v

AD=A052 748 MASSACHUSETTS INST OF TECH CAMBRIDGE ARTIFICIAL INTE=-ETC F/6
A SYSTEM FOR REPRESENTINC AND USING REAL=WORLD KNOWLEDGE.(U)

DEC 77 S E FAHLMAN NODO14=75S=C=0643
UNCLASSIFIED Al=TR=450 NL

9/2

M

3>

a

Q0
<l
e
A\
0
=
=
=
<

. e, A b i il i e e e A e O el O . . o it i

o~

o
o S

UNCLASSIFIED

1N “\\a
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered) /«‘7/-'\/ S
T .
REPORT DOCUMENTATION PAGE RV veer R me
R . T2, GOVT ACCESSION NQJ] 3, RECIPIENT'S CATALOG NUMBER
AY-TR-45H : ;] :
TITLE (and Subtitle) e ———— N s VERED
A System for Representing and Using Real-World Pchnical rep@gwt-
Knowledge ., BN, et — ;
R . $. ~PERFPORMIN f NUMBAER
« AUTH / l CONTRACY OR GRANT NUMBER(e)
£ : <
Scott, Fahlman . (\/ L/ Nﬁﬂﬂ”’ 75 ; }{6"3

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT.PROJu:T TASK

Artificial Intelligence Laboratory /
545 Technology Square
Cambridge, Massachusetts 02139 S

11. CONTROLLING OFFICE NAME AND ADDRESS
Advanced Research Projects Agency Q'i ibecqﬁ ;

1400 Wilson Blvd . ST\ NUMBER OF PAGES |
Arlington, Virginia 22209 201

14. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Ollice) 18. SECURITY CLASS. (of thie report)
O0ffice of Naval Research UNCLASSIFIED

Information Systems

Arlington, Virginia 22217 T3a. gg&.&ﬁn{acunouloowcnoms

16. DISTRIBUTION STATEMENT (of thia Report)

Distribution of this document is unlimited.

17. DISTRIBUTION STATEMENT (of the abatract entered in Block 20, if different from Report)

DC

| n “.’..Hmm

18. SUPPLEMENTARY NOTES e - 21 8
None Pk LlLU Ul

=

19. KEY WORDS (Continue on reverse side if y and Identily by block number)

Artificial Intelligence Parallel Intersection
Representation of Knowledge Frame Systems

Semantic Networks

20. ABSTRACT (Continue on reverse eide If necessary and identity by dlock number)

This report describes a knowledge-base (x&tem in which the information
is stored in a network of small parallel processing elements -- node and
link units -- which are controlled by an external serial computer. Dis-
cussed is NETL, a language for storing real-world information in such a net-
work. A simulator for the parallel network system has been implemented in
MACLISP, and an experimental version of NETL is running on this simulator.

a number of test-case resuits and simutated timings will be presented. K

DD /505 1473 eciTion OF 1 NOV 68 1S OBsoLETE UNCLASSIFI1ED A
; S/N 0102- ou- 6601 i T R ey (h-‘énuhlnm
j 4»? URITY c.usufncnlou oF THIS Det

o R P T e~

SR

T T p—

...—..,L-.—-

Y e ——

AI-TR-450

A System for Representing and Using Real-World Knowledge
by

Scott E. Fahiman

Artificial Intelligence Laboratory
Massachusetts Institute of Technology

December, 1977

Revised version of a dissertation submitted to the Department of Electrical Engineering and

Computer Science in partial fulfiliment of the requirements for the degree of Doctor of
Philosophy.

P 4‘% liaee

This report describes research doi. . the Artificial Intelligence
Laboratory of the Massachusetts Institute of Technology. Support
for the Laboratory's artificial intelligence research is provided
in part by the Advanced Research Projects Agency of the Department
of Defense under Office of Naval Research contract NOOO14-75-C-0643

AR

ABSTRACT

This report describes a knowledge-base system in which the information
is stored in a network of small parallel processing elements -- node and link units -- which
are controlled by an external serial computer. This network is similar to the semantic
network system of Quillian, but is much more tightly controlled. Such a network can
perform certain critical deductions and searches very quickly; it avoids many of the
problems of current systems, which must use complex heuristics to limit and guide their
searches. It is argued (with examples) that the key operation in a knowledge-base system is
the intersection of large explicit and semi-explicit sets. The parallel network system does this
in a small, essentially constant number of cycles; a serlal machine takes time proportional to
the size of the sets, except in special cases.

In addition to describing the parallel network system itelf, we describe
NETL, a language (or a system of conventions and procedures) for storing real-world
information in such a network. NETL is built around a central organizing concept: the
idea that a knowledge-base system, in addition to storing and retrieving isolated facts, must
provide the user with the ability to create and use virtua! copies of arbitrarily large and
complex descriptions. - The system behaves as though the original description has been
copied, including all of its parts and substructures, but little or no redundant structure is
actually created. NETL contains a number of small improvements over existing systems
which, taken together, allow NETL to represent certain real-world concepts more precisely
and efficiently than could earlier knowledge-base systems.

A simulator for the parallel network system has beén implemented in
MACLISP, and an experimental version of NETL is running on this simulator. A number
of test-case resuits and simulated timings will be presented.

eSSl i —
R

ACKNOWLEDGEMENTS

I would like to express my gratitude to the following people, who made essential
contributions to this project:

To my thesis supervisor, Gerald Sussman, and my readers, Patrick Winston and Marvin
Minsky, for their advice, support, and patience. I would also like to thank each for the
special gifts that he brought to the task: Sussman, his contagious energy and enthusiasm;
Winston, his broad perspective and good sense; and Minsky, his sense of direction.

To Drew McDermott, Bob Moore, Michael Genesereth, Mitch Marcus, and Jon Doyle for the

many stimulating arguments and discussions that we have had about knowledge-
representation and related topics.

To McDermott, Genesereth, Doyle, Candy Bullwinkle, Bill Martin, Guy Steele, Steve
Rosenberg, Jim Stansfield, and Johan de Kleer for reading earlier. draﬂs of this report and
for making many useful comments and criticisms.

To Tom Knight, Jack Holloway, Kurt VanLehn, Ben Kuipers, David Marr, Carl Hewitt,
Bob Woodham, Richard Staliman, Richard Greenblatt, Brian Smith, and Chuck Rich for
contributing good ideas, for pointing out things that I ought to read, for providing tools that
were a pleasure.to work with, for general moral support, and for combinations of the above.

Finally, and most of all, I would like to thank my wife, Penny, for her support and
understanding. This thesis is dedicated to her.

For two of the four years covered by this research, I was supported by an 1.LB.M. Graduate
Fellowship.

L

Table of Contents
. Introduction : ‘ 5
Ll Preview 5
1.2 The Knowledge-Base Problem 7
1.3 The Paratel Network Approach n
2. Overview of Knowledge-Base Operations 14
21 Type Hierarchies and Inheritance 14
2.2 The Virtual Copy Concept 21
23 Nodes, Links, and Set Intersections 26
2.4 Exclusive Splits and Clashes 33
25 Matching and Recognition 39
26 Assorted Other Uses for the Network System 44
3. The NETL System 50
31 Overall Goals of NETL 50
3.2 Creating Basic Descriptions 55
33 Creating a Free-Standing Individual 57
3.4 Creating a Type-Description : 63
35 Creating and Mapping Roles 67
36 Statements and Links 8
3.7 The Copy-Confusion and Binding-Ambiguity Problems 99
3.8 Defined Classes and Negation 116
39 Events, Actions, and Multiple Contexts 127
3.10 Abstraction and Learning 137
4. Simulation Results . i 141
4.1 Description of the LORIS Simulator 141
42 Animal-World Test Results 148
43 Electronics-World Test Results 158
5. Conclusions 164
Appendix A: Implementing the Parallel Network in Hardware ' 169
A.l Design of a Typical Element-Unit 169
A2 Connecting Link-Wires to Nodes _ 179
A.3 Implementation with a Micro-Processor Network 183
Appendix B: Table of Node Types, Link Types, and Modifier Flags 185

‘BIBLIOGRAPHY 190

&
© ol Ly ARG e P

Preview 5 ! Section 1.1

Af a cat can kill a rat in a minute, how long would it be killing
60,000 rats? AA, how long indeed! My private opinion is
that the rats would kill the cat. :
i --- Lewis Carroll, on the
advantages of parallelism

l. Introduction
1.1 Preview

The human mind can do many remarkable things. Of these, perhaps the
most remarkable is the mind’s ability to store a huge quantity and variety of knowledge
about its world, and to locate and retrieve whatever it needs from this storehouse at the
proper time. - This retrieval is very quick, very flexible, and in most cases seems almost
effortless. If we are ever to create an artificial intelligence with human-like abilities, we will
have to endow it with a comparable knowledge-handling facility; current knowledge-base
systems fall far short of this goal. This report describes an approach to the problem of
representing and using real-world knowledge in a computer. :

The system presented here consists of two more-or-less independent parts.
First, there is the system’s parallel network memory scheme. Knowledge is stored as a
pattern of interconnections of very simple parallel processing elements: node units which can
store a dozen or so distinct marker-bits, and link units which can propagate these markers
from node to node, in parallel through the network. Using these marker-bit movements, the
parallel network system can perform searches and many common deductions very quickly:
the time required is essentially constant, regardless of the size of the knowledge-base. The
network is similar to the parallel marker-propagating network proposed by Quillian [1968,
1969], but is much more tightly controlled. This system is presented as a faster, more
effective, and much simpler alternative to the currently popular approach of using domain-
specific meta-knowledge, in the form of local procedures, to guide and limit serial searches in
a large knowledge-base.

The second, more traditional part of the knowledge-base system is a
vocabulary of conventions and processing algorithms -- in some sense, a language -- for
representing various kinds of knowledge as nodes and links in. the network. This set of
conventions is called NETL. In many ways, NETL is similar to existing systems for
representing real-world knowledge, such as the partitioned semantic networks of Hendrix
(1975a, 1975b, 1976] and the frame-based KRL system [Borow & Winograd, 1976, but it differs
from existing systems in three respects:

First, NETL incorporates a number of representational techniques -- new
ideas and new combinations of old ideas -- which allow it to represent certain real-world

Preview 6 Section 1.1

concepts more precisely and more efficiently than earlier systems.

Second, NETL is built around a single, clear, explicit organizing concept:
an effective knowledge-base system, in addition to storing and retrieving isolated facts, must
provide the user with the ability to create and use virtual copies of descriptions stored ‘in the
memory. By "virtual copy”, I mean that the knowledge-base system bekaves as though a
portion of the semantic network has been copied (with some specific alterations), but it does
not actually create the redundant structure in memory. The descriptions that are copied in
this way may be arbitrarily large and complex, with parts, sub-parts, and internal
relationships. This entire structure is inherited by the copy, not just a few glcbal properties.
NETL is not unique in providing such a virtual copy facility, but it is unique in stating this
goal explicitly, in clear and simple terms, and in relating all of its representational machinery
to this goal. This adds considerably to the conceptual clarity and unity of the resulting
system, and it provides us with a way of determining whether the system’s accessing
mechanisms do what they are supposed to do.

Finally, NETL has been designed to operate efficiently on the parallel
network machine described above, and to exploit this machine’s special abilities. Most of the
ideas in NETL are applicable to knowledge-base systems on serial machines as well.

A simulator for the parallel network system. has been implemented in
MACLISP, and an experimental version of NETL is running on this simulator. A number
of test-case results and simulated timings will be presented.

The Problem 7 Section 1.2

1.2 The Knowledge-Base Problem

Suppose I tell you that a certain animal -- let’s call him Ciyde -- is an
elephant. You accept this simple assertion and file it away with no apparent display of
mental effort. And yet, as a result of this transaction, you suddenly appear to know a great
deal about Clyde. You can tell me, with a fair degree of certainty, how many legs he has,
what color he is, and whether he would be a good pet in a small third-floor apartment. You
know not only that he has eyes, but what, they are used for, and what it implies if they are
closed. If I try to tell you that Clyde builds his nest in a tree or that he is a virtuoso on the
piano or that he amuses himself by hiding in a teacup, you will immediately begin to doubt
my credibility. And you can do this very quickly and easily, with none of the sort of
apparent mental effort that would accompany, say, adding two four-digit numbers- This
effortlessness may be an illusion, but it is a compelling one. . -

"Elephant”, of course, is not the only concept that behaves in this way. .
The average person knows a huge number of concepts of compirable or greater complexity
-- the number is probably in the millions. Consider for a thoment the layers of structure and
meaning that are attached to concepts like lawsuit, birthday party, fire, mother, walrus,
cabbage, or king. These are ‘words we use casually in our daily lives, and yet each of them
represents a very substantial package of information. In technical fields (except, perhaps, for
the more austere parts of mathematics) the situation is the same. Consider how much you
would have to tell someone in order to fully convey the meaning of concepts like meson, local
oscillator, hash-table, valence, ribosome, or leukemia. And yet, once these concepts are built
up, they can be tossed around with abandon and can be used as the building blocks for
concepts of even greater complexity.

The point is not just that we can handle large chunks of knowledge as
though they were atoms; the important thing is that we can find our way through these
complex, nested structures to whatever individual fact or relationship we might need at any
given time, that we can do this in a very flexible and efficient way, and that we can
somehow avoid having to look individually at each of the vast number of facts that could be
-- but are not -- relevant to the problem at hand. If I tell you that a house burned down,
and that the fire started at a child’s birthday party, you will think immediately of the candles
on the cake and perhaps of the many paper decorations. You will not, in all probability,
find yourself thinking about playing pin-the-tail-on-the-donkey or about the color of the
cake's icing or about the fact that birthdays come once a year. These concepts are there
when you need them, but they do not seem to slow down the search for a link between fires
and birthday parties. If, hidden away somewhere, there is a sequential search for this
connection, that search is remarkably quick and efficient, and it does not become noticeably
slower as the knowledge base expands to its adult proportions.

This impressive ability to store and access a large and diverse body of
knowledge is a central feature of human intelligence. The knowledge-base system provides
essential support for the other components of intelligence: the peripheral processes that
handle such things as vision and speech understanding, and the linear, sequential, conscious

The Problem 8 Section 1.2

- kinds of thinking that characterize our problem-solving behavior. The knowledge base is
the common ground for these diverse elements, the glue that holds everything else together.

It follows, then, that any artificial intelligence, if it is to be even remotely
human-like in its capabilities, must include a knowledge-base system with abilities
comparable to those possessed by humans. To date, in the field of Al research, we have
been unable to achieve or even approach this goal. We can make -- and have made -- a
certain amount of progress toward understanding the sensory and problem-solving areas of
thought by confining our investigations to refatively knowledge-free problem domains --
tasks like cryptarithmetic puzzles and the symbolic integration of mathematical expressions.
We can make still more progress by patching together tiny knowledge bases, just sufficient to
* serve as scaffolding for whatever test cases we are working on at the moment. But until we
can find an adequate solution to the knowledge-base problem, all of our work will be
fragmented and somewhat distorted. Sooner or later, we will have to confront that elephant.

The problem is not that we are unable to store and retrieve enough
explicit knowledge -- that problem was solved long ago. In the property lists of LISP, in the
hash-tables of LEAP and SAIL [Feldman & Rovner, 1969), and in the indexing structures of
the PLANNER-related languages [Hewitt, 1972; Sussman, Charniak, Winograd, 197;
McDermott & Sussman, 1972], we can store away an arbitrarily large body of assertions and
can easily retrieve any one of these later with a matching query. But the key word here is

"matching™ the datum to be found must be explicitly present, and it must be in the proper
format for the match to succeed. These systems (ignoring, for a moment, their procedural
components) give us no direct access to the much larger body of information that is implicit
in the set of facts at hand. If we know things about "every elephant” or “"every animal” or
“every object bigger than a breadbox" and the questions are about Clyde, we need some way
to connect the question to the answer. That means deduction, and deduction means search.
To be sure that it has found all of the information relevant to Clyde, a knowledge-base
system would have to examine a potentially very large set of related concepts.

The problem, then, is to find a way to perform this search in a
reasonable time, even when the data base is huge. We can perform the deductions in
antecedent fashion as new facts are added; we can perform them in consequent fashion in
response to specific queries; or we can use some combination of these approaches, but the
problem remains basically the same: our current search techniques are much too slow to
handle a knowledge-base of sufficient size to produce a human-like lntelllgence even in a
restricted problem-domain.

Note that I am not referring here to the difficult deductions that people
perform consciously: solving puztles, formulating hypotheses, deducing the voltage at some
point in an electronic circuit, deciding whether some complex block-structure is stable, and so
on. These, it seems to me, are legitimately the responsibility of the problem-solving parts of
intelligence, and it is not too disturbing if they run rather slowly. It is the deductions that
people find to be trivial and automatic, if indeed we notice them at all, that will concern us
here. These are so tightly bound up with the operation and the contents of the knowledge-

The Problem 9 Section 1.2

base that we must attack them as one problem. One of the major contributions of
Charniak’s thesis [1972] was to demonstrate just how much pre-existing knowledge comes
into play in the understanding of a seemingly simple story intended for young children. It is
significant that something like this had to be pointed out at all -- this is the kind of
effortlessness that we must try to achieve in our machines.

The most general and mathematically elegant of the deductive systems,
those based on some form of the predicate calculus, are ridiculously slow. The best of these,
on the fastest computers, adopt a downright glacial pace when faced with more than a few
dozen facts at a time. The PLANNER-style languages are somewhat better, since they give
the user the ability to hand-craft, in the form of data-base demon programs, the exact
deduction strategy to be used in dealing with each possible type of input or query. An
optimal mix of antecendent and consequent reasoning can thus, in principle, be employed,
and the searches can be guided to consider first those paths that are most likely to be
productive. In actual practice, however, the principal advantage of such systems over the
unguided deductions of the theorem provers is that the procedural systems do not have to be
able to deduce every consequence of the knowledge at hand, but only those consequences that
the system designer knows his programs are going to need. This makes the PLANNER-
style knowledge-base an adequate tool for constructing the kind of limited test-system
scaffolding that I mentioned earlier -- my own BUILD program [Fahlman, 1974a] is an
example of such an apglication -- but it is still inadequate for implementing the sort of
knowledge-base that we will ultimately need.

The problem is that systems produced in this way tend to be very brittle.
Only a carefully selected set of deductive paths has been implemented, so it is very easy for
unanticipated queries or situations to cause the system to wander from these paths. At best,
this lands the query back in the quagmire of undirected search; at worst, it causes outright
failure. A solution to this is to build more and wider paths in an attempt to completely pave
the area of interest, but this is paid for in vastly increased search-times. Even an optimized
search, if it is to be reasonably complete, must sooner or later examine all of those concepts
which might have something to say about the question at hand. If we are ever to endow
our programs with something resembling common sense, we must somehow give them access
not only to the most prominent and usefu! of an object’s properties -- those that an optimized
search would find first -- but also to those "fringe” properties that are usually insignificant
but that may be of pivotal importance in a particular situation. An elephant's wrinkles are
certainly well down in its list of prominent features, but to a tick they are home, and to a
tick-remover they are the major obstacle to be overcome. Any single property of this sort
may be used only infrequently, but the collection of them is so large that at any given time
we are likely to be using some such property. The point is that we can rearrange the order

_ of the paths to be searched to gain efficiency, but it is dangerous to leave anything out. We

are left with a certain irreducible kernel of search to be performed, even if our strategies are
very clever.

And who is going to write all of these search-optimizing programs? If
these are to exploit the local regularities of the currently-existing knowledge and the local

e g

The Problem 10 " Section 1.2

meta-knowledge about the likely patterns of knowledge-use, then the bady of search-
programs must be augmented and altered as the system learns new things. Unless there is to
be constant human intervention in the system’s inner workings, the computer itself is going
to have to write these programs. Unfortunately, it is hard even for humans to write effective
search-optimizing programs in such a non-uniferm environment. It requires not just
technical skill but a good understanding of exactly how the knowledge-base is going to
function. It seems unlikely that an automatic programming system will be able to exhibit
such understanding any time in the near future -- in fact, it seems probable that to achieve
such an understanding, the system would already have to contain the type of broad, flexible
knowledge base that we are trying to develop here.

Despite these problems, the procedurai approach to representing
knowledge is still the dominant paradigm in the field of artitzial intelligence (or at least that
part of the field that has resisted the siren song of predicate calculus). Minsky, in his paper
on frame-systems [1975], advocated the use of a combination of declarative information and
local procedures to represent structured knowledge, and most of the workers that have
followed Minsky's lead, notably Winograd (1974, 1975), Kuipers [1975], the FRL group at MIT-
[Goldstein & Roberts, 1977; Roberts & Goldstein, 1977), and the KRL group at Xerox-PARC
and Stanford [Bobrow & Winograd, 1976], have continued in this vein. These researchers
have been primarily concerned with the problems of flexibly representing relatively small
bodies of knowledge, and of integrating the declarative components of their systems with the
procedures. To the extent that they have addressed the problem of efficient search in a very
large knowledge base, however, they have generally subscribed to the view that meta-
knowledge, embedded in local search-guiding procedures, can eventually carve the searches
down to a manageable size without destroying the generality of the system. This optimism
may be justified, but to succeed by this route -- if indeed it is possible at all -- will require a
tremendous investment of time and effort. In this report we will explore an approach that is
much simpler and more direct.

The Parallel Approach I Section 1.3

1.3 The Parallel Network Approach

In my proposed knowledge-base system, we forget about trying to avoid
or minimize the deductive search, and simply do it, employing a rather extreme form of
parallelism to get the job done quickly. By "quickly” I mean that the search for most implicit
properties and facts in this system will take only a few machine-cycles, and that the time
required is essentially constant, regardless of how large the knowledge base might become.
The representation of knowledge in this system is entirely declarative: the system's search
procedures are very simple and they do not change as new knowledge is added. Of course,
the knowledge base must contain descriptions of procedures for use by other parts of the
system, including those parts that perform the more complex deductions, but this knowledge
is not used by the knowledge base itself as it hunts for information and performs the simple
deductions for which it is responsible.

The parallelism is to be achieved by storing the knowledge in a semantic
network built from very simple hardware devices: node units, representing the concepts and
entities in the knowledge-base, and link units, representing statements of the relationships
between various nodes. (Actually, the more complex statements are represented by structures
built from several nodes and links, but-that need not concern us here.) These devices are
able to propagate a variety of marker bits -- somewhere between 8 and 16 distinct markers
seems to be the right number for human-like performance -- from node to node, in parallel
through the network. This propagation is under the strict control of an external serial
computer that is called the network controller. It is the prapagation and intefaction of the
various marker-bits that actually constitute the deductive search.

The result is a network memory very similar to the one proposed by
Quillian a decade ago [Quillian 1968, 1969), but with a very important difference: the
network system [am proposing is much more tightly disciplined. The controller is not only
able to specify, at every step of the propagation, exactly which types of links are to pass
which markers in which directions; it is also able to use the presence of one type of marker
at a link to enable or inhibit the passage of other markers. It is the precision of such a
system that gives it its power, but only if we.can learn to use it properly.

Note that this is a very different kind of parallelism from that displayed
by a relatively small set of serial machines working together. Ten CPUs, at best, speed up
the processing by a factor of ten. Usually the improvement is much smaller because the
CPUs begin to squabble over shared resources or because most problems cannot be broken
up into ten independent, equal-sized parts. The proposed network, on the other hand, can
perform many deductions in time proportional to the length of the longest branch of the
search-tree, regardless of how many nodes the tree may contain overall. For short, bushy
trees (knowledge bases consist mostly of short, bushy trees), the speed-up could be huge: a
tree that is five or ten links deep might contain millions of nodes in its branches, so a
million-fold speed increase is possible. Of course, this would mean that the parallel network
must contain millions of hardware processing elements, but each element is very simple -- a
few decoding gates, an internal state flip-flop, and enough other flip-flops to store the

The Parallel Approach 12 Section 1.3

marker bits that may be present on that element. The knowledge itself is stored not inside
the elements, but in the pattern of interconnections among them. (We will see later how this
interconnection might be accomplished.) With current technology such a network would be
very expensive, perhaps prohibitively so, but there is nothing mysterious or undefined about
it.

The network scheme is not without .its own problems, and we will
examine these in detail, but the speed advantage in certain important areas is great enough
to qualitatively alter our ideas about what is easy and what is hard. The network-based
system easily performs many of the mental operations which seem effortless to people, but
which have proven to be very costly (or very complicated) for-serial computers: finding the
implicit properties of an item in a large hierarchy of types and sub-types (an "IS-A"
hierarchy); dealing with multiple, overlapping contexts or world views; locating the known
entity in the knowledge-base that best matches a list of distinguishing features; detecting
any glaring inconsistencies between new knowledge and old; and so on. This rough
correspondence of abilities does not necessarily imply that the human k:.>wledge base uses a
parallel network (though that is an interesting conjecture), but it docs suggest that such
networks might be one way to produce a system with human-like capabilities.

All-of this talk about human abilities may cause some confusion as to my
goals in this research. Let me state very clearly that this is meant to be artificial intelligence
research, not psychology. People are able to do certain things with stored knowledge, and
we want to find some way to make a machine do these things. The resulting theories may or
may not prove to have some relevance to the human knowledge-handling system; it will
take much careful experimentation to determine what the similarities and differences might
be. It does seem to me that this general type of parallelism is a priori more plausible as a
model for human knowledge-handling than systems which depend for success on the brute
speed of current serial computers, since it is hard to see how the neurons of the brain could
achieve such speed. Because of the speed advantage deriving from its parallelism, a network

‘of the type I have been describing can achieve reasonably fast results even if the

propagation time of its elements is in the millisecond range, instead of the microseconds or
nanoseconds that we are accustomed to in our computers.

If my principal concern is not the modeling of human knowledge
handling, why is there so much concern about what is hard and what is easy for people?
Quite simply, I am using my own rather haphazard introspection in this area as a sort of
heuristic guidance mechanism to tell me where to look and what to look for. If people seem
to perform some task effortlessly, that is a pretty good indication that some efficient solution
exists, though not necessarily on the kind of computer hardware that we are using at present;
it is therefore worthwhile to expend a certain amount of effort trying to find the processing
strategy that makes the task so easy for the brain. If, on the other hand, both people and
conventional computers have trouble with some task, it is possible that no good solution
exists, and it is unlikely that the operation in question is an essential part of human-like
intelligence;, much less effort is indicated in such cases. Such intuitions, unreliable as they
may be, are still a lot better than nothing. In the end, a theory in Al must stand or fall on

The Parallel Approach 13 Section 1.3

its performance, the breadth and variety of the intelligent responses that it can produce or
explain, and the extent to which it inspires better theories as its shortcomings become
apparent -- not on the correctness of the psychological speculations that led to the theory.

One question should perhaps be dealt with before we go on: What is the
value of a solution to the knowledge-base problem that is based on imaginary or impossibly-
expensive hardware? 1 believe that there are four answers to this question. First, the
expensive hardware of today may well be very inexpensive in the future. If we can clearly
specify what we want and why we want it, the necessary technology is much more likely to
come about. Second, there is the argument of pure science: the creation of useful systems is
only a part of the goal of Al; equally important is the goal of understanding, in precise
mechanistic terms, how the activities that make up intelligence can be accomplished, and
how the time required by each method is related to the size of the knowledge-base. For this
purpose, the expense or practicality of the hardware is irrelevant, as long as the system is
well-defined. Third, there is the possible usefulness of this theory as a source of models and
ideas for psychologists, linguists, and others concerned with the question of how the human
mind functions. Finally, and in my view the most important consideration, there is ‘the
usefulness of the parallel network theory as a metaphor: an intellectual tool that will help us
to factor out the constantly-distracting technical problem of search-efficiency from the more
complex issues of how to represent and use the knowledge, given that the search is
accomplished somehow. Regardless of whether the deductive searches are ultimately
performed by parallel hardware or by serial software, this separation of the problem will, |
believe, help us to see more clearly the purely representational issues that we must deal with.

As | mentioned at the start of this report, the general idea of the parallel
network system and the specific conventions and procedures of the NETL system are to a
large degree independent. NETL has been specifically designed to run efficiently on the
parallel network hardware, real or simulated, but it contains a number of ideas for
improving the precision and representational power of knowledge-base systems in general,
whether serial or parallel. Section 2 of this report will describe the parailel network system,
along with its uses and general principles of operation; ‘section 3 will cover the
representational conventions and processing algorithms of NETL. A simulator for NETL is
currently running in MACLISP on the PDP-I0, and several test problems of assorted sizes
have been run. These tests will be described in section 4, followed by overall conclusions in
section 5. Appendix A will consider the possible hardware technriogies for implementing the
parallel network. Appendix B will summarize the node and link-types currently defined in
NETL.

Types and Inheritance . 14 Section 2.1

2. Overview of Knowledge-Base Operations

2.1 Type Hierarchies and Inheritance

Before we look at the details of the parallel network system and its
operation, it would be useful to have a clearer picture of what we want it to do: As we have
seen, it is not enough for the knowledge base just to store and retrieve isolated facts with no
deduction; on the other hand, we cannot expect it to deduce quickly everything that could be
deduced from the available body of knowledge. We would certainly accept such a capability
if it were available in some practical form, but there is no real prospect of this, and such a
capability is far in excess of what we need to produce a human-like level of intelligence.
What we want from the knowledge base, then, is some intermediate level of deductive ability:
we want it to perform those deductions that, to people, seem trivial and obvious (if indeed
we notice them at all).

How can this set of obvious deductions be characterized? One possibility
is to describe them in terms of type hierarchies and property inheritance. As we will see
later, this characterization is not entirely adequate: it does not provide us with any clear
idea of how to handle the inheritance of the internal structure of a description. Still, the
type hierarchy is the starting point for the characterizations we will eventually want to use,
so it is important to understand its importance in a knowledge-retrieval system.

There are two types of nodes that represent concepts in the network:
individual-nodes and type-nodes. The individual-nodes, as the name implies, represent
individual entities that may or may not exist in any particular context. Type-nodes
represent not individual entities but template descriptions from which any number of
individual copies may be created. Each type-node is associated with a particular set
(represented by an individual-node) for which it serves as the exemplar -- the description of
the typical member of that set. Every set-node has a type-node, and every type-node has a
set-node. CLYDE is an individual-node. (Here and in the future, words written completely
in capitals will refer specifically to some node, link, or other computer-thing; the concepts
themselves will be written in the normal English style. Thus, CLYDE is the node that
represents the elephant named Clyde) TYPICAL-ELEPHANT (or just ELEPHANT) is a
type-node attached to another node, named ELEPHANT-SET, that represents the set of all
elephants. (The word “"elephant” is represented by yet another node, distinct from
TYPICAL-ELEPHANT but connected to it. Unless otherwise specified, the nodes we will
be talking about represent real-world concepts rather than words or other linguistic entities.)
It is important to keep the set-node and the type-node distinct, because their properties are
different: the set of elephants has a certain size, expressed as the number of elephants in the
world; the typical elephant has a certain size expressed in meters or kilograms.

Anything that we have to say about "the typical elephant” or about
“every elephant” is thus attached, in the form of a property or a statement-structure, to the
TYPICAL-ELEPHANT node. 1 am using a weak sense of the word "every” here: 1 mean

Types and Inheritance ; 15 . Section 2.1

that the property is true of every elephant for which it is not explicitly cancelled. We will
see later how to declare that some fact is sacred (uncancellable) and therefore true of all
elephants without exception. ;

Now, when we say that Clyde is an elephant, what should happen? First,
we must establish a set-member relationship from Clyde to the set of elephants. Far more
important, however, is the establishment of a virtual-copy (abbreviated VC) relationship
between CLYDE and TYPICAL-ELEPHANT. We will explore the full implications of the
virtual-copy concept shortly; for now, it is enough to say that this VC relationship causes
Clyde to inherit all of the properties that are attached to the TYPICAL-ELEPHANT node.
We accomplish both of these effects by the creation of a single link, called the VC link, from
CLYDE to TYPICAL-ELEPHANT. (There is an implicit MEMBER-OF statement linking
a set-node to its type-node and this membership is inherited by all the virtual copies of the
type-node, just like any other property.)

To create a subset or type-of relationship between elephant and mammal,
we do essentially the same thing. By creating a VC link between TYPICAL-ELEPHANT
and TYPICAL-MAMMAL, we set up the desired inheritance of properties: if every
mammal is warm-blooded, then every elephant should be as well. Every elephant also
inherits membership in the set of mammals, and an implicit part-of or subset relationship is
established between ELEPHANT-SET and MAMMAL-SET. Some semantic network
systems use distict link types to distinguish "is a type of" from "is an instance of"; because, in
this system, the nodes themselves distinguish types and individuals, we can get away with
using the single VC link, which treats individual-nodes and type-nodes alike.

Like all links in this system, the VC links can be crossed by markers in
either direction, as ordered by the external control computer, but this does not mean that the
VC links are symmetrical. While marker sweeps may be run in in either direction, the
intent of the links is to establish the inheritance of properties in one direction only, from the
more general class to the more specific one or from the type to the instance. We do not want
the typical elephant to inherit Clyde’s particular properties, nor do we want the typical
mammal to inherit the properties attached to the typical elephant.

The virtual-copy links are transitive, directional, and they do not form
loops. Furthermore, every concept-node in the system (with one or two exceptions) has at
least one VC link to some more-general category, and a path of VC links upward to the
most general type-node in the system. This node is named THING, and it encompasses
everything (every THING) else. The network of VC links, then, welds the nodes of the
network into a single tangled hierarchy (or, if you prefer, a partial ordering) of types,
subtypes, and individuals. This hierarchy forms the backbone of the knowledge-net -- the
rigid organizational structure that keeps everything else from collapsing into a heap.

In order to talk about this hierarchy more coherently, I will adopt some
directional metaphors. The VC links will always be spoken of (and will appear in diagrams)
as pointing upward: MAMMAL is above ELEPHANT and below VERTEBRATE. The

Types and Inheritance 16 ‘ Section 2.1

THING node is at the top of the hierarchy, and the various individual entities are at the
bottom. (One never makes a copy or instance of an individual-node in normal kinds of
description, though such operations may play a role in metaphorical description.) Other
relations will be spoken of and drawn as running sideways, more or less. 1 will also
sometimes speak of the parent or parents of a node, meaning those nodes immediately above
the given node in the hierarchy, and the ancestors of a node, meaning those nodes
somewhere above the given node. Obviously, offspring and descendent are analogous, but
downward in the hierarchy. Such conventions will save a lot of words in the long run.

Because of the transitivity of the VC links, properties may be inherited
through many levels of the type hierarchy. Consider a node like COW. (We will let the
elephants rest for a while.) Properties attached to the COW. node itself, or to any node
above COW in the hierarchy, are meant to apply to every cow. Explicit exceptions may be
made, but in the absence of these, the inheritance is to hold. Properties hung from nodes
below COW are meant to apply to only some cows. In figure I, for instance, we see that all
cows (unless there are specific exceptions) are warm blooded and have udders, but that only
some cows are black-and-white while others are brown. There are not, to the system’s
knowledge, any purple cows, but this is not ruled out. If asked what color cows are, the
system would look at the COW node and at all the nodes above COW in the hierarchy, but
would find no COLOR property on any of these nodes. It would then have to answer that
cows are no particular color. It might go on to look down the hierarchy, and report that
some cows are brown, while others are black-and-white.

It is important in constructing any search or marker-propagation strategy
always to respect this transitive property of the VC links. If every cow is a mammal and

- every mammal is an animal, then every cow is an animal, whether or not there is a VC link

explicitly saying so. It follows from this that it should always be possible to split a VC link,
for instance to add UNGULATE between COW and MAMMAL. Once we have created
VC links from COW to UNGULATE and from UNGULATE to MAMMAL, the original
VC link from COW to MAMMAL becomes redundant. The system can garbage-collect this
link or leave it in place, whichever is more convenient. As you can see, a node may be
above or below another, or may be between two other nodes on the hierarchy, but it makes
very little sensé to talk about distances from one node to another, since this is so fluid and
may be different by different paths. ;

As 1 mentioned earlier, the VC hierarchy is a tangled one. That means
simply that a node may have more than one immediate parent, as well as an arbirarily large
number of offspring. To put it another way, the tree branches upwards as well as
downwards. In addition to being an elephant-mammal-animal-physob-thing, Clyde may be
a male, a vegetarian, a circus performer, and a veteran of the Punic Wars, and each of these
identities may add a few properties and other statements to Clyde's overall description.
Figure 2 shows the form of the resulting hierarchy, with a non-tangled hierarchy for
comparison. The importance of this two-way branching to the property-finding procedures
is illustrated in figure 3 which shows that part of the hierarchy which can be seen from a
typical mid-level node X. In the familiar non-tangled hierarchy or tree structure, a node may

e ——— S —————— — .

17

ANIMAL *
BLOOD -TEMP
MAMMAL s WARM
PART
cow

HOLSTEIN

L
BRownN BLAck
f

WHITE

INDIVIDUAL
COWS

Figure 1: A portion of the COW type-hierarchy.

e AN

18

)

(A) NON- TANGLED HIERARCHY

(B) TANGLED HIERARCHY

Figure 2: Tangled and non-tangled hierarchies, viewed
external ly.

i B

(A) NON-TANGLED H\ERARCHY

®) TANGLED HIERARCHY

Figure 3: Tangled and non-tangled hierarchies, viewed from
interior node X.

Types and Inheritance 20 Section 2.1

have many descendents, but only a single strand of ancestors. Therefore, to find some
property of X it is only necessary to trace up this single strand. In the tangled hierarchy, the
descendents still fan out, but now the ancestors do as well. The hierarchy containing the
ancestors of X can spread out to very considerable dimensions before it again converges
toward the top-level THING node. Because of this, X is in a position to inherit a very large
and diverse set of properties. In a serial system this could be an embarrassment of riches,
but with the parallel network system it is possible to investigate such a lattice in no more
time than it would take to scan a single strand of the same height.

It might seem that in propagating markers through these tangled
hierarchies, there is some chance of markers sneaking through unintended paths and
marking everything. With a little care, we can avoid this. First, we must never let the VC
links form a loop. (This is a stronger requirement than is absolutely necessary, but we have
no real need for such loops anyway. In NETL, there is a separate link-type for representing
the equivalence of two or more concepts. Note that in many relationships other than VC --
"hates”, for example -- we do allow directed loops.) Second, we must always mark either
upward or downward from a node or set of nodes, never both at once. If we observe these
rules (and they are very easy to observe) there is no way to end up above a node while
trying to mark down from it, or below it while trying to mark upward.

The kind of property inheritance that I have been describing is nothing
new, of course. It appears in Quillian [1968, 1969] and, in one form or another, in every
semantic network that has been designed since then. And, without the diagrams, it is just a
form of logical syllogism with roots going back through Raphael’s SIR system [1968] to
Aristotle. The use of tangled hierarchies has been possible in most such systems, but people
have only recently begun to concentrate on this aspect of inheritance and on its implications
for efficiency in retrieving desired properties. Some comments by Terry Winograd, in a
lecture describing Halliday’s systemic grammar, triggered my first real appreciation of the
need to allow tangles (multiple upward links) in a type-hierarchy, and only later did I realize
what this implied in terms of deductive search for a system with a very large knowledge
network. This, in turn, renewed my interest in Quillian-style parallelism to handle the
search problem.

Though it seems a minor point, I think that this business of drawing the
type hierarchy in a standard direction is important: it has no effect on the representational
system itself, of course, but it makes it much easier for the designer of the system (and
anyone else trying to decipher the diagrams) to visualize what is going on. If, as I believe,
the type hierarchy is the most important single organizational structure in the knowledge
network, it should be given prominence comparable to its importance. If a system is drawn
(on paper or mentally) as a chaotic tangle of links of all kinds, it is much harder to visualize
its behavior as an orderly, structured flow of events.

Virtual Copies 2l Section 2.2

2.2 The Virtual Copy Concept

Property inheritance is a part of what we need from a knowledge base
but, as I mentioned earlier, it is not the whole story. Somehow, we must form a clear picture
of what to do about all the structure that is attached to the various type-nodes and
individuals: the parts and sub-parts, each with its own description, and the network of
statements that connect these parts to one another, to the owner, and to various external
nodes. Most existing knowledge-base systems (and the early versions of my system) handle
these problems with varying degrees of success using an assortment of techniques, but they
lack any clear, unifying view of what is going on. After fighting with this problem for a
couple of years, I hit upon a way of looking at it that -- to me, at least -- made it much
clearer what ought to happen in any given situation. That viewpoint is the virtual copy
concept. The basic idea of this concept can be expressed as follows:

W hat we really want is to create virtual copies of entire descriptions. T hese
descriptions can be arbitrarily large and complex pieces of semantic network. When we learn
that Clyde is an elephant, we want to create a single VC link from CLYDE to TYPICAL-
ELEPHANT and let it go at that, but we want the effect of this action to be identical to the
effect of actually copying the entire elephant description, with the CLYDE node taking the
place of TYPICAL-ELEPHANT. It must ve possible to augment or alter the information in
this imaginary description without harming the original. It must be possible to climb around on
the imaginary copy-structure and to access any part of it in about the same amount of time
(speaking in orders of magnitude) that would be required if the copy had actually been made.
But we want all of this for free. We just cannot afford the time or memory-space necessary to
actually copy such large structures whenever we want to make an instance or a sub-type of some

_type-node, especially since the type-node’s description may itself be a virtual copy of some other

description, and so on up many levels. A description may also contain other descriptions -- the
parts of an object, for example -- that are themselves expressed as virtual copies. We want all
of this structure to be virtually, but not physically, present.

If, in the description of the typical elephant, there are nodes representing
its hip-bone and its thigh-bone, and there is a CONNECTED-TO statement linking these
two nodes, then we want Clyde to have his own hip-bone, his own thigh-bone, and his own
version of the CONNECTED-TO statement. (Clyde’s version of this statement might be
modified in some way; if he has been injured, for instance, Clyde's hip-to-thigh connection
might be very weak.) It is not the case, however, that every node to which the TYPICAL-
ELEPHANT node is somehow related is therefore a part of the TYPICAL-ELEPHANT
description, in the sense that we want to copy it for each elephant. If the typical elephant
respects Charles Darwin, then we want Clyde to respect him as well, but we want him to
respect the same version of Darwin that all the other elephants respect. We do not want
every elephant to have his own copy, virtual or otherwise, of the DARWIN node. The HIP-
BONE node, then, is a part of the TYPICAL-ELEPHANT description; the DARWIN
node is outside this description, but is connected to it by a RESPECTS-statement.

How do we know which nodes are a part of a given description, and

Virtual Copies 22 Section 2.2

which nodes are not? We cannot tell this reliably from the attached statements alone, so we
must state the attachment explicitly. This is done with a special link called the
EXISTENCE-link, indicating that the role in question exists as a part of the description to
which it is attached, rather than as a free-standing external entity. (Actually there are two
kinds of existence links, and either kind can be replaced by a special wire coming out of the
role-node, but we will ignore these complications for now.) These EXISTENCE-links
correspond, more or less, to one sense of the word "has™: "Every elephant Aas a hip-bone.”

A description, then, consists of a base-node representing the thing itself
(TYPICAL-ELEPHANT is the base-node for its description) and a set of role-nodes,
connected to the base-node by EXISTENCE-links and representing the various things that
every copy of the base-node has one of. Most role-nodes specify individual entities, but
‘there are also set-roles (with attached type-nodes) for representing such things as the typical
elephant’s set of teeth and the typical member of this set. The links and statement-structures
that attach the nodes within a description to one another or to nodes outside the description
are also considered to be parts of the description, and therefore parts of the structure that is
virtually copied. When a statement connects nodes in two different descriptions, as in "the
typical elephant hates the typical aardvark”, it is considered to be a part of both descriptions,
and to be copied whenever either type-node is copied. We will see the details of all of these
things later; for now, it is only important to understand in a general way what is going on.

Of course, we do not actually create nodes to represent all of the roles in
the virtual copy; if we did, it would be a real copy. In fact, to do so would be impossible,
because the roles and sub-roles that are virtuaiiy present within a description often form an
infinite set. Consider the PERSON node. Qe oi its roles is the node MOTHER (every
person has one). But the MOTHER role-node is itself a virtual copy of the PERSON node
(perhaps indirectly through WOMAN) and therefore has a MOTHER of her own, and so
on. All of the nodes in this chain are virtually present -- we can refer to someone's mother’s
mother’s mother to any level without talking nonsense, and we know that this is so because
of the structure of the PERSON description -- but the point is that we only create actual
nodes to represent those roles about which we have something to say. The rest of the role
mappings are left implicit. We may know that every elephant has an appendix, but we only
create the node representing Clyde’s appendix if, for instance, we want to say that it is
infected. When we do create such a node, called a MAP-node, we tie it to its owner
(CLYDE) and to its parent role (ELEPHANT-APPENDIX) in such a way that it inherits
all of the information attached to or inherited by the parent, and adds its own attached
information to this description. All of this will be explained in more detail later.

The idea of roles within a description can be expressed in another, more
mathematical form. A type-node like TYPICAL-ELEPHANT works more or less like a
universally quantified variable in logic. When we attach a property P to TYPICAL-
ELEPHANT, we are saying that for all X such that X is an elephant, P(X) is true. The
. creation of a role-node is, in this view, like an existential quantification: for all X such that
X is an elephant, there exists a hip-bone Y such that PI(Y), P2(Y), etc. The predicates on Y,
of course, are the properties and descriptions that are attached to the role-node. When 1

Virtual Copies 23 Section 2.2

speak of a description this way, as a bag of existential quantifications tied to a common
variable, the relation of all this to the partitioned semantic networks of Hendrix [1975a, 1975b,
1976] becomes obvious. He uses his partitions as a means of delineating the boundaries of a
single description tied to some quantified variable. (He also uses them in other ways.)
Philip Hayes, in a recent paper [1977] has extended Hendrix-type networks even further in
the direction of creating virtual copies.

As 1 said, people have been doing virtual copying in knowledge-base
systems for years, with varying degrees of success, but they have not been talking about it in
exactly these terms. The whole point of Winston's [1975) network-learning scheme, for
example, was to build up the description of an arch (or whatever) so that new instances of
this type could be described with a single statement instead of many. He doesn't develop
this idea very far in his thesis, but it is constantly lurking in the background. Logic-based
systems provide virtual copies of a sort, but most of them force you to actually build up the
structure surrounding any part of the virtual copy that you want (o look at, and many of
them are very inefficient at this task.

Since Quillian’s work, a number of semantic network systems have
appeared, each with its own distinctive set of features and emphases. All of these systems
employ some mechanism for the inheritance of properties but, as Woods has pointed out
(1975], all of the early systems suffer from some degree of vagueness in their semantic
representations. None provides the kind of precise control over quantification that is
necessary for implementing true virtual copies of the kind I have been describing. Included
in this group are the systems of Simmons (1973}, Carbonell and Collins 1973}, Anderson and
Bower [1973], and Rummelhart, Lindsay, and Norman [1972]. My own earlier efforts
(Fahlman, 1975] suffered from similar imprecision in the semantics. One of the early systems,
that of Shapiro [1971], avoided such ambiguity by staying very close to the language of
mathematical logic and by representing the quantifiers explicitly in the network. The
resulting system, however, represents much of its knowledge in the form of rules for altering
and re-copying parts of the network; this makes it a poor candidate for use in a large,
performance-oriented system -- especially a parallel network of the sort proposed here.

Later semantic network systems, notably those of Scragg [1975a, 1975b] and
of the TORUS group at Toronto {(Mylopoulos, et al, 1975), developed more usable solutions
to many of the problems of representational precision, but left other problems untouched.
Only in the network systems of Hendrix and the subsequent work of Hayes, Cercone and
Schubert [1975], Schubert [1975), and Brachman [1977] do we at last see sufficient
quantificational power to implement virtual copies of descriptions with interesting -internal
structures: parts, subparts, and a network of internal relationships among these parts. Even
these systems, however, lack a clear unifying principle that I believe the virtual copy idea
could provide. (For a more extensive review of the development of semantic network
systems, see Brachman (1977].)

Schank, in his conceptual dependency networks [1973), has explored the
question of what the descriptions of various verbs and actions must contain, and how this

Virtual Copies 24 Section 2.2

information can be used, but he makes no attempt to represent these descriptions as virtual
copies; when he wants to represent some action, Schank makes a rea! copy of that action’s
full definition, in terms of his dozen or so primitive action-types. The steps telling how an
action was accomplished may be omitted, but the description of what happened must be fully
specified if the action’s implications are to be found. This leads to certain problems: not
only is it wasteful of space and effort to represent statements in their fully-expanded form,
but it leads to some difficulty in finding those implications that result from the combination
of actions rather than from the constituent primitives. To use Bob Moore's example, the
action of kissing has implications that are not evident when it is decomposed into a set of
PTRANS operations involving the lips of two people. With a virtual copy system it is
possible to define an action-type like KISS once and for all in terms of more primitive
actions, and to have both the inherited implications and those from KISS itself be virtually
present whenever an instance of KISS is created. KISS, in turn, can be used as a primitive
in defining even more complex concepts, and so on through any number of levels. A virtual
copy system would thus provide a way of implementing some of Schank's ideas more
effectively. (In some of the newer work on "scripts” by Schank and Robert Abelson [Schank
1975, Schank & Abelson 1975, Abelson 1975), there does seem to be a move toward a certain
limited kind of action-type hierarchy, or at least a packaging of the basic primitives into
larger structures, but there is still very little discussion of the role that inheritance plays in
this hierarchy.)

Minsky's frames [1975] are classic examples of virtual copies, or at least of
the need for them. Though Minsky had a different, more procedural implementation in
mind, I would claim that in their intended effect his frames are essentially what I have been
calling descriptions, and his slots correspond closely to what I call roles. (I have deliberately
chosen a different set of terms to avoid confusion, since in the wake of Minsky's paper
people have adopted his terms for a variety of uses, not all of them compatible with what |
am trying to express.) To me, the principal contribution of the Frames Paper is that it re-
focussed everyone's attention on the need for some way to create virtual copies (or something
like them) in a knowledge base. This issue had been neglected too long in favor of work on
other areas of intelligence. The numerous frame-related systems currently being developed
share this general point of view though, as I mentioned in Section 1.2, their view of how the
frames are to be accessed tends to be more procedurally-oriented than my own. These
systems face a common set of semantic problems, and some of their ideas (especially from
KRL) have influenced the evolution of NETL. -

If all of this work is going on already, what difference does it make
whether we think of the knowledge-base as implementing virtual copies, frames, inheritance,
or something else? What'’s in a name? All I can report is my own experience. As long as |
was thinking in terms of property-inheritance and symbol-mapping, OF-links and IN-links,
contexts and owners and areas of attention, things kept going wrong, and it was very
apparent that they were going wrong because I did not really understand what I was trying
to do. Which properties were to be inherited and when? What, if anything, did a part
inherit from its owner? What did I really mean by context -- was a person the context for
his hand or just its owner, and what did that imply about the set of statements to be

—_— — B T um—

Virtual Copies 25 Section 2.2

activated? What kinds of exceptions made sense and which ones were illegal or useless?
And so on. All of these issues became much clearer (as, I hope, will be evident in the
description of NETL) once I started thinking in terms of virtual copies. If the goal is to
make the network behave as if a well-defined piece of it had been copied, it is clear what
needs to be done in almost any situation. In a few words, we have captured a very powerful
idea. Ail of this may be idiosyncratic, of course -- it may be that the type of confusion that I
was suffering from was a manifestation of my own mental processes and prejudices -- but |
doubt it. 1 have seen too many other people falling into what appear to be the same set of
traps. The virtual copy idea, when it is made explicit, adds a sort of global clarity of
purpose to a knowledge-base system, and even a little bit of added clarity can sometimes be
important.

D ———

Intersections 26 Section 2.3

2.3 Nodes, Links, and Set Intersections

Now that we have some idea of the kinds of operations that we want the
knowledge-base to perform, it is time to take a closer look at the elements from which the
network is built and how they can be used to implement deductive search. In particular, we
will see how such networks can be used to find the intersections of certain kinds of sets in
essentially constant time, and why this is important. We will cover here only those details
that might be of interest to the general reader; sample circuit diagrams of the node/link
units and some discussion of the possible techniques for making the node-to-link connections
are included in appendix A.

The knowledge network is built from simple hardware node and link
units, connected together to form the patterns of knowledge that are present in the
knowledge base. The whole network is controlled by an external control unit -- a serial
computer of the familiar sort -- that is able to communicate with all of the node and link
units via a single party-line bus. The node units contain internal flip-flops for representing
the dozen or so distinct marker-bits that are propagated through the system, over the
connections formed by the network of link units, according to the dictates of the external
controller.

Each link unit has a number of distinct terminals or wires that can be
connected to the various nodes in the system. Each node unit has a single terminal to which
these link-wires can be tied. In order for the marker propagation to proceed in parallel,
these node-to-link connections must be private lines -- actual wires of some sort. To use the
common bus for this intercommunication would mean that only one link could be
propagating a marker at a time, and would destroy the desired parallel speed advantage.
While the pattern of marker distribution and the contents of the control computer registers
contain a certain amount of short-term information, all of the system's permanent knowledge
is represented in the form of node-to-link interconnections. It is therefore necessary to alter
these interconnections as the system learns new things, though this alteration may proceed
very much more slowly than normal look-up operations: a few new link-connections per
second ought to be adequate for human-like performance. (The psychologists have amassed
a considerable body of evidence that people can only assimilate a few facts per second into
their long-term memories.)

Each node unit has a permanently assignad, unique serial number by
which the controller can address it directly. Usually, however, a command is broadcast to an
entire class of nodes on the basis of their type and current marker content. A command
might be addressed, for instance, to all individual-nodes with marker Ml on and marker M2
off. (As we will see, a number of bits are required to fully specify the type of a node or link.
These can be represented as special read-only marker bits within the unit or as certain bits
of the unit's serial number.) Sometimes the controller will merely be testing to see if zero,
one, or many nodes fall into the specified category. Sometimes the command will specify that
the selected nodes are to report their serial numbers over the bus to the controller. (If many
nodes are selected, they will have to queue up and report in one at a time. This can be

Intersections 27 Section 2.3

accomplished by a daisy-chain arrangement, or by a bitwise scan of the serial-number space
-- see appendix A for details.) Usually, however, the command will specify that all of the
selected node units are to set or clear certain of their markers. A typicai command might
order all nodes with M1 and M2 set to clear these and set M3. One possible format for these
commands will be presented along with the circuit descriptions in appendix A.

The link units have a serial number but no internal storage for markers
Commands to them may be direct, using the serial number to specify the target link, but this
is rare. Normally, the controller wants to order all links of a certain type to examine the
markers of the attached nodes and, if the desired pattern is found, to set or clear specified
markers on other attached nodes. The controller might, for instance, order that all VC links
examine the node attached to their A-wire (as in "A is a virtual copy of B") for an M1
marker and, wherever this is found, to set the M| marker-bit in the node attached to thei
B-wire. This operation propagates all the M1 bit: in the system one level up the VC
hierarchy in a single parallel step. To propagate bits all ihe way up the hierarchy, we would
want to address our command to every VC link with an Mi bit on the A-node and no MI
bit on the B-node. If any such links are found (the controller can sense this over the bus)
the propagation is performed and the process is repeated. When, finally, no links respond,
the propagation-scan is complete.

Actually, the situation is a bit more complicated than this. To actually
allow the link units to sense, in parallel, the entire marker-state of a node or to alter that
marker-state would require that the node-to-link connections consist of a bus many bits wide.
Since these connections, and not the node and link units themselves, are the most costly part
of the network-system, we want to keep each connection down to a single wire. To do this
we connect the link-wire in question through the node’s single terminal to an internal flag
bit in the node unit, called the SELECT flag. Using this flag for node-to link
communication, the controller can make the appropriate node units examine and alter their
own marker-states. The single-step propagation operation described above would now be
completed in several cycles, an increase by a small constant factor. First, the controller would
call 211 VC links to attention. Next, it would order all nodes with the desired marker pattern
(in this case, an M1 mark) to set their SELECT flags. Ali of the links at attention would
then sense whether the node connected to their A-wire is among those selected: if so, the
link remains at attention; if not it drops out. This process is repeated for any other
attached nodes that are to be examined in the current step. Finally, the links stiil at
attention are ordered to set the SELECT flag of the attached B-node, and these selected
nodes are ordered (by the controller) to set their Ml marks. This may sound cormplicated,
but it is still possible to propagate any number of bits one level in four or five bus-settling
cycles, and all the way through the type-hierarchy in a time that is acceptably short, even for
very slow processing elements.

There is one more complication to add before we go on to see how all of
this works. I have spoken of the node and link units as separate entities, and will continue
to do so, but the difference is largely one of emphasis. It has proven to be convenient
(though not really necessary) to implement nodes and links identically in the current version

Intersections 28 Section 2.3

of NETL. The reason for this is that every link has an associated Aandle-node that
represents the statement that the link implements. To this node we can attach any
modifications or meta-information that we want to apply to the statement, for instance to say
that it is a mere default that can be cancelled with impunity, or that it is sacred and should
never be cancelled. The marker-bits of the handle-node are also a convenient place to flag
which links are to be considered active in the current context and which of these are
cancelled in the virtual copy under consideration.

The nodes, in turn, sometimes need a few link-type wires for special-
purpose connections to other nodes. Any connection that represents an arguable or deniable
statement of fact should be represented by a full link, so that we can attach cancellations or
qualifications to the handle-node, but connections that form a part of the identity of the
node have no need for such attachments. The connection of a type-node to its set-node, for
instance, is a part of the definition of the type-node, rather than a deniable statement: it
makes no sense to argue over whether TYPICAL-ELEPHANT is the type-node for
ELEPHANT-SET -- by definition, it must be. This connection is therefore represented by a
special set-wire coming out of the TYPICAL-ELEPHANT node, rather than by a true link.
Other specialized attachments of one node to another are also represented in this way, as we
will see in the description of the various node and link types defined in NETL.

Since every true link has a handle-node and every normal node has a few
special link-wires, it seems only natural to use the same piece of hardware to represent them
both. 1 call this piece of hardware an element when I want to refer to it without indicating
whether it represents a node or a link. An element has the marker-bit storage and the single
terminal of a node (the handle-node if it is representing a link) and a set of connecting wires
that it uses in the manner of a link. The interpretations that are placed on these wires and
the number of wires that are actually used depends on the type of node or link that the
element is representing. Some nodes use only one or two, while a link with its handle-node
may use six or so. The maximum number of wires that is allowed is, of course, a parameter
of the hardware (or simulated hardware) implementation; generally, it is possible to use
more links with fewer wires per link, or fewer links with more wires. It would be difficult,
however, to get along with only two wires per element, and impossible with only one. Three
wires would appear to be the practical minimum. In general, in this thesis, I will continue to
talk about links and nodes as though they were distinct hardware entities, because that seems
clearer to me.

Now, how can these nodes and links be combined into a network that
represents knowledge and performs certain deductions at high speed? Let's forget, for now,
about virtual copies and just consider old-fashioned property inheritance. Suppose someone
asks the system what color Clyde is. The system’s knowledge about this subject might be
stored as a COLOR-OF link from TYPICAL-ELEPHANT to the node GRAY. It so
happens that the ELEPHANT node, where COLOR-OF s attached, is only one or two
levels up the VC hierarchy from CLYDE, but such a property could be attached anywhere
in the hierarchy, and the hierarchy could be very large. It might be necessary, therefore, to
look individually at a great many superior nodes in order to locate the desired property-link.

Intersections 29 Section 2.3

The parallel hardware network can, in effect, look at many nodes at onct. An M1 marker is
placed on the CLYDE node, and is then propagated up the network of VC links by the
method described above. This marks all of CLYDE'’s ancestors in the network -- in other
words, all of the nodes to which properties that CLYDE shauld inherit might be attached.
A command is then broadcast to all COLOR links that are tied to any of the marked nodes,
telling them to mark the associated color node with M2. This is done in a single step. The
controller then asks all M2-marked nodes to report in and, if all has gone well, the single
node GRAY does so. Note that this process does not tell us where in the tree this property
was attached, but it doesn’t matter: the scan takes the same amount of time to find any of
Clyde's simple properties, regardless of their position in the hierarchy. There is much to
add to this picture -- exceptions, for example -- but the basic idea remains the same.

The time required for this marker scan is proportional not to the total
number of nodes that appear in the lattice of CLYDE'’s superiors, but to the length of the
longest path through the lattice. Actually, the time can be shorter still, since the propagation
up some long path will be terminated whenever it rejoins a path that has already been
marked by some shorter route. The length of these paths for most real-world knowledge
domains does not seem to exceed ten or so links; the longest naturally-occurring chain of “is
a" relations that I have seen comes from the formal taxonomy of animals, and even here the
length is less than twenty levels, depending on exactly what is counted as being a level. If
any single branch grows unusually long, it can be short-circuited by installing some
redundant VC links that skip over several intermediate Jevels -- straight from ELEPHANT
to ANIMAL, for instance. Consequently, it is possible to treat the time required to mark
upwards or downwards in a type hierarchy as being a small near-constant, regardless of the
number of nodes that become involved due to branching. We can treat the operation of
marking a type hierarchy, with an arbitrarily large number of nodes, as a simple primitive --
one that we can use as freely as, say, CONS or SETQ_in LISP.

When we mark downward from a node in the type hierarchy, the
branching can be even more serious, but the parallel hardware works just as well. Suppose
we have an OWNS-statement linking KING-ARTHUR to EXCALIBUR (his famous
magical sword), and we are asked whether any ROYAL-PERSON is known to own a
WEAPON. Marking downward from ROYAL-PERSON with mark MI, we mark every
type of royal person (queens, princes, czars, etc.) and all individual members of these sub-
types. Marking downward from WEAPON with M2 we get all the types and subtypes of
weapons and eventually all known individual weapons that are represented in the system.
Finally, we broadcast a call for any OWNS-statement that has an M1 mark on one side and
an M2 mark on the other to report in. In would come the ARTHUR OWNS
EXCALIBUR statement, along with any others that the system might happen to know. As
you can see, the trees marked by Ml and M2 in this example are rather large, but they still
would only take a few cycles to mark.

Examples such as this are useful for conveying the general idea of what
the network is good for, but to really understand its strengths and weaknesses we need a
more abstract characterization of its abilities and how they differ from those of a serial

Intersections 30 Section 2.3

machine. 1 would claim that the key difference is that the network can very quickly intersect
two or more sets whose elements are already present in memory, while a serial machine can
do this only very slowly if the sets are large. If, as I hope to demonstrate, the knowledge-
related areas of intelligence depend heavily on the operation of intersecting large, pre-stored
sets (perhaps because the human brain itself has some special hardware or other tricks for
getting intersections done quickly) then it is not too surprising that we have had trouble in
duplicating this kinu of intelligence on our serial machines.

Of course, the intersection of known finite sets is Turing computable, so
we can do it in principle on any computer, but we are talking about huge differences in
speed: the parallel machine might do in a constant few dozen cycles a task that the serial
computer would do in time proportional to the size of the sets, which could be very large
(the set of all animals, for example). Even so, the very great speed of our serial machines
might save the day, but there is the constant temptation to resort to special-case tricks to .
avoid or cut down the searches. These tricks generally involve making premature
assumptions about the structure of the knowledge and how it will be used, and they have a
way of coming back to haunt us.

In assuming the existence of the parallel network hardware, then, we are
postulating a world in which set intersection is a trivial operation. This frees us to concentrate
on the more substantive issues of representational theory, without the constant distraction of
worrying about whether we are creating unmanageable search and intersection problems.
Later, when we understand what we are doing, we can decide whether to actually build the
hardware or to do the intersections by some software method. The knowledge-base problem
is thus divided, and 1 would argue that this particular division has a substantial effect in
clarifying the representational issues that are our main concern.

It is important that we c!early understand what sort of set-intersection is
being discussed here. Sets can be represented in many ways. They can be implicitly
represented by generator-functions or predicates; they can be represented explicitly by a list
of members or a set of membership assertions in a hash table; or they can be represented
semi-explicitly. By a semi-explicit representation, I mean one in which all of the elements of
the set are explicitly represented, as well as all of the statements from which set-membership
can be deduced in a straightforward mannner, but in which there are not necessarily single-
step links from the set to each of its members. A type hierarchy of the sort we have
discussed would be an example of a semi-explicit representation of a set: from every type-
node there is an uninterrupted set of VC links down through the various sub-types, and
eventually to all of the known members of the type-node’s set. It is the explicit and semi-
explicit sets that the parallel network system can intersect quickly. In such networks, any
semi-explicit set can be marked in time proportional to the length of the chain of deductions
that is necessary to reach the farthest element of the set -- as we have seen, in the type
hierarchy this distance is only a few steps -- and the intersection-set of any two (or more)
marked sets can be marked in a single cycle. ("All nodes with Ml and M2 on, turn on M3 as
well”) This newly marked set is then ready for subsequent processing; only if it is to be
read out must it actually be scanned node by node.

Intersections 3 Section 2.3

Even if we confine our attention to fully explicit sets, a serial computer is
much slower. It is very inefficient, in the case of large sets, to use the obvious algorithm of
scanning one sei and, for each element, scanning the other set to. find a match. A better
approach is to scan one set, marking the elements or remembering them in a hash-table, and
then to scan the other. As each element of the second set is found, its membership in the
first set can be checked at unit cost. The time spent is thus proportional to the sum of the
lengths of the two sets. If every set is recorded once and for all when it is first created, it is
only necessary in performing any specific intersection to scan the shorter of the two sets. If
one of the sets is short this is an obvious advantage, but if both are large there is still a
serious time problem. And if the sets are not static entities but are put together on the spot
(as would be the case if the sets were stored semi-explicitly), we are back in the situation of
having to scan them both. ‘

In general, then, to intersect sets on a serial machine takes time
proportional either to the sum of the sizes of the sets or to the size of the smaller set,
depending on the circumstances. I don’t know of any proof that this is minimal, but it
certainly seems unlikely that there is any way to intersect two sets without looking at least
once at each of the nodes in one of the sets. Of course, once an intersection has been
performed on two sets, the result can be saved for future use if we ever need the same
intersection again. If we are not very careful about this, however, we can easily fill up all of
the available memory-space with intersection sets. There is also a serious problem in
keeping all of these intersections 'up to date if set-membership is ever allowed to change.
And, of course, it buys you nothing if the two sets are being intersected for the first time. It
is sometimes useful to store the intersection sets of certain commonly-encountered subsets of
the sets that we are really interested in, and to splice together an intersection out of a
collection of these pre-intersected subsets. In some cases this approach can lead to a
significant improvement in performance (see McDermott [1975] for some examples of this),
but the amount of savings depends in very complex and subtle ways on the exact structure
of the knowledge and on the order in which it is accessed.

In view of these problems, there is an understandable temptation among
Al researchers to insure that, whenever an intersection is performed, one or both of the sets
to be intersected is very small. This can seriously distort one’s view of what constitutes a
reasonable representation strategy. A good programmer, when faced with the task of
intersecting two million-member sets, will want to try every special-purpose programming
trick in the book to avoid actually doing the work, and the tricks chosen.may seriously limit
the future generality of the system (not to mention their effect on the system's elegance and
understandability). By postulating a fast-intersecting parallel hardware system, and by
working ‘with a simulation of such a system, we can effectively eliminate this temptation.

The hardware system will obviously not be built soon. At best, we will
need to simulate these networks for a few years to see if they are what we really want; at
worst, it might never be possible to build a large system of this sort at a reasonable cost.
But, as I argued in section 1.3, the parallel network system has its uses even as a gedanken-

Intersections 32] Section 2.3

machine. By providing us with a particularly clean and precise way to envision a world in
which set-intersection is fast, this system can free us from the constantly distracting problems
of search-efficiency and can let us consider in isolation the question of how to represent what
we know and how to use this knowledge once we have found it.

Splits and Clashes 33 Section 2.4

2.4 Exclusive Splits 4nd Clashes

We have seen, in general outline, how the parallel network system of
Section 2.3 can ishplement a fast form of property inheritance. In the remainder of Section 2
we will see, in the same very general sort of way, a number of other knowledge-base
functions that such networks can perform. In reading this, I would urge you not to become
overly concerned with details or with marginal cases and counter-examples. To the extent
that such details have been worked out (almost entirely in some areas, only sketchily in
others) I will present them in Section 3, the detailed description of NETL. My purpose here
is to convey a broad overall picture of the system’s operation so that the details, when they
appear, will have a context to fit into. Nothing presented in this section should be taken toc
seriously: in order to convey the clearest possible explanation of the big picture, T will
occasionally have to mangle a detail or two, and present the corrected version later.

Just as we want the knowledge base to perform certain obvious
deductions for us, we also want it to detect certain obvious inconsistencies between new
information and old. I am not talking here about inconsistencies which can be detected only
by a difficult process of reasoning or mathematical proof -- these are the responsibility of the
problem-solving system. What I am talking about are the kinds of inconsistencies that are
immediately obvious to any human who tries to assimilate certain descriptions or concepts. |
call such obvious contradictions clashes. A clash would occur, for instance, if I told you that
Clyde, in addition to being an elephant, was a cabbage. 1 could have said that he was a
herbivore or a male or a quadruped, and that would -have been all right, but cabbages and
elephants are not compatible descriptions. A similar, if somewhat more complex, type of
clash occurs if I refer to a green idea or a hungry rock. It is possible to make such
descritions mean something by a process of metaphorical description and analogy, but first it
is necessary to cdetermine that the straightforward literal interpretations of these phrases
don’t make sense. This testing of appropriateness or consistency seems to be one of those
effortless operations that the knowledge base ought to handle.

I believe that most such clashes arise from the structure of the knowledge
base and the operation of the inheritance mechanism. We could, of course, state the fact that
no elephant is a cabbage and, when the situation arises, retrieve and use this fact. This is
obviously not the right answer; to store assertions about all the things that an elephant is
not would be ridiculous. A better approach is to split the LIVING-THINGS class into
PLANT and ANIMAL and somehow indicate that these sub-classes are disjoint, that they
contain no members or non-empty subsets in common. Whenever an attempt is made to
create such a member or subset, the system should notice the violation and complain to the
process calling for the creation. The complaint might be handled in any of several ways:
the operation might be aborted, the caller might replace the literal statement with some
metaphorical interpretation, or the complaint might be overruled and an exception created
(as in the case of a Euglena, for instance). Whatever action is taken, the important thing is
to notice potential conflicts of this kind as they arise, but without wasting too much time in
the process.

34

o—e THING

LIVING-THING

PLANT

ELEPHANT CABBAGE

KEY:
O INOIVIDUAL -NODE
@ TYPE -NODE

0—® SET - TYPE PAIR
T VC - LINK

' (PROPOSED)

Figure 4: Partition of LIVING-THINGS into PLANT and ANIMAL.

R - —————— . — A

- -~

Splits and Clashes 35 Section 2.4

To see how this clash-detection process might be implemented in the
network, consider the example in Figure 4. The key to this is the SPLIT statement between
the type-nodes ANIMAL and PLANT. A single SPLIT statement can be tied to an
arbitrarily large number of type-nodes, indicating that the classes in question are mutually
disjoint. It is therefore not possible to represent this statement using a single link, since links
must have a fixed number of wires, but we will treat it as a single link for the present -- the
effect is the same, in any event. Now, suppose that CLYDE is already tied to ELEPHANT
as shown, and we want to add a new VC link to CABBAGE (dotted in the diagram).
Whenever a new VC link is added to the network, the system checks to see if any SPLIT
statement has been violated.

This is done by propagating Ml markers up all the pre-existing VC-links
and propagating an M2 marker upward across the link just created (or about to be created).
M1 thus marks the node’s original set of ancestors, while M2 marks the new ones; some
nodes will have both marks. Then a call is broadcast to all SPLIT statements that have M|
but no M2 on one attached type-node, and M2 but no M1 on another node: all such
statements are to report their existence over the bus to the controller. Any statement-nodes
that report in are the ones being violated by the new VC link; in this case we would find
the SPLIT statement splitting ANIMAL from PLANT. Note that the clash will be found
regardless of where it occurs in the node’s hierarchy of ancestors. If we want to overrule the
clash, we can cancel it (using a CANCEL-link) for the particular node in question. This will
keep the clash from bothering us again, but we will now have to sort out any possibly-
clashing properties of the two descriptions, and decide for each property which description
should predominate.

A similar type of clash-checking, suggested to me by Jon Doyle, can be
used to look for individual exceptions whenever a new VC link is added to a type-node.
Suppose that we have a type-split between the SMART-PERSON and STUPID-PERSON
categories, which are sub-types of the PERSON type. If we then try to add a VC link from
AMERICAN to STUPID-PERSON -- that is, if we want to say that all Americans are
stupid -- we would like the system to complain if it knows any individual Americans who are
in the SMART-PERSQON category. If such exceptions are found, we must either state
explicitly that they are exceptions to the general rule, or we must reject the newly added
node as contrary to the facts at hand. Like the clash-checking that we saw earlier, this
search for exceptions is easily handled during the digestion of the new link: with mark Ml
we mark everything below the AMERICAN node; with mark M2 we mark everything
below the type-nodes that clash with STUPID-PERSON; then, in a single command, we ask
all nodes with both marks to report themselves. If any such nodes are found, they represent
the exceptions to the new statement that we are trying to digest.

This clash-checking might seem like a lot of work to do every time we
create a new link. In fact, however, it is very fast. As we have seen, the upward marker-
sweeps are not very costly, and the parallel call for the violated SPLIT statements is a single
operatidn requiring only a few bus cycles. This speed results from the fact that the clash-test

—ee P

Splits and Clashes 36 Section 2.4

is, in effect, one of the semi-explicit set intersections described in Section 2.3. To see that this
is so, consider this slightly altered description of what happens in the clash-test: first, we
mark the set of old ancestors of the node being tested by performing an upward
propagation; then, by propagating a mark through the SPLIT statements, we mark the set
of type-nodes corresponding to forbidden sets for that node; finally, we intersect this
forbidden set with the set of the node’s new superiors to find the clashes. The method
described above is a slight improvement over this, since the intersections occur on the
SPLIT node itself, but the effect is the same. The key point is that these sets must indeed be
semi-explicit: the ancestor nodes and the SPLIT statements must actually be present, as well
as the VC links that tie the ancestor-sets together. If this is not the case -- if some of these
items are not really present but must be deduced -- then the clash can only be found by more
conventional serial deduction methods.

Even if the search were slower, however, it would not necessarily be
disastrous. In this system, the creation of a new link or node is a relatively rare and costly
event compared to normal accessing operations, and to add 2 bit of checking to this (within
reason) is not very significant. In fact, the system performs several such checking operations
when new information is added, all of which activity is referred to as the digestion of the
new link. The most important of the digestive operations, like the split-test, can be
performed by fast parallel mechanisms. Other digestive operations require some linear
search, and thus become slower as the knowledge-base increases in size, but this set is
somewhat open-ended. If the linear digestion processes must be terminated prematurely, the
only harm done is that some possible deductions will go undeduced and some subtle
absurdities may sneak into the knowledge-base. In a conventional logic-based system we
would have to be very careful about this, but in this system the effect of a contradiction or
two is strictly local. Complex digestive processes of this type form a continuum from the
trivial deductions of the knowledge base to the complexities of full-blown problem-solving.
The amount of work that is actually done for any new piece of information depends on how
much time the system can afford to spend on that piece at the time of its arrival, but the few
most-critical tests are fast enough to be run for every new item. We will look at these
processes more closely in Section 3.

A given class can be partitioned into exclusive split-sets in a number of
different ways. Figure 5, for instance, shows two distinct ways of cutting up the class of
people: by age and by sex. The tangles in the tangled hierarchy arise not because we have
illegally rejoined sets that were divided by a SPLIT statement, but because we allow a node
to claim membership in one compartment of each of the splits under a given type-node. The
type-node BOY, for instance, is under both CHILD and MALE, but an attempt to combine
CHILD and ADULT would result in a clash. The creation of a re-joined node like BOY
not only gives us a way to pick up MALE and CHILD properties with a single link; it also
gives us a place to attach properties that are characteristic of objects in the intersection-set of
the two classes, but of neither parent class -- elegibility for membership in the Boy Scouts,
for example.

Because of the clash-detection mechanism, a VC link serves two

Splits and Clashes 37 Section 2.4

PERSON
o—e

SPLIT SPLIT

CHILD

MAN WOMAN BoY GIRL

Figure S5: Multiple partitions of the PERSON class.

functions. First, it allows the node being described to inherit properties and memberships
from its parent-node, if such properties and memberships are not already known. If the
offspring-node already has some descriptive links attached to it, however, the VC link serves
as a restriction mechanism as well as a property-inheritance link. If the newly-inherited
memberships are inconsistent with the pre-existing ones, the creation of the VC link will be
disallowed or at least flagged with a complaint. This restriction mechanism is especially
important when a role in some node’s description is about to be filled by some other node.
(This is done with an EQ-link rather than a VC, but don't worry about that for now.) If
the type-node PERSON has a role-node FATHER, and there is a VC link from FATHER
to MAN, then any attempt to fill this role (or a map of it) with a node known to be a
WOMAN will generate a clash at the MALE-FEMALE split. A restriction of this sort is
more powerful than the semantic-marker systems of the linguists (Fodor and Katz [1963)),
since any type-node in the system, from the most general to the most specific, can be used.

Splits and Clashes et 38 Section 2.4

The green ideas and hungry rocks mentioned earlier are examples.of this kind of restriction:
in a literal description, only physical objects (PHYSOBs) and light have a COLOR
property, and an idea can be neither of these; only a living thing can be hungry, and a rock
is non-living. (We will see in Section 25 how an object can be placed in a class on the basis
of its properties.) '

The set of exclusive subtypes created by a single SPLIT statement may or
may not be declared to be complete. (We will see how to represent this declaration in section
36.) If the split is complete, every member of the parent class must fit into exactly one of the
sub-classes. This means that if we have an entity which is known not to fit into all but one
of the sub-classes created by such a split, we have the right to place it (by creating a VC
link) into that final sub-class. (Of course this does not apply to entities that do not belong to
the parent class) If the class of VERTEBRATES is split completely into BIRDS,
MAMMALS, REPTILES, AMPHIBIANS, and FISH, and I tell you that some vertebrate is
not a member of the first four groups, then you are justified in assuming it to be a fish. Of
course, if we do not yet know where the object fits, we can leave it hanging under the parent
type-node, but this represents a state of partial information, not a belief that none of the
existing sub-types is appropriate. The search for complete splits that are ripe for further
processing is a part of the digestion process of any links stating non-membership in a class,
either directly or through some other exclusive split. A paratlel search can find candidates
for this process, but in the current NETL it is necessary to check each candidate
individually. This inefficiency does not worry me too much, since people are not very good
at this sort of reasoning by the elimination of alternatives -- if there are more than two or
three alternatives in the set, we tend to mumble and count them off on our fingers.
Grossman [1976] has developed a system which handles complete exclusive splits more
elegantly, if we ever really feel the need to do this.

Note that if the set of subtypes created by an exclusive split is not
complete, that does not alter the exclusivity of the subtypes; it simply means that there may
be other subtypes besides those listed. A list of the individual members of any set may be
declared to be complete or incomplete, depending on whether we believe we know all of the
members. The completeness of any given set or type-split is aiguable and deniable, and it
may be different depending on the context. In this respect, completeness is no different than
any property-value assignment, and it is dealt with by the general context mechanism to be
described in Section 26. Collins and his colleagues [1975) have studied the relationship
between the completeness of a set or a type-split and the way it is used in reasoning and
answering questions.

Matching and Recognition 39 Section 2.5

25 Matching and Recognition

The research described in this report is primarily concerned with
representing knowledge of various sorts and with retrieving it in such a way that it can be
useful to programs implementing the other parts of intelligence. I have not been able to
devote much time and attention to how these other parts would work, or even to get very far
into the interfaces between these parts and the knowledge base. There is one area, however,
in which the facilities provided by the parallel network system can be so useful that I feel
some discussion is warranted, even if it is of a rather incomplete and speculative nature.
That area is what I call symbolic recognition. This was, in fact, the original area of my thesis
research, before 1 had even begun to consider parallel networks and all of the
representational issues that they raise. A large part of my motivation in moving from
classical, procedurally-oriented frames to parallel networks was the difficulty I was
experiencing in setting up an adequate search system for stored descriptions, a problem
which is neatly circumvented by the networks. This section can be read, then, partly as a set
of suggestions for applying the knowledge-base system and partly as an added argument for
the usefulness of a parallel implementation.

By symbolic recognition I mean something considerably more powerful
than the brittle, localized kind of pattern matching that goes on in a data-base of the
familiar sort. Viewed abstractly, the recognition problem is to take an incoming symbolic
description, which 1 call the sample, and to find the best match to this sample fram among a
large set of stored symbolic descriptions. This serves two purposes: it provides us with a
compact way of representing the sample by creating a virtual copy of the matching
description and noting any differences between it and the sample; it also supplies us with a
considerable body of information, not directly observed in the sample, that can be reasonably
assumed to apply to it. (In most real-world domains of interest, the things encountered fall
into reasonably stable categories. This means that if certain features have appeared together
in the past, they will probably appear together again in the future. One could imagine
artificially created domains without this kind of regularity, in which case recognition would
be useless and probably impossible.)

Both the sample and the stored descriptions may be symbolic structures of
comlderable size, and not all of the features present will have the same importance or degree
of certainty. The features may differ in their degree of specificity: some may be very precise
while others are identified only by their general categories in the hierarchy of types. Some
features of the sample may even be wrong. Usually, too, the sample and the stored
descriptions will differ in extent. the sample will contain only a small and unpredictable
subset of the information in the stored descriptions.

Perhaps the clearest example of this type of symbolic recognition is the
problem of medical diagnosis, given a set of symptoms and findings that are already in some
symbolic form. (See Rubin [1975), Pople et al. [1975), and Shortliffe [1976) for a variety of
approaches to this problem.) 1 believe, however, that symbolic recognition also plays a large
role in domains such as vision and speech understanding which work with raw, noisy

Matching and Recognition 40 Section 25

sensory input. At seme point, these systems will have beaten their inputs into an internal
symbolic form and will want to know what, if anything, that form matches. I am not saying
that the two levels are cleanly separable -- there might be much interleaving of effort and
communication between the symbolic system and the peripheral processes -- but that some
symbolic matching and indexing facility must exist. The more powerful and flexible the
symbolic portions of the system are, the easier life will be for the peripheral systems -- at
present, the people working on these systems can only guess about how good their output
will have to be. Marr and Nishihara [1977) describe some current ideas about what the
intermediate language for vision should look like.

In problem solving, too, symbolic recognition has a role to play. Often
we do not really want to solve a problem, but to remember a similar past problem whose
solution might apply to the case at hand, perhaps with some slight modifications. (See, for
example, Sussman [1973]) Of course, we will seldom see exactly the same problem twice, so
our matcher must look instead for a sort of family resemblance between the new problem
and the old ones. Those features of a problem that determine the overall course of its
solution must be taken into account in this search, but minor, inconsequential differences
should be ignored. Obviously, a requirement of this kind will rule out any straightforward
hashing or indexing scheme for the library of descriptions, and we will ultimately need a
library that will be too large to search item by item.

Initially, I divided this problem into two components: testing a
hypothetical match once you have one and finding reasonable hypotheses in the first place.
The hypothesis tester was responsible for weighing the various degrees of evidence,
arbitrating any conflicts, and for explaining away certain discrepancies on the basis of
context (a purple cow in the vicinity of a paint factory explosion, for instance). This part of
the system contained many interesting problems, but the general process of description
comparison was well understood, due to the work of Evans [1968]), Winston [1975), and many
more-recent contributions. The really hard problem, in my opinion, was in locating a
reasonable hypothesis to test from a very large body of stored descriptions, given such an
uncertain set of features to match on. The problem of indexing descriptions to allow quick
location of the best partial match to a probe has been solved for certain very neat cases (see
Rivest [1974]), but I could see no way of applying these results to the rather amorphous
descriptions that appear in most real-world recognition problems.

The hypothesis-finding system that 1 first considered was the one
advocated by Minsky in the Frames Paper [1975). The idea was to select certain prominent
features from each of the stored descriptions, and to create a network of suggestion demons
to look for these triggers in any incoming sample. If a proposed match fails, another set of
derions was to analyze the nature of the discrepancy and suggest a neighboring description
to try. Of course, this involves the creation of a tremendous number of demons, but the
hope was that by partitioning the description-space, the number of demons that are active at
any one time could be kept within manageable limits. Another idea was to piace the demons
at various levels of the type hierarchy so that the more general demons could be shared by
many descriptions.

Matching and Recognition 41 Section 2.5

This approach has several problems beyond the obvious one of creating
and herding the demons. The most serious of these, for a domain like vision, is the
brittleness of the triggering system. It is often hard enough to find any usable features of an
object, let alone the precise set of features that was anticipated by the system designer, in
exactly the proper format to trigger the appropriate demons. The search must be able to use
whatever set of features the peripheral system can find if the recognitions are to be
consistently successful in scenes with noise and occlusion. The fast-intersecting parallel
network provides us with exactly this capability. That is why I set aside my work on
demon-based systems to explore this new approach.

The basic description-finding operation is really very simple in a network
system. We start with a list of features that are present in the sample. For each of these, we
mark (with separate marker bits) the set of stored descriptions that possess this feature, either
directly or by inhe:itance. We then broadcast a call for any node that has collected all of the
appropriate marks. These are our hypotheses, ready for any further, more cetailed checking
that we might want to perform. If I am in the Everglades and see a greenish, six-foot long,
four-legged animal swimming toward me, I simply intersect the sets of Everglades
inhabitants, greenish things, four-legged things, swimming things, and animals, and out
pops a winner. (The need for a reasonably fast intersection process should, at this point,
become evident) This strategy would be ridiculous for a serial system, but for a parallel
network it is perfectly natural and very fast.

If we run out of distinct marker-bits for the feature sets, we simply
intersect those sets marked so far, freeing all but one bit, and proceed as before. If the
intersection set is empty, it probably means that one of the features on the list was spurious.
In this case, we just look for the node that has collected the most marks. We might
accomplish this by adding hardware to the node units to count the bits present or to compact
them to one end of the bit-register. Probably, however, this added expense would not be
justified: unless we are intersecting a great many features all at once, we can simply try
various subsets of the given feature-set until we find a winner. Often we will know that
certain of the features are unreliable, and can try throwing these out first. We might have
to try several subsets before we find one that is not empty, but each test takes only one bus-
cycle.

To understand the power of this network-based matching system, you
must understand several points. First, a matching description can be found given any set of
features that uniquely describes it, even if these features are obscure ones. We do not have
to pre-select the sets of features that we are looking for and hope that these are the ones that
arrive. Feature descriptions at various levels of specificity are not a problem: we obviously
get a smaller set of possibilities if we specify a snout rather than a nose, but each will play its
appropriate role in the intersection process. Features, of course, do not actually have to be
present in the descriptions being sought; inherited features work just as well. The only real
restriction is that the features be represented in some semi-explicit form and do not have to
be deduced during the search; obviously, if we were to ask the system for a prime number

Matching and Recognition 42 Section 2.5

between some specified limits, it would have to abandon the parallel search and use some
linear problem-solving method. Finally, the match can cover any arbitrarily large portion of
the network surrounding the node we want to find. If we ask for a person whose last name
starts with Q and whose grandfather's mistress was left-handed, and if the system knows of
such a person, it will be able to find that person’s node just as if we had indexed this
particular set of features. Serial-computer indexing systems must index much more
selectively, usually confining themselves to indexing within a single assertion. (For a
discussion of what such systems can be made to do and the difficulties involved, see
McDermott [1975)) With great care and effort, we might be able to approach this level of
indexing performance on a serial machine, but the parallel network ‘gives us the whole
package in a very clean and simple form.

If we want to model human matching ability, the parallel network system
may be foo good. Many people, for instance, would have trouble remembering all of the
animal-types whose names start with the letter N, while the network would do this easily.
On the other hand, the procedural demon-based system does not seem to be nearly good
enough to model human performance: even if we could make it less brittle, it would still
involve a lot of computation to produce what people call a “flash” of recognition. 1 think
that some sort of parallel matching is required, but perhaps of a more restricted, less
powerful type than I have described here. In section 3.7 we will encounter some limitations
of the parallel network system which bring its performance more into line with that
exhibited by the human memory, and in section 5 we will briefly consider some other factors
which might be responsible for the remaining disparity. Of course, it is also possible that
the human memory operates in some fundamentally different way.

In all of the above we have assumed that there is something called a
feature that is found by the low level routines and is passed to the hypothesis-finder as a
tidy package. Sometimes this will be the case. Often, however, the features themselves will
have to be recognized from their sub-features, and so on through many levels. This would
not be so bad if the features could be recognized in a context-free way, starting with the
most local and primitive of them and combining them into larger and larger packages,
ending eventually with whole scenes and other global structures. Unfortunately, this is not
always the case. Many features can only be properly identified in the context of the larger
structure of which they are a part. This leads to a kind of circularity: we want to find the
identity of an object or.scene by intersecting its features, but to identify these features we
may need to know what the object is. Which comes first, the elephant or the trunk? This
appavent paradox is one of the favorite arguments of Hubert Dreyfus in his criticisms of the
classical Al approaches to recognition (1972, 1976), and the argument is not without some
validity. | believe, however, that we can escape the trap by identifying the object and its
features simultaneously. To be more precise, we want to gradually refine the descriptions of
the object and its features in an alternating paitern, making both appear to emerge at once.
Intersections play an important role in this process.

To see how this might work, it is important to understand a few points.
First of all, we do not have to choose between completely context-free methods and those that

Matching and Recognition 43 Section 25

require a fully-specified context. A partial identification of the context, corresponding to
some type-node farther up the tree than the one we ultimately want, is often enough to
establish a.framework for sorting out the features. If, for instance, we know that some object
is an animal -- perhaps it has moved or is in a cage in a zoo, or perhaps because some
animal-feature is clear and unambiguous -- we can begin to look in the appropriate places
for legs, a tail, a head, and so on. Objects which before had only intrinsic, geometric
descriptions (long vertical cylinder) can now be matched with role-nodes in the animal
description (left front leg). Once this is done (and after clashes are checked for) we can
decide what kind of leg we are looking at and on this basis can perhaps reclassify the
animal to a lower, more specific category. This, in turn, will help us to identify still more
features, and so on. Obviously, this depends heavily both on the matching process and on
the structure-inheritance mechanism of the underlying knowledge base. The animal and its
parts thus emerge together, little by little, like the solutions to a set of simultaneous equations
or the junction-labels in the mutual constraint system of Waltz [1975). Of course, once things
start to converge, the process may be completed very quickly. We are not creating any new
network structure at this point; we are just moving pointers from high level descriptive
nodes to lower ones. Since we need distinct pointers for the object itself and for each of its
features, I call this process two-finger (or multi-finger) recognition.

It is.also important to note that the matcher can find an identity for an
object even if no one of its features, by itself, can be unambiguously identified. Since I do
not want to discuss all of the issues invioved in representing shapes and how they are
positioned in space, let me illustrate this point with a linguistic example. Suppose, in a
single context, I happen to mention the following words: base, diamond, pitcher, bat, plate,
run, ball, and slide. Obviously I am talking about baseball. Any one of these words (and
some pairs of them) could appear in a number of different contexts, but baseball is the only
context in which all of them are likely to appear. Each word has a set of likely contexts, and
baseball is the only member of the intersection of these sets. We find this intersection as we
have found all the others, by marking the sets and looking for the node that has collected
the most marks. Note that when we select baseball as the probable context, we are also
selecting the appropriate meaning for each of the words. An analogous process would allow
us to see a face, even though the individual features by themselves are ambiguous. Norman
and Rumelhart [1975] expess a view of recognition very similar to this, and they illustrate
this point about face recognition in their book (page 296).

The fast-intersecting network, then, is not a recognition system in its own
right, but it is a valuable tool for building recognition systems. Much more work needs to
be done on these feature-finding strategies, on the hypothesis evaluation process, on the
intermediate-level representations for vision and speech, on the peripheral processes
themselves, and on the techniques for cooperation between these peripheral components and
the syrbolic levels of the system. To me. however, the overall problem looks considerably
more manageable once the intersection problems have been cleared away.

Other Uses 44 Section 2.6

2.6 Assorted Other Uses for the Network System

The preceding three problems -- inheritance, clash detection, and
recognition -- are the ones that motivated my current interest in fast-intersecting paraliel
networks, but these networks can solve (or help to solve) some other problems as well. In
this section we will take a quick look at three such problem areas: the maintenance of
multiple world-models or contexts, the monitoring of certain classes of objects or situations by
demon programs, and the completion of implicit chains of causal relations. 1 will not try to
explain the details of these operations here, since they require some of the machinery that
will be developed in Section 3; I will just try to give you some general idea of how parallel
intersection can be used in the solution of these problems.

It has long been recognized that a knowledge base must have some way
of represesenting multiple world-models without confusing them, and of sharing the
information that two such world-models have in common. This latter ability is essential in
systems with a {6t of real-world knowledge: we obviously can not afford to re-copy
everything that the system knows whenever some local change of state occurs in the
knowledge base. (This is one aspect of the "frame problem” discussed by McCarthy and
Hayes [1969] -- no relation to Minsky's frames.) This kind of sharing ability in a general-
purpose data-base was first implemented in the CONTEXT mechanism of the CONNIVER
language (McDermott & Sussman, 1972]. Each assertion (the statement of a single fact) in the
data-base is tied to (or "resides in") one or more context-layers, and it can be cancelled in
other layers. A context consists of a set of context-layers, built up according to certain rules.
At any given time, one of the contexts is declared to be active: only those assertions residing
within one of the layers of the active context and not cancelled by any of these layers will be
seen by the accessing mechanisms; the rest will be invisible and will take no part in any
deductions while the context in question is active. Since a given context-layer can appear in
any number of contexts, the desired sharing can be implemented by storing common
information in one of these shared layers; information that is not to be shared is kept in a
private context-layer. Hendrix [1975a, 1975b, 1976] has applied a similar scheme to semantic
networks, with one interesting difference: in his system, the nodes (atoms) as well as the links
(asseitions) are tied to partitions (contexts). This makes it possible to use his partitions to
model quantification as well as multiple states of knowledge.

This context mechanism has a number of uses. The obvious one is to
represent changes of state in the world being modeled. This, in turn, gives us the ability to
represent events and actions as transitions from one world model to another, with the
unaffected parts of the universe occupying a context-layer that is shared by both the before
and after contexis. A context might also represent a hypothetical world, some person's beliefs
or fantasies, or the worid-model created by a novel. Logical disjunction can be viewed as
the creation of several distinct world-models, one of which must be the true one. In all of
these applications, it is only necessary to record the differences -- additions and cancellations
-- between the world being created and the "real” world, whose information can be shared by
all the others. Some of the assertion-patterns in the data base may in fact be the triggers of
demon programs. These, too, may be attached to context-layers within which they are active

Other Uses 45 _ Section 26

or inactive, and may be shared by several contexts in the same manner as assertions.

Unfortunately, on a serial machine it is very hard to implement a context
system that will run reasonably fast when both the number of layers active at once and the
number of assertions matching a given probe is large. Once again, we are caught in an
intersection: we want to intersect the set of items matching the probe with the set of items
residing in any of the currently active context-layers. In CONNIVER this was handled by
indexing the assertions without regard to context; when an access request produced a list or
"bucket” of matching items, this bucket was filtered, item by item, to eliminate any elements
that did not reside in currently-active fayers. As CONNIVER was implemented, this layer-
check itself involved an intersection, but it would be possible in principle to reduce it to unit
cost. This was an adequte solution for knowledge bases of the size appearing in typical
CONNIVER programs, but it would be quite slow if the match-buckets were large. Another
possible approach, useful when the number of active layers is small compared to the typical
bucket-size, is to hash items into different buckets according to their layer-membership; an
access would thus involve many calls to the data-base ‘indexer, one for each currently-active
layer, but no further filtering would be needed. McDermott [1975] discusses some other
strategies that fall between these two extremes and which, under the proper conditions, speed
thing up considerably. In general, however, the need to filter data-items according to their
context-layer membership imposes a substantial additional cost on every access request
handled by the knowledge base. |

Since this problem is an intersection of semi-explicit sets, it is not
surprising that the parallel network solves it. When a new context is activated, we can
propagate a marker-bit trough the tree or tangled hierarchy of inclusion-relations to all of
the nodes representing layers within that context. This process is very similar to the
marking of the nodes in a type hierarchy, and it runs just as fast. Then, in a single step, we
mark the handle-node of every link that resides in a marked layer. Cancellation marks can
be placed as well. In any subsequent propagations or accesses, a part of the controller's
command will specify that only those links marked as being active and non-cancelled are to
respond; the rest simply ignore the command. Changing contexts is thus very fast, and no
cost at all is added to other kinds of data access.

I might add, at this point, the observation that a scheme I suggested in
an earlier paper [Fahlman, 1974b] for the fast inheritance of properties through a type-
hierarchy by replacing the superior nodes with context-like "packets” of information is in
fact a non-solution. Where previously we had to intersect (in some sense) the set of nodes
with the desired property with the set of nodes superior to the node in question, the packet-
based system would have to intersect an equivalent set of property-assertions with the set of
currently-active packets. Since there will be one active packet for each of the node’s
superiors, the intersection is computationally identical. The packet system may have some
psychological importance in organizing the problem of demon-control, but it does not buy us
any speed. Because of my experiences in using CONNIVER, I had come to think of
context-filtering as a free operation, even though on some level I knew that this wasn't true.
Of course, in a fast-intersecting network system, the inheritance problem is solved without

Other Uses 46 Section 2.6

any gimmicks of this kind.

Though a parallel network system can perform the normal kinds of
information storage and retrieval without resorting to the use of demon programs, it may
still be desirable to use some demon-like mechanism for interfacing the knowledge base to
the problem-solving system. We might, for instance, want the system to be constantly on the
lookout for certain classes of objects, events, situations, and proposed goals: whenever some
member of one of these monitored classes is noticed, the system is to initiate an appropriate
action. An example for humans would be a rattlesnake or a burning building: if we see one
of these items, we want our recognition processes to interrupt our current train of thought
and initiate (or at least consider) certain special actions; a blade of grass or a car going by
would not normally cause this sort of interrupt in normal situations, though they would do
so on the moon. A mcre Al-flavored example of set-monitoring would be found in Asimov's
Three Laws of Robotics [Asimov, 1950], which inhibit the robot from performing certain
broad classes of actions and specify high-priority goals to be puisued in several broadly-

‘defined situations. Obviously, if the robot is going to obey these rules, it must have

monitors watching its own goal-proposing and situation-analyzing systems, looking for the
cases in question. Monitoring operations of this type have a lot to do with the phenomena
that we call "awareness” or "common sense”. Each individual monitor may be invoked only
rarely, but there are a lot of them; taken together they can have a large effect on the
system'’s behavior. The problem, of course, is to detect the monitored cases as they appear,
but not to bog the system down by making it repeatedly check the triggering conditions for
thousands of individual monitors.

The usual solution is to use demons: for each item that we want to
monitor, we put a separate demon-program in the data base. We speak of these as though
they were independent, constantly-running processes, but of course they are not really
implemented in this way on a serial machine. Instead, we associate the demon program with
a pattern in the data base, and we look for a matching demon pattern whenever the system
encounters a new object, proposes a goal or action, or makes an addition of any sort to its
knowledge -- in short, whenever it encounters some entity that might be monitored. The
ongoing process is thus being constantly interrupted by demon checks, but this is tolerable
since each of the checks is very quick -- just one call to the data-base. We must, however, be
very careful not to do anything that would slow down these checks in any significant way.

Unfortunately, that is exactly what happens when we try to use monitors
in a human-like way. The problem is that we want to monitor classes of items, but the
demons must be triggered by individual members of these classes. Asimov's First Law
prohibits the robot from performing any action that might harm a human; it says nothing
explicitly about the act of sticking a knife into John Smith. Again, we are faced with a
substantial intersection: we must intersect the set of all possible d=scriptions of the proposed
action with the set of all action-types that are prohibited or otherwise monitored, and we
must do this for every action that the system wants to perform, every object that it
recognizes, every new fact that it deduces, and so on. Obviously, then, the intersection must
be a fast one. Unfortunately, the set of all possible descriptions for a given action is not

Other Uses 47 ' Section 26

available in any explicit or semi-explicit form in the knowledge-base. To be perfectly safe,
then, we would have to consider each monitored class separately and check whether the
action in question can somehow be made to fit into it. It appears, however, that for human-
like performance we do not have to be infallible in this matching, and that we can confine
ourselves to considering only those monitors that are attached to the new item's explicit
superiors in the type hierarchy, after the item has undergone the usual kinds of digestion
and analysis. Demon inheritance, then, involves the same kinds of processing that we have
already seen in the inheritance of properties. If the tree of superiors is large (but not deep)
the parallel network will have a substantial advantage over any serial machine.

The sort of exclusive-split clash detection that we saw in Section 2.4 can
be viewed as a special case of type-monitoring. Whenever we add an item to one class in a
type-split, we must in effect create demons to prevent it from being added to any of the other
classes in the same split. We must check for such demons whenever a new VC-link is added
to an entity that already is being described in some other way. - The clash-checking scan
described earlier takes the place of all these demons. Other particularly important demon-
types can be implemented by comparable special-purpose digestive mechanisms. Usually,
though, it is sufficient just to tie the demon to a type-node somewhere in the network, and to
run it whenever an instance of that type is created.

Another use for fast intersections is in the completion of chains of causal
relations in a story or in a real-life situation. This problem has been investigated by
Charniak (1972], and more recently by Rieger [1975a, 1975b), Bullwinkle [1975a, 1975b), and
Rumelhart [1975). Schank’s group also has been active in this area [Schank, 1975; Wilensky,
1976]. In general, these problems consist of a situation from which a number of possible
actions might be predicted, each with a large set of possible sub-actions, and a specific
observed action that might be occurring for any of several possible reasons. The task, then,
is to find the simplest chain of goals and sub-goals that connects the observed action to some
goal related to the given situation.

An example of this, taken from a lecture by Schank, is the following:
“John wanted to be chairman of the department. He bought some arsenic.”" Most readers
seeing these sentences together would assume that an assassination is in the works, but it is
not clear how deductions of this type can be made so easily. It cannot work purely by
prediction, since there are many thousands of other steps which could just as easily have
followed the premise: John might have decided to shine his shoes, or to get another cup of
coffee and return to his typewriter, or to buy a revolver instead of arsenic. Since each of
these statements makes sense, and there are thousands more like them, it would be very
difficult to create predictions for all of them. Nor can we work only backwards: the arsenic
might be for moles in John's garden, for bumping off rich Aunt Agatha, or for doping
semiconductors. It would be impossible to list all of the situations in which a person might
buy arsenic and then try to find becoming a department chairman in this list. The best
solution, probably, is to expand the tree of predictions out a few steps, to expand the tree of
possible reasons for the observed action back a few steps, and to hope that something
connects. (Of course, if we know in advance which paths are going to be important in a

Other Uses 48 Section 2.6

given set of examples, we can make sure that those paths appear among the predictions.
This is cheating, though it may be useful temporarily as an exploratory technique.)

This is, of course, an intersection problem: we are intersecting the set of
action-types which might be predicted from the given situation with the set of possible
descriptions of the observed action; to put it another way, we are intersecting the set of
possible reasons for the action in question (given its various alternative descriptions in the.
type-hierarchy) with the set of predictions emanating from the situation. (As we will see,
actions and situations live in a hierarchy of types just as objects do.) The general strategy,
then, is to mark the set of superior descriptions of the situation and of the observed action.
Then, a few levels at a time, we propagate markers from the situation to its predicted actions
and sub-actions and from the action to its possible reasons and super-reasons, looking for a
connection. Each of these expanding networks is potentially huge, of course, but that is no
problem for a parallel system of this sort. When a connection is found, we must check it to
see whether it makes sense in the situation at hand, but each of these candidates has a high
likelihood of success: since we are carefully controlling the general direction of the
propagation, we will not find the kind of totally irrelevant paths that would plague a less-
disciplined system like Quillian's.

The big question in all of this is whether the system contains enough
explicit information about goals and subgoals, plans and expansions, for the intersection to
proceed entirely by propagation, or whether new descriptions will have to be created as the
search proceeds. In other words, are the sets to be intersected represented in the necessary
semi-explicit format, or are they merely implicit in memory? 1 have not worked on this
enough to have a really good answer, but I think that in most cases the necessary path will
actually be present at some level in the network. The key to this expectation is the
observation by Rieger [1975b] that, except for the indexing strategy used (and in this system
there is no indexing), the same body of knowledge is needed to plan actions as to recognize
and record them. If, whenever we see, produce, or read about an action we save it in
memory, and if the record includes not only the action’s type, but also the reason for it and
the list of sub-actions that were used to carry it out, then we will very quickly build up a
library of explicit plan-types linked together along the dimension from cause to effect. When
we want an action capable of producing a desired goal we can find it, and if we want a list
of actions that have some other type of action as a step, we can find that too. It is this
network of action-types and expansions that the marker bits can crawl around on in the
search for causal connections. Of course, if the chain to be recognized is novel in some way
we will not find a connection, but that is true of humans as well; if a dead end is reached,
we enter a much slower mode in which we build up new descriptions for the items we are
trying to connect. All of this is just a plausibility argument, of course: there is a great deal
of work to be done before a system of this sort can deal with any but the simplest cases of
causal connection. Still, it does seem to give us one way around a problem that would
involve a tremendous amount of search on a serial system.

The point of all of this has been to demonstrate the surprisingly large
number of explicit and semi-explicit set intersections that must be performed by an

Other Uses v _ 49 Section 2.6

intelligent system, especially in those areas of intelligence which have traditionally been the
most difficult for researchers in Al. Any serial machine will have trouble with these
intersections: it will either have to perform them very slowly or resort to complicated
heuristic techniques to avoid or reduce the problem. A parallel network, on the other hand,
can solve such problems very quickly and cleanly. The parallel technique requires no
cleverness in designing indexing systems or heuristic guidance programs, no canonical
formats to aid the matcher, and it involves none of the problems of arbitration and mutual
intelligibility that afflict the more familiar kinds of parallel systems. If intelligence (in the
sense that people use the word) is indeed built in large part from such intersections, then the
serial computer is a rather poor tool for attacking the problem, both as a piece of hardware
and as a metaphor. Too many operations that ought to be very easy are made to seem very
hard by our use of this tool, especially in the critical area of representing and using
knowledge. Whether or not it is ever actually built, the parallel network system gives us a
better way of thinking about these problems.

Goals of NETL 50 Section 3.1

3. The NETL System

3.1 Overall Goals of NETL

If the fast-intersecting network system is to be useful to us as a
knowledge-base, it must be supplied with an appropriate body of representational
conventions and the procedures to exploit them. NETL is my attempt to create such a
system. The tangible part of NETL consists of three sets of procedures: one set translates
incoming knowledge into pieces of network structure, performing various kinds of checking
and digestion along the way; another set accesses pre-existing structure in response to
queries or match-requests; the final set performs a variety of housekeeping tasks when the
system is not otherwise occupied. These housekeeping functions include the completion of
any complex digestions that were interrupted by the flow of ongoing events, the massaging
of portions of the network into equivalent but more efficient forms, and the creation of new
intermediate-level descriptions by an extension of the learning methods developed by
Winston (1975]. The intangible portions of NETL include the representational conventions
themselves and the more general representational principles and ways of looking at things
that gave rise to these conventions. This integrated collection of viewpoints and attitudes is
the real substance of NETL; the decisions about whether to name a link VC or IS-A, and
whether it should have two incoming wires or three, are rather arbitrary and unimportant.
Still, without a few trees it is impossible to build a forest.

NETL might be thought of as a language for representing knowledge
and a processor for that language. A certain base-load of knowledge is assumed by the
system -- facts about sets and membership, areas and sub-areas, numbers, statement types,
and so on -- but specific knowledge about any particular problem or domain is not a part of
NETL. There is thus a boundary (though in places a rather fuzzy one) between the
representational system itself and the knowledge it contains. There is a difference in
philosophy between NETL, a language for representing knowledge, and KRL [Bobrow &
Winograd, 1977], which is advertised as a language for creating knowledge-base systems: in
KRL many of the decisions about the strategy for representing and accessing a given piece
of knowledge are left to the user’s discretion; in NETL these decisions have, for better or for
worse, already been made; the user supplies only the knowledge itself. The reason for this
difference is that, given the power of the parallel network system, 1 do not see any real need
for hand-tailoring the processing strategy to the domain under consideration -- domain-
specific tricks are not needed to achieve acceptable search-speeds. In this respect, NETL
combines the advantages of the slow but general logic-based approaches to knowledge
representation and the fast but highly specialized procedural approaches.

NETL was designed with five basic goals in mind:

———————— - - — S e . T A——

Goals of NETL 51 Section 3.1

(1) Compatibility with the parallel network implementation.

Not all network systems have this property. Shapiro’s system [1971], for
example, represents its deduction rules as patterns for the replacement or copying of portions
of the network. It might be possible to convert such a system into a propagation-based
format, but it could not be used directly. NETL is the first comprehensive system of which I
am aware (since Quillian) to have been designed from the ground up with a parallel
marker-propagation strategy in mind. Of course, NETL can also be used on a system that
simulates the parallel hardware, and many of the ideas in NETL are equally applicable to
systems that handle search in other, more traditional ways.

(2) Completeness: the system should be able to represent anything that people can.

This is, of course, a goal to be approached, not an absolute requirement
to be met. There are many areas of human knowledge for which the representational
machinery has not yet been built in NETL. So far, however, I have not encountered any
particular domains or problems for which the representational ideas of NETL are
fundamentally unsuited -- NETL is not, for instance, confined only to verbs or only to
single-state static descriptions. Note that I am referring here to the NETL representation,
not to the parallel network system: as we saw in previous sections, there are many problems
for which the fast marker-propagation scheme is no help, but NETL is still able to represent
the knowledge involved in these areas. As new domains are explored, it is likely that
problems will be encountered which will invalidate some of NETL's basic ideas, but I see no
signs that this is imminent.

At present, NETL can represent most of the things that I would like to
tell it in a fairly natural way, and can represent most of the remainder in some way, however
clumsy and awkward. The general area that causes the most trouble is the use of multiple
contexts and descriptions to describe the interaction of space, time, subject area, and various
hypothetical states. This is not too surprising, since these areas have been troublesome for -
everyone else, and I have only recently been able to give them my full attention. Some basic
mechanisms exist for these things, but they are far from being fully developed. This is a
high priority goal for future work, since the proper handling of multiple contexts is essentia!
in many applications, especially in the areas of problem-solving and natural language.

All things considered, 1 am encouraged by the breadth of coverage that 1
have been able to get from the relatively compact set of mechanisms in NETL. If one
concentrates only on verbs or physical objects or static descriptions, the rest of the world can
provide an awfully large rug to sweep things under -- any problem that becomes
embarrassing is simply banished from the domain of interest. NETL is denied this tactic by
the goal of completeness. This has made it a harder and slower task to develop NETL, but
I believe that the resulting system is much more useful because of this goal.

Goals of NETL 52 Section 3.1

(3) Semantic precision.

As Woods [1975] pointed out, many of the early semantic networks
suffered from problems of semantic imprecision: it was not always pos: "le to assign a clear
meaning to a link, especially when quantification was involved. My own early attempts. at
creating a network-based semantic system [Fahiman, 1975] suffered from most of these same
problems. I believe that the current NETL avoids most of the problems noted by Woods,
though it was a difficult struggle to reach this point while maintaining the speed advantages
of parallel search. The key idea in clarifying the semantjcs was the concept of a virtual
copy, as explained in Section 2.2.

(4) Simplicity and intuitive clarity.

It should be a relatively straightforward process to stuff new information
into the system. That means that the representations being used should be natural and
intuitive for people, and the representational philosophy behind the system should also be
reasonably intuitive. There should be no agonizing decisions involved in deciding how an
idea should be represented: if there are two possible ways of expressing a given concept (as
there often are in NETL), and it is not immediately obvious which one is appropriate, then
both representations should produce essentially the same results. Ideally, NETL's ways of
looking at the world should be so simple and intuitive that they become invisible, at least
until they are compared with older, more awkward representational schemes. To some
extent, of course, simplicity and intuitiveness are in the mind of the beholder: notions of
how some idea ought to be expressed are probably very different for an English speaker
than for a native speaker of Chinese or Navajo. All I can say, then, is that to me NETL
seems very intuitive in most respects, and the places where it is not intuitive yet -- I will
point these out as we go along -- are in general the parts that have not yet been fully
developed.

The mapping from English into NETL is, in many respects, surprisingly
direct. This was not a design goal, but it started happening anyway; after a while, 1 began
to actively encourage these linguistic parallels to develop. If a certain way of expressing an
idea seemed natural in English, I tried to find some analogous way of expressing that idea
in the network. In many cases, this search was successful. Again, this was a heuristic
guidance mechanism for my own use -- a way of deciding where to look and what to look
for -- not an attempt to do serious linguistic research. I'm not sure that this aspect of NETL
will make it any easier to write a natural language interfacing program, but it does seem to
aid one's intuitions when deciding how to express a given idea in nodes and links.

The danger here, of course, is that a system which parallels some aspect
of natural language without really capturing the whole idea will often cause more confusion
than one that is completely alien. I don’t know how serious this problem will be in the case

Goals of NETL 53 Section 3.1

of NETL, but by exposing it to a diverse audience I hope to find out. If necessary, I can
disguise these quasi-linguistic aspects of the system so that they resemble nothing at all.
(McDermott [1976] presents some of the arguments in favor of such a step.) Until such
problems appear, however, I have decided to let these parallels develop freely in NETL, and
even to encourage them, in the hope that the resulting system will be more intuitive and
easier to learn. It is interesting to speculate about the extent to which our language reflects
the inner structure of our mental representations, but NETL is much too new and its

relationship to human psychology is much too unclear for it to play a role in these
speculations.

(5) Economical representation.

We would like the representations used by NETL to occupy the smallest
possible number of nodes and links, and to run in the minimal amount of time. We would
also like the node and link elements to be as simple as possible, and we would like to keep
the number of node and link types reasonably low. Obviously, we can optimize some of
these factors at the expense.of others; the best trade-off depends on the precise nature of the
implementation technology and the nature of the tasks it is being used for. In general, all of
these goals have been assigned a rather low priority, since the system is already very fast
compared to serial systems, and the number of nodes and links is also small -- no space is
wasted by redundant storage of potentially-inheritable facts, no space is used for indexing-
structures, and very little space is used by the programs responsible for searches and simple
deductions, since these are handled in a uniform way. 1 have trizd not to actually waste time
or space, but I haven't fought too hard to eke out that last ten percent. In this stage of the
system’s development, clarity is more important than parsimony. One thing that I have tried
to avoid is any unnecessary lengthening of the tree branches, since that does translate
directly into added marker-propagation time. A few compromises have been made for the
sake of the simulator, such as the arbitrary decision to limit all node and link-types to a
maximum of six attached wires, but I have tried not to do anything for the simulator that
would actually hurt the ultimate hardware implementations.

Of the existing representational systems mentioned in section 22, none
was satisfactory by all of these criteria. Each system had its strong points, however, and
NETL has many features in common with each of them. Where some feature of an existing
system has been adopted directly, I will of course note the source, but there is a real problem
in properly crediting the original source of features that are either very common in
representational systems or that only bear some indirect relationship to the forms used in
NETL. The problem is that notational conventions of this kind are extremely sensitive to
the context within which they are used: two systems may use some piece of notation that
looks identical on the surface, and even in its formal definition -- an 1S-A link, for example
== but if these constructs are not used in identical ways, their effective meanings could be
very different. On the other hand, two ideas which look very different on the surface could
be very closely related in spirit. Also, some of these ideas are floating around loose in the

Goals of NETL 54 Section 3.1

language we use every day, and will thus be independently captured any number of times
before exactly the right combination of ideas clicks together into a stable form. I am afraid
that it will take a better scholar than I to sort out this tangle in a way that is fair to
everyone, :

Basic Descriptions 55 Section 3.2

3.2 Creating Basic Descriptions

As 1 mentioned earlier, NETL represents both nodes and links with a
single type of hardware device (real or simulated) called an element. Each element contains
storage for some number of marker-bits (currently a rather generous 15) and for some set of
type-flag bits (currently a rather generous 20). The type-flags may be thought of as
permanently-set marker-bits or as address bits on the bus connecting the element to the
controller. One flag-bit indicates whether the element is a node or a link; others specify
what type of node or link the element represents; still others are used to specify particular
options or properties within those basic types. All but a few of the flag-bits are redundant,
specifying properties of an element that could be established by a normal marker-
propagation through the links of the network. Since certain sets of elements would be
marked rather frequently, it is easier to leave the markers in place permanently in the form
of flag bits. The number of flags and markers currently used by the system has been
influenced by the word-length of the PDP-10 on which the simulator runs -- in a hardware
implementation, speed and economics would determine the mix, but the total number of
markers and flag-bits would probably be somewhat smaller.

In an attempt to minimize confusion, I will begin the names of the
various node and link types with a single asterisk: «VC link, *INDY node, and so on.
Those flag-bits that modify a node or link without changing its basic type will be written

modification is serious enough to be spoken of as a new element-type or whether it should
be treated as an option within a type. I have tried to make these choices in the way that will
cause the least confusion for the reader. The system, of course, sees only bit-patterns and
doesn’t care what names we give to one pattern or another. Occasionally in the following
examples I will refer to some relationship like "hates” as though it could be represented by a
single link, though in reality it would take several nodes and links to represent "A hates B".
The asterisk notation, however, will always be reserved for true NETL primitives.

Each element-unit has a set of wires coming out of it, and a single
terminal to receive incoming wires from other elements. The number of wires in use and the
meanings attached to the various wires depend on the type of the element in question. Most
types use only two or three wires, but the system allows up to six. Internally, the system
refers to the various wires of an element by neutral labels (the letters A through F), but in
this report I will normally use the type-specific labels indicating what the wire is used for:
parent-wire, owner-wire, or whatever. Link-elements normally use the wires A and B for
their primary connections, as in "A is a virtual copy of B". A table of the currently-defined
node and link types in NETL, along with the wire assignments and flag-bit modifiers
relevant to each, is included in Appendix B. Most of the entries will be rather cryptic until
we complete our discussion of how these nodes and links are used, but it might be useful to
glance over this table before going on, just to get a feel for what it contains.

In the following sections, I will describe a series of increasingly complex
representational examples and how they would be handled in NETL. The mechanisms of

Basic Descriptions 56 Section 3.2

NETL -- the node and link types, the modifiers, and the procedures for digestion and for
accessing portions of the network -- will be introduced gradually, as they are needed. 1 will
also try to point out, as we go along, why certain choices were made and what the problems
were with the alternatives. Since, in a system like this, everything depends on everything
else, there will have to be a few forward references and some hand-waving use of structures
that have not yet been fully explained, but I will try to keep this to a minimum. If the usage
of some node or link type becomes confusing, consult Appendix B.

For clarity in earlier sections, I often referred to «TYPE-nodes as
TYPICAL-ELEPHANT or whatever; from now on, I will drop the "typical” and just refer
to the «TYPE node as ELEPHANT. If I want to refer to the associated set-node, I will call
it ELEPHANT-SET.

e e—— e

Individuals 57 Section 3.3

3.3 Creating a Free-Standing Individual

In creating simple descriptions we will need four basic types of nodes. An
=INDV node represents some specific individual entity that exists within some universe (real
or imaginary), or an individual role within some type-description. (These individuals are
not necessarily physical objects, but could be individual places, events, statements, etc) A
«*TYPE node does not represent any particular individual entity, but serves as a description
for a whole set of individuals which inherit its structure and properties through «VC
(virtual copy) links. Each *TYPE node is associated with another node (an «INDV) that
represents the set of individuals that the «TYPE node describes. When a virtual copy of
some description is created, the roles within that description are mapped into the new copy
(see 35 for details). Such mappings are left implicit until we have something to say about
the new version of the role in question, at which point we create a M AP node to represent
the new version. If we map a «TYPE node into a new description, we want the new version
to behave as a *TYPE node also. This is represented by the use of a *“TMAP (type-map)
node. NETL contains a few other, more esoteric node types, but we will save them for later.

Let's begin by creating the description for a free-standing individual: we
will create a description for the individual Clyde, an elephant that (we will claim) exists in
the real universe. We begin by finding a virgin XINDV node (or a virgin element that can
be turned into an «INDV node by setting the proper flag-bits). This node is to represent the
concept of Clyde -- the name "Clyde" is another «INDV node, a descendant of the WORD
type-node, and is associated with the CLYDE node by a PROPER-NAME statement. In
general, the concept-node will be referred to as CLYDE and the word-node as "CLYDE". A
word-node can have many meanings, and a concept-node can have many names. We will
see later how the sequence of letters or phonemes that make up a word are represented, and
how the parallel network system can help us to disambiguate multiple word-meanings. In
the current simulated version of NETL, each node has a unique internal name hidden
inside it, but this is a debugging and developmental aid that will go away when a natural-
language interface for NETL has been developed. External programs that must
communicate with NETL will generally bypass the names altogether and use pointers to
directly access varjous nodes in the network.

Having created the «XINDV node CLYDE, we must do two things: we
must indicate what kind of individual the node represents, and we must indicate the
universe or area within which that individual exists. We can perform the first of these tasks
by creating a «VC link from CLYDE to some «*TYPE node -- in this case, the ELEPHANT
node. Every xINDV node, and every «TYPE node except the top-level THING node, has at
least one «VC link to a superior x“TYPE. If we have nothing to say about the type of an
“INDV, we can place it directly under the THING node, which is so general that it tells us
essentially nothing about the entity in question. Usually, though, we will have at least some
broad idea of what we are dealing with -- a physical object, a place, a set, or whatever.

Notice that the «VC link does two things: it makes the CLYDE
description a virtual copy of the ELEPHANT description, and it makes CLYDE a member

Individuals 58 Section 3.3

of the set that is associated with this «TYPE node -- in this case, the node ELEPHANT-
SET. The set-member relationship is implicit between a set-node and its “«TYPE node, and
is considered to be inherited by any instances of the s«TYPE node. This convention is rather
arbitrary: we might instead have required an xINDV to have explicit connections both to
the “TYPE node and to the set, but this would have wasted links. We might also have
made membership relation between the individual and the set explicit, and have left the
virtual-copy relationship to be inherited. This option in some ways seems more intuitive --
it is somewhat easier in English to talk about class-member relationships than about virtual
copies -- but it would double the length of all scans through the type hierarchy, since the
markers would have to pass through the set-nodes as well as the *«TYPE nodes. In this case,
I opted for speed rather than intuition. Since the two forms are so closely related, I doubt
that the choice of one or the other makes any real difference.

To cut down on the number of links the system uses, every xINDV comes
equipped with a parent-wire with which it can be attached to one superior type-node. This
parent-wire connection functions exactly as a real «VC link does, except that it lacks a
handle-node of its own and therefore cannot be cancelled, modified, pointed at, or tied to a
context. The idea here is to use the parent-wire to represent the xINDV node’s most
fundamental (and presumably immutable) identity -- for CLYDE this would be
ELEPHANT -- and to use real «VC links to represent any other, less secure class-
memberships that the object might possess. In the unlikely event that the elephantness of
Clyde becomes the subject of controversy, the parent wire connection from CLYDE to
ELEPHANT should be cut and replaced with a real «VC link that can be argued about
explicitly. For the vast majority of xINDV nodes, however, the fundamental identity will
never be questioned, and this parent-wire mechanism will save the system many links.

The parent-wire mechanism is not really necessary, since every parent-
wire could be replaced by a «VC link. I have included it both for economy and for
symmetry with certain other node-types which do require a direct parent-connection of this
kind. It also seems very intuitive, somehow, to indicate an object’s fundamental identity in a
way that sets it apart form other classes to which the object just happens to belong. Let me
make it clear, however, that NETL does not use this distinction, as many systems do, to
control or limit the inheritance-search machinery.. In a parallel network system all of the
upward paths can be explored at once, so there is no need to confine the search to some
special path of primary identities. In almost all cases, then, the marker-propagating
procedures of NETL treat parent-wires and «VC links identically.

We can indicate the universe or area within which the individual is
considered to exist by the use of an *EXIN ("exists in") link from the «INDV node to the
node representing the area. As with the «VC links, we can replace one «EXIN link with a
wire coming out of the “INDV node, called the existence-wire. The existence-wire, like the
parent-wire, should only be used in stable, non-controversial situations. If we want to refer
directly to the statement that the object exists, to deny that statement, modify it, or make it
dependent upon some context or set of conditions, then we should replace the existence-wire
with a full-scale «EXIN link possessing its own internal handle-node. In this case, we want

Individuals 59 Section 3.3

to place CLYDE into the current "real” universe, which NETL calls REAL-U, so we simply
connect the existence-wire from the CLYDE node to the REAL-U node. (I am not going to
get into a discussion of what “real” means -- read as much or as little into this term as you
like.) Figure 6 shows the resulting configuration. As in all the examples we will see, the
figure only shows some tiny portion of the knowledge network; even so, these figures have a
way of becoming hopelessly crowded.

TO
ANIMAL
TO
S e 0—® ELEPHANT
L~ PARENT -WIRE
existence (*INDV NoDE)
WIRE

Figure 6: xINDV node for CLYDE, an ELEPHANT in REAL-U.

In NETL, an individual exists within some specified area, which is
represented by an «INDV node descended from the AREA *TYPE-node. Areas are also
used to indicate the scope within which a link or other statement is considered to be valid.
(We will see more clearly the difference between scoping and existence in section 36.) An
area can represent a certain portion of space, of time, or of subject-matter; neutrinos, for
example, exist within the area of particle physics. An area can also represent some
combination of other areas: Massachusetts in 1775 or Physics in the Nineteenth Century, for
example. Most areas are parts of other areas -- in fact, the PART-OF relation can form a
tangled hierarchy of areas that is similar to, but distinct from, the type-hierarchy. Unlike
the type-hierarchy, however, the hierarchy of areas and sub-areas does not spring from a
single, all-inclusive root node. There are many areas that are not parts of other areas, and

Individuals 60 Section 3.3

these outermost areas are given the special name of universes.

A universe is represented by an «INDV node that is descended from the
UNIVERSE «TYPE-node, which in turn is a sub-type of the AREA «TYPE-node. In
addition to REAL-U, there are universes representing various imaginary or hypothetical
realities, such as are often created in works of fiction or in exploring possible solutions to a
problem. Most of these universes begin life as virtual copies of REAL-U (not parts of
REAL-U) and local changes are then made within them. As a general rule, if some
individual exists in an area A, it also exists in all areas of which A is a part, up to and
including the universe that contains A.

(As individuals, the universes must exist somewhere, so the system
contains a special universe called META-U.: within which the other universes exist. META-
U exists within itself. Note, however, that universes are individual entities that exist within
META-U, not parts or sub-areas of META-U. Guy Steele has suggested that META-U is
NETL'’s representation of itself -- I am not sure about this, but it is an interesting idea.)

The interaction of multiple universes and areas -- of space, time, and
alternative versions of reality -- is,.as you might imagine, an extremely complicated subject,
and one which 1 have only begun to explore in the context of NETL. I do have some
interesting ways of using these things, however, and we will see them in section 3.9. For now,
let’s forget about the time dimension altogether and confine our attention to two rather tame
static cases: we will allow an individual to exist either directly within some universe like
REAL-U, or to exist within one sub-area of some universe. We might, therefore, have said
that CLYDE exists in AFRICA, which is a sub-area of REAL-U; this would of course
imply CLYDE'’s existence in REAL-U as well.

This explicit existence-connection serves three purposes. First, it allows
us to answer direct questions about what exists where. Second, it makes it possible for the
system to mark all individuals that exist within a certain area and its sub-areas. This can be
of great use to the recognition system in filtering out possible matches: if I am trying to
recognize someone that I pass on the street, I do not want the matcher to find face-
descriptions from mythology or leading figures of the French Revolution. Finally, if we state
(with a =LIKE »VC link, but never mind that for now) that one universe is to be a virtual
copy of another, we want the new universe to begin life containing everything that the old
one did. The existence links in the old universe show us which individuals are to be
included in the virtual copy. Of course, most of these individual mappings remain virtual:
we only create “M AP nodes for those individuals that we want to say something about. It is
this ability to virtually copy a structure.without doing much real work that makes it possible
to copy whole universes at a time, contents and all.

The usefulness of the existence-connection can be seen more clearly if we
consider the use of an «INDV node to represent an individual role within some «TYPE-
node description. Such a description can be thought of as a sort of mini-universe, with its
own individuals, sets, and interrelations among them. Consider the circuit-description of

Individuals 6l Section 3.3

some particular variety of radio, and an individual resistor, named R23, that appears in that
circuit. R23 would be represented as an xINDV node with the existence-wire (or equivalent
=EXIN link) connected to the «*TYPE node around which the circuit-description is built.
That description is R23's universe: R23 exists there and nowhere else. While we are
working withkin the circuit description -- to analyze how the circuit works or to calculate the
voltage at some point -- we want R23 to behave in all respects as an individual. If we are
asked which individual resistor in the circuit dissipates the most power, R23 would be a
perfectly acceptable answer. If, however, we look at the circuit from the outside, R23 is not a
real individual at all, but a role to be mapped when we make individual copies of the
circuit-type in question: each radio we make from this plan will have its own distinct
version of the resistor R23. Individuality, then, is a somewhat more elusive quality than we
might have imagined. It is a function not of the node itself, but of the universe from which
it is viewed. That is why it is so important to tie an «INDV node to the proper universe.

Before we go on to discuss type-descriptions and roles in more detail,
there are a few options relating to xINDV nodes that we should cover. The first of these is
the «:SPLIT flag. As we will see in later sections, two xINDV nodes can be equated by
placing an «EQ link between them. This link says that the two nodes in question represent
the same external entity, and that any descriptive information that applies to one is to apply
to the other. The «:SPLIT flag on an xINDV node says that this node is not to be equated
with any other xXINDV node in the same area that also is marked with a «SPLIT flag. In
other words, a «SPLIT node represents a true, distinct individual within its area or
universe, one that we feel certain is not equivalent to any other such individual. Any
attempt to create an *EQ link, directly or indirectly, between two such individuals causes a
clash-alarm to be raised. (It is possible, of course, to ignore this clash-warning and create the
=EQ_link anyway.) Once again, there is a choice of whether to use a link or a more compact
form for representing a certain option: the ««SPLIT flag on an «xINDV node is equivalent to
a «SPLIT link running along that node’s existence-wire from the node itself to its area of
residence. If there is some question about whether the split is valid, the full-scale link should
be used, so that it can later be denied or argued about.

If the s««SPLIT flag (or the equivalent link) is not present, we speak of
the :INDV node as representing a pseudo-individual. A pseudo-individual can function
perfectly well as an individual, and can have any amount of descriptive information
attached to it, but it does not complain when it is equated to other pseudos or to a single real
individual (assuming, of course, that the things being joined do not clash for other reasons).
With this pseudo-individual mechanism we can, for example, create a complex description of
the suspect in a crime, and can later try to equate this suspect-description to various real
individuals. Note that the existence of a proper name is not really the issue here, though
real individuals often have one and pseudos usually do not. Jack-the-Ripper is a pseudo, a
mere description that is equivalent to some existing real person; my notebook, since 1 have
not bothered to christen it, has no name, but is still a true individual, equivalent to no other
notebook. The issue, then, is whether or not we want to commit ourselves to believing that
some new individual is distinct from any true (non-pseudo) individual that we already know
about.

Individuals 62 Section 3.3

We can indicate that some group of pseudos are distinct from one another
by the use of the DISTINCT statement-type, which will be described in detail later. We
might, for example, want SMITH, JONES, and ROBINSON to be real individuals wijthin
the universe of a particular puzzle, and to let THE-ENGINEER, THE-BRAKEMAN, and
THE-CONDUCTOR be a set of distinct pseudos within the same universe. No clash is
caused when we equate JONES with THE-CONDUCTOR, but any connections within
either of the two distinct sets is forbidden. This general approach to the use of pseudo-
individuals is similar to, and was to some extent inspired by, the "manifestation” mechanism
of KRL.

The other option-flag that ought to be mentioned here is the «:EXTERN
flag. In the NETL simulator, this indicates an xINDV node that represents a legal LISP-
object: a number, an atom-name, or an S-expression. This LISP-object is hidden inside the
node in the internal name field. When the system is preparing an answer to some question
that it received from an external LISP program using the knowledge-base, these
«:EXTERN objects are of particular interest: they represent the legal, meaningful answers
that can be passed back to the external program. A pointer to some anonymous *M AP node
would not be a very useful answer to an external query. As the system develops, the need
for such canned answers will probably disappear, but it might still be useful to mark the
nodes that represent legal interfaces to other portions of the intelligent system: phonemes,
muscle commands, or whatever. Again, KRL has a structure comparable to this in its
"direct” descriptions.

e . A———

Types 63 Section 3.4

3.4 Creating a Type-Description

In the previous section, we created an individual member of an already
existing type; in this section we will see how to create a type-description, a sub-type of some
already existing, more general type. (Don't worry about creating the first one -- NETL
comes with the top-level THING node and several other high-level types already built.)
Whenever a «TYPE-node is created, the corresponding set-node must be created as well.
The central example in this section will be the creation of the ELEPHANT «TYPE-node
and the «INDV node that represents the set of elephants in REAL-U. ELEPHANT will be
a subtype of the existing MAMMAL «TYPE-node.

The set-node is created first. We simply obtain an unused «XINDV node
from the stock of free elements, connect this node’s parent-wire to the SET «TYPE-node, and
connect the existence-wire to REAL-U. It would be possible to use a flag-bit to permanently
mark set-nodes as a distinct node-type, but I have not yet found any real need for this. If
desired, we can connect the set’s parent-wire not to the SET «TYPE-node itself, but to some
sub-type of SET: NON-EMPTY-SET, LARGE-SET, etc. The area in which the set is said
to exist is normally the area in which the set’s individual members exist -- if the members
are scattered, the set's area should be chosen to include them all. An attempt to create an
individual member outside the range of its set will create a mild (easily dismissed) clash. If
the set of unicorns is defined for some mythical universe, we want to notice that something is
amiss if we try to create a unicorn in REAL-U, but we might decide to go ahead with the
creation anyway.

For the ELEPHANT node itself, we need an unused »TYPE-riode. This
has a parent-wire, identical in purpose to the parent-wire of an xINDV node, which is
connected to the MAMMAL «TYPE-node. It also has a set-wire which, not surprisingly, is
connected to the ELEPHANT-SET node. It does not have an existence-wire, since the
«“TYPE-description does not really exist anywhere as a real individual, and in fact behaves
rather like a universe itself. The name "ELEPHANT" can be represented as another
“INDV node, a descendant of the WORD node, which is connected to the ELEPHANT
“TYPE-node by a TYPE-NAME statement. (The names ELEPHANT and ELEPHANT-
SET may be hidden inside the new nodes by the simulator, but these are just debugging
aids and will not be seen by any natural-language interface.) Figure 7 shows the final
configuration of the ELEPHANT node and its set-node.

As we noted earlier, the parent-wire or »VC-link connection from
ELEPHANT to MAMMMAL creates an implicit MEMBER-OF relationship between
ELEPHANT and MAMMAL-SET. In addition, a parent-wire or «VC-link connection
between two «TYPE-nodes creates an implicit PART-OF or SUBSET relationship between
the corresponding set-nodes. To find the subsets of a given set S, we simply mark the
“TYPE-node attached to S, propagate this marker down to all *«TYPE-nodes below, and
mark the set-nodes of these sub-types. To mark the supersets of S, we do the same thing,
but propagate the markers upward. There may also be explicitly-stated subsets or supersets
of S, represented in the usual role notation (see section 3.5), which should be added to the

e — ———

Types 64 Section 3.4

SET MAMMA L
o
/l/ PARENT- WIRE
L_
REAO'?‘VV\NV\AM ELEPHANT
ELEPHANT -SET '}\ (% TYPE - NODE)
&« INDV NODE
¢ E:) SET-WIRE

Figure 7: xTYPE node for ELEPHANT, a subtype of MAMMAL, with
its set-node.

implicit subsets or supersets found by the scan through the type-hierarchy.

At this point we might also want to create an explicit statement of the
SUBSET relationship (a special type of PART relationship) that holds between the new
ELEPHANT-SET node and the old MAMMAL-SET node. This relationship is.implicit in
the ::VC connection from ELEPHANT to MAMMAL, but it is sometimes useful to put it in
explicitly -- certain propagations are speeded up and it gives us a useful place to hang
certain type-split information. I will save this for later, however, since we have not yet
developed the machinery for stating relationships of this kind. I will not usually include
subset relationships in the diagrams, since they clutter things up tremendously.

The reason for using two separate nodes for a set and its typical-member
description should be obvious: their properties behave differently during inheritance. The
properties and structures attached to the *TYPE-node are inherited by each individual
member of the class, while the set-node’s properties belong to it alone. The most important
property attached to the set is its member-count or cardinality; if we don’t have the exact
count, perhaps we have upper or lower bounds. In fact, useful subclasses of the SET class
exist to make it easy to specify the most commonly used count-bounds: empty sets, non-
empty sets, few, many, pair, and so on. As new individual members are added to a set, the
bounds are checked and a clash is reported if a violation is detected. (This is done during
the digestion of the new member, along with other kinds of clash-checking.) If we have an

e < ——— e - - — e ———

Types 65 Section 3.4

exact count for a set, and that many members are already represented, the set is placed in the
COMPLETE-SET category and no new members can be added. The membership of the
set in COMPLETE-SET also makes it possible for us to reason by eliminating all but one of
a set of alternatives. (See section 24.)

Many other properties, usually thought of as meta-information, can be
attached to the set-node. Taxonomically, we might speak of mammals as being a class.
This, clearly, must refer to the MAMMAL-SET, since we don’t want CLYDE to be a class
by inheritance. The ELEPHANT set has a GEOGRAPHIC-DISTRIBUTION covering
substantial parts of Asia and Africa; again, we do not want this to be inherited, since the
AFRICAN-ELEPHANT subset has a smaller GEOGRAPHIC-DISTRIBUTION. One of a
set’s subsets may be the largest, the most popular, the most widely scattered, the first to be
identified and named, or the set that has grown the fastest; none of these things necessarily
apply to that subset’s individual members.

In some cases, there seems to be a weak form of inheritance from a set to
its members: if the set of dogs is more popular than the set of snakes, this probably means
that the typical dog is more popular than the typical snake. Perhaps this is a default at
work: if a statement is made about a set that would normally make sense only when applied
to its individual members, that statement is treated as applying weakly to each individual
member, as though it had been attached to the «“TYPE node. ("Weakly" here means that the
statement serves only as a default and that exceptions are freely allowed.) This sort of
inheritance would be handled by serial processes outside of the normal marker-propagation
mechanism, either when the statement is made or perhaps at access-time. Effects of this sort
need to be studied more closely if NETL is to be brought into line with human usage. In
general, though, we will not consider a set-node’s properties to be inherited by the members
of that set.

In case there is some confusion, let me emphasize that I am using the
word “set” here in the normal, intuitive sense, not in the mathematician's sense: it is not the
case in NETL that if two sets have the same membership, they must therefore be the same
set. Since every set has an attached «TYPE-description, the empty set of unicorns is a very
differnt entity from the equally empty set of gryphons, and the two sets are represented by
different nodes. Both of these set-nodes are members of the EMPTY-SET class.

I should also point out that a «“TYPE node of the normal sort describes
the typical member of a set, but does not define that set. It is not the case that any
individual fitting the «TYPE node’s description must be placed in the set. A «TYPE-node’s
set contains only those things that we say it contains, and these things then inherit the
“TYPE-node’s description. There is another mechanism, the :EVERY node, for
representing defined sets -- the set of all purple mushrooms in North America, or whatever
-- and we will consider this mechanism in a section of its own (3.8). The recognition system
is allowed to examine *TYPE-node descriptions and to suggest which type-set a new
individual fits into best, but this works by a sort of weighted average over the available
features, not by satisfying a formal definition. The »TYPE-node sets are very similar in

Types 66 ‘Section 3.4

spirit to the exemplar-based sets that, according to Rosch [1975, Rosch & Mervis 1975],
dominate much of human recognition and thinking.

We will see how to divide a given type into a split-set of exclusive
subtypes in section 3.6.

Roles 67 Section 35

3.5 Creating and Mapping Roles

As we saw in section 2.2, a *“TYPE-node is intended to serve as the
nucleus or base-node of a description, consisting of an arbitrarily large portion of the
semantic network. Whenever we create an instance or subtype of that «TYPE-node, by
attaching a =VC link or parent-wire to it from below, we want the entire description
associated with that «TYPE-node to behave as though it had been copied. In particular, we
want the role-nodes within that «TYPE-description to be virtually mapped into the new
description; the «MAP-node representing the new version of a given role is only created
when we want to say something about that new version that does not apply to the original.
In this section, we will explore the mechanics of role-creation and mapping, and will see in a
general way how the virtual-copy inheritance mechanism is implemented.

A role is simply an «INDV node, representing either a single entity or a
set, whose existence-wire (or link) is attached to a *TYPE-node rather than to some
individual area or universe. We will refer to this “TYPE-node as the owner of the role.
Regardless of whether it represents a single individual or a set, a role-node functions as a
description in its own right, with its own set of properties, identities, and statements linking
it to other nodes. In addition, a role-node representing a set (and therefore descended from
the SET «TYPE-node) will have an associated “TYPE node of its own, describing the
typical member of the set; this .7 PE-node may have its own set of roles, and so on down
any number of levels. We will look at the individual roles first, since they are simpler.

An individual role (or a set-role, for that matter) may be either an /N-
role or an OF-role. The issue here is whether the owner node can in any way be viewed as
representing an area within which the role-node’s referent exists, or whether we just want to
indicate that for each copy of the owner, a corresponding map of the role-node exists
somewhere. Both IN and OF roles establish this one-to-one correspondence, but only the TN-
role implies that the role exists within the area defined by the owner. The OF-role
relationship is therefore a weaker version of the IN-role relationship, and it is included in
the IN-role’s meaning. This distinction between IN-roles and OF-roles is not a particularly
critical one in the operation of the system, but it is useful in bringing NETL into line with
fiuman intuitions about area-inclusion, as reflected in the way we construct natural-language
descriptions. Consequently, it seems reasonable to follow the form of English expressions
rather closely in deciding what is OF and what is IN. If a case seems to be on the
borderline, it probably doesn’t matter which form we choose.

ENGINE, then, is an IN-role within CAR, since it is both "of” and "in"
the car: the car defines an area -- in this case, a certain volume of space -- and the engine
exists inside this area. MOTHER is an OF-role tied to the PERSON description: every
person has one, but there is no sense of area-inclusion. We can say that every person hkas a
mother, but we would not say that the mother is in the person. Some examples of other IN-
roles would be the CONDUCTOR in an ORCHESTRA, the FIRST-ELEMENT in a
SERIES, the YOLK in an EGG, the BEST-TEXTBOOK in a SUBJECT-AREA, the
OUTPUT-TRANSISTOR in an AMPLIFIER-CIRCUIT, and the SHORTEST-DAY in a

Roles 68 Section 35

YEAR. As you can see, the sense of "area” in use here is a very broad one, including time,
space, subject-area, and the area defined by a set or grouping of elements. Some examples of
strict OF-ROLES, with no sense of area-inclusion would be the NAME of a PERSON, the
HOME of a FAMILY, the LENGTH of a STICK, and the OWNER of a PET. The fact
that some «TYPE-node clearly represents an area does not imply that a// of its roles are IN-
roles. An area can have properties that are not inside the area, just like any other «TYPE-
node. We might, for instance, speak of the LENGTH of a SERIES, the
CIRCUMFERENCE of a CIRCLE, or the PRINCIPAL-EXPORT of a COUNTRY. None
of these roles could reasonably be expressed with the word “in".

To represent an individual IN-role, we simply create the xINDV node for
it, and connect an «EXIN link (or the node’s existence-wire) from the role-node to the
«TYPE-node of the owner. This, of course, is exactly the notation we developed for stating
the existence of a free-standing «INDV in an area, except that here the area is a *TYPE-
description rather than some individual area within a universe.

An OF-role relationship is represented by a different link, called the
+EXFOR ("exists for") link. An «EXFOR link from xINDV-node A to «TYPE-node B says
that for every member of type B, there exists a map of individual A. In other words, every B
has exactly one A. Note that this does not say that every A has exactly one B: every person
has a mother, but one mother may fulfill this role for many offspring. If we.really want to
indicate that every person has a distinct mother, we can set a special flag, called the
«:RSPLIT flag, on the existence-link creating the role (or on the role-node itseif if the
existence-wire is used). This flag causes a clash to occur if some individual, is assigned to
play the given role twice in the same context, for two distinct owners. This is detected
during the digestion of the second assignment.

If we want to use the role-node’s existence-wire instead of a full-scale
existence-link, we use the «:EXIN option-flag to indicate which sort of existence the wire
stands for: if the flag is on, the wire acts like an «EXIN link; if the flag is off, it acts like an
«EXFOR. Figure 8 shows the ELEPHANT description with a HEART IN-node and a
WEIGHT OF-node. Note that both of the existence-wires are represented as wavy arrows,
but that the stronger «*EXIN connection is drawn with a heavy solid arrowhead. This is just
an illustration, of course. In actuality, both of these roles would be created at some higher
level in the type hierarchy and mapped down into the ELEPHANT description: HEART
would be created at the VERTEBRATE or ANIMAL level, and WEIGHT would be
created far up the tree at PHYSOB (physical object).

If an individual OF-role does not exist within the area defined by its
owner, where does it exist? This is a rather tricky question. We might at first imagine that
the OF role exists in whatever area the owner exists in, but this is not always the case. We
might want to say that every famous scientist on earth has a namesake-crater on the moon.
We might even want to represent the statement that for each of his relatives in real life,
Tolkien created a corresponding orc in Lord of the Rings. (As far as 1 know, this statement
is false.) Each relative has an orc, but the relatives and the orcs exist in entirely different

Roles 69 Section 35

MAMMAL ORGAN %‘?T‘Afls\ubgl)%L ¥
o—e o
REAL-U ELEPHANT HEART WEIGHT

Figure 8: The HEART IN-role and the WEIGHT OF-role of the
typical ELEPHANT.

universes. | think that in general we will have to explicitly indicate where an OF-role exists
by the use of an «EXIN link, pointing to the desired area, in addition to the <EXFOR. It is
not clear what default, if any, should be used if this <EXIN link is absent. If I say that
every ELEPHANT has a MOTHER, is it fair to allow some ELEPHANT’s mother to exist
only on Alpha Centauri or in some completely imaginary universe? If we allow this, the
original statement becomes rather meaningless. Until a good answer comes along, I will use
the universe (not the specific area) that the owner occupies as the default in such cases, but I
am not claiming that this is right.

Now, as soon as we have created the «VC link saying that Clyde is an
clephant, we can begin referring to his inherited roles: his heart, his trunk, his mother, and
S0 on. As long as we are just asking for information, we do not need to create the
corresponding «“MAP-nodes; the role-nodes in the ELEPHANT description will respond to
our queries as though they were a part of the CLYDE description. -If, however, want to
make some statement about CLYDE's version of one of these roles, we will have to create the
“MAP node to which this new information can be attached without altering the original. In
creating the M AP-node, we have two wires to worry about: the map-wire, which is attached
to the role-node being mapped, and the owner-wire which is attached to the mapped
version's owner -- in this case CLYDE. This «MAP-node will henceforth function as a
pseudo-individual description, and we can say anything we want to about it. Figure 9
represents the statement that Clyde’s mother is Bertha. Figure 10 represents the statement

Roles 70 Section 3.5

that Clyde's mother is the same as Ernie’s mother, whoever she might be.

Notice how this works: First, we create the “M AP node that represents by
definition the mother of Clyde, or whatever. If Clyde has a mother, this «M AP-node
represents her, whoever she may be. Then we attach arguable assertions, in the form of
links and statement-structures, to this node. Among these assertions may be an «EQ_ link
stating that the MOTHER-OF-CLYDE «MAP-node and the BERTHA node represent the
same entity in the real world. This statement can be argued about, tied to a particular
context, or even denied. While the «*EQ link is in effect, the descriptions attached to the two
nodes are effectively merged -- anything we know about one applies equally to the other. If
however, this link is cut or cancelled, or we are operating outside of its area of validity, then
the two nodes become separate once again, and each retains its own description. This is the
normal procedure in NETL for assigning an individual player to a role or, to use the more
familiar vocabulary, for assigning a value to a property or filling a frame-slot.

What if Clyde, unlike other elephants, has no mother? Perhaps he is a
clone, created in a (rather large) test-tube. In this case, we simply run a “*CANCEL link
(which will be described in detail in the next section) from the CLYDE node up to the
original MOTHER role-node. (The *CANCEL link could also be connected to the
MOTHER node's existence-link, if it has one.) This will have three effects: first, if we ask
whether Clyde has a mother, the answer will be that he does not; second, if we try to create
a *“MAP node to represent Clyde’s mother, the discrepancy will be noticed and a complaint
will be issued; finally, if we want to spend a bit of extra time to check for this, every
reference to an already-existing “MAP node for Clyde’s mother can be made to issue the
same complaint. In the system's normal, non-careful mode of operation, discrepancies of the
latter sort would not normally be checked for, and some might slip by.

(A similar condition might hold in an example like "The present king of
France is bald" -- a favorite example in Epistmology and the Philosophy of Language. (See,
for example, Strawson [1971] and several other papers in the same collection.) The problem,
roughly, is in explaining how a property like baldness can be ascribed to this non-existent
entity, and still have some sort of apparent meaning. In a system like NETL, there might
well be a node for the king of France, an individual role within the France description, a
descendant of the MAN node, and a node whose existence-link happens to be scoped in
some past area of time. In the current universe, this entity does not exist, but the node is still
there. If we refer to the king of France, we will find this node, though possibly with a
warning message that its referent does not currently exist. Still, if we ignore the warning we
can refer to the king’s hair or fingers, or attach any reasonable human properties to him
without any further clash appearing. If we refer to the king's gills or say that he is a
cabbage, we will get a clash -- non-existent the king may be, but his node is still descended
from the MAN node, with all that that implies. Of course, this only explains how such an
example might work -- what it means is a problem I gladly leave to the philosophers.)

1If a role is mapped from one »TYPE-description down into another, it
still functions as a role. It may then be mapped down again, and so on until it reaches a

71

REAL-U ELEPHANT
OW® MOTHER

*

OWNER
SWIRS V'V MAP-WIRE
BERTHA
j MOTHER
*
¥EQ-LINK (®*MAP NODE)

Figure 9: "Bertha is the mother of Clyde."

REAL-U MOTHER

ERNIE'S
CLYDE ERNIE &t:gfei POTHER

Figure 10: "Clyde's mother is Ernie's mother."

72

MAMMAL
o—e

A

ELEPHANT g
£

NOSE

‘Q

CLYOE e

TRUNK
U

ACLYDES

TRUNK

Figure 11: The NOSE role mapped from MAMMAL to ELEPHANT to

CLYDE.
MAMMAL NOSE CYLINDER LENGTH
o—e o—e

? 41\

RUN K .
ELEPHANT TRUNK LEsTH 1.3-METERS

$% ——e
LYDE'

| teone]| T

TRUL LENG
CLYDE «

Figure 12: "An elephant's trunk is a cylinder, with a typical

length of 1.3 meters."

Roles 73 Section 3.5

free-standing =*INDV description -- normally the bottom of the tree. Figure 1l shows the
NOSE role being created in the MAMMAL description, and being mapped down through
ELEPHANT into the CLYDE description. (The NOSE role’s parent wire would be
connected to the «“TYPE-node of the PART set-role, defined somewhere above MAMM AL,
but this need not concern us at present) At the ELEPHANT level, this role picks up a
great many new properties, including a new role-name: TRUNK. From ELEPHANT on
down, either the term TRUNK or the inherited term NOSE can be used to refer to this role.
Figure 12 shows haw a role’s role can be mapped: the ELEPHANT's TRUNK is described
as a CYLINDER, and every CYLINDER has a LENGTH. The LENGTH of the
ELEPHANT's TRUNK is equated to a node representing the quantity 1.3-METERS. This
quantity is the length of the typical elephant’s trunk, and is the default to use if no other
length is specified for an individual elephant. Moving down to CLYDE's level, we see the
=M AP nodes for his trunk and its length, ready to have more properties attached. Note that
if we equate CLYDE'’s trunk-length with some other quantity, not equal to 1.3-METERS, we
must cancel (for CLYDE only) the «EQ link on the ELEPHANT level so that the two
quantities do not both try to answer any question about Clyde’s trunk-length. If NETL gets
two conflicting answers to a question, it will try to find and return the more local answer, but
it is much better to eliminate the conflict before it happens.

Now, finally, we have built up enough structure that we can begin to
examine how the inheritance process works for virtual copies. To look at some mapped role
within a description is a two stage process: first, we must activate the description in question;
then, with a different marker-bit, we can explore whatever role it is that concerns us at the
moment. Suppose, for example, that we want to look at the properties of "the trunk of
Clyde". First, we activate the CLYDE description by choosing a free marker-bit, placing it
on the CLYDE node, and propagating it upward through the hierarchy of «VC links and
parent-wires. These markers are also propagated across all «*EQ_links in either direction,
since the intent of an *EQ link is to merge the descriptions of the two nodes it is joining.
Cancellation markers are also placed at this time on all those links and statements that are
not to play a role in the CLYDE description, but we will not worry about the details of this
for now. The result of this activity is to place activation markers on all of the superior
descriptions of which CLYDE is supposed to be a virtual copy, directly or by inheritance.

Now for the tricky part: Every *M AP-node whose owner-wire is connected
to a node that we have marked as being active will behave as though its map-wire were an +EQ
link. Any marker placed on the *M AP-node will be propagated up the map-wire to the node
above; any marker placed on the role-node will be propagated down this wire to the «M AP
node. In other words, while' we are working within the activated CLYDE description, all of
the nodes representing some particular role and its maps are effectively merged or shorted
together -- if we mark any one of these nodes, within a few cycles we will have marked them
all. (This discipline is enforced by the scanning programs in the controller, which still
govern all propagations.) In effect, this means that a property attached to any of these nodes
will behave as if it were attached to all of them. When we are attaching information to the
node representing CLYDE's trunk, we still want to use the :M AP-node in the CLYDE
description, but {or accessing purposes it is wrong to think of any single node as

Roles 74 : ‘ Section 35

representing Clyde's trunk -- all of the shorted-together nodes represent this concept jointly.
Notice that if we ask for the trunk of some other elephant, a different set of trunk-nodes is
shorted together, and the information pertaining only to Clyde’s trunk will not be accessible.

To find the LENGTH of the TRUNK of CLYDE, then, we proceed as
follows: First, the CLYDE description is activated by an upward marker sweep of marker
ML Then, marker M2 is placed on the TRUNK role-node which, as it happens, is found in
the ELEPHANT description, and is propagated up all «VC links, across all z<EQ_links, and
across all Ml-activated map-wires. This will mark all the nodes in the system that might
carry information relating to "the trunk of Clyde". At this point we are done with the Ml
marks, but we may want to leave them in place in case we later want to find out something
else about CLYDE. The M2 marks can now be used as an activation set to find the
properties of Clyde’s trunk. If we are looking for the length, we place another mark, M3, on
the LENGTH role (found in the M2-marked CYLINDER description), and we propagate
these within the M2 activation. Figure I3 shows the diagram of figure 12, with the M1, M2,
and M3 markers in place. The M3-marked description-set, representing the length of

MAMMAL NOSE CYLINDER LENG6TH
4 M N M2 M2 M3
ELEPHANT | M1 TRUNK M3 13METERS
€ <
¢ M2 M3

Figure 13: Marking to find the LENGTH of the TRUNK of CLYDE.

Clyde's trunk, can be used for subsequent processing, or it can be returned as an auiwer, In
returning an answer, we want to return an xINDV node from the marked set that will make
sense to the outside world -- that is, a node marked with the :.«*EXTERN flag. In this case,
the 1.3-METERS node would be chosen. (If there are several nodes with the «:EXTERN
flag set, any one of them will probably be an adequate answer.) We will need to add a few

Roles 75 Section 35

complications to this picture later, but that is the general idea.

This might seem a rather strange and indirect way to implement virtual
copies. Why allow the M AP nodes to propagate markers in both directions? Why not just
treat them as «VC links, propagating only upwards during property-inheritance scans?
There are two advantages to the scheme I described above: first, it allows us to skip over
unimportant levels as we map roles through the hierarchy; second, and more important, it
makes it possible for us to create virtual copies of descriptions that themselves contain
virtual-copy relationships between some of their roles.

To see why we might want to skip levels in the mapping process, consider
the following case: Suppose we have a role for HEART in the MAMMAL description, and
want to create a “M AP of this for CLYDE. Suppose, too, that we have nothing at all to say
about the HEART of the typical ELEPHANT. In this case, we would like to connect the
M AP-node in the CLYDE description directly to the HEART-role in MAMMAL, skipping
over the ELEPHANT level, as shown in figure I4. If at some later time we do want to create

MAMMAL HEART
o—e

ELEPHANT ——
<

ELEPHANT'S
HEART

CLYDE'S
CLYDE ¢ HEART

Figure 14: Level-skipping by a xMAP-node.

the ELEPHANT-HEART node and hang some properties from it (also shown in figure 14)
a unidirectional inheritance scheme would force us to scurry around reconnecting all of the
heart-nodes of individual elephants so that they will appear below ELEPHANT-HEART,
and thus inherit its properties. In the NETL scheme, however, we can leave the
configuration of figure 14 as it is, since whenever we are within an elephant description,

Roles % - Section 3.5

ELEPHANT-HEART and MAMMAL-HEART will be merged by the map-wire joining
them, and both sets of properties will be found. If the role-definition and the map are
widely separated in the hierarchy, this can save us many intermediate nodes.

The value of this is clearer if we look at its global effects. The solid
directional backbone of the system is provided by the tangled hierarchy of virtual-copy links.
You will recall the importance of always sending markers either upward or downward
through this hierarchy: if we do both at once, we eventually mark everything and the scan
in question is worthless. If we were to handle role-mapping by the same sort of
unidirectional inheritance we would end up with many copies of the type-hierarchy, one for
each role that we wani "o r.«p. The system described above avoids this by letting the role-
maps make a sort of parz itic use of the solid, directional type-hierarchy connecting the
owner-nodes. Since the activation scan follows a path that is directional and orderly, the
network of map-links that are activated by this scan can get away with being fragmentary
and undirected.

To see why we might want to virtually copy a description that contains a
virtual-copy relationship between some of its roles, we must consider the case of set-roles. A
set-role is just like an individual OF-role or IN-role, except that it is descended from the
SET node and therefore has a «“TYPE-node of its own attached to it. In figure 15, we see
that every ELEPHANT has a set of four LEGS, and that the-typical leg in this set is a
CYLINDER. Either the set node or the *«TYPE-node for this set or both may be mapped

MEMBER
SET Count CYLINDER
o—e o—e
4
ELEPHANT
o—e
LEG-SET ﬁTL_ LEG
SET-WIRE

Figure 15: The set of four LEGS of the typical ELEPHANT, that
set’'s typical member.

down into the description of some individual elephant; figure 16 shows the M AP nodes
representing CLYDE's set of legs and CLYDE’s typical leg. Since the map of a »TYPE-

Roles m Section 3.5

node is to be treated as a «*TYPE-node in its new description, we use a “«TMAP to represent
it instead of a regular :sMAP; the connections are identical and the *«TM AP node works like
a “MAP node during inheritance. Of course, we would not normally map these nodes until
we have something to say about them in the CLYDE description. Note the difference
between creating a virtual copy of a “TYPE-node and mapping it into an existing description:
the former creates a new individual or sub-type of this type; the latter just makes explicit
the version of a type that already logically exists within some virtual copy.

ELEPHANT LEG
3
'Y 1 ﬂ~
CLYDE'S
CLYDE 0(— LEG'5E$
T CLIDE'S
TYPICAL
LEG
(*TMAP NODE)

Figure 16: CLYDE's typical leg and set of legs.

If we now create LEFT-FRONT-LEG, an «INDV role within the
ELEPHANT description, we want to indicate that this is a «*VC of the TYPICAL-
ELEPHANT-LEG «TYPE-node. This creates exactly the situation mentioned above: a
“TYPE-description in which one mappable role is a virtual copy of another. Figure 17
shows what happens when we map both the typical elephant leg and the left front elephant
leg down into the CLYDE description. Assume, now, that we say something about the
typical leg of Clyde -- perhaps his legs are extra-long for an elephant. This property must
somehow be made to apply to CLYDE’s left front leg as well. Fortunately, this falls out of
the propagation rules described above. If we ask about CLYDE's left front leg, we activate
the CLYDE description with marker MI, then begin marker M2 on the LEFT-FRONT-
LEG node defined in ELEPHANT. This marker will travel down the map-wire to
CLYDE's version of LEFT-FRONT-LEG, giving us access to the properties there. It will
also go up the »VC link to ELEPHANT's TYPICAL-LEG, and from there down to
CLYDE's TYPICAL-LEG. The properties on all of these nodes, as well as nodes above
them like CYLINDER, would be available for use. Note that the markers must flow both
up and down at once to achieve this effect, an impossible situation without the activation

e g

Roles 78 Section 3.5

ELEPHANT s
TYPICAL
LEG

ELEPHANT
o—d

L CLYDE'S
CLYDE & &— e L.F.LEG
TYPICAL
LEG

Figure 17: CLYDE's typical LEG and LEFT-FRONT-LEG, mapped down
from ELEPHANT.

step. Such cases have been very hard for previous semantic networks to handle, if they
allowed them at all.

Notice that we do not have to create the M AP node for CLYDE's typical
leg in order to create a random individual leg for CLYDE: we can run the new leg-node's
parent-wire to the ELEPHANT description’s TYPICAL-LEG node instead. If, later, we do
create the map of this *«TYPE-node for CLYDE, the two TYPICAL-LEG nodes will be
shorted together whenever we are working within the CLYDE description, so the individual
leg will inherit from both nodes. Notice, too, that if we have several individual legs
represented, they will all inherit from the TYPICAL-LEG node, but they will not inherit

from one another: the virtual copy links still only allow upward propagation during
inheritance scans.

If a single role-name Is used for many roles, each of which is in a
different description, NETL can help the natural language system in disambiguating the
reference. Suppose the word "HEART" is used both for the blood-pumping organ in the
ANIMAL description and the central part of an ARTICHOKE. If we ask for "Clyde’s
heart”, we will activate the CLYDE description, including the ANIMAL node, mark all of

e o —————— e - e ——— ———

— . ————

Roles 79 Section 35

the roles within the active descriptions, and then see if any of these is associated with the
role-name "HEART". Presumably, we would find the ANIMAL-HEART role-node and not
the one associated with ARTICHOKE. If two HEART -roles are within the activated
description-set for CLYDE, then we have a more interesting problem. In general, this must
be solved by looking at what is being said about the heart in question -- if we are lucky, one
interpretation will clash and the other will not. If we ask for some role which is not present
in the CLYDE description, the system could do one of several things: create the role, asking
for more information about it; find some class into which Clyde could fit that does contain
the role in question, and place Clyde there; or complain to the user.

In addition to their primary function of mapping roles into copy-layers,
“M AP nodes can also be used to represent the description of some individual within a given
area. We might, for instance, have some special set of properties to attach to our description
of Abraham Lincoln, but want these only to apply to Lincoln in the year 1860. We could
represent "Lincoln in 1860" by creating a special «M AP-node whose parent-wire is connected
to the basic ABRAHAM-LINCOLN description, and whose owner-wire is connected to the
node representing the temporal area that we call the year 1860. This «M AP-node functions
almost exactly as a normal *MAP-node functions in a description: when the 1860 node is
marked as being active, the LINCOLN-IN-1860 node is merged together with the basic
ABRAHAM-LINCOLN node, and both descriptions are accessable. When we are operating
outside of the 1860 area, the connection is broken. Also, if you want to look at the
description represented by the LINCOLN-IN-1860 node, you must first activate the 1860
area. The area-activation procedure is slightly different from the procedure for activating
descriptions -- for one thing, markers propagate across PART-OF relations as well as «VC
links -- but the general idea is the same. We will see more of this when we look at the
context system.

One final topic should be covered before we go on to other things: a
phenomenon that I call role reversal. In most situations, the use of the indefinite article to
express some idea in English indicates that a virtual copy is being (or has been) made
Clyde, for instance, is an elephant, and every elephant is @ mammal. The definite article, on
the other hand, refers to some existing individual, often an individual role within some
description. (It can also refer to the typical member of some existing set, as in “The elephant
has a long nose.”") The reason you can refer to the heart of Clyde is that somewhere above
Clyde is a description containing the assertion that every whatever-it-is Aas a heart, and
Clyde inherits this. Similarly, we can refer to the legs of Clyde, meaning the set of Clyde’s
legs. No rule in English is ever without qualifications and exceptions, but this seems to
serve as a fairly reliable rule of thumb for determining whether a given case is a virtual
copy or a mapped role. Often, of course, the possessive form is used instead of the phrase
“the A of B".

Typically, then, we refer to an animal and its heart, a person and his or
her mother, a car and its engine, and so on. Sometimes, however, we refer to a heart or a
mother or an engine as an entity in itself, as though these things were »TYPE-descriptions
rather than roles to be mapped. We could, of course, translate "a heart” into “the heart of an

Roles 20 Section 3.5

animal” and represent that instead -- in other words, to create an arbitrary copy of some role,
we create an arbitrary anonymous individual for this role to belong to. For some cases, this
seems to be the right approach: it is hard to think about a circumference without its circle
or a last-element without its series. In other cases, however, it seems clear that the entity in
question is able to exist independently of its normal owner: if we see a row of hearts in a
butcher shop, there seems to be no overwhelming compulsion to describe these in terms of
some now-defunct animal -- they are just pieces of meat of a certain type.

It seems clear that in cases like this there are two nodes for HEART, one
representing the physical object-type that we speak of as a heart, and the other representing
the role of heart within some animal. These two nodes are distinct, but they are intimately
connected: the HEART role-node has a «VC-link up to the HEART =«TYPE-node; the
«“TYPE-node for HEART has an individual role in its description for the animal of which it
is (or once was) a part. (In general, if the role-node has the «*RSPLIT flag set, the «TYPE-
node will have an individual owner-role; if the «xRSPLIT flag is not present on the role-
node, there may be a set of owners.) Given a role, we can always define a class that includes
all of the players of that role in a given context-area. To do this, we need an *EVERY-
node, as we will see in section 3.7.

Statements and Links 81 Section 36

36 Statements and Links

In the preceding sections we saw how to build up various kinds of nodes
in NETL; in this section, we will consider in detail the techniques for saying things about
the concepts that these nodes represent. The basic unit of declarative information in NETL
is the statement. Some statements are represented as link-elements; others are represented in
the form of individual statement-descriptions, built around an #/ST-node (for Individual
STatement) in much the same way that an individual object's description is built around an
“INDV node. The statement itself is represented by the internal handle-node of the link
element or the «IST-node in the statement-description. In general, the word "statement” will
be used here to refer either to a link or to an «IST-node description, and the word "handle”
will refer either to a link’s internal handle-node or to the «IST-node within a statement.

Through its handle-node, a statement can be treated as an object, with
properties and class-memberships of its own. We might, for instance, want to create role-
nodes for the SOURCE of a statement or its set of SUPPORTS -- the set of other
statements that it depends on. (Doyle (1977] shows how such support statements might be
used in a deductive system.) We might want to indicate that a statement is a mere
DEFAULT, easily overridden if contradictions arise, or that it is SACRED and is never to
be cancelled or doubted. All such meta-information about the statement is attached to the
handle or «IST node, just as it would be attached to any «INDV-node description.

Each individual statement is an instance of some statement-type, just as
an individual object is an instance of some object-type. This class-membership is indicated
by a #VC-link running from the statement’s handle to the appropriate «TYPE-node As in
the case of “INDV-nodes, each «IST-node and link-element has a parent-wire which can be
used instead of a «VC link to indicate its principal class-membership. The statement-types
are represented by «TYPE-nodes which are descendants of the STATEMENT «TYPE-node.
The IST-node representing the statement "Rockefeller owns Standard Oil" will have its
parent-wire connected to the OWNS-STATEMENT «TYPE-node; the »VC-link
representing "Clyde is an elephant” will have its parent-wire connected to the «VC-LINK
#TYPE-node.

For the links, this explicit connection to a particular statement-type is
redundant, since the link’s type is indicated by flag-bits in the link-unit, but the connection is
made anyway. There are two reasons for this: first, it makes the representation of link-
statements and =IST-node statements more uniform; second, it makes it possible for us to
split up the basic link-types defined in NETL into sub-types on the basis of their source,
degree of certainty, or any other property. The «VC-LINK «TYPE-node will appear
somewhere above every «VC-link, but it does not have to be the immediate parent.
Regardless of what the parent-wire says about the tyoe of a link, the link-unit's internal type-
flags govern how it operates during marker propagations. It is important to remember that
the parent-wire of a «VC-link indicates the parent of the «VC statement itself, not the parent
of the node that the statement is about.

Statements and Links 82 Section 3.6

An individual statement is declared to be valid within some area (space,
time, subject-area, etc), which is called the statement’s scope. When the system is working
within that area, we want the statement to be active and to take part in marker-sweeps,
dedurctions, and other activities; when the system is not working within a statement’s scope-
area, we want the statement to play dead. A xSCOPE-link is used to connect the statement’s
handle to the desired area. Most statements have only one scope, but it is possible for a
statement to have many: the statement is active if any of its scope-areas are. Each link-unit
and =IST-node has a scope-wire which can be used to replace any single xSCOPE link
coming into that node. As in other such cases, this wire should only be used in static, non-
controversial situations; if there is a likelihood that the system will want to refer to the
scope-relation of a statement directly or modify the scope-relation, the full-scale *<SCOPE link
should be used. If some statement A has its scope-wire connected to another statement B,
instead of an area, it means that A is to be active whenever B is, and A is to share in any
cancellations coming into B.

The scope connection of a statement is analogous to the existence
connection of an =INDV-node -- in fact, an «IST node can be thought of as an «INDV node
with a scope-wire in place of the existence-wire. The difference is an important one,
however, since the two types of area-connection behave differently during inheritance
through the hierarchy of areas and sub-areas. As we noted in section 3.3, this hierarchy is
distinct from the type-hierarchy, since it follows the transitive PART-OF relationships rather
than the IS-A or «VC-links. (There is some overlap in the two hierarchies, as we will see
shortly.) Both hierarchies are tangled, but the type-hierarchy has a single root-node, while
the PART-OF hierarchy terminates in a number of outermost universe-nodes.

If an object is said to exist within an area, that means that it exists
somewhere within the area; if a statement is said to be valid within an area, it means that it
is valid everywhere within the area. If coyotes exist within NEVADA, they also exist within
the larger areas, like WESTERN-USA, of which NEVADA is a part; they do not
necessarily exist within any given part of NEVADA, like DOWNTOWN-LAS-VEGAS. If
the statement "defenestration is legal” is true in NEVADA, then it is true in
DOWNTOWN-LAS-VEGAS as well (unless there is an explicit local exception), but it is
not necessarily true in WESTERN-USA as a whole. This means that there are two distinct
kinds of marker sweeps that can be performed through the PART-OF hierarchy. To mark
all of the individual entities that exist within a given area A, we mark A and propagate
markers to all of its parts; we then mark the individuals whose existence is tied to any of
these marked areas. To activate all of the statements that are valid in area A, we mark A
and propagate the marks in the other direction, to all of the areas of which A is a part; we
then mark the statements that are scoped within these selected areas. This difference in the
behavior of existence and statement-scoping came as something of a surprise to me -- 1 am
told that the logicians have known something of this sort all along, but they tend not to
express it in these terms. This difference caused a lot of trouble until I understood what was
happening.

The PART-OF relation between two «INDV nodes, X and Y (which may

Statements and Links 83 Section 36

be areas, physical objects, or whatever), is represented not by a special PART-OF link-type,
but simply by creating a PART set-role for Y (the owner) and stating that X (the part) is a
=V C of this role’s “TYPE-node (or «TMAP-node). Figure 18 (omitting the dotted links,
which will be explained in a moment) shows the PART hierarchy for various parts of the
EARTH area-node. The principal reason for treating PART as a normal set-role is to allow
all of NETL's inheritance machinery to function in the normal ways: we can now state
things about every PART of some entity, and these statements will be inherited by the
players of the PART-role. In addition, we can divide the parts of an object into various
classes and sub-classes, while still allowing members of these sub-classes to inherit
membership and properties from the PART-role of that object.

The PART-OF relationship is transitive: a part of a part of X is a part
of X. This means that there are implicit «VC links between some of the *TMAP nodes
representing PART-roles, as shown by the dotted «VC-links in figure 18. Anything that we
know about the typical PART of the EARTH must also be inherited by RENO (unless
there is an explicit exception). Furthermore, in marking the areas that RENO is a PART
of, we must find the EARTH and the USA areas, as well as NEVADA. As we saw earlier, it
is possible to inherit implicit «VC links from a higher level through the virtual-copy
mechanism. We could, therefore, state at the level of the original PART-role that these
implicit =V C-links exist, and allow them to operate by inheritance. This approach works
well enough for the inheritance of a few isolated «VC links, as we saw in the LEFT-
FRONT-LEG example, but in cases like this one, where the inherited »VC links are
numerous and chained together, it could slow down the system’s marker propagations
tremendously: crossing an inherited «VC link requires a marker to travel ali the way up the
type hierarchy and back down again, in place of the single step that would be necessary if
the link were physically present. Even worse than this is the fact that during a part-to-
owner scan through the PART-OF hierarchy, markers normally enter x“TM AP-nodes whose
owner-nodes have not been activated. Following the normal “MAP-node procedures, the
only way to tell whether a given «*TMAP-node represents a PART-role is to individually
activate its owner'’s set of ancestor-nodes and then see if the “«TMAP has been shorted to the
PART node within this activation.

To avoid these inefficiencies, NETL treats PART-roles specially in two
ways. First, the original PART role-node and all of its maps are marked with a special
«PART flag-bit. Whenever a new *TMAP node is created, the system looks for the
=*PART flag on the parent-role and, if it is found, adds a «:PART flag to the new “TM AP
node as well. In figure I8, these «xPART nodes are marked with an asterisk. Second,
whenever a =:PART role is mapped for an owner that itself has a ««PART-node among its
ancestors (that is, if the new “TMAP node is a part of a part), then the implied «VC-link
from the new «*TMAP-node to the ««PART-node above its owner is added explicitly to the
network. With these «VC links explicitly in place, the inheritance system works properly
and efficiently, and it becomes easy to mark the paris of node X or the things of which X is
a part. To mark the parts or sub-areas of USA, we simply activate upward from USA, then
send a mark down from PART within this activation, crossing all «VC-links from top to
bottom. To find all the areas of which RENO is a part, we mark up the network of »VC

84

THING o—@ *'PART

* SUB-AREA
AREA
EARTH Q¢
USSR CHINA VUSA
IOWA oHio NEVADA
INDICATES MAP OF PART ROLE CARsON LAs RENO

aT
MARKED WITH A% PART FLAG Y VEGAS

S

Figure 18: A section of the PART-OF hierarchy, wWith added
explicit xVC |inks.

Statements and Links 85 Section 36

links from RENO with one mark; then, for every *PART «TMAP node in the activated

set, we send a second mark across the wire to its owner-node.

In effect, we have incorporated the PART-OF hierarchy into the type-
hierarchy, and we can now scan in either direction easily. Also, we have specially marked
those “TM AP nodes that are to function as PART-OF links between their descendants and
their owners,. in addition to their usual duties as *“TMAP-nodes. It is admittedly rather
inelegant to treat the PART role in this special way, but its function in establishing the
important hierarchy of areas and sub-areas seems to justify this exceptional treatment. T his
mechanism may in the future be generalized to handle the transitive closures of other
selected role-types.

A statement must somehow be connected to the nodes that it is about.
The manner of this connection is the principal difference between links and =IST-node
statements. The link-units ‘have two special wires, designated A and B, which are connected
to the argument-nodes. (It would be possible to allow links with more than two argument-
wires, but this option is not currently needed and has not been included in the current
simulated version of NETL.) Figure 19 shows the «VC-link representing "Clyde is an
elephant”, with all of its wires connected and labelled. In most diagrams, the handle-nodes,
parent-wires, and sometimes the scope-wires of the links are uninteresting and are therefore
omitted.

STATEMENT o0—9 O0—® ELEPHANT
PARENT- WIRE = IRE
X VC -LINK
L. anpLe -NoDE
2 A-wiRE
CURRENT-REAL-U e ‘-L‘CDJDE
SCOPE-WIRE

Figure 19: Detailed view of a xVC-1ink connection.

Statements and Links 86 Section 3.6

0—e STATEMENT

?

OWN S~
STATEMENT G rrrrnnrinan D OWNER PROPERTY
+y

4

na%g /‘/g,

*IST

[e] o
ROCKEFELLER STp. OlL

Figure 28: "Rockefeller owned Standard Oil in the 1890's."

The «IST nodes use a more flexible method: for each type of «IST
statement certain IN-roles are created, representing the various arguments that the statement
might take. These argument-roles may be defined at any level of the statement-type
hierarchy, and are mapped down through the lower levels into the individual statement-
descriptions. There, the “MAP-nodes representing arguments are tied to the aprropriate
“INDV-nodes by »EQ:-links. Figure 20 shows the statement "Rockefeller owns Standard Qil",
which is scoped in the 1890’s time-area. Note that this mechanism allows us to define any
number of arguments for a statement-type, and to add whatever we want to each role in the
form of properties and class-membership restrictions. In these two respects, the «IST-node
format is more powerful than that of the link-units. The «EQ-links connecting the role-
nodes to their players usually have their scope-wires tied to the statement’s «IST-node, since
the statement itself and the argument-bindings are normally intended to be used as a unit.
It is possible, however, to tie some of the *EQ-links to other scope-areas. We might, for
example, want to state that some unspecified person owns Standard Oil in the 1890's, and to
#EQ)_this owner-role M AP-node to several person-nodes in different hypothetical universes.

In addition to the IN-roles representing the arguments of a statement, the
statement-description may contain OF-roles representing the things we know about the
statement itself. A statement, for instance, may have OF-roles representing its SOURCE, its
DEGREE-OF-CERTAINTY, and so on. These roles may or may not be filled, or they may

’

o ep——— L~ — ————. i s

Statements and Links 87 : Section 3.6

OWNS-
STATEMENT ,_g grrrnrrO OWNER PROPERTY
@
ILLEGAL ¢
RELATIONSHIP o0—e@ PERSON
CURRENT-USA OWNS - SLAVE
SLAVE

Figure 21: OWNS statement specialized to OWNS-SLAVE.

be filled only with an inherited default value. Links, as well as «IST-node statements, may
have OF-roles of this sort. I am not altogether convinced that the IN-role/OF-role
distinction is the proper one to use here, but so far it has not caused any trouble -- there
does not seem to be any other reasonable interpretation for the use of a statement as an area.

‘People sometimes speak of their confidence "in" a certain statement, but this feels like a

linguistic anomaly to me.

As we move downward through the hierarchy of statement-types, the
categories become more specialized and carry more information. Usually this specialization
takes the form of restrictions (class-membership statements) on the roles in the specialized
statement-type or stated relationships that must hold among the various roles. In figure 2,
for example, we see the definition of the OWNS-SLAVE statement-type, a specialized form
of the OWNS statement-type in which the PROPERTY role is constrained to be an instance
of PERSON. In addition to the information inherited from the basic OWNS description,
this subtype has some properties of its own: the PROPERTY role is given the added role-
name SLAVE, and the relationship itself is declared to be illegal in the CURRENT-USA

88

HATES
M O HATER HATED

CLYDE
&0
RATES -
CLYDE

Figure 22: HATES statement specialized to HATES-CLYDE
predicate.

Figure 23: "Clyde hates every snake," with xMAP-node
representing (lyde's hatred for Monty.

Statements and Links 89 Section 36

context area. There could also be specializations of OWNS for property that is land, stocks
and bonds, inamimate objects, and so on. Similarly, the subtype of OWNS in which the
owner is an instance of NON-PROFIT-ORGANIZATION has certain special properties
with regard to the tax laws.

A statement-type can also be specialized by filling one of the argument-
roles, rather than merely restricing it. Each such assignment has the effect of reducing the
number of freely-assignable arguments of the resulting statement-type by one. In figure 22,
we see the two-place HATES statement-type specialized into a one-place HATES-CLYDE
predicate by the assignment of CLYDE to the role of HATED. Note that we can define
restricted statement-types that do not have particular words associated with them in English.

Actually, the above examples are somewhat oversimplified, since they
provide us with no way to distinguist. between the restrictions that define a new statement-
subtype (the PROPERTY being a PERSON), and those statements which are incidentally
true of that subtype, but do not help to define it (the OWNS-SLAVE relationship being an
ILLEGAL-RELATIONSHIP). We will see in section 3.8 how this distinction between
defining and incidental properties can be represented and how this information is used by
the system. Note that even if all of the argument-roles in a statement-type are filled, that
statement-type is still a mere template; in order to actually assert something, an individual
instance of the statement must be created.

So far, we have seen individual statements connected only to individual
arguments. It is also possible to say things about a «*TYPE-node, meaning that the statement
is meant to apply to all individuals of the specified type. Figure 23 shows the statement that

.Clyde hates all snakes. This statement is inherited by each individual snake, just as a link is
inherited. To find every individual that CLYDE hates, we sweep markers up from CLYDE
to all of his inherited descriptions, across any HATE relations we find there, and down from
the HATED role to the individual. To find every individual that MONTY is hated by, we
sweep up from MONTY, backwards across any HATE relations, and down to the
individual players c” the HATER role.

A statement is considered to be a part of every description in which one
or more of its argument-roles resides, in the sense defined in section 2.2: if we make a virtual
copy of one of the arguments of a statement, this creates a new version of the statement as
well. As always, we do not actually make the «MAP node representing this new version of
the statement unless we have something to say about it. Even then, we only have to map the
statement’s handle node; as we have just seen, the original generic form of the statement is
quite sufficient to handle the functional load of passing markers through the statement, from
one argument to another. Figure 23 shows the xM AP node representing Clyde's hatred for
the particular snake named Monty -- a mapped version of Clyde's hatred for all snakes.
This new version of the statement inherits all of the properties of the original, and may add
some new properties of its own. We might, for instance, want to indicate that the
INTENSITY of Clyde’s hatred for Monty is VERY-GREAT.

Statements and Links : 90 Section 3.6

ggs‘rs M
o—e HATER RATED

CLYDE
HATES
SNAKES § &

By

(o) O—e® SANAKE
CLYyDE

CLYDE
HATES

MONTY —» O MONTY

Figure 23: "Clyde hates every snake," with xMAP-node
representing Clyde's hatred for Monty.

If we have two type-nodes among the arguments of a statement, we can
create a map of that statement for individual argument-instances on either side; the :MAP-
node on one side can then be mapped for individuals on the other side to create individual-
to-individual relationships. It does not really matter which side is mapped first in such a
chain. Figure 24 shows all elephants hating all snakes, with “M AP nodes for Clyde's hatred
of snakes, the hatred of all elephants for Monty, and the specific hatred of Clyde for Monty.
To access the version linking CLYDE to MONTY, we mark CLYDE and his ancestors with
one mark, MONTY and his ancestors with another, and allow either or both of these marks
to activate a map-wire. Then, if we start at the parent HATES-relation from ELEPHANT
to SNAKE, we see all of the appropriate maps of it, with whatever properties these maps
might carry. This operation can be generalized to handle any number of type-node
arguments, at least until the system runs out of markers to activate them all.

There are two modifier flags of particular relevance to statements: the
«=NOT flag which negates the statement, and the ««SPEC flag which indicates that the
statement is part of the definition of an *EVERY-node. These will be discussed in section
3.8 In the remainder of this section we will look at the currently-defined link types, especially
those that we did not encounter very often in the preceding sections.

Probably the most important link-type is the virtual copy or «VC link.
This, as we have seen many times already, carries the statement "A is a B". B is always a

Statements and Links 91 Section 36

HATES

ELEPHANTS / !

HATE <
SNAKES
ELEPRANT 0—® SNAKE

CLYDE I

RATES —»O CLYDE
SNAKES

>0 MONTY
S

CLYDE

RATES i

MONTY

Figure 24: "Elephants hate snakes," With individual xMAP-
nodes.

*TYPE-node; A may be either a *TYPE or an «INDV, depending on whether we want to
create a sub-type or an instance of type B. The «VC link also causes A to be considered a
member of the set associated with B. A normal #VC link is never used to connect two
«INDYV nodes.

Sometimes, however, we want a weaker form of virtual-copy relationship
which allows a description to be inherited without conferring formal class-membership upon
the recipient. We might, for instance, want to say that a Cadillac is just like a Chevrolet,
but with bigger fins. In saying this, we do not want to imply that a Cadillac is a Chevrolet,
in any formal sense. We do this by placing a *VC link from CADILLAC to
CHEVROLET, with the »«LIKE modifier set in the link-unit body. During property-
inheritance scans, this link functions just like a normal «VC: a full virtual copy is created,
which can be modified in the usual way to account for longer fins or any other differences.
During scans to answer "is a" questions, however, the «LIKE flag disables its link. A
«:LIKE »«VC link does not trigger the usual *\EVERY-node digestion and clash-detection
mechanisms, both of which are triggered by formal class-membership rather than mere

Statements and Links 92 Section 3.6

inheritance of description.

This s«LIKE mechanism also allows us to state that one individual is to
inherit the description from another individual, without in any sense equating the two. This
is particularly useful when we want to make a copy of REAL-U (or some other individual
universe), so that we can make local changes and examine their effects, without messing up
our view of reality. This is useful in many kinds of problem-solving activity: we might, for
instance, want to create an imaginary universe in which a certain toy block is moved from
one place to another, and see if the resulting structure is stable. It might seem strange to
create a copy of an entire universe in order to answer this question, but in a virtual-copy
system this involves the creation of only a few nodes and links.

It would be possible to set up a s«LIKE «EQ mechanism, analogous to

 the «:LIKE =VC mechanism. This would allow two descriptions to cross-inherit properties

in either direction, without really equating the referents of the two nodes that are joined.
Since | have not found any good use for this mechanism, it is not currently implemented.

Note that in using this mechanism, the whole description of the parent
object is virtually copied, though the copy may then be altered. This is different from
metaphorical description, in which we want to be selective about which features of the
parent object are to be copied. Considerable judgement must be exercised in deciding which
features should be inherited and which should be left behind. Winston [1977] has made a
start toward developing criteria for making this selection, but much more remains to be
done. Often, the use of a «LIKE «VC link is a temporary expedient which will be replaced
later by the creation of a type-description to cover both of the objects in question.

We have already seen the «EQ link at work many times. It says that
node A and node B represent the same external entity, and that their descriptions are to be
merged whenever the «EQ_link is active and not cancelled. This means that the A and B
nodes must represent compatible views of the object in question; if the views are
incompatible, and must be considered one at a time, we must use a special mechanism which
will be described in section 3.7.

The closely-related *EXFOR, «EXIN, and «SCOPE links have already
been described. All serve to establish the cicumstances under which a given individual or
statement is considered to be present, and all can be replaced by wires in the node-unit if the
handle-node of the link is not.needed.

The «SPLIT link is used to create mutually distinct sets of individuals.
ANl of the «SPLIT links sharing a common B-node form a set; the A-nodes of the »SPLIT-
links 1n a given set are all declared to be distinct from one another. This is equivalent to,
but usually cheaper than, creating a «:NOT «EQ_link between each pair of nodes in the set.
(See section 28 for a full discussion of the «:NOT flag.) If the nodes in the split-set are
individuals, a clash will occur whenever an attempt is made to equate any two of them,
either directly or through a chain of «*EQ_ links. If «TYPE-nodes are split, it indicates that

Statements and Links 93 Section 3.6

the type-descriptions have no individual instances (and thus no non-empty sub-types) in
common.

The B-wires of the «*SPLIT links in a set usually meet at the area-node
within which the split-set exists, or at the «IST node of a DISTINCT or TYPE-SPLIT
statement. Figure 25 shows the DISTINCT statement indicating that THE-ENGINEER,
THE-FIREMAN, and THE-BRAKEMAN are distinct pseudo-individuals within the
PUZZLE-I area in which they are defined. This means that they can be equated to real

DISTINGT
Pl o—e_PERSON

*®SPLIT-LINKS

Pu22Le-)
(0]

THE-BRAKEMAN
THE - FIREMAN
THE-ENGINEER

Figure 25: A set of distinct pseudo-individuals in PUZZLE-1.

individuals within that area, but not to one another. The DISTINCT relation is special in
that it connects to its arguments by *SPLIT links instead of the usual role-map and «EQ-
link mechanism. (This makes life somewhat easier for the clash detection procedures -- they
can look just for «*SPLIT links and do not have to treat the DISTINCT statement as a
special case)

Figure 26 shows the COMPLETE-TYPE-SPLIT statement indicating
that the classes ANIMAL, VEGETABLE, and MINERAL form a complete set of distinct,

Statements and Links 94 Section 3.6

non-overlapping subsets of the PHYSOB class. The COMPLETE-TYPE-SPLIT statement
has two arguments: the PARENT-SET argument, which is tied to the set-node of the class
being divided, and a type-argument named SPLIT-SUBSET into which the set-nodes of the
various subclasses are tied with «VC-links. This statement, then, establishes a relationship
between the set-nodes of the classes involved: it is the set of PHYSOBS that is being split,
not the typical PHYSOB. The actual splitting, for the purposes of clash detection, is
performed by the »SPLIT links which run from the *TYPE-nodes of the sub-classes to the
“IST node of the COMPLETE-TYPE-SPLIT statement. These function just as in the
DISTINCT statement. Of course, the «“TYPE-node of each sub-class must have a »VC
connection, direct or indirect, to the «TYPE-node of the parent class. If such a connection is
not present when the COMPLETE-TYPE-SPLIT statement is created, it is added at that
time. (To minimize clutter, these are not shown in the diagram.)

The completeness of the partition is represented by the «VC connection
from the set-node of the SPLIT-SUBSET argument to the COMPLETE-SET class. Note
that this claims that the set of split-subsets is complete, not any of the subsets themselves. A
regular TYPE-SPLIT statement is exactly like a COMPLETE-TYPE-SPLIT statement, but
without this statement of completeness. Of course, the user of the NETL system does not
normally deal with the complex internal structures shown here; there is a simple function
call to create any desired TYPE-SPLIT or COMPLETE-TYPE-SPLIT.

The final two link-types are concerned with the problem of cancelling
information that would otherwise be inherited. The »CANCEL link is used to cancel a
statement B within the virtual-copy or context-area indicated by node A. The most common
case involves the use of a “*CANCEL-link to cancel some statement that is attached to a
«TYPE-node above node A in the «VC hierarchy. Figure 27 illustrates the statement that
elephants in general hate snakes, but Clyde doesn’t. When asked if Clyde hates any other
individual, the system first activates the CLYDE description by marking up from it. Then
it selects a different marker to represent cancellations within this activation, and places this
marker at the B-end of any “*CANCEL-link whose A-end has been activated. Markers are
usually used in pairs, one representing an activation and the other representing the
cancellations resulting from that activation.

The presence of this cancellation marker causes the statement in question
to play dead during subsequent processing. Any «MAP-nodes for which it is the owner-node
will not be activated, and the statement itself will not respond to any calls for statements of
its type. The HATES-statement from ELEPHANT to SNAKE, therefore, will never be
found if we come in through the CLYDE description. In addition, the cancellation marker
is propagated into any other statement tied to the cancelled statement by its scope-wire; as
we noted earlier, such secondary statements are to share both activation and cancellation
with the controlling statement. Since both the «EQ-link and the map-wire for the HATER
role are disabled, CLYDE has no chance to inherit any of the properties of a HATER
through this statement, at least.

What if the query enters the cancelled statement from the othes

AD=A0D2 748 MASSACHUSETTS INST OF TECH CAMBRIDGE ARTIFICIAL INTE==ETC F/6 9/2
A SYSTEM FOR REPRESENTING AND USING REAL=WORLD KNOWLEDGE.(U) -
DEC 77 S E FAHLMAN NOQO14=T75=C=0643

UNCLASSIFIED AI=TR=450 NL

95

JPLIT -
SUBSET

N

o-e

®SPLIT

Links AN

Figure 26: A complete type-split of PHYSOB into ANIMAL,
VEGETABLE, and MINERAL.

96-

“ AT M

HATER HATED

#CANCEL
W ELEPHANT SNAKE
CLYDE

Figure 27: “Elephants hate snakes, but Clyde doesn’t."

MAMMAL HERBIVORE OMNIVORE

o—-e o-9
ELEPH,
i: ® CANVC
CLYDE LINK

Figure 28: "Clyde is an elephant, but is an omnivore instead
of a herbivore."”

R —

Statements and Links 97 Section 3.6

If we ask for a list of individuals that Monty is Aated by, we will mark upward from
MONTY and will succeed in crossing the HATES-link backwards to ELEPHANT. As we
do so, however, we must notice that we have entered a class by crossing a statement-bridge
that is cancelled for certain members of that class. Therefore, before marking downward to
get the appropriate set of individuals, we should send a cancellation marker down the
cancel-links that are attached to that bridge. A cancellation marker will be placed on
CLYDE and, in the subsequent downward scan, the scanning markers will refuse to enter or
pass through any node that is so marked. We will thus mark all of the individual elephants
except Clyde as individuals who hate Monty.

Note that these cancellation-links only apply to a single statement of some
fact; if a single fact is represented by several redundant statements, we will need to cancel all
of these statements in order to completely eliminate that fact from some copy or. context-area.
This is easy to do: we simply send out a call for any uncancelled statements of the desired
form, cancel the statements that respond, and repeat the.process until no new statements
appear. As a general rule, the system will complain at any attempt to store a completely
redundant fact, but it is possible (and sometimes useful) to force it to store such facts anyway;
we have seen, for instance, that a redundant «VC-link can short-cut a «VC-link chain that is
becoming too long. Also, equivalent s.. *nts may be placed in different but overlapping
scope areas, and where these areas ¢ = the statements will be redundant. It is therefore
unwise to assume that a fact has bec . . oved just because one statement of that fact has
been cancelled; redundant cases should always be tested for.

In the above example, the statement being cancelled was attached directly
to an‘ancestor of node A in the type-hierarchy. It is also possible to cancel a statement that
connects two rdles in the inherited description of node A, or connects one such role to an
outside entity. As we.saw in section 3.5, we cannot look at the roles of A without first
activating the A-node’s description. The cancellation markers are placed just after this
owner-activation step, but before we examine any of the roles. If a statement that would
otherwise apply to a role is cancelled, the markers examining that role will never see that
statement. There is no chance of a race developing, since the activation and cancellation
scans precede the examination of the role. If we come into a *TYPE-node's role from
outside, we proceed much as we did in entering the «TYPE-node itself: first, we propagate

_cancellation markers down any «CANCEL links attached to the statement-bridge we have
just crossed; second, we the activate downward from the «TYPE-node that owns the role we
have entered, to get the individual owners that have not been cancelled; finally, we
propagate markers down from the role-node in question, letting these markers cross any
map-wires activated by the owner-nodes in the set we have just marked. This process will
lead us to the individual role-players for whom the statement in question was not cancelled.

If a statement is scoped within area X, and we want to cancel it within
some local area, Y, that is a part of X, we simply run a “«CANCEL-link from area-node Y to
the statement in question. When the system wants to work within a given area, it marks that
area and all of its super-areas with one marker, places a second marker on the set of
statements that are activated as a result, and uses a third marker to note which of these

Statements and Links 98 Section 3.6

statements is locally cancelled. Three markers are permanently assigned to this context-
activation duty. We will see more about the use of multiple context-areas in section 3.9.

A »CANCEL-link cannot be used to cancel a «VC-link or «EQ-link that
specifies a part of the A-node’s own identity. Since we first activate A and then place the
cancellation markers, this would have the effect of burning the bridges after the activation
markers have crossed them and traveled on through the network. It would be very hard to
track down and eliminate such markers once they have escaped. If we want to cancel some
identity that would otherwise be inherited by A, we must use a *CANVC-link (cancel virtual
copy) from A to the node representing the identity to be cancelled. This link cancels the
identity-node itself, not the links leading to that node. The «CANVC link operates during
an upward or downward activation-scan, to place a cancellation marker in an identity-node
before the scanning markers get there. The scanning markers will not enter or pass through
any identity-node that is so cancelled. There is a race created between the cancellation
markers and the scanning markers, but the cancellation markers will always win: they run
directly from the copy to the identity node that is to be cancelled, while the scanning markers
must pass through at least one other node. (It makes no sense to connect a node to an
immediate superior and then cancel this identity from the same level -- both links could just
eliminated.) In figure 28 we see the statement that Clyde is an elephant, but is an omnivore
instead of a herbivore.

ot L e

Problems 99 Section 3.7

3.7 The Copy-Confusion and Binding-Ambiguity Problems

The'parallel network system, while a valuable tool, is not without certain
problems of its own. It is sometimes very difficult to maintain a high degree of semantic
precision, while still enjoying the speed advantages of paralle] search. In certain situations,
it is very difficult to prevent the propagating markers from reaching inappropriate nodes as
they trace out the roles and relationships within a description. Before we develop any more
representational machinery, we ought to take a look at these problems and see how, and to
what extent, they can be dealt with. We will consider two different problems in this section:
the copy-confusion problem, which is caused by trying to look at two different copies of the
same description at once, and the binding-ambiguity problem, which is caused by a
shortcoming of the notational system in dealing with several arbitrary individuals of the
same type. We will look at copy-confusion first. :

" The role-mapping scheme described in section 35, in which the role-node
and an appropriate set of M AP-nodes are temporarily shorted together, has the effect of
temporarily cannibalizing the original copy of a description whenever we want to look at a
virtual copy of it. If, while one copy of a description is activated in this manner, we activate
a second copy using the same marker-bit to represent the activation, the roles of the two
distinct copies will be tied together through the common role-node in the shared parent-
description; properties that should apply only to a role in one copy will be inherited by the
other copy of the same role. At first glance, it would seem to be a simple matter to avoid
this condition, but in fact it crops up in a number of rather subtle and devious ways. This
illegal merging of role-nodes is what is meant by the term "copy-confusion”.

In most cases, when we want to describe an object in two different ways,
the descriptions are compatible and can simply be merged by an «EQ_link or by running two
#*VC links down to the same node. Two descriptions can be compatible even when both of
them have a common parent-class: it causes no confusion to say that CLYDE is both an
AFRICAN-ELEPHANT and a MALE-ELEPHANT. These two descriptions both contain
a virtual copy of the ELEPHANT description, which they augment and modify in different,
but not contradictory, ways. When we tie these descriptions together at the CLYDE node,
the roles and properties of the two descriptions will be mixed together, but we want that to
happen: when a reference is made to Clyde's trunk, we want to find properties attached to
the TRUNK nodes of all of CLYDE's superiors in the network, and we do not usually want
to know which description a given property came from. We can, of course, look at a
particular description for Clyde in isolation -- Clyde as a MALE-ELEPHANT, for example
-- by activating this description alone among CLYDE's superiors. In normal operation of
the system, however, we want to look at all of the descriptions of CLYDE at once, and we
want all of the versions of each role to be merged. In fact, the whole point of defining the
*MAP-nodes as we have is to fuse together all of the inherited role-nodes into an
indistinguishable bjend.

Sometimes, however, we want to describe an object using two distinct
role- -mappings from the same parent-description. In such cases, we must not allow the

Problems 100 Section 3.7

mappings. to be blurred together in the usual way, though we still want to indicate that the
two descriptions share a common referent. Consider, for example, the NECKER-CUBE
drawing as shown in figure 29. This can be represented as an instance of the CUBE-VIEW
description in two different ways: in one description, node X of the Necker Cube plays the
role of FRONT-VERTEX; in the other, this role is played by node Y. If we were to simply
tie these two descriptions together at the NECKER-CUBE node, as' we tied AFRICAN-
ELEPHANT and MALE-ELEPHANT together at CLYDE, the system would normally
activate both descriptions at once, with a single marker-bit, whenever it wanted to find some
property of the NECKER-CUBE. This would short both X and Y to FRONT-VERTEX,
which is correct, but it would also short them to each other, which is not correct. The Y
vertex may have properties (ROUNDEDNESS, for example) which should not be inherited
by X, and vice versa.

In cases such as this, the system must do what people seem to do: think
about the two descriptions and their role-mappings in sequence, but never both at once.
This can be accomplished by placing the conflicting views in separate context-areas, which
are arranged in such a way that they will never both be activated together. The conflicting
descriptions of NECKER-CUBE then become maps of the original NECKER-CUBE node
in. two incompatible viewing-contexts, as shown in figure 29. In order to find which contexts
to activate as views, we look in the VIEW role of the basic NECKER-CUBE description.
When the system wants to look at the description of some object which has VIEW-contexts
listed, it should consider the object from each of these viewpoints, one at a time, in order to
get the object’s full description. :

Alternate-view situations like the one described above are relatively
‘uncommen and can be handled with little trouble. I have described them here because they
are the clearest example of copy-confusion in action. We will now look at two cases that are
far more subtle and dangerous.

The first situation arises when a thing and one (or more) of its roles are
both described as instances of a single superior type-description; I therefore call this the
recursive description problem. Such cases are far more common than one might, at first,
suspect: a PERSON has a MOTHER who is also a PERSON; an ELEPHANT is a
PHYSOEB, with a set of parts that are also PHYSOBS; an AMPLIFIER may consist of
STAGES that are also AMPLIFIERS, and so ori. The problem is that, if we are not careful
in constructing our scanning protocols, we will confuse the two copies of this shared
description. We might, if we are not careful, end up equating CLYDE's WEIGHT (a role
inherited from the PHYSOB description) with CLYDE's TRUNK's WEIGHT.

Figure 30 illustrates how this might happen. Note that at the
ELEPHANT level there are nodes for the elephant's TRUNK (a PHYSOB), the WEIGHT
of the ELEPHANT, and the WEIGHT of the TRUNK. This latter node is equated to a
TRUNK-WEIGHT role that is tied directly to the ELEPHANT description. (Operations of
this sort are very common as a way of reducing the depth of nesting of an expression, as
when we turn the BROTHER of a PARENT of a PERSON into an UNCLE of that

S D

101

VERTEX

T e

NECKER-CUBE CUBE -VIEW

To
CONTEXT-AREA

THING t VIEW
o—e

4

O"# PICTURE

Cupe FRONT-
VIEW VERTEX
,—
X- VERTER VERTEX
NECkeR 0 VIEWS OF
CUBE 1 NECKER
%4/:\4 1
e &
> A

Figure 29: Two views of a NECKER-CUBE as a CUBE-VIEMW.

ot Ly

Problems 102 Section 3.7

Pncvs OBE JWEIGHT
M1,M3 4 X (ERASED)
ELEPHANT
M1 ¢&>Q TRUNK-
T WEIGHT
CLYDE
< N
1
e S M3 \
y
3000 K& (o)
S50k&

Figure 30: é&ate:uralva description: the WEIGHT of the TRUNK of

PERSON.) Since the «*EQ:link is inherited, we ought to be able to specify either the
WEIGHT of the TRUNK of CLYDE or the TRUNK-WEIGHT of CLYDE with the same
results; in the figure, we have stated that the TRUNK-WEIGHT of CLYDE is 50-
KILOGRAMS.

. Now, suppose we are asked to find the WEIGHT of the TRUNK of
CLYDE. As we saw earlier in a similar example, we first activate the CLYDE description
by propagating M1 up all «VC-links and parent-wires from CLYDE, and across any «EQ-
links. As a-general rule, we use marker-bits in pairs: every time we activate a description-
copy with one marker, we want to indicate cancellations within that copy with another.
Consequently, we now propagate M2 markers across all «xCANCEL-links from MI-marked
nodes; there do not happen to be any cancellations in the fragment of network shown, but
we can assuime that there will be some elsewhere in the CLYDE description. The next step

o RSB 50

Prob[ems . 103 4 Section 3.7

is to activate the TRUNK description within the CLYDE activation: we take marker M3,
place it on the TRUNK role, and propagate it across all Ml-activated map-wires, across all
*EQ:links, and up all «VC-links. M4 marks the cancellations within tAis description; again,
none are shown.. The locations of the Ml and M3 markers at this point are shown in figure
30. :

Now we are ready to investigate the WEIGHT role. ‘We place marker
M5 on the WEIGHT node (which is found in the PHYSOB description) and propagate this
across =EQ_links, up «VC-links, and across all currently-activated map-wires. But what
exactly do we mean by "currently activated™? Should we cross only M3-activated wires:or,
since we are really within both the CLYDE description and the TRUNK description, should
we cross Ml-activated map-wires as well? The latter answer must be the right one, since it is
the only way to get to the node that we want, the one representing 50 kilograms. It also
makes sense from all that we have said about virtual copies: we are still operating within
the CLYDE description; therefore, the map-wires within this description should still be
shorted. Unfortunately, because of confusion between CLYDE'’s own copy of the PHYSOB
description and the copy representing CLYDE’s TRUNK, the M5 markers find their way to
CLYDE's own WEICHT, 3000-KILOGRAMS, as well as to the desired 50-KILOGRAMS
node. We must indeed activate both the inner and outer descriptions, but if they share a
parent (and all descriptions do at the THING level, if not lower) we must be sure that the
roles in the two copies of this parent are not confused.

To accomplish this, we must let the ELEPHANT description and the
TRUNK description use their respective copies of the shared PHYSOB description at
different times, so that there will never be any confusion about which copy is in use. The
first steps proceed exactly as before: CLYDE is activated with Ml, CLYDE's cancellations
with M2, CLYDE's trunk with M3, and the trunk’s cancellations with M4. Figure 30 shows
these markers in position. Now, we start M5 at the WEIGHT node, and propagate it up
=V C-links, across +EQ-links, and across only those map-wires that have been activated by M 3.
If there are descriptions being shared between the inner M3 activation (Clyde's trunk) and
the outer M1 activation (Clyde himself), and if M5 is marking a shared role in that shared
description (as it is here), this step will make use only of the inner description’s copy. This
results in M5 markers on all of the nodes marked with an X in figure 30.

Next, we want to propagate the M5 markers through the connections of
the outer (Clyde) description, marked with M, but first we must clean out from any shared
parent-descriptions the M5 marks that are left over from the inner (trunk) description’s use of
these shared parents. This is done by clearing (in one parallel step) the M5 mark from any
role-node or “MAP-node whose owner-node contains both the Ml and M3 marks; in this
example, only the M5 mark on the WEIGHT node of PHYSOB is erased. The remaining
M5 markers are then propagated up «VC-links, across *EQ links, and across map-wires
activated by ML. The resulting set of M5 nodes is indicated by the letter Y in figure 30. By
this method, the desired 50-KILOGRAM node is reached, but the confusion of Clyde's
weight with his trunk's weight is avoided.

Problems 104 Section 3.7

Can this erasing step throw away useful information? Questions of this
sort are hard to answer, but in this case I believe that we are safe. We are, after all, erasing
only those marks which are on nodes internal to the inner TRUNK-description, and we are
not going to use that description again in this access-request. If we think of the TRUNK-
description as a box, it seems evident that the outside world can only make use of markers
which reach nodes outside the box, or at least nodes on the surface of the box -- the roles
and M AP-nodes that appear on the TRUNK level itself, rather than on some level above
TRUNK. The erasing process will never alter any of these exterior or surface nodes (the
surface nodes can never be shared), but will only remove certain M5 marks that are hidden
within the box. In any event, I have not found any examples of situations in which the
erasure-step causes trouble, and it seems essential for avoiding confusion among recursively-
shared copies.

If we want to extend this process to four levels of role-nesting, we just
activate the three outer levels with M1, M3, and M5, exactly as described above. The
cancellations within these three description activations are marked by M2, M4, and MS§,
respectively. We then place yet another marker, M7, on the fourth-level role that we want to
look at, and propagate this marker with respect to the M5 activation. M7 is then carried
back out through the M3 and M1 activations, as before, erasing any possibly-confusing M7
markers as we move to each outer level. We can extend this method to handle as many
levels of role-nesting as we like, though the number of activation scans required (this is the
expensive step) increases more than linearly with nesting-depth; for N levels of nesting,
cognting ‘both the innermost and outermost levels, the number of activation scans required is
(N°-N+2)/2.

Long before we encounter any difficulty with computation times, however,
we will run out of marker-bit pairs. Of the current set of fifteen markers, six pairs are
available for such explorations. (As we saw in the last section, three markers are reserved
for the context-activation system.) Consequently, we can handle about six levels of role-
nesting before we run out of markers. It is possible to handle additional nesting levels by
borrowing markers form outer activations, using them for inner ones, and then restoring
them, but even at six levels we have gone somewhat beyond the sort of trivial deduction that
is properly the concern of the knowledge-base system. It seems unreasonable that we would
have any real-world need for statements about the nature of the A of the B of the C of the
D of the E of the F, without being able to rephrase such statements in terms of some less-
deeply-nested structure. For a roughly human-like level of performance, then, the current
fifteen marker-bits should be more than enough.

The third situation in which copy-confusion plays a role is even more
difficult to handle. So far, we have always come into virtual-copy descriptions through the
base-node of the description -- the xINDV or «TYPE-node around which the structure of
roles and mappings is built. To activate such a description, we have simply started a
marker on the base-node and sent it up «VC-links and parent wires, and across all «EQ-
links (We should also cross any map-wire whose owner is a part of the current context-area,
but we will get to that later) Once this activation is complete, we. can investigate any roles

St AT

Problems 105 Section 3.7

and relationships within it using the scanning protocols described above. As we have seen,
this leads to an orderly implementation cf the virtual-copy semantics, with little chance that
any information will be missed unless we look at a role that is so deeply nested that we run
out of marker-bits.

Sometimes we are handed a node to activate that is not itself a base-node,
but is instead a *“MAP node in some unspecified description. This case is not much harder,
since we can find the owning-description’s base-node simply by following the owner-wire of
the :MAP-node. The owner can then be activated, and the «MAP-node is investigated
within the owner's activation, just as we saw earlier. If the owner-node is itself a «M AP-
node within some still larger description, we trace back the chain of owner-wires until,
finally, we reach a «TYPE-node or an xINDV-node. This outermost description is activated,
and we then work our way back through the nesteu M AP-nodes until we reach the original
one, using the successive activation process described above. Assuming, again, that the
nesting-depth is not too great for the available set of marker-bits to handle, this gives us an
orderly activation of the original «M AP-node which we can use to investigate its properties
and roles. 1 call this style of processing, in which a map-wire is never crossed until the
owner-node’s description has been activated, legitimate activation: it is the approved and
safe way to look at the identities and properties associated with a given «M AP-node.

Unfortunately, situations often occur in which there are many =M AP-
nodes that we want to investigate at once, and we cannot afford to legitimately activate their
descriptions one at a time. Suppose, for example, the knowledge-base is asked for the AGE
of CLYDE. First, of course, we activate CLYDE'’s intrinsic description by marking up «VC
links and across +EQ_links; then we look for an AGE role within this activated description.
We might find such a role, but let us assume-that we do not. We are not done yet since, in
addition to the usual collection of «“TYPE nodes and an occasional pseudo-individual node,
the intrinsic activation scan probably will have marked a large collection of “MAP nodes.
These :MAP-rades represent extrinsic descriptions of Clyde: roles that Clyde plays in
descriptions for which he is not the base-node or the central thing being described. (The
terms “intrinsic” and "extrinsic" are used here in ways that roughly correspond to their usage
in the electronic reasoning system proposed by Sussman and Brown [1974)) Even though
Clyde is a mere role-player in these extrinsic descriptions, any one of these roles could have
an attached property specifying his age. If we want to be thorough, then, we must activate
and examine all of these descriptions -- otherwise we might report that Clyde's age is
unknown when, in fact, we know it.

The proper way to perform this investigation, if we could afford the time,
would be to legitimately activate the description associated with each of the «MAP-nodes,
one at a time, in sequence. Unfertunately, in many individual descriptions there are very
many of these nodes, sometimes many times the number of *TYPE-nodes in the description.
The system's representation for a person, for example, will have a “MAP-node for every
action, every relationship, and every statement in which that person is known to have played
a role. To activate each of these extrinsic descriptions individually would be to completely
destroy the parallel speed advantage that we have worked so hard to achieve. If our

Problems 106 Section 3.7

knowledge-base system is to enjoy both the speed of the parallel network and the precision
and elegance of the virtual copy semantics, we must find some way to search these «MAP-
node descriptiaons in parallel.

The first solution that springs to mind is simply to mark up all of the
map-wires at once, without bothering to activate ine descriptions in which the M AP-nodes
are found. This will .indeed find most of the description-nodes which might be associated
with the property we are looking for. Unfortunately, it will miss some role-nodes that a
legitimate scan would find, and it will find some spurious-nodes that, in a legitimate scan,
would have been cancelled. The missed cancellations occur because the “*CANCEL links
originate in the base-node of a description and, in this upward-only scan through the role-
nodes, we never visit the base-nodes. Some description noc'es are missed because, as we saw
in section 3.5, markers must sometimes cross an activated «MAP-wire in the downward
direction. This downward motion, you will recall, had twec uses: it made it possible for map-
wires ‘to skip over uninteresting levels in the type-hierarchy, a useful but not essential
feature; it also made it possible for us to virtually copy structures that have =V C-
relationships among their roles. This latter ability is esential to the proper handling of set-
roles, and to the conceptual integrity of the virtual-copy idea as a whole. The upward-only
approach, then, can find most of the properties that are hidden in the extrinsic descriptions
of CLYDE, but it is too unreliable to be used by itself.

Perhaps, then, we should activate the descriptions containing the «MAP-
nodes after all, but all at once. By activating the descriptions in parallel, we would avoid
any serious degradation of the system's speed. Since there can be an arbitrarily large
number of these activations going on at once, we cannot assign a distinct marker-bit to each
of them; a single bit will have to be used for all. Once the descriptions containing the
“M AP-nodes have been activated, and the resulting cancellations have been marked, we can
resume our original activation-scan for CLYDE, allowing the markers to flow through any
map-wires that are active within the newly-created set of active extrinsic descriptions. If this
leads us to still more extrinsic descriptions for CLYDE, we simply repeat the mass-activation
process.

This mass-activation approach brings us much closer to the results that
we would achieve with individual legitimate activations, but there are still problems. First
of all, there is the problem of variable activation-depth. As I noted earlier, some legitimate
activations require lengthy activation- processes because the original «xMAP node is not a
first-level role within its description, but is nested within a set of other «MAP-nodes. It is
hard to see how a parallel activation scan, handling many descriptions at once, could be
made to handle such variation in levels.

In addition, we might find that the base-node of an activation has its
own set of extrinsic descriptions. If we want to be really thorough, we must investigate these
as well. Chains of this sort can go on indefinitely: Clyde is the brother of Ernie; Ernie is
the mate of Ernestine; Ernestine is the daughter of Fred; and so on. If we arbitrarily cut
this chain off at Ernestine, and if the system has stored with FRED some statement about

Problems 107 Section 3.7

the AGE of his daughter's mate’s brother, we will miss this fact in our search. Again, it is
hard to see how a mass-activation approach could handle variable-depth chains of this sort.
Even an individual legitimate scan would have to give up on such arbitrarily long and
bushy chains at some point -- we are, after all, trying to build a knowledge-base and not a
general theorem-prover -- but it is hard to see how the mass-activation scan could cope with
this chaining at all.

But the most serious problem facing the mass-activation approach is our
old friend, the copy-confusion problem. If we use a single marker-bit to activate many
descriptions, and if two of these descriptions are descended from the same parent-description,
and if CLYDE plays a different role in the two descriptions in question, we can get some
serious errors. Figure 31 shows such a situation. We have a greatly simplified version of the

FAHN.y FATHER LovEs St

75NN

JUMBoO CLYDE JUNIOR

Figure 31: CLYDE as the CHILD in ecne fami Iy, the FATHER in
another.

FAMILY description, in which there are roles only for the FATHER and a single CHILD.
The assertion is made that in any such FAMILY, there is a LOVES relation from
FATHER to CHILD. (The LOVES arrow here is a shorthand for the full-blown LOVES
statement, as described in section 3.6.) There are two copies of this FAMILY description, Fl

Problems 108 Section 3.7

and F2. In Fl, CLYDE is the SON of JUMBO; in F2, CLYDE is the FATHER- of
JUNIOR. If, in investigating the CLYDE description, we activate both of these cepies of
FAMILY with the same marker-bit, errors can slip in. AH of the xtM AP-nodes become
shorted, and the descriptions of CLYDE, JUMBO, and JUNIOR are all run together.
Furthermore, we can deduce incorrect results such as "CLYDE LOVES CLYDE". It would
appear, then, that the mass-activation approach is no more reliable than the upward-only
marking scheme: though it finds more of CLYDE’s property-bearing nodes, it still misses a

few; though it gets most of the cancellations right, it finds spurious nodes because of copy-
confusion.

We appear to have reached an impasse: legitimate individual
investigation of extrinsic-description «*MAP-nodes is too slow; marking upward across all
the map-wires in parallel violates the virtual-copy semantics; and activating the descriptions
in parallel with a single marker-bit leads us into copy-confusion. Is there any reasonable
solution to this problem? I see four possible approaches. First, we might *ry to use the mass-
activation approach after all, but:to detect and handle separately those 1. atively few cases in
which copy-confusion might occur. This seems like an attractive solution, but after a lot of
trying 1 have not been able to make it work. It is easy enough to. detect the confusing
situations on a case-by-case basis, but that is almost as bad as doing the legitimate scans in
sequence; what is needed is a parallel method for detecting when the property or
relationship about to be retrieved is coming from one of the possibly-confused descriptions.
[am not yet sure whether it is impossible to do this, or just very difficult.

A second possibility is to abandon the virtual-copy semantics, at least
with respect to two-way inheritance across map-wires. This would allow us to use the
upward-only marking scheme, but at grave cost to the elegance and clarity of the system.
Map-wires could still be skipped over vacant levels of the hierarchy, but if a «“MAP-node is
ever created on such a skipped level, we will have to go back and re-connect all of the map-
wires for the same role that skip over this level. Also, when a copy is made of some
description, the system would have to explicitly write into the copy any «VC or «EQ_links
that are to exist between roles of that copy; such links could no longer be inherited. Many
other changes would be required in the semantics as well, almost all of them in the direction
of greater obscurity. I feel that this approach should be taken only as a last resort, since it
greatly increases the need for redundant storage of information, and it destroys whatever
clarity was gained by the use of the virtual copy idea.

A third approach would be to use the mass-activation scheme, but to
avoid the possibility of copy-confusion by marking each activation in a different way, and
by using corresponding markers to explore the roles within each activation. In effect, we are
performing an individual legitimate scan for each activation, but we are using separate
markers instead of time to keep any possibly-confusing activations apart. The easiest way to
implement this would be to replace the simple hardware elements of the network with micro-
computers of some sort. These would be able to store a large number of aritrary activation-
symbols at once and to match these symbols against any arbitrary exploration-marker
symbols that want to pass through a given connection. The element-to-element connections

Problems i09 Section 3.7

in the network would either have to be widened to accommodate marker-symbols many bits
wide, or the network elements would have to break these symbols down and transmit them
serially. Serial bottlenecks can develop when a number of symbols arrive at a node at once,
but in most cases the resulting serial queues would be much smaller than the original set of
“MAP-nodes. Grossman [1976] has investigated a system of this sort for a variety of
knowledge-base and logical problems. At present, this seems a needlessly complex and
economically unattractive solution, but improvements in the available technology might
make it more reasonable. (Genesereth [not yet published] has extended and streamlined
Grossman’s system to work with single-bit markers, but in this modified form the system is
unable to use the unique-label method outlined above.)

The fourth solution is the one that seems to me the most promising, and
is the one that I am using in the current version of NETL. Thijs approach uses the
individual legitimate activation of a xM AP-node description in finding the final answer to a
query, but it uses the other, less reliable activation methods that we have discussed as a
parallel heuristic test to determine which of the extrinsic descriptions might contain
information relevant to the query at hand. This gives use the speed and near-total coverage
of the upward-only and mass-activation approaches, while filtering out any spurious
responses with the legitimate confirmation-test. A few possibly relevant nodes will be missed
by this approach, but it is my feeling that this shortcoming is one that we can live with.
Depending on the exact trade-off that we want between speed and thoroughness, there are a
number of parallel heuristic search-strategies that can be employed.

Let us assume, once again, that we are looking for the AGE of CLYDE,
that we have already marked CLYDE's intrinsic superiors and equals in the type-hierarchy,
and that we have failed to find an AGE property. If we are really in a hurry, we would quit
at this point; otherwise, we must look for an AGE property in the extrinsic descriptions that
we have found for CLYDE. We would begin with a first-order heuristic scan, the fastest
and least thorough. This is simply the strategy of marking upward across «M AP-wires. As
we noted above, this process finds most of the remaining description-nodes for CLYDE, but
it misses some and finds a few that should be cancelled. If any of the nodes reached by this
upward sweep has an AGE property, we follow the trail of markers back down from this
node to its source: the M AP-node in our original set which represents this particular role.
This is the node which we want to activate legitimately, to see whether the AGE property is
really there or has been cancelled. If there are several “M AP-nodes leading to roles with an
AGE property, it is probably worthwhile to investigate them all until we find a winner.

If we want to spend more time and be more thorough in our search, we
can use a second-order heuristic scan. This consists of a mass activation of the descriptions
associated with all the “MAP-nodes in our set. This activation only goes one level deep: if
some of the *MAP-nodes have owners that are “MAP-nodes, these will be marked by the
upward-only method; if some of the owner-nodes have extrinsic descriptions of their own,
these are ignored. Once this description-set is activated and the local cancellation markers
have been placed, we send out a role-exploration marker from the xMAP-nodes in the
original set. Again we test for an AGE property in the marked set of role-nodes. Again, if

Problems' 110 Section 3.7

we find such a property, we trace the path of the markers back to the M AP-node
responsible. Again, we activate this node individually to see if we have indeed found a
valid AGE property, or merely one attached to a node that we reached by confusion. More
spurious candidates will be found by this method than by the first-order scan, but more
genuine nodes will be reached as well.

The second-order scan finds still more of the nodes that we might want to
look at, but there is still a small residue of unexamined nodes that might carry the
information we need. These can be reached by higher-level heuristic scans which carry the
mass-activation to greater depth: chains of xMAP-nodes are followed, as are the extrinsic
descriptions of the owner-nodes. As this deepening progresses, however, we will find fewer
and fewer genuine role-nodes equivalent to CLYDE, and more and more nodes that are
reached by confusion. The point of diminishing returns will be reached at some level, but
we will have found answers to the vast majority of queries, if indeed such answers are
present. Only facts stored in terms of long role-chains will be missed by this process, and no
spurious answers will make it past the legitimate-scan filter.

Note that a bit of housekeeping, performed when the system has nothing
better to do, can improve the performance of the heuristic search mechanisms considerably.
The network of map-wires can be rearranged to eliminate any unnecessary skipping of
occupied levels, making more nodes accessible to the first-order upward-only search.
Statements made about roles at the end of a long chain of other roles can, when the role is
filled with an zINDYV, be transferred to the xINDV node. In some cases, it is useful to create
pseudo-individuals to fill roles in the middle of long role-chains; this tends to break up the
chains into more manageable sections. Often a chain of relationships can be shortened by
substituting other, more direct relations, as when we replace PARENT’s BROTHER with
UNCLE. I have only begun to develop the precise criteria for identifying cases in which
such techniques can be usefully applied; much more thought and experience is needed in
this area.

Note, too, that the query often gives us a hint as to which extrinsic
description might eontain the information we are looking for; such hints can often be used
in lieu of the heuristic search techniques described above. If I ask you whether "George
Washington, the boy who chopped down the cherry tree,” owned a hatchet, it will be easier
to answer than if 1 ask whether "the first president of the United States” ever, in his life,
owned a hatchet. The same prlnciple can be applied by NETL in selecting descriptions to
look at.

How seriously is the system hurt by this need to use heuristics in finding
roles and statements stored with the extrinsic descriptions of an object? In my opinion, the
damage is not too serious. We would, of course, prefer a system with instant access to
everything it knows, regardless of the form in which it is stored, but NETL still comes much
closer to this goal than serial-search systems. We have, when all is said and done, a system
that is still fast and parallel, that always finds those properties and relations stored with the
intrinsic descriptions of an object, that finds a/most all of the properties and relations stored

N g ————

Problems 1 ' Section 3.7

with extrinsic descriptions, and that never returns a spurious answer (unless, of course, it has
been fed bad information). The properties that it misses are those that are stored in terms
of nested roles and other rather obscure descriptive structures, and even these can be found
if the query specifies its subject in the same way as the statement being sought, or if we want
to spend the time to do a thorough serial search of the extrinsic descriptions. This tendency
to overlook an occasional piece of information -- to miss making an occasional connection
between two different descriptions for an object -- seems rather human-like to me, and
people seem to get along reasonably well with shortcomings such as this in their knowledge-
accessing processes. The parallel portions of the system are not complete, in the logician's
sense, but they were never intended to be; we wanted to be able to do the most important
deductions very fast, and I believe that NETL still does that.

The copy-confusion problem, in its various guises, is principally a
problem of properly implementing an essentially correct semantic notation in a parallel
manner; the binding-ambiguity problem, on the other hand, results-from a shortcoming of
the semantic notation itself. Basically, the problem results from our definition of the
#TYPE-node as representing "the typical member" or "every member" of some set. This is a
perfectly workable definition when we are concerned only with attaching properties to the
#“TYPE-node, but when we want to extend the system to statements with two or more
arguments, this definition can lead to ambiguous structures. The ambiguity arises when
both arguments of a statement (or two arguments if there are more than two) are attached to
the same «TYPE-node, or to two roles within a single type-description. It is clear that each
of the arguments can refer to any individual within the class defined by the «TYPE-node;
the issue is whether both connections must refer to the same arbitrarily-chosen individual, or
whether each connection represents an individual choice. In other words, when is the
binding of an individual to the «*TYPE-description made -- once for the whole description,
or once per connection?

Consider the structure in figure 32. (Once again, the HATES arrow is a
shorthand for a full-scale HATES statement, built around an «IST node.) This could be
interpreted in two possible ways: "Every elephant hates every elephant” or "Every elephant
hates himself.” When we are looking at an instance of ELEPHANT like CLYDE, is there a
single virtual HATES statement connecting CLYDE to himself, or is there a virtual HATES
statement from CLYDE to ELEPHANT and from ELEPHANT to CLYDE? A case could
be made for either interpretation.

It is not really important which interpretation we choose for the situation
as shown, as long as we are consistent in this choice; it is important, however, that the
system include some reasonably direct way of representing the interpretation that is not
chosen. If NETL is to provide us with a more-or-less complete coverage of the things that
we might say in English, it must be possible to say that every elephant hates every elephant
(including himself), that every elephant hates himself, and that every elephant hates every
other elephant (but not himself). Individual elephants must inherit these statements properly.
Ideally, the single HATES statement would also function properly in reverse, to give us the
assertion that every elephant is Aated by every elephant, himself, or every other elephant, as

o emc—— o~ mcm———

Problems 2 Section 3.7

ELEPHANT
RATES

CLYDE

Figure 32: An example of binding ambiguity.

the case may be, without our having to store this equivalent fact separately.

Though this problem has been popping up in various forms for a while,
each of its manifestations was dealt with separately; it is only recently that I have isolated
binding-ambiguity as a single problem, in the terms described here. There are several
possible ways of changing the NETL notation to eliminate this problem, and I have not yet
made a final decision as to which of these alternatives is the best. The scheme that 1 will
present here is the one that currently looks the best to me. i ‘

Let us establish, by decree, that the proper interpretation of figure 32 is
that every ELEPHANT hates himself (or herself or itself). This convention seems to be the
most natural one to adopt within the overall framework of virtual copies: it means that the
descriptive links attached to the *TYPE-node all refer to the same individual at any given
time. We are free to chose any individual from the type-class to bind to this type-
description, but a single binding is used for all of the connections that are made to the
«TYPE-node.

That solves half of the problem; we must now find some way to connect
a statement between two distinct individual bindings of a given «TYPE-node. In other
words, how do we say that every elephant hates every other elephant? We can do this by
introducing a new node-type, the “"OTHER-node, which is connected to a *TYPE-node by a
wire called the type-wire. To say that every elephant hates every other elephant, we would
connect the “"OTHER node as shown in figure 33. The xOTHER-node represents a single
arbitrary individual chosen from the «TYPE-node’s set, but it is a different individual from
the one currently bound to the »TYPE-node itself. Figure 32 can be read as follows: "For
every individual elephant X, X hates X." Figure 33, then, would say, "For every two distinct

Figure 33:

Figure 34:

113

HATES

T\@ % n
) 5% OTHER-NODE

ERNIE &upe

ELEPHANT

"Every elephant hates every other elephant.”

HATES

enemmro HATES

o—e

B

ERNIE «J) CLYDE

"Every elephant hates every elephant, includ
himsel f."

ing

P S

Problems 114 Section 3.7

individual elephants, X and Y, X hates Y." Since CLYDE can be bound either to X or to Y,
the statement is symmetrical: CLYDE hates, and is hated by, every other elephant.

If we want to say that every elephant hates every elephant, including
himself, we must represent the self-hatred and the other-hatred as separate links, as shown in
figure 34. A hates link from the *OTHER-node to itself would be redundant, since each
individual in the class can be bound to the «TYPE-node, and can pick up its self-hatred
there. The representation of this "every-to-every” case is somewhat more awkward than the
“self” and "every other” cases, but this case is also strangely awkward to express in English;
perhaps something comparable is going on.

How do these changes affect the system during knowledge-base accesses?
Suppose we want to compile a list of all the individuals that CGLYDE hates. First, we
activate CLYDE in the usual way, marking all of CLYDE's ancestor-nodes with M1. M2
marks are placed to record any cancellations relevant to CLYDE. We then send another
marker, M3, across any active, non-cancelled HATES-statements that originate on MI-
marked nodes. These M3 markers are then propagated in different ways, depending on
what type of node they have reached. Those on MI-marked «TYPE-nodes (nodes currently
bound to CLYDE) are not propagated at all, but simply cause an M3 mark to be placed on
the CLYDE node. Any M3 markers on «TYPE-nodes without an Mi-mark (currently
unbound)are propagated down into all the individuals in their respective sets. M3 markers
that reach *OTHER-nodes are propagated down into all individuals within their «TYPE-
nodes’ sets except for CLYDE. In each case, cancellation marks (M4) are sent out as the
HATES statement is crossed, to block any individuals for whom the HATES statement is
cancelled; the M3 markers will not enter or pass through M4-marked nodes.

We are not quite done yet: we have not yet considered any HATES
statements connected from the «OTHER-nodes attached to «TYPE-nodes above CLYDE in
the hierarchy. As we said earlier, each individual can alsa be bound to these nodes, but not
at the same time that the individual is bound to the *TYPE-node. In principle, then, we
should run the whole scan again, looking for HAT ES-statements connected to the xOTHER
nodes above CLYDE. Actually, this is not really necessary: the only case we might have
missed is a HATES statement from an «*OTHER-node to its own «TYPE-node,
corresponding to the statement that every elephant is hated by every other. Connections
from an :OTHER node to itself or to a «TYPE-node other than its own could have (and
should have) been placed on the *TYPE-node instead. We can check for the one allowed
case directly, and if it is found we can simply mark all of the other elephants (or whatever),
but not- CLYDE.

This *OTHER-node mechanism can be extended to handle three or more
individual bindings chosen from a given type-class. We might, for instance, want to say that
for any three distinct elephants, X, Y, and Z, the combination of X and Y can defeat Z at
tug-ol-war. (In other words, no elephant is stronger than any two others combined.) The
“T YPE-node itself represents the first binding (X), an «OTHER-node is used for the second
binding (Y), and the third binding (Z) is represented by another *OTHER-node. This

Problems 115 ' Section 3.7

second *OTHER-node is connected to the first one by its «TYPE-wire, forming a chain of
successive individual bindings. In principle, such chains can reach any desired length, up to
and including the total size of the type-class in question; in practice, the length is limited to
the number of available marker-bits. As each individual in the set is bound to one of the
variables, a unique marker-bit must be placed on the xINDV node of the individual and the
“OTHER or *TYPE-node to which we are binding it. If we cross a statement-link and
enter an *OTHER-node without such a binding-marker, we are free to assign any
individual in the type-set to that variable, as long as the individual is not already bound to
some other node in the chain. The scans responsible for all of this can become extremely
complex as they try to consider all possible bindings, but that seems reasonable: beyond two
og maybe three variables, people -- especially children -- have trouble as well. The notation,
at least, seems clear and unambiguous, even if the associated processes are difficult to
construct and use.

My remaining uneasiness with this notation concerns the way it interacts
with the use of multiple contexts. It may be necessary to state, in a much more explicit way
than is possible with simple «OTHER-nodes, the exact context-area in which a given
individual binding is made. Consider, for example, the subtle difference in meaning
between the statements "Any player in the lottery can be a winner,” and "Every player in the
lottery can be a winner." In the former, we are choosing a single individual from the set of
players in the current context, and are claiming that this arbitrary individual might, when
winners are chosen, be one of them. In the latter case, we are saying that it is possible that,
after the drawing, the set of players and the set of winners will be equivalent; this means
that we can then choose any individual player and find that he is a winner. Comparable
things happen when the contexts in question refer to states of knowledge or the belief
systems of different people. Bob Moore [1973) has explored ways of handling such problems
using an explicit lambda-binding mechanism, but I do not at present see any good way of
incorporating his insights into NETL notation. This looks like a fruitful area for further
research.

Defined Classes and Negation 116 | Section 3.8

3.8 Defined Classes and Negation

Suppose we want to represent the assertion that every purple mushroom
is poisonous. We cannot simply add POISONOUS and PURPLE as properties to the
MUSHROOM :TYPE-node, since that would signify something completely different: that
the typical mushroom is both poisonous and purple. Instead, we must somehow create a
defined class that includes every purple mushroom, and attach the POISONOUS property
to its “TYPE-node. Note that there are two different kinds of properties at work here:
PURPLE, which is part of the definition of the class, and POISONOUS, which merely says
something about the members of the class; the notation must somehow indicate which
properties are part of the definition. As new mushrooms are added to the system, we must
check whether they are purple and, if so, place them in this defined purple-mushroom class.
Once they are in this class, the mushrooms inherit the incidental property of poisonousness.

To. represent such defined classes, we need a new type of node, the
“EVERY-node. An «EVERY-node is a special kind of «*TYPE-node .which defines a set,
rather than merely describing the set’s members. Some of the properties and statements
attached to the :EVERY node are specially marked as defining properties; together, these
defining properties constitute the «EVERY-node's specification. The rest of the information
attached to an *EVERY-node is called incidental information: it plays no part in
determining which individuals fit into the defined class, but it does apply to these
individuals once their membership is established. During normal access operations in the
knowledge-base, both kinds of properties behave identically, and the xEVERY-node is
indistinguishable from a normal «TYPE-node. The difference between these node-types
appears during the process of digesting new information in the knowledge-base: as new
individual and type-descriptions are added, the digestion processes match the new
description against each of the xEVERY-node specifications. If a match is found, the new
item is placed in the matching class by the creation of a «VC-link from the item to the
vEVERY-node. Existing descriptions which are aitered or augmented are re-checked, to see
whether the new version matches an «EVERY-node class.

An :EVERY-node has three defined wires. First there is a set-wire
which connects the *EVERY-node to the set that it defines. The other two wires indicate a
parent and a scope for the «:EVERY-node. These serve as the core of the node's
specification: if the parent is MUSHROOM and the scope is NORTH-AMERICA, the
#“EVERY node would represent "every mushroom in North America” which also meets the
rest of the specification, and the set would be the set of all such mushrooms. Note that the
scope-area is activated through the hierarchy of areas and sub-areas just as a statement’s
scope is activated: if the scope is NORTH-AMERICA, it is meant to include every part of
North America. If we activate a particular context-area, we must activate all of the context
areas of which it is a part in order to find the set of possibly-relevant xEV ERY -nodes.

The parent and the scope are automatically part of the *EVERY-node's
specification. The rest of the specification consists of a set of statements that are marked
with the «:SPEC flag and are tied to the *EVERY-node by their spec-wires. Each such

Defined Classes and Negation 17 Section 3.8

statement is referred to as a clause of the specification. No clause may be part of the
specification of more than one :EVERY-node. The spec-wire is needed because the #:SPEC
flag alone is not sufficient to indicate which “EVERY-node a clause belongs to. The spec-
wire also makes it possible for the matcher to quickly locate all of the clauses which it must
check in considering a given «EVERY-node. In addition to statements, xINDV nodes can
serve as clauses, indicating that some individual with a matching description must exist if
that clause is to be fulfilled. These xINDV-node clauses serve as additional variables to use
during the matching process, much as pattern-variables are used in standard data-base
matchers.

PURPLE MUSHRooOM pPoISONOUS
o—e o—-e

!

‘L # EVERY -NODE

AMER ICA Ei\
B SCoPE-WIRE

Figure 35: "Every purple mushroom in North America is
poisonous."

Figure 35 shows the statement that every purple mushroom in North
America is poisonous. The connections to MUSHROOM, to NORTH-AMERICA, and to
PURPLE are clauses in the specification; the connection to POISONOUS is an incidental

Defined Classes and Negation 118 Section 3.8

property attached to the defined class. The double-barbed arrow represents the spec-wire.
(The spec-wire from the parent-wire connection is implicit, but since we draw parent-wires
and =V C-links alike, we must show this implicit spec wire to avoid confusion.) Note that
adjectives like PURPLE and POISONOUS are represented as «TYPE-classes -- more about
this later.

With this relatively simple set of conventions, we can create arbitrarily
complex class-definitions. Figure 36 shows the xEVERY-node for "every mean dog who
hates every slow mailman”; the dog, the mailman, and the act of hating all are scoped
within REAL-U. If the spec-wire from the HATES statement went instead to the SLOW-
MAILMAN «EVERY-node, we would have a representation for "every slow mailman who is
hated by every mean dog”; if the HATES statement had no «:SPEC flag or spec-wire at all,
the diagram would represent the declarative statement, "Every mean dog hates every slow
mailman” The connection of the spec-wire is therefore very important.

By rearranging the positions of the existence wires, we can handle
various kinds of quantification. Figure 37 shows the statement that every mean dog who
hates any slow mailman hates Fred (who is also a slow mailman). The node marked M in
the diagram is an example of the use of an «INDV-node as a clause: it states that there
must exist some individual who is a slow mailman, and which the dog in question haies, if
this part of the specification is to be fulfilled. Figure 38 represents the statement that any
person who owns a dog that hates Fred also hates Fred. Figure 39 shows the statement that
any person whose father is a mailman likes Fred. And so on.

As we noted in section 3.6, there is a hierarchy of statement-types in
NETL.sranging from very general types at high levels to more specialized forms farther
down. As these specializations are made, we want to distinguish between properties that
define the specialized forms and properties that are incidentally true of statements of the
specialized type. This is done by representing the specialized statement-types as xEVERY-
nodes instead of the ususal «TYPE-nodes. Figure 40 shows the specialization of the OWNS
statement to OWNS-SLAVE, only this time done right: the PROPERTY argument being a
PERSON is a part of the definition, but the statement that the relationship is illegal is not.

The *EVERY-node matcher, which is responsible for fitting newly-
created items into the proper «EVERY-node classes, is really an open-ended collection of
matching techniques. When the system is in a hurry, only a minimal effort is expended to
check each clause for satisfaction; if the system has more time, or is really interested in
establishing whether some incidental property of an *EVERY-node class is true for some
item, it might work much harder in trying to establish a given clause. The :EVERY-node
matching process, then, is one of the interfaces between the knowledge-base system and the
serial problem-solving components of an intelligent system. Many implication rules can be
expressed clearly and unambiguously in *EVERY-node form, even though the quick parallel
matcher will only find the easiest and most obvious of the matches. If a potential match is
missed by the digestion processes, the system can still come back later and use the “<EVERY-
node in consequent-fashion (to use the PLANNER term) to establish some result that is

119

DOG MEAN MAILMAN Stow

o—e oo o—@
REAL% 4’/
HATE S REAL-V

@ = #EVERY-NODE
} =spEc-wiRE

Figure 35: "Every mean dog who hates every slow mailman ..."

Do MA(LMAN SLow
G MEAN i
HATES
E ;
—> () FRED
HATES
REAL-V

Figure 37: "Every mean dog who hates any slow mailman hates
Fred."

PERSON voG
c—e c—e
4 ZiN

qgﬂw\

FRED

Figure 38: "Any person who owns a dog that hates Fred also
hates Fred."

PERSON mmm LMAN

—p FRED

Figure 39: "Any person whose father Is a mailman |ikes Fred."

Defined Classes and Negation 121 Section 3.8

OWNIS-
STATEMENT,
OWNER PROPERTY

.S
ILLEGAL
QsLenon_s HipP O_.PERS oN

A

SRR SUAVE
CURRENT -UsA OWNS-SLAVE

Figure 48: Every OWNS statement in which the PROPERTY is a
PERSON is an OWN-SLAVE statement.

needed at the time. If the systém wants to establish that some mushroom is poisonous, and it
cannot find that fact directly, it can look for an *EVERY node that would imply
poisonousness; the PURPLE-MUSHROOM node would be found, and the system could try
to establish that the mushroom in question is purple. That, in turn, might lead to yet
another *\EVERY-node, and so on. If it knows which *EVERY-node it would like to fit an
item into, the system can expend much more effort in satisfying the various clauses than it
could in checking an incoming item against dozens of possible *<EVERY-node matches.

At present, only a rather rudimentary version of the xEVERY-node
matcher has been implemented. The strategy, in general, is as follows: Whenever a new
description («*TYPE or «INDV) is created, the system marks the node's ancestors in the type-
hierarchy, and looks for *EVERY-nodes whose parent-wires are connected to members of
this ancestor set. If we create a new ELEPHANT, we must look at *EVERY-nodes hung
under ANIMAL as well as those under ELEPHANT. Only those :EVERY-nodes which
are active in the new object’s context-area (or an area of which the current context is a part)
are considered: if we have a new ELEPHANT in AFRICA, we need not consider <EVERY -
nodes for "every ELEPHANT in INDIA", but we should consider those nodes that relate to
“every ELEPHANT in THE-WORLD". This initial filtering produces a set of candidate

Defined Classes and Negation 122 Section 3.8

“EVERY-nodes which must be compared to the new description individually, clause by
clause. '

This clause-checking normally is very quick, and is handled by the
parallel intersection machinery: in most cases, it takes only a couple of marker sweeps to
determine whether the new individual's father is a slow mailman, whether the individual
owns a dog, and so on. If this test fails, we must then decide whether to leave it at that, or
whether to try to establish the clause in question by slower, but more powerful methods:
looking more deeply into extrinsic descriptions (see section 3.7); finding and «*EVERY-node
that implies being a mailman, and trying to establish the father’s memebership in that class;
perhaps even calling up the post office in the father’s city of residence. Even in the simple
cases, however, each clause of each candidate-node must be checked individually.

Because they are checked individually, it is important to keep the set of
candidate-nodes as small as possible. Since the parent-wire is the major factor in
determining whether an *<EVERY node becomes a candidate, it is desirable to tie this to the
most specific “TYPE-node possible; if we have too many «*EVERY-nodes with their parent-
wires tied to THING, we will spend all of our time in the matching process. For the same
reason, it ts useful to make an *EVERY-node’s scope as specific as possible, especially when
the parent-wire connection of the node is not very specific -- we want one or the other of
these connections to rule the «<EVERY-node out most of the time, if possible. In really large
systems, it might be useful to use a few of the spare type-flag bits in the xEVERY-node
element to represent various levels of matching priority: always consider, consider if not in a
hurry, or never consider. *EVERY-nodes of the latter sort would never be considered
during digestion, but would function in consequent-driven reasoning, when the system wants
to establish one of the *EVERY-node's incidental properties for some individual. For the
relatively small test-systems that have been constructed so far, such priority-levels are not
needed.

There are some situations in NETL which could be handled by
“EVERY-nodes, but which appear so often that it is useful to give them special, more
efficient representations. The most common of these, and the only one currently defined, is
the «INT-node, which defines a class containing the intersection of two other type-classes
(represented either by “TYPE-nodes or *EVERY-nodes). The BOY class, for example, is
the intersection of the CHILD class and the MALE-PERSON class: it is impossible to be
both a CHILD and a MALE without being a BOY. We.could represent BOY by creating
an “LVERY-node with its parent-wire hooked to CHILD and a «VC-clause to MALE (or
vice-versa), instead we use a special node-type, the «INT (intersection) node. This node has
two identical parent-wires, designated Pl and P2, which are hooked to the two sets being
intersected. It also has a set-wire which connects it to the set-node that it defines. It does
not have a scope-wire, since its scope is just the intersection of the parents' scope-areas.

Individuals and sub-types can be hung below the «INT-node, just as
though it were a regular *EVERY-node. The special property of this node, however, is that
any individual or sub-type description which has both Pl and P2 as an ancestor will behave

Defined Classes and Negation 123 Section 3.8

as though the *INT-node were an ancestor as well, even without an upward path of «VC-
links to the «INT-node. This is accomplished by a very simple process: whenever, during
the activation of a single individual or type-description, the activation marker appears on
both Pl and P2 of an «:INT node, that marker is placed on the “INT-node as well. The
“INT-node operates much like a “MAP-node, with a marker on PI gating the flow of a
marker a€ross P2; in this case, however, both the marker being passed and the one
activating the gate must be the same. The «EVERY-node matcher is thus relieved of the
burden of explicitly placing new items into the proper \INT-node sets; ~INT-nodes can be
totally ignored by the matcher, and individuals in the intersection-set will inherit the «INT-
node’s incidental properties anyway. This mechanism was suggested by Michael Genesereth.

As we saw earlier, adjectives generally are associated with type-classes in
NETL. The adjective "HEAVY", in its original, literal sense, applies only to PHYSOBS.
We can therefore associate the word-node "HEAVY" with a HEAVY-PHYSOBS class, as a
sort of alternate name. If we try to create a heavy color or a heavy number, we will get a
type-clash. (We might then try to find a metaphorical meaning for the input in question,
but that is another thesis) Syntactically, these adjective-labels behave very differently from
noun-labels, but they seem to do about the same job semantically. Some sets with noun-
names have adjective-labels as well: HERBIVORE and HERBIVOROUS seem to point to
the same “EVERY-node, a subclass of ANIMAL whose specification says that the
individual's USUAL-FOOD is a member of the PLANT class. I may be missing some
important distinction here which will become obvious when an attempt is made to add a real
natural-language interface to NETL, but for the present it seems convenient to use adjectives
as an alternative way of labelling a type-class. If this seems unnatural, feel free to read class-
names like PURPLE and POISONOUS as PURPLE-THINGS and POISONOUS-
THINGS.

The point of this discussion of adjectives is that the «INT-node
mechanism makes it much easier to use such adjectival type-classes. We can now very easily
create the set of all purple mushrooms or all purple doorknobs using an «INT-node, without
adding significantly to the «\EVERY-node matcher's workload whenever something purple is
created. In addition, xINT-nodes make it easier to handle general-purpose modifiers like
BIG or TOY which, when added to an object’s description, causes a particular type-specific
“IN'T node to be spliced into the object's description. If something is an ELEPHANT and
we say that it is BIG, this causes the BIG-ELEPHANT «INT-node to be added to the
object’s set of inherited descriptions. This BIG-ELEPHANT node will cancel the default
SIZE property attached to the ELEPHANT node and replace it with a different, somewhat
larger default SIZE. If we add BIG to an object that is known to be a MOUSE, then we
activate the BIG-MOUSE «INT-node, whose SIZE property is very different from that
found in BIG-ELEPHANT. BIG, then, is not very useful as a class in its own right, but it
is very useful as a sort of "big switch” which splices in whatever «INT node is appropriate to
the type of object being considered.

What does the definition of BIG itself look like? Since it must create an
“INT node for any object-type with which it is used, and since the properties attached to

——————e - S— e~ — o . e

Defined Classes and Negation 124 Section 3.8

that “INT node depend on the properties -- in this case, the SIZE property -- of the other
parent. it would appear that BIG must be defined as a procedure of some sort. One way of
setting this up would be as follows: BIG is given a SIZE property, but instead of having an
explicit value, the SIZE property is attached to a demon program. This demon is to be
invoked whenever the SIZE property is accessed. Suppose that we have not yet built the
“INT-node for BIG-ELEPHANT. If we say that CLYDE is an ELEPHANT and CLYDE
is BIG, nothing out of the ordinary happens. (Since ELEPHANTS are PHYSOBS, the two
varent-types do not clash.) The first time that we ask for the SIZE of CLYDE, however, we
will invoke the demon program. (The SIZE value from the ELEPHANT description would
also be found, but demons take priority.) This program creates the BIG-ELEPHANT
“INT-node and gives it a SIZE property that is near the upper limit of the sizes of known
elephants, or perhaps just adds some fixed percentage to the default SIZE for
ELEPHANTS. The demon then runs a *CANCEL-link from the xINT-node to the default
ELEPHANT SIZE, to get it out of the way, and another “*CANCEL-link from the »INT
node to itself, so that it will-not be invoked again for any BIG-ELEPHANT. Subsequent
accesses to SIZE from CLYDE or any other BIG-ELEPHANT will simply find the new
SIZE value tied to the «xINT node. This is not very elegant, but "big” is a notoriously
inelegant concept in many representational systems.

The concept of negation is related to the concept of defined sets: both
require digestion-time matching to work properly, and both can become open-ended
problems requiring serial proof methods if we really want to catch the more difficult cases.
The notation is really quite simple, at least for the simple cases: to create the negation of any
single statement, we create the statement in positive form, then add a «:NOT flag-bit to the
statement’s handle-node. To say that CLYDE is not a CIRCUS-STAR, we create a =«VC-
link from CLYDE to CIRCUS-STAR and add the «:NOT flag to the handle of this link.
The «:NOT flag has three functions: first, it renders its statement inoperative during
normal knowledge-base accessing operations; second, it causes its statement to satisfy certain
+EVERY-node clause-tests that would otherwise fail; finally, it causes a clash whenever an
attempt is made to add the corresponding non-negated statement to the knowledge-base. It
is this clash-test that involves the matcher: each new statement must be tested against the
existing pool of =xNOT statements to see if there is a conflict. The new statement does not
have to match the exact form of the negated statement: any new statement that implies a
negated statement should cause a clash, though the basic digestion-matcher only checks for
class-membership and other very obvious kinds of implication. The «:NOT «VC-link we
created above for CLYDE will clash with any attempt to place CLYDE into a sub-class of
CIRCUS-STAR in the type hierarchy. Note that a «*SPLIT-link creates a form of negation,
since it is equivalent to placing a «:NOT «EQ link between its A-npde and every other node
in-the split-set.

In complex statements, we have the choice of negating the entire
statement or of negating only its attachment to certain arguments. If we place a «:NOT flag
on the handle-node of a KILLER-OF statment linking BOOTH to LINCLON, we are
saying that BOOTH did not kill LINCOLN; if, instead, we place the «:NOT flag on the

Defined Classes and Negation 125 Section 3.8

“EQ_link between BOOTH and the KILLER «MAP-node, we are saying that someone
killed LINCOLN, but that it wasn't BOOTH. To state that several distinct statements A, B,
and C are all false (conjunction of negations), we simply negate each of them individually.
To state that they cannot all be true at once (negation of a conjunction or, by DeMorgan's
Theorem, the disjunction of negations), we need to create an «EVERY-node representing
any context in which all of the statements are true. We then deny that REAL-U (or
whatever the scope of the negation is to be) is a memeber of this defined class of contexts.
This technique of using contexts to represent logical operators comes from Hendrix [1975a,
1975b, 1976]; we will see more of this in section 3.9.

1 believe that this set of representational options gives us enough power
to represent any sort of negation that we might want for human-like common-sense
reasoning. Note, however, that in English (and presumably in most other natural languages)
the task of mapping a sentence involving negation into the appropriate underlying structure
is a complicated one, depending in many cases on subtle semantic clues. See Lasnik [1972]
for an analysis of this problem from a linguistic point of view and for references to other
work in this area.

To state that no indjvidual with a given description exists within a given
area, we can create an *EVERY-node with the desired specification, and can state that the
associated set is an EMPTY-SET. (that is, one with MEMBER-COUNT equal to zero). Any
attempt to create such an individual within the specified scope would be noticed by the
matcher, which would try to place the new individual into the «<EVERY-node's set. This
would result in a clash due to member-count violation. The same end can be accomplished
somewhat more directly by placing a «:NOT flag on the *EVERY-node itself, indicating
that the corresponding set is empty and that no such individuals exist. In this one case, it is
allowable to omit the set-node altogether, since the set's properties are trivial. Under normal
conditions, an *EVERY-node with the ««NOT flag will never have any incidental (non-
defining) properties, since there is nothing to say about the properties of a thing that does
not exist.

Sometimes a clause in an *EVERY-node specification will specify that
some statement must be known not to be true if the specification is to be met. We might, for
instance, want to create the class containing "every ELEPHANT in NORTH-AMERICA
who is not a CIRCUS-STAR". This condition is represented by creating a «VC-link from
the “EVERY-node to CIRCUS-STAR as part of the specification, and setting the «:NOT
flag on this link. The matcher will only accept this clause if it can definitely establish that
the individual being tested is not in the CIRCUS-STAR class. This can be established by
finding a «:NOT statement to that effect or by finding a split-set which implies such a
statement. It can also be established by slower serial means -- proof by contradiction, for
example -- if the system wants to pass the task to the serial problem-solver.

We also might want to say that a clause should be accepted if the truth of
its statement cannot be established. We might, for example, want to specify every
ELEPHANT not known to be a CIRCUS-STAR. This is quite different from saying that

Defined Classes and Negation - 126 Section 3.8

the statement is definitely known to be false. (In the context of MICRO-PLANNER, this
was called the THNOT problem.) This condition can be indicated by placing an ««UNK
(unknown) flag on the clause in question. The matcher will try to establish the truth of the
statement in question, and the clause will succeed only if this attempt fails. This attempt to
establish the statement obviously occurs within the system’s own knowledge base; if we want
to talk about what someone else knows, we can use the context mechanism (see 3.9), but in
general this problem can become very complicated. Only the simplest cases can be handled
in the current NETL.

The ««UNK flag occurs only on statements in «SPEC clauses. If a
statement is added to the system which violates an «UNK statement for some description,
that description is removed from the «EVERY-node class specified by the «xUNK; no clash
is generated, since the addition is perfectly legal.

Events, Actions, Contexts 127 Section 3.9

3.9 Events, Actions, and Multiple Contexts

In the preceding sections we developed representational techniques for
static descriptions and relationships -- those residing within a single context-srea. In this
section, we will extend these basic ideas to cover actions and events, which we will represent
as transitions between one state of the world (a temporal context-area) and another. We will
also look briefly at the use of inter-context relationships to represent such things as
implication, belief, expectation, and desire. 1 should mention at the outset that the
mechanisms described in this section have not been as fully developed and tested as NETL's
machinery for static descriptions. In the relatively straightforward examples that I have
considered to date, the multiple-context representation seems to work rather well, but I have
not yet run any large-scale tests of these techniques using the simulator, and several areas of
potential difficulty remain unexplored. As the implementation and testing of NETL
proceeds, I have no doubt that many of the details presented here will change, but I believe
that the general approach will prove to be sound.

A context is simply an AREA of space, time, or subject matter into which
we can place certain statements and in which we can declare the existence of certain objects.
When we are discussing actions and events, the word "context” will generally be used to refer
to a temporal area. The term "world-model” is used to refer to the set of statements that are
valid within a given temporal area or at a particular instant of time. Since time is one-
dimensional, a finite area of time will be bounded by two temporal "points” or instants, one
marking the start of the area and the other marking the end. To represent this, the
TEMPORAL-AREA type-description contains two individual roles named STARTING-
TIME and ENDING-TIME, both of which are members of the INSTANT class. There are
two special instants, MINUS-INFINITY and PLUS-INFINITY, which are used to delimit
semi-infinite areas: all of time before some instant, or all of time after it. In each universe
there is one special temporal area that is infinite in both directions -- that is, it is bounded
by MINUS-INFINITY and PLUS-INFINITY. This special area is named ALWAYS, and
every other temporal area is a part of it. To say that a statement is true between the instants
"Noon, April 15, 1977" and "3.00 p.m., December 9, 1978", we simply create these two
individual instants, create a temporal area with these instants as endpoints, and scope the
statement within this area.

An instant is represented as an *INDV node, descended from the
INSTANT »TYPE-node. INSTANT has roles defined for its DATE, YEAR, and TIME-
OF-DAY, but in many individual instants these roles will not be filled in; such instants are
identified by the events that they delimit, rather than by some particular clock-time. Each
instant creates a "before” context, running from MINUS-INFINITY to itself, and an "after”
context running from itself to PLUS-INFINITY. These two context-areas occupy the
BEFORE and AFTER role-nodes in the INSTANT description, and the INSTANT, in
turn serves as the ENDING-TIME or the STARTING-TIME for these areas. Of course, if
we have nothing to say about one of these areas for a given individual instant, we do not
create the “M AP-node for that area, and it costs us nothing.

Events, Actions, Contexts 128 - Section 3.9

We may place a LATER-THAN statement between two INSTANTS to
indicate their relative positions in time. If the dates and times for two INSTANTS are filled
in, we have an algorithm that can compute which is the later of the two whenever this
information is needed; if one or both of the clock-times are unspecified, it might be
impossible to determine the proper order. Every INSTANT is known to fall after MINUS-
INFINITY and before PLUS-INFINITY; these two relationships are inherited from the
INSTANT =TYPE-NODE. The LATER-THAN relation thus creates a partial ordering of
the INSTANTS that are present in any given universe, and the system can use a parallel
marker propagation to mark all of the INSTANTS that are known to occur before or after
some particular INSTANT. Note, however, that this scan is only able to follow LATER-
THAN relationships which are explicitly stated in the network or which are inherited from
higher levels in the type-hierarchy; the algorithm for comparing dates and times can only
be run for one pair of nodes at once. Because of this, some: potentially computable ordering
relationships will be overlooked by such a scan, but this is a rather human-like limitation.
At present, a LATER-THAN statement is represented by an «IST node, but it may be
worthwhile to define a special link-type for this relation in order to speed up the marker
sweeps through the LATER-THAN hierarchy.

Temporal areas may be grouped into type-classes on the basis of the
locations of their boundary-points, the length of time that they span, or any other
characteristic that such areas might share; thus, we have »TYPE-nodes for DAY,
THURSDAY, FUTURE-DAY, RAINY-DAY, YEAR, NANOSECOND, and so on. The
temporal area "July 4, 1776" (which by convention runs from one midnight to another) is a
DAY, a PAST-DAY, a THURSDAY (or whatever), and a FINITE-TIME-PERIOD in the
type-hierarchy; in the PART-OF hierarchy, it occurs in the YEAR-1776, the
EIGHTEENTH-CENTURY, the AGE-OF-REASON, and so on. It is important to keep in
mind that there are three distinct partial orderings or tangled hierarchies at work here: the
type-hierarchy, the PART-OF hierarchy linking temporal areas to their sub-areas, and the
partial ordering of the :istants in time. Though they intersect at various nodes and
sometimes follow the same links, these hierarchies are distinct and must not be confused with
one another. :

An event is an individual entity, represented in the knowledge-base by an
=INDV node. Each individual event is an instance of some event-type in the type-hierarchy,
just as a statement is an instance of some statement-type. The event-types and the
individual events are all descended from the EVENT «TYPE-node, which lives near the top
of the type-hierarchy, just under the THING node. The hierarchy of event-types is very
general at the higher levels and becomes increasingly specialized and precise as we move
down the tree. The DEATH-BY-DROWNING and DEATH-BY-ELECTROCUTION
event-types, for instance, are below the more general DEATH event-type in the hierarchy.
These event-types inherit all of the information attached to the general DEATH node, and
add specific information of their own concerning the way in which the death occurred. (We
will see in a moment how to describe the way in which an event occurs.) Just as in the
hierarchy of statement-types, a new role may be created for an event-type at one level,
restricted or modified at a lower level, and filled by a specific role-player at a level that is

Events, Actions, Contexts 129 Section 39

lower still. The restrictions are represented by «VC links, and are enforced by the clash-
detection mechanism.

This ability to create a hierarchy of event and action types is critically
important in a system that must reason about real-world situations. It allows us, for instance,
to state that RUN and WALK are both special cases of TRAVEL-BY-FOOT, which is a
special case of TRAVEL, which is a special case of MOVE. (To travel, as used here, is to
move one's own body, rather than some external object.) As Schank [1973] points out,
MOVE (or as he calls it, PTRANS) has an important implication that must be captured if
the event is to be understood at all: the object's position in space changes. The critical roles
that structure the event, in this case an OBJECT, a SOURCE and a DESTINATION, are
also created at the MOVE level. Clearly, any adequate representation of the meaning of
RUN and WALK must include this information from the MOVE definition, either directly
or by inheritance. But what about the implications that are tied directly to the RUNNING
or WALKING definition? In some situations, this information is more important than the
change in location: running in the hallway of a school may be a punishable offense;
walking in the hallway is encouraged. If there is no mechanism for the inheritance of
implications from one action-type to another, we must either copy out all the implications of
every action type or treat the implications tied to lower levels as secondary, available only
upon special request. As we see in Schank’s early work, this leads to many difficult decisions
about which actions have the most important implications and should therefore be treated as
primary. In a system with an effective virtual-copy mechanism, we can get the implications
from all levels in the hierarchy at once, and we do not have to select any particular collection
of action-types as being special or primitive.

As with statement-types, an event-type is just a template, regardless of
how specific it has become by the restriction and filling-in of roles; it takes an individual
event-instance to represent an actual occurrence. There is one key difference between an
event and a statement, however: an individual event is represented by an «INDV node, not
by an =IST node. This means that an event exists or occurs somewhere within a specified
area of space and time; it does not, like a statement, have an area of validity that
encompasses all of a specified area. In this respect, an event behaves more like an object
than like a statement.

An action is a type of event with a special role defined for the ACTOR:
the person, animal, robot, deity, or other "animate” entity that has caused the event to occur.
(The word "actor”, as used here, has no relation to Carl Hewitt's ACTORS.) Figure 41
illustrates the difference between an event and an action: a DEATH is an event-type with
one defined role, the VICTIM; a KILLING is an action-type, with an ACTOR (called the
KILLER) who causes a death-event to occur for some VICTIM. The VICTIM role may be
filled by any member of the class of BIOLOGS, which includes all plants and animals.
(Actually, this class is named LIVING-THINGS, but in this context the name would be
confusing) The KILLER slot may only be filled by a member of the ANIMATE class --
any attempt to fill this role with a dead animal, a rock, or a cabbage would produce a clash.
Note that the causal link between the ACTOR and the event itself is labeled ACAUSE (for

130

8loLo6

o
PLANT ANIMAL
AL

ANIMATE
(3 INT- NODE) EVENT

VICTIM

|
KlLé_l‘/wBKILLE&

Figure 41: DEATH as an event-type; KILLING as an action-type.

Events, Actions, Contexts 131 Section 3.9

"actor cause”) to distinguish it from ECAUSE ("event cause”), in which an event is caused by
some previous event rather than by the actions of some animate being. If someone is killed
by a falling rock, the internal representation would be a DEATH event rather than a KILL
action, with the ROCK-FALLING event as the ECAUSE. (This may be wrong: perhaps
we should treat the rock and Jack the Ripper in roughly the same way, placing both in the
ACTOR slot of their respective killings. This would be closer to the surface structure of
English, but would obscure certain aspects of the underlying meaning. More
experimentation is needed to resolve this and related questions.) Both flavors of CAUSE are .
treated as primitive relations by the system: there is no attempt to define them in terms of
other, more basic concepts.

(In this attempt to represent causality, we are treading dangerously close
to the borders of metaphysics. For thousands of years, philosophers have argued about the
nature of ultimate causality. Can an event really be caused by the will of an individual
actor, or are events caused only by the prior occurrence of other events? If an action can, in
principle, be predicted, can we really say that the individual actor has caused it? Is there
perhaps one Big Actor In The Sky who is responsible for all of the things that seem, to us,
to be our own free actions? And so on. I have no intention of grappling with these
questions here (or anywhere else, for that matter). Whatever the Ultimate Realities may be,
our everyday modes of thought and language seem to be tied very strongly to the idea that
individual animate beings cause individual actions -- in fact, the basic SUBJECT-VERB
structure of English (and related languages) practically forces this viewpoint upon us, though
we can escape this framework by such devices as the use of a passive sentence structure. It
seems reasonable to conclude, therefore, that ACTOR and ACTION are pragmatically
useful concepts, and that NETL should freely employ these concepts in roughly the same
ways that people do.) :

An event or action has two roles for its temporal boundary points, the
EVENT-START and the EVENT-END, both of which are descendants of the INSTANT
“TYPE-node. The DATE, YEAR, and TIME-OF-DAY for these instants might or might
not be specified. In any given event, the EVENT-END is LATER-THAN the EVENT-
START, but the temporal ordering between these boundary points and other events and
instants may not be known. The DURATION of the event is the length of time between
the EVENT-START and the EVENT-END; given either of these boundary-points and the
DURATION, we can find the other point by simple arithmetic. For many event-types, there
is a typical default DURATION. For example, the typical COMMITTEE-MEETING takes
about an hour, the typical BROKEN-ARM-RECOVERY takes one or two months, and the
typical SNEEZE takes a few seconds.

If a statement is said to be true "before” an event, this means that the
statement is scoped in the BEFORE context of the EVENT-START instant; if it is true
“after” the event, it is placed in the AFTER context of the EVENT-END instant; if it is
true "during” the event, it is placed in the event's DURING context, which lies between the
EVENT-START and the EVENT-END. To represent what a particular event-type does,
we simply place the appropriate statements in the BEFORE and AFTER contexts. In a

Events, Actions, Contexts 132 Section 3.9

DEATH event, for instance, the VICTIM is ALIVE in the BEFORE context and DEAD in
the AFTER context. This implies, among other things, that the victim is no longer
ANIMATE, and therefore can no longer initiate any actions. This event-type is illustrated
in figure 42.

In a CREATION event, the «<EXIN wire (or link) of the thing being
created is tied to the AFTER context: before the CREATION event the thing does not
exist; after the CREATION it does exist. In a DESTRUCTION event, the «EXIN wire is
placed in the BEFORE context. In a TRANSFER-OWNERSHIP event, there are roles for
a DONOR, a RECIPIENT, and an OBJECT. In the BEFORE context, the DONOR owns
the OBJECT; in the AFTER context, the RECIPIENT does. The transfer can be either a
GIVE-OWNERSHIP or a TAKE-OWNERSHIP, depending on whether the DONOR or
the RECIPIENT is the ACTOR. SELL is an action in which there are two TRANSFER-
OWNERSHIP events: a transfer of some object from the ACTOR to the BUYER, and a
transfer of MONEY in the opposite direction. And so on.

The statements in the BEFORE and AFTER contexts of an event
provide us with a global view of the state-transformation associated with that event. It is
perfectly legitimate to view an event in this way and to say nothing more about it. If we
want to look more closely, however, we will see that an event is really an envelope containing
a collection (usually, but not always, a linear sequence) of sub-events. Each of these, in turn,
is a package containing still more sub-events, and so on as far down as we want to pursue
the matter. At some level, of course, we will have to terminate this recursion by treating
certain events as primitive, described only in terms of the external transformations that they
cause, not in terms of any internal structure of sub-events. It is important to note, however,
that the decision to stop expanding the steps of a description at some level is an arbitrary
decision, made because more detailed information is unavailable or is not needed for task at
hand. There are no primitive event-types per se, only events for which we have not
specified the expansion. Actions, likewise, are really a collection of sub-actions, usually by
the same actor, but sometimes by sub-actors who are ordered, hired, asked, or otherwise
induced to carry out some of the steps.

This hierarchy of events and sub-events is represented in NETL by
giving each EVENT an EXPANSION role. The EXPANSION has a set of STEPS, each
of which is a PART of the parent event and also an EVENT in its own right. The
EXPANSION may or may not be filled in for a given event, depending on whether we
know the details of the event or merely the overall results: we might know only that a thief
has stolen the Crown Jewels; we might know, in addition, that among the STEPS in this
action were the breaking of a skylight, the lowering of the thief on a rope, the opening of
the case with a chainsaw, and so on. Usually, if the STEPS in an event are specified, the
time relationships among these steps are specified as well, but again this is not always true:
we might know that the thief cut himself on the glass of the skylight during the crime, but
we might not know whether this injury occurred during the entry or the exit. It might be
useful to disiinguish between parts of the jewel-theft action, which must be intentional, and
parts of the jewel-theft event, which would include everything that happened in the course of

133

*

o—o BioLoG
ALIVE

TEMPORAL
O0—@ _AREA
DEAD
EVENT M i o
- "T STARYT m ENOD

L]
o

VICTIM

Figure 42: The DEATH event-type, with BEFORE and AFTER
contexts.

Events, Actions, Contexts 134 Section 3.9

that event -- the thief cutting himself, for instance.

In the above example, the EXPANSION was for an individual JEWEL-
THEFT event. An EXPANSION can also be specified for the generic JEWEL-THEFT
“TYPE-node. This would describe the steps and their order of occurrence in a typical
JEWEL-THEFT. This expansion, in all its detail, is inherited by each individual JEWEL-
THEFT event, unless it is specifically canceiled or modified. The mechanisms responsible
for this inheritance are the same mechanisms that we developed for the inheritance of the
parts and properties of an object. If there are several stereotypical ways to conduct a
JEWEL-THEFT, then we have several sub-types of JEWEL-THEFT, each with its own
EXPANSION. The EXPANSION, or some feature of it, can also be used to define a class
of events. Just as a JEWEL-THEFT is defined as any THEFT event in which the LOOT
role is a member of the JEWELRY class,a DEATH-BY-DROWNING is any death in
which the EXPANSION of the event includes the movement of water into the lungs, and in
which this particular STEP is the ECAUSE of the DEATH-event itself. Defined event-
types are, of course, represented by *EVERY-nodes rather than «TYPE-nodes, and the
existence of the critical expansion-step becomes a clause in the specification of this <EVERY-
node. In most subject domains the majority of event-types will be created by this process of
partly specifying various possible expansions for more general event-types.

Note that the BEFORE, DURING, and AFTER context-areas of these
nested events must be woven together into a coherent structure. It must be possible to pick
any time-insiant within an event and tell which statements are to be considered active at that
instant. The finite time-areas are nested in a PART-OF hierarchy: the DURING context
of each step in an event is a part of the DURING context of the surrounding event; the
time areas between the steps in a sequence are parts of the outer DURING context as well.

. Any semi-infinite BEFORE context includes as a part any temporal area with an ENDING-

TIME earlier than its own; an AFTER context includes any area with a STARTING-
TIME later than its own. You will recall from section 3.6 that, in order to activate all of the
staternents which are supposed to be active within some context X, we must activate X itself
and all of the areas of which it is a part. This means that we must activate all of the
surrounding DURING contexts, and must propagate markers through the LATER-THAN
hierarchy to catch the appropriate BEFORE and AFTER contexts and the statements that
reside within them.

The LATER-THAN lattice can become quite deep, but it can be cut
down to a reasonable depth by the judicious placement of a few shortcut links; if, for
example, we have a direct LATER-THAN link from the Apollo-1l landing to the Fall of
Rome, some of the propagating markers can leap ahead while their brothers scan through
the points between these events. A hierarchy can provide us with the same effect by
declaring, for instance, that Apollo-1l is a part of Modern History, the fall of Rome is a part
of Ancient History, and that there is an inherited LATER-THAN between any point in one
and any point in the other.

There are still a number of problems '« 2 solved with the details of this

S - — et S r—————

Events, Actions, Contexts 135 Section 3.9

scheme for representing actions and events. For one thing, the prerequisites of an action or
event should not really be placed in a semi-infinite BEFORE context. In a DEATH event,
for example, we really want to require that the victim be alive at the STARTING-TIME of
the DEATH, but we do not care how long he has been alive. We certainly do not want to
require that he has been alive since the dawn of time. When we say that a statement is true
“at” a given instant of time, we presumably mean that it is true in some unspecified area
surrounding that instant, but there is not at present any machinery to represent this
situation. We will probably need a new kind of scope-link for AT-statements. These AT-
links should work for spatial points as well as temporal ones.

The semi-infinite nature of an event’s AFTER context can also be
troublesome, since it implies that the results of an event last forever unless they are explicitly
cancelled by a later event. What if we have created a BIRTH event for some citizen of the
Roman empire, but we have not created an explicit DEATH event for him? It would
appear that if we ask in a modern context whether this Roman is alive or dead, the system
would reply that he is alive. We need some way to put a statute of limitations on the results
of an event, after which they are assumed to have been obliterated unless we have specific
information to the contrary. Perhaps a default DEATH-event should be created along with
every BIRTH-event, but this seems a rather clumsy solution.

There may also be some problems in the implementation of the LATER-
THAN scan. Some of the LATER-THAN relations must be inherited from higher levels
and, as we saw in the PART-OF scan, this can sometimes lead to serious inefficiency. It
might be necessary to replace some of the implicit, inherited LATER-THAN links with
explicit ones, as we did in the PART-OF hierarchy. These problems do not appear to be
particularly serious, but they do indicate that this area needs some more work before it can
be successiully implemented.

Given a facility for describing action-types, we can represent procedures
as well -- there is no real difference between the description of the steps in a typical
successful JEWEL-THEFT and a list of instructions on how to conduct such a theft. The
only necessary addition is a statement or two describing which of several possible expansions
should be used, and under what conditions this choice might vary.” Given an initial state
and a goal state, the system can select an appropriate action in a way that is reminiscent of
STRIPS [Fikes, Hart, Nilsson, 1973} an action-type is sought whose AFTER context differs
from its BEFORE context in the same way that the goal state differs from the initial state.
In NETL, the parallel intersection machinery can aid us in performing this search. We can
locate a known action-type with the desired elements in it BEFORE and AFTER contexts in
much the same way that we would locate an animal-type or a disease-type by intersecting an
observed set of features. Once an action-type is found that can do the job, an expansion is
selected (if more than one expansion is known), the steps are expanded out, and the process
repeats until the level of directly executable primitive actions is reached. Then the plan is
executed. If the steps in an expansion are only partially ordered, we can use some of the
techniques developed by Sacerdoti [1975] for his NOAH program to pick an advantageous
ordering which does not conflict with other steps in the plan.

Events, Actions, Contexts 136 Section 3.9

Of course, this is only an outline, and considerable work will be required
to fill in the details. Eventually, however, it might be possible to put the system’s own
library of search, digestion, and other procedures into the network with the rest of the
knowledge, and to reduce the controller program to a small, fixed interpreter. This would
mean that the system could alter and improve its own procedures, and by switching contexts
could adopt various styles of thinking: legal, mathematical, metaphorical, etc. The original,
basic mode of thought should probably be in a separate, non-alterable context so that the
system can recover if it makes a mistake while altering its own processing strategies.

There are several other uses for multiple context areas, besides the ones
already described. As Hendrix pointed out [1975a, 1975b, 1976), a context (or, in his system, a
partition) can be used to represent any conjunction of statements that we want to manipulate
as a unit. A «TYPE-node used as a context represents a class of situations in which the
attached statements happen to be true. An «*EVERY-node used as a context for some of its
specification clauses represents every situation (real or imaginary) in which that set of
statements is true.

. We might, for example, have two sets of statements, X and Y, one of
which must be true in the real universe. Either Smith is the engineer and he plays cards
with the brakeman (this is situation X) or Jones is the engineer and he lives across the street
form Smith (situation Y). We can represent these two situations by «EVERY-nodes: X
represents every unverse in which Smith is the engineer, etc. We can indicate that REAL-U
(or PUZZLEI-U) must be one of the above by placing X and Y into a complete exclusive
split relationship. The digestion machinery will then see to it that if either X or Y is ever
ruled out, REAL-U will be placed into the other class, and the statements in that class will
become active in REAL-U.

To indicate that some particular conjunction of statements, taken as a
whole, is untrue, we can define (with an *EVERY-node) the set of universes in which these
statements are all true, and then state that REAL-U is not a member of this set. Once again,
the regular digestion machinery will catch any violations. This is NETL's mechanism for
handling external negation -- statements of the form "It is not the case that .."

To represent the concept that someone WANTS a statement to be true,
we must be able to represent the desired statement without placing it actively into the
knowledge-base. Cne way to handle this would be to specially mark the target statement as
being inoperative. If we have a multi-statement desire, however, we might want to enter and
explore this fantasy-world. To achieve this, the WANTS statement should point at a context
full of statements rather than at a single fact in isolation. This allows us to quarantine the
desired situation in its own separate compartment; normally this compartment is inactive,
but it can be deliberately turned on for exploratory purposes. Of course, an individual can
have several distinct and inconsistent fantasy worlds, stored in separate contexts. States of
belief and knowledge are handled in essentially the same way. Note that we can start a
fantasy-world or belief-worlc as a copy of REAL-U, and then simply note any changes.

e e - " A ————

Learning ‘ 137 Section 3.10

3.1Q Abstraction and Learning

Much of the representational power of NETL depends on the existence of
a rich, multi-leveled structure of «TYPE-nodes and *EVERY-nodes, each with its own
contribution to make to the structure and properties of the individuals below it. In this final
section of Chapter 3, we will take a quick look at the question of how all of these

intermediate-level nodes come into being. Few of the ideas in this section are original --

some, in fact, have become so commonplace that I am unable to determine their origin -- but
I discuss them here because they fit so well into a system in which inheritance through a
tangled hierarchy of types is a central feature.

As Winston ([1977] points out, there is a spectrum of methods by which
people learn new concepts, ranging from those in which the learner does very little work to
those in which he creates the new concept entirely on his own. At the low end of the scale is
rote-learning, in which a body of information is put away in a form which can be retrieved
later, but in which very littie actual processing or digestion is done by the learner. One
would expect that in learning of this type, many implications of the learned material would
be missed and many absurdities -- even obvious ones -- would slip by. In people, that is
exactiy what we find, and this is why rote learning is currently held in rather low esteem. In
NETL, rote learning wouid correspond to simply accepting and storing input, with no
checking for relevant «EVERY-nodes, «:NOT statements, and so on. This saves time and
allows input to be accepted at a very high rate, but the disadvantages are so great that the
system should only operate in this mode when there is no other choice.

Winston'’s second level is learning by being told, where the learner takes
the role of an active listener, drawing inferences and integrating the new knowledge into his
existing memory structure. This would correspond in NETL to accepting external inputs
and digesting each fully before going on to the next item. Actually, since digestion is an
open-ended process, we can never say that an item has been totally digested, but in active-
listener mode we would expend a considerable amount of effort on each item. The teacher
might tell us, for instance, that there exists a sub-class of animals named "elephant”, whose
members share some specified list of properties. If this list of properties includes the
statement that an elephant weighs several tons, and if we have an *EVERY-node for
LARGE-ANIMAL that has some associated properties, we could hardly claim to have
assimilated the new information if the ELEPHANT «TYPE-node does not end up with a
«VC connection to this LARGE-ANIMAL node. In addition to trying to match and clash
the central concept being learned, the learner should examine the roles and sub-roles, trying
to digest them as well. Actions should be expanded out a level or two (just as they would be
in generating a plan) to see if the sub-actions clash or qualify the action for membership in
some defined class. Such efforts can pay off handsomely in the availability of additional
inherited facts that would be unavailable to the rote-learner, and in the detection of subtle
inconsistencies.

As an example of the perils of incomplete digestion, consider the case of a
friend of mine who was told, during a class in high shcool, that the painter Van Gogh had

Learning 138 Section 3.10

bitten off his own ear and sent it to his girlfriend. Though his mind was on something else
at the time, my friend dutifully filed this fact away. Years later, in another art class, he
retrieved this fact, realized the absurdity, and started laughing. Note that there is no
surface-level clash here: an ear is a reasonable, if painful, thing to bite, and there is no
absolute restriction against a person biting off some part of his own body if he is sufficiently
disturbed. It is only when one attempts to expand out the action in terms of the necessary
movements of hand, ear, jaw, and tongue that the difficulty becomes apparent. If the teacher
had said that Van Gogh had bitten off the end of a steel I-beam, the conflict might have
been caught by shallow surface-level clash-detection.

It may seem, at first glance, that learning by being told is the principal
mechanism by which our heads are filled with categories, but upon closer examination we
find that Winston’s third level, learning by analyzing samples, is of equal, or perhaps
greater, importance. By this, Winston means that someone (or something) tells the learner
that a new class exists and points out or describes some sample members of that class. The
learner must then decide for himself which are the class’s typical or defining features. This
is the paradigm analyzed in Winston’s original [1975] thesis.

Winston's emphasis is or clearly defined classes -- in NETL they would
be “EVERY-nodes -- and he therefore requsres rather strong proof that a particular feature
is a defining one. It is not-sufficient that all known examples of ARCH have a iole;
Winston's system must also see some non-arch whose only obvious fault is the lack of a hole.
This is the reason for Winston's stress on the near-miss concept and the idea that examples
should be presented in an optimal order. But suppose we are looking not for defining
features, but for typical ones -- that is, suppose we are trying to characterize the class not by
a formal definition but by an exemplar. (Again, recall the findings of Rosch [1975], showing
that people make extensive use of such exemplar-based classes.) In this case we can loosen
up Winston's rules somewhat. If we are trying to understand what an ELEPHANT is, and
semeone shows us a dozen gray examples, we simply add the GRAY property to the generic
description. We do not need to determine that an elephant must be gray; in fact, if eleven
of our samples are gray and one is white, we can still abstract the GRAY property and treat
the odd elephant as an exception in this respect. The same holds for big ears, long noses,
eating vegetation, and so on.

Note that by moving properties, roles, and other structural relationships
up into the generic ELEPHANT -description, we are reducing the total number of nodes
used: ane GRAY property is now doing the work of twelve. Note 3lso that all twelve of the
elephants (including the exceptional white one) still have the same effective description that
they had before; the restructuring of the description is transparent. This seems like a good
criterion to use in deciding whether to make a given abstraction: if the total number of
elements used (including cancellation links jor non-conforming individuals) is decreased by a
change which does not alter the effective description of any individual, the change should be
made. In a system in which inheritance is expensive or cancellations are not allowed, we must
be very careful when considering a feature-abstraction of this sort, but in NETL such
changes can be made liberally. In a system in which tangles are not allowed in the type-

——ee - s - A ——— e

Learning 139 Section 3.10

hierarchy, we must carefully consider what is the optimal way in which to carve up a class
into sub-classes; again, NETL has no such problem. Abstraction of features, then, becomes
a powerful tool, and one that is not very complicated to apply.

While a human teacher only teaches by example on occasion, we all have
a much more powerful teacher in the language in which we are immersed. If there is a
word for some class, that means that the culture has decided, by some subtle form of natural
selection, that the class to which this name applies is worthy of having a name, either
because it captures some interesting correlation between certain features or because it adds to
the overall efficiency of the description. When we first hear a new class name, we begin to
observe the set of objects to which this name is applied, and eventually we formulate a class-
description by abstracting the common features of these examples. I suspect that a
substantial majority of the class-descriptions that we carry in our minds are formed by this
~sort of process, and it seems likely that a majority of NETL's intermediate-level nodes could
be formed in this way as well. This is an exciting prospect: a system that can learn new
concepts without being reprogrammed, or even told in so many words what the concept
represents. Of course, the idea is a long way from being implemented, but it should be
considerably less difficult given NETL as a substrate.

Winston’s final level of learner-involvement is learning by discovery, with
no teacher at all, and presumably not even a class-name to alert us to the presence of a
useful grouping. This sort of discovery may happen relatively infrequently, but it is an
essential process: someone, after all, must identify and name a class in the first place, so that
the rest of us can learn it by the easier process described above. Here we have only the
samples themselves to work from, but the process is similar: we look around for descriptions
that have features in common; when we find some, we decide whether it would, indeed, be
profitable to create a «TYPE-node over these descriptions and, if so, which features should
be abstracted up to that «TYPE-node’s level. This decision is made according to the same
criterion of overall parsimony that we used earlier. The principal difference between this
type of learning and learning by analyzing samples is that here, without external guidance
telling us which nodes to consider grouping, we must search for such groupings by ourselves.
There are probably some heuristics that can be used to increase our chances of finding a
useful classification to make. It might, for example, be a good idea to compare the members
of any particularly large set, looking for subsets that can capture more than one property at
once. The arrival of new individuals might be used to trigger a search for other individuals
that have properties in common; the parallel network could help with this search, but it
would still be non-trivial. Certain classifications are probably obvious to everyone and are
made even before we happen to hear a name for the class. Other, more subtle groupings
may take a generation or more before anyone stumbles across them.

None of this has yet been implemented, though some of the simpler
strategies may be installed soon. In order to properly study which generalization techniques
and search strategies are useful, we will need a rather large knowledge base, embedded in a
system which is not changing very rapidly. Only in such a test system will we be able to see
the global results of our local reorganization strategies. Such size and stability does not yet

e AP e et . e i — -

Learning 140 Section 3.10

exist in the simulated NETL, which at the moment is evolving very quickly jusi to deal with
the steady-state problems that we want it to handle. When the situation has stabilized a bit,
however, | believe that this general area of abstraction and learning will be an exciting area
for further research.

e ——

The LORIS Simulator 141 Section 4.1

4. Simulation Results
4.1 Description of the LORIS Simulator

As stated earlier, a simulator for the parallel network system is now
running in MACLISP on the PDP-10. This program is named LORIS, after a type of
animal (a prosimian primate) that climbs around on trees, but very slowly. The simulator
does indeed run slowly compared to the hardware network, but it runs fast enough to handle
our current experimental needs in systems up to a few thousand elements, with reasonable
response times. A certain amount of effort was devoted, on the one hand, to making the
system’s inner loops run as fast as possible in compiled form and, on the other hand, to
making the user interfaces of the system reasonably flexible and convenient to work with.
Note that the term LORIS refers only to the programs that simulate the hardware network
itself; the current implementation of the NETL semantics is built on top of this. LORIS
provides the following set of. facilities:

Functions for creating and destroying element-units, and for connecting and disconnecting
their link-wires.

All elements have the same number of link-wires, currently 6, but easily
converted to any other number. Some elements use fewer wires than are available, and
simply leave the extra ones unconnected. The link-wires are represented by pointers to the
appropriate destination-element, or to NIL if the wire is not connected; reverse pointers are
also used so that the link-wires may be traversed in either direction. Every element has a
unique name, either supplied by the user or generated by the system; this name will play no
part in any ultimate natural-language interface, but it is essential for the debugging and
development of the sytem in the meantime. And, of course, each element has storage for its
marker-bits and type-flag bits. Each element is stored as a HUNK (like a CONS-cell, but
with an arbitrary number of pointers) in the current implementation, though arrays could be
used equally well. Including external structures, such as the atom-header for the name and a
FIXNUM cell for the flag and marker bits, each element requires about 10 to 15 36-bit words
of memory By converting to machine language and squeezing hard, we could save about
half of this space. :

Functions for adding or removing any of the 15 available marker-bits from a given element.
Functions for visiting every node that has a given marker or combination of markers.
Functions for viewing the marks in a node, and for erasing a given mark from every element in

- the system.

Each marker is assigned to a particular bit in an element’s flag-word.
When the word is marked, this bit is set. In addition, a list is kept for each marker of the
elements in which that marker-bit is set. This is necessary so that the set of marked nodes
can be scanned without examining the whole memory. Each marker also has a count of how

The LORIS Simulator 142 Section 4.1

many elements it currently marks; during marker-intersections, this allows the system to scan
down the shortest marker-list, looking for nodes in which the other markers are set. As
markers are propagated and cleared, a large number of CONS-cells are incorporated into
the marker-lists and then discarded. An option exists for returning such a list directly to the
FREE-STORAGE list, easing the load on-the garbage-collector. This is only worthwhile in
very large systems, since the overhead of such an operation is very high in MACLISP.

Functions for naming any of the 20 available type-flag bits, for setting, clearing, and viewing
the flags in a given element, and for testing an element to see if it contains some desired
combination of flags and markers. ' -

Both tha flag-bits and the marker-bits for a given element are stored
within a single 36-bit machine-word. This means that a single boolean PDP-10 instruction
can check both markers and flags simultaneously, which speeds up the propagation-scans. It
also means that the total of marker and flag bits cannot exceed 36 (unless we are prepared to
change this part of the implementation).

Assorted utility functions for recording and printing real and simulated run-times, performing
boolean operations, defining macros, dumping the data-base, and so on.

That is all there is to the LORIS program itself. It has been complete
and stable for many months, and there is very little that could be added to it. The rest of
this section will be devoted to a description of the NETL program that runs on this
simulator. This program is intended to implement the current version of NETL, as
described in chapter 3 of this report. This program is still under development, and at
present implements only a subset of the mechanisms that were described in section 3. Of the
digestion routines, only the simpler forms of clash-detection are currently implemented; the
matcher, which handles :EVERY-node digestion, clashes involving ««NOT statements, and
which is the entry point for recognition problems is not yet programmed. Most of the
accessing machinery has been installed: the system currently handles inheritance, all but the
most complex kinds of role mapping, cancellation, *INT-nodes, and simple context-switching.
Some of the heuristic scans described in section 3.7 are not yet installed, nor is the machinery
for the proper handling of «XOTHER-nodes.

The NETL program can be divided into an inner core of basic
machinery and an outer layer which contains user-interfaces and other functions that drive
the core machinery. Included in the inner core are the following:

Definitions for the element-type and option flags currently in use.

The element-type flag-bits specify what kind of node or link a given

The LORIS Simulator 143 Section 4.1

element represents: «INDV, «VC, or whatever. The full list of defined element-types is
given in appendix B. The option flags are also listed there. These definitions make it

possible to call these flags by name rather than having to remember and specify individual
bits.

Primitive routines for creating each type of node and link, and for connecting up the
appropriate link-wires.

These element-creation routines do no checking or digestion; they simply
create the element, set the appropriate type-flags, and connect the wires as specified by the
user. Their principal purpose is to isolate the layers of the system and to serve as living
definitions for the various element-types. More powerful structure-creating functions,
intended for external use, reside in the outer layer of the system; these do the checking and
digestion, but call the inner functions to actually create the appropriate elements.

Marker-allocation routines.

When any function in NETL wants a marker to use, it must send a
request to the GETMARK function, stating what the marker is needed for. GETMARK
assigns a marker from the free-marker list, or tries to free a marker if none are currently
free. At present, the attempt to free a marker consists of asking the user, but eventually it
will be automated. The marker-number is then passed to the requesting function, which will
return it when it is no longer needed. At present, I am experimenting with a scheme which
does not clear a returned marker until it is actually needed for some other use. If one
function performs a certain scan -- marking the ancestors of Clyde, for instance -- a later
function might be able to use the same set of markers instead of having to repeat the scan.
The later function must determine whether anything relevant to the outcome of the scan
may have changed in the meantime.

Programs to perform each type of marker-propagation scan.

Once a marker has been selected and placed on a starting node, these
functions are called to propagate it through the network. Since the “xCANVC links must
function during the various scans, most of the scanning routines require the use of a second
marker to represent these cancellations. Each of the scans supplies a different set of
instructions to a LORIS macro that expands into the desired marker-propagation program.
The L-UPSCAN ("L" for "legitimate”) call, for instance, is the basic scan for activating a
description. It propagates markers up «VC-links and parent-wires, across «EQ_links in
either direction, and across those map-wires that are activated by some specified activation
marker. (Several activation markers may be specified at once)) It also sends a cancellation
marker up any *CANVC link that the scan encounters, and respects this and other
cancellation markers during the scan. The «INT node is handled appropriately: if a marker

The LORIS Simulator 144 Section 4.1

arrives at this node's PARENT-] wire, it enters the node if and only if the same maker is
present on the PARENT-2 wire, and vice-versa. As each level of scanning is completed, the
cost is recorded: at present, L-UPSCAN costs 5 simulated bus-cycles for setup, and 23 cycles
for every level that the markers travel. The scan continues until, at some level, no new
markers are placed.

In addition to L-UPSCAN, there is L-DOWNSCAN which is identical
except for going down «VC links and parent-wires. This is used to mark all the members of
a class. L-EQSCAN crosses only «EQ links and activated map-wires; it is used to mark a
node’s equivalents in the network, as opposed to its ancestors or descendants. There is also
an H-UPSCAN ("H" for "heuristic") which is like L-UPSCAN, except that it travels up non-
activated map-wires; this is used to implement the heuristic scans described in section 3.7.
An H-DOWNSCAN exists as well; it is used for quick and dirty set-membership checking.
ECHO-DOWNSCAN is used to follow a path of markers back down to its source from a
selected target-node; it is used after various heuristic scans to find the «MAP-node which
should be activated legitimately. ACT-SCAN is used to activate a context for data-access; it
sends markers up both the type-hierarchy and the PART-OF hierarchy. All of the scans
follow the same general pattern, so it is relatively easy to implement new ones.

In addition to the scans, there are a number of "steps” or single-level
marker-passing routines. CANCEL-STEP is used to send cancellation markers across all
“CANCEL-links whose A-end has a specified activation marker. SPLIT-STEP is used to
mark the B-end of any «SPLIT link with a specified mark on its A-end. ACT-STEP is
used to place an activation marker on any statement whose scope-node is marked as active.
And so on. All of the scans mentioned are currently running, though some of them are
unused in the curpent system.

The outer layer of the NETL simulator contains the routines that initiate
these scans and other primitive operations in response to commands from the user. These
are the routines that one actually deals with in building up and interrogating a knowledge-
base. Most of the user-accessible functions in this area have prefixes, indicating what they
do: "C" means create some sort of object; "S" means state some assertion; "F" means find
some item; "FM" means find an item, or make it if it does not already exist; "YN" means
yes-no question, which will test whether some condition is definitely true, definitely false, or
unknown; and "Y" means yes-question, which checks only for the definitely true case. Thus,
C-INDV means "create an individual”, and so on. The above list is not meant to be
exhaustive: eventually we will need existence questions, where, when, why, and how
questions, modal and conditional statements, and many other things. I will briefly describe
the facilities that are currently available, but will not try to make this a user's manual; the
system is changing too rapidly in this area for such a manual to be useful.

The prototypical structure-creation call is C-INDV, which creates an
individual with a given name and type. Thus, one might say (C-INDV 'CLYDE
'ELEPHANT). The new individual is placed within the current addition-context or

The LORIS Simulator ' 145 Section 4.1

ADDCON. The ADDCON can be pushed, popped, completely reset, and manipulated in
other ways. If no name is specified for the new individual, the system makes up a name, in
this case ELEPHANT-L. In addition to C-INDV, there are calls for creating new »TYPE-
nodes, new pseudo-individuals, new «OTHER nodes, new «INT nodes, new «EVERY -nodes,
new complete and incomplete split-sets, and new «IST-nodes. In each of these calls, the
system tries to supply reasonable defaults for whatever the user fails to specify. The calls
(IN-ROLE owner xI x2 ..) and (OF-ROLE owner xl x2 ..) evaluate the Xn and place any
structure that they create inside the owner’s type-description, with flags to indicate the type
of role. In a similar way, structure created within a C-EVERY call is tied to that <EVERY-
node as part of the specification.

The prototypical statement-creation call is S-VC, which creates a «VC
link between its arguments, scoped in the current ADDCON. Thus we might have (S-VC
'CLYDE 'CABBAGE). Before anything is created, however, S-VC checks whether Clyde is
allowed to be a CABBAGE by calling (YN-VC 'CLYDE 'CABBAGE), which runs the
clash-detection machinery. In this case, the system finds the clash between PLANT and
ANIMAL and reports the problem to the user. The operation may then be aborted, altered,
or forced to completion despite the system's objections. S-VC also complains if the new link
would be redundant -- CLYDE is already a CABBAGE -- or if placing the link would form
a directed loop of #VC-links. S-EQ is almost identical, except that it forms an «EQ-link.
between its arguments and uses YN-EQ for checking. Among the other S-calls are S-
DISTINCT, S-CANCEL, S-LIKE (creates a w«LIKE «VC link), S-EXFOR, S-EXIN, S-
SCOPE, and S-SPLIT. At present, only S-VC and S-EQ do any checking or digestion, but
this will change in the near future.

% At present, only a few query-commands have been implemented. Y-VC
determines whether A is a B; YN-VC determines not only whether A is already a B, but also
whether it is allowed to be. Y-EQ determines whether A and B refer to the same entity;
YN-EQ_ determines whether the descriptions could refer to the same entity. Y-HAS checks
whether A, in any of its currently-active descriptions, has B as a role. Y-HAS-ANY checks
whether A has any role that is a member of class B.

As we saw in section 3.7, the process of tracing through chains of roles
can be exceedingly complex. It is planned that the simulator will have three functions for
tracing out chains of OF-relations: (F-OFLIST '(a b ¢ ..)) will find and mark any nodes
equivalent to "the A of the B of C", but will not create any new nodes to represent this
entity; it is strictly for looking up values and equivalents. In addition to marking all of the
nodes that fit our query, F-OFLIST returns one of them as its value. In making this
selection, it favors first any node with the REXTERN flag; second, any free-standing
individual node; and third, the least-deeply nested role or «tM AP node.

FM-OFLIST does the same thing, but it makes surc that there is at least
one node that uniquely represents whatever entity is requested, creating new «M AP-nodes if
necessary. This is used when we plan to state something about the entity being sought.
FM-OFLIST only requires that there be some unique node upon which the information can

The LORIS Simulator 146 Section 4.1

be hung: we might ask it for the ASSASSIN of LINCOLN and get back a node for JOHN-
WILKES-BOOTH.

_ FML-OFLIST (the "L" is for "literal") is like FM-OFLIST, but it insists
upon returning the exact node specified -- the ASSASSIN of LINCOLN -- even if it has to
create this node. This is useful if we have some property that ought to stay with the
“Lincoln’s assassin” node should we later decide (or hypothesize) that Booth was innocent.
These OFLIST functions are currently under development: they are not yet as thorough as
they must eventually be to handle all possible cases, to whatever level of heuristic depth and
effort the user has specified (see section 3.7). They are working well enough to handle some
interesting and intricate mapping problems in the electronics-world.

Not really a part of the simulated NETL system, but essential to it, is a
file of special nodes and links that are common to all domains. This file, called the base-load,
must always be the first file loaded into a vacant knowledge-base, since many of the routines
which create new structure refer to these basic nodes and links. The base-load is thus a sort
of bootstrap for the system. Among the items defined in the base-load are the THING node
and its set; the UNIVERSE type-node and its charter members REAL-U and META-U;
the SET node with its COUNT, COUNT-UPPER-BOUND, and COUNT-LOWER-
BOUND roles; the «TYPE-node for each defined species of link; and a variety of high-
level type nodes: PHYSOB, AREA, STATEMENT, NUMBER, VALUE, SUBSTANCE,
and so on. At present, the base-load consists of about 100 elements, but I would expect it to
reach about 1000 in a mature system. Once the problem-solving and abstraction machinery
are in place, it will be interesting to see how small an initial base-load we can get away with,
but in the system's current state this would be a needless distraction.

In the last month in which I worked on it, the "outer layer” portion of
NETL grew and changed tremendously, and I would expect similar growth and change for
some time to come, especially as full-scale problem-domains are implemented. The major
parts of the system that are missing entirely at present are the matcher for every-nodes,
=:NOT -statements, and recognition requests; the spare-time routines for housekeeping and
abstraction; the machinery for many-to-many mapping between names and concepts (with
the disambiguation machinery that this would entail); the more complex types of context
manipulation that are needed for actions and events; and many smaller items. I would
estimate that with another year’s work, the simulated NETL system could become a
genuinely useful tool for creating experimental knowledge-base systems of moderate size, in
much the same way that MICRO-PLANNER and CONNIVER served as tools for
experimenting with problem-solving ideas. In order for the simulator to be generally useful
in this way, it must be possible to create and use a knowledge-base without knowing very
much about the inner workings of the system.

In compiled form, the LORIS system requires about 4K words of core,
and the current NETL simulator takes about 12K. The figure for NETL might be expected
to double within the next year or so. This figure includes only the programs and internal
data-structures of the system; to this must be added storage space for the elements at about

The LORIS Simulator 147 Section 4.1

10-15 words apiece, several thousand words of working space, and the LISP system itself.
MACLISP, at present, weighs in at around 40K words, much of which is devoted to
arithmetic functions and complex I/O that LORIS and NETL do not use; the system could
be implemented in a smaller LISP or some other language without much difficulty.

Animal-World Test 148 Section 4.2

4.2 Animal-World Test Results

To date, examples from two problem-domains have been implemented
and run. The first of these is a portion of the hierarchy of animal-types, with their various
parts, distinguishing features, habitats, and so on. A few token plants have been added for
the sake of variety. This is a good world for debugging the basic parts of the system and
- for obtaining timing information, since there are many sub-hierarchies and branches that
tangle together in interesting ways, many facts and properties to add at each level, and many
exceptions and special cases. There are parts of the NETL system that the animal domain
(as presently constituted) does not exercise, but we will catch at least some of these in our
other test-domain, electronics.

Probably the best way to explain such a straightforward domain is to
display a chunk of the actual input, followed by some statistics and examples of interaction
with the system. The code is in MACLISP syntax, but it should be self-explanatory to
readers who do not use LISP. Everything between one or more semi-colons and the end of
that line is a comment, which has no effect on the system's operation. The information in
this example is meant to be illustrative only: it is an amalgam of half-remembered high-
school biology and old episodes of Wild Kingdom. I do not vouch for its accuracy.

All runtimes given in this and the following section are for compiled
MACLISP code on the MIT-Al KA-10 system. A KL-10 system would be 3-5 times faster.
Actual waiting times are several times longer than this, due to time-sharing. The simulated
cycle times are the number of bus-settling cycles that would be required using very si iple
hardware elements of the type described in Appendix A.l. To propagate a mark across a
«VC link takes 4 cycles; to propagate markers one level in an activation scan, in which a
* variety of link-types must be checked for, takes about 25 cycles. More complex element-unit
hardware could cut this per-level cost down to 3 or 4 cycles, but the expense would probably
outweigh the added speed. A very conservative figure for the cycle-time would be one
microsecond, though much higher speeds could be achieved if necessary by careful design.

Animal-World Test

149

s+: Here begins the actual computer input.

;i3 A line that looks like this is a comment or section heading.

Section 4.2

;is This is a file of assorted infarmation about animals, plants, and other 1iving

iis things. It is fed into a LISP in which LORIS, NETL, and the base-load have

;:: already been loaded.

(pop-c-to nil)

(push-c 'real-u)

(c-alltypes 'physob
'(1iving-thing
non-1iving-thing))

(c-alltypes 'living-thing
'‘(plant
animal
virus

bacterium))
(c-alltypes 'living-thing
'(multi-celled
single-celled
sub-cellular))

(c-type 'cell 'physob)

(inrole ‘cell

(c-indv 'nucleus 'physob))

(s-vc 'single-celled 'cell)

(inrole 'multi-celled
(c-type 'body-cell 'cell))

iClear out old context,.if any.
;This 13 claimed to be true in real-u.

;A physob can be 1iving or non-11iving.

;PHYSOB {tself is defined in the base-load.

;A 1iving thing must be one of these.

;C-ALLTYPES makes a complete exclusive split.

;A 1iving thing must also be one of these.
;Another way of splitting up LIVING-THINGS.

;There 1s a thing called a cel)

;It has an individual nucleus.
;The nucleus becomes an IN-role in CELL.

;A single-celled thing IS a cell.

;Multi-celled thing has a set of body-cells.
;Creates an IN-role that 1s a set-type pair.

Animal-World Test

150 Section 4.2

.+: Now for some information about habitats.

(c-alltypes '1iving-thing
'(water-dwelling
land-dwelling
amphibious))

(c-types 'water-dwelling
'(aquatic

marine))
(c-type 'flyer 'living-thing)

(ofrole 'living-thing
(c-indv 'habitat
'spatial-area))

(s-exin 'living-thing 'habitat)

(c-types 'spstial-area
‘(land-area
water-area
coastal-area
air-area

vacuum-area))

(c-types 'water-area
'(fresh-water-area

ocean-area))

(s-vc (fm-oflist '(habitat
land-dwelling))
'land-area)

;A 1iving thing must be one of these.
;Primarily a water dweller.
;Primarily a land-dweller.

;Happy in either.

+A water dweller may be one of these.
iPrimarily fresh-water.

;Primarily salt-water.

;Some 1iving things are flyers.
iEvery 1iving thing has a habitat ...
s that is a spatial area .

+ in which the creature exists.

;Some types of spatis)l asrea.

;Two flavors of water area.
;C-types says that there may be others.

;Habitat of a land-dweller is a land-area.

+FM-OFLIST finds or makes a unique role-node.

iWhich {s given a *VC-1ink to LAND-AREA.

Animal-World Test 151 Section 4.2

(s-vc (fm-oflist '(habitat ;Habitat of a water-dweller 1s a water-area.
water-dwelling))
‘'water-area)

(s-vc (fm-oflist '(habitat iHabitat of anARlNE is an ocean-area.
marine))

'ocean-area)

(s-vc (fm-oflist '(habitat ;That of an AQUATIC is a fresh-water area.
aquatic))
‘fresh-water-area)

i+ Note: the machinery is not yet implemented to say that amphibious organisms
vi: sometimes inhabit water and sometimes land. Or that flyers sometimes
s+ inhabit the air, but usually inhabit land or water.

Animal-World Test 152 Section 4.2

i+: Information about non-animals: PLANTS, BACTERIA, VIRUSES.

(s-vc 'virus 'sub-cellular) A virus is sub-cgllular.
(c-type 'herpes 'virus) +A random virus to play with.
(s-vc 'bacterium 'sub-cellular) ;S0 is a bacterium.
(c-type 'E-coli 'bacterium) +A random bacterium to play with.
(c-alltypes 'plant ; +A plant must be one of these.

'(green-plant

fungus))

(c-type ‘slime-mold 'fungus) +A random fungus to play with.
(inrole 'green-plant iGreen-plants have chloroplasts.

(c-type 'chloroplast 'physob))
(c-type 'cabbage 'green-plant) Create a random plant-type for testing.

(s-vc 'cabbage 'multi-celled) ;A cabbage is multi-celled.

Animal-World Test

++: Information about animals.

(c-int 'protozoan
'single-celled
‘animal)

(c-type 'amoeba 'protozoan)

(c-type 'paramecium 'animal)
(s-vc 'paramecium 'single-celled)

(s-distinct '(amoeba
paramecium))

(c-int 'metazoan
'‘multi-celled
'animal)

(c-types 'metazoan
‘{coelenterate
platyheiminth
nematode
annelid
mollusc
arthropod
echinoderm
chordate))

(c-type 'worm 'animal)

(c-alltypes 'worm
‘(platyheiminth
nematode
annelid))

(c-types 'mollusc
'‘(univalve
bivalve
cephalopod))

153

+A single-celled animal is a protozoan.

;Creates an *INT-node for protozoan.

;We can now connect under the *INT ...

;0r to both parents.

:This will create a DISTINCT statement.

+A multi-celled animal 1s a metazoan.

;Make some phyla of metazoans.
;Jellyfish.

;Flatworms.

;Roundworms .

;Segmented worms.

;Clams, octopuses, snatls.
sInsects and their relatives.
Starfish.

;Vertebrates and sharks.

+Make a group of all worms.

;Make some molluscs.
;Snails, etc.
;Clams, etc.
:Octopuses, etc.

Section 4.2

Animal-World Test

(c-type 'snail 'univalve)
(c-types 'snail
‘(land-snail

water-snail))

(s-vc 'mollusc 'water-dwelling)
(s-canvc 'land-snail ‘'water-dwelling)
(s-vc 'land-snail 'land-dwelling)

(c-types 'bivalve
'‘(clam
oyster
scallop
mussel))

(c-types 'cephalopod
'(octopus
squid
nautilus))

(c-type 'shell-bearer
‘metazoan)

(ofrole 'shell-bearer
(c-indv 'shell 'physob))

(s-vc 'moliusc 'shell-bearer)
(s-canve 'cephalopod 'shell-bearer)
(s-vc 'nautilus 'shell bearer)

(c-types 'arthropod
"(insect
crustacean
arachnid
myriopod))
(ofrole 'arthropod
(c-indv 'exoskeleton ‘physob))

154

;Some univalves are snails.
;Snails come in land ...
;and water varieties.
;Molluscs 1ive in water.
;Except for land-snails ...

;Which are land-dwelling.

;Create some bivalve types.

;Create some cephalppods.

:Some metazoans are shell-bearers.

;A shell-bearer has a shell.

;A mollusc is a shell-bearer ...
;Except for cephalopods ...
;But nautilus IS a shell-bearer.

;Insects and their relatives.
+Bugs.

;Crabs, shrimp, lobsters
;Spiders and scorpions.
;Centipedes and millipedes.

;An arthropod has an exoskeleton.

Section 4.2

Animal-World Test

(c-types 'echinoderm

‘(starfish
sea-cucumber
sea-urchin))

(c-types 'chordate
‘(vertebrate
cartilaginous-fish))

(inrole 'chordate
(c-indv 'endoskeleton 'physob))

(c-type 'skeleton 'physob)
(s-vc 'endoskeleton 'skeleton)
(s-vc 'exoskeleton 'skeleton)

(c-alltypes 'vertebrate
‘(fish
amphibian
reptile
bird
mammal))

(c-types 'mammal
'(elephant
aardvark
pangolin
numbat))

ii: Here ends the sample input from the

SPRPR———

155 Section 4.2

;Starfish and their relatives.

iVertebrates and relatives.
+Have real backbones, bony skeleton.
;Sharks, rays, skates, some others.

;Chordates have an endoskeleton.

;The term skazleton covers both endo and exo.

;The classes of vertebrates.

;Create some mammals.

animal world.

Animal-World Test 156 Section 4.2

Obviously, this could go on for many pages in much the same way.
Once this file is loaded, we can begin adding to it and querying it. Here are some sample
interactions, just to give some idea of how the system might be used. Again, comments have
been added after the semicolons.

(c-indv 'clyde 'elephant) ;Creates the *INDV node for CLYDE.
(NODE CLYDE) ;The reply from LISP.
(s-vc 'clyde 'cabbage) ;Trying to tell it that Clyde is a cabbage.

(COMP-SPLIT-ST-4 SAYS A ANIMAL CANNOT BE A PLANT)
RETURN 'FORCE TO MAKE AN EXCEPTION.
' ;The system objects, but can be overridden.

(yn-vc 'clyde 'mollusc) ;Can Clyde be a mollusc?

NO -- (CHORDATE MOLLUSC) ;No, because chordate and mollusc are split.
(y-has 'clyde 'shell) ;Does Clyde have a shell?

NIL ;NETL does not know of one.
(y-has 'snail 'shell) ;Does a snail have a shell?
YES

(y-has 'octopus 'shell) ;Does an octopus have a shell?
NIL :The cancellation worked.
(y-has 'nautilus 'shell) sDoes a nautilus have a shell?
YES ;The reassertion worked.
(yn-vc 'paramecium 'protozoan) ' ;1s a paramecium a protozoan?
YES :The *INT-node worked.

The system still does not have much of the machinery that it will
eventually need. As noted in the code, for example, there is not yet support for the concept
of "sometimes”. An irritating feature of the system, when it is used directly by people, is the
need to assign a unique name to each node. Thus, we were prevented from assigning the
name “cell” to both the cell class and to the typical cell in a multicelled animal (which we
named BODY-CELL instead). Still, a lot of information can be stuffed into the system
quickly, and in a way that scems reasonably intuitive.

This small knowledge-base contains 433 elements, 100 of which are part of
the base-load. CLYDE has Il superiors in the network. The questions answered above
typically took 200-400 simulated bus cycles, and 0.3 to 0.6 seconds of CPU-time. To mark
every node in the network by sweeping down from the THING node takes 221 simulated
cycles and 1.9 seconds of CPU-time.

Animal-World Test 157 Section 4.2

A test-system of this size is still rather small to extrapolate run-times from,
but we can make some crude estimates. A 10,000-element system is thirty times as large as the
one shown here; it should take, at worst, 60 seconds to mark all of its nodes in a full
downward scan. In a recognition system, such scans would be common; in property-finding
scans, which move upward, it would be uncommon to find more than a small fraction of the
nodes marked. We might estimate 10-20 seconds for the worst of these.

Time sharing costs us a facior of perhaps 3-5 in speed; moving to a KL-
10 system would increase the speed by a comparable factor. In any event, it seems clear that
for experimental purposes, at least, a knowledge base of 10,000 to 20,000 elements could be
handled, with response times under a minute for simple questions and somewhat longer for
recognitions and multiple-scan questions. A system of 20,000 elements or so would exhaust
the 256K address space of the PDP-10, so response-times become irrelevant after that point.
On a faster, dedicated machine with sufficient main memory, we might reach 100,000
elements. It is not clear whether the system will page well in a virtual memory system;
unless a deliberate effort is made to pack related material together on pages, the network
might sprawl randomly through the available memory space.

What could we fit into 10,000 to 20,000 nodes? This is certainly enough
space for most developmental systems. It could handle a rather sizable blocks-world,
restaurant-script, electronic network, travel advisor, or collection of animal trivia. On the
other hand, it is probably too small to contain a practical consultant system in any but the
most tightly bounded domains. We might be able to fit a small kidney-disease consultant
into the knowledge-base, but not a whole medical-diagnosis system. We might be able to
keep track of the Navy’s ships, but not all of its people. We might be able to handle some
particular area of chemical analysis, but not any sizable part of chemistry as a whole.
Within these boundaries, however, there is plenty of room for interesting research to be
done.

Electronics-World Test 158 Section 4.3

4.3 Electronics-World Test Results

The analog electronics world has been a constant source of good
examples for the development of various parts of NETL. In fact, the whole idea of using a
parallel network for inheritance (in those days I was calling it "symbol mapping”) of
structure and properties alike was spawned while I was considering some difficulties that
Sussman, McDermott, and Allen Brown were having in representing electronic circuits. Part
of the value of this domain is that it presents in a concentrated way some effects that are
seen only in diluted forms in everyday domains: complex hierarchies of parts and sub-parts,
teleological as well as structural descriptions, recursive descriptions (two-terminal devices
built out of smaller two-terminal devices), the need to interface the knowledge-base system to
a problem-solver, and so on. By itself, this domain might have too many idiosyncrasies for
use in developing a real-world knowledge handling ability, but it nicely complements other,
more mundane damains like animals, stories, or family relationships.

The demonstration system that has been implemented is intended to serve
as the knowledge-base component for an electronics-world problem solver being developed at
M.LT. by Sussman, Doyle, de Kleer, Staliman, and others. A knowledge-base might serve
many purposes in such a system, but the current implementation concentrates on one task:
allowing the user to deccribe a network in terms of an interconnection of components, each
of which is itself a virtual copy of some existing network-description. An ability to deal with
virtual copies is critical to such a system: the electronic network’s behavior must ultimately
be understood in terms of the interaction of elements on the most primitive level of
description, but to actually represent the network in such a fully-expanded form would be
too slow and would use too much space in memory. (This unacceptable slowness is not a
mere hypothesis: it has been demonstrated in practice by versions of the problem-solver that
expand everything out to the level of primitive operators such as adders and multipliers.)

In the NETL representation of such networks, we use structures called
“information boxes” or IBOXES. These do not deal with currents or voltages as such, but
rather with values in the form of numbers or algebraic expressions. Thus, the approach is
more general than electronics and could be used in many kinds of analog simulation
problems. Some of the IBOXES are primitive ones, called PIBOXES; others are
compound IBOXES (or CIBOXES) made up from some interconnection of cther IBOXES,
either primitive or compound. Each IBOX has a set of terminal values, called its value-
wires, which can be equated (by an «EQ-link) to the value-wires of other IBOXES or to
externally-meaningful values like "37" or "(X + I)". A MULTIPLIER PIBOX, for instance,
has two input value-wires and one output value-wire. The assighment of an external value
to a wire is done by a function called SET-VALUE that creates an «INDV node of type
VALUE, places the desired expression in the name-slot of this node, sets the node’s
«EXTERN flag, and creates an «EQ:-link between the external value-node and the wire-
node.

Each primitive IBOX has an associated demon program which
implements the constraints between its inputs and outputs. If any two values of a given

————————— - e e g

Electronics-World Test 159 Section 4.3

MULTIPLIER are known, for instance, its demon can be run to find the third value. The
NETL system stores a pointer to the demon in the DEMON role of each PIBOX or
PIBOX-type. It retrieves the demon-pointer for any PIBOX on command, but it has no

responsibility for actually running the demon or, asserting new values -- that is the problem-
solver's job.

To describe a new type of compound IBOX, we specify a list of terminal
value-wires, an optional list of internal value-wires, and a list of components. The
components are :INDV nodes under some already-existing IBOX type. We then list the set
of interconnections that we want among all of these value-wires. We may also specify
particular permanent values for certain wires. In figure 43 we see how a compound IBOX-
type for RESISTOR can be built up from primitive IBOXES: a multiplier, named OHMS-
LAW-MULTIPLIER, and two adders, KCL-ADDER and VDROP-ADDER. The
RESISTOR has five terminal value-wires: Il, 12, VI, V2, and RESISTANCE. In addition,
it has an internal value-wire, VDROP, where OHMS-LAW-MULT feeds into VDROP-
ADDER. This internal wire allows us to talk about the VDROP of a given adder, rather
than the OUT-wire of the OHMS-LAW-MULTIPLIER of that resistor -- in other words, it
reduces the depth of nesting. Note that the value at the output of the KCL-ADDER is 0 for
all members of the RESISTOR set. A function called NEW-CIBOX exists which will build
up the proper NETL-description of a device-type from a list of the device's wires,
components, interconnections, and internally-set values. Once the type-description for
RESISTOR has been created, we can create individual resistors at will, mapping only those
wires that we want to set or connect; the user can forget about the internal structure of the
device.

Resistors can now be used as elements in creating other, more complex
devices. In figure 44, then, we see a two-resistor voltage-divider (or VD) built up from two
instances of RESISTOR, named RTOP and RBOT, and a three-input KCL-ADDER.
This device has eight terminal value-wires: ITOP, IMID, IBOT, VTOP, VMID, VBOT,
TOP-RESISTANCE, and BOTTOM-RESISTANCE. The output of the KCL-ADDER is
set to 0. Note that nothing is said here about the internal adders and multipliers of the
resistors.

Now, suppose that the problem-solver appiies a value of 37 to VMID of
an individual voltage divider, VD-l. As noted above, this act requires the creation of an
«:EXTERN «INDV node for the value 37, which is then equated to the “MAP-node of
VMID in the VD-l description. In applying this voltage, however, SET-VALUE must
check two things. First, there might already be a value, "(X + 1)" perhaps, on this node or
one of its equivalents. This value should be located and passed back to the problem-solver,
which can then perform the proper algebraic substitutions far all appearances of X. Second,
in the nest of expansions of the VD description, the VMID wire is probably attached to one
or more wires of primitive IBOXES. These primitive IBOXES must be identified so that
their demons can be run and any new values found can be attached to their other wires. As
the problem-solver is currently set up, any single equivalent value is sufficient, and the
demons need to be run only if an equivalent value is not found. SET-VALUE, then, in

160

v 1§
Q
e s e ot e il o e S e o 51
-
ﬂ?“” !
l |
' RESISTOR '
! |
! l
: VDROP- |
| ADDER '
|
! |
| IN-1 IN-2 ||
| |
l . J |
' |
' |
: |
: |
ouT
: |
| OHMS- |
| LAW- I
| MULTIPLIER |
' |
: N-1 IN-2 :
| J ,
|
KCL i V4 I
| |out .
RESISTANCE ADDER |
| |
| IN-2 .
| [
|
] |
| |
: |
I I
e i e R e e D W o J
o 0
V2 12

Figure 43: The compound IBOX-type RESISTOR, built from
primitive ADDER and MULTIPLIER IBOXES.

VTOoP ITOP
[S Pl S | S e Yo e Ve i s
I |
| Vi 1 VD |
I [
I v
s : (RESISTOR) |
|
|
I |
l [
: V2 12 |
[
: //¢ I
| T |
' ouT '
' |
' I
I KCL (
: ADDER |
| |
! c~-1[u~- . |
vMiD | 1 NS } £
|
: :
|
| V1 11 I
I |
! !
vl RBOT |
“5'5; A RESISTANCE ;
: (RESISTOR) :
! |
I
i Nt 3
: V2 12 |
I
SR B e ey g e _1
vBOT 180T
Figure 44: The compound IB0X-type VD (voltage divider), built

from two RESISTORS and an ADDER.

Electronics-World Test 162 Section 4.3

addition to adding the new value, returns with either an older value for the same wire (or
an equivalent wire), or with a list of the wires of primitive IBOXES that, in the fully
expanded network, would be tied to the wire whose value was set. Since these primitive
IBOXES do not really exist in the representation, and we do not want to create them, they
cannot have individual names; instead we identify them by a list, (A B C D), which is read
as "the A of the B of the C of D". Such lists may be of any length greater than two, though
if the list is too long to be handled with the available number of marker-pairs, special
techniques (not yet implemented) will have to be used.

In setting VMID of VD-l to 37, SET-VALUE finds no equivalent values,
so it returns a list of equivalent PIBOX wires. This list has two members: (IN-2 VDROP-
ADDER RTOP VD-l) and (QUT VD-ADDER VBOT VD-I). To find the demon
associated with the first wire on this list, the problem solver calls F-OFLIST with the
argument (DEMON VDROP-ADDER RTOP VD-1). Note that this is just the list returned
by SET-VALUE, with DEMON substituted for the wire-name. To find the values, if any,
attached to the IN-1 and OUT wires of this adder, we call F-OFLIST with these wire-names
substituted at the head of the list. The demon may then want to set one of these wires to
some value it has computed. It calls FM-OFLIST to obtain a unique node for the wire it
wants to set, then does a new SET-VALUE for this node.

F-OFLIST is essentially the algorithm that we saw in section 3.7, in
finding the WEIGHT of the TRUNK of CLYDE. It activates the outermost description
first, then the next one in, and so on, using a pair of markers to handle the activation and
cancellation for each term in the list. When it gets to the term that it wants, it begins
backing out, level by level, erasing any answer-marks in recursively shared descriptions as it
goes. FM-OFLIST is almost identical, except that as it is backing out, it makes sure that at
least one answer-mark is on a node whose owner-wire or existence wire is tied to some node
. that actually appears in the argument-list or to the current context-node, and not just to an
ancestor of such a term; if necessary, it makes a “MAP node to enforce this rule. This
produces the minimum necessary extra structure to uniquely specify the entity in question.
These functions are both limited in the depth to which they can follow an OFLIST by the
number of marker-pairs available, though if there are no cancellations within an activation,
no markeris assigned. With the current fifteen markers, the system can get five or six levels
deep, or more if there are no cancellations in some of the activated descriptions.

The primitive-wire finder, GETPRIMS, which is called by SET-
VALUE, is passed a wire-name and a component-name. It activates the component-
description, then marks the equivalents of the specified wire within the component-
activation. The marked wire-nodes are then examined. This examination is serial in the
simulation, though the hardware NETL would do it in parallel. If an «:EXTERN node is
encountered, signifying an equivalent value, then GETPRIMS returns with this value
immediately. If a PIBOX wire is encountered (all of these carry a special flag-bit, defined
for this electronics system only), it is placed on an answer-list and the search continues. If a
regular “M AP-node is encountered, it is put on a list for later investigation. When all of the
nodes found by one activation have been checked out, the markers are released and

Electronics-World Test 163 , Section 4.3

GETPRIMS is called recursively for each of the xMAP-nodes. This, in effect, expands out
each of the component-boxes to which the original value-wire is attached. When the list of
M AP-nodes has been exhausted, GETPRIMS returns with its list of primitives; as these
lists are being passed back through the levels of recursion, each level splices on the name of
the box it was investigating, to produce the OFLISTS in the format described above. Note
that since each level releases its markers before making a recursive call, this function can go
to any depth. It requires a two scans -- activation and wire-marking -- and two (simulated)
parallel tests for each virtual IBOX that it investigates. Even in the serial simulator, this is
much less work than actually expanding everything out.

In the demo that is currently running, the ADDER, MULTIPLIER,
RESISTOR, and VD IBOXES are defined as described above. To create a new VD
requires only I new element, the xINDV node for this VD. The checking associated with
this creation takes 82 simulated cycles, and the real CPU-time required is about .3 seconds.
To set the value of one of the value-wires of this individual VD takes 500-1200 simulated
cycles, and between .7 and 13 seconds of CPU-time, depending on how many component
IBOXES are actually investigated. To retrieve whatever value may be on some wire using
F-OFLIST takes about 600 simulated cycles and from .5 to .8 seconds. These times suggest
that moderate-sized circuit diagrams can be explored using the simulator with the response
time for a typical knowledge “2se call staying well under one minute. The CPU-time for
such a call depends only weakly on the total size of the network-description, but it varies
directly with the depth and complexity of the structure that is attached to the wire being
checked or altered.

Conclusions 164 Section 5.

5. Conclusions

In this final chapter, I will try to answer a few global questions about this
work What lessons have been learned from it? What should be done next? How might it
relate to neighboring fields, particularly psychology and computer science?

Looking first at the parallel network system, I would draw the following
overall conclusions:

First, that the intersection of large explicit and semi-explicit sets is a
ubiquitous and important problem in that part of Al that deals with knowledge. So far, we
have found ways to avoid and limit these intersections on a case-by-case basis, but it is easier
just to do them.

Second, that much of the fog and confusion in this area of Al is the
result of our mixing together deep, poorly defined problems of representation with the
difficult but clear-cut technical problem of getting the intersections done. This is especially
dangerous because, at present, neither problem is understood very well. The time may come
to integrate our solutions to these problems, but for now they should be separated. Without
such a separation, NETL could not have been developed to its present level.

Third, that an externally controlled parallel network, of the type
described here, is at worst a good metaphor for enforcing this separation of problems in our
minds; at best it may be a practical solution to the intersection problem.

Fourth, that for building a knowledge-base, the type of parallelism
described here is better in several respects than the more familiar system of co-operating but
autonomous processors. The network elements are very simple, so many more of them can
be bought for a given sum of money. For performing the tasks we have described here,
little advantage would be gained by having a more complex processor at each node In fact,
it can be viewed as a positive advantage that the elements of this network are too simple to
fight over control or access to data, or to require complex signaling conventions and internal
languages. All power is in one place: the central controller. If nothing else, this makes the
system understandable -- a rare feature in parallel systems.

The parallel network system is easy to generalize about; the notational
system, NETL, is a much less unified concept. It is the result of three years of intensive
work, seven or eight cycles of throwing everything away and starting over, and perhaps fifty
smaller reorganizations. Readers who are familiar with my progress report of two years ago
(Fahlman, 1975) will notice that, in its external appearance, the notational system I had in
mind at that time differs only in subtle ways from the current one. These small, subtle
differences make a big difference in the ease with which the notational system can be
implemented and used. They are the difference between a system that can be made to work
on certain simple cases, and a system that handles most cases in a way that seems natural

Conclusions 165 Section 5.

and unforced. Since the system assumed its current form about six months ago, it has
seemed quite solid, a condition that was never achieved during the previous two and a half
years. For the first time, I can think of potentially troublesome examples like "Every
elephant believes that every other elephant hates himseif,” can try the obvious representation
in NETL, and more often than not find that it works without any changes.

Like any system of notation, NETL is essentially a bag of tricks, some
elegant, some ugly. It was the clear enunciation of the virtual copy idea, and the decision to
keep this idea before me at all times, that first gave me a way to determine whether these
techniques were working together properly. The words "virtual copy” stated clearly, for the
first time, exactly what the system was trying to do. And this was the weapon with which I
was finally able to isolate and deal with the copy-confusion problem. Perhaps I have over-
emphasized this idea -- it has, after all, been lurking in the background of every knowledge-
base system developed in recent years, and perhaps has been obvious to everyone else -- but
its arrival marked a turning point in the development of NETL.

The copy-confusion problem was the one potentially fatal bug that
persisted until very recently. If no way had been found of dealing with this problem, the
role-mapping scheme of section 3.5 would have been doomed. By itself and masked by the
less-serious binding-ambiguity bug and a generally high level of overall confusion, copy-
confusion caused most of the difficulties during the middle year of NETL’s development. |
believe that this bug can cause no further trouble, now that it has been recognized and
understood. By resorting to heuristic and depth-limited searches, we have limited NETL's
ability to make deductions, but it is a human-like limitation and I believe we can live with it.
Note that the serial problem-solving processes residing in the central control computer are
still as general as any computer-based system, and can read the information stored in the
network at any depth; it is only the component of reasoning done by fast parallel scanning
through the network that is limited in certain ways.

There are still many problem areas in NETL, but I believe that the
visible problems, at least, are minor ones. The representation of actions and events needs
more work. The interaction between the PART-OF and IS-A hierarchies is not yet really
satisfactory. The "in" and "of" distinction among roles still looks rather arbirtrary, and "at”
is not handled at all. There is too much difference between the base-node of a description
and a role; role-reversal should be a smoother process than it currently is. Location is
handled awkwardly ("at" again), and so is movement and the representation af space.
Continuous quantities, measurements, and substances have not yet been added to the system.
There are many more complaints like this -- enough to keep us busy for several years, and
we will have discovered many new problems by then. Still, if there is a system-kilier in this
group of problems, it has yet to make its identity known.

As I said earlier, I believe that the simulated version of NETL is about a
year away from being a generally useful experimental tool, possibly with some practical uses
as well. At present, however, the simulation is incomplete and it has been exercised very

Conclusions 166 Section 5.

little by the existing example systems. 1 believe that the ideas presented in this report stand
on their own merit, but they will be far more convincing when they are given a more
tangible form, embedded in a large, working system, performing some task that is known to
be very difficult for other systems. A large simulation could have been started earlier, while
NETL was still plagued with internal problems and inconsistencies, but 1 felt that it would
be more valuable, given the limited time available, to try to solidify the semantic foundation
of the work. In light of the last-minute insights and clarifications provided by the virtual-
copy concept, I believe that this decision was the right one. NETL is now a tool rather than
a problem.

The next step, then, is obvious: to use the simulator to attack large, real
problem-domains. Each of these domains will require some new and interesting machinery,
and will raise new questions. Let me suggest some possible areas of implementation, and the
unique problems that each will raise. Many of these problems.have already been attacked
by other methods, and a comparison of the difficulties encountered should be informative.

The world of animals has already been started. It contains a very large
and tangled type hierarchy, with many odd cases and exceptions. Eventually, an animal-
world system would have to include descriptions of actions and habits, and the structural
descriptions of animals would lead naturally into recognition, shape-description, and an
interface with vision research.’

The world of analog electronics has also been started. It would
thoroughly exercise the system’s representation for parts and sub-parts, and would also
require a strong ability to handle multiple representations. This world overlaps considerably
with problem-solving. ‘See McDermott [1977], Sussman [1977], Brown [1977).

The closely related worlds of digital hardware and computer
programming would require a strorg ability to represent states and transitions, the ahstract
concepts of information and representation, and the ideas of plan expansion and
modification. See Rich and Shrobe [1976].

The world of cooking is an ideal one for studying the representation of
actions and the formation of simple but flexible plans. Initially, these would be strictly serial,
but parallel plan-execution is also possible, and sometimes essential. This world would also
throughly exercise the representation for measurements, substances, and continuous
quantities. Scragg [1975] has done considerable work in this domain.

A history knowledge-base would exercise the machinery for representing
actions, time, causality, and perhaps human motivations. Geography would exercise the
ability to represent space-and changing boundaries. As Collins and his group have shown
(1975], geography can also be an excellent test-bed for developing inductive reasoning and
abstraction.

Medicine introduces some very complex recognition problems dealing

Conclusions 167 Section 5.

with varying weights and confidence factors, masking, explaining discrepancies, the
interaction of multiple diseases in the same patient, and so on. 1 believe that a medical
dignosis system would help to develop the flexible kind of recognition strategies that will
eventually be needed in high-level visual recognition.

The world of legal reasoning introduces the problems of conflicting
sources and authorities, conflicting versions of an event, human motivation, and reasoning
by analogy. In some areas of law, it is specified how certain evidence is to be weighed and
interpreted; in other words, a legal reasoning system must be prepared to accept instructions
about how to think. Meldman [1975) has made a start in this area.

And story understanding, as we all know, exercises almost everything.
Each of these projects would require significant additions to the currently-existing NETL
system, but I believe that each would be made significantly more manageable by building on
the existing foundation of NETL. After a few of these projects have been attempted, it will
be time to reassess the basic ideas of NETL in light of what has happened.

What, if anything, do the ideas in this report have to do with psychology
and the study of brains? Is it really possible that the human mind might be constructed
using the same kind of network that has been described here? On a detailed level, there are
clearly some differences: it seems very unlikely that the brain has an address bus and a set
of elements with unique serial numbers, or that it operates on precise clock-pulses. A more
interesting question, however, is whether the brain could be making use of the same general
kind of parallelism, controlled from some specialized central region. Small groups of neurons
could probably be set up to function as link and node units, and the system of
interconnections and synapses form an excellent switching network to copnect these elements
to one another. I have no direct evidence that the brain does work in this way, but I think
that this type of parallelism is worthy of investigation as a model. It is one of the very few
precisely-stated models in existence that can capture all three of the following: a huge
storage capacity, an ability to obtain direct, precise answers to queries, and an ability to
produce human-like response times with processing elements that themselves are not
particularly fast in comparison with electronic. switching devices. If other models do not
meet these basic criteria, then any human-like properties that they do have seem irrelevant.

What, if anything, might these ideas contribute to computer science?
Perhaps a new class of devices to study. What we have here is, to the best of my knowledge,
a new kind of parallelism, rather different from the parallelism that is usually studied in that
its control is centralized. It is also different from the cellular automata, since each element is
free to connect its wires to any other element in the system. This new kind of parallelism is
very limited in some directions and very powerful in others, and may have Important
properties that I have missed entirely. On the practical side, I would suspect that other
domains besides Al have trouble computing the intersections of semi-explicit sets; if .so,
networks such as this might help. Finally, the problem of interconnecting many single

Conclusions 168 Sectioﬁ 5.

elements, or microprocessors representing many elements (see appendix A), is really a
problem in computer science, not in Al. Any really good solution to this problem will almost
certainly have other important applications as well.

The virtual-copy idea may have some relevance to the theory and
practice of designing programming languages. A subroutine or function call, after all, is a
way to make a virtual copy of a piece of code. In fact, in computer graphics, a field in
which virtual copies of pictures are needed constantly, the standard technique has been to
represent a picture as a piece of code and “call” it from several locations. But virtual copies,
as NETL uses them, are more general in some ways than subroutine calls. .A subroutine
instance (or execution frame) cannot usually have multiple parents, though spaghetti stacks
come close to this. In a subroutine, only certain pre-defined roles, the arguments, can be
mapped and altered, and exceptions (local modification of the parent program from within
one of its executions) are usually not allowed. Programs (unlike data-types) seldom have a
hierarchy of types: there is just the parent code and a single layer of execution-instances.
And so on. I am not saying that NETL, in any direct way, will spawn the computer
language of the future, but it may provide food for thought.

NETL would appear to have some usefulness to the philosophers -who
worry about things like reference and meaning, if only to serve as a stationary target, devoid
of the customary fog. Though I believe that NETL would serve as a good substrate for a
natural-language understanding system, 1 do not think that NETL has anything to
contribute to linguistics, if we define linguistics as the study of language itself, rather than
how it is processed.

The ultimate goal of this and related work is to develop a system that, in
any reasonable sense of the word, understands what we tell it. 1 believe that the ideas
presented here are a step in that direction, but only time and more experience can tell us
how big a step it is and how far we still have to go.

———— -~ - e ———

Hardware Implementation 169 Appendix A.l

Appendix A: Implementing the Parallel Netwerk in Hardware
A.l Design of a Typical Element-Unit

As we saw in section 4, the current simulation of NETL can produce
reasonably fast responses for knowledge bases up to ten or twenty thousand elements. With
a faster, dedicated machine and enough main memory, we might be able to reach a hundred
thousand elements or more. Such a system would be more than sufficient for our present
and near-future experimental needs. Sooner or later, however, we are going to want a better
combination of memory size and speed than a serial simulation can provide; at that point, it
will be time to think seriously about implementing the network in hardware. In this
appendix, we will take a preliminary look at the problems that such an implementation will
face, and will see a few possible approaches to solving these problems.

The discussion will cover three topics. First, in section A.l of this
appendix, we will explore the question of what a typical element-unit (a combined node and
link) might look like. A sample circuit-design will be presented for such an glement. Next,
in section A.2, we will consider ways of forming new link-to-node interconnections as the
system acquires new knowledge. This is the key obstacle that must be overcome if we are to
realize the network system in hardware, and several distinct approaches will be explored.
Finally, in section A3, we will look at the prospects for using more conventional technology
-- a network of microprocessors -- to achieve a smaller, but still significant, amount of
parallel speed-up. Such a system might fill the gap between a slow serial simulation of the
network and a full-scale parallel implementation.

Figures Al through A4 illustrate what the circuit for a typical element
unit might loek like. This design is for illustrative purposes only; it is not intended to be
practical or optimal. TTL NAND-gates and flip-flops are used, since TTL is the logic
family that is understood by the largest number of this report’s potential readers; a practical
design would almost certainly use some other family of logic, since speed is not especially
critical, while density and price are.

Each element-unit is connected to a party-line bus from the control
computer (or "CPU") on one side; on the other side it has a single node-terminal and a
number, W, of link-wires. In the current simulated system, W is 6. Initially, these link-wires
are not connected to anything; when an element unit is selected to represent some fact or
concept, the link-wires must be connected to the approprite node-terminals of elements
already in use. Each node-terminal may have any number of incoming link-wires connected
to it; each link-wire is connected to only one node-terminal. These connections are semi-
permanent: one seldom wants to remove a concept once it is represented, though concepts are
often cancelled in later contexts. In the design given here, it is assumed that the link-to-node
connections are created by some mechanism completely external to the element-unit itself.

The link-to-node connection must allow two-way communication between
the node and the attached links: during certain operations, the node part of the element is

e ————— —— i S ——r—————— —_—

Hardware Implementation 170 : Appendix Al

allowed to pull down the node-terminal line; during other operations, any of the attached
link-wires can pull the terminal down. If no one pulls it down, the line floats high (+5 volts).
This sort of operation is achieved by the use of open- ollector bus-driver gates at the node
and link-wire terminals. Of course, open collector drivers are also used to drive the two-way
lines of the CPU bus. :

Each element-unit has a unique serial number or address of N bits; for a
million-element system, N would be 20. Each element also has M internal JK-type flip-flops
to hold its marker-bits; in the current simulated version of NETL, M is 15. Each bit of the
address and each marker-bit has two select lines on the CPU bus. The CPU sends
commands to some subset of the elements in the system by placing a set of address-bits and
marker-bits on these lines. 1f a given bit must be a 0 for an element to be selected, the CPU
pulls*down the A line for that bit, letting the complement-line, X A, float high. If the bit
must be a | for the element to be selected, the CPU pulls down the XA line and lets the A
line float high. If the CPU doesn’t care what an element has in a given bit position, it pulls
down neither line. Marker-bits are specified in the same way, but using M and XM lines
instead of A and XA. Using this mechanism, any element can be selected on the basis of its
serial number alone, its marker bits alone, or some combination of the two. The assembly in
figure Al decodes this address and determines whether the element-unit is among those
selected at any given time. '

The circuit, as presented, makes no special provision for flag-bits. These
could be handled in two ways. First, the flags could be preassigned to the element units,
creating separate pools of xINDV-nodes, «VC-links, and so on. In this case, they would be
handled exactly as address-lines are. Alternatively, the flag bits could be set in a node when
it is called up for duty. In this case, the flags would be handled as additional marker-bits,
though we would probably want to put them in special non-volatile, write-once memory cells
so that they would not disappear in a power failure, and could not accidentally be erased by
a programming error.

In addition to its marker-bits, each element-unit has two type-D control
flip-flops. One of these, the NSEL flip-flop (for "node select”), is used to remember whether
its element was among those selected during the previous selection cycle. To read the
marker-bits of a particular element, for instance, the CPU would place that element’s address
on the selection lines and then send out the NPULSE to save each node's SELECT level in
itss NSEL flip-flop; in this case, only the node with the specified serial number would have
its NSEL bit set. Then, the CPU stops driving the select lines. from its end and sets the
READ level high. This causes each element with the NSEL bit set to place its serial
number and marker-bit contents on the select-lines by pulling down the appropriate
combination of complemented and uncomplemented lines. The marker-bit contents of the
single selected element can then be read from the bus.

If marker-bit contents are used in the initial selection, it may not be true
that exactly one element will have its NSEL bit set: there might be many elements with a
given set of marker bits, or there might be none. If no elements meet the selection criteria

e ——————— — e . A et~ — -

A e~

Hardware Implementation m Appendix Al

that are currently on the bus, the CPU will sense this immediately: the -SENSE line of the
bus will be floating high. If a READ attempt is made while more than element has its
NSEL bit set, at least one of the address bits will have both its A and its XA bus-lines
pulled down at once. This causes no damage, but it does signal to the CPU that more than
one node is trying to respond to the READ command. This means that the selected set must
either be reduced by further processing, or it must be polled. The polling procedure finds
the highest-order address-line that is conflicted (both A and XA are being pulled down),
and repeats the selection process twice: first the conflicted line is set to 0, then to 1. If the
new selection resolves the conflict, the selected node’s contents are read out. If either or both
of the new selectians still has a conflict, the next most significant bit must be forced to 0 and
I, and so on until all branches of the search end in single elements. The selected elements
will be read out by this process in the order of increasing serial-numbers. If you prefer
decreasing serial numbers (that is, the most recently-created element comes out first), force the
1 before the 0.

An alternative polling scheme (not included in the circuit diagrams)
would use a daisy-chain system: a single POLL line would run through all of the elements,
passing through a gate in each. If the NSEL flip-flop of an element is off, it passes the
POLL level on to the next element in line. ‘If NSEL is set, the element breaks the POLL
line. Thus, only the first NSEL-selected element along the POLL line can see the POLL
level as it comes from the CPU, and this element is the one that places its contents on the
select lines. QOnce an element has been harvested, the CPU can clear that element’'s LSEL
level and go on to read the next selected element in the chain. This scheme makes less work
for the CPU, and for harvesting large sets it is faster, but it can cause a reliability problem:
a single bad element unit can swallow the POLL level permanently, bringing down the
entire system. There is also a timing problem: the POLL signal must pass through as many
gate delays as there are elements in the system. This latter problem can be avoided by
cutting the POLL line into short, independently polled sections.

(Note that people do a terrible job of polling: we might know the set of
states in the United States very well in the sense that we can recognize any member of that
set or intersect the set with other sets, but if asked to list all of the states, we boggle. This
has been taken as evidence that, in people, markers (or whatever) can only move in one
direction through the type-hierarchy. If, indeed, we can mark and intersect stored sets,
however, the "States™ problem must be due to polling inadequacies.)

To alter the marker bits present in some set of elements, the CPU
proceeds as follows: First, the address and marker-bits that characterize the desired set are
placed on the select-lines. The NPULSE is then sent out to set the NSEL flip-flop in the
selected elements. The control signals for the JK marker-bit flip-flops are then placed on the
M and XM lines, and the MPULSE is sent. This pulse reaches only those flip-flops in
NSEL-selected elements, triggering them: if only the M line is high, the marker-bit is set; if
only the XM line is high, the marker-bit is cleared; if both lines are low, the bit remains in
its previous state. Thus, only the markers which the CPU wants to change are altered. A
JK flip-flop will toggle if it is clocked while both inputs are high; at present | see no good

————— - - — e amrn. —m————

Hardware Implementation 172 Appendix ALl

use for this feature, but we do need the "no change” state that the JK provides.

So far, we have dealt only with the node portion of the element-unit.
The link operations are controlled by the LSEL (for "link select”) flip-flop. To see how this
part of the element works, we will follow the steps involved in propagating an M1 marker
upward through a «VC link. First, the CPU must call all active «VC links in the system to
attention. Each link-type or node-type has its own special pattern of flag bits, so the flag-
pattern specifying a «VC-link is placed on the select-lines. The CPU may also specify that
certain context-activation markers must be set for selection to occur, and that certain
cancellation markers m’::t not be set. The ATTN ("attention”) level is raised and the
LPULSE is sent out. T--s sets the LSEL bit in every element that has the desired set of
flags and markers.

Next, the CPU must determine which of the selected links has an Ml
mark at the end of its A-wire. Only these links will participate in the propagation; the rest
will have their LSEL-bits turned off. The CPU places the "M1 on" requirement on the select
lines, raises the WSELA ("wire-select A") level, and sends out the LPULSE. Note that this
pulse does not alter the NSEL or LSEL bits of the Ml-marked node; rather, it preserves
from destruction the LSEL bit in any element tied by its A-wire to an MI-marked node. All
LSEL bits that are not so preserved are cleared by the LPULSE.

Finally, the node connected to any selected link’s B-wire must have its Ml
marker-bit set, unless it has Ml set already. This is done in two phases. First, the CPU
raises the LN ("link to node transfer”) line and the WSELB ("wire-select B") line, and pulls
down the select-line for the MI bit. Then the NPULSE is sent out. This causes the NSEL
flip-flop to be set in all nodes that are attached to the B-wire of an LSEL-selected link, but
only if M1 is not already set in this node. The CPU can look at the -SENSE line to
determine whether any such nodes exist; if not, the scan can be terminated at this level,
since no new nodes have been marked. Once NSEL is set in the desired nodes, the CPU
pulls down the XMl line (plus both lines for all other marker-bits, to preserve them in their
current states) and sends out the MPULSE. This sets the M1 marker in the selected nodes.
One level of propagation is now complete, after four bus-cycles; to complete the
propagation-scan, the CPU repeats the above sequence until it no longer senses any activity
on the -SENSE line. Of course, in a real activation scan, the CPU would also have to send
M1 marks across «EQ_links, active «M AP-wires, parent-wires, and so on, so a single level of
propagation might take 20 or 25 bus-cycles in all.

The only control signals that we have not yet seen in action are the
HANDLE signal and the -CLEAR signal. The HANDLE signal is used when we have
selected some link, as described above, but instead of marking a node attached to one of the
link-wires, we want to mark that link's own handle-node. The CPU, by raising the
HANDLE line and sending out NPULSE, can set the NSEL bit in every element that
currently has the LSEL bit set. The -CLEAR line is pulled low to reset all of the flip-flops
in the network.

Hardware Implementation 173 Appendix Al

Adding up all of the logic for an element with 6 link-wires, 20 bits of
address, and 15 marker bits, we find that we need 17 flip-flops, one 37-input selection gate,
one 7-input gate at the input of the LSET flip-flop, 58 assorted bus driver gates of three or
fewer inputs, and 62 regular gates, most of which have two inputs. The bus has 70 select-
lines, 14 control lines, 1 sense line, and one clock line, for a total of 86. This seems like a lot of
logic, but it is considerably less than would be required in a conventional system just to store
an assertion of three 20-bit fields in flip-flops. The reason for this economy is that the
information represented by an element is not stored within it, but rather in the pattern of
interconnections. It is probable that with current technology we could pack a hundred of
these elements on a chip and perhaps even a thousand -- if not now, then soon. The real
problem is in packaging: 86 bus lines is a lot to get into a DIP package, and when you add
700 or 7000 link-wire and node-terminal lines, the problem becomes hopeless. 1 have no idea
what to do about this problem, except to build a bigger package with more wires.

One final comment: We can reduce the number of bus-lines coming into
an element (and the number of bus-driver gates per element) by 20 by decoding the ten
high-order address lines once for an entire group of nodes. These twenty lines would be
boiled down to a single "group-select” level which would go to all 1024 elements in the group.
Similarly, by pulling down a special "group-reply” line, any node in the group could cause
the decoder to place the group's serial number on the address lines that it intercepts.

(Appendix sections A.2 and A3 appear after the following diagrams.)

Hardware Implementation 174 Appendix Al

Table of CPU-Bus Signals

An Address select lines, one per bit of serial number, 2-way level.

X An Complement address select lines, one per address bit, 2-way level.
Mm Marker-bit select lines, oné per marker-bit, 2-way level.

XMm Complement marker-bit select lines, one perAmarker-bit, 2-way level.

READ Level, from CPU. When high, all elements with NSEL set put their address and
marker contents on the select lines.

ATTN Attention, level, from CPU. When high, LPULSE sets LSEL flip-flop if element
address and markers match select-lines.

LN Link-to-node transfer, level, from CPU. Used in conjunction with one of the wire-select
levels. When high, NPULSE sets NSEL in any node attached to an
LSEL link with the specified wire.

WSELw Wire-select A, B, C, etc, one for each wire. Level, from CPU. Specifies which
link-wire to use in node-to-link and ‘link-to-node transfers. :

HANDLE Level, from CPU. If high, NPULSE stuffs LSEL level into NSEL flip-flop.

-CLEAR Level, from CPU, normally high. When low, resets all marker, LSEL, and NSEL
fiip-flops in the network.

-SENSE Level, to CPU, normally high. When low, at least one element is selected.

-CLOCK Low-going pulse, from CPU. Used to create NPULSE, LPULSE, and MPULSE
within each element.

NSTROBE Level, from CPU. When high, -CLOCK produces NPULSE, triggering NSEL
flip-flop. '

LSTROBE Level, from CPU. When high, -CLOCK produces LPULSE, triggering LSEL
flip-flop.

MSTROBE Level, from CPU. When high, -CLOCK produces MPULSE if NSEL is set,
triggering the marker-bit flip-flops. '

A s ———— e~ — ——

175

ADD OTHER MARKER
DECODERS HERE.

N

Mm
MOUTm
REPEAT THIS
XMm STRUCTURE FOR
EACH OF M
pi L i MARKER- B/TS.
LN
- NTERM i >——_—-——;__:>F4»—Oi }—~—§EHE£I
HANDLE ok
=SELECT
(F SERIAL
NUMBER
BIT =1, N AooREss SeLect
TIE TO An. LineSs
IF BIT=g,
TIE TO XAn,
Figure Al: Sample Element-Unit Circuit, Selection Logic.

176

Mm IK—— MOy Tm
REPEAT FOR -MPUL SE
EACH OF M .

XMm =
MARKER BITS s

-CLEAR »

-NPULSE

SELECT r"_nl NSEL
!
|

- CLEAR b—ﬁrw

SELECT

e LSEL

ATTN

WIREA

WSELA

LSEL
WIREB

WSELB

Ak

LSEL ~CLEAR

-~ LPULSE

Figure A2: Sample Element-Unit Circuit, Flip-Flop Logic.

1055/

An

o M\ T R por £acH oF
l—r l;_IT—’ : \, BITS
& a XAn
= 5 — Mm
NSEL
X EAD
e 5 oUT FOR EACH
~d -M m OF M
XMm MARKER
//’ NSEL B'TS
g & A, READ
\"\\ HOUTm

- ~sENSE

I
Lwﬁ.\/x)f SELECT

LN

Figure A3: Sample Element-Unit Circuit, CPU~Bus Interface
Logic.

§+5—
3

-NTERM T & NOOE
T TERMINAL
NL (\O,wf
P -
SELECT —m—mmmm8m8 =
WIREA A LINK
4(:::: vawRE A
i REPEAT FOR
e > WIRES B C ETC
LSELE €, ETE.

T JL an

— NPULSE
NSTROBE Jo-
]

= LPULSE
LSTROBE
MSTROBE _MPULSE
NSEL

Figure A4: Sample Element-Unit Circuit, Node-Link Interface
and Clock Decoder.

Interconnection 179 Appendix A2

A2 Connecting Link-Wires to Nodes

If we leave aside the problem of connecting the link-wires to the proper
nodes, the parallel hardware system looks quite practical, even using current technology.
Unfortunately, we cannot leave the interconnection problem aside. In a million-element
system, we must somehow be able to connect any of six-million link-wires to any of a million
possible destinations. The connections should not be volatile, so that the system does not
lose all of its knowledge every time the power is turned off. The process of making a
connection does not have to be especially fast, at least for human-like performance:
something on the order of ten link-wire connections per second ought to suffice. If many
facts arrive in a burst, the CPU can store some of them for later assimilation. Another small
factor in our favor is the fact that, while a node may be tied to many link-wires, each wire is
tied to only one node. This means that there is no possibility of "sneak paths” forming
through multiple connections, tying together elements that are not intended to be. In many
memory sytems, such sneak paths can be eliminated only by the use of a diode at each
connection-point.

In a mass-produced consultant system with a large body of unchanging
expert knowledge, the necessary connections could be added at the factory using some sort of
printed circuit. Such a system would be useless for experimentation and for development of
the original expert knowledge-base, but it might be a practical and relatively inexpensive
way to disseminate a large body of knowledge once that knowledge-base has been assembled.
Even in a knowledge-intensive consultant, however, there will still have to be a large section
of modifiable network for representing the purely local or exceptional aspects of the local
situation that the system is dealing with. Though the link-wires originating in the fixed
portion of the network will all be tied up neatly, the node terminals must still be made
accessible to link-wires originating in the modifiable area.

There are two basic approaches to connecting link-wires to nodes: first,
we can actually create new wires as we need them. We might, for instance, envision a
computer-driven wire-wrap machine installing new connections as they are called for. Of
course, for a wire-wrap panel on the familiar scale, with spaces of at least a centimeter
between adjacent posts, a field of seven million posts would occupy a square about twenty-
five meters on a side. A miniaturized version with one-millimeter spacing between posts,
would be only 25 meters on a side; at this sort of scale, however, we would probably have to
use some sort of spot-welding technique to make the connection, since mechanical connections
would be too fragile. Even smaller micro-manipulators are not unimaginable, but the
technology does not exist at present. The advantage of such a machine is that only 7N
connection points are needed for N elements, and that the third dimension is being exploited
to eliminate interference when one wire must cross another. The disadvantage is that such a
machine would be expensive, unreliable, and would probably not be able to acheive even
our limited goal of ten connections per second.

Two more-exotic wire creation techniques might be worthy of some
investigation, though neither seems likely to succeed. One is to create a "wire” by finding a

Interconnection 180 ' Appendix A.2

path through a large three-dimensional array of cellular automata, each of which can
establish a connection with any two of its six neighbors. If these are just tiny switches, and
the route is selected externally, the question is how to make the selection and how to get the
orders into the network. If the automata themselves are computing the route, the question is
how complex they must be to do this, and how many are needed. I do not know the answers
to these questions.

A more bizarre possibility is to grow the wires out of some sort of
electrolytic solution by establishing a current between the two terminals to be connected.
Under the proper conditions, a long, thin "whisker” will grow along the path of least
resistance, but I am not confident that this process would work in the presence of thousands
of other whiskers. In any event, unless the wires could be made to insulate themselves as
they grew, the system would have to be drained of electrolyte before it could be used, and
there would be many short-circuits. It seems unlikely that this sort of technology could be
made reliable and controllable enough for use in a network system in the forseeable future.

The second general class of solutions is to use some sort of switching
network to achieve the desired pattern of interconnections. Of the possible candidates for
such a network, the simplest is the crosspoint switch. Imagine that the link-wires, six from
each element in the network, are stretched out side-by-side, horizontally, in a north-south
direction. Above them is a layer of insulating substance, and above that are wires from the
node-terminals, stretched out in an east-west direction. Wherever an east-west wire crosses a
north-south one, that is a potential connection point.

We could imagine that an actual switch is present at the cross-point, but
that would be expensive: in a million-element system, we would have 6x10'? potential
connection-points, only six million of which -- one per link-wire -- would ever be used. A
more attractive solution is to create nothing at potential connection-points; where a
connection is actually wanted, the insulating material between the wires would be replaced
by, or converted to, conducting material. Performing this replacement mechanically --
drilling a hole through the insulator and filling it with metal, would entail all of the
problems of our wire-wrap machine and many others. The only hope, then, is to find some
material which can be converted from an insulating state to a conducting one at a the
desired spot. This conversion might be triggered by some external stimulus, like a beam of
light or electrons; it might also be made in response to an applied electric field between the
two wires that are to be connected. Other things being equal, the electrical triggering would
be preferable, since it requires no critical alignment of optics and no access to the connection-
plane from the third dimension. This means that the plane could be folded intoa compact
volume.

It appears that certain chalcogenide glasses, members of the family of
amorphous semiconductors, would be ideal for this task. These glasses can exist in either of
two stable states: a glassy state of high resistivity, and a crystalline state with a much lower
resistivity. The state of any given sample of the material depends on the way in which it
was cooled: fast for glass, slow for crystals. By applying a voltage across the glassy form --

Interconnection 181 Appendix A.2

anywhere from two volts to hundreds, depending on the thickness of the layer -- one can
cause a breakdown to occur and a small conducting filament of plasma (or some plasma-like
phase -- this is a subject of current investigation [Adler, 1977]) to appear between the
electrodes. The voltage is removed after a few milliseconds, and the material in the affected
area cools slowly into the conducting state. It will remain in that state indefinitely, but it can
be returned to the glassy state by applying a quick pulse of current -- enough to partially
melt the material in the gap, but not enough to heat up the surrounding area.

One experimental device described in Ovshinsky and Hellmutt [1973], a
256-bit random access memory array, is converted to the conducting state by a 25 volt, 10
millisecond pulse, and is erased by a 120 milliamp, 5 microsecond pulse. The spot of material
that is converted by these pulses has a diameter of about 1 micro-meter. Early devices broke
down after a relatively small number of cycles, but this preblem appears to have been solved,
and lifetimes as long as 102 set-reset cycles have been reported. In any event, this figure is
not really relevant to the network system envisioned here, since few of our connections will
be switched more than once. According to Professor David Adler of M.I.T., an expert in the
field, the technology has outgrown an initial period of uncertainty, and is now well on the
way to being understood at a molecular and quantum-theoretic level [Adler, 1977].

The plan, then, is to lay down a pattern of north-south wires, spread the
glass in a layer over these wires, and lay down the east-west wires on top of that. (Of course,
many small sheets could be used instead of one farge one.) To connect any link-wire to any
node-terminal, we simply apply a 25v pulsg between the two. The connection is then made,
and we can use it indefinitely. If we ever want to break the connection, we apply an
appropriate high-current pulse through it. The material used is relatively inexpensive, and
it does not have to be laid down in a single, perfect crystal.

Of course, this is easier said than done. If the wires are spaced 10 micro-
meters apart, this gives us a sheet that is 10 meters by 60 meters. If we cut this into 200
sheets and stack them'with a centimeter of air-space between sheets, we get a box that is
2x2x1.5 meters, which is not altogether unreasonable. If we can reduce the inter-wire spacing
and the inter-sheet gap by a factor of 10 each, we get a box smaller than a foot in each
dimension. Of course, if we want more than a million elements, the required switching area
(or volume) will go up as NZ for a billion elements, we would need a million of these
switching boxes. Once again, we have the packaging problem: how do you connect 1000 (or
perhaps 10,000) IC packages to the seven million wires emerging from oui connection box? 1|
have no answer to this question, at present.

One possible ray of hope is the idea of neighborhooding: it seems
probable that the elements form neighborhoods, with dense connectivity among the members
of a given neighborhood, but with relatively few connections to outside nodes. It may be
that the system could be divided into clusters of, say, 1000 densely-connected elements, and
that only one-tenth of these would have any wires coming into them from outside the cluster.
It might also be the case that such a cluster would have outgoing wires to only 100 external
nodes. One could then imagine placing such a network in a single package with about 300

Interconnection 182 - Appendix A2

leads: 100 CPU-bus wires, 100 outgoing wires, and 100 incoming wires. This is a rather
unwieldy, but not altogether unmanageable, number. The thousand-element packages could
then be connected into a million-element system by a crossbar 600 times smaller in area than
the crossbar discussed above. Note that we are not requiring that the neighborhood have
only 100 outgoing or incoming wires, but rather that the total set of wires connects to only 100
nodes. Wires to a common destination can be tied together before they enter or leave the
local package.

The only way to study the neighbor “yoding behavior of large real-world
knowledge bases is to build a few, and this has not yet been done. My guess would be that
the figures used above are about right, but this is only a guess. | also suspect that the
assigment of elements to neighborhoods in the order in which they are created would
probably be almost as effective as any more-complex allocation scheme. Further experience
with the simulator on a variety of real-world domains should resolve this issue.

The one-stage crosspoint switch gives us a sort of upper limit on the
number of potential connection points that must be considered. Given the low density of
actual connections, it seems likely that there are a number of multi-stage connection strategies
that would require fewer switches, and that would grow more slowly than N2 Perhaps some
variant of the sorting-network scheme described in the next section could be used.
Unfortunately, my knowledge of switching theory is not sufficient to attack this problem
seriously; I will leave that task to the experts, if any are interested.

In conclusion, I would say that implementation of a million-element
parallel network system would not be inexpensive or easy -- at least, at first -- but neither
does the idea belong entirely within the realm of science fiction. There was a time not long
ago when the idea of threading three or four wires through each of a few million tiny ferrite
doughnuts seemed equally improbable. If we want the parallel network badly eneugh, it will
be built somehow. The simulator will tell us exactly what such a network can do for us, so
we will have a very good idea of whether any given implementation scheme is worthwhile,
before construction begins.

Micro-Processor Network 183 Appendix A3

A3 Implementation with a Micro-Processor Network

In the past few years, microprocessors have burst upon the scene, and
their price drops lower every year. An obvious question, then, is whether some
interconnected system of microprocessors, operating in parallel, could give us a significant
speed advantage over a purely serial simulation. '

At first glance, the idea seems attractive. Since we have replaced the
complex, procedural, inherently serial component of knowledge-base search with a simple,
brute-fotce search, and since this search proceeds by tracing out paths in parallel, we can
simply assign a new micro-processor to the task whenever the path branches, until we either
complete the search or we run out of micro-processors in the idle-pool. At that point each
micro-processor completes its assigned task by itself, occasionally checking the idle-pool to see
if help is available. When a processor’s branch rejoins a portion of the tree that is already
“marked, the processor retires to the pool, ready to help its comrades. Of course, there is a
- certain overhead associated with finding and assigning free processors, and many processors
would be idle much of the time. Still, the speedup should be significant. Depending on the
exact shape of the network and the details of the strategy used, a thousand microprocessors
might be expected to increase the system’s speed by a factor between 10 and 100. Better still,
the harder problems -- those with the greatest fan-out in the direction of the scan -- will be
the ones that offer the best opportunities for such parallelism. It would appear, then, that a
micro-processor network might occupy a large and important niche between serial simulation
and the fully parallel hardware implementation described in the last two sections.

The problem with all of this is that the nodes and links of the system are
not like roads that can be followed without getting in anyone else’s way. The elements of the
system would be represented as they are in the current implementation: as structures of
pointers and flag-words in a standard random-access memory system. If a thousand micro-
processors are to be used at once, there must be a thousand memory ports to serve ther all.
This would require a large amount of hardware to synchronize and arbitrate all of these
requests, and contention would almost certainly wipe out any gains due to the parallelism.

The problem is not solved by allowing the micro-processors to copy the
area of the tree that they are exploring into their own private memories. First, a path
through the tree is likely to be spread all over the system's memory. Second, it takes as
much time to copy a pointer as to follow it, and contention is almost as likely to occur during
the copying accesses as during normal ones. Several adjacent pointers in memory might be
copied as part of a single operation, but there is little likelihood that many of the extra
pointers will be useful. Finally, serious problems are created by the existence of muitiple
copies of a single node. Some of these copies might be marked, others might be unmarked,
and still others might be cancelled. Coordinating all of this would be very difficult.

The one multiple-processor scheme which looks promising would assign
each processor permanently to a fixed chunk of the network, consisting of perhaps a
thousand elements. For each of these elements, the processor (in its attached private

Micro-Processor Network 184 ; Appendix A3

memory) would store the element’s marker-bit status and pointers indicating the element's
link-wire and node-terminal connections. These local processors do not conduct searches on
their own; rather, they simulate the combined effects of the thousand primitive elements
which they represent. The propagation commands are generated by a central control
computer and sent to the element-processors over a party-line bus, just as in the primitive-
element system. Each element-processor handles all of the propagations that occur entirely
within its own borders. When a marker must be propagated into an element owned by some
other processor, a message-passing protocol is used.

If each processor represents a thousand primitive elements, a million-
element system would require a thousand processors, each with perhaps 16K words of
memory for data and programs. If the problems of message-passing contention are ignored
for a moment, we might estimate that this system would run a thousand times more slowly
than a true primitive-element system, since each processor would have to divide its attention
among a thousand nodes. This does not sound very good, but by the same rough estimation
a serial system would be a thousand times slower still. For most purposes, then, the parallel-
processor system would probably be fast enough. If it is not, then we could use ten thousand
processors, each with less memory and only a hundred elements to worry about.

Of course, we cannot ignore the message-passing problem. Such a system
would generate a tremendous amount of message traffic, far more than could be handled by
a common message bus. There is a possible way around this problem, however, using an
scheme developed by Moravec [1976), a refinement of an earlier proposal by Batcher [1968).
This scheme would use Batcher sorting networks instead of a common bus-structure to
handle the flow of messages between processors. Using the message-passing interface that
Moravec describes, every processor can send one message to any other processor during each
major cycle of the system. All of the messages are delivered at once, without interference,
unless two messages are sent to the same destination. In that case, one of the messages is
delivered, and the sender of the other message is notified that he must try again. Though I
have not analyzed in detail the behavior of such a message-passing system for the present
task, it seems probable that very little processor-time would be lost due to message
contention. A processor with many popular high-level nodes might be assigned a few extra
incoming pors to handle the message-load. It would appear, then, that we might be able to
achieve a thousand-fold speed-up after all.

The message network requires a considerable amount of logic, but much
less than would be required by a full crossbar interconnection. For the interconnection of N
processors, the system would require an amount of logic proportional to N(log,N)%. By
Moravec’s calculation, a network for a thousand processors would require about 4000 48-pin
logic packages, a figure well within the reach of current technology. A million-processor
network, which would be equivalent to a billion primitive elements, would require about 13
million logic packages, a very large but not altogether inconceivable number, especially when
the possiblity of denser packaging is allowed for. Such a machine would be hard to
outgrow.

F— . e e v ——— e - —~ -

Table of Types 185

Appendix B: Table of Node Types, Link Types, and Modifier Flags

Node Types:

Appendix B

*#INDV

Represents the description of an individual entity in some
universe or an individual role in some description.

Parent wire:

Existence wire:

Creates a virtual #VC link to some special
superior #TYPE node.

Indicates which universe, area, or *TYPE
description the #INDV exists in. Functions as a
virtual #EXIN or #EXFOR link, depending on the
#-£XIN flag. If #«SPLIT is set, functions

as a virtual «SPLIT link as well.

Modifiers: «xEXIN, #«SPLIT, #«SPEC, *+EXTERN, #*RSPLIT.
*TYPE Represents the description of the typical member of some set.
The set is extensionally defined -- it contains whatever we say
it contains.
Parent wire: Creates a virtual «VC link to some special
superior *TYPE node. i
Set wire: Connects the #TYPE node to the set that it
describes.
Modifier: «xPART
*MAP The version of some individual role that appears in a given
virtual copy or context area.
Map wire: The individual role that is being mapped.
Owner wire: The base-node of the description or area into
which the map is being made.
*TMAP Like «MAP, but it is the map of a «TYPE node, and behaves like a

*TYPE node in the copy.

Map wire:
Owner wire:

Modifier:

The «TYPE role-node that is being mapped.

The base-node of the description or area into
which the map is being made.

*#PART

Table of Types 186 Appendix B

ST

*EVERY

#OTHER

= [NT

Represents an Individual STatement of some relation or
predicate. Like an *INDV node in most respects.

Parent wire: The type'of statement that the #IST node
represents.

Scope wire: The area within which the statement is
considered to be valid.

Spec wire: If this relation is part of the spec of an

«EVERY-node, this wire points to the *EVERY-node
in question.
Modifiers: ##NOT, *#UNK, ««SPEC.

A «TYPE node modified to represent the definition of an
intensionally-defined set. This node serves both as a

specification for the set, and as a description of the typical
member.

Parent wire: As in the *TYPE node.

Set wire: Connects the *EVERY-node to the set it defines.

Scope wire: The area within which the definition operates.
("Every X in Y ...")

Modifiers: #xNOT, Digestion priority flags.

Represents an arbitrarily—choﬁen individual of the associated
*TYPE. This individual is distinct from the one represented by
the aTYPE-node itself. See section 3.7 for full explanation.

Type wire: Tied to the «TYPE or #EVERY node with which
this node is associated. Can also be tied to-
another #OTHER node to represent a third or
subsequent individual binding.

Like an #EVERY node whose set is the intersection-set of the
two parents. If the same activation-mark appears on P1 and P2,
it is placed on the #INT-node as well.

Parent wires: P1 and P2 connect to the two parent-nodes.

Set wire: Connects the «INT-node to the set it defines.
Modifiers: #xNOT.

Table of Types ' 187 Appendix B

Link Types:

Each link has an integral node that represents the statement that the
link is making. These integral nodes behave as #IST nodes. The
following wires are therefore defined:

Parent wire: Used to indicate the type of the link. Usually this
will be totally redundant with the link's type-flags,
but sometimes it will indicate a sub-type of the basic
*TYPE-node for that link. Only the #TYPE-flags affect
marker propagations.

Scope wire: This indicates the area (spatial, temporal,
subject-area, or combination) within which the link is
considered to be active.

Spec wire: If the *+SPEC flag is set, this link is part of the

specification of an #EVERY node. The spec-wire then
indicates which node is being specified.

A and B wires: These are the wires that do the actual linking. Their
meaning varies from one link-type to another.

Modifiers: #*NOT, «xUNK, »+SPEC.

The following link-types are currently defined:

*VC Virtual Copy link: A is a virtual copy of B.
Special modifier: =#LIKE.

*EQ Equality link: A and B represent compatible views of the same
entity.

*CANCEL Cancellation link: In context or copy-layer A, relation B is
cancelled. If B is an individual role-node, its existence is
cancelled in copy A. To cancel a «VC or #EQ link creating an
ancestor of A, use #CANVC on the ancestor instead.

*CANVC Identity cancellation link: Node A is not a virtual copy of node

B, despite any #VC or #EQ links to the contrary.

Table of Types 188 Appendix B

#SPLIT

*EXFOR

#EXIN

*SCOPE

Used in building exclusive type-splits and sets of distinct
individuals. When a set of «SPLIT links share a common B-node,
all of the A-nodes in this set represent distinct entities. Any

attempt to *EQ them or to #VC a single individual under two of
them should cause a clash.

For every copy of B there exists a map of A.
Special modifier ##RSPLIT.

A exists in area B. In every copy of B, there is a map of A.
Special modifier: =xRSPLIT.

Statement A is valid within area B. Replaces scope-wire.

Table of Types

189 Appendix B

Modifier Flag Definitions:

**EXTERN

22SPEC

=2 UNK

#xNOT

#xLIKE

#+EXIN

#xSPLIT

#*RSPLIT

**PART

Flags #INDV nodes that are appropriate output symbols
for the knowledge-base system, and therefore appropriate
input symbols for the external programs using the
knowledge-base: LISP numbers or atom-names, ASCII codes,
muscle twitches, or whatever.

Marks those links, relations, and #INDV nodes that are
clauses in the specification of an #EVERY node.

Unknown. Add this to a #«SPEC statement, to indicate
that the case will be accepted if this condition cannot
be established. Kills statement during normal accessing.
If digestion finds this violated, case is removed from
the class specified by the =«UNK.

On a statement, negates it. Clashes with any attempt to
assert the same statement in non-negated form.

On an #EVERY-node, indicates that no item meeting the
specification exists within the given scope-area.

Weakens the sense of a «VC link to indicate that A
inherits the description of B, but is not strictly
speaking a member of B's class. Thus "A is like a B"
rather than "A is a B". Also used to create a copy of
an #INDV that is not #EQ to that «INDV.

Makes the existence-wire of an #INDV node carry the
sense of an #EXIN link rather than an #EXFOR.

Makes the existence-wire of an #INDV node serve as a
virtual «SPLIT link. The #INDV cannot then be equated
with any other ##SPLIT #INDV in the same area.

Used in #EXIN, #EXFOR links, #INDV nodes that define
roles. This role may not be played by the same #INDV in
a given context for two distinct owners. Each
owner-copy has its own player for this role.

Marks the PART #TYPE-role and all of its #TMAPS. Used
to make PART-OF hierarchy operations more efficient.

190 Bibliography

BIBLIOGRAPHY

Abelson, Robert P. (1975), "Concepts for Representing Mundane Reality in Plans”, in
Representation and Understanding, Bobrow and Collins (eds.), Academic Press.

Adler, David (1977), "Amorphous-Semiconductor Devices", Scientific American, May, 1977.

Anderson, John R. and Gordon H. Bower (1973), Human_Associative Memory, V. H.
Winston & Sons.

Asimov, Isaac (1950), I, Robot, Fawcett Crest (paperback).

Batcher, K. E. (1968), "Sorting Networks and their Applications”, 1968 Spring Joint Computer
Conference Proceedings, IFIPS.

Bobrow, Daniel G, and Terry Winograd (1976), "An Overview of KRL, a Knowledge
Representation Language”, Xerox Palo Alto Research Center. (Also Stanford Artificial
Intelligence Laboratory Memo AIM-239))

Brachman, Ronald J. (1977), "A Structural Paradigm for Representing Knowledge”, Ph.D.
Thesis, Division of Engineering and Applied Physics, Harvard University.

Brown, Allen L. (1977), "Qualitative Knowledge, Causal Reasoning, and the Localization of
Failures”, AI-TR-362, MIT Artificial Intelligence Lab.

Bullwinkle, Candace L. (1975a), "Computer Performance of the Sentence Completion Task",
M.S. Thesis, University of Pittsburgh.

Bullwinkle, Candace L. (1975b), "Picnics, Kittens, and Wigs: Using Scenarios for the
Sentence Completion Task", [JCAI 4.

Carbonell, Jaime R, and Allan M. Collins (1973), "Natural Semantics in Artificia’
Intelligence”, 1JCAI 3. (Also in AJCL, 1974, «l, Mfc. 3)

Cercone, Nick, and Len Schubert (1975), "Toward a State-Based Conceptual Represents
IJCAI 4.

Charniak, Eugene (1972), "Toward a Model of Children's Story Comprehensio
MIT Artificial Intelligence Lab.

Collins, Allan, Eleanor H. Warnock, Nelleke Aiello, and Mark | Mk
From Incomplete Knowledge", in Representation and Understanding
(eds.), Academic Press.

/7 AD=A0D2 748 MASSACHUSETTS INST OF TECH CAMBRIDGE ARTIFICIAL INTE==ETC F/6 9/2
A SYSTEM FOR REPRESENTINEG AND USING REAL-WORLD KNOWLEDGE.(U)

DEC 77 S E FAHLMAN NOOO14=T75=C=0643
UNCLASSIFIED Al=TR=450 NL
END
[inhlll D L
5 —78

191 Bibliography

Doylé, Jon (1977), "Truth Maintenance Systems for Problem Solving”, Al TR-419, MIT
Artificial Intelligence Lab.

Dreyfus, Hubert L. (1972), What Computers Can't Do, Harper & Row.

Dreyfus, Hubert L. (1976), Review of Minsky & Papert, Winston books in Creative
Computing, March-April, 1976.

Evans, Thomas G. (1968), "A Program for the Solution of Geometric-Analogy Intelligence
Test Questions”, in Semantic Information Processing, Minsky (ed.), MIT Press.

Fahlman, Scott E. (1974a), "A Planning System for Robot Construction Tasks", Artificial
Intelligence 5, pages 1-49.

Fahiman, Scott E. (1974b), "A Hypothesis-Frame System for Recognition Problems”, Working
Paper 57, MIT Artificial Intelligence Lab.

Fahlman, Scott E. (1975), "Thesis Progress Report”, Al Memo 331, MIT Artificial Intelligence
Lab.

Feldman, Jerome A, and Paul D. Rovner (1969), "An ALGOL-Based Associative Language”,
Communications of the ACM, August, 1969.

Fikés, Richard E., Peter E. Hart, and Nils J. Nilsson (1972), "Learning and Executing
Generalized Robot Plans”, Artificial Intelligence 3, 251-288.

Goldstein, Ira P., and R. Bruce Roberts (1977), "Nudge, A Knowledge-Based Scheduling
Program”, Al Memo 405, MIT Artificial Intelligence Lab. (To appear in IJCAI 5.)

Grossman, Richard W. (1976), "Some Data-Base Applications of Constraint Expressions”,
LCS TR-158, MIT Laboratory for Computer Science.

Hayes, Philip J. (1977), "On Semantic Nets, Frames, and Associations”, Proc. 1JCAI 5.

Hendrix, Gary G. (1975a), "Expanding the Utility of Semantic Networks Through
Partitioning”, Proc. 1JCAI 4.

Hendrix, Gary G. (1975b), "Partitioned Networks for the Mathematical Modeling of Natural
Language Semantics”, Technical Report NL-28 (Ph.D. thesis), Dept. of Computer Sciences,
The University or Texas at Austin.

Hendrix, Gary G. (1976), "The Representation of Semantic Knowledge”, in Speech
Understanding Research, Final Technical Report, Walker (ed.), Stanford Research Institiute.

Hewitt, Carl (1972), "Description and Theoretical Analysis (Using Schemata) of PLANNER",

192 Bibliography .

Al TR-258, MIT Artificial Intelligence Lab.

Katz, Jerrold J. and Jerry A. Fodor (1963), "The Structure of a Semantic Theory”, in The
Structure of Language, Fodor and Katz (eds.), Prentice-Hall.

Kuipers, Benjamin J. (1975), "A Frame for Frames: Representing Knowledge for
Recognition”, in Representation and Understanding, Bobrow and Collins (eds.), Academic
Press.

Lasnik, Howard (1972), "Analyses of Negation in English", Ph.D. thesis, M.L.T. Dept. of
Linguistics.

Marr, David, and Keith Nishihara (1977), "Representation and Recognition of the Spatial
Organization of Three-Dimensional Shapes”, Al Memo 416, MIT Atrtificial Intelligence Lab.

McCarthy, John, and Patrick J. Hayes (1969), "Some Philosophical Problems from the
Standpoint of Artificial Intelligence”, Machine Intelligence 4, Meltzer and Michie (eds.),
Edinburgh University Press.

McDermott, Drew V. and Gerald J. Sussman (1972), "CONNIVER Reference Manual”, Al
MEMO-259, MIT Artificial Intelligence Lab.

McDermott, Drew V. (1975), "Very Large Planner-Type Data Bases”, Al Memo 339, MIT
Artificial Intelligence Lab.

McDermott, Drew V. (1976), "Artificial Intelligence meets Natural Stupidity”, SIGART
Newsletter, April, 1976.

McDermott, Drew V. (1977), "Flexibility and Efficiency in a Computer Program for
Designing Circuits”, AI-TR-402, MIT Artificial Intelligence Lab.

Meldman, Jeffrey A. (1975), "A Preliminary Study in Computer-Aided Legal Analysis”, MAC
TR-157, MIT Laboratory for Computer Science.

Minsky, Marvin L. (1975), "A Framework for Representing Knowledge", in The Psychology
of Computer Vision, Winston (ed.), McGraw Hill.

Moore, Robert C. (1973), "D-SCRIPT: A Computational Theory of Descriptions”, IJCAI 3.

Moravec, Hans (1976), "The Role of Raw Power in Intelligence”, to appear as a Stanford Al
Memo. Available from the author.

Mylopoulos, John, Alex Borgida, Philip Cohen, Nicholas Roussopoulos, John Tsotsos, &
Harry Wong (1975), "TORUS -- A Natural Language Understanding System for Data
'~ Management”, 1JCAI 4.

R “%m e e

193 Bibliography

Norman, Donald A, David E. Rumelhart, and the LNR Research Group (1975), Explorations
in Cognition, W. H. Freeman.

Ovshinsky, Stanford R, and Helimutt Fritzsche (1973), "Amorphous Semiconductors for
Switching, Memory, and Imaging Applications”, IEEE Transactions on Electron Devices,
Vol. ED-20, No. 2, February, 1973.

Pople, Harry E. Jack D. Myers, and Randolph A. Miller (1975), "DIALOG: A model of
Diagnostic Logic for Internal Medicine”, IJCAI 4.

Quillian, M. Ross (1968), "Semantic Memory", in Semantic Information Processing, Minsky
(ed.), MIT Press.

Quillian, M. Ross (1969), "The Teachable Language Comprehender: A Simulation Program
and Theory of Language”, Communications of the ACM, August, 1969.

Raphael, Bertram (1968), "SIR: Semantic Information Retrieval®, in Semantic Information
Processing, Minsky (ed.), MIT Press.

Rich, Charles, and Howard E. Shrobe (1976), “Initial Report on a LISP - .mmer's
Apprentice”, AI-TR-354, MIT Artificial Inteiligence Lab.

Rieger, Chuck (1975a), "Conceptual Overlays: a Mechanism for the Interpretation of
Sentence Meaning in Context”, IJCAI 4.

Rieger, Chuck (1975b), "One System for Two Tasks: A Commonsense Algorithm Memory
that Solves Problems and Comprehends Language”, Working Paper 14, MIT Artificial
Intelligence Lab.

Rivest, Ronald L. (1974), "Analysis of Associative Retrieval Algorithms®, Memo STAN-CS-
74-415, Stanford University, Computer Science Department.

Roberts, R. Bruce, and Ira P. Goldstein (1977), "The FRL Manual®, Al Memo 409, MIT
Artificial Intelligence Lab.

Rosch, E. (1975), "Cognitive Representations of Semantic Categories”, Journal of
Experimental Psychology: General 104, 192-233.

Rosch, E. and C. Mervis (1975), "Family Resembhnces Studies in the Internal Structure of
Categories”, Cognitive Psychology 7, 573-605.

Rubin, Ann D. (1975), "Hypothesis Formation and Eva_luatlbn in Medical Diagnosis”, Al TR-
316, MIT Artificial Intelligence Lab.

Rumelhart, David E., Peter H. Lindsay, & Donald E. Norman (1972), "A Process model for

194 Bibliography

Long-Term Memory", in Organization of Memory, Tulving and Donaldson (eds.), Academic
Press. .

Rumelhart, David E. (1975), "Notes on a Schema for Stories”, in Representation and
Understanding, Bobrow and Collins (eds.), Academic Press.

Sacerdoti, Earl D. (1975), "A Structure for Plans and Behavior”, Stanford Research Institute
Artificial Intelligence Center Technical Note 109.

Schank, Roger C. (1973), "Identifications of Conceptualization Undérlylng Natural
Language”, in Computer Models of Thought and Language, Schank and Colby (eds.), W. H.
Freeman Press.

Schank, Roger C. (1975), "The Structure of Episodes in Memory", in Representation and
Understanding, Bobrow and Collins (eds.), Academic Press.

Schank, Roger C,, and Robert P. Abelson (1975), “Scripts, Plans, and Knowledge”, IJCAI 4.
Schubert, Len K. (1975), "Extending the Expressive Power of Semantic Networks™, 1JCAI 4.

Scragg, Greg W. (1975a), "Frames, Planes, and Nets: A Synthesis”, Working Paper 19,
Instituto per gli Studi Semantici e Cognitivi, Castagnola, Switzerland.

Scragg, Greg W. (1975b), "A Structure for Actions”, Working Paper 20, Instituto per gli Studi
Semantici e Cognnitivi, Castagnola, Switzerland.

Scragg, Greg W. (1975¢), "Answering Questions about Processes”, in Explorations in
Cognition, Narman & Rumelhart (eds.), W. H. Freeman & Co.

Shapiro, Stuart C. (1971), "A Net Structure for Semantic Information Storage, Deduction, and
Retrieval”, JCAI 2.

Shortliffe, E. (1976), MYCIN: Computer-Based Medical Consultations, American Elsevier.

Simmons, Robert F. (1973), "Semantic Networks: Their Computation and Use for
Understanding English Sentences”, in Computer Models of Thought and Language, Schank
and Colby (eds.), W. H. Freeman Press. ;

Strawson, P. F,, (1971), "Identifying Reference and Truth-Values”, in Semantics: An

Interdisciplinary Reader in Philosophy, Linguistics, and Psychology, Steinberg & Jakobovits
(eds.), Cambridge University Press.

Sussman, Gerald J.,, Terry Winograd, and Eugene Charniak (197), "Micro-Planner Reference
Manual®, Al MEMO 203a, MIT Artificial Intelligence Lab.

195 Bibliography

Sussman, Gerald . \1973) "A Computational Model of Skill Acquisition”, AI-TR-297, MIT
Artificial Intelligence Lab.

Sussman, Gerald], and Allen L. Brown (1974), Localh.ition of Failures in Radio Circuits:

A Study in Causal and Teleological Reasoning”, Al MEMO-319, MIT Artificial Intelligence
Lab.

Sussman, Gerald J. (1977), "SLICES, At the Boundary Between Analysls and Synthesis”, MIT
AI-MEMO 433, MIT Artificial Intelligence Lab.

Waltz, David (1975). "Understanding Line Drawings of Scenes with Shadows”, in The
Psychology of Computer Vision, Winston (ed.), McGraw Hill.

Wilensky, Robert (1976), "Using Plans to Understand Natural Language”, in Proccedlngs of
the ACM, 1976.

Winston, Patrick H. (1975), "Learning Structural Descriptions from Examples”, in The
Psychology of Computer Vision, Winston (ed.), McGraw Hill.

W inston, Patrick H. (1977), "Learning by Hypotheslzlng and _]ustlfylng Transfer Frames™, Al
Memo-4i4, MIT Artiﬂcial Intelligence Lab.

Winograd, Terry (1974), "Five Lectures on Artificial Intelligence”, AIM-246, Stanford
Artificial Intelligence Lab.

Winograd, Terry (1975), "Frame Representations and the Declarative-Procedural

Controversy”, in Representation and Understanding, Bobrow and Collins (eds.), Academic
Press. -

Woods, William A. (1975), "What's in a Link: Foundations for Semantic Networks”, in
‘Representation and Understanding, Bobrow and Collins (eds.), Academic Press.

