unsync case , user tasks can form their own synchronization protocol by

exchange of command packets.

Because of the normal receive capabilities, the user may also “accept”

a copy of an unexpected (really unsolicited , but anticipated) command

packet using “MS AUC .” MS AUC will indicate a receive request (type=RCV REQ)

only if no receive_command is queued ; the “textlen” will indicate the size

of text buffer required . The command packet will not be removed from the MS

buffer pool; an MS_RCV request is required to receive the message. MS_AUC

will indicate a send request (cmdlen O, type=SEND_REQ) only if no send_

command is queued ; the “textlen” will indicate the maximum size of text

buffer that can be sent. The request is not removed from the MS tables;

an MS SEND should be issued.

5.2.7 Abnormal Cases

Several error cases have already been indicated in the response codes

for the MS calls. If the user task recognizes that a bad message was

requested to be sent/received , it can abort the message using MS_ABORT

command .

Completion of a send command does not guarantee that the twin task

successfully received the message (it could be lost if an intermediate

machine crashes). Hence , user tasks should provide their own protocol

for acknowledging successful recei pt and processing of each message . Also ,

each sending task should backup each sent message at least until it is

acknowledged by the receiving task.

If a message (or a packet) is inadvertently “lost ” in the network , it

may be possible to recover i t .  Each MS has a provision to “spool” misrouted I
packets. However, this feature may or may not be supported within the local

operating system.

V ~~~~~~~~~~~~~~~~~~~ V ~~~ - -~~~~~~~~~~~~ - -- ~~~~~~~ V - - - -



47

5.2.8 Query and Monitoring -

Several facilities for interrogating the current status and past progress

of each local message system are included as part of the design. Most of the

queries are designed for executive purposes , not for user tasks.

5.2.9 Operator Functions

Var ious activiti es are automatically logged to an operator’s console.

The operator can request any of the query information . Under the local

operating system , the operator should be able to load and start the various

message system tasks: NRC, SYSQUE, MS tasks. Assuming these are active,

the “message system ready for initialization” message should appear. Then

the operator should be able to execute at the console any of the control

functions.

5.3 MIMICS Hardware Architecture

5.3.1 Obj ectives

In support of the overall objectives of the project on “Functionally

Distributed Computer Systems Development : Software and Systems Structure,”

the objectives of the MIMICS hardware are threefold :

1. To provide a means of transferring data and/or control information

from one computer to another at a high rate of speed

2. To provide for maximum protection of the network against unauthorized

access (either malicious or accidental) by users

3. To provide a reasonable level of flexibility and adaptability in

the physical interconnections , Including the ability to add or delete computers

to or from the network at a later date.

5.3.2 Overall Architecture

Figure 16 illustrates the appearance of a “typical” MIMICS computer

network to the average user , where the circled “nodes ” represent central

V - V __________ - 
- -



I
48

,

Figure 16

A “typical” computer network

processing units (CPU’s) and the interconnecting lines represent possible

information paths ur links between the CPU’s. In Figure 16, CPU ’s 1, 2, and

3 may be thought of as comprising a “local” network or cluster and CPU ’s 4,

5, 6, and 7 another cluster. Although not absolutely necessary, cluster~.

“A” and “B” are probably “remote” from each other in some physical sense.

Also note that each CPU in cluster “A” is physically connected to every other

CPU In that same cluster (assuming that all inter—connection paths shown are

operational at the moment), whereas cluster “B” is not so fully interconnected .

This last observation implies that if some information must be transferred

between CPU’s 4 and 7, then this information must pass through CPU 5 or 6

or perhaps both; and , of course, if information transfer Is desired between 
V

any CPU in cluster “A” and any CPU in cluster “B,” then at least CPU’s 2 and

4 must be involved .

For this project , one last point must be made: the rate of information

transfer between CPU’s in the same cluster will be very high (on the order

of tens of millions of bits per second), while the rate of information trans-

fer between clusters (such as between CPU’s 2 and 4 in Figure 16) will be at

a much lower value (on the order of five thousand bits per second). To

reach this high interciuster transfer rate , CPU’s in a cluster must be physi-

cally close together (on the order of tens of feet).

In actual i ty ,  the physical network interconnecting CPU ’s in the same

- -- -- -—

~

- -~~~~~~~~--- ------- ~~ V 
V

- V . V . V ;flt& 4 -



I

cluster is somewhat more complex than shown in Figure 16. In order to

remove the burden of network control from the usually overworked main CPU

and in order to provide a layer of hardware protection against either mali-

cious or accidental interfereace between the network and the general users,

the function of network control has been “unloaded” from the “host” CPU to

another “control” CPU associated with each host. In a commercial network

(but not in the prototype being developed by this project) these control

CPU ’s would probably be “micro” computers (hence the acronym MIMICS for

MIni MIcro Computer System) and their controlling software would probably

be stored in Read—Only Memory (ROM), thus effectively precluding any unau-

thorized tampering by user programs executing in the host CPU’s.

Figure 17 shows the interconnection for clust~r “A” in greater detail.

~~~~~~~~~~~~~~~~~~~

cluster

3 
Legend :

HOS Low—speed control links
3 Low—speed remote links —

High—speed data path
V 

Figure 17

Local network “A” in greater detail than given in Figure 16

In this drawing, low—speed links are depicted by narrow lines and

high—speed data paths by wide lines.

Note these points of interest:

I V a. Associated with each host CPU is a communication controller (CC) .

V — ~ V - - - - - --~~~ ——
V 

V ~
• ‘

~‘~



I
50

b. Each host and CC pair are interconnected with a relatively slow—

speed (9600 bits per second) control link as well as a very high—speed

data path.

c. Each host/CC pair is connected to other host/CC pairs by similar

slow—speed control and high—speed data links.

d. Connections to and from remote clusters pass through a CC and not

a host CPU. For the sake of terminology , such connections are called

“remote” links, and these links may carry both data and control information.

5.3.3 Data Flow

Although a detailed description of data and information flow will not

be given in this review of the system, the general idea is as follows:

Suppose a particular host CPU requests some data (perhaps in response to

a request coming from a user application program executing on that host)

through its operating system. This request is passed to the host ’s asso—

elated control computer via the control link and from thence to the network

operating system. There are several possibilities:

a. The requested data may already be present somewhere in the host ’s

memory (under control of some other program). If such is the case, the

control computer arranges a high—speed copy of the data to a memory area

under control of the requesting program .

b. Or if perchance the data is in the CC memory, the CC will arrange

a similar high—speed memory—to—me mory transfer of the data back to the

requesting program.

C. If the data is not found in either the host or control computer

memories , the CC will interrogate the cluster operating system concerning

the requested data ’s whereabouts; if the data is found in some other CC

V~~~~ V 
~~T4~~~~~~~~~ V ~~~~~~~ 

~~~~ V 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

V ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

V



51

or host memory in the cluster , then the two CC ’s will arrange a high—speed

memory—to—memory transfer of the data back to the requesting program . All

of the above requests are transmitted over the local control links .
- 

d. If the requested data is not foun d within the cluster , the request

may be passed to other (remote) clusters via the remote link. If (when) the

data is found in another cluster , then it is transferred back to the requesting

host in at least two steps: first from the CC in the remote cluster to the

CC in the requesting cluster (via the remote link) and then from that CC

directly to the requesting host (via the high—speed path).

Several other cases could be examined , but the above examples should

convey the general flavor of the operation of MIMICS. Neither the nature

nor the form of the data and control information which is transmitted through

the network is important at this l evel of understanding.

5.4 A Proposal for an Extensible—Contractible Network Control Language——ENCL

5.4.1 Extensible—Contractible Languages

An alternative to the current proliferation of special—purpose languages

is a class of general—purpose languages . One approach to the creation of a

general—purpose language is the extensible language method. It is character-

ized by a small base language which includes a minimal set of primitive func-

tions. These primitives include definitional facilities which allow the

language user to construct a special—purpose language suited to his own

application .

An extensible language provides the definitional facilities to create

new data objects , new operators , and new syntactic structures. Several of

the more sophisticated extensible language systems (PPL and ECL) allow the

user to create a new flow of control mechanism. Additionally, if the system

includes a multi—tasking environment , the system scheduler is writ ten in the

~~~~~~~~~~~~~~~~~~~~~~~ 
V 

~ V~ _ V~ —— 
.~ 

- 
- 

— 
;~~V;V

..V ~~~~~~~~~~~~~ .~



-
. 1

52

base language and may be accessed and rewritten by the user . This set of

definitional facilities provides the language user with the tools to synthe-

size a wide variety of special—purpose languages.

The definitions of the syntax and semantics of extensions are accomplished

by three techniques :

a. Paraphrase technique : Extensions are defined in terms of features

currently known in the base language.

b. Orthophrase technique : Extensions are defined in terms c,f features

not currently known in the base language .

c. Metaphrase technique : Extensions involve changing the interpreta-

tion of features currently in the language.

A problem can arise if a user is allowed to retain extensIons for a

prolonged period of time . The language and its associated translator can

become large and inefficient. But if the translator is structured so that

the features required for translating extensions may be inserted into and

contracted out of the translator , the problem is solved . The result is an V

extensible—contractible language .

Designers of network control languages are faced with the problem of

making the available hardware adaptable to a diverse user community . We will

propose and specify an extensible—contractible network control language which

provides a flexible, yet easy—to use interface. This language must be trans-

portable to a heterogeneous set of machines with a minimum of effort.

5.4 .2  ENCL

5.4.2.1 Design Objectives

The proposed language , ENCL , provides the network user with a programming

tool which can be tailored to an individual ’s needs and level of competency .

That is , ENCL can be made easy to use for the novice , or it can be made

— — - - ~~ — _~VV ~~ V~_  -~ -



53

powerful for the trustworthy professional. This flexible interface is pro-

vided by a single unified translator. Since ENCL is intended to be used on

a network consisting of heterogeneous machine architectures, an adaptable

form of interface to a wide variety of architectures is provided . This

interface is provided by a small set of standard basic primitives which

are easily mapped into a local operating system ’s supervisor calls. In

addition to these adaptability considerations , the language also provides

a secure system. The system allows the simultaneous execution of individual

programs as well as simultaneous execution of jobsteps within a single

program to be distributed across the network . The major problem with an

implementation of a language which provides the flexibility of ENCL is

that of translator efficiency. Although flexibility of the language is

the primary objective, only the noot efficient ~cthcdz of providing this

flexibility were included .

5.4. 2.2  Design Approach

ENCL was designed so the semantic functions of the language can be

distributed across the network . The ENCL system is structured to provide

flexibility, distribution of functions , and portabili ty.  The flexible

user interface is provided by a portable , extensible—contractible transla— -

tor . The output from the translator is an intermediate language which is

interpreted by a virtual network machine . This portable network machine

(NM) provides the scheduling and synchronization necessary to allow simul-

taneous execution. The network machine produces standard network commands

which drive the network’ s member machines . The member machines , called

extended machines (EN) , interface with the network machine through a small ,

machine dependent , network resource controller (NRC) . Figure 18 illustrates

a general view of the ENCL .

- — 
- ~~~~~~~~~~~~~ V



- -  V V V

• 

V 54

USER l--~~~~~~ DED ENC ~T - 

- NRC1 EM1

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
ENCL 

>NM~~~~~~~ 

- EM2

USER 
- 

~~~TRANSLA TOR I
• 1

(~~STRI CTED ~~~~~~~~

USER f4 1~+ENDED RESTRI CTED ENCL NRC L EML

ENCL - E X T E N C I B L E  NETWORK CONTROL LANGUAG E 
,, 

V

- NM — NETWOR K M A C H I N E  V - V

- 
- NRC — NETWORK RESOURCE CONTROLLER . V

V

EM — EXT ENDED M A C H I N E  
V 

V 
-V

FIGURE 18: USER ’S VIEW OF ENCL SYSTEM V 
-

V V V~~ 

_ _  

. - V

- ~~~~~~~ ~~~~~ ~~~~~~~~



5.4.3 ENCL Network Standard Commands

Network standard commands are classified into three categories :

task control commands , file operation commands, and resource allocation

commands . Task control commands provide the means of starting, stopping,

pausing, and resuming tasks running under the control of an extended machine ’s

local operating system. Task commands also provide the means of assigning

files and/or a console to tasks. File operation commands provide the means

of creating, deleting, and modifying files which are cataloged within an

extended machine ’s local operating system ’s f ile directory . Resource allo-

cation commands provide the means of allocating and deallocating an extended

machine’s resources which have been dedicated to the network. 
V 

In general the

operands for these commands are network standard task and file identifier

names and network otandard fi le deocrlptor ~loekz .

The following is a list of the network standard commands and their

desc riptions :

RUN Binds a network standard representation of a task identifier to

the local representation of a task—id .

Binds a default or specified partition of memory with the task.

Creates an executable module of a specified routine and associates

the module with a task control block.

V Loads the module into the appropriate memory area .

Assigns a specified set of files and/or a console to the task to

be executed . V

Starts execution of the task .

STOP Terminates execution of the specified task .

PAUSE Causes execution of the specified task to be paused .

RESUME Causes execution of the specified task to be resumed .

1:
- — - 

VS 

V 

- - - t .V .~ V~ 
.~ ~~~~~~~~~~~~~~~~~~~~~~~ - —



56

CREATE Binds an external definition of a file descriptor block with a

local description of a file descriptor block .

Allocates appropriate storage .

DELETE Deallocates storage and destroys the file descriptor block asso-

ciated with the specified file—id .

MODIFY Modifies a specified file descriptor block.

LOOKUP Returns a specified file descriptor block.

PREALLOCATE Provides a means of preallocating disk and/or memory storage.

DEALLOCATE Releases allocated storage .

EXEC Provides machine dependent control language text .

V ~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ 
V~ —

V 

— V ~~~~~~~~~~~~~~~~~~ ~~~~~~~~~ - .. ~ V



Appendix A

Articles and Publications

Technical Reports, KSU

Number Authors and Titles

CS 76—03 Maryanski and Wallentine. Implementation
-‘ 

of a Distributed Data Base System. 18 pages.
February, 1976.

CS 76—08 Fisher, Maryanski, and Wallentine.
Evaluation of Conversion to a Back—End Data
Management Systems . 18 pages. Published in
the proceedings of ACM National Conference.
October , 1976.

CS 76—11 Maryanski, Fisher, Wallentine , Calhoun, and
Sernowitz. A Minicomputer Based Distributed
Data Base System. 20 pages. April, 1976.
Published in the proceedings of the NBS—IEEE
Trends and Application Symposium: Micro and
Mini Systems. May, 1976.

CS 76—12 Maryanski and Wallentine. A Simulation Model
of a Back—End Data Base Management System.
24 pages . April, 1976. Published in the
proceedings of the Seventh Annual Pittsburg
Modeling and Simulation Conference. April,
1976.

CS 76—13 Maryanski. Language Specification for a
Distributed Data Base Management System.
76 pages. May , 1976.

CS 76—14 Maryanski. Memory Management in a Distributed
V Data Base Management System. 48 pages .

October , 1976.

CS 76—16 Neal , Anderson , Rat l i f f , and Wallentine . KSU
Implementation of Concurrent PASCAL — A Reference
Manual. 69 pages . December , 1976.

CS 76— 17 Wallentine and McBride. Concurrent PASCAL — A
Tutorial. 129 pages . December , 1976.

V 
V

VS 
- 

V 
- ..- ~~~~~~~~ 

— - -



2 1
I

CS 76—18 Hankley and Rawlenson. Sequential PASCAL
Supplement for FORTRAN Programmers : A Primer
of Slides. 145 pages. December , 1976.

CS 76—22 Maryanski, Fisher and Wallentine. A User—
Transparent Mechanism for the Distribution of
a CODASYL Data Base Management System.
34 pages. December, 1976.

CS 77—1 Maryanski. A Survey of Developments in
Distributed Data Bas e Management Sys tems .
February, 1977.

CS 77—2 Maryanski . A Deadlock Prevention Algorithm for
Distributed Data Base Management Systems.
February , 1977.

CS 77—4 Wallentine, Hankley , Anderson , Calhoun, and
Maryanski. Progress Report on Functionally
Distributed Computer Systems Development.
147 pages. December, 1976.

CS 77—5 Maryanski and Fisher . Roll—back and Recovery
in Distributed Data Base Systems . 19 pages .
February, 1977.

CS 77—7 Maryanski . Performance of Multi—processor
Backend Data Base Systems . 15 pages. April,
1977.

CS 77—8 Fisher and Maryanski. Design Considerations in
Distributed Data Base Management Systems.
19 pages . April , 1977.

- 
-- - - ~~ —~~~~~--- — —

~ -



I

I
- 

Appendix B

Reports

Da te Subject

March 24, 1976 Report of Monthly Review

April 21, 1976 Report of Monthly Review

May 20, 1977 Progress Report

September 1, 1976 Report of In—process Review

July 1, 1976 Progress Report to ARO

January 27, 1977 Progress Report to ARO

II 
______________________________________________________________________________________________- — V - VV~~~V V - ~~ ~V V- -  ‘S~~~ V. p  p~. ~~~



I
Appendix D

BIBLIOGRAPHY I
[CAN 74) Hoare, C.A.R. Monitors: An Operating System Structuring

Concept. Communications of AQ-1, Vol. 17, No. 10, (October) 1974.

(DNN 76a] Neal, D.N. An Arch itectural Base For Concurrent
PAS CAL . (~-!.S. Thesis) KSU Department of Computer Science. (in
preparation) Tech. Rpt. CS76—19, Nov., 1976.

[DNN 76b] Neal, D.N., Anderson, C., Ratliff, J. and Wallentine, V.
KSU Implementation of Concurrent PASCAL — A Reference Manual. CS76—l6.

[GVB 751 Bochniann , G.V. Logical Verification and Implementation
of Protocols. Fourth Data Communications Symposium, Oc tober , 1975.

[INT a) INTERDATA INC. 16 Bit Series Reference Manual. Pub. No.
29— 398R03.

[INT b] INTERDATA INC. MODEL 8/32 Processor User’s Manual.
Pub. No. 29—428.

[INT c] INTERDATA INC. OS—32/MT Program Reference Manual. Pub.
No. B29—390R02 .

[iNN 76) Howard, J.H. Signaling in Monitors. Proceedings of
2nd Int. Conf. on Software Engineering (AcM/IEEE/NBS) . (IEEE Cat.
No. 76 C11ll25—4 C) October, 1976.

[J&W 74] Jensen , K. and Wirth , N. PASCAL — User Manual and Report
In Lecture Notes in Computer Science , No. 18 Spunger Verlog, 1974.

[NW 71] Wirth, N. The Programming Language PASCAL. ACTA Infor—
inatica Vol. 1, No. 1 (1971), pp. 35—63.

[PBH 73] Brinch Hansen, P. Concurrent Programming Con cepts
ACM Computing Surveys, Vol. 5, No. 4 (December) , 1973.

[PBH 75a) Brinch Hansen , P. The Programming Language Concurrent
PASCAL. IEEE Transactions on Software Engineering, Vol. 1, No. 2
(June , 1975), pp. 199—207.

(PBH 75b) Brinch Hansen, P. Concurrent PASCAL Report. Informa—
tion Science , California Inst i tute of Technology , Jun e , 1975.

(PEN 76] Brinch Hansen, P. The SOLO Operating System. Software—
Practice and Experience , Vol. 6 , No. 2 (April—Jun e , 1976) pp. 141—206.

(WJH 76] Hankley , W .J .  et. al. Sequential PASCAL Supplement (for
FORTRAN Programmers). KSU Department of Computer Science. Tech. Rpt.
CS76—18, Nov., 1976.

- 1

V ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
V

_ V _ _ V__ ___ V_ _VVV____ __ VVV_aV VVVVV__ VV_ VVVV~~ _V ___ VVVVVVVVV__V_ V_ V — - 
- 

- - - - 
V



2

(2) remote — two machines (or user tasks) are remote if communication

between them must travel over low speed telecommunications lines -

(eg. 2400 baud , synchronous); messages between remote tasks are

packetized by the message system, ie., broken into packets for

transmission and reconstructed at the receiving machine; opposite

of local.

(2) local — two user tasks are local if either (i) they are in the same

machine or (ii) they are in machines connected by high speed “data

movers” (eg. 2 million bits per sec); messages between local tasks

are not packetized , then are sent as a block, memory— to—memory using

the data movers; each group of local machines is called a cluster;

opposite of remote.

(1) host — any computer in the network with user tasks in it; warninq~
this d i f fers  from usual data—base terminology as in a distributed - 

V

data base application, both the front—en d and back— end

computers would be called network hosts; in - -

MIMICS hosts may be either minicomputers or inaxicomputers.

(2) off—loading — the removing of some operating system or language

support functions from a host machine to an allied dedicated processor;

the motivation for this is that the off—loaded functions can execute

truly concurrently (ie., simultaneously) with tasks in the host,

thus greatly improving the performance of the host; in MIMICS, the

message system is typically off—loaded into a communications—control (CC)

microprocessor; in the 370 architecture, the I/O functions are off—

loaded to special channel—control processors.

(2) ~c — coinmunciation controller; a micro processor used in MIMICS for

off—loading the message system from a host machine.

(3.) message — basic unit of network communicatián ; copied by ~he message

system from address space of a sender user—task into agreed upon

place in address space of a receiver user—task; in MIMICS, messages

may have two components, (1) a command part (up to 128 bytes of data)

and (ii) a data part (up to 64K bytes), but either (not both) of the

parts may be null.

(2) routing — selection of the path between two host machines over which
communication will flow — hence, the selection of (i) which intermediate

machines, if any, are patt VQf the path and (ii) which actual communication

line, in case there is more than one, to üsé between any two directly

~~c~nnecte4 machines; in MIMICS each mess~ge system instance has a route 

- - 
~~~~~~~~~~~~~~ - 

V



I
table with entries (name of another machine in the network :

line_route_to_next_machine_in_the_path) where the line—route number

is a logic-line, so that all physical lines to Van adjacent machine

are used interchangeabl y.

(3) logical line — a group of parallel physical communications lines

which directly connect two adjacent computers , where the actual physical

lines are used interchangeably ; warning this means that packets

can flow “out—of—sequence ,” although user tasks never observe this

phenomenon.

(3) KSUBUS — a special multiplexed hardware bus , designed by N. Calhoun

at KSU, to form a memory—speed connection between a CC, one or two

hosts which are on the bus 1 an XR —data—mover , and X— and R— data

mover pairs which connect to other KSUBUS’s in the same cluster.

(1) cluster — in MIMICS, a group of network machines that are all

interconnected by high speed data movers; the data—parts of messages

move at memory speeds from the sender task to the receiver task.

(3) c—node — a cluster—node; the group of one or two hosts which are

connected to the same KSLJBUS; messages can move memory—to—memory

within a c—node without accompanying cluster protocol; warning in

conventional network terminology , any machine in the network would

be called a node, but that is different from the c—node concept.

(3) data—mover — a special “autonomous functional hardware unit,”

designed at KSU, to work in conjunction with other matching units to

move data blocks memory—to—memory at memory speeds between machines

in the same cluster; XR— , X— and R— data movers; a data mover can

be enabled only by the cc on the same KSUBUS as the data mover .

(3) XR — data mover — device which copies a block of data from one area

to another within machines on the same KSUBIJS, eg. host— to—host or

host—to—cc or cc—to—host.

(3) X—data mover — device which “transmits” a block of data to an R—unit

on a connected KSUBUS, where the source of the data is either Ci)

memory of a machine on the same KSUBUS with the X—unit (called X—mitting)

or (ii) an R—unit on the same KSUBUS as the X—unit (which is called

forwarding of the data).

(3) R—data mover — device which receives data from an X—unit on a

connected KSLBUS and “moves” the data to either (i) memory- of a

I
-

~~~ - V_ - 
V - V -~~~~ _ _ _ _ _ _ _



4

machine on the same KSUBUS as the R—unit (called receiving) or (ii)

to an X—unit on the same KSUBUS (called forward ing)~
(3) packet — a basic unit for communication over a low speed line; in

MIMICS the packets have the following components:

beginning_part = 6—SYN ’s — DLE — STX
packet_flow_control (4 bytes) = RC———return control character

RN———re turn sequence character

- N————out sequence character

TL——— text_length character

message_flow_control (12 bytes) = SEQ———packet sequence number

(2 bytes)

T type of packet character

ID———--message Id character

TO_ID———4 bytes
- FROM_ID———4 bytes

packet_text (0 to 128 bytes of data character plus transparency

characters as required plus extra SYN characters as needed)

check_sum_part (2 bytes)
- end_part = DLE—ETX

This comprises normally up to 156 characters, and most likely

several more, to transmit data text of up to 128 bytes , so that the

effective line baud rate is less than the nominal baud rate. Trans—

mission errors and subsequent retransmission reduce- the effective

line baud rate even ft~rther.

(2) buffering — mechanism for providing space (buffers , actually “empty”

buffers) and temporarily storing information (also called buffers, or

full buffers), so that the related steps of storing and removing

buffers (actual contents of the buffers) can proceed asynchronously,

with the cumulative number of stores at all times ahead of the

cumulative number of removals.

Buffers in MIMICS include

(2) SYSQUE ——— buffer between user tasks and message system; buffers

requests to message system and responses back to user tasks.

_

- 
- 

~~~~~~~~~~~~~~~~



5

~rotoco l——an agreed upon form and sequence for  exchange of control
V information and data between processes to achieve a

synch ronized communication , i.e. so that the information
is correctly conveyed and both processes know it; there are

several sets of protocol in MIMICS, includ ing:
(1) SYSQUE_pro tocol — pro tocol for bo th user tasks and message

system to both send and receive SCB’s, which
are control blocks used to imp lement passing
of parameter information f or message reques ts

- and responses.

(1) Message_system — set of param ters lists for message sys tem
requests together with rules for acceptable

user— task behavior.

(3) Synchronous_line — rules of sequencing for exchanging packets -

between remote line drivers .

(3) CC_protocol — actually two sets of protocols ;

(i) rules for exch anging packets between

cluster — CC’s (same as synchronous
line pro tocol) and

(ii)rules for controlling the data movet’s
- copying of data blocks within the cluster.

(3) PASCAL — a programming language designed by N. Wlrth which
promotes correct programs because (I) it

promotes structured programs (both flow of
control and data structures) and (ii) it

enforces numerous compile time checks not

normally supported in other programming

languages (thus minimizing run—time errors),
a~d (iii) it allows code to be written in a

very easily readable form.

(3) PASCAL — at the same time, a restriction of PASCAL to enforce
simple programs and an extension of PASCAL to

support a well structured mechanism for

concurrent programs using monitors; developed
by P. Brich—Hansen; ported to KSU for use

in imp lemen ting a readable and correct proto—

V 
type of the message system.

V ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-

- - 

V 

- -~ V -



6

(3) monitor — a concept introduced by C. Hoare for structured

programming of concurrent processes ; the monitor

consists of (I) a group of shared data structures,

(ii) a set of procedures (monitor entry points)

which operate on the shared data, (iii) and initial
state fo~ the shared da ta, and (iv) the conven tion
that only one process may execu te “in” the monitor
at any one time, so tha t the programmer does not
have to worry about diff icul t ies  of multip le processes

writing to the shared data at the same time; monitors

are implemen ted in ~PASCAL ; monitors in the MIMICS
implementation include:

— SYSQUE — monitor of SCB’s f or message system
requests and responsesQ

— Packet buf fe r  — monitor of packets to be sent or

just received.

— NESS_ table — monitor of active and queued SEN D and

RCV requests.

— CONN ECT tab le — monitor of user task connection
status information.

— logical_line_window — monitor of packets actively

being transmitted , received , or ackn ow—

ledged over low speed lines; one for each

logical line.

— event_control — monitors to control a process
which has to await availability of data

in either of two (or more) other monitors,

since a process in CPASCAL can normally
wait on only one monitor. -

— cluster_moni tor — monitor of reques t and responses
for activation of the data movers. - 

V

(1) NRC — Network Resource Controller; a network operating system

V - module needed to interface user tasks between the local

operating system in the host machine and the network
operating system; one for each host machine; functions of

this NRC include:

Ii
& 

_________

VV~~ ~1V~.V —~ V,, —~ ~~~~~~~~~~~~~~~~~~~~~~~ —



— supplying network names to each user task.
— initiating tasks in a host upon request from the NRC

in some other hos t (based up requests from user progra s)
V 

— disconnecting user tasks f rom the message sys tem when
the task terminates without  the normally expected

disconnect step.

(1) local_opera ting_sys tem — the regular opera ting system in any
single hos t machine.

(1) network operating system — the collection of all operating

software in all network machines including all NRC’s,

all message system instances, all SYSQUE’s, etc.

(2) user envelope — interface software to translate message system

calls in user programs to appropr iate usage of the SYSQ~JE ;
in particular , the user envelope will need to supply -

specific network names for all communications requests.

(1) network-names (c.m.t.p.) — all communications in MIMICS

is directed using a network wide naming convention
consisting of four bytes:

c — cluster character
in = machine

t unique task identifying character , within machine
c.m.

p = por t character: the por t charac ter
effec tively identifies a communication subnam e so

that one task may carry one network couimunica—

tion using two different ports and keep messages

to each port separate.
c, in, and t names for a task can be established by
interrogating the NRC.

(1) local names — within a host tasks will be identified by names

assigned by the local operating system ; these are not

network names; warning it is necessary to translate between
local names and network names in order to interface u ser
tasks to both the local operating system and the network
operating system.

-: _ _~~V~~~_ _ _~~~~ V V V ~~~~~~~~~~~~~~~~~~~~~~~~~ V V — — 
- •

~~~~V 
~~~~~~~~~~~~~~~~~~ V



8

(2) Back—end — typ ically refers to a host computer executing

only a data base management function. Sometimes

refers to the func tion inside aV partition in a hos t which

V 
executes application programs in other partitions.

(3) packet_buf fe r_monitor ——— buffers packe ts to be sen t over low speed

- lines and received from a low speed line. -

(3) line_drivers ——— buffers the packets as they are actually being trans-

mitted or received over a low speed line0

(1) message_table ——— buffers SEND and RCV requests that have been

accepted by the message system but not yet completed .

.

- - - - — - V

‘-I ~~~~~~~~~~~~~~~~~~ .~~,.



I
Appendix C
TABLE 1 Vocabulary I

In discussing the MIMICS network concepts and implementation it is

essential to establish certain base vocabulary. Several of these key

words are explained in the list which follows. Each word has been

graded using the scheme.

- 
(1) means word is essential for network users j
(2) means word is needed for discussion of network

V 
concepts

(3) word is related to network implementation .

(1) network — an interconnected set of computers
(1) MIMICS — a network designed to be implemented using mini— and

micro computers , but also with larger machines in the network;
developed at KSU under support from the U.S. Army, Compu ter
Systems Command .

(1) connected — the network hardware is said to be connected if it is

possible for communication to flow from any one machine to any other

machine in the network , either direc tly or ind irec tly via inter-
mediate machines; MIMICS is intended to be connected .

— two user tasks are said to be connec ted if they have
mutually established a “logical connection” by appropriate matching

MS_CONNECT calls; these tasks may then communicate using MS_SEND and
MS_RCV calls.

(1) user task — an application task in one of the network host machines

that communica tes to some other user task , likely in a differen t

machine, using the message system.

(1) message system — that software/hardware part of MIMICS that supports

network communication by user tasks; basic message system commands

are CONNECT, DISCONNECT , SEND, and RCV (receive); basic message system
functions are routing of messages, packetizing messages for remote

transmissions, b u f f e r ing of packets, handling of line protocol for
packets and messages, and reconstruction of packetized messages. ‘~

-
~ I

____________ V 

1 
V i i

)

-- - - - ~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ ~i 
V - ,



- 
- 2

[MB 76] Ball , Mike. Personal Communication. Naval Underseas
Laborary , San Diego, CA.

[KIM 76] Naryanski, F.J. Design Considerations for a Distributed
- Data Base -!anagec’.en t System, TR CS—76—l4, Computer Science Department.

- Kansas State University . September 1976.

1
- V

1
—‘V. * f~ ~~~~~~~~~~~~~~~~ 

—


