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The Global Positioning System (GPS) will be a constellation of

24 satellites placed in 12-hour, 63 degree inclination, circular orbits.

The satellite configuration is designed to provide accurate three-
dimensional position, velocity, and time information by transmitting
signals from which users can extract range and range-rate measurements.
This investigation describes the passive-ranging concept of the system
and the various hardware, software, and environmental factors which de-
termine system accuracy. The simulation of a New York-to-Chicago air-
craft flight with satellite range and range-rate measurements and with
barometric altimeter measurements is used to numerically evaluate navi-
gation algorithms. The satellite configuration used in the simulation
is the limited operational configuration which consists of only nine
satellites. For 95 per cent of the simulated fiight, only three satel-
lites are visible to the user.

The search for acceptable navigation algorithms begins with a

review of a linear filterinc and prediction theory. A filter model for
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the aircraft is developed based on the assumption of an exponentially

correlated random acceleration. The resulting model, combined with
measurement bias models, is incorporated into an extended Kalman filter.
Numerical results show that, for the basic filter model, filters which
maintain good accuracy during the maneuvering phases of flight have

poor performance during cruising flight and, conversely, filters which

perform well durinn cruise, have degraded accuracy during maneuvers.
Finally, several adaptive algorithms are evaluated. Numerical
results show that a simple adaptive index can be used to enhance the
performance of the basic filter model without a substantial increase in
the navigation algorithm program complexity.
Using the simulated flight adopted for this study, root-sum-
square position errors generally less than 100 meters were achieved.
The results show that accuracy is strongly dependent on user-sateilite
geometry. Maximum position errors equal to at least 700 meters occurred

at a time of poor geometry in all algorithms which were considered.
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CHAPTER 1
INTRODUCTION

1.1 Some Historical Remarks on Navigation

In Greek mythology, Odysseus sailed safely by the Sirens only
to encounter the monsters Scylla and Charybdis, traditionally located
in the Straits of Messina between Italy and Sicily. Scylla was a squid-
1ike monster with six long necks, each with a head on it with three rows
of teeth. Charybdis was a whirlpool which sucked in water and belched
it out three times a day. Odysseus steered between the two monsters
with Timited success. He survived to continue on to Ithaca but Scylla
was able to cétch and devour six of his men [1:133—134]*. Although no
mention is made of Odysseus' navigation technique in the Straits of
Messina, the episode may be one of the earliest references to the re-
quirement for accurate navigation.

Methods for the determination of latitude from direct obser-
vations of the sun and stars had been known since Hipparchus, Menelaus,
and Ptolemy created and refined trigonometry to aid in the telling of
time, calendar-reckoning, and navigation [2:119]. Determination of
longitude, however, remained a difficult problem. After 1514, the di-

rection of the moon relative to the stars was used to calculate

*Bracketed numbers indicate references as enumerated in the Bibliography
section. Unless noted otherwise, numbers following the colon are page
numbers .
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longitude. An error of one minute of angle, an accuracy beyond the
capabilities of Sixteenth Century equipment, resulted in an approximate-
1y 1/2-degree (60 km) longitude error. This limitation, attenuated by
the difficulties in taking measurements from heaving ships, resulted

in longitude errors on the order of 150 km. In the absence of other
longitude determination techniques, considerable effort was expended

to improve the prediction of lunar motion in order to improve longi-
tude determination accuracy [2:336].

In 1712, recognizing that other methods had to be developed,
the British government established the Commission for the Discovery of
Longitude which offered rewards up to 20,000 pounds sterling for ideas
on how to compute longitude. The Flemish cartographer Gemma Frisius
(1508-1555) had suggested in 1522 the use of time to determine longi-
tude [3:245]. To be competitive with the 1/2-degree accuracy of the
Tunar methods, however, time on board the ship had to be accurate to
two minutes for the duration of the voyage. Clocks with such accuracy
did not exist until John Harrison (1693-1776) invented the chronometer
in 1761 [2:337]. With chronometers, celestial navigation techniques
could be used to determine latitude and longitude on the open seas to

accuracies on the order of a few kilometers.

1.2 Classification of Navigation Techniques

Navigation techniques can be placed into four broad categories:
celestial navigation, pilotage, dead-reckoning, and radio navigation.

Pilotage is simply the use of maps to determine position. When a user
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is in uncharted areas or is away from known shorelines, this method is
inapplicable. It is interesting to note that currently there is con-
siderable interest in the use of landmark tracking, a form of pilotage,
for cruise missiles and space satellites.

Dead-reckoning, or "deduced reckoning," is based on the propa-
gation of a user's position using knowledge of the velocity and a pre-
viously known location. Inertial navigation systems, which sense ac-
celeration, can be referred to as acceleration dead-reckoning systems.
When used without other navigation aids, such as periodic position
updates, dead-reckoning methods are subject to long-term drift errors
caused by errors in the sensed velocity (or acceleration).

Celestial navigation is the use of angular measurements of the
sun, moon, and stars to determine latitude and longitude on the earth.
As discussed previously, accurate longitude determination also requires
accurate knowledge of time. Prior to the introduction of radio naviga-
tion systems, celestial navigation was the only method for open seas
navigation which provided acceptable accuracy.

Radio navigation techniques have been in widespread use since
World War II. Perhaps the simplest position determination method,
based on radio signals, is radio direction finding to determine lines-

of-position on the Earth's surface. The intersection of two lines-of-

position determine the position of the user. Current ground-based ra-
dio navigation systems include: LORAN-C (LOng-RAnge Navigation); OMEGA
a global version of LORAN: and VOR/DME, a line-of-sight high-frequency

system. Up to 80 radio navigation systems or system variants have been
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identified [4]. Accuracy and range capabilities of selected systems
are summarized in Figure 1.1.

For ground-based radio navigation systems, low frequencies are
needed to increase coverage because, for the lower frequencies, the
signal follows the curvature of the Earth for longer distanccs. Most
radio navigation concepts require accurate tracking of the signal wave-
form, however, and, as frequency decreases, errors in tracking the sig-
nals increase.

In 1958, the use of a satellite-based radio navigation system
was proposed [5]. The concept called for the measurement of the
Doppler shift in satellite transmitted signals and was eventually in-
corporated into the TRANSIT navigation satellite system. A primary ad-
vantage of a satellite-based system is the increased coverage without
decreased signal tracking accuracy.

The TRANSIT system requires the use of a Doppler curve for
the entire satellite pass and, therefore, is limited to slow moving
users, such as ships, or to use as an auxiliary navigation aid for
other systems such as inertial navigation systems. In December 1973,
the Department of Defense approved the first phase of a new navigation
satellite program which combined elements of the Air Force Program 621B
and the Navy TIMATION program. The system, designated the NAVSTAR
Global Positioning System, is scheduled to be fully operational in
1984. The fully operational system is expected to have horizontal and
vertical position accuracy on the order of 10 meters for 90 percent of

the time and will provide nearly continuous navigation fixes (after
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establishing an initial fix). The key element of the NAVSTAR system is
the atomic frequency standard to be on board each of 24 high-altitude
satellites. Transmission of accurate time signals from the satellites
will permit a user to determine accurate ranges or range-differences
from a number of satellites. These measurements can be used to deter-
mine the user's three-dimensional position and time [6].

If a NAVSTAR user has four simultaneous independent satellite
measurements, then three-dimensional position and time can be calculated
using deterministic solutions. If the measurements are not perfect,
however, then algorithms based on deterministic solutions can result in
non-optimal state estimates. Also, if the observations are available
sequentially, then sequential estimation techniques should be used.

If other navigational aids such as a barometric altimeter are
used, then the navigation algorithm must integrate the auxiliary sensor
measurement into the solution. Any a priori knowledge of the user's
state should also be considered in the algorithm. It is fortunate that
a wealth of information exists from which a NAVSTAR user can derive an
algorithm which minimizes the effects of observation errors, operates
sequentially, optimally combines different measurements sources, and
considers the a priori information. Such information is to be found in
recent advances in estimation theory, a theory with beginnings in the

early Nineteenth Century.

1.3 Historical Background of Estimation Theory

At the age of eighteen, Karl Friedrich Gauss (1777-1855)




jnvented the method of least squares [2:870]. He used his new method
to derive a set of orbital elements for the minor planet Pallas. The
development of the least squares technique was the beginning of esti-
mation theory.

The Wiener-Kolmogorov theory of filtering and prediction was
described in detail by Norbert Wiener (1894-1964) in 1949 [7]. This
theory centered on the derivation of the Wiener-Hopf Equation, an in-
tegral equation which specified the construction for the gain of an
optimal=estimator. The work of Wiener and Kolmogorov was the first
major contribution to estimation theory since Gauss' least squares.

Much effort in the 1950's was devoted to the application of
the computer in estimation theory. The Wiener-Hopf Equation, an in-
tegral equation, was not appropriate for computer use unless an expli-
cit solution could be obtained. Since explicit solutions were avail-
able only in certain restricted cases, most computer applications used
least squares or recursive least squares methods. In 1960 and 1961,
Kalman and Bucy [8] [9] transformed the Wiener-Hopf Equation into an
equivalent set of differential equations. Although this did not make
explicit solut ns for the optimal gain easier to derive, it did place
the gain computation into a form well adapted to the digital computer.

The resulting formulation has tremendous practical utility.

*"Optima1." in this case, means "unbiased, linear, minimum variance."
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1.4 Purpose and Scope of the Dissertation

Since its appearance in 1961, Kalman filtering has been ap-
plied to countless aerospace systems. It is the purpose of this dis-
sertation to apply the Kalman filter to another aerospace problem, i.e.,
aircraft navigation using the NAVSTAR Global Positioning System naviga-
tion satellites. The problem specified has one outstanding challenge -
the Tack of any reasonable (computationally tractable) model, stochastic
or deterministic, that will describe the behavior of an aircraft.

The scope of this paper is limited to the use of an extended
sequential Kalman filter after acquisition of the GPS navigation signal.
In addition, applicability to a low~cost user further restricts the
scope, especially in the use of auxiliary sensors (i.e., no inertial
navigation systems) and receiver capabilities (no simultaneous recep-
tion). A discussion of all factors to be considered in actual imple-
mentation of a navigation algorithm is beyond the scope of this study.
The characteristics of specific hardware items, which would be influ-
ential in determining the exact implementation method, were not inte-
grated into the analyses. The accuracies of available equipment, such
as altimeters, were approximated in the study.

This dissertation evaluates several adaptive and non-adaptive
methods for implementing sequential estimation techniques into GPS user
navigation algorithms. Although the analyses are based on the limited
operational phase of the GPS and low-cost user equipment, the algorithms
are expe .ed to be appliccble for many user categories in both the lim-

ited operational and fully operational phases of GPS. Each estimation




technique is described in general terms. The specific formulation for
the user navigation algorithm is then derived. The algorithms are test-
ed using a simulated New York-to-Chicago flight with satellite and alti-
meter measurements. Using many different values for the filter para-
meters, the performance of each algorithm during the takeoff and depar-
ture portions of flight is analyzed. Based on these initial evalua-
tions, selected algorithms are tested using the entire 111-minute
simulatea flight. The results are presented using plots and tabular
summaries of errors in the estimated position, velocity, and measure-

ment bias states.

1.5 Results of the Dissertation

It will be shown that comparatively simple filter models can
be used to successfully estimate the state of a maneuvering aircraft.
In addition, the analysis of adaptive techniques will show that measure-
ment residuals can be used to modify the parameters of the filter model
to improve overall performance of the navigation algorithm. Because the
numerical tests are based on a single Monte Carlo trial, the conclusions
of the study can be interpreted as an elimination process, i.e., based
on the numerical results, certain filter algorithms should be elimi-
nated as candidates for implementation. Those algorithms which "sur-

vived" the tests must be tested further.

1.6 Overview of the Dissertation

Chapter 2 is a description of the Global Positioning System,
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Included in Chapter 2 are brief descriptions of current navigation sys-
tems that the GPS is designed to replace. Also discussed are those
elements of the GPS and its environment that are critical to navigétion
algorithm testing. The limited operational capability phase of GPS and
the low-cost user, two restrictions of this study, are described also.
Chapter 3 specifies the methods used to develop the simulated user tra-
jectory and the measurements which were used in the analyses. The
methods used are adequate for initial testing of navigation algorithms.
In more detailed tests, the simple models described in Chapter 3 may be
replaced by the more accurate and more detailed models which are re-
viewed in Chapter 2.

Chapter 4 is a review of linear estimation theory. A specific
formulation of the general results is derived. Algorithms for three
basic estimation philosophies are outlined.

Chapter 5 derives the basic twelve-state acceleration dead-
reckoning (ADR) model. Also described are the parameters which will be
used throughout the study to evaluate the navigation algorithms. The
twelve-state ADR model test results are given in Chapter 5. Chapter 6
examines a nine-state velocity dead-reckoning (VDR) model and expands
the analysis of the twelve-state ADR model. Chapter 6 also derives and
examines an algorithm which estimates the inverse correlation time para-
meter of the ADR model. Chapter 7 derives and examines an algorithm
which estimates the spectral level process noise parameter of the ADR
model. Threo easily-implemented adaptive indices are discussed also.

The implementation method and results for each of the adaptive indices

e i
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are described. Chapter 8 summarizes the results of the study and makes

recommendations for follow-on analyses.




CHAPTER 2
DESCRIPTION OF THE NAVSTAR
GLOBAL POSITIONING SYSTEM

2.1 Current Navigation System

The NAVSTAR Global Positioning System (GPS) is a navigation
satellite program which is scheduled to be operational in 1984. The
system is designed to replace the ground-based navigation systems
LORAN-C and OMEGA, and the navigation satellite system, TRANSIT.

The LORAN-C system is a ground-based radio navigation system
operating between 90 and 100 khz. A LORAN-C network consists of a mas-
ter station and at least two slave stations. The master station radi-
ates a pulsed transmission which is received by the slave stations.
After precise, fixed tine delays from reception of the master station
signal, the slave stations transmit groups of pulses similar to that
transmitted by the master station. Each group of pulses is ccded to
identify the transmitting station. Two independent range-difference
measurements are obtained by measuring the differences in the times-of-
arrival of the signals from two transmitters relative to the time-of-
arrival of the signal from a third transmitter. Each range-difference
places the user on a hyperbola on the Earth's surface. Recall that a
hyperbola is defined a< a curve for which the difference of the dis-
tances of any point on the curve from two fixed points is constant.

The fixed points are the foci of the hyperbola and, in LORAN-C, are

12
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located at the transmitting stations. The intersection of the two

hyperbolas, determined from two independent range differences, defines !
the user's position on the Earth's surface. Altitude of the user can-
not be determined using LORAN-C because the transmitting stations are !
all in the plane of the Earth's surface [10:1-7][11:35-41].

The accuracy of a LORAN-C navigation fix is a function of in-

strumentation accuracy and knowledge of radio wave propagation and also

varies with user-transmitting station geometry* and range. Within tﬁe
service region of a LORAN-C network (2000-3000 km) accuracies are typi-
cally on the order of 25 to 100 meters [4:Table 2-7][11:54].

The OMEGA system is also a ground-based hyperbalic system
which uses time difference measurements. However, it operates between
10 and 14 khz. In this frequency range, OMEGA can provide worldwide
coverage with only eight transmitting stations. With these eight sta-
tions, there is sufficient redundancy in the selection of transmitting
stations that good user-transmitting station geometry can usually be
assured. OMEGA does not provide altitude information. Because of the

long signal propagation distance over land and sea surfaces, the accu~

racy of OMEGA is a function of the predictability of radio wave propa-

gation. Typical accuracies for OMEGA are on the order of two to five y
kilometers [4:Table 2-7][11:41-47].

Satellites have inherent characteristics that make them Aﬁ
*As will be evident in later discussions, user-transmitting station ge- 'J

ometry is a basic factor in maximizing the accuracy of any navigation {i
concept that depends on a geometric solution. For example, poor selec- ;
tion of stars can result in a poor celestrial navigation fix.
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attractive as navigation signal transmitting stations. A proper choice
of the orbits and the number of satellites will insure global coverage
with good user-satellite geometry. Also, the propagation of satellite
signals is more predictable than the ground-wave propagation of LORAN
and OMEGA. Furthermore, three-dimensional position determination is
also possible using satellites. The TRANSIT system attempted to take
advantage of some of the desirable characteristics of satellites as
navigation signal transmitters.

The TRANSIT system, operational since 1964, consists of five
satellites in 1100 km polar orbits. The satellites transmit stable
frequency signals at 150 mhz and 400 mhz. Position fixes are obtained
by taking precise measurements of the Doppler frequency shifts from a
satellite. Because the determination of a single navigation fix re-
quires about 15 minutes [12], the TRANSIT system does not provide real-
time position determination and is restricted to users with low dynamics
such as ships. During the observation time interval, the user must
either remain stationary or he must predict his position by dead-reckon-
ing or other means.

In addition, TRANSIT satellites are not visible continuously.
The system can, however, provide periodic position resets to an iner-
tial navigation system (INS) and thereby 1imit the divergence of the
INS solutions. Also, a single Doppler observation from a TRANSIT satel-
Tite pass can be used to improve the performance of systems such as an

INS.
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To achieve 200 meter navigation accuracy, the TRANSIT
satellites must maintain transmission frequency stability to within
one part in 109 for an observation interval of about 15 minutes [13]
[14:84]. The quartz crystal clocks used on the TRANSIT satellites
have demonstrated short term stabilities better than one part in 10]0
[14:101](15]. Whereas Doppler navigation satellites require accurate
frequency over the observation interval, satellites in a passive-
ranging system require accurate time. Accurate time requires good
Tong-term frequency stability which can be achieved using atomic fre-
quency standards. The development of atomic frequency standards cap-
able of operation in a space environment has made a passive-ranging
navigation satellite system possible. A primary advantage of a
passive-ranging system is its ability to provide a measurement within
fractions of a second. With a sufficient number of satellites visible,
a real-time position fix can be made on a near-instantaneous basis.
Hence, the system need not be restricted to slow moving or stationary

users.

The Global Positioning System is such a passive-ranging system.

This chapter describes the purpose of the GPS, its characteristics, and
its operation. The three primary segments of the GPS are discussed.
These segments are referred to as the Control.System Segment, the Space
System Segment, and the User System Segment.

The GPS navigation signals are based on pseudo-random-noise

(PRN) sequences. This chapter describes how the PRN sequence is gene-

rated by the satellite and how the user equipment can detect the signal.

Atmospheric and relativistic effects are described also. In addition,

e e —
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the 1imited operational phase of GPS (Phase II) and the application for
a low-cost user are discussed since the primary objective of the disser-

tation is to evaluate navigation algorithms under these two restrictions.

2.2 Role and Characteristics of GPS

The role of the GPS will be to provide accurate three-dimen-
sional position, velocity, and time information to its users. The satel-
lite signals, when processed, will give the position, velocity, and
time in the GPS coordinate frame. All1 GPS information will be refer-
enced to a common coordinate system. The navigation signals, available
continuously, will provide the navigation information on a near-
instantaneous basis in all weather conditions. Since the GPS users will
be passive with respect to the satellites (the users will only receive
the satellite signals), they will not require transmitting equipment

and the system can support an unlimited number of users.

2.3 The GPS Concept

Given the range measurements from three satellites whose posi-
tions are known, a user can determine his location at the intersection
of three spheres whose centers coincide with the locations of the
satellites.” A GPS user with a synchronized clock and knowledge of all
clock biases and signal delays can compute range by using the time

di fference between the satellite clock time at signal transmission and

*
It is assumed that the user can resolve any ambiguities in the solution
and that the satellite geometry does not cause any singularities.




17

the user's clock time at the time-of-arrival of the satellite signal.

To eliminate the requirement that the user have an expensive
clock, a fourth satellite can be used to enable the user to compute his
clock bias. This is similar to processing three independent range-
differences which also requires four satellites. When four satellites
are used to determine three-dimensional position and clock bias, the
user is located at the intersection of three hyperboloids of revolution.

In the above description, it is assumed that the user can take
pseudo-range* measurements simultaneously from the required number of
satellites. A user equipped with a receiver that takes the measurements
sequentially, one satellite at a time, must use techniques that account
for his motion and his clock drift. A moving user with a sequentially-
tracking receiver can improve his navigation fixes by estimating his
velocity and clock drift using pseudo-range-rate measurements which
directly sense the components of velocity along the line-of-sight
vector and the clock drifts. Recursive filter algorithms are available
for the case where the measurements are to be processed sequentially.

A range-rate measurement can be obtained by differencing range
measurements and dividing by the time interval between measurements.
However, since a carrier tracking loop will be required in the user re-
ceiver, a more accurate measurement of range-rate is available using
the difference between the carrier tracking loop oscillator frequency

and the user oscillator frequency. If the user oscillator and the

*The measured time displacement is defined as pseudo-range since it in-
cludes the clock bias.




18

satellite oscillators are operating at the nominal frequency and other

effects (atmospheric and relativistic) have been eliminated, then the ‘
difference between the carrier tracking loop oscillator frequency and

the user oscillator frequency is a function of range-rate (velocity

along the line-of-sight) only. The user oscillator, however, will be

offset from the nominal frequency because perfect oscillator adjustment

is impossible to achieve and maintain. The measurement of the differ-
ence between the carrier tracking loop oscillator frequency and the
user oscillator frequency, which includes the effect of the user oscil-
lator frequency offset, will be called a pseudo-range-rate measurement.
It is assumed that the user oscillator drives the user's clock. The
deviation of the user oscillator frequency from the nominal frequency
will, therefore, be referred to as clock drift since the frequency
deviation causes the user's clock to drift with respect to a nominal

clock.

2.4 Control System Segment

The Control System Segment of the GPS will track the GPS sat-
ellites, determine the satellite ephemerides and clock parameters, and
transmit this information to the satellites. The satellites will re-

transmit this data to the users. Orbit corrections and satellite

clock frequency adjustments can be made also via the Air Force Satellite
Control Facility, Sunnyvale, California. &
Satc.lite tracking will be accomplished using four monitor

stations (MS) located at Vandenburg AFB, California; Elmendorf AFB, '
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Alaska; Wahiawa, Hawaii; and Guam. Each monitor station will receive
and process the satellite navigation signals. Each station will edit
the satellite data and transmit the edited data along with meteorolog-
ical and other pertinent informatibn to the Master Control Station.

Satellite ephemerides and clock data will be determined by the

! ’ Control System Segment. The Master Control Station (MCS), located at
Vandenburg AFB, will rec%jve data from the monitor stations every 15
minutes. The MCS will correct the data for known biases such as atmo-
spheric delays, antenna lever arms, and relativistic effects. The
data will be smoothed and'p1qced on a file for transmission to the
Naval Surface Weapons Center (NSWC), Dahlgren, Virginia.

Using the smoothed data, the NSWC will perform a batch esti-
mate for the satellite state at a specified epoch and for the monitor
station locations. The NSWC batch estimate will be performed approxi-
mately weekly. An ephemeris epoch will be defined at the end of the
estimation period and the NSWC will then integrate the state forward
from the estimation epoch to the ephemeris epoch. Then the state and
state transition matrix will be integrated forward to predict satel-
lite ephemerides for approximately two weeks. (See Figure 2.1.) The
frequency and time span of the batch estimate may vary depending on
satellite anomalies and confidence levels. Furthermore, the NSWC will
have the capability to process the uncorrected data during diagnostic
studies.

The NSWC will provide the MCS with the ephemeris epoch condi-

tions, the predicted satellite ephemerides, and partial derivatives to
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RUNNING EPHEMERIS SOLUTION
(CURRENT TIME)

¢ PARTIAL DERIVATIVES
PROPAGATING DAILY
PREDICTIONS FROM EPOCH )

\
® PARTIAL DERIVATIVES '—|
PROPAGATING MEASUREMENTS
BACK TO EPOCH DAILY PREDICTION
L-———‘l DAY ——'-l

LONG TERM REFERENCE FROM
NSWC OR INTEGRATOR PROGRAM

H PARTIAL DERIVATIVES
RELATES TRAJECTORY
TO MEASUREMENTS

Figure 2.1 Ephemeris Determination About a Predicted
Reference Solved at an Epoch
propagate corrections to epoch conditions forward to a future time (the
state transition matrix). In addition, the NSWC will provide revised
monitor station locations and the measurement partials for the monitor
stations. The partials will be determined during the integration of
the predicted trajectory.

The MCS will use the NSWC trajectory and partial derivatives
in conjunction with the smoothed 15-minute data to determine current
ephemeris and clock data for the satellites. This will be a near-real-
time estimation using a Kalman estimator. Finally, the MCS will make

daily predictions of the satellite ephemerides and clock behavior. The

accuracy goal of the daily ephemeris generation is 1.5 meters (one

R
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sigma) line-of-sight error [16]. The daily prediction will be broken
down into nominal hourly periods. A set of Keplerian elements and
seven correction terms will be used to fit the hour-long periods of the
daily ephemeris prediction for each satellite. The fit to the daily
prediction is expected to be within 0.01 meters [17:491. The MCS will
then format a daily group of ephemeris data sets and provide it to the
upload station, also located at Vandenburg AFB, for transmission to the
satellites. Each satellite will store a daily group of ephemeris data
sets and will update the transmitted ephemeris data nominally every
hour. After truncation into the satellite data stream, the fit to the

hourly predicted ephemeris is expected to be within 0.10 meters [17:45].

2.5 Space System Segment

The Space System Segment includes the satellites, the launch
equipment, and the associated hardware/software required to provide
space-based radio navigation signals. In the following paragraphs, the
satellite constellations for both the limited operational capability
phase and the fully operational phase of the GPS will be described. Ac-
curate frequency standards, which are the key hardware elements in the
GPS satellites, wil) be analyzed. The navigation signal format will be
described and the atmospheric and relativistic effects on the genera-

tion and propagation of the signal will be discussed.

2.5.1 Satellite constellations.

2.5.1.1 Phase III constellation. The fully operational (Phase

II1) Space System Segment will consist of twenty-four satellites in
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one-half-sidereal-day orbits (20,183 km altitude). Nominal inclination

will be 63 degrees. Eight satellites will be in each of three orbital

planes with the ascending nodes of the planes separated by 120 degrees.

Within each plane, the satellites will be equally spaced. (See Figure

2.2.)

2.5.1.2 Phase II constellation.

This dissertation evaluates

navigation algorithms for the Phase II GPS, a limited operational capa-

bility phase scheduled for 1979. The Phase II constellation will con-

sist of nine satellites equally spaced in three orbit planes with the

ascending nodes of the orbit planes separated by 120 degrees. Table

2.1 specifies the planned orbit for the Phase II satellites.

Table 2.1 Phase II Orbital Elements

Longitude of
Satellite Ascending Node
(deg?

-130.
-130.
-130.
110.
110.
110.
-10.
-10.
-10.

W 00 ~N O U & W NN -

Note: A1l satellites have Period
major axis = 26551.820982 km; Inclination
and Epoch of Elements = 0 sec.

Time to
Ascendin? Node
(sec

0.
-14400.
14400.
0.
-14400.
14400,
0.
-14400.
14400,

43082.049456 sec; Semi-
63 deg; Eccentricity = 0;
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The primary impact of Phase II with respect to the fully
operational phase is the reduced number of satellites visible to a
user. Whereas Phase III will provide six to eleven visible satellites,
Phase II will provide only two to six visible satellites. Figure 2.3
shows the expected number of satellites visible to users at various

latitudes for Phase II and Phase III.

2.5.2 Satellite clocks.

2.5.2.1 Atomic frequency standards. Clocks count the number

of occurrences of a periodic phenomenon. The gears in an ordinary clock
count the swings of a pendulum and move the hands on a clock face. In
an electronic clock, an electronic counter counts the cycles of an os-
cillator and updates the display. In an atomic clock, the oscillator
frequency is controlled by the frequency of an atomic transition. In
an atomic transition, electrons move between specific energy levels and
either absorb or emit energy at a frequency which is proportional to the
difference between the energy levels. Since the allowable energy lev-
els have precisely known quantum values, the frequency of the energy
= associated with the transition is very stable. The high stability of
an atomic transition distinguishes the atomic clock from clocks whose
periodic phenomenon is dynamical. It should be noted that most atomic
frequency standards use an atomic transition to control a quartz oscil-
lator. The vibration of the quartz crystal oscillator is the periodic
phenomenon which is counted [19].

Quartz clocks, without synchronization by atomic transitions,

were used in the TRANSIT navigation satellites [13]. Quartz clocks have

Ty
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proven portability and recent manufacturing methods have improved con-

siderably their stability [20]. In the following discussions, quartz

clocks will be included for comparison with their more complex atomic
counterparts.

Atomic sources, commonly used in current frequency standards,
include (1) cesium beam resonators; (2) hydrogen masers, and (3) rubi- \
dium vapor cells. Descriptions of the operation of these clocks and
other possible atomic standards are available in [21] and [22]. Atomic i
clocks can be compared with respect to cost, stability, reliability, ;
and production experience. Relative figures of merit f have been |
assigned to the common clock types by Kartaschoff and Barnes [22]. |

(See Table 2.2.)

Table 2.2 Relative Comparisons of Standard
Frequency Generators [22]

Cesium Rubidium Hydrogen Quartz

Parameter (code) Standard Vapor Cell Maser Crystal
Initial Cost (a) i 5 5.0 A |
Support (b) 1 .5 10.0 . :
Stability (c) 1 .1 10.0 .01 ;
Reliability (d) 1 1.0 .2 10. :
Production :
Experience (e) 1 _5 .1 10. I
Figure of Merit (f) 1 }

0.2 0.004  100.0 Co

f = c-d-e 3
“a'b i




2.5.2.2 Clock stability measures. Oscillators have an output

of the form ;

V(t) = [vo + e(t)] sin[anot + ¢(t)] (2.1)

where: VO is the nominal amplitude;

f0 is the nominal frequency;

e(t) is the amplitude deviation; and

¢(t) is the phase deviation.

The instantaneous fractional frequency deviation is defined as

y(t) = &b (2.2)

:rfo

An important measure of a clock is its frequency stability.
Several methods have been proposed to characterize frequency stability.
In the frequency domain, the one-sided spectral density is defined

as [23:116]

Sy(f) = 4 Ry(T)COS(ZﬂfT) dt (2.3)

where: Ry(r) is the auto-correlation of y(r).

In the time domain, stability can be characterized by the N-sample var-
iance. The time average of the fractional frequency deviation over a

sample duration +t is defined by




o(t re) - o(t,)

Yo = 7| y(t)dt = T (2.4)
o
%
If N samples are taken at a repetition period T = tk+l - tk’ then
the N-sample variance is given by
2 N g N2
Oy(NsT9T) = N:T.izl (yi = N.kZ] Yk) (2.5)

The Allan variance is the most commonly used stability measure
for atomic frequency standards. Allan variance is obtained using

Eq. 2.5 with a sample size of two, N = 2, and no dead time, T = 1.

ol(2,1) - <:(?;é:_g;)ﬁ:> (2.6)

where: <+> denotes the infinite time average.

The Allan variance may be estimated for a set of M data points as fol-

Tows [24]:

2
(ay,) (2.7)

Hne~-1xx
—

2 1
¢y(29f) * M ;

where: Ay is the difference between adjacent frequency measurements

over a nominal sample time.
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Barnes [23] and Allan [25] provide comprehensive discussions
of stability measures and show the relationship between spectral den-
sity in the frequency domain and the Allan variance in the time domain.
Other forms of stability measures are discussed by Lindsey and Lewis
[26]. For more details on frequency stability measurement see Allan
[27].

Figure 2.4 [13] depicts the range of stabilities, expressed
as Allan variance, available in commercial clocks. The GPS specifica-
tion for developmental satellite clocks [28: Par. 3.7.2.4.3] has been
included on Figure 2.4 for reference.

The variance of a time interval measurement is related to the

Allan variance by

UET = @ o§ (2,7) (2.8)

Using the specification for the GPS satellite clock, the standard devia-
tion of a time interval of 10,000 seconds (2.78 hours) is ten nanosec-
onds. For a one week interval, the standard deviation is 604.8 nsec.

Current GPS plans call for the testing of a cesium beam atomic
clock on the first satellite, Navigation Technology Satellite No. 2
(NTS-11), scheduled for launch in 1976. Rubidium vapor atomic clocks
are planned for the five Navigation Development Satellites (NDS). If
flight proven, later GPS satellites may use cesium clocks.

Addi tional information on the design and capabilities of

atomic clocks is available in References 29 through 33.
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GPS Specification

T

Quartz Crystal

Cesium

1 1 1 Il ] |

-2 0 2 4 6 8
LOG of SAMPLING INTERVAL (SEC)

Figure 2.4 Stability Ranges of Commercial
Frequency Standards [20)
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2.5.2.3 Satellite clock timing data. Satellite clock time

will be expressed as "Z-count" which is the number of seconds from a
weekly epoch divided by 1.5. Using this transmitted Z-count, the user
will be able to time-tag any bit in the received signal by counting
bits from an epoch associated with the transmitted Z-count. This will
provide a nominal time-tag Oy -
The capability to adjust the frequency of the satellite clock,

via the Air Force Satellite Control Facility, will exist. The preci~-
sion of the frequency adjustments will be four parts in 10]2 over a
range of plus/minus two parts in 109. Also, the Master Control Sta-
tion will have the capability to adjust the phase of the satellite
clocks.,

To increase timing accuracy, the satellite data stream will
contain clock correction data. In addition to an "age of data" word,

the clock data will include:

Epoch for the clock correction polynomial, toc;
Clock bias at epoch, Ato;
Clock drift at epoch, Af/f; and

Clock drift rate, D/2

The clock data, transmitted by the satellite, will be changed
by the satellite nominally every hour. The clock parameters will be
chosen to best fit the expected clock error over the hourly period us-
ing the polynomial

P
[ =3

atg(T) = at + 2R (T -t )+ (T, - t,) (2.9)
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where: TS is the GPS time at signal transmission.

The user will correct the nominal time tag B¢ to determine the esti-

~

mate of the satellite transmission time ts.

t, = o - Ats(es) (2.10)

Note that the argument of the user's clock correction polynomial is the
nominal time-tag 8¢ because the true system time at transmission Ts
is not available. Even if the fit in Eq. 2.9 is perfect, Eq. 2.10 will
not, in general, provide the exact answer. If more accuracy is needed,
the user can repeat the computation of Eq. 2.10 using is as the argu-
ment of the clock correction polynomial. This is a successive approxf-
mation technique. After applying the clock correction information,
satellite clock time accuracy is expected to be on the order of a few

nanoseconds over a one hour period.

2.5.2.4 Relativistic effects. Cretcher [34] has shown that

the only relativistic effects of concern for GPS are clock corrections.
Relativistic effects on signal propagation and on satellite dynamics

are negligible. A clock in a twelve-hour circular orbit will have a
relativistic drift of +38 usec/day with respect to a clock at mean sea
level on the earth. This is the primary relativistic effect. Second
order effects and orbit eccentricity effects are negligible. For the
one-hour period between changes in the transmitted clock correction
parameter set, the relativistic effects can be included in the correc-
tion parameters. Furthermore, satellite clock frequency can be adjusted

to account for the relativistic effects. Prior to launch, the P-code of
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a GPS satellite clock could be adjusted to have a code rate of

6

10.22999999545 x 10~ bits-per-second. Then, assuming that only the

bias effect of the general relativity term affects the clock, an Earth-

bound user would see a code rate of 10.23 x 106

bits-per-second.

If relativistic effects are accounted for by the GPS using
satellite clock adjustments or by modifying the downlink clock para-
meters, most users will not have to concern themselves with relativ-
istic effects. If the GPS is used by earth satellites for autonomous
tracking, however, relativity may have to be considered because the
satellite velocities and the gravitational potential at the user
satellite may cause relativistic effects to be non-negligible. The
extent of the required corrections depends on the accuracy requirements
and the user satellite orbit. A detailed analysis would have to be

performed for the specific mission of concern to determine the magni-

tude of these effects.

2.5.3 Satellite signal structure.

2.5.3.1 Pseudo-random-noise sequences. The navigation signals

are pseudo-random-noise (PRN) sequences transmitted on two frequencies

in the L-band. The primary frequency L1 is 1575.42 mhz and the sec-

ondary frequency L2 is 1227.6 mhz. The PRN sequences will be produc-
ed by linear feedback shift-register generators.‘

A linear feedback shift-register generator (SRG) shifts the

contents of each stage of the generator toward the output stage and

modulo-2 adds the contents of the specified stages for feedback to the

__4-'.:.:_
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initial stage. The SRG shown in Figure 2.5 will produce the 31-bit

sequence
1111100011011101010000100101100 ’

when the stages are initially loaded with ones. For a five-stage SRG
this is a maximal sequence, i.e., it is the longest sequence possible
for the specified number of stages in the SRG that will yield sequences
of 31 bits. A1l other connections produce sequences shorter than 31
bits. The length of the PRN sequence produced by a non-maximal SRG

depends on the initial contents of the SRG states.

Modulo-2 Adder

QOutput

Figure 2.5 A Five- Stage Maximal Linear Shift-Register
Generctor

Ristenbatt [35] provides a good discussion of shift-register-

generators. He shows that the length of a maximal sequence is
L = 2" -1 ! (2.11) ‘

where: L is the length of the maximal sequence; and

n is the number of stages in the SRG.




The number of maximal sequences possible for an n-stage SRG is given

by

2" - 1)
n

where: ¢ §s Euler's phi-function evaluated as ¢(k) = k - 1 if k

is prime, otherwise, ¢(k) = ku (Pi - l)/P1 and P1 are the

prime factors of k.

Table 2.3 gives the number of maximal sequences possible for n-stage

SRGs .

Table 2.3 Number of Maximal Sequences

Number of
Stages

2

3
4
5
6
7
8
9

35

(2.12)

Number of
Maximal Sequence Maximal Length
Length Sequences
3 1
7 2
15 2
K} 6
63 6
8
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Ristenbatt further states that the tap selections required for
a maximal n-stage SRG can be determined from the primitive irreducible ;
polynomials of degree n. Such polynomials will have an odd number of

th power term and the constant term.

terms and will include the n
Table 2.4 lists the polynomials corresponding to maximal SRGs with up

to six stages.

Table 2.4 Polynomials for Maximal Length Sequences

Number of Maximal Sequence §
Stages Length i
2 3 ” x4 L

3 7 S+ xl e t
x3+ %2 41 f

4 15 e xb e 5
xt+ x3 +1 i

5 31 4 x84 i
x5 + x3 + 1 f

X3 e x@ e ke i

X + x4 +x3+ %% 41 '

X + x4 + x2 + x.I + 1 5

x5 + x4 + x3 + x] + 1 ﬁ

6 63 6+ x! 41 :
x6 + x5 + 1 ﬁ

x6 + XS + x2 + x] + 1 @

%8 + © + ot e x] + 1 S

Bexte 3t 5

X+ x® e xden e %
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The auto-correlation function of a PRN sequency of length N

is shown in Figure 2.6.

—N
]
0 JJ,LT’_, H— | -
I D —

Figure 2.6 Ideal Auto-Correlation Function tor an N-Bit PRN
Sequence

Unfortunately, the cross-correlation between two maximal se-
quences may be undesirably high as the period becomes shorter. This
is detrimental to the mutiplexing of twenty-four satellites on the
same frequency. Gold [36] has developed a method of determining fam-
ilies of SRG-generated PRN sequences that have low cross-correlations.
He shows that any two polynomials corresponding to maximal n-stage SRGs
can be multiplied to give the polynomial corresponding to a non-maximal
2n-stage SRG. The number of members in each family is 2"+ 1 and the

Tength is 2" _ 1. The cross correlation 6 among the family members

will satisfy the inequality
r
2m 12 4 1 for n odd

t = < (2.13)

’I\

2("+2)/2 +1 for n even, nfmod 4

.
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Thus, if a specified auto-correlation characteristic requires an n-stage
SRG, Gold's procedures will specify non-maximal 2n-stage SRGs with
significantly lower cross-correlations.

2.5.3.2 GPS navigation signals. Two PRN sequences are trans-

mitted by each satellite: a Precision (P) code and a Clear/Acquisition
(C/A) code. The P-code bit rate is 10.23 x 106 bi ts-per-second (10.23
mbps). The bit width is 97.75 nsec. The P-code is generated by com-
bining an X1 code and an X2 code. Two twelve-stage SRGs are used to
generate the X1 code and two twelve-stage SRGs generate the X2-code. A
combination of four twelve-stage SRGs can be connected to give a P-code
sequence lasting up to 318 days. However, the SRGs are implemented so
that the X1-code component period is 1.5 seconds* and the P-code se-
quence for each satellite repeats every seven days. This method allows
a user to quickly shift his local code for signal acquisition.

The C/A-code is a 1023-bit sequence with a bit rate of 1.023
mbps. The sequence repeats every millisecond. Bit width is 977.5
nsec. The sequences are from the 1023-bit Gold family and require two
ten-stage SRGs whose tap connections correspond to the product of poly-
nomials for maximal ten-stage SRGs. Although there are 1025 members in
this family, only 36 will be selected for GPS use, thus improving on

the maximum cross-correlation of 65 for the entire 1023-bit Gold family.

*The X1-code epnch provides basic synchronization for satellite signal
generation. The number of X1 epochs from midnight Saturday night/
Sunday morning is referred to as Z-count. (See Par. 2.5.2.5.)
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The P-code sequence is so long that very accurate position and
time information for both the user and the satellite is required to
lock on to the P-code. The C/A sequence, however, is only one milli-
second long and requires much less shifting of the user generated code
to correlate the received code. The disadvantage of a short code is
ambiguity. The user can correlate a received C/A code in steps of one
millisecond, each time changing his pseudo-range measurement by approx-
imately 300 km (i.e., the speed of light multiplied by one millisecond).
A pseudo-range measurement residual of 300 km can be accounted for by
changing the user's assumed position by 300 km along the line-of-sight
between the user and the satellite, or by changing the user's clock
bias by one millisecond, or by a combination of a change in the user's
estimated position and estimated clock bias. The details of the acqui-
sition methods and ambiguity resolution are beyond the scope of this
dissertation. For further information, see [37] and [38].

2.5.3.3 Data modulation. Data is modulated onto the PRN

sequence by modulo-2 addition of a 50 bps data stream to the P-code and
to the C/A-code. The resulting P-signal and C/A-signal are used to
biphase-modulate a continuous carrier. In biphase modulation, if a
"zero" code state is indicated by s = cos(wt - 90°), then the “one"
code state is indicated by s; = cos(wt + 90°). The secondary frequency
(L2) contains either the P-signal or the C/A-signal. The primary fre-

quency (L]) carries both the P-signal and the C/A-signal in phase

quadrature. (See Table 2.5.)
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Table 2.5 Signal Phase for Composite P~ and C/A-Codes

Code State Composite Signal

Phase
P C/A
c 0 0.0°
1 0 -70.5° ;
0 1 109.5°
1 1 180.0°

2.5.3.4 Signal detection. The preceding information is based

on current specifications of the satellite navigation signals. Though

details may change, the structure of the signal is expected to conform
closely to the signal described in the previous paragraph. User equip-
ment for a given signal structure can be designed in many ways. It is
impossible to describe "the" user receiver. Certain similarities, how-
ever, must exist among all users. These similarities and basic user
equipment functions will be discussed briefly.

The following are some general remarks about variations in the

user receivers: j

1. In a simultaneous receiver, certain portions of the
equipment are duplicated and additional equipment is needed for switch- ¥

ing.

2. A user of both the L] and L2 frequencies must have ! r
equipment to multiplex the data. ?

3. Code switching between the P- and C/A-codes must be i

incorporated for the precision user.
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Given frequency, code, and satellite identifier, Figure 2.7 is a basic
functional diagram of a user receiver, called a correlation receiver.
In addition to the usual radio frequency (RF) and intermediate
frequency (IF) functions, the correlation receiver includes a correla-
tor, a code tracking loop, and a carrier tracking loop. A Costas loop

will probably be used in the carrier tracking loop since modulation is

biphase. A Costas loop for biphase modulation consists of two branches.

One branch detects the "zero" state (so) and the second branch detects
the “one" state (51). The Costas loop will extract the data and pro-
vide Doppler information. The carrier tracking loop recovers the code
tracking loop error signal which is then fed back to the code tracking
loop. The code tracking loop adjusts the local code generator in re-
sponse to the code tracking loop error signal. The correlator multi-
plies the received signal by the locally generated code signal. A per-
fect receiver would have the correlator output appear as shown in Fig-
ure 2.6 and would maintain lock at the peak of the auto-correlation
function.

The Doppler information from the carrier tracking loop pro-
vides a pseudo-range-rate measurement because the offset of the carrier
tracking loop oscillator from the local osciliator is determined by the
relative velocity between the user and the satellite and by the fre-
quency offset of the local oscillator. The pseudo-range measurement is
obtained by differencing the phase of the local code, which is corre-

lated to the incoming code, and the phase of a local reference. This
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Figure 2.7 Correlation Receiver Functional
Diagram
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phase difference, equivalent to a time displacement, is a measure of

transit time (range) and the phase bias of the local reference.

2.5.4 Atmospheric excess time delay. The velocity of propa-

gation of radio waves in the atmosphere is not equal to the vacuum
speed of light. In the ionosphere, radio wave velocity is affected by
free electron density. In the lower atmosphere, radio wave velocity is
affected by pressure, temperature, and humidity. The result is a tran-
sit time that is greater than the time predicted by using the vacuum
speed of light. The excess time delays due to atmospheric effects are
described in more detail in the following paragraphs.

2.5.4.1 Ilonospheric delay. The one-way transmission time for

an RF pulse from a satellite to a user is given by [39:19]

oO|—

n'(s)ds (2.14)
R,

where: ¢ is the vacuum speed of light;

n' is the group refractive index; and

the integral is taken over the ray path.

The group refractive index for frequencies above VHF can be evaluated

using

n' = n+f %%

(2.15)
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2 978 .
= £ . - -2
n v [1 2 (2.16)
e2 Ne

= 5 (2.17)

P 4 7 €g M
where: f is theAfrequency of interest;
u fp is the plasma frequency;

n is the ionospheric refractive index;
v is the velocity of propagation;

e is the electron charge;

e, is the pemittivity of free space;
m 1is the electron mass; and

Ne is the free electron density.

Equation 2.14 can be used to obtain an expression for iono-

spheric excess time delay.

LW
= 1 ' R
Sion = T | N ds -3 (2.18)
) 1
where: R is the line-of-sight range.

Neglecting ray bending, the ionospheric delay is
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The integral requires that ionospheric electron density be known along
the ray path.

The primary effects on an electron density profile are diurmal
(day/night), seasonal (winter/summer), latitudinal (polar/equatorial),
and solar (sunspot cycle). Ionospheric models generally include para-
meters whose values are based on the above effects. A static model of
the ionosphere will be developed for GPS users. The values of the
parameters for the GPS model will be transmitted in the satellite data
stream.

Many models of ionospheric electron density have been developed
and evaluated. One of the most popular is the Chapman model which can

be defined as follows [39:11]:

- 1y, o2
Ne(h) = N exp [2 (1 -z-¢e9] (2.20)
h - h,
z = —T—-
s
where: hs is the scale height;
Nm is the peak electron density; and
hm is the altitude of peak electron density.




‘Ray-tracing methods perform a numerical integration of Eq.

2.19. Many ray-tracing methods model the electron density as a series
of Chapman layers. For GPS user implementation and for purposes of
basic navigation algorithm evaluation, ray-tracing methods are too com-
plicated and time consuming.

Rao, Youakim, and Yeh [40] evaluated the capabilities of em-
pirical ionospheric delay models of varying complexity. In all cases,
the model parameters were adjusted to fit the data available for select-
ed time periods. The resulting root-mean-square residuals in iono-
spheric vertical group delay were on the order of 1 nsec to 7 nsec. The
vertical group delay is the excess one-way transit time for a satellite
directly overhead. For a satellite at ten degrees elevation, the oblig-
uity factor is approximately 5.8. An error of 1 nsec in vertical group
delay corresponds to a 5.8 nsec error for a satellite at ten degrees
elevation.

It must be noted that the models evaluated by Rao, et al, were
used to fit periods of available data after the data had been obtained.
If a model with parameters fitted to a period of time is used to predict
the delays in another time period, it is reasonable to expect larger
errors. However, it must be noted that the models evaluated were fit-
ted to time periods ranging from four months to one year. Using the
GPS data stream, a model can have its parameters adjusted frequently

based on the best available information. This more frequent updating

will result in smaller errors.
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The Bent ionospheric model [41] is a complicated empirical

model which was evaluated also against a large volume of available data.

The Bent model had RMS errors ranging from 12% to 30% of the vertical
group delay.

Pisacane, Feen, and Sturmanis [42] evaluated algorithms for
long-term ionospheric prediction and algorithms for near-real-time
prediction. For vertical group delays ranging from 5.6 nsec to 28;3
nsec, the RMS of the residuals ranged from 18% to 55% of the vertical
group delay [42:68].

Wand [39] combined sets of ray-tracing results to obtain an
empirical expression for ionospheric delay which is a function of user-
satellite geometry, scale height of the ionosphere, height of peak
electron density, and plasma frequency at peak electron density.

The ionospheric delay model to be evaluated using the NTS-II
satellite is as follows [17:43-45]:

3 4
F 5.x10'9+(’z a; o) (1 - 5+ 31;1sec, | x|<1.57

- 1=0
Sion © { (2.21)

F (5.x1079) sec, |x|>1.57

.

3
(t - 50,400)/( ¥ &, o,') (2.21a)
1=0

x
]

1. +16. (.53 - e1)3 (2.21b)

-n
"

(a4
]

(43,200 Non T) mod 86,400 sec (2.21¢)




oy = 5o + -064 cos (x; . - 1.617) semi-circles (2.21d)

m jo ion
Ajon = Mt %3%1%725 semi-circles (2.21e)
ion
b + ¥ cos az semi-circles, ¢ < .416 semi-circles
%on
) semi-circles, ¢ > .416 semi-circles
(2.21F)
¥y o= ETgig%Q%T - 0.022 semi-circles (2.219)

The satellite transmitted terms are:

a, - coefficients of a cubic equation representing the am-
plitude of the vertical group delay as a function of O

g, - coefficients of a cubic equation representing the nor-

malized period of the model (true period divided by 2r)

as a function of L

The user supplied terms are:

el - elevation angle between the user and the satellite
(semi-circles);

az - azimuth between the user and the satellite, measured
clockwise positive from true North (semi-circles);

s - user geodetic latitude (semi-circles);

» - user longitude (semi-circles);

T - GPS time of signal reception (sec);
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Intermediate calculations to be performed by the user include:

F - obliquity factor (dimensionless);

t - local time (sec);

¢ - geometric latitude of the earth projection of the iono-
spheric intersection point (semi-circles);

- longitude of the earth projection of the ionospheric

yon
-\intersection point (semi-circles);

Sion " geodetic latitude of the earth projection of the iono-

spheric intersection point (semi-circles);

¥ - earth central angle between user position and earth pro-

jection of ionospheric intersection point (semi-circles).

The result of Eqs. 2.21 is applicable to the ionospheric ex-
cess time delay for the primary frequency L] . For the secondary fre-
quency L, , the correction term must be multiplied by (L]/Lz)2 ,

which, for the designated frequencies, is 1.647. The satellite trans-

mitted terms are expected to be valid for ten-day periods.
Other models for ionospheric delay include a truncated ;1
Appleton-Hartree equation evaluated by Rohde [43], and a model suggest- i?
ed for use in the NASA Deep Space Tracking Network [44:22-23]. .
2.5.4.2 Tropospheric delay. Equation 2.14 also applies to a

neutral atmosphere. The neutral atmosphere of importance to GPS con-

sists of the troposphere, which extends to about 10 km, and the strato-

e .

sphere, which extends to about 50 km [45]. In these regions, the index i

of refraction n varies with pressure, temperature and humidity. The
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index of refraction is used to define the parameter called refractiv- ,

ity Nr as follows:

N, = (n-1)108 (2.22)

Using Eq. 2.22, the tropospheric excess time delay is given by

N. ds (2.23)

The refractivity can be partitioned into a dry component Nd

and a wet component Nw.

P

N. = Nyt Nw (2.24)

The two components can be evaluated using

Nd = 77.6 P/T (2.25)

N = 3.73 x 10° e/T2 (2.26)

w * E
where: P 1is total pressure (mb); :

T is temperature (°K); and i

e 1is the partial pressure of the water vapar (mb). i

Hopfield used the partitioned refractivity expressions in 4
quartic equations to model a refractivity profile [46]. The CRPL Refer-

ence Atmosphere, 1958, used a refractivity model for three altitude | t

ranges bazed on a sea level refractivity [47].
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Altschuler [48] evaluated a model for tropospheric excess
time delay from an aircraft to a satellite as a function of the delay
for a sea level user, the aircraft altitude, and the sea level refrac-
tivity. The standard deviation of the errors in the model was 1.3 nsec
for satellites at 5 deg elevation. Using an average value for sea
level refractivity of 324.8, the expected error for 5 deg elevation in-
creased to 6.7 nsec. At higher elevation angles, the delay and the ex-
pected error in the calculated delay decrease.

Altschuler and Kalagher [49] have developed tropospheric delay
models more suited to GPS users because they avoid transcendental and
trigonometric expressions. The Jet Propulsion model suggested for use
by the NASA Deep Space Tracing Network [44:22-23] was adapted for use
in the simulation. (See Par. 3.5.2)

Most models examined assumed a profile which was based on sea
level refractivity. An aircraft may be above much of the troposphere
and could reduce the error in the delay computation by using readily

available pressure and temperature information at aircraft altitude to

estimate the refractivity.

2.6 User System Segment

2.6.1 Classes of users. The User System Segment includes all

the hardware and software needed to determine the user's position, velo-
city, clock behavior, and other parameters as required. Various class-
es of users have been defined based on user requirements and character-

istics such as desired accuracy, user motion, jamming immunity, and

e alUie D
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cost [50]. Navigation algorithms evaluated in this dissertation are to

be applicable to a low-cost user.

2.6.2 The low-cost user. The low-cost user will have a se-

quential receiver that operates on a single frequency, and will have a
minimum of auxiliary sensors. A sequential receiver is cheaper than a
simultaneous receiver because the simultaneous receiver is effectively
four receivers. A sequential receiver eliminates the additional hard-
ware required by the simultaneous receiver. The disadvantage is the
requirement for a more complex navigation algorithm to account for user
motion and clock drift.

The low-cost user will have a single-frequency receiver and
will save the cost of the additional hardware required by a dual-
frequency user. The disadvantage for the single-frequency user is the
lack of accurate real-time ionospheric delay computation.

Ionospheric delay is inversely proportional to the square of
the frequency. A dual-frequency user can process the phase difference
between the code received on L] and the code received on L, to
calculate the ionospheric delays [51]. The single-frequency user must
use a static model for ionospheric delay. Satellite data will include
parameters for an ionospheric delay model. The specific structure of
the ionospheric delay model will be evaluated in the GPS developmental
tests. (See Par. 2.5.4.1.)

It is assumed that the low-cost user has a barometric alti-

meter., This is a basic item of aircraft equipment. The low-cost

restriction is not violated by requiring a digitized signal from the

Y,
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altimeter. Analog-to-digital converters are available in microcircuits
for costs which are negligible when compared to other items of required

equipment. ‘




CHAPTER 3
SIMULATION OF THE
GLOBAL POSITIONING SYSTEM

3.1 Simulation Philosophy

Since one of the goals of this dissertation is the evaluation
of the behavior of several proposed Global Positioning System (GPS)
user navigation algorithms, the procedure for simulating the GPS is of
critical importance. To accomplish this goal, portions of the GPS
Space System Segment and an approximate model which describes the
user's dynamics were used to generate simulated observations. Select-
ed navigation algorithms were tested by varying the parameters of the
filter and examining the filter performance. All navigation filters
were tested using a single set of observations. Extensive tests were
made using a small portion of the generated data, i.e., that portion
which corresponded to the first ten minutes of flight. Selected fil-
ters, which appeared to have good performance, were tested also for
the entire simulated trajectory.

The simulation philosophy was designed to produce a physically
realizable set of data points against which the filter could be tested
and evaluated. The simulation used simplified models of the GPS system
which was described in Chapter 2 because the use of simple models re-
duces the computer time requirements and increases the programmer's

control of the error behavior. With a reasonable choice of parameters,

54
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a set of realizable trajectory and measurement data points can be
generated.

The simulation program can be separated into fiwve parts:

1. Simulation of the satellite dynamics;

2. Simulation of the user dynamics;

3. Simulation of system instruments, especially the
clocks;

4, Simulation of the environment, i.e., atmospheric

delays; and

5. Generation of the measurements.

Figure 3.1 depicts the role of the simulation in the generation of the
measurements, the filter processing, and the filter evaluation. This

chapter will describe each part of the simulation in more detail.

3.2 Simulation of Phase II GPS Constellation

For simplicity, the simulated GPS satellites are assumed to be
in circular orbits about a point-mass Earth. Table 2.1 lists the orbit-
al elements for the simulated satellites. The simulated GPS user as-
sumed the same model. Satellite position can thus be determined using
a closed form solution and a set of Keplerian elements at an epoch.

For basic navigation algorithm evaluation, it is unnecessary to include
higher order geopotential terms or other perturbing forces because
errors in the user calculated satellite positions can be simulated more

easily and more predictably by corrupting the users orbital elements.
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Table 3.1 lists the user data base almanac for the satellites which are

visible in the basic simulation.

Table 3.1 User Data Base Orbital Elements

Longitude of Time to
Satellite Ascending Node Ascending Node Period Inclination
(deg) (sec(Sl (sec) (deg)
1 -130. 0. 43082.051000 63.
2 -130. 0. 43082.049456 63.00002292
5 110.00002292 0. 43082.049456 63.
7 -10. 0.0025 43082.049456 63.

Note: A1l satellites were assumed to have zero eccentricity. The time
associated with these elements is T = 0.

3.3 Aircraft Trajectory Simulation

3.3.1 Aircraft simulation philosophy. The goal of the simula-

tion is to determine a sequence of position and velocity vectors which
represents possible aircraft motion. The aircraft simulation does not
attempt a rigorous definition of the airplane trajectory. Differences
between the computed numerical values and the values that would result
from a more rigorous solution to the differential equations of motion
can be attributed to wind gusts. In fact, the basic simulation provid-
ed a trajectory that was unreasonably smooth. To "bounce" the aircraft,

a perturbation to the position and velocity is applied at the end of

each 1.25 second interval. (See Par. 3.3.3.)
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3.3.2 Aircraft model. The aircraft model is similar to that

used in {51]. The aircraft is modeled as a point mass. The aircraft b
is described by the heading angle 6, horizontal speed V, altitude
rate h, altitude above the reference ellipsoid h, geodetic latitude

¢, and longitude A.

e it

A series of waypoints consisting of latitude, longitude, alti-
tude, and horizontal speed must be specified. The simulated aircraft
attempts to pass through each waypoint. The waypoints used in the
simulation represent a flight from New York to Chicago. (See Table
3.2.)

At the beginning of each integration step, the aircraft state
is compared to the current waypoint requirements. If the distance to
go to the current waypoint is small, the next waypoint is selected.

Distance-to-go in radians of arc is calculated using

a = cos'] [sin 95 sin ¢ + cos ¢, cos ¢ cos(Ai-x)] (3.1)
where: 9 and A; are the geodetic latitude and longitude of the
waypoint.

Figure 3.2 depicts the aircraft model simulation. Table 3.3 lists the
aircraft response model parameters. The waypoint altitude is used as a
command to a second-order response model. Waypoint speed is used as a
command to a first-order response model. The user's latitude and long-
itude are compared to the latitude and longitude of the waypoint and a

desired heading angle is commanded. The commanded heading angle 8,

is computed using:
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! Table 3.2 New York to Chicago Waypoints

Geodetic Horizontal Time
Latitude Longi tude Speed Alti tude Reached
(deg N) (deg E) (m/sec) (m) (sec)
40.400 -74.000 0. 0. 0.00
40.415 -73.992 75. 0. 50.00
40.534 -73.933 160. 600. 155.00
3 40.534 -73.7116 180. 1800. 270.00
40.420 -87.467 240. 11300. 5228.75
41.350 -87.467 180. 4900. 5832.50
41.370 -87.650 165. 3000. 5948.75
L 41.259 -87.767 75. 2100. 6123.75
41.250 -87.609 75. 900. 6323.75
41.387 -87.600 65. 0. 6567.50
41.420 -87.600 25. 0. 6687.50
1
* Table 3.3 Aircraft Trajectory Simulation Parameters
Velocity rate gain 2 sec”!
Velocity rate limit 1.5 m/sec2
Turn rate gain 2 sec’!
Lateral acceleration limit 5.67 m/sec2
Altitude rate gain .025 sec™?
Altitude rate Timit 12. m/sec

Altitude time constant 3. sec




(3p0ol asuodsay 3ieuduaty g°g a4nbiry

NOILNIOS JLATYNY

NOILYUEZLING VRN

Vo G
y Y
ory ory
£
E3XpR
amwm
S m3TX
S/ ¥
A % » * A
(0K
- - ‘<
v [ NOILVLNJNOD
.\ -2 [ i GNVWNO)
9 9 JMA.&W » » |__9nigvIH ”

0 ﬂ Iﬁ

J« s

60




61

cos o, s1n(Ai - )

sin 6. = ST s (3.2)

Equations 3.1 and 3.2 are solutions for great circle paths on a spheri-
cal earth [52:45-46].

The numerical integrator is a fixed-step fifth-order Runge-
Kutta method. Commanded heading angle, speed, and altitude are not al-
lowed to change at the intermediate derivative evaluations. Rate Tim-
its, however, are enforced at all derivative evaluations. The integra-
tion step size is equal to the interval between measurements of 1.25
sec.

The rate of change of horizontal speed and the vertical
speed have limits fixed by the programmer. Maximum turn rate is a func-
tion of horizontal speed and a programmer-supplied maximum lateral ac-

celeration aat

max (3.3)

The first-order loop that forms the input to the numerical al-
titude integrator is solved analytically at the start of each time
step. To prevent the appearance of large vertical accelerations caused
by large changes in vertical velocity, the input to the numerical al-
titude integrator is limited to a range about the user's altitude at
the beginning of each time step.

A fixed-step integrator is used because high accuracy is not

required and the discontinuities in the acceleration limits cause a

3
3




variable-step method to take excessive time. In numerical tests, the
variable-step integration required many iterations to converge to the
time of the acceleration discontinuity. From that point, the variable-
step integration quickly completed the integration step. The results
of the fixed-step integration differed from the variable-step integra-
tion on the order of a few centimeters if a limit occurred during the :
integration step. If a limit did not occur, the fixed-step integration
and the variable-step integration provided nearly identical results.
The numerical integrator also solves the differential equa-

tions for user geodetic latitude and longitude.

$ = 3—¥—E' cos 6 (3.4) @
A o= v sin o (3.5) :
(v +h)cos ¢ ’ i
!é
a i
e 18
v = (3.6) |
(1 - e? sin2¢)]/2
where: g is mean equatorial radius of the Earth, and :

e s eccentricity of the reference ellipsoid.

3.3.3 Gust model. The results of the integration were un-

realistically smooth. To "bounce" the airplane, a gust model was added
to the simulation. For one dimension, the gust model is represented by

the following differential equations:
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AX = AV, ax(t)) = 0
AV = Aa, av(t) = 0 )
pa = -8 A+ Waer  Aa(t)) = 0
éa = W s(ty) = 0 (3.7)
where: W, and W, are random processes.
The a priori statistics for w, and w, are given by
Ew,] = 0, EDy(thy ()] = qa(t-0) (3.8)
€lug] = 0, Elug(they(1)] = qs(t-r) (3.9) |
where: §(t) is the Dirac delta function.

Assuming that Wy and By are constant over the integration

step, the position and velocity are determined by integrating £qs. 3.7.

The results of the integration from T to T+AT are as follows:

- ] 2 _ .
AX(T+AT) = ;3 [uaAT - B AT + 1 - exp(—GaAT)]wa(T) (3.10)
a
2]
AV(T+AT) = ;5-[exp(~BaAT) + BT - ]]wa(T) (3.1)
a

The user trajectory simulation incorporates three sets of gust
equations for each of the three user coordinates. As implemented, the

forcing terms w_ are obtained from a Gaussian random number generator.

a
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Position and velocity perturbations are calculated using Eqs. 3.10 and
3.11. The perturbations are added to the results of the numerical inte-
grator at the end of each integration step. The horizontal position

perturbations are added to the latitude and longitude as follows:

AxN(T+AT\

o(T+AT) —_—
axN/a¢

o' (T+aT) + (3.12)

xE(T+AT)

A(T+2T) —_——
3Xe /3

"

A (T+AT) + (3.13)

where: The primes indicate the no-gust integrator results; and

the partial derivatives are given in Appendix A.

The vertical position gust term and the three gust velocities are add-
ed directly to the corresponding user states.
Inverse correlation time is modified at each time step accord-

ing to the relations:

Ba(T+AT) = Ba(T) * o, wB(T) (3.14)
qnin a Amax
where: o is the standard deviation of the inverse correlation
time;
B8 and g are limils on B8_, and
3nin A max a

Wy is a random number, N(0,1).
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For the adopted simulation, the gust model parameters were

identical for all aircraft directions. The initial inverse correlation

1 and the standard deviation o Was 0.001 sec'z. In-
verse correlation time was limited between 0.25 sec'] and 10. sec'].

was 0.01 m/sec3. The

time was 1 sec”

The standard deviation of the forcing terms W
forcing functions are obtained from a Gaussian random number generator.
(See Appendix B.)

The profile of the simulated trajectory is shown in Figures

3.3 through 3.6.

3.4 Clock Simulation

The basic signal transmitted to the user will be the satel-
lite's indicated time of transmission. If the satellite were manned,
the astronaut would say, "At the tone, the time will be 144,000 Z - - -
beep." The user would then determine the time he received the tone and
would process the difference between the user's time of reception and
the time of the tone as given by the "astronaut." As previously dis-
cussed (Par. 2.5.2.3), the "astronaut" will also provide the epoch for
the Z-count and the clock correction data. The following describes how
the uncorrected "tone" is simulated and how the clock correction para-
meters are determined for the simulation.

Three independent clock error sources were simulated: a noise
free error with a polynomial form €15 an error caused by exponentially

correlated frequency noise €9} and a random walk bias error €3 The

noise free error term is simulated using the polynomial

o

e A

ey
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ef{T) = a, + a5 (T -a;) + %-a4 (T - a])2 (3.16) ?

where: T is system time; and :

;s i=1,2,3,4 are similar to toc’ Ato, af/f, and D/2 in

in the satellite data stream. (See para. 2.5.2.3.)

The time derivative of Eq. 3.16 gives the clock drift required for the

pseudo-range-rate measurements.

é](T) = ag+a, (T-a) (3.17)

In the simulation, the clock frequency noise is assumed to be

exponentially correlated in time with zero mean and standard deviation

Og. The following discrete time equation is used to generate this term:

éZ(T+AT) = EZ(T) exp(-aT/T.)
+ ol - exp(-ZAT/TC)]]/Z W,(T) (3.18)

where: T is a discrete step size;
T. 1is the correlation time; and
W, is a.normally distributed random number with zero mean

and unit variance, N(0,1).

The corresponding phase error is generated by "integrating" Eq. 3.18.

ep(THAT) = y(T) + 5 [S,(THaT) + £p(T)IaT (3.19)

An additional phase noise is generated by a simulated random walk.
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53(T+AT) = 53(T) + Op w3(T) (3.20)

where: op is the standard deviation of the random walk; and

Wy is a random number, N(0,1).

The clock error propagation for the three error sources is
summarized as follows:
o(T) - 1 = &(T) = az+a, (T-a)

»
+ éZ(T-AT) exp(-AT/TC)

+ ol - exp(-zn/Tc)]"2 Wy (T-T) (3.21)
o(T) - T = e(T) = ay+a, (T-a)) + 53, (T-2))°

+ ez(T-AT) + %»[éz(T) + éz(T-AT)] AT

+ 53(T-AT) + opws(T-AT) (3.22)

Figure 3.7 shows the results of the simulation of the clock errors us-
ing the parameters of Table 3.4. Only those satellites visible to the
user in the basic simulation are shown.

The clock correction polynomial for the user data base is ob-
tained using least squares fits to the curves of Figure 3.7. One linear
fit for each satellite is used for the 1.86 hour flight time. The
parameters of the least-squares fits are given in Table 3.5. Note that

the RMS errors after correction were on the order of the errors expect-

ed for the GPS satellites. (See Par. 2.5.2.3.)
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Figure 3.7 Satellite Clock Bias




Table 3.5 Results of Linear Fits to Satellite Clock Biases !

Satellite 1 2 5 7

Number of Samples 1327 248 1327 1124
Minimum bias (nsec) -.06 -.36 -.13 -55.15
Maximum bias (nsec) 33.61 2.93 82.33 12.95

RSS error after least- . 3

squares fit (nsec) 7.62 .18 4.38 2.99

There are various approaches that can be used for the clock
simulation including a method suggested by Meditch that more accurately
represents an Allan variance curve [53]. The approach used in this
study was chosen because it is quickly implemented, the error behavior
is easily understood, and, with a proper choice of parameters, it will
result in a root-sum-square (RSS) error close to that expected for the
GPS satellite clocks. This latter requirement is critical. Early al-
gorithm tests yielded results which were interpreted first as classical
filter divergence. On closer inspection, it was determined that the
measurement residuals were low and that the gains had not decreased.
This suggested that filter divergence was not the problem. The d.ffi-
culty was actually caused by large satellite clock errors. During the
first half of the flight, two satellites with large clock errors of
jdentical sign were oriented so that the errors counteracted each other.
The estimate of the user position was determined to minimize the squares

of the residuals from the satellite range measurements. During flight,
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one satellite reached its zenith and passed into the same half-plane as
the other satellite. At that point, the clock errors reinforced each
other and the user estimated position moved to decrease the measurement
residuals. The result was an increase in actual user position error
and a decrease in the observation residuals. Unpredictable clock errors
will vary in sign and no guarantee can be made that the positions of
the satellites will be such that the clock errors counteract, rather
than reinforce, each other. Accordingly, the satellite clock errors

are a critical factor for navigation accuracy.

3.5 Atmospheric Delay Simulation

3.5,1 Ionospheric delay simulation. The simulation program

assumes that the ionosphere is a constant electron density layer.
Three parameters describe this ionosphere model: altitude above the

reference ellipsoid for the bottom of the ionosphere h_. ; altitude

min
above the reference ellipsoid for the top of the ionosphere hmax; and

the vertical group delay 8, The ionospheric delay resulting from

9"
the model is a function of the obliquity factor which is the ratio of
the length of the path through the ionosphere at an elevation angle

el, to the length of the path at 90 deg elevation. The vertical path

length is hmax - hmin‘

elevation error less than 0.003 deg for a satellite at ten degrees

At L-band frequencies, ray-bending causes an

elevation [39]. Therefore, ray bending is neglected in the simulation.
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Ionospheric delay is calculated as follows: '

Sion = 8 (3.23) ‘.
ron 2vert Vo :
Yvert = Mmax = Pmin (3.24)
. . =1 . =1
L - Rmianax sin[sin (R cos el/Rmin)-SIn (R cos e]/Rmax)],
R cos el
0° < el < 90° (3.25)
where: R is the geocentric radius of the user;
Rmin = (R - h)+ Prvin
Rmax = (R -h)+ hmax; and

h is the user’s altitude above the reference ellipsoid.

Equation 3.25 is an approximation to the path length based on an assump-
tion that the ionospheric layer is spherical in the vicinity of the
user.

Wand [39] states that typical values of the height parameters
in the model he evaluated can be used somewhat arbitrarily since the
plasma frequency is more important in determining the delay. Accord-
ingly, the height parameters hmin and hmax in Equation 3.25 are kept ‘

constant for the simulation. The vertical group delay, which can be

considered similar to Wand's plasma frequency term, is simulated as

an exponentially correlated random variable as follows:

6vg(T+AT) = St evg(T+AT) (3.27)
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evg(T+AT) = evg(T) exp(-ngAT)
+ o, [1 - exp(-28, aT)]V%. (T) (3.28)
vg vg vg )
§ §,. <6 3
vgm_in < vg bl ngax (3.29)
where: 3;; is the mean vertical group delay;

ng is the inverse correlation time for the vertical
group delay;

%vg is the standard deviation of the vertical group
delay;

wvg is a random number, N(0,1); and

Gvg ] and Gvg are limits on the vertical group
min ma X
delay.

Small scale irregularities in the ionosphere cause fluctuations
in propagation time called scintiliations. Scintillations are larger in
the equatorial and polar regions than in the middle latitudes and the
scintillations are larger for low elevation angles. Ionospheric scin-
tillations have been examined by Wand [39] and in [54:133-144].

A small amount of scintillation is included in the simulation

as an uncorrelated, Gaussian random variable.

o Wg (T)

S; .
S, (T+aT) = ion “ion (3.30)

ion(

172
sin [(e12 + .315%) ]
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where: ag is the standard deviation of the scintillation; and
ion

W is a random number N(0,1).
ion
The ionospheric delay parameters used in the basic simulation are given
in Table 3.6 and the realization for the vertical group delay of Eq.

3.27 is shown in Figure 3.8.

Table 3.6 Ionospheric Delay Simulation Parameters

Vertical Group Delay

Layer Limits Mean Std. Correlation Initial
Base Top Delay Deviation Time Min/Max Delay
(km) (km) (nsec) (nsec) (sec) (nsec) (nsec)
50.0 500.0 40.0 5.0 1000. 0/100. 40.

Scintillation Model: og. = 1.0 nsec

jon

9 T
4&.0 s

CLANIN (NSECD)
38.5

| S 1 T T = T U
5. 1. 2. 33 44, 55. Q6.

TIME (SEC) w107

Figure 3.8 Ionospheric Vertical Group Delay
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3.5.2 Tropospheric delay simulation. The tropospheric delay

model used in the simulation is the JPL model [44:22-23].

Ngyexp(-h/H . o0)

P (sin el + .06483) 338.0
where: Strop is the excess time delay in nsec;
Htmp is the scale height; and
NSL is sea level refractivity.

Sea level refractivity is simulated as an exponentially cor-

related random variable as follows:

NSL(T+AT) = Ng + eN(T+AT) (3.32)
eN(T+AT) = sN(T) exp(-BNAt)
1/2
+ gy [1 - exp(-28,AT)] w (T) (3.33)
N N N
N < Ney <N (3.34)
SLmin SL Sl.max
where: Ng[' is the mean sea level refractivity;
By is the inverse correlation time for the sea-level
refractivity;
N is the standard deviation of sea level refractivity;
Wy is a random number, N(0,1); and
NSL and Ng, are limits on the refractivity.
min max

il
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Tropospheric scintillation is simulated as follows:

o W
S S (T)
_ trop  “trop
Strop(T+AT) = sin el (3.35)
where: ag is the standard deviation of tropospheric scintill-
trop
ation; and
Wg is a random number, N(0,1).

trop

In this investigation, the tropospheric simulation used the
parameters given in Table 3.7. The realization of the sea level refrac-

tivity is shown in Figure 3.9.

Table 3.7. Tropospheric Delay Simulation Parameters

Sea Level Refractivity Model

Mean Std. Correlation Min/Max Scale
Refractivity Deviation Time Height
(sec) (km)
325. 30. 1000. 262./338. 7.62
Scintillation Model: og = 0.9 nsec
trop

3.6 Measurement Generation

3.6.1 PRange-time algorithm. The user trajectory simulation

provides a sequence of position and velocity vectors which represent
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motion. Each user state vector arplies at a time T the true

when a measurement is taken. To calculate the measvrement,

the simulation must determine the true time the satellite sent the

signal.

where:

The range-time equation is defined as follows:

TIRT) = R + 6., (TR, RAT) = T-T,  (3.36)

TS is the true GPS time when the satellite sent the sig-

nal which is received by the user at T;
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BS(TS) is the position vector of the satellite at the time
of signal transmission, L

R(T) 1is the position vector of the user at the signal time-
of-arrival, T; and

S is the total atmospheric delay.

atm

Equation 3.36 is solved recursively for Ts using a false-
position method [55:45-47]. The position of the satellite is propa-
gated from the ephemeris data. User position remains constant based
on the user trajectory simulation. Vertical group delay and sea level
refractivity remain constant during the range-time recursion but the
total atmospheric delay will change because of changes in elevation
angle during the recursion. In the simulation, the range-time equa-

tion converged within 0.033 nsec (1 cm).

3.6.2 Pseudo-range measurement generation. After solution of

the range-time algorithm, the measurements are generated. A pseudo-
range measurement consists of the time of signal transmission, as indi-
cated by the satellite, and the user's indicated time of reception.

The behavior of the user's clock is simulated identically to
the satellite clock simulation. (See Par. 3.4.) Table 3.4 includes the
user clock simulation parameters and Figure 3.10 shows the realization
of the user clock errors. The clock errors are added to the true times
to give the indicated received time o(T) and the indicated transmis-
sion time es(Ts). To attempt to account for miscellaneous receiver

errors, quantization errors, and multipath effects, an additional
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Gaussian noise is added to the indicated satellite time. For program-
mer convenience, this additional noise term is added in the algorithm
testing program. It can be assumed that this noise term is imbedded in

the satellite phase error term, as simulated using Eq. 3.21.

3.6.3 Pseudo-range-rate measurement generation. A pseudo-

range-rate measurement that is obtained from the carrier tracking loop
is relatively free of atmospheric effects. In the simulation procedure,
the pseudo-range-rate measurements are generated by combining range-
rate, relative drift between the user clock and the satellite clock,

and a Gaussian noise.

Range-rate is given by:

S AL (3.37)
where: 5 is the range-rate;

jg(l) is the inertial velocity vector of the satellite;

1(1) is the inertial velocity vector of the user; and

+ indicates the vector dot product.

The computer programs used in this study normally maintain the
components of the inertial satellite velocity vector rotated into the
Geocentric Earth-Fixed (GEF) frame and the components of the relative
user velocity vector rotated into the GEF frame. If the unit vectors
i, i, and k represent the basis vectors of the GEF coordinate system,

then the following position and velocity vectors are defined:




1. Position vector of the satellite:

R o= Xi+V¥ji+2k
2. Inertial velocity vector of the satellite rotated into the

GEF frame:

(ry . ;
AN R R

3. Position vector of the user:
r = xi+yj+zk

4. PRelative velocity vector of the user rotated into the GEF

frame:
(rel) _ . .
Using these definitions, the range-rate can be calculated as
. LOG-x) (Vy-v, twgy) + (Y-y) (Vy=vyma x) + (2-2)(Vp-v,)]
’ 2 2 2,1/2
[(X-x}" + (Y-y)© + (2-2)°)
‘ (3.38)
where: wg is the Earth's angular velocity.
The pseudo-range-rate measurement is formed using
V(T) = (1) + clB(T) - (T + ox wa(T)
where: Y5 is the pseudo-range-rate; ° ‘
¢ and és are the user and the satellite clock drifts; 1

N is the standard deviation of pseudo-range-rate; and

W is a random number, N(0,1).
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3.6.4 Altimeter measurement generation. In the simulation,

the altimeter measurement is formed by adding to the true user altitude
above the reference ellipsoid, a bias term (which the user may attempt
to estimate), and an uncorrelated zero-mean noise term. The true alti-
tude is computed by the user trajectory simulation. The simulated bias
is selected to represent two error sources: an initial sea level bias
which propagates to the user's altitude assuming an exponentjal pres-
sure profile, and a distance-correlated random variable which repre-
sents aircraft motion through the air mass and motion of the air mass
itself.

The initial sea level bias results in a bias error at alti-

tude as follows:

dyh](T) = éthL exp(h(T)/H ) (3.39)

where: Halt is the altimeter scale height; and

8y is the sea level bias.
hst

The distance-correlated bias is simulated using

éyhz(T+AT) = 5yh2(T) exp(-VaT/D_;.)

)12 w (1) (3.40)

+ oh2 - exp(-ZVAT/Da.lt

where: V 1is the user's horizontal speed; and

D is the correlation distance.

alt




86
The uncorrelated noise term is simulated using
sy, (T#aT) = o w,_ (T) (3.41)
hs hy "hy
where: o is the standard deviation of the uncorrelated noise.
3

The mean deviations oL and o, are simulated as functions
2 3
of altitude similar to Lear's recommendations [56].

o2 = ol 4 (g m)E (3.42)

oﬁ = oﬁ + [ah exp(h/Hh )]2 (3.43)
3 3SL 3 3

where: % and 9h are the standard deviations at sea

251 3.

level; and

Ap s Ay s and Hh are arbitrary parameters.
2 3 3

The altimeter measurement is generated as follows:

Yh(T) = h(T) + \Syh1 (T) + \Syhz(T) + *S.yh3(T) (3.44)

Table 3.8 specifies the parameters used in the basic simula-

tion. Figure 3.11 shows the correlated bias term, Syh] + syhz.

&




Table 3.8 Altimeter Bias Simulation Parameters

Exponentially Correlated Uncorrelated Sea Level
Std. Deviation Correlation Distance Std. Deviation Bias
2 2
or (h) 100.00 km oy (h) 10.0m
h h
2 3
o2 (h) = 2.7% + (.0035n)2 me
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Figure 3.11 Correlated Altimeter Bias




3.7 User-Satellite Geometry of the Simulation

The navigation accuracy attainable in a satellite ranging sys-
tem is strongly affected by the user-satellite geometry. Bogen (18]
has analyzed this geometric effect for the GPS using a performance in-
dex called geometric dilution of precision (GDOP). It will be shown in
Chapter 4 that the linear minimum variance unbiased estimate of a state

is given by

(HTR ) THTR Yy (3.45)

F

where: R 1is the covariance matrix of the measurements;

H 1is the observation-state relationship
y = Hx+ ¢ (3.46)
y 1is the observation vector.

The covariance of the a posteriori estimate is given by

P = (WRH) (3.47)

A GDOP analysis was performed using the user-satellite geome-
try of the adopted simulation. The analysis was accomplished by setting
the R matrix in Eq. 3.47 equal to the identity matrix and by using an H
matrix whose rows corresponded to simultaneous pseudo-range measurements
from each visible satellite and to an altimeter measurement. Appendix C
describes the form of the individual rows of the H matrix. Since a mini-
mum of three satellites is visible in the simulated profile, then up to

four state parameters can be considered in the GDOP analysis. If only
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three-dimensional position of the user is to be estimated, then
(HTR_]H)_] is a 3x3 matrix whose diagonal elements represent the vari-
ances of the position component estimates that result from processing
simul taneous pseudo-range measurements end an altimeter aeasurement.

The user-satellite geometry of the adopted simulation is shown
in Figure 3.12 and the GOOP analysis yiclds the position component
standard deviations as shown in Figure 3.13. If the user clock bias is
added to the state vector, then Figure 3.14 represents the results of
the GDOP analysis. Tigqure 3.14 is limited to values of standard devia-
tion of twelve or less. A continuous solution of the four-state esti-
mate with the three satellites and altimeter would have a singularity
in the vicinity of 2770 scc.

Figurew 3.13 and 3.14 represent the standard deviations of the
estimated state parameters that result if simultancous pseudo-range
observations of ali visible satellites and an altimeter measurement
are used in a least-squares solution with no a priori information from
any previous estimates ond with identical weighting of all measure-
monts. It was assumed that all measurements have uncorvelated noise
with standard deviation one meter for the figures shown.

The benefit of the GDOP analysis is that 1t depicts the in-
formation content on the measurements at any given time. The analysis
does not account for dynamics or larger state vectors that may be in-
cluded in actual navigation algorithm iwplementation. Nor are the re-
sults of the analysis quantitatively exact for algorithms that differ

from the assumptions of the GDOP analysis. In navigation algorithm
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tests performed for this dissertation, the behavior of the standard
deviations closely paralleled the character of the GDOP curves. The
errors in the estimated state vector components also had a remarkable

similarity to the GDOP analysis results.




CHAPTER 4
LINEAR ESTIMATION THEORY
AND
THE KALMAN-BUCY FILTER

4.1 Background of Linear Estimation Theory

4.1.1 Description of the linear system. Linear estimation

theory concerns itself with the problem of estimating the values of a
random process x(t) that is governed by a linear differential equa-

tion.

= A(t)x+ B(U(E), x(t) = X (a.1)

Ix-

where: x 1s the state vector;
A(t) is the plant matrix;
B(t) is the noise matrix; and

u(t) 1s the process noise vector.

In the following discussion, the state vector will always be assumed to
be a random process since dynamical systems, such as aircraft and

clocks, can generally be represented using differential equations such

as Eq. 4.1.

The plant nofse vector u(t) 1is a random process with statis-

tics given by

E[u(t)] = 0, E[u(t)u'(x)] = Q(t)s(t-1) (4.2)

93
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where: §(t-v) 1is the Dirac delta function;
Q(t) is the spectral level process noise covariance

matrix and is non-negative definite.

Observations of the system can be assumed to be available con-

tinuously. A Tlinear observation will be described by
y(t) = H{D)x(t) + (1) (4.3)

where: H(t) 4is the observation matrix;
e(t) is the observation noise vector; and

y(t) 1is the observation vector.

The measurement noise vector e(t) 1is a random process with statistics

given by
E[e(t)] = 0, ELe(t)e(x)] = R(t)s(t-1) (4.4)
where: R(t) is the continuous measurement noise covariance
matrix. 3

When the observations are available at discrete times, they

will be described by

gy = Htx(E) g (4.5)

The statistics of the random sequence g are given by

- ST = 4.6
Ele;] 0, Elgye,] R85, for all § and k (4.6)
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where: ij is the Kronecker delta; and

R, is the discrete measurement noise covariance matrix.

J

In the following discussions, all cross-correlations among the terms

used in Eq. 4.1 and Eq. 4.3 or Eq. 4.5 will be assumed equal to zero.

4.1.2 The Wiener-Hopf equation. Until 1949, the major tool

in linear estimation theory was Gauss' method of least squares. This

method is still in widespread use for many problems but it is not

easily adapted for sequential estimation. The method of least squares can

also be very inefficient, especially for real-time computer implementation.

The Wiener-Hopf equation [7] specifies the requirement for the
gain of an optimal estimator using continuous measurements. The linear

optimal estimate has the form

t
f((t]lt) = fW(t],T)y_(T)dr (4.7)
to

where: i(t]lt) is the estimate of the state at time t, after
processing all measurement up to time t; and

w(t],T) is the filter gain.

The Wiener-Hopf equation is

t
ELR(t, )y ()] - : W(t),E(x(1)y (s)1dr = 0 (4.8)
]
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If the matrix w(t],r) satisfies the Wiener-Hopf equation, then Eq.
4.7 is the optimal estimate. Meditch [57:292-294] shows that this is a
necessary and sufficient condition for the estimate to be optimal in a
minimum variance sense.

By taking the partial derivative of Eq. 4.7 with respect to t,

the filter differential equation can be derived.
X o= A(DR+ K(t) (y(t) - H(t)R) (4.9)
where: K(t) is defined to be W(t,t).

Meditch [57:Chap. 8] shows that the gain term required in Eq. 4.9 can

be related to the covariance matrix P as follows:
K(t) = P(t|t)H (R (¢) (4.10)
where: P(tt) = EL(x(£)-x(t]t))(x(t)-x(t]t))T]

Equation 4.10 can be used to replace the integral equation for W(t,t)
by an integral equation for P(t|t). The practical difficulty of

developing a solution to the integral equation remaims.

4.1.3 Kalman-Bucy filtering. In 1961, Kalman [8] derived an

expression for the optimal estimate when the measurements are available
at discrete times. This derivation emphasized the concepts of system
state, state transition matrix, and white noise processes. The optimal
estimate was derived to bu a conditional expectation. Kalman showed

that the optimal estimate is the orthogonal projection of the state




e

onto the space generated by the measurements. Kalman also described
the duality between the estimation problem';nd optimal control theory.
Kalman and Bucy [9] derived the differential equation for the
covariance matrix. This can be accomplished by f%king the partial de-
rivative of the integral equation for P(t|t) with respect to t.

The result is given by

Bt]t) = A(t)P + PAT(t) + B(t)Q(t)BT(t)

= PHT()RT TV (t)H(L)P (4.11)

For the calculation of the optimal gain, the differential equation of
Eq. 4.11 replaces the Wiener-Hopf integral equation. For computer
applications, the differential equation is considerably easier to imple-
ment.

The algorithm resulting from the works of Kalman and Bucy is
frequently referred to as the Kalman-Bucy filter, (or, more simply, the
Kalman filter) and the gain is often called the Kalman gain. The equa-
tions that constitute the Kalman-Bucy filter can be derived in many
ways. This chapter will derive the filter equations by first showing
that, under certain fairly general conditions, the conditional mean is
the optimal estimate, and then by deriving an explicit expression for
the conditional mean assuming Gaussian statistics.

An excellent introduction to Kalman filtering is given by
duPlessis [58]. A report by the Mitre Corp. [59] also provides a good
intuitive derivation of the Kalman filter equations. Several texts that

describe the Kalman filter are available. Jazwinski [60] emphasizes

R
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stochastic calculus in the derivation of the Kalman filter Jazwinski
also described many options to the basic algorithm. Meditch [57] de-
rives the Kalman filter and provides good example problems for exercis-
ing the filter. Applications are enpha;ized in a text published by The
Analytical Sciences Corporation [61] and in a report edited by Leondes

[62].

4.2 Criterion for the Optimal Estimate

4.2.1 The loss function. Consider x the parameter to be

estimated, to be a scalar. The estimate of x will be denoted x. A
good estimate is one which minimizes |x-X|, the absolute error of the
estimate. To eliminate the absolute value operation, this can be re-

stated to say that a good estimate is one which minimizes (x-i)z. The

term (x-x)2 will be called the penalty or loss function.
- 2
L = (x - x) (4.12)

The loss function of Eq. 4.12 is continuous and differentiable to the
same extent that x is continuous and differentiable. Equation 4.12
is a quantitive expression of the failure of X to estimate x. The

loss function of Eq. 4.12 has the following properties:

1. it is a scalar;
2. if x = x, the loss is zero;
3. the amount of loss is a monotonically increasing function

of the departure of the estimate from the true state; and

4, it is symmetric.
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The absolute minimum of the loss function is zero, implying 1

that the estimate should be
X = X (4.13)

If x 1is random, there is no way to calculate the right hand
side of €q. 4.13. The criterion that the estimate minimize L can be
restated to require that the estimate minimize the expected value of L

conditioned on the realization of the measurements y.
ELLIy] = EL(x - %)3y] . (4.14)

Under some general restrictions, an expression for X which
minimizes the expected loss can be derived. The estimate which mini-

mizes Eq. 4.14 will be called the "optimal" or "best" estimate.

4.2.2 Minimization of the loss function. To minimize the

expected loss, set the first derivative of Eq. 4.14 with respect to

x to zero.

STEMLIY] = 2 Elxly] - 2E(Rly] = o0 (4.15)
In Eq. 4.15, x 1is an independent variable. Therefore,

Elxlyl = «x (4.16)
Substituting Eq. 4.16 into Eq. 4.15 and solving yields

x = Elx|y] (4.17)
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Equation 4.17 is the desired expression for the optimal estimate. The
result is intuitively pleasing ~ it states that the best estimate of «x '

is the expected value of x conditioned on the measurements.
For an n-dimensional state vector x, the loss function will

be defined as follows:

Lx-%) = (x-%7 (x-3) (4.18)

x>

If x is one-dimensional, Eq. 4.18 reduces to Eq. 4.12. Equa-

tion 4.18 has the four properties of Eq. 4.12 discussed in Par. 4.2.1.

The minimization of the conditional expectation of Eq. 4.18 is accomp-
lished by setting the first derivative of the conditional expectation
with respect to the estimate to zero.
~T .
LEx -0 (x- Dly) = 2 el ly]
AT _
-2Ex 1yl = 0 - (4.19)
The solution to Eq. 4.19 is the conditional mean,

x = Elxly] (4.20)

which reduces to the result for the scalar case if X 1is onexdimensional.
Jazwinski [60:Chap. 5] and Meditch [57:Chap. 5] discuss loss

functions in more detail. In particular, loss functions with the four ‘

properties of Par. 4.2.1 are examined without reference to a specific
expression for the loss function. It can be shown that the conditional

mean is the optimal estimate if the loss function has the four
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properties listed in Par. 4.2.1 and if the probability density function
of x 1is symmetric and unimodal {37:160-161]. For the loss function ‘
of Eq. 4.18, the conditional mean is the optimal estimate without re-

strictions on the probability density function. The estimate which

minimimizes the loss function of Eq. 4.18 is called the minimum variance

or minimum mean square estimate.

4.3 Evaluation of the Conditional Mean.

4.3.1 An expression of the conditional mean. The conditional

density function, for a scalar x, will be evaluated using Bayes Rule:
p(xly) = plylx) p(x) / p(y) (4.21)

Bayes Rule is derived using the following statement:
The probability that two events jointly occur is equal to the
probability that the first event occurs times the probability
that the second event occurs given that the first event
occurred.

Since "first event” and "second event" can apply to x and y 1in

either order, this statement can be written:
p(x and y) = p(x) ply|x) = ply) p(xly) (4.22)

from which Bayes Rule follows directly.

For a scalar x and Gaussian statistics, the mean and vari-

ance are easily identified from the probability density function:

p(x) = = exp [~(x = 4,)%/20]] (4.23)

Zr o,




where: X is the random variable;

My is the mean; and
Oy is the standard deviation about the mean.
At this point, a linear rclationship between the state and the
observation will be assumed:

y = Hx+ ¢ (4.24)

where: H 1is a scale factor for the scalar case; and

e 1is the random measurement error, N(O,oe).

The variance of the measurement can be obtained as follows:

G
i

ELy - 0?1 = EL(HX + c - Hu)?]

2.2
H Oy + ZHGXC + 05 (4.25)

it

If x and ¢ are uncorrelated, Eq. 4.25 becomes:
. yl.2 2
o = H o t o (4.26)

Equation 4.26 is used to describe the probability density of the mea-
surement y.
_ 1 v 2,,2
ply) = L X [-(y - Huy)®/20) ] (4.27)

y£&mo o

y
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Following duPlessis' argument [58], the conditional probabil-
ity density p(yix) {is equivalent to the probability density for

the specific value of . given by
vo= Yy - Hx (4.28)

Substituting Eq. 4.28 into the Gaussian form for the probability den-

sity function of . gives
p(v =y - Hx) = p(y|x)

_ 1 Q5 2
> e —— axp [-(y - Hx) /20‘_] (4.29)

van Q
t

Substituting Eqs. 4.23, 4.27, and 4.29 into Bayes' Rule, Eq. 4.21,

gives

, 2
] 4] ' ] \‘L
pixly) = — [—& ) exp{ - x4 >
sz‘;“ Q'\‘x ?- ('\ X
‘ /
2

X - My + —5 (y - an) (4.30)

By comparison with the Gaussian form, the conditional expectation is:

2
Ho
EDxly] = g+ g (v - M) (4.31)

0

Substituting Eq. 4.26 into Eq. 4.3) gives the expression for the opti-

mal estimate in the scalar case.

o . L L
P T A 0T P T
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Ho

Elx|[y] = w, + ;5—5517—5-(y - Hu,) (4.32)
g [of
X [

If the state and the measurement noise are correlated, the
optimal estimate can be formed by substituting Eq. 4.25 into Eq. 4.31.

An expression for the conditional expectation in the vector
case will now be developed. The n-dimensional state vector and the
2-dimensional observation vector are combined into a single vector z

of dimension & + n.

_Z_T = [3<_T.y_T] (4.33)

The joint density function, if Gaussian statistics are assumed, is

given by

p(x,y) = pl(2) =

1
A2n)™* (p]

exp [ F(z- ez e (z- E[_z_])] (4.34)

Pyx ny
P=dr_p
yx yy
Pxx = E[(i'E[X])(A-E[x])T: (4.35)
Py = E[(- EDD - £1D)T] (4.36)
T
Pyx = Pxy (4.37)
Poy = E|e- ElyD(y - E[zJ)TJ (4.38)




The inverse of P is

A B8
L
I
B' ¢
[ -1 -1
(Pyx - PxyPyy Pyx)
..] ']
Py Pyx (P Puyy Pyx

Using an alternate form of Bayes' Rule

p(xly) = p(x.y)/p(y)

and
1

Azn)‘tpyyl

exp [- % (v -

ply) =

105

-1 -1
Py Py Pyl ax Puy)

-1 A1,y
Py Py Py
(4.39)

given by

(4.40)

1
)

E[){,])T Py; (y - E[l]_J (4.41)

Equations 4.34 through 4.41 can be combined to give

1

p(xly) = =
(2,,)" |P|
/ 1Pny
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If m 1is defined as

m = E[x]+ nyPyy (x - Ely]) (4.44)

and using

(P - P p )'] (4.45)

A XX Xy yy yx

the exponent can be reduced to

(x- 7 (P = PPt P (k- m) (4.46)

The covariance matrix, P can be written

D
P P 1
oo | Py PPy Py ° (4.47)

-1
0 P p
| [y wy

The determinant of the covariance matrix is

Pl = |p, -P

P .

Substituting Eq. 4.46 and Eq. 4.48 into Eq. 4.42 yields

p(x|y) =

T
(2n)"] Py -Pay Py yxl

exp l 2-(x - m)T (P Tp )t (x - m) ‘

(4.49)

By comparing Eq. 4.49 with the Gaussian form, the conditional

mean is given by
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Elxly] = m = ELx]+P Pl (y - ELy]) (4.50)

and has covariance

- _ -1
ley Pxx nypyy Pyx (4.51)

For the optimality conditions discussed in Par. 4.2.1, m, as determin-
ed by Eq. 4.50, is the optimal estimate.
Assuming the following linear observation-state relationship

*
for vector measurements

Yy = Hx+* ¢ (4.52)
where: E[e] = O (4.53)
Elcc’] = R (4.54)

then Eq. 4.36 becomes

T

P, = P H +Elx'] (4.55)

Xy

I1f there is no correlation between the state and the measurement noise,

Eq. 4.55 becomes
. T
(4 = P H (4.56)
The covariance of the measurements is defined by

Py = ELlz - EQD (- EQYD'] (4.57)

*Equations 4.52 through 4.54 are identical to Eqs. 4.5 and 4.6 for a
single measurement.
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Substituting Eq. 4.52 into Eq. 4.57, applying the expectation operator,
and assuming no correlation between the state and the measurement

noise, Eq. 4.57 becomes

_ T
Py = HPH +R (4.58)
Substituting Eq. 4.56 and Eq. 4.58 into Eq. 4.50 gives
T T -1
Elxly] = E[x]+P H (WP H' +R)7" (y - E[Y])

= py, *+ Kly - Hy) (4.59)

. _ T T -1
where: K = PxxH (prxH + R) (4.60)

As used in Eq. 4.59, K 1is the filter gain.

The expression for the covariance matrix, Eq. 4.51, becomes

] Tup 1T 4 -] ]
Pely = Pac ™ Pt (HPGHT + TP = (1 - KHIP,, (4.61)

4.3.2 Time propagation of the conditional mean and its

covariance. Equations 4.59 and 4.61 represent the measurement update.
If the state is a dynamical system and measurements are available at

discrete times, then the mean u_ and its covariance Pxx will pro-

X
pagate with time. The mean and covariance terms in Eqs. 4.59 and 4.6}
must be the values propagated to the time of the measurement.

A linear differential equation will be used to describe the

state dynamics.

.

X o= Alt)x + B(tlu(t), x(t)) = x (4.1)

—
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The solution to Eq. 4.1 is given by Liebelt [63:40-48]. '
t

x(t) = ¢(t.to)g_<O + 4/20-»(t,s)8(s)g(s) ds (4.62) .
where: ¢ 1is the state transition matrix which satisfies

the differential equation

¢(t,to) = A(t)‘!’(t,to). ‘t‘(totto) = 1 (4.63) %
The integral expression in Eq. 4.62 is a stochastic integral. The

ability to actually evaluate the integral depends on the character of
the random process u(t) . For purposes of further discussion,
evaluation of the integral is not required. For further information
on stochastic integrals, see Jazwinski [60].

The conditional expectation is applied to Eq. 4.62. If the
process noise u(t) is independent of ‘he measurements, then the

propagated conditional mean is given by

ELx(t)[y(t)] = o(tit )x (8.64)

[t will be assumed that all measurements up to and including
any measurements taken at to were processed to obtain io . This
does not require that a measurement be available :.¢ to .
The propagated covariance matrix is determined by using Eqs.

4.62 and 4.64 to form

x(t) - EL(t)[x(t)] = o(tyt)(x, - X))

t
* ffoﬂt.S)B(s)g(s) ds (4.65)
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Substituting Eq. 4.65 into

P(tit,) = P(t) ‘
= EL(x(t) - EDx(t) [y(t ) D (x(t) - Elx(t)[y(t )]
(4.66)
yields
T
P(t) = «v(t,to)Pxo\yo o (t,t))

* fto‘”(t'to) EC(xg %,)u'(s)|y(t )1 BT(s) o7(t,s) ds

* f} o(ts) B(s) ELuls)(x, - Z)TIx(Eg)] o' (1.t,) o

+ tf f’t‘ o(t,s) B(s) E[Q(S)QT(r)ly_(to)] BT(r) o (t,r) dr ds
> (4.67)

If the process noise and the state are uncorrelated, the middle
integrals of Eq. 4.67 are zero. If the process noise is independent

of the measurements and is uncorrelated in time, then
E[u(s)uT(r)] = Q(s)s(r - s) (4.68)

Substituting Eq. 4.68 into Eq. 4.67 and evaluating one integral based

on the properties of the Dirac delta function, the propagated covariance

matrix is given by

Plt) = a(tat )P, «\T(t.to)

ol¥o

t
* fto 2(t,5)B(s)Q(s)BT(s)sT(t,s) ds (4.69)
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Equations 4.64 and 4.69 represent the time propagation of the estimate

and its covariance.

4.3.3 Unbiased property of the linear estimate. The linear

estimate of Eq. 4.59 is repeated here for convenience.
X o= op Ky - Hy) (4.59)

According to Liebelt [63:137] and Tapley [64], an estimate is defined
to be unbiased if, given a value for the state, the following equality

ijs satisfied:
E[x] = x (4.70)

Equation 4.70 implies that the state x is the independent variable.

Therefore, the expectation of x is x itself.

p, = Elx] = x (4.71)

Substituting Eq. 4.71 into Eq. 4.59 and applying the expec-

tation operator gives
E[x] = x+ KE[y] - KHx (4.72)
Substituting Eq. 4.52 into Eq. 4.72 gives the sequence

E[x] = x + KE[Hx + ¢] - KHx
= x + KHx - KHx

=2 X
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Thus, the linear estimate of Eq. 4.59 has been shown to be an unbiased
estimate where Eq. 4.70 defines the unbiased property. Jazwinski
[60:150] and Sorenson [65:5] used an alternate definition of an unbias-

ed estimate given by

E[x] = E[x] (4.73)

Jazwinski and Sorenson show that the estimate of Eq. 4.59 is unbiased
using the definition of Eq. 4.73.

The choice between Eq. 4.70 and Eq. 4.73 as the reqd?rement
for an unbiased estimate is a function of the definition for the en-
semble of the estimates and the definition for the ensemblerof the ran-
dom variables. Equation 4.73 states that the ensemble average of the
estimates for the ensemble of the random variables must be equal to the
ensemble average of the random variables. Equation 4.70 states, how-
ever, that the ensemble average of the estimates for a&eah’zation of
the random variable must be equal to the realization of the random vari-
able. This distinction can be illustrated by the fo]iowing example.
Given a bucket of resistors and a bucket of ohmmeters, a user will
measure the resistance of the resistors. Equation 4.70 states that if
one resistor is pulled from the bucket and its resistance is measured
using all the ohmmeters, then the average of the measurements will equal
the resistance of the resistor. Equation 4.73 states that if all the
resistors are measured using all the ohmmetérs on each resistor, then
the average of the measurements will equal the average resistance of
the resistors. Thus, Eq. 4.70 and Eq. 4.73 are complementary require-

ments rather than conflicting requirements.
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4.4 Linearization

The results of linear filtering theory can be easily applied
to non-linear systems by assuming the existence of a nominal trajectory
and a perturbation to the nominal trajectory. The linear estimation
equations are then used to estimate the perturbation state.

Assume the following non-linear differential equation:

X o= FGt), Xt) = X : (4.74)

*
Expand Eq. 4.74 about a nominal trajectory, X

*

X = X +x
* oF *
= F(X,t) + [57] X+ H.0.T. (4.75)
where: [ ]* indicates that the partial derivative is

evaluated on the nominal trajectory.

Equation 4.75 is separated into a nominal part and a pertur-

bation part.

X o= B, X(t) = X (4.76)
. oF |*
X = {B—{l X+ HOT, x(t) = x (4.77)

Deterministic control inputs, if present, can be added to the nominal

system, Eq. 4.76. Random inputs can be added to Eq. 4.77.

e

"
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[f higher order terms are deleted and a linear process noise term is

included, then Eq. 4.77,takes the form

X = [g’g x+Bu, x(t) = X (4.78)

Similarly, a non-linear observation-state relationship can be

linearized.

[

6,t) = G+ xt) = 6(x',¢)

* 6] *
= E(i Wt) + X Xt H.0.T. (4.79)

I[f Y is the actual measurement given by

Y o= G(X,t) + ¢ (4.80)
then the residual is given by
* a6 | ™
y = Y -G(X',t) = I3 Xtot H.0.T. (4.81)

Deleting the higher order terms,

Y = [;%] X+ e (4.82)

Equations 4.78 and 4.82 are the linearized equations correspon-

ding to Eqs. 4.1 and 4.52 respectively with the following equivalences:

A(t) (4.83)

G| *
H = [TXE{ (4.84)

"
r—
wle
i r

*

[PROUURRIISVS P
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4.5 Differential Equations for the Covariance Matrix

The propagated covariance matrix was given by Eq. 4.69.

Pt) = o(t.t )Pt )o'(t,t )

t T, 0T \
+ i ¢(t,s)B(s)Q(s)B (s)o (t,s)ds (4.69)
()

The covariance matrix required in the measurement update, Eqs. 4.59,

4.60, and 4.61, is the result of Eq. 4.69 at t = te -

Pexitid = Plylt 4} = P(t)) (4.85)

where: t,_y s the time of the previous measurement.

For purposes of the following discussions tey < t,-

Evaluation of Eq. 4.69 must be accomplished numerically in many
applications. To derive a differential equation for the covariance
matrix, Leibnitz's Rule is applied to Eq. 4.69. Using the differential

equation for the state transition matrix, Eq. 4.63,
a(tat)) = A(t)e(t,t)), oft,t)) = I (4.63)
the differential equation is given by

B(t) = A()P(t) + B(t)AT(t) + B(t)a(£)8T(¢),

Plt,) = P (4.86)

xo'yo

The solution to the linear differential equation, Eq. 4.86, as

given in Eq. 4.69, can be separated into a homogeneous solution and a
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particular solution. The particular solution will be designated I and
will be referred to as the discrete process naise matrix. The integral
of Eq. 4.69 can be replaced with a quadrature relation which will Tlead

directly to the differential equation |

F(tot) = ot ,0B(t)Q(t)BT(D)eT(t,, 1),

r(Atk,tk) = 0 (4.87)
The covariance matrix update equation is then
Plt,) = o(t,t JP(t)e (t,t) + (.t )  (4.88)

Covariance matrix propagation using Eq. 4.88 requires the integration
of Eq. 4.63 forward in time and the integration of Eq. 4.87 backward in
time. The requirement to store or recompute the state transition matrix
for the backward integration of Eq. 4.87 reduces the attractiveness of
the method.

The particular solution of Eq. 4.69 has been defined as
t

r(t) =,/ o(t,5)B(s)als)BT(s)e (t,5)ds (4.89)
0

Leibnitz's Rule can be applied to Eq. 4.89.

N

t
F(e) = B(E)A()BT(6)+, ) o(t,s)B(s)a(s)BT(s)e  (t,5)ds
(o -

t )
tf olts18(s)a(s)87()T (t,5)es (4.90)
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Substituting Eq. 4.63 into Eq. 4.90 yields

) = BOA(EB (L)
t
tj A(t)e(t.s)B(s)Q(s)BT(5)o (t,s)ds

0

t
A o(t,s)B(s)Q(s)B (s)eT(t,s)AT (t)ds (4.91)

0

Since the plant matrix A(t) 1is not a function of the parameter of inte-

gration, it can be moved outside the integrals.

HE) = B(t)a(t)sT(u)
-t
+ A(t) Jo(t,s)B(s)Q(s)BT(s)o’(t.s)d;l

0

=N o . r
+ J’o(t.S)B(S)Q(S)B (s)e'(t,s)ds| A'(t) (4.92)

0

Substituting Eq. 4.89 into Eq. 4.92 yields

Nty = AHE(E) + r(DAT(E) + BIR(LBT(2),
r(to) =0 (4.93)

where: x'(to)gg.the initial condition is obtained from Eq. 4.89.

Thus, the covariance matrix can be propagated by integrating tqs. 4.63

and 4.93 forward in time and substituting the results into
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Plt,) = olt, t IP(t)e (1.t ) + r(t,) (4.94)

The selection of a covariance matrix propagation method must be
based on an analysis of the efticiency and stability of the various
methods for each specific application. Such an analysis must consider
the system model and parameters and the user's requirements and capabil-
ities.

Each covariance matrix propagation technique can be shown to have
a maximum number of equations that must be integrated. Equation 4.86
requires the integration of a maximum of n(n+1)/2 equations for an
n-dimensional state. Equations 4.88 nd 4.94 require the integration
of a maximum of n2+n(n+1)/2 equations because the state transition ma-

trix must also be integrated. Selection of Eq. 4.86 as the covariance
matrix propagation method cannot, however, be based solely on the analy-

sis of a theoretical maximum number of equations to be integrated. The
system model must be considered also. Frequently, the differential
equations of the individual elements of the matrices may be solved
analytically, thereby avoiding the requirement to numerically integrate
these elements. This is especially true for the elements of the state
transition matrix.

A count of the equations to be integrated after removing the
analytic solutions is still an incompiete criterion. The user's accu-
racy requirement and his capabilities must be considered. A user with
loose accuracy requirements can expand the state transition matrix in a

power series us follows:

PPN
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oltat ) = T+ A(t)(t-t)) + 3 [A2(tg)+Ato) N -to) ..

Typically, the power series is not expanded beyond the quadratic term.
The low accuracy user can also replace the discrete process noise ma-

trix of Eq. 4.88 and 4.94 with an approximation.
T
r(t) : Bt )alty)B (t)) (t-t)) (4.96)

The implementation of Eqs. 4.95 and 4.96 with Eq. 4.94 effectively
eliminates the need for numerical integration.

A user who requires an accurate covariance matrix must concem
himself with the numerical stability and the computer time requirements
of the methods. Numerical integration of Eq. 4.86 is often time-
consuming when high accuracy is specified. Applications of Eq. 4.86
with variable step integrators usually specify tolerances on the inte-
gration of the covariance matrix which are less stringent than the
tolerances specified for integration of the state. This will reduce
the time requirement for the numerical integrations but it will also
reduce confidence in the resulting covariance matrix.

In general, the state transition matrix can be integrated with
accuracies on the order of the accuracy of the state integration. With
an accurate state transition matrix, the propagated initial covariance
matrix oPoT will be accurate. The discrete process noise matrix I
generally contributes terms to the covariance matrix P which are

orders of magnitude less than the contribution of the ¢9¢T terme

. (4.95)




120

Consequently, errors in the discrete process noise matrix are less influ-

ential in causing errors in the P matrix. This is a fortunate situa-

tion because the spectral level process noise matrix Q is often of

dubious accuracy. Frequently, Eq. 4.96 is used to generate the dis-
S~ crete process noise matrix for Eq. 4.94.

~ Equation 4.96, however is ‘incomplete. It does not describe g

\\

the EB?rqu\Bropagation of a spectral level noise among the elements of

\'\ . .
the discrete process noise matrix. For example, it can be argued that

the only spectral level noises which influence an aircraft are random

~ i

forces or, equivalently, accelerations. Accordingly, the only non-zero ‘
T . '\\Tms, . i

elements of BQB' should be in the acceleration t « Equation 4.96

will not propagate spectral level acceleration noise into t osition

or velocity states although, intuitively, a result of acceleration \“\\\\\\\\\\\

noise is an uncertainty in the position and velocity of the aircraft \\\\\\\~

as well as an acceleration uncertainty.

Integration of Eq. 4.87 or [q. 4.93 will produce non-zero

values in all elements of the covariance matrix that are affected by

spectral level noise terms. Because of the relative magnitude of the
discrete process noise matrix compared to the covariance matrix itself, 4
integrating the discrete process noise matrix separately allows the use |
of a relaxed tolerance on that part of the system which is least known. g
When the result is added to an accurate oPe' terms, the covariance ;
matrix P can maintain accuracy on the order of that specified for the |

integration of the state transition matrix.

T

|
|
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The numerical advantages of separate integration of the dis-
crete process noise matrix can be overshadowed by the requirement for
the backward integration of Eq. 4.87. Equation 4.94, is a forward inte-
gration and eliminates this disadvantage. Also, some high-order vari-
able step numerical integration techniques such as a Runge-Kutta (7)8
[88] will not operate properly for quadratures such as Eq. 4.87. The
form of Eq. 4.94, however, can be integrated successfully using the
variable-step Runge-Kutta (7)8 algorithm.

The navigation algorithms evaluated in this study are examples
of the dangers inherent in selecting a method without examination of
the system model. For all algorithms studied, the state transition
matrix and the discrete process noise matrix are solved analytically.

The techniques discussed herein are the basic covariance ma-
trix propagation techniques. Many variations have been developed, and
other alternate approaches should be considered prior to selection of a

specific method for the covariance matrix propagation.

4.6 Linear Estimation Algorithms

The estimation equations developed in this chapter will be im-
plemented into three basic algorithms. In each case, a comprehensive
set of equations is shown. Specific applications of the algorithms must
determine the precise form of the equations to be evaluated, otherwise

the computation will be inefficient and may have nume;icalAdifficulties.
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4.6.1 The standard sequential filter. The equations developed

for the minimum variance estimate are used in a sequential filtering ;

algorithm for a non-linear system.

1. Propagate the nominal state vector, the state transition

matrix, and the covariance matrix to tk’ the time of the measurement.

i*(t) = F(X ), Xy ) - 5:-1

j«t’tk__") = A(t) ¢(t'tk-1)' ﬂtk-]’tk-]) = ]

P(t) = AP + PAT + Bga’, Pt, ) = P

where: A - [3F *
aX

2. Compute the gain at t,. i

k-1

=TT -1 i

K = P (BPH + R

~ 3. Propagate the estimated perturbation state. :
X = oot R

or X = AWK Kt ) = K §

4. Calculate the observation residual.

Y= X- Gu:.tk)
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5. Estimate the state correction.

~

B Bt Ky - Hix)
6. Update the covariance matrix.

7. Replace k with k-1 and go to 1.

4.6.2  The extended sequential algorithm. An examination of

the standard sequential algorithm shows that the propagation of the
nominal trajectory is based solely on 53 the initial estimate of the
state, despite knowledge that the best estimate of the state at a time
tep IS 4t ék-l' This results in errors that depend on the non-
linearity of the system and the departure of the nominal state from the
true state.

The difference between the nominal and the true states can be
made smaller by assuming that the estimate is closer to the true state
and rectifying the nominal accordingly. After rectification, the es-

timated perturbation is zero. The extended sequential algorithm can

be summarized as follows:

1. Integrate to t, the nominal state X and the covariance

matrix.

>
[}

F(X,t), Xt )

2o
L

o
i
©

AP+ BAT + BgBT, Pt el
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2. Compute the gain.
- T T -1
Ke = P HPH R
3. Determine the observation residual.

lk = !‘k = E(Zk.tk)

4, Estimate the perturbation state.

-

% ° K
5. Update the covariance matrix.

6. Rectify the nominal trajectory.

+

iz

LIS
7. Replace k with k-1 and go to 1.

For a linear system, the standard sequential filter and the

extended sequential filter will provide identical results.

4.6.3 The batch filter. The batch filter is designed to take

many observations and estimate the state at a specific epoch. If all
the measurements are taken at the epoch, a single step of the sequential
estimator defines the estimate. If, however, measurements are available

at times t, and the epoch for the estimate is tk’ then the observa-

tion-state relationship must be mcJdified.
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Yo = B(Xat et t)x, + .,
If a vector Y is to represent ¢ measurement vectors, then a new
observation-state relationship can be defined.
il [Hy (% ty)e(ty )] ey ]
V2| HalBpstpleltyity) £
Yy - = Xt (4.97)
3| [H3(Xz.tz)e(tst,) £3
Yol [He(Xpotdel(t .y ) )
L J L 4 L .
Equation 4.97 can be rewritten.
Y, - Hkék * g (4.98)

" The correspondence between Eq. 4.97 and Eq. 4.98 is obvious. Equation
4,98 can be interpreted as an expanded observation-state relation and
is equivalent to Eq. 4.52.

If each measurement is a p-dimensional vector, then Hk in
Eq. 4.98 is dimensioned (2p x n) and the Y, and g, Vvectors are
Lp-dimensional. The gain term as expressed in Eq. 4.60 is repeated

here.

s T F T -1
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To account for an augmented [ the term Rk is changed to an

(¢ep x 2p) matrix as follows:

Ii] 0 0 0
0 RZ 0 0
R =
K
0 0 R3 0
0 o 0 .. . R]
L .

The gain term as expressed in Eq. 4.60 requires the inversion
of an (2p x 2p) matrix. Using matrix identities, an alternate ex-
pression for the gain can be obtained.

i -1 T,-1, +-1,T,-1
Ke = (P + H R H)THR (4.100)
Equation 4.100 requires the inverse of an (n < n) matrix.

Though it is possible to execute the batch algorithm using a
(p x n) H, matrix and a (p x p) Rk matrix, there is a considerable
penalty in storage. If the measurement noise matrix is as shown in
Eq. 4.99, the term H:R;1HK in Eq. 4.100 can be evaluated using the

summation

To-1
HRe H

L
= )

i

T T
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T

Similarly, the term HkRillk can be evaluated using

RRYy = 5 o (bt M (Xt R (4.102)
Kk e 7Lk iR Y .

If tk’ the desired time for the estimate is equal to to’ the

initial time, then an appropriate algorithm for the batch filter is as

follows:

1. Set: i =1

=1
P0

1l

; L

, M= LXK,

| 2. Integrate from t. , to t, .

F(X.t),  X(t) =

J><ie
1]
éxl

"
—

d = Ao, ¢(to,t0)

3. Increment L.

] T Xt )R Hy (X

4, Compute the observation residual. \

Yi = Yy - §(Xpty)
5. Increment M.

i 1 T vyl
Moo= M (L M (Xt Ry

6. If more measurements, i=i+1 and go to 2.
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7. Estimate the initial conditions.

X,

i
-

I

. 8. Update the covariance matrix.

4.7 Summary

The conditional mean was shown to be an unbiased estimate, op-
timal in a minimum variance sense. The conditional mean is also the
maximum likelihood estimate in the case of symmetric, unimodal probé-
bility density functions.” Assuming Gaussian statistics, a linear
state equation, and a linear observation state relationship, expressions
for measurement updates and time updates of the conditional mean and
its covariance were developed. A method for linearizing a non-linear
probTem was shown and the results of linear estimation theory were ap-
plied to the linearized problem. Three basic filtering algorithms were
described: the standard sequential f#ﬂter (Kalman filter); the extended
sequential filter (the extended Kalman filter); and the batch filter.

*If the probability density function is not symmetric and unimodal, the
maximum likelihood estimate is of questionable value.




CHAPTER 5
DEVELOPMENT OF A BASIC FILTER MODEL 3

5.1 Navigation Applications of the Sequential Filter

A sequential filter, as derived in the original works of

Kalman [8] and Kalman and Bucy [9], will provide the optimal estimate

if: N

1. The dynamic system model and the observation model
are linear;
2. The dynamic system model and the observation model f
are correct; H
3. The a priori statistics for the initial conditions of
the state and for the noise models are Gaussian with zero mean and

known covariance.

In real-world filter applications, precise knowledge of the

system model and the noise statistics is not available. Nishimura [66]
has analyzed the behavior of the sequential filter with incorrect sys-
tem models, noise statistics, or initial condition statistics. Assum-
ing the correct linear system model, Nishimura shows that, if the
statistics are chosen conservatively (i.e., the filter assumes a magni-
tude of the covariance of the noise which is larger than the actual
noise covariance magnitude), then the actual errors will be within the

range specified by the suboptimal covariance matrix. As would be

129 B
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expected, the statistics should not be excessively conservative or the
filter may become i]l-conditionéd.

The application of sequential filters to orbit determination
problems has been successful since system models are available which
will adequately predict the state of a spacecraft for long periods of
time. For example, using Keplerian elements and a set of seven correc-
tion parameters, the line-of-sight position error for a GPS satellite
is expected to be less than 1.5 meters (one sigma) for a one-hour
prediction [16].

Unfortunately, the dynamic models for a maneuvering aircraft
cannot predict adequately the behavior for more than a few seconds.
Sequential filters, however, have been applied successfully to aircraft
navigation systems especially when an inertial navigation system (INS)
is used [62]. With an INS, the ability of onboard computers to inte-
grate accelerometer data at high sampling rates compensates for the
prediction errors of an assumed aircraft dynamic model. The sequential
filter is especially useful when an INS is augmented with additional
equipment such as an altimeter or a LORAN receiver. The sequential
filter for the augmented INS can be used to determine measurement er-
rors in the INS, to optimally combine the measurements with the INS
measurements, and, using the additional measurements, to automaticaily
damp the 84-minute and the 24~hour oscillations of an INS [67]. Errors
in system models frequently will not cause large errors over short
estimation time spans. For example, air-to-air missiles, with short

flight times, have used approximate models in sequential filters to

obtain an effective guidance solution.
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The low-cost GPS user faces a challenging filter implementa-
tion problem -~ he does not have the ability to accurately model air-
craft motion; he does not have sampling rates as high as INS users;
and he must maintain an accurate estimate of the state for long time
intervals. No general remarks can be made about the effects of incor-
rect system models on filter performance. The development of an ade-
quate model for a specific implementation is the engineering challenge
facing the filter designer.

Brock and Schmidt [67] state that, because of the lack of a
good model, the results obtained with a sequential filter in aircraft
applications may not be much better than the results obtained with
deterministic solutions. Using the parameters that optimized a select-
ed model (Par. 5.5.2), Singer [68] states that the filter is operating
almost as a least-squares filter with no a priori information. Counter
to these discouraging remarks are some factors which motivate the use

of a sequential filter.

1. A sequential filter (Par. 4.6.2) is not difficult to
itmplement. Measurements can be processed as scalars, further simpljfy-
ing the filter coding. A sinple sequential filter will require only a
1imi ted amount of data storage.

2. The sequential filter easily conbines different measure-
ment sources.

3. Non-stationary noise can be accomodated easily.

———— — .
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4. With appropriate choices of a system mode) and
statistics, the sequential filter should perform as well as deter-

ministic solutions or least squares methods.

In this chapter, a basic aircraft model will be developed for
the extended sequential filter. Initially, the system equations will
be specified arbitrarily but with intuitively pleasing characteristics.
The equations will be modified so that the resulting system model can

be accommodated by the Kalman filter. Then it will be shown that, with

certain restrictions, the equations specified originally are satisfied

by the resulting filter model. The aircraft model is referred to as an

acceleration dead-reckoning (ADR) model with exponentially correlated
random acceleration. The state transition matrix and the discrete pro-
cess noise matrix for the basic model will be determined analytically.
The measurement bias states and their statistics as assumed
by the filter will be discussed. The simulated measurement rejections,
the additional noise terms, and the testing philosophy for the basic
filter will be described. The quantitative parameters that will be 3
used to evaluate filter performance throughout this study will be de-

scribed. Finally, the basic filter model will be evaluated.

5.2 Components of the State Vector.

5.2.1 Aircraft states. The basic state vector consists of

the parameters listed in Table 5.1. Position states are an abvious

requirement for navigation purposes. Velocity is included because the

T S R —— »
ek M itk e
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!
!
Table 5.1 Filter Parameters for the Twelve-State

Acceleration Dead-Reckoning Model L
Initial Corre- :;?ﬁ:“ .
Initial Standard lation Spectral i
State Error Deviation Time Density ¥
North Position Error, Sxy 49.96 m 60.0 m - 0. l
East Position Error, dxg -42.43 m 60.0 m - 0. i
Vertical Position Error, &xp 10.00 m 20.0 m - 0. }i
North Velocity Error, svy 0. m/sec 0. m/sec - 0. :
East Velocity Error, Svp 0. m/sec 0. m/sec - 0. E
vertical Velocity Error, svp 0, m/sec 0. m/sec - 0, :
North Acceleration Ervor, Say -1.39 m/sec 2.5 m/sec2 * sec . mz/sec5 !

East Acceleration Error, dag -.56 m/sec 2.5 m/sec2 * sec - mzlsecs
Vertical Acceleration Error, Sag 0. m/sec 2.5 m/sec2 * sec * mzlsec5 i
Altimeter Bias Error, sy, -10.00 m 20.0 m 500. sec e ol/secd it
Clock Bias Error, 6a, 29.98 m 60.0m e 7.2x107% m¥/sec |
Clock Drift Error, su, -.30 m/sec 6.0 m/sec 1800. sec  1.0x10"% m?/sec? ’%1
i
!

*Parameters to be varied.

**Clock bias includes a random walk term. This {s equivalent to an infinite correlation time.

**epltimeter noise is evaluated as a function of estimated altitude (See Eq. 5.47)
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measurements are taken sequentially. Over the 1.25 second measurement
interval, the aircraft can move 300 meters. Acceleration states were
included alse. If accelerations are not included, only an uncorrelated®
random acceleration can be modeled in a Kalman filter. Ajr-

craft accelerations are assumed to be correlated in time with correla-
tion times ranging from one second to one minute depending on the flight
profile [51] [68]. The shorter correlation times apply to atmospheric
turbulence while the Tonger correlation times are appropriate for slow
turns. Evasive maneuvers are modeled typically with correlation times
from ten to thirty seconds. Inclusion of the acceleration states per-

mits modeling the acceleration as a correlated random variable. In

addition, the estimated accelerations can be used to improve the air- !
craft state prediction.
As implemented, the actual filter states represent the errors
in the assumed position, velocity, and acceleration. The aircraft
state is expressed in the Topocentric-North-East-Down (TNED) coordinate
system where the origin of the coordinate system is located at the .
user's a priori position. (See App. A.) The a priori user position
vector in the TNED system is identically zero. The precise formula-

tion of the filter model follows.

5.2.2 Aircraft model. The model for the aircraft will be

developed for one dimension. Identical models are implemented for all

*Unless specified otherwise, correlation will imply correlation in
time.
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aircraft directions although specific values of the model parameters

need not be identical. For the one-dimensional case, the states will '

include position r or position error &r; velocity v or velocity
error &v; and acceleration a or acceleration error 6a. A nominal
state is defined to include the nominal position r, the nominal velo-
city Vv, and the nominal acceleration a. The relationship between the
true state vector x, the nominal state vector X, and the perturbation '

state vector §x 1is as follows:

r T+ er

_ _ i
X = v = x+8x = v+ 6V (5.1) i
a a + éa

The goal of the following development is to determine a linear ¥
system model suitable for Kalman filter application. In matrix-vector

notation, a linear model has the form ?

X = A(t)x + B(t)u (5.2)

where: x 1is the state vector which, for navigation algorithms,
usually includes a position error, a velocity error, i
and an acceleration error, and

B(t)u 1is a random forcing function.

There are many assumptions that can be made in the development '
of the basic system model. Changing any of the assumptions may result

in a different system model or different expressions for the parameters

of the model. In the following, a specific sequence of assumptions,
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intuitive approximations, and engineering decisions will be outlined.
The result is a system model that has been numerically tested with good f
results. In addition, the model has some characteristics that make it

desirable for sequential filter applications. Perhaps the most desirable

characteristic of the model is that the gain terms have non-zero steady-

state values. Other intuitively pleasing characteristics include:

1. The model approximates exponentially correlated accel-

eration; ;
2. There is a finite upper limit on acceleration uncertain- {

tys ;
3. The exponentially correlated model has a finite power

spectrum.

For the one-dimensional case, the prescribed system model will
consist of position r, velocity v, and acceleration a. The govern-

ing equations for the prescribed model are as follows: i

Posov,or(t) =
Vs oa, vy = oy (5.3) J
where: a is a random variable with statistics
Efa(t)] = a(t) = a (5.4a)
Ef(a(t) - Efa(t)])(alx) - ELa(x)])]

of exp(-glt - ) (5.4b)
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Some remarks on Eqs. 5.3 and 5.4 are in order. If one con-
siders the set of all possible realizations of a system, then at
t-= tk the state can only be specified in terms of the mean and co-
variance of the entire set. A subset can be defined, however, which
consists of all members of the set whose state at t =t  has the
realization s Vi and a . It is this subset which constitutes the |
ensemble described by Eqs. 5.3 and 5.4. |
The filter model to be developed from Eqs. 5.3 and 5.4 is
used for each of the three aircraft directions. No correlation between ;

the directions is assumed. The model will be referred to as an accel-

eration dead-reckoning model with exponentially correlated random ac-
celeration. A random variable with the a oriori statistics described
by Eq. 5.4b will be referred to as an exponentially correlated random
variable (ECRV).

The solutions to Eqs. 5.3 are given by [5:Par. 2-3]:
t

r(t) = 4y (t-t) +ftka(s) (t-s)ds (5.5)
t
v(t) = v+ [als) ds (5.6)
Y
where: the integrals are stochastic integrals. ;
If the nominal state is defined to be the mean solution to vﬂ

Eq. 5.3, then taking the expectation of Eqs. 5.5 and 5.6 yields i




r(t) = E[r(t)]
ak(t - tk)2
= Y‘k + Vk(t - tk) + — (5.7)
v(t) = E[v(t)] = Vi t ak(t - 4 ) (5.8)

Unfortunately, the statistics of Eqs. 5.4 cannot be accommo-
dated by ¢ Xalman filter. The system models of Eqs. 5.3 and 5.4 can,
however, be transformed into a model that satisfies the uncorrelated
noise restriction of the Kalman filter. This transformation is
accomplished by adding to Eq. 5.3 an acceleration state which is driven
by a white noise forcing function. This "augmented state" method is
referred to as Wiener-Kolmogorov whitening in Singer [68]. Bucy and
Joseph, [69:147] refer to the method as the Bode-Shannon technique of
approximating the spectral density. The method is an application of
a theorem quoted by Kalman [8:45] that "Given any random process with
mean E[x(t)] and covariance E[x(t)x(t)] , there exists a unique
Gaussian random process with the same mean and covariance."

The transformation of the random process of Egs. 5.4 can be
accomplished by using the Wiener-Khintchine theorem which states that
the autocorrelation function and the power spectrum form a Fourier

transform pair [70:431]. The power spectrum of white noise is given

by

Foldw) =/ exp(-juz)q,8(z) dz = q, (5.9)

-

where: q, is the spectral density of the white noise; and

§ is the Dirac delta function.
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The power spectrum of the ECRV of Eqs. 5.4 is derived as

follows:

Fo(jm) ! exp(-jwz)oﬁ exp(-g|z|) dz

2802

5 (5 (5.10)

The transfer function of the shaping filter can be derived
from Eqs. 5.9 and 5.10 as follows [67] [69:271]:

Zsoi

i) = moTote v 3ar

= 1 1
T F ¥ o F-Ju Ya (5.11)

Fo(du) Fo(-ju) F,(ju) (5.12)

The transfer function of the shaping filter is obtained by

setting ju = s to obtain the Laplace transform.

Fo(s) = 3 ! 5 (5.13)

The time domain representation of the shaping filter is given by

sa = -gsa+w,, sa(t) = 0 (5.14)
a = 0, a(t) = a (5.15)
where: w, is a white noise forcing function with statistics

i
i
|
1
|
|1
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E[wa] = 0
EDw,(th ()] = 2802s(t - 1) = qs(t- 1) (5.16)

The mean of Eq. 5.4a is satisfied by a using Eq. 5.15. The
mean of Sa must therefore be zero. By specifying zero initial con-
dition and zero mean white noise, the mean of da 1is zero and the mean
of the shaping filter satisfies Eq. 5.4a. Note that if the accelera-
tion a were modeled in Eq. 5.14 instead of da, then the mean of
Eq. 5.4a would not be satisfied. It will be shown (Par. 5.2.4) that

the correlation function of Eq. 5.4b is satisfied under certain condi-

tions.
Equations 5.14 and 5.15 describe the random variable

a=a+3sa as a constant with a region of uncertainty given by

og(t) = og(tk) exp(-28(t - t.))

9,
+ ?E'[] - exp(-28(t - tk))] (5.17)

where: 9, *© ZBoi.

Equation 5.17 will be derived later in this chapter.
Figure 5.1 illustrates the random variable a with regions

of uncertainty based on a value of oi

and two values of correlation
time. Initial uncertainty Os(tk) is assumed to be zero. Figure
5.1 also illustrates the result of an estimation of acceleration at a

time ¢t ., which results in an estimate 5k+1 and an a posteriori
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Figure 5.1 Exponentially Correlated Random Acceleration
Covariance Propagation.

variance of °§(tk+1)' Note that the region of uncertainty has a {

finite steady state value equal to m :
More details on shaping filters are available in Sorenson and

Stubberud [65:15-20], Kochenburger [71:434-439], Wiener [7:Chap. 2],

and Laning and Battin [72:217-218]. ¥
If the random variable a = a + sa is substituted into 1

Eqs. 5.5 and 5.6, and the expectation operator applied, then Eqs. 5.7

and 5.8 will remain valid. If the state vector is to consist of s&r

and é&v, the error quantities, then Eqs. 5.3 become

+ 8r (5.18)

n

s}

vV + v, F(tk) + Gr(tk)

H
-~
o

+ 5V (5.19)

<]

a +sa, V(tk) + av(tk)

H
<
~




Equations 5.18 and 5.19 can be separated as follows:

voe W T < or (5.20)
Vs oa vit) = v (5.21)
sr o= v, er(t) = 0 (5.22)
sv = 6a, sv(t,) = 0 (5.23)

The system defined by Eqs. 5.15, 5.20, and 5.21 has the mean solution
of Eqs. 5.4, 5.7, and 5.8. The filter model is given by Eqs. 5.14,
5.16, 5.22, and 5.23. Note that the statistics of the filter model,

Eq. 5.16, are consistent with the restrictions of the Kalman filter.

§5.2.3 Summary of the aircraft model equations. In summary,

the specified aircraft model of Eqs. 5.3 and 5.4

ro=ov,or(y) = or (5.3)
vo=oa, v(t) = v (5.4a)
where: Efa(t)] = a(t) = a
E[(a(t) - E[a(t)])(a(+) - E[a(1)])]
= olexp(-8|t-1]) (5.4b)

is whitened to determine a form compatible with the Kalman-Bucy filter.

The mean state propagates according to Eqs. 5.4a, 5.7, and 5.8.




The state used by the filter is governed by Egs.

5.23.

where:

In matrix form,
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Tt = no* v lt-t) + 3 (t-1,)%/2 (5.7)
v(t) = P ak(t-tk) (5.8)
a(t) = a (5.4a)

sr o= v, sr(t,)
sV = sa, sv(t,)
sa = -g da+ Wy sa(t,)

Elw,] = 0
Elwy (th,(1)] = 28 oZs(t-1)

the filter model is

j = Ax + By

ET = [sv, ér, sa]
0 1 0

A = 0 0 1
0 0 -8

.14, 5.16, 5.22, and

0 (5.22)
0 (5.23)
0 (5.14)

(5.16)

(5.2)

(5.24)

(5.25)

(5.26)
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5.2.4 Proof of the shaping filter. It will now be shown that

the random process which is the solution to the shaping filter of Egs.

5.14, 5.15, and 5.16 duplicates the mean and covariance of Eq. 5.4. The

solution to Eq. 5.14 for arbitrary 6a(tk) is

sa(t) = 6a(tk)exp[—8(t-tk)]
t
+ wa(s)exp[-B (t-s)]ds (5.27)
Y
where: the integral is a stochastic integral.

The solution of the random process a = a + sa is given by
a(t) = a + sa(t)exp[-8(t-t,)]

t
+ { wa(s)exp[-e(t—s)]ds (5.28)
k

Taking the expectation of Eq. 5.28 yields
Ela(t)] = E[a] + E[sa(t,)]exp[-8(t-t,)]  (5.29)

If at each time ti the estimate of the acceleration perturbation is

set equal to zero and Eq. 5.15 is initialized with an unbiased estimate

of acceleration, then Eq. 5.29 yields
Ha(t)] = a

The mean statistic of Eq. 5.4a is therefore satisfied.
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The covariance kernel is determined by
P(t,1) = E[(a(t)-Efa(t)])(a(+)-E[a(1)])] (5.30) :
Using Eqs. 5.28 and 5.29 gives
P(t,r) = } / Elw,(s)w,(r)Jexp(-p(t-s))exp(-n(t-r))drds
% Y& (5.31)

Substituting Eq. 5.16 into Eq. 5.3

P(t. ‘)

]
[ A e d

e
s ZBoﬁS(r-s)exp(-ﬁ(t-s))exp(-s(t-r))drds (5.32)
t

k “k

Note that the Dirac delta function is zero if r # s. Assum-
ing that t > v ~ tk‘ the upper limit of the outer integral of Eq.
5.32 can be changed to 1 since s ~ 1, §(r-s) is equal to zero.

1

t
P(t,:) = s 2Bo£ﬁ(r-s)exp(-ﬁ(t-s))exp(-u(x-r))drds (5.33)
t, t
k "k

At this point, the integral property of the Dirac delta function

{
s s(r-s)g(r)dr = g(s), if t, LS s (5.34)
Y

is applied to Eq. 5.33 giving

1
P(t,1) = ZSoﬁexp(—B(t-S))exp(-ﬁ(1-5))ds (5.35)
t
k

Evaluating the integral in Eq. 5.35 yields

P(t.t) = nﬁexp[—ﬁ(t-l)] - uiexp[-s(t-tk)]exp[-s(x-tk)] (5.36)




Equation 5.36 immediately provides the solution to the propagation of

the covariance of the acceleration.
2 _ 2
oa(tk+At) = um[1 - exp(-28at)] (5.37)

Unfortunately, Eq. 5.36 does not satisfy the variance statistic of
Eq. 5.4b unless tk = -», Satisfaction of this requirement implies
that the shaping filter has reached steady state. Accordingly, the
initial covariance term for the exponentially correlated acceleration
state must be specified as ci the steady state variance.
Jazwinski [60:123] also showed that the random process of Egs.
5.14 and 5.16 resulted in an ECRV. He avoided any requirement on
t <0 by specifying that the initial condition 8a, was a random
variable with mean zero and variance cg.
This steady state requirement is of greatest concern when an

ECRV is to be simulated. In a simulation, either the initial condition

2

must be a random variable with zero mean and variance %

or the pro-
cess should be run for several time constants (correlation times) be-
fore exponential correlation is required. In filter model applications,
the initial time is the time of the last measurement and almost never

has a variance equal to 62 nor is the time between measurements Tikely

m
to be several time constants. Despite this discrepancy in the rigorous
sense, the state augmentation method will be used because it is easily

implemented. It should be noted that the assumption of exponential

correlation is itself an approximation.

.
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5.2.5 State transition matrix and covariance matrix propaga-

tion. As implemented in the filter, the covariance matrix is propa-

gated using the concepts of Par. 4.5,

dt.t) = A(t)e(tat ), olt,t) = 1 (5.38)
F(t) = A(t)r + TAT(t) + B(t)a(t)8T(t), r(t,) = 0O (5.39)
Plteyy) = oty st dPlE)O (gqaty) + Tlt) (5.40)

If the correlation times and the measurement interval at
are fixed, Eqs. 5.38 and 5.39 can be solved analytically. The results,

with tk+1 = tk + At , are:

po N -1
1t ¢ra(s) F1 t 0 +BAt+exp(-BAt)]/62
o(t tat,t) = |0 1 ¢pal8) = [0 1 [1 - exp(-Bat))/8
0 0 ¢..(8) 0 0 exp(-gat)
| aa ) i J
(5.41)
[ at3 at? ]
a8t *+q, 3+ q, Yee(8) aQ, F* Ay (8)  Qvya(8)
st
ritat) = la, 5+ Qg v (8) q, ot +a,v, (8)  q,v,.(8)
Ay YpalB) q, Yyal8) Q,Yaa(8)
(5.42)
where: Qs Qys and q, are the diagonal elements of the spectral

level process noise covariance matrix, BQBT; and
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y elements are as follows:

Yer

[-exp(-2gat) - 48at exp(-8at)

+ 2(gat) %3 - 2(gat)? + 2gat + 13/(28°)
w5[1/20 - 8at/36 + 5(8at)2/504 - (8at)>/360
+ 17(gat)%/25920 - 21(gat)°/302400 + ...]
[exp(-2gat) + (28at-2)exp(-gat)

+ (BAt)2 - 2gat + 1]/(284)

atd1/8 - at/12 + 5(3At)2/144 - (BAt)3/90
« 17(sat) /5760 - 41(8at)°/60480 + ...]
[-exp(-28at) - 28at exp(-gat) + 1]/(283)
2t3[1/6 - sat/6 + 11(sst)?/120 - 13(pat)3/360
+ 19(sat)%/1680 - (822)%/336 + ...]
[-exp(-28at) + dexp(-gat) + 2gat - 3]/(233)
st3[/3 - sat/4 + T(sat)2/60 - (sat)%/2e

+ 31(sat) /2520 - (8at)>/320 + ...)
[exp(-28at) - 2exp(-gat) + 11/(28%)

wt2[1/2 - sat/2 + T(sat)?/26 - (pat)*/8

+ 31(pat)Y720 - (8at)°/80 + ...]

[1 - exp(-28at)1/(28)

at[l - sat + 2(8At)2/3 - (eAt)3/3

+ 20eat) 415 - 2(aat)®ra5 + ...]

e
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For convenience, At will not be incorporated into the argument list of ¢

of the y elements or the elements ¢ and ¢aa'

ra’ va’

For the discrete process noise matrix T the solutions are ’
given both in a closed form and in a power series form. The power
series are shown because the analytical expressions are numerically ill-
conditioned if gAat is small. The state transition matrix can also be
numerically ill-conditioned for small pgat. The power series expres- i
sions for the state transition matrix elements are easily formed from
Eq. 5.41.

Use of Eqs. 5.41 and 5.42 eliminates the need for numerical
integration in the filter implementation. State propagation is accom « )
plished using Eqs. 5.7, 5.8, and 5.4a. Covariance matrix propagation j
is accomplished using Eq. 5.40 Qhere the state transition matrix and i
the discrete process noise matrix are pre-calculated. 4

The GPS filter mechanization includes three independent dimen-
sions, each modeled in accordaice with the one-dimensional analysis out-

lined here. Obviously, the parameters for the three dimensions need not

be identical.

5.2.6 Measurement bias state. The measurement bias errors

included in tﬁe state vector were selected based on the possible magni-
tudes of the bias errors and their effects on the measurements. The

user clock bias and clock drift errors can become Enacceptably large un- i
less the user has a calibrated atomic standard. The user clock bias and |
clock drift errors will cause one-for-one errors in the pseudo-range and

pseudo-range-rate measurements respectively. For example, a user with a ”




flat frequency stability of one part in 108 on an Allen variance curve
will have a clock bias uncertainty equivalent to 10 km after one hour.
This implies that the uncertainty of the pseudo-range measurements will
be at least 10 km. The pseudo-range-rate measurement will have an un-
certainty of 3 m/sec.

Altimeter bias errors can also become large although they do
not take on the unbounded character that the clock errors can have.
Cole [73] provided an analysis of a 300 millibar pressure surface which
is near the 9 km level. Standard deviations of the distance-correlated
data ranged from 90 meters to 180 meters. Standard deviations for time-
correlated data ranged from 40 meters for one-half hour to 60 meters
for four hours. Lear [56] analyzed atmospheric data and, for a 9 km
level, determined a standard deviation of 315 meters with sea level
pressure updates and a standard deviation of 340 meters if no sea level
pressure updates are used.

The altimeter bias error was included as a state because:

1. Expected errors are on the order of the ambiquity in
the C/A PRN code;

2. The altimeter bias error is a correlated error;

3. The effect on the altimeter measurement is one-for-one,
i.e., a one meter bias error leads to a one meter altimeter error in

the altimeter measurement.

The state vector could include the various noise sources that
contribute to the measurement errors. Since the forcing functions of

the simulated error sources are uncorrelated random variables (within
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the capabilities of the random number generator), a filter that in-
cludes all the simulated error sources could be designed within the
restrictions of a Kalman filter. For simplicity, however, a single

state for each of the measurement biases was assumed adequate.

5.2.7 Measurement bias error models and statistics. To prop-

erly evaluate the performance of the aircraft model, the measurement
bias models and statistics used in the filter should closely match the
models and statistics used in the simulation within the constraints of
the filter. To corrupt the measurement bias model statistics would
cause non-optimal filter performance even if a perfect aircraft model
ijs available. Using the best information for the measurement bias
models places the burden of performance on the aircraft model.

The simulated clock drift used only an exponentially correlated
noise term. The filter model for the clock drift used the correlation
time that was used in the simulation and a state model identical to the
aircraft acceleration model. The spectral level process noise was ad-
justed so that the discrete process noise resulted in a value equal to
the variance of the simulated forcing function. The clock drift forc-

ing function of Eq. 3.21 has the form
of[l - exp(-ZIBfAt:)]]/2 We

where: o¢ is the standard deviation of the clock drift;
Be is the inverse correlation time of the clock drift;

At is the time interval (1.25 sec); and

is a random number, N(0,1).

We
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The discrete process noise for an ECRV from Eq. 5.37 is

9
e = 55% (- exp(-ZBfAt))
The spectral noise Qe required to match the simulated ECRV is there-
fore
2
9 2 Bgoe (5.43)
which is the result for an ECRV at steady state.

The formulation of the filter model automatically accounts for

the effect of clock drift errors on clock bias errors. The simulation,
however, also included a random walk term as an additional clock bias
error source. For a random walk, the relationship between the discrete

process noise and the spectral level process noise is represented by
y = qat (5.44)

Since the simulation used the forcing function oy w, (see Eq. 3.20)

the requirement to match the simulation of the random walk is
- 2
Q, = op /4t (5.45)

The simulated altimeter bias included errors from two sources:
a sea level bias error and a distance correlated term. In the filter,

the altimeter bias error is modeled as an ECRV with a constant correla-

tion time of 500 seconds. The correlation time associated with the
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simulated correlation distance of 100 km and the maximum aircraft speed
of 240 m/sec is 417 seconds. As in the clock drift term, the relation

between the spectral level noise and the standard deviation used in the

simulation is

2
Q. = 2 8,0
h h h2
where: oﬁ is defined in Eqs. 3.40 and 3.42.
2

For the altimeter, the variance of the correlated error was specified as
a function of altitude in the simulation. The filter model used the
same function to determine the variance of the altimeter bias noise
magnitude. It should be noted that this violates the assumption of
stationarity implied in the development of the state augmentation method
since the statistics are a function of altitude. Again, this failure

of the method in the rigorous sense will be overruled based on engineer-
ing judgement.

The portion of the model that is associated with the measure-
ment bias states can be described independently of the aircraft model.
In the following, a summary of the measurement bias model is given
which includes the values of the parameters selected to match the simu-

lated biases. The differential equation for the measurement biases is:
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o
o v Gy

r T r - ﬂ
d |sa = 0 0 1 Sa, 1+ {u
at 1 1 b

-1/500 O 0 ath (uh-l

= 0 0 1 sa | +[uy (5.46) ‘

0 0-1/1800]|6a,i |ug t

I e Lr ,

The statistics for the filter assumed process noise terms are given by: [

E[ UhJ = 0 i

ELu (1)) = qys(t-n)

2(1/500)(2.72 + (.0035 h(t))2)s(t-1)

.002916 & (t-1) me/sec? (5.47)

where: the altimeter statistic is evaluated at zero altitude.

The clock bias noise term for the simulated random walk has statistics:

E[ub] = 0

ELuy(thuy ()] = q8(t-t) = .0072 &(t-r) mé/sec?
(5.48)

T N I e e R £ TP T




The clock drift filter statistics are given by
E[ufJ = 0
E[uf(t)uf(r)] = qfd(t-r) = .0001 &§(t-<) mz/sec4 (5.49)

The state transition matrix for the measurement bias portion of the

model is ;

3 ﬁ ‘ '
¢,a(8y) 0 0
o(t+at,t) = 0 1 ¢va(8f)
0 0 ¢,,(8¢)
L p
.9975 0 0
= 0 ] 1.24956 (5.50)
0 0 .99931
where: the terms ¢aa and va refer to the results described in

Eq. 5.41.

The discrete process noise matrix for the measurement bias model is

thaa(Bh) ‘ 0 0
r = 0 qut + qfYVV(Bf) Qvaa(Bf)
L 0 Qvaa (Bf) qf"aa(Bf)
.0364 0 0
_ -4 -5
= 0 9.651x10 7.807x10 (5.51)
0 7.807x107° 1.249x1o‘fj
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The initial errors and the initial covariance matrix are given in 4
Table 5.1, \

i
5.3 Measurement Rejections ]

To simulate signal dropouts and measurement rejections, the

measurements are randomly rejected. Satellite measurements are reject-

ed five percent of the time and altimeter measurements are rejected two
percent of the time. When a measurement is rejected, the covariance
matrix is propagated and the state is predicted based on the a priori
information. Therefore, the contributions to the performance measures
Tisted below are due solely to a priori data when a measurement is

rejected.

5.4 Uncorrelated Measurement Noise

To simulate uncorrelated measurement noises, the filter test
program adds Gaussian noise to the satellite indicated clock time, the
pseudo-range-rate measurement, and the altimeter measurement. The

standard deviations of these uncorrelated noises are as in Table 5.2.

Table 5.2 Additional Gaussian Measurment Noise

Standard Deviation
Indicated Satellite Time 1. meters (~3.33 nsec)

Pseudo-Range-Rate .02 m/sec (.0667 nsec/sec)

Altimeter 20. meters
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The filter assumed the measurements to have uncorrelated noise with

the standard deviations of Table 5.3. The assumed noise magnitudes of o]

Table 5.3 should bound the values in Table 5.2.

Table 5.3 Measurement Noise Assumed by the Filter

Standard Deviation
1/2

Pseudo-Range (25. + 6.25 csczel) meters
Psuedo-Range-Rate .1 m/sec
Altimeter (400 + h% x 1076172 neters

5.5 Testing the Selected Model

5.5.1 Independent variables for sensitivity studies. The

model has been selected and must be tested using the simulation of

Chapter 3. Values have been assigned to most of the model parameters.
The measurement bias model parameters are specified to match the simu-
lated biases. (See Para. 5.2.7.) The initial condition statistics for
both the aircraft and the measurement states are chosen to be consist-

ent with the errors in the initial state. The aircraft inverse correla-

tion times 8 and the maneuver variances oﬁ (or the spectral level

aircraft noise q = Zeoﬁ) remain to be specified. Values of correla-
tion time and maneuver variance will be identical for all aircraft di-
mensions. This will decrease the number of variables considered in the Eﬂ
sensitivity analysis. |

Prior to proceeding with the sensitivity study, limits on the 4

values of maneuver variance and correlation time were selected. 3




Correlation time limits were one second to 50 seconds based on sug-

gestions in Singer [68], Hampton [74], and Kanyuck [75].

Singer used

a probability density function as in Figure 5.2a and arrived at the

variance

m

o2 = ol [1+4P(a,) - P0O)Y3

(5.52)

Asher [76] suggested the use of a double triangular density as in Fig-

ure 5.2b to arrive at

o2 = (a2 +a. a 2 2)/6 (5.53)
P(a)
ikp(o)
1 - (P(0) + 2P(a__.))
fp(amax’ ( ;a) max_ g P(anax)
max
—amax amax

Figure 5.2a Acceleration Probability Density (Singer [68])

P(a)

———=1/a

max

|
)
|
i
|
-a

-G

max m
Figure 5.2b Acceleration Probability Density (Asher [76])

e e o o

m
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The possibilities are limitless. An upper limit on maneuver variance

was chosen by assuming a density function as follows:
] 2
P(a) = 5y oA T 1.5 m/sec
= 0, a ¢ 1.5 m/sec:3 (5.54)

The maximum longitudinal acceleration* allowed in the simulation is 1.5
m/secz. Knowing this basic fact about the aircraft, the maximum uncer-
tainty for any acceleration estimate should be 1.5 m/secz. This can be
assumed to be the steady state value for the variance though additional
information on flight conditions would change the value. The manuever

variance upper limit was chosen, therefore, as 7.24 mz/secd. The lower
Timit was selected during the optimization process as that value which

did not yield acceptable filter performance.

5.5.2 Optimization baseline. The independent variables for

optimization of the filter are the correlation time & and the maneuver
variance nﬁ. These parameters will be identical for each aircraft di-
rection. The optimization effort involved analyzing the performance of
the filter for the first 600 seconds of flight. This portion of flight
ts characterized by a mancuvering aircraft trajectory (takeoff and de-

parture) and a worse than average geometry with three satellites visi-

ble. A difficulty encountered in the study was the choice of performance

*

In the simulation, this acceleration limit applies to longitudinal
accelerations but does not necessarily bound the lateral and vertical
accelerations.
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indicator. No single quantitative value is adequate to rank the per-
formance of the filter with varying parameters. Table 5.4 summarizes
the results of the optimization effort using the following performance

measures:

*
1. RSS position error in meters (RSS POS ERR): Effec-
tively, the North, East, and Down components are combined for n measure-

ment intervals using

i

L p () mxg (80)2 + (ko () oxe(£:))2
oLy PUWERHITNY EVS e
. 2 1/2
b (xplt,)-%y (80123 (5.55)

2. RSS velocity error in m/sec {(RSS VEL ERR): Similar
to RSS position error except the velocity states and covariances were
used.

3. Maximum position component error in meters (MAX POS
ERR): This term is the maximum position error that occurs in any compo-
nent direction. Because of the satellite geometry the North component
usually was the source for this term. The value is suffixed with an "E"
if the maximum error is in the East direction or with a "D" if the maxi-

mum error is in the Down direction.

*
The parenthetical mnemonics will be used later in this report to
represent the corresponding performance indicator.
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4. Maximum velocity component error in m/sec (MAX VEL
ERR): Similar to maximum position component error except the velocity
errors were used.

5. Position RSS error/standard deviation (POS ERR/SIG):
The ratio of the RSS position error to RSS position standard deviation.
In an ideal situation, this term should be approximately unity indicat-
ing that the filter estimates its error accurately, i.e., it is not too
conservative nor too optimistic,

6. Velocity RSS error/standard deviation (VEL ERR/SIG):
Similar to position RSS error/standard deviation except using the velo-
city terms.

7. RSS final cycle position error in meters (FIN POS
ERR): Similar to RSS position error except the summation applies only
for the last cycle of measurements.*

8. RSS final cycle velocity error in m/sec (FIN VEL
ERR): Similar to RSS final cycle position error except velocity terms

were used.

9. RSS position standard deviation in meters: Similar

-~

to RSS position error except the position terms of the covariance matrix

were used.
1/2

1 n
m Ly P (8D + Py (8 + Py (80)) (5.56)

' cycle of measurements includes a pseudo-range and pseudo-range-rate
measurement from each satellite and an altimeter measurement.

oy

e e g e e e o L
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Table 5.4 Initial Evaluation of Exponentially Correlated Random Acceleration Filter

Maneuver
Variance

(m2/sec4) 1.00 3.33 5.00 6.25 10.00 20.00 33.33 50.00

" Cerrelation Time (sec)

RSS Positinn Error (m)

2.25 107.20 69.37 63.99 62.11 59.83 58.75 58.75 59.04
.75 163.92 94.03 80.70 75.55 68.60 64.65 64.41 65.40
.375 220.33 | 122.63 | 101.57 93.05 81.07 73.86 73.57 75.70

.1875 299.32 | 165.98 | 135.01 | 121.97 | 103.1 91.38 91.13 94.94
.0225 786.26 | 455.53 | 379.77 | 343.94 | 285.01 | 241.35 | 235.94 | 243.92

RSS Velocity Error (m/sec)

2.25 19.18 12.77 11.18 10.55 9.68 9.19 9.17 9.30
.75 24.98 17.19 14.90 13.88 12.31 11.24 11.15 11.40
.375 29.45 20.81 18.06 16.78 14.76 13.32 13.21 13.58
.1875 34.59 25.07 21.89 20.37 17.92 16.17 16.07 16.60
.0225 55.06 43.13 39.38 37.38 33.76 30.90 30.72 31.52

Maximum Position Component Error (m)

2.25 301.31 | 183.37 | 157.20 | 149.77 | 147.33 | 149.19 | 153.36 | 157.68
.75 442.08 | 254.11 | 214.77 | 196.33 | 183.18 | 180.71 | 188.04 | 197.88
.375 575.59 | 314.87 | 264.53 | 241.57 | 225.84 | 219.26 | 224.46 | 232.84

.1875 760.01 | 418.98 | 329.33 | 298.14 | 270.84 | 258.47 | 260.80 | 267.47
.0225 1805.84 (1081.83 | 896.48 | 805.01 | 659.65 | 549.08 | 532.32 | 548.54 |

Maximum Velocity Component Error (m/sec)

2.25 43.44 32.82 30.72 30.13 30.33 30.57 30.48 30.20
.75 54.24 41.66 37.72 35.84 33.00 31.55 31.62 32.78
375 63.45 47.45 43.82 41.94 38.82 36.74 36.94 37.88
.1875 74.44 52.93 49.32 47.52 44.29 41.87 41.82 42.54

.0225 121.64 91.40 80.82 75.55 67.23 60.14 58.09 58.34

Position RSS Error/Standard Deviation :

2.25 2.06 1.22 1.1 1.07 1.03 1.04 1.07 . g
.75 3.51 1.86 1.57 1.46 1.33 1.27 1.29 1.34
.375 5.01 2.58 2.10 1.92 1.66 1.53 1.55 1.61
. .1875 7.18 3.70 2.96 2.66 2.23 1.98 1.99 2.10
i .0225 21.59 11.66 9,53 8.54 6.96 5.81 5.67 5.88
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Table 5.4 Initial Evaluation of Exponentially Correlated Random Acceleration Filter
(Continued) !

[ Waneuver
Variance

(m2/sec4) 1.00 3.33 5.00 6.25 10.00 20.00 33.33 50.00

Correlation Time (sec)

Velocity RSS Error/Standard Deviation

2.25 2.83 1.39 1.16 1.08 1.02 1.00 1.09 1.20 |
.75 | 5.64 2.81 2.28 2,08 1.87 1.73 1.84 2.01 ;
.375 8.67°| 4.38 3.53 3.19 2.72 2.51 2.63 2.86 {
.1875 13.24 6.75 5.43 4.88 4.10 3.70 3.82 4.12 i

.0225 44.76 23.12 18.72 16.78 13.76 11.67 11.46 11.88
RSS Final Cycle Position Error (m)

2.25 43.01 60.06 59.71 58.95 56.28 | 50.64 l " 46.01 42.32
.75 24.97 44.96 56.49 | 44.54 | 42.62 38.44 34,94 32.25
.375 16.85 32.88 34.82 34.90 | 34.18 | 31.53 | 29.17 27.50
.1875 22.51 18.7 23.61 22087 | 26.06 25.66 24.84 | 24.36
.0225 21.00 80.68 | 40.40 23.38 12.02 18.48 | 22.69 26.30

RSS Final Cycle Velocity Error (m/;ec)

2.25 1.1 4.88 5.13 5.17 4.96 4.12 3.39 2.87
J5 . 2.23 2.59 2.85 2.89 2.81 2.41 2.08 1.86
375 3.33 1.52 1.91 1.98 2.00 1.82 1.66 1.55
.1875 4.28 ) 1.27 1.37 1.47 1.46 1.40 1.35
.0225 6.97 4.53 1.68 N .52 .79 .87 .90

| RSS Position Standard Deviation (m)

2.25 ' 52.03 56.93 57.84 58.07 57.92 56.39 54.70 53.25
J5 46.73 50.70 51.50 51.74 51.78 50.88 49.83 48.92
.375 44.01 47.54 48.30 48,56 48.74 48.24 47.55 46.91
.1875 41.66 44.88 45.63 45.93 46.26 46.14 45.73 45.30
.0225 36.43 39.06 39.87 40.26 40.96 41.53 41.61 41.51

RSS Velocity Standard Deviation (m/sec)

2.25 6.79 9.17 9.67 9.8] 9.82 9.17 8.41 7.74
.75 4.43 6.12 6.54 6.69 6.80 6.51 6.07 5.67
375 3.40 4.76 5.12 5.27 5.43 5.30 5.02 4.74
.1875 2.61 an 4.04 4.18 4,37 4.37 4.21 4.03
.0225 1.23 1.87 2.10 2.23 2.45 2.65 2.68 2.65
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10. RSS velocity standard deviation in m/sec: Similar
to RSS position standard deviation except the velocity terms of the co-

variance matrix were used.

The data in Table 5.4 were generated with the approximation
%1212 = 1 whereas the correct value should be 12,12 = exp(-1.25/1800)
= ,9933. This discrepancy was corrected for the full flight test runs.
In all cases, the differences in performance did not affect the tend-
encies illustrated in Table 5.4. It was therefore decided that the
optimization runs yielded an adequate indication of the sensitivity of
the performance to the values specified for m and B. This approxi-

mation to $12.12 Was corrected for subsequent tests.

5.5.3 Full flight tests. Based on a qualitative analysis of

Tubles 5.4, four pairs of maneuver variance and correlation time were

chosen for further analysis. The choices are:

2

Case 1. Oy = 2.25 mz/sec4, 1/8 = 20 sec; This pair

of parameters resulted in low RSS errors and low maximum errors. Also,
the ratio of RSS error to standard deviation was near unity. The para-

meters are representative of a turning aircraft.
2=
m

of parameters provided a good final state estimate. At the final time,

Case 2. o 0.1875 m2/sec4. 1/8 = 1 sec; This pair

the aircraft is climbing to altitude and no turns have been initiated

for about 200 seconds. The parameters are representative of cruising

flight with some turbulence.
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2=
m
of parameters was selected because it has the same maneuver variance v

Case 3. o 0.1875 mz/sec4, 1/8 = 20 sec: This pair

as Case 2 and the same correlation time as Case 1.

2 _

Case 4. O = 2.25 mz/sec4, 1/8 = 1 sec: This pair of

parameters was chosen because it has the same maneuver variance as Case

1 and the same correlation time as Case 2.

Tables 5.5 through 5.8 summarize the performance of Cases 1
through 4. The performance measures for each flight phase are as

described in Par. 5.5.2. Figures 5.3 through 5.6 are plots of the

estimator errors and the estimator standard deviations for Cases 1
through 4. The errors plotted are the RSS of the errors for an inte-
gral number of measurement cycles except for the first 18.75 seconds

of Phase 1 when the absolute value of the error is plotted after each
measurement interval. The standard deviations are the square roots of
the appropriate diagonal elements of the covariance matrix. The plotted
standard deviations (dashed lines) are calculated in the same manner as
the plotted error curves (solid lines). This plotting method was chosen
to reduce storage and computer time. Because of the use of RSS values,

two cautions should be observed in the interpretation of the error
curves:

1. The plotting method gives a smoother curve than that
which would result if the errors after each measurement were plotted.
2. Sign changes are not shown. An important example

of a sign change occurs when satellite number 5 crosses its zenith.
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At this point, the East position error and the user clock errors
change signs. The error curves, however, show only a sudden dip in
error.

The entire flight is analyzed using parameters identical to
those in Table 5.4 except that the summations are applied only for
selected flight phases. The time limits and characteristics of the

flight phases are as follows:

Phase 1. 0 < T < 598.75 sec; During this portion of
flight, the aircraft executes the departure trajectory and begins a
cruise to altitude. Three satellites are visible with a poor geometry.

Phase 2. 598.75 < T < 1013.75 sec; Climb to altitude
continues. Three satellites are visible and the geometry is poor.

Phase 3. 1013.75 < T < 1295.00 sec; Cruising alti-
tude is reached near the end of this phase of flight. Four satellites
are visible. The geometry is very good.

Phase 4. 1295.00 < T < 2760.00 sec; The aircraft is
at cruising altitude. Three satellites are visible with an extremely
bad geometry near the end of this flight phase.

Phase 5. 2760.00 < T < 5100.00 sec; The aircraft con-
tinues its cruise. Three satellites are visible and the geometry im-
proves through this flight phase.

Phase 6. 5100.00 < T < 6687.00 sec; This flight

phase includes approach and landing. Three satellites are visible and

the geometry is good.
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Table 5.5 Case No. 1 Performance (o: = 2.25 m2/sec4. g = 1/20 sec") !

- ew e

Flight Phase Final Times (sec)
598.75 |{1013.75 |1295.00 |{2760.00 15100.00 [6687.50

RSS POS ERR | 58.66 | 139.66 | 18.98 | 236.35 | 101.07 | 52.62
RSS VEL ERR 9.18 | 2.64 82 | 2.m 1.81 | 2.50 .
MAX POS ERR | 149.36 | 227.89 | 128.45 | »72.41 | 312.17 | 110.60D ;
MAX VEL ERR | 30.58 | 6.27 | 1.85| 10.92 | 13.27 | 18.62 !
POS ERR/SIG .06 | 175 | 1.0 86 | 1.13| 1.65
VEL ERR/SIG 1.00 .36 .14 .30 .31 .66

4

Table 5.6 Case No. 2 Performance G’i = ,1875 mz/sec B =1 sec'])

Flight Phase Final Times (sec)

598.75 {1013.75 {1295.00 {2760.00 {5100.00 [6687.50

RSS POS ERR 298.96 | 125.35 18.15 | 211.17 97.20 50.08
RSS VEL ERR 34.57 2.18 .32 1.08 2.79 3.40
MAX POS ERR 758.56 | 221.41 | 122.4) | 708.81 | 273.36 | 105.98
MAX VEL ERR 74.39 4.58 1.30 5.13 2.79 19.98
POS ERR/SIG 7.18 1.66 1.08 .81 1.14 1.66
VEL ERR/SIG 13.24 .85 .22 .40 31 2.47
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Table 5.7 Case No. 3 Performance (ofn = .1875 me/sec?, & = 1/20 sec™))

Flight Phase Final Times (sec)

598.75 11013.75 }1295.00 }2760.00 {5100.00 {6687.50
RSS POS ERR 91.25 | 133.40 20.00 | 205.63 | 100.63 46.02
RSS VEL ERR 16.16 1.45 .32 1.70 .81 2,78
MAX POS ERR 258.69 | 222.93 | 133.78 | 801.10 | 236.74 | 168.05
MAX VEL ERR 41.88 2.71 1.48 8.15 5.41 27.41
POS ERR/SIG 1.98 1.79 1.33 .81 1.2 1.54
VEL ERR/SIG 3.70 .48 .26 .51 .36 2,28

Table 5.8 Case No. 4 Performance (°§ = 2.25 m2/sec4, g =1 seé'])

Flight Phase Final Times (sec)

598.75 |1013.75 {1295.00 {2760.00 |5100.00 |6687.50
RSS POS ERR 107.12 | 142.58 18.21 | 238.38 97 .96 56.90
RSS VEL ERR 19.18 3.15 J2 1.75 1.31 3.21
MAX POS ERR 300.99 | 242.22 | 123.80 | 811.31 | 370.02 | 107.80D
MAX VEL ERR 43.44 5.77 2.33 8.18 8.80 18.87
POS ERR/SIG 2.06 1.72 .78 .81 1.96 1.73
VEL ERR/SIG 2.83 .46 15 .26 23 .70
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5.5.4 Summary of flight tests. This chapter was concerned !

with the acceleration dead-reckoning navigation algorithm which was j
based on the assumption that acceleration is an exponentially correlated
random variable. The statistical basis of the model was described and
its modification into a form suitable for sequential filter implement-
ation was detailed. Following a discussion of measurement bias models,

the performance evaluation technique, used throughout this study, was

described. These techniques were applied to an evaluation of the ADR
filter. The results of this evaluation show that the navigation al-
gorithm had satisfactory performance for a wide range of parameters. A
single set of parameters which optimizes all performance indicators for
the entire flight cannot be determined. In the following chapters,
other algorithms will be tested and their performance will be compared

to the performance of the ADR navigation algorithm.




CHAPTER 6
NON-ADAPTIVE MODIFICATIONS

6.1 Discussion of System Model Development

In Chapter 5, a basic system model for the navigation filter
was defined. The system model consisted of an assumed aircraft model
and an assumed measurement model. The state vector for the aircraft
model included the components of the aircraft position vector and the
components of the aircraft velocity vector. The components of the
aircraft acceleration vector were added to the aircraft state vector
under the assumption that the aircraft acceleration could be approxi-
mated as an exponentially correlated random process.

A dynamical system, such as an airplane, can be modeled exactly
by including the position vector components and the velocity vector
components in the system state vector. The accelerations (forces),
however, must be completely known and described in the appropriate
coordinate systemf In many examples, such as satellite orbit deter-
mination, the forces may be known to a high degree of accuracy. Perfect

knowledge of the forces, however, never exists in real-world applications.

*
At this point in the discussion, filter restrictions on the form of
the acceleration model are immaterial. $

176
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If the unknown and unmodeled forces* are random and uncorrelated, the
Kalman filter can be used with a basic position/velocity model by in-
cluding velocity process noise to represent an uncorrelated random
acceleration. In such cases, the filter requires the correct statistics
for the random acceleration. Incorrect and possibly catastrophic filter
operation can be caused by either an erroneous acceleration model or by
incorrect a priori statistics for the random acceleration.

Frequently, the unknown forces may have a known structure with
unknown parameters. In other cases, a structure for the unknown forces
can be derived based on their statistics. This latter procedure was
followed in Chapter 5 for the case of an exponentially correlated random
acceleration. If the assigned structure correctly represents the un-
known forces, then the filter will perform optimally**. For example, if
the acceleration is exponentially correlated, then the basic filter
defined in Chapter 5 is the optimal filter. As another example, if a
constant acceleration structure is modeled by the filter and if the
true acceleration is a constant, then the filter is the optimal filter.
Note that there is no process noise matrix in this latter example. If

a constant acceleration assumption is modeled with acceleration process

*The unmodeled forces include non-linea terms from the expansion of the
forces where a linearized model is used.

**At this point, it must be assumed that_the structure assigned to
the forces satisfies any filter restrictions.
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noise, then the model is a random walk model. In this case, the filter
is optimal if the true acceleration is a random walk.

For purposes of this study, the terminology "model compensation"
will be applied to any technique that involves modification of the
system model only, i.e., the filter equations are not modiffed. If the
model is correct, then the filter is the optimal filter. Model compen-
sation techniques will be classified as non-adaptive techniques where
"adaptive" implies a modification of the filter equations.

It can be argued easily that all real-world filters use model
compensation techniques since perfect knowledge of a system and its
statistics is never available. In general, however, the term is usually
applied to the assignment of structure to small, random, unmodeled

forces. In the case of the algorithms evaluated in this dissertation,

the primary emphasis is on model compensation for acceleration.

6.2 Uncorrelated Random Acceleration Model

Numerical tests were performed using a model in which the
acceleration was assumed to be a zero mean, uncorrelated random variable.
If this model can be made to operate adequately compared to the exponentially
correlated acceleration model, then the dimension of the state vector
can be reduced by eliminating the three acceleration states. Computer
run-time and storage will be reduced accordingly. This model can be
referred to as a velocity dead-reckoning (VDR) model. A one-dimension-

al example of the VDR model is summarized as follows:

e e e T

o e e

;
y
i




where: sr

is
is

is

ov,

Ua,

Gr(to)

Gv(to)

6?‘0

GVO

the position error;

the velocity error; and

random velocity noise with statistics

E[ua] = 0

Elu,(t)uy ()] = ay8(t-v)
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(6.1)

(6.2)

Identical VDR models were implemented for each aircraft direction.

Initial testing of the VDR model was accomplished using the first

ten minutes of flight in a manner similar to the evaluation runs of

Par. 5.5.2. Table 6.1 summarizes the performance of the VDR filter with

varying velocity noise magnitude 9,

Table 6.1 Uncorrelated Acceleration (VDR) Filter Performance
Velocity Noise Magnitude (mz/sec3)

.9375 | 2.8125 11.25 | 28.125 { 100.00 | 281.25
RSS POS ERR 203.78 | 131.14 85.51 71.30 62.30 59.58
RSS VEL ERR 27.88 21.64 ]6.1?’ 13.87 12.02 11.40
MAX POS ERR 526.85 | 347.71 | 229.00 | 183.24 | 152.28 146.64
MAX VEL ERR 61.48 48.12 36.94 33.49 30.65 29.11
POS ERR/SIG 4.50 2.60 1.45 1.06 72 .52
VEL ERR/SIG 7.08 3.54 1.50 .88 .44 .26
FIN POS ERR 50.22 52.83 64.00 73.26 85.66 92.63
FIN VEL ERR 1.41 2.79 5.55 7.83 11.20 13.08
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For the cases which were considered in developing Table 5.4,

an intuitive value for maximum maneuver variance of 2.25 mz/sec4 was

arrived at using the maximum longitudinal acceleration of 1.5 m/secz.
Similarly, an intuitive value of velocity noise can be arrived at by

2 for the 1.25

considering that a maximum acceleration of 1.5 m/sec

second measurement interval results in a velocity change of 1.875 m/sec.

Using the square of 1.875 m/sec as the desired discrete velocity

process noise, the spectral level velocity noise should be 2.8125 m2/sec3
Table 6.1 indicates that, as the noise magnitude increases,

the RSS errors and the maximum errors decrease but the errors at the

end of the 600 seconds of flight increase.

6.3 Additional Exponentially Correlated Acceleration Tests

To further analyze filter behavior with increasing noise mag-
nitude, the exponentially correlated acceleration (ADR) filter of
Chapter 5 was implemented using a wider choice of maneuver variances
for the 20-second correlation time and also by examining filter be-
havior with infinite correlation time. The 20-second correlation time
results are shown in Table 6.2. The infinite correlation time results
are summarized in Table 6.3. A value for acceleration noise magnitude
5

and an infinite correlation time £ =0 re-

4 for

¢

q, equal to 1.8 m2/sec
sults in a discrete acceleration process noise term of 2.25 m2/sec
a 1.25 second measurement interval.

The vehavior of the 20-second correlation time and the infinite

correlation time filters is similar to the uncorrelated acceleration
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Table 6.2 Twenty-Second Correlation T1ime ADR Filter Performance
Acceleration Noise Magnitude (mz/secs)

.0225 .225 2.25 4.50 10.00 22.50
RSS POS ERR 85.62 58.66 55.94 55.84 55.89 56.20
RSS VEL ERR 15.33 9.18 8.39 8.75 9.36 10.17
MAX POS ERR 248.24 | 149.36 | 141.80 { 141.34 | 139.23 | 139.78
MAX VEL ERR 40.56 30.58 29.43 28.40 27.62 27.83
POS ERR/SIG 1.84 1.04 .75 .67 .58 .49
VEL ERR/SIG 3.34 1.00 .44 .36 .29 .24
FIN POS ERR 26.35 50.01 80.46 88.12 94.10 97.48
FIN VEL ERR 1.52 4.1 1.1 13.18 14.99 16.34

Table 6.3 Infinite Correlation Time ADR Filter Performance
Acceleration Noise Magnitude (m2/sec5)

.018 .03 .18 1.80 18.00 | 180.00
RSS POS ERR 63.70 60.40 56.95 55.80 56.50 60.15
RSS VEL ERR 10.95 9.9 8.28 8.67 10.79 14.92
MAX POS ERR 198.48 | 173.72 | 147.92 | 139.95 | 138.81 | 144.16
MAX VEL ERR 32.30 28.96 31.37 28.73 28.08 43.57
POS ERR/SIG 1.32 1.21 .98 72 .48 .26
VEL ERR/SIG 2.00 1.59 .80 .42 .24 .14
FIN POS ERR 29.58 32.96 50.1 80.52 97.78 | 100.91
FIN VEL ERR 1.68 1.93 4,25 11.51 16.81 24.16
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filter. That is, as the magnitude of the noise increased, the RSS
errors and the maximum errors decreased while, at the end of the 600 ¢
seconds of flight, the errors increased. Within the noise ranges
considered, the errors appeared to have limiting values. The maximum
errors, however, were significantly larger for the low noise cases.
An intuitive explanation for filter behavior with increasing aircraft
noise magnitudes can be given. If the filter aircraft noise is low,
then the filter changes the values of the predicted aircraft state
at a slow rate. Consequently, the filter will be unable to track a
rapid turn. During such a maneuver, the errors can become quite large.
If the filter aircraft noise is high, then the errors in the navigation
fix are bounded by the measurement bias errors and measurement noise.
Tables 6.4 and 6.5 summarize the performance of uncorrelated
acceleration filters for the entire flight. Table 6.4 is based on a
velocity noise of 2.8125 mz/sec3 (Case 5) and Table 6.5 is based on a
velocity noise of 281.25 mz/sec3 (Case 6). Figures 6.1 and 6.2 depict
the filter performance of Cases 5 and 6 respectively.
The infinite correlation time ADR filter was tested for the
entire flight using an acceleration noise of .18 mz/sec5 (Case 7) and
an acceleration noise of 18. mz/sec5 (Case 8). Case 7 performance is

summarized in Table 6.6 and is shown in Figure 6.3, Case 8 performance

is summarized in Table 6.7 and is shown in Figure 6.4.
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»
Table 6.4 Case No. 5 Performance (q, = 2.8125 me/secd) 7
F1ight Phase Final Timec (sec) !
598.75 {1013.75 |1295.00 {2760.00 {5100.00 {6687.50
RSS POS ERR 131.14 | 147.46 18.66 | 238.81 97.48 57.75
RSS VEL ERR 21.64 3.02 .65 1.59 1.V7 5.48
MAX POS ERR 337. " 253.01 127.52 | 819.03 | 368.41 131.75
MAX VEL ERR 48.12 6.57 2.64 7.28 7.51 37.56
POS ERR/SIG 2.60 1.79 .76 .81 1.05 1.74
VEL ERR/SIG 3.54 .48 14 .25 .21 1.23
Table 6.5 Case No. 6 Performance (qv = 281.25 mz/sec3)
F1ight Phase Final Times (sec)
598.75 [(1013.75 }1295.00 {2760.00 {5100.00 {6687.50
RSS POS ERR 59.58 | 145.00 29.76 | 231.72 | 106.58 63.48
RSS VEL ERR 11.40 7.59 6.48 7.76 7.45 9.3
MAX POS ERR 146.64 | 292.46 133.65 736.25 | 529.09 | 145.57
MAX VEL ERR 29. N 18.24 21.07D| 25.78 37.08 30.23E
POS ERR/SIG .52 1.09 .32 .68 .67 72
VEL ERR/SIG .26 a7 .16 A7 A7 .23
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Table 6.6 Cas: No. 7 Performance (qa = .18 m2/sec5, g = 0)
Flight Phase Final Times (sec)
598.75 (1013.75 |1295.00 {2760.00 |5100.00 {6687.50
RSS POS ERR 56.95 | 140.40 19.35 | 235.70 | 101.81 51.71
RSS VEL ERR 8.28 2.67 .52 2.44 2.31 2.43
MAX POS ERR 147.92 | 228.55 | 131.01 | 872.11 302.03 | 111.06D
MAX VEL ERR 31.37 7.02 1.95D| 15.98 18.61 18.81
POS ERR/SIG .98 1.76 1.05 .86 1.13 1.62
VEL ERR/SIG .80 .34 .14 .32 .36 .63
Table 6.7 Case No. 8 Performance (qa = 18. mz/secs, 8 = 0)
Flight Phase Final Times (sec)
598.75 {1013.75 11295.00 {2760.00 {5100.00 {6687.50
RSS POS ERR 56.50 | 144.07 23.38 | 246.02 | 104.64 61.64
RSS VEL ERR 10.79 10.82 5.45 10.32 9.70 8.60
MAX POS ERR 138.81 278.69 | 141.66 | 821.83 { 466.69 | 173.92E
MAX VEL ERR 28.08 28.56 15.50 57.43 73.95 41.56
POS ERR/SIG .48 1.14 A4 .76 .77 .96
VEL ERR/SIG .24 .26 .19 .23 .26 .31
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6.4 Estimation of Inverse Correlation Time

As is evident by an analysis of Tables 5.4 through 5.8 and 6.1
through 6.7, the ability of the filter covariance matrix to bound the
errors varies with the process noise covariance. Large values of noise
magnitude make the covariance matrix conservative; small values of noise
magnitude result in overly optimistic covariances. In addition, the
position covariance performance is not necessarily consistent with the
performance of the velocity covariance.

The correlation time assumed by the navigation filter will
affect the propagation of the covariance matrix by changing the state
transition matrix and by changing the amount of discrete process noise
added to the covariance matrix. Figure 6.5 depicts the elements of the
discrete process noise matrix for unity spectral level noise and a
sampling interval of 1.25 seconds. Note that the rates of change of
the elements are not identical. For example, an increase in correlation
time from one second to 20 seconds changes the discrete position noise
covariance by a factor of 1.81, the discrete velocity noise covariance
by a factor of 2.20, and the discrete acceleration noise covariance by
a factor of 2.56. Estimation of correlation time would, hopefully,

result in more consistent covariance performance and lower errors.

6.4.1 Development of the Beta-estimator. The structure of

the exponentially correlated acceleration model was based un assumed
statistics for random acceleration. By assigning an exponential struc-

ture to the acceleration itself and assuming that the acceleration noise




192

\n
N
—
Q
Q
'_‘-1
a
b2
b 2
T
o
T
()
w
Y—
=
L
I
wJ
-
l

N T . 2. 5. 20.
CORRFLATION TIME

Figure 6.5 Process Noise Matrix Elements for Exponentially Correlated
Random Acceleration Model (qa =1, at = 1.25)




is uncorrelated, a model can be developed that will permit estimation
of inverse correlation time. R

Assume the following system model:

Posov,or(ty) <oy
Ve vit) t (6.3)
a = -gatu, a(t) = a,
Ro= ug, e(t) =
| where: Elu,] = 0, EQu,(thu ()] = q.8(t-1) (6.4)
f Elugl = 0, Efug(thu(1)] = qg8(t-1) (6.5)

The parameters of Eq. 6.3 can be separated into a nominal state

and a perturbation state in accordance with:

r o= ¥+eér
E V = V+ 8y (6.6)
; a = a+ sa
| 8 = B+ 88

The differential equations can be partitioned into a set of

non-linear equations to be used for time propagation of the estimate in

the extended sequential filter;

kLLA Lt_ﬁ-w_““—m < =
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r =V, r(tk) =
Vo=@, W) = v
, L k (6.7)
3= -Fa, alt) = a

= 0, B(tk) = Bk

and a set of linear differential equations which describe the deviation
in the state from the solution to Eqs. 6.7

§r = 8v, dr(tk) = 0

v = Jda, 6V(tk) = 0 (6.8)
a = -Béa - aég + u

§8 = ug, as(tk) = 0

where: uy and Ug have the statistics of Eqs. 6.4 and 6.5.

The solution to the non-linear time-propagation equations, Eqgs.
6.7, is not the mean solution of Eqs. 5.7, 5.8 and 5.14. Since the ac-
celeration itself is assumed to have exponential behavior, the solution

to Eqs. 6.7 is given by

F(E) = rt v (tet) + 0,08 3
Vit) = v+ e (8 )8 (6.9)
at) = 40803,

»

where: ¢ra(6k)’ ¢va(ék), and ¢aa(ék) are defined in Eqs. 5.41.
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The state transition matrix and the discrete process noise matrix
can be analytically determined using Eqs. 4.63. and 4.69.

The matrix A is determined from Eqs. 6.8.

- 0 1 0 O sr 0
sV o 0 1 0 sV 0
. = _ _ + (6.]0)
8a 0 0 -8 -a 8a uy
L‘SéJ 0 0 0 0o s8] ug
6x = Asx + Bu

Solving Eq. 4.63 yields the state transition matrix
o at ¢ pa(By) ak¢r8(8kf

0 1 e,(8)  ape(8)

$(t ,t ) = (6.]])
( k+17% 0 0 ¢aa(8k) ak¢ae(6k)
0 0 0 1
where: %ra’ Yva’ and 954 aTE defined in Eqs. 5.41.;

0,5(8) = [exp(-sat) - (8at)?/2 +gat - 11763 (6.11a)

0,6(0) = [-exp(-sot) -sat + 11/8° (6.11b)

9ag(8) = [exp(-sat) - 11/8 (6.11¢)
Bt =t K

e AT

e

O e et

e
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Equation 4.69 yields the discrete process noise matrix T.

RER M,2 ".3 Ty.4

2,2 2.3 2.4
Mty,y) = (6.12)
N.,3 2.3 3.3 3.4

1,8 2,4 3.4 Ty .4

. _ 2
where: ha © anrr(Bk) + qeakYrr(Bk)
r = q (8,) + aly! (8,)
1,2 a¥rv\Pi/ T Agdry By
r = q (8,) + a2 ' (8,)
1,3 a'ra‘'Pk A2y YralBy

47 9%l

- 2 .
f2,2 © vy (B) + qsakyvv(ek)

2,3 = 9avyalB) * qBaky a(By)
T4 = 92velBy)
'3,3 ° %vaalBy) * qBakYaa(Bk)
T3,6 = 9g3vagl8y)
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v (8) = [-exp(-280t)/2 + ((s6t)%+2)exp(-5at)

+ (sAt)s/zo - (sAt)4/4 + 2(5At)3/3 ;

- (BAt)2 + pAt - 3/2]) / 87

= at’(1/252 - sat/576 + 13(sat)?/25920

- (sat)3/8640 + 19(aat)?/831600 - ... ] (6.13a)

[exp(-26at)/2 + [~(sat)%/2+8at-1Texp(-5at)

n

! by
\rv(b)

+ (sAt)4/8 - (5At)3/2 + (b\_\t)2 - pAt + 1/2]/56

- atB[1/72 - sat/188 + 13(2at)%/5760
23 4
- (sat)3/1728 + 19(sat)*/151200

- 29(3at)°/1209600 + . . . ] (6.13b)

Yral8) = [~exp(-25at)/2 + [(sat)%+2Jexp(-rat)

+ (sat)3/6 - (sAt)z/z + pat - 3/2] / g2
- at3[1/30 - sat/48 + 41(sat)2/5040
- 7(eat)3/2880 + 109(sat)?/181440

- 31(aat)®/241920 + . . .] (6.13¢)
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ve(B) = -[exp(-sat) + (sat)%/6 - (8at)%/2

+ pAt - 1]/54

= -at*[1/26 - sat/120 + (8at)2/720 - (sat)3/5040
+ (52t)%/40320 - (sat)%/362880 + . . .] (6.13d)
‘Qv(ﬁ) = (-exp(-2s8at)/2 - 28at exp(-aat) + (BAt)3/3
- (sz\t)2 + At + 1/2]

= At5[1/20 - RAL/36 + 5(6At)2/504

- (3at)3/360 + 17(sat)%/25920 - 41(sst)5/302400]

(6.13e)
\;a(s) = [exp(-23at)/2 + (rat-1)exp(-aat)
v (at)272 - st + 12Y68
_ .4 . Ry o3 '
= at*/8 - sat/12 + 5(sat)/144 - (sat)3/90 j
+ 17(6At)4/5760 -4 (sat)5/60480
+ 167(30t)%/1209600 - 23(s2t)7/907200 + . . .]
(6.13f)
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-[exp(-nat) + (HAt)Z/Z - BAt + l]/ﬁ3

Yy (8)
a -At3[‘|/6 - BAt/24 + (mt)z/lzo + (uAt)3/720

- (sat)Y/5040 + (#nt)®/80320 - (1nt)®/362880 + ...]

(6.13q)
val®) = [-exp(-26nt)/2 + 2exp(-pat) + wat - 321/ °
= A3[1/3 - aatze + 7(aat)r60 - (sat)S/24
+ 3 (at) 2520 - (aat)¥/320 + 127(0at)8/181440
S () 120960 + . L L) (6.13h)
Vaal®) = -lexp(-aat) suat - 11/

= -at2(172 - aat/6 + (aat)er2a - (at)3120
Y Y )0 5
v (sat)Y720 - (sat)®/5040 + (sat)b740320

- (sat) 77362880 + . . ) (6.131)
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Yag = qBAt (6.135)

and the remaining y functions are defined in Eqs. 5.42.

6.4.2 Results of the Beta-estimator. The B-estimator was

tested in the same manner as previous algorithm tests. The first

ten minutes of flight were used to evaluate the behavior of the g-

estimator with varying process noise in the 8 terms. Following this
analysis, full flight tests were made using selected parameters. The
tests used the initial parameters of the four exponentially correlated
acceleration models which were used to obtain Tables 5.6 through 5.9.
Also, an initial correlation time of infinity and a spectral level ac-

5 were tested. The initial conditions as-

celeration noise of 1.8 m2/sec
sociated with this latter case will be referred to as the "Case 7.5"

initial conditions. The standard deviation of all inverse correlation
-1

times was initially assumed to be 1. x 10'3 sec  for all cases. For

each set of initial conditions, the process noise term for the inverse

-3 -3 and was iden-

correlation time was varied from ]0'2 sec ~ to 10'8 sec
tical for all directions. The results are given in Table 6.8.

As the pB-process noise increased, the filter sensitivity in-
creased and the performance parameters generally improved. For those
cases where the spectral level of the acceleration noise was low and
B-process noise was high, the filter diverged. Filters with high spec-

tral level acceleration noise appeared to be more stable. A value of

g-process noise equal to 10'4 sec'3 seemed to perform well in all H




Table 6.8 Initial Evaluation of Beta-Estimation Algorithm
B-Process Noise (sec'3)
12-state| 1078 | 0% | 10% | 107
q, = -225 m2/sec5; 8(0) = 1/20 sec'1
RSS POS ERR 58.66 60.73 57.14 53.76
RSS VEL ERR 9.18 8.80 8.17 6.35
MAX POS ERR | 149.36 { 147.81 147.15 | 127.73
MAX VEL ERR 30.58 30.22 30.19 30.32 | Filter
POS ERR/SIG 1.04 1.08 1.00 .98 |Diverged
VEL ERR/SIG 1.00 .96 .86 .73
FIN POS ERR 50.01 50.14 50.67 47.78
FIN VEL ERR 4.1 3.39 4.34 4.07
q, = .375 mz}secs, g(0) = 1 sec”
RSS POS ERR | 298.96 | 295.10 | 253.57 62.34
RSS VEL ERR 34.57 33.82 30.59 9.89
MAX POS ERR | 758.56 | 733.42 | 577.57 | 239.61
MAX VEL ERR 74.39 73.25 72.85 35.83 | Filter
POS ERR/SIG 7.18 7.08 6.01 .59 [Diverged
VEL ERR/SIG 13.24 12.94 10.86 2.09
FIN POS ERR 22.79 40.20 32.83 28.74
FIN VEL ERR 4.19 75 .98 2.08
q, = .01875 mz/segs. g(0) = 1/20 sec']
RSS POS ERR 91.25 85.24 69.10 56.29
RSS VEL ERR 16.16 13.63 11.32 11.00
MAX POS ERR | 258.69 | 251.28 | 241.14 | 184.40
MAX VEL ERR 41.88 40.60 38.67 | 145.17 | Filter
POS ERR/SIG 1.98 1.85 1.48 1.35 [{Diverged
VEL ERR/SIG 3.70 3.09 2.42 3.35
FIN POS ERR 25.66 24.11 23.80 18.89
FIN VEL ERR 1.46 1.45 1.50 .53

201
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Table 6.8 Initial Evaluation of Beta-Estimation Algorithm
(Continued)
8-Process Noise (sec'3)
12-state] 108 | 10 | 10% | 107
q, = 4.5 m*/sec’, §:0) = | sec”!
RSS POS ERR { 107.12 | 109.70 | 108.44 67.85 56.63
RSS VEL ERR 19.18 19.02 18.85 12.79 7.4]
MAX POS ERR | 300.99 | 294.88 | 289.49 | 187.75 147.19
MAX VEL ERR 43.44 42.12 41.48 41.32 47 .91
POS ERR/SIG 2.06 2.1 2.08 1.18 .96
VEL ERR/SIG 2.83 2.80 2.76 1.21 .56
FIN POS ERR 42.63 55.92 56.18 69.66 ~‘62.93
FIN VEL ERR 1.12 3.47 3.54 7.05 5.15
q, = 1.8 mz/sec , 8(0) = 0

RSS POS ERR 55.80 55.87 54.94 53.90
RSS VEL ERR 8.67 8.61 7.98 7.02
MAX POS ERR 139.95 139.99 139.82 140.98
MAX VEL ERR 28.73 Not 28.69 26.77 35.79E
POS ERR/SIG .72 | Tested 72 73 .89
VEL ERR/SIG .42 .42 .41 .48
FIN POS ERR 80.52 80.28 77.69 53.33
FIN VEL ERR 11.51 11.37 10.12 3.52

L

| U
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600-second tests. Accordingly, full flight tests were made using the
initial conditions of Cases 1 through 4 and 7.5 and using a B-process

noise equal to 1074 sec™3.

The full flight results are summarized in
Tables 6.9 through 6.13 and are shown in Figures 6.6 through 6.10.

If the g-estimator did not diverge, the results were generally
better than the corresponding 12-state filter. The g-estimator, however,
was unstable. This is especially evident by Cases 9 and 11 where the
filter performed well during the takeoff and departure flight phases
then continued to perform slightly better than the 12-state filter
through the cruise portion of flight. After the turn at 5230 seconds,
however, the filter diverged. The impact of the turn at 5230 seconds is
sharply evident in Case 10.

Based on the 600-second tests, reducing the 3-process noise
may eliminate this divergence. Reduction of g-process noise, however,

also tends to inactivate the estimation of inverse correlation time so

that the g-estimator algorithm reduces to the basic 12-state case.

6.5 Summary of Non-Adaptive Modifications

The assumption that the random acceleration is uncorrelated
reduces the dimension of the aircraft state by eliminating the acceler-
ation components. This assumption also reduces the capability of the
navigation algorithm to predict aircraft position and velocity since the

assumed acceleration is zero.* The results of the uncorrelated random

*It may be possible to use the estimated position and velocity of the
aircraft to compute acceleration by a deterministic formula. The time
propagation of the aircraft state can then be accomplished using an
acceleration dead-reckoning formula.
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Table 6.9 Case No. 9 Performance (qa = ,225 mz/secs, g(0) = 1/20 sec'].

qg = -0001 sec™3) (Continued)

F1ight Phase Final Times (sec)

598.75 {1013.75 |1295.00 (2760.00 {5100.00 |6687.50

RSS POS ERR 53.76 | 139.76 19.04 | 234.69 | 100.10
RSS VEL ERR 6.35 2.13 .44 1.66 1.00

MAX POS ERR | 127.73 | 228.43 | 129.01 | 857.58 | 300.95 ijlﬁe" |
QEd i
MAX VEL ERR 30.32 | 4.51 1.2 | 8.12 6.87 1
POS ERR/SIG .98 1.77 1.05 .86 1.14 ;
VEL ERR/SIG .73 .35 .14 .31 .27 }

Table 6.10 Case No. 10 Performance (qa = .375 m2/sec5, g(0) = 1 sec™',
Qg = .00Q1 sec'3)

Flight Phase Final Times (sec)
598.75 |1013.75 |1295.00 |2760.00 {5100.00 |6687.50

RSS POS ERR 56.29 [ 133.80 20.18 | 195.81 | 100.47

RSS VEL ERR | 11.00 | 1.20 | .35 | 1.2 | .53
MAX POS ERR | 184.40 | 223.73 | 675.09 | 675.09 | 224.50 | __

MAX VEL ERR | 145.17 | 1.90 | 5.2 | 5.2 | .53 [pfiiver,
POS ERR/SIG | 1.35 | 1.82 | .81 81| 1.2
VELERR/SIG [ 331 | 70| .49 | .49 | .42
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Table 6.11 Case No. 11 Performance (qa = .01875 m2/sec5,
g(Q) = 1/20 sec'1. qg = .0001 sec'3)
Flight Phase Final Times (sec)

598.75 {1013.75 |1295.00 }2760.00 {5100.00 |6687.50
RSS POS ERR 72.34 | 124.44 16.61 { 238.55 99.8] 62.24
RSS VEL ERR 9.89 1.92 .58 1.76 1.14 39.52
MAX POS ERR 239.61 | 215.26 | 110.73 | 863.78 | 317.39 { 949.22
MAX VEL ERR 35.83 3.88 1.66 8.79 8.24 | 998.89
POS ERR/SIG 1.59 1.59 .89 .86 1.13 1.83
VEL ERR/SIG 2.09 .39 A7 .27 .28 3.17

Table 6.12 Case No. 12 Performance (qa = 4.5 mz/secs, g(0) =1 sec'],
qg = .0001 sec'3) (Continued)
Flight Phase Final Times (sec)

598.75 |1013.75 }1295.00 |2760.00 {5100.00 |6687.50
RSS POS ERR 67 .85 | 144.78 17.75 | 242.85 99 .97 56 .97
RSS VEL ERR 12.79 4.39 1.28 3.36 2.64 3.04
MAX POS ERR 187.75 | 246.43 | 119.27 | 853.68 | 419.48 67 .02
MAX VEL ERR 41 .32 11.32 5.39 19.82 19.51 28.17
POS ERR/SIG 1.18 1.62 .60 .81 1.01 1.52
VEL ERR/SIG 1.21 .46 12 .19 .25 .29
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Table 6.13 Case No. 13 Performance (qa =1.8 m2/sec5, g(0) = 0,

= ,0001 sec'3)

9%
Flight Phase Final Times (sec)

598.75 [1013.75 |1295.00 {2760.00 |5100.00 {6687.50
RSS POS ERR 54.94 | 142.62 18.07 | 241.07 99.31 56.75
RSS VEL ERR 7.98 5.11 1.04 2.55 2.03 3.45
MAX POS ERR 139.82 | 233.12 | 121.35 | 855.51 386.69 | 109.210
MAX VEL ERR 26.77 11.69 3.90D( 12.69 13.57 39.56
POS ERR/SIG .73 1.57 .68 .82 1.05 1.56
VEL ERR/SIG .41 .34 .12 21 .25 .38

acceleration model, however, were competitive with the exponentially

correlated acceleration models of Chapter 5.

If computer time and/or

storage are critical, the numerical results indicate that implementa-

tion of the uncorrelated random acceleration model will not result in

a severe loss of accuracy.

Testing of the exponentially correlated

random acceleration model with an assumption of infinite correlation

time demonstrated that this model also can be competitive with models

using correlation times from one to fifty seconds.

Given the "competitive" performance of the uncorrelated random

acceleration model and the infinite correlation time model, one might

question the implementation of the more complex algorithm of Chapter 5.

Following are some justifications for use of correlation times from one

to fifty seconds.
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1. The uncorrelated random acceleration model and the
infinite correlation time random acceleration model simply appear to
be less complex because they have reduced the numbers of parameters
from the two associated with finite correlation time exponentially cor-
related random acceleration models (qa and B) to one (qv for the
uncorrelated model and qa' for the infinite correlation time model).
In reality, the simpler models have given up flexibility by losing one
degree of freedom.

2. Intuitively, aircraft acceleration is not uncorrel-
ated nor does it have an infinite correlation time.

3. It can be shown that for @ = = , (uncor-
related random acceleration) and for s = 0 (infinite correlation time),
the steady-state a posteriori position covariance vanishes. This be-
Havior was also pointed out by Singer [68]. Accordingly, the steady-
state filter gains are determined by the discrete process noise matrix

r.

In an attempt to improve the performance of the exponentially
correlated random acceleration algorithm, the filter state vector was
expanded to include the inverse correlation times for the three aircraft
directions. To accomplish this, the filter model was changed from a
nominal constant acceleration assumption to a nominal exponential
acceleration assumption. The resulting algorithm was unstable. The
instability is probably due to the attempt by the algorithm to fit jumps

in acceleration with exponential curves. The correlation time of the
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estimated exponential acceleration resulted in adverse behavior of the
covariance matrix propagation which, in turn, yielded catastrophic
estimation results. This is apparent in the large increases in both
covariance matrix and estimation errors shown in Figures 6.6 and 6.8.

An exponentially correlated random acceleration model depends
on the parameters Qs spectral level acceleration noise magnitude, and
8, the inverse correlation time. Since estimation of inverse correlation
time failed to produce improved algorithm performance without a loss in
reliability, one is naturally led to consider the estimation of 9y-
The technique chosen to accomplish estimation of q, requires a modifi-
cation to the Kalman filter operation. Accordingly, the Q-estimation
algorithm will be classified an adaptive modification and will be dis-

cussed in the following chapter.

*In this study, "non-adaptive" algorithms use the measurement residuals
only to update the estimate of the state. (See Par. 4.6.) In the
"adaptive" algorithms of this study, the measurement residuals will be
also used to indicate non-optimal filter performance so that the algoe-
rithms can modify the filter operation.

L




CHAPTER 7
ADAPTIVE MODIFICATION OF FILTER STATISTICS

7.1 The Meaning and Uses of Measurement Residuals

If a Kalman filter is operating satisfactorily, then the cov-
ariance matrix will bound the errors in the estimated state. Without
knowledge of the true state, however, the user cannot calculate the
errors in the estimate. Therefore, he cannot determine whether the
covariance matrix is correct for a given application. The covariance
of the observation residual, however, is a natural product of the esti-
mation process. Since the user calculates the residual as part of the
filter operation, he can compare the statistical properties of the re-
siduals with the statistics as predicted by the filter. If the predicted
covariance matches the actual statistical behavior, then it can be as-
sumed that the filter is operating proper]y.*

In its normal mode of operation, the Kalman filter uses the re-
sidual only to correct the a priori estimate of the state. The a priori
state error covariance matrix, the measurement noise covariance matrix,

and other filter parameters are assumed to be correct. Adaptive methods

*It must be emphasized that small observation residuals are not a guaran-
tee that the error in the estimate is small. An ill-conditioned system
may have small residuals, but large errors in the estimate.

217
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seek to modify the filter gains either directly or by changing the
values of the covariance matrices that are used in the gain computation.
Adaptive methods generally consist of a performance index, which is a
quantitive indicator of filter behavior, and a gain modification scheme,
which is the specific technique used to modify the filter parameters.
Frequently, the performance index is calculated using a sample variance
of the residuals and the covariance of the residuals as determined from
the a priori statistics. The gain modification scheme can be based

on the tormulation of the performance index or it can be an intuitively
developed method.

The goal of any adaptive method is to permit a filter with in-
correct a priori statistics to function satisfactorily. In systems with
stationary statistics, successful adaptive methods can provide the user
with better knowledge of the statistics in addition to providing an
improved estimate of the state. If the statistics are not stationary
but vary slowly with respect to the sampiing interval, then adaptive
methods may still improve the statistics assumed by the filter. For
systems with rapidly changing statistics, the sample variance of the
residuals, used to calculate the performance index, can be of question-
able value since a sample variance is computed either using a number
of past residuals, thereby including residuals from a time when the
statistics were different from the current statistics, or by using a
very limited number of residuals (for example, only the current residual)
and is, therefore, of poor statistical significance. Unfortunately, it

is for the case of rapidly changing statistics that an adaptive method




may be a requirement to maintain accuracy in the estimate and confidence
in the covariance.
The statistical parameters for an exponentially correlated

random acceleration model of an aircraft in cruising flight include

typically a short correlation time and a low maneuver variance. The
parameters for a maneuvering aircraft consist typically of large corre-
lation times and large maneuver variances. The regimes of flight are
not distinct and may be characterized by any combination of correlation
times and maneuver variances within physical limits. More critical than
the wide range of values for aircraft model parameters is the rapidity
with which the aircraft may change from one flight regime to another.

In Chapter 5, the exponentially correlated random acceleration
model was tested assuming stationary statistics for the aircraft model.
As would be expected, no single set of parameters was "best" for all
performance indicators. For this study, adaptive methods were derived,
implemented, and tested in an attempt to find a filter which was compet-
itive with the best performance indicators combined from the non-adaptive
filter tests. To accomplish this, the intital conditions of Cases 1
through 4 and 7.5 were used with adaptive methods in the hopes of im-
proving the poor performance areas of each filter without incurring a
severe degradation in the good performance indicators of the non-adap-
tive filter.

Four adaptive methods were tested and the performance was eval-

uated using the simulated New York-to-Chicago flight. The four
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algorithms studied are:

1. The Q-estimator in which the residual is used in a
secondary filter to sequentially estimate elements of the process noise
matrix.

2. Adaptive age-weighting in which the residual is used
to directly scale the a priori covariance matrix.

3. Adaptive process noise weighting in which the re-
sidual is used to alter the a priori covariance matrix by applying a
scale factor to the discrete process noise matrix.

4. An adaptive algorithm using a performance index
developed by Aidala and Davis [78]. The performance index is used in
an intuitively developed scheme to alter the amount of process noise

added during the time propagation of the covariance matrix.

7.2 Estimation of the Spectral Level Process Noise Magnitude

7.2.1 Development of the Q-estimator. The results obtained

using the Beta-estimation algorithm indicate a limited ability to match
widely varying noise conditions. A filter that estimates the magnitude
of the spectral level noise will now be examined. The development is
similar to Tapley and Hagar [79] and Hagar [77:Par. 3.6]. Basically,

the Q-estimator is the application of a Kalman filter to the estimation

-

of the elements of the spectral level process noise matrix Q. Assum-
ing scalar measurements, the extended sequential algorithm is implemented

with the following definitions:
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matrix B(tk)Q(tk)BT(t

"

Sk
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is a vector composed of the elements of the

k) (see Eqs. 4.11 and 4.69);

is the measurement residual;

is the a priori q-covariance matrix* defined by
5, = ELG - g) (@ - g)" Ir,qs

is the a posteriori q-covariance matrix defined by
Sy = EL(g, - g)(g, - 97 Ir s

is the discrete g-process noise matrix;

ijs the g-observation-state matrix;

js the g-observation residual. This will be defined

to be ri - E[ri] and will be shown to be equal to Jkggk assuming

q=q+ 8q; and

Ty

is the g-measurement noise term.

*The prefix "g-" will be used to distinguish the parameters of the filter
which is used to estimate g from the parameters used in the filter which
estimates the aircraft and measurement states.
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The sequential Q-estimator algorithm is given as follows:

1. Propagate the state q and its covariance assuming

an ijdentity state transition matrix.

i

G * %

§k = St wk

2. Compute the gain.

I P -1
Moo= SISt T

3. Determine the gq-observation residual.

A 5 ul
b = ry - (HPH R)

4, Estimate the g-corrections.

~

9= My

1l

5. Update the g-covariance matrix.
S = (1 - Mka)Sk

6. Rectify the spectral noise terms.

~

gy = G+

At this point, the elements of ék are stored in the spectral noise

matrix and the Kalman filter equations are used to obtain a navigation

fix.




223

The primary difficulty in the Q-estimation algorithm is the
development of the g-observation-state relationship J. Since the g-
observation is defined to be the square of the measurement residuals,
then the g-observation residual is the difference between the square
of the measurement residual and the expected value of the square of the
measurement residual. In other words, the g-observation residual is the
difference between the single-sample variance of the residuals and the
predicted variance of the residuals. Using the linear equations, the

predicted residual is given by
I Hkék (7.1)
The a priori state vector is predicted using

Z% = ¢(tk, tk-l)lk-l (7.2)

The scalar measurement is assumed to be (see Eq. 4.52)

Y = HeX * &g (7.3)
The actual state is assumed to propagate as

X = ot )Xoty (7.4)
where: u, represents the discrete process noise contr%bution.

Substituting Eqs. 7.2 through 7.4 into Eq. 7.1 provides an

expression for the predicted residual

Y‘k.
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o = Bttt )Xy - X)) H R+ (7.5)

Applying the expected value operator to the inner product of the predic-

ted residual yields
= T =24 _ T T
E[Fk?k ] = E[rk] = Hk¢(tk’tk-1)P(tk-])° (tk,tk-I)Hk
+ Hr(t,)H] + R (7.6)
(S Sl ¢ k .

where: F(tk) is the discrete process noise matrix and contains
the elements of the spectral level noise matrix Q(tk)

as evaluated using Eq. 4.89.

The g-observation-state matrix J can be obtained from Eq. 7.6
by expanding Hkr(tk)HI in terms of the elements of the spectral level

noise matrix. Equation 5.22 becomes

20 . T T
ELFZ] = Hoo(t,ot,_)P(t,_p)o! (tut My + d,g + R, (7.7)

The term HkF(tk)HE has been replaced by the product of the
vector composed of the elements of the spectral level noise matrix and
the matrix Jk. The g-observation-state relationship is contained in the
elements of Jk‘ The determination of J will be discussed later. Hagar
[79:101] has shown that the replacement is valid for scalar measurements.
The square of the true residual is assumed to be

"

- . T
Hee(t sty IP(t, et ty (H,

+ Jk(gk + ggk) + Rk (7.8)
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The q-measurement residual is then
a, = ré ~E[F] = 3.8 (7.9)
k k K kg .

If only the diagonal elements of the spectral level process noise
matrix are to be estimated using only pseudo-range, pseudo-range-rate,
and altimeter measurements, then the resulting expressions for the basic

twelve-state filter are

q = [Q],] 902’2’ . o e »012,12] (7.10)
J o= [9s05, - - udy,] (7.11) |
Y4 '
where: J] = H]At
Y-
J2 = HzAt
_ oyl

= 2 2

2, HzAt

= ul.s3

= uyl,s3 2 2
J6 = H3At /3 + H3H6At + H6At

Jy = 1Yrr(BN) + BHyHyyy, (ay) + H4Y v(8y) |

) 2
Jg = “2Yrr(35) + 2HoHgy (8g) + Hoy,, (8g)
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» - 2 2
f Jg = Hyvppl8p) *+ HMev (8p) + Hevy, (8p)

_ow2 !
dio * H]OYaa(Balt)

i Hflat

2 2 )
Jyp = H1voy(Berid * 2HyqHovya(Beqi) + Hyavaa(Beyy)s and

the vy terms are defined in Eq. 5.42.

Estimation of the diagonal elements only has the following ad-

vantages compared to estimation of the entire spectral noise matrix:

1. The size of the Q-estimator state is limited to the
same size as the navigation algorithm state. Including a 9x9 Q-matrix
for the aircraft states and a 2x2 Q-matrix for the clock states would
increase the g-estimator state to 49 terms.

2. Positive-definiteness of the Q-matrix can be assured
by insuring that all the elements of & are positive.

3. The results are easily implemented into the basic
filter mechanization where an analytical solution for the discrete

process noise matrix is used.

The g-process noise matrix wk and the g-measurement noise Tk
remain to be specified. For the test runs, the g-process noise matrix

was a diagonal matrix with constant values. The measurement noise term
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Tk was computed as follows:
.2
To = %
(7.11)
T, = 0.9T, , +a
k S I

This simple method maintains a finite positive value for the q-
measurement noise term without the requirement to maintain a table of
residuals.

Systems with inertia cannot experience instantaneous changes in
position and velocity. Uncorrelated random process noise for such
systems cannot, therefore, appear as position and velocity terms. Ac-
cordingly Q],]‘QZ,Z’ and 03‘3 should be identically zero. Physically
non-realizable process noise can be included, however, if their appear-
ance can be justified as approximations to physically justifiable noise.
In fact, the spectral level process noise (white noise) used in the de-
velopment of the exponentially correlated random acceleration model is
not physically realizable. Also, if it can be shown that the inclusion
of a physically non-realizable noise improves the performance of a fil-

ter, then arguments against their appearance may become superfluous.

7.2.2 Results of Q-Estimator Tests. The 600-second tests of

the Q-estimator are summarized in Table 7.1. For these tests, the
acceleration process noise terms and the measurement bias process noise
terms were estimated. The q-process noise terms for the acceleration,

jdentified as Na. were identical for all acceleration couponents. The
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Table 7.1 Initial Evaluation of Process Noise Estimation Algorithm

wa Process Noise (m4/sec11)

.00 .01 .10 1.00 10.00 | 100.00

q, = .225 m2/sec5, g = 1/20 sec”

RSS POS ERR 58.66 58.90 58.60 56.52 62.81 60.43
RSS VEL ERR 9.18 9.16 8.96 6.88 9.01 10.40
MAX POS ERR | 149.36 | 149.30 | 148.75 | 136.65 | 204.77 | 156.79
MAX VEL ERR 30.58 30.56 30.37 29.94 33.73 34.82 ¥
POS ERR/SIG 1.04 1.08 1.10 1.20 1.32 1.15
VEL ERR/SIG 1.00 1.00 1.03 1.07 1.35 1.08
FIN POS ERR 50.01 52.52 38.62 15.61 34.75 37.18
FIN VEL ERR 4.1 4.09 .87 .45 1.06 2.35

RSS POS ERR | 298.96 | 297.81 | 297.44 | 293.83 | 266.05 | 221.49
RSS VEL ERR 34.57 34.47 34.44 34.22 32.62 | 32.72
MAX POS ERR | 758.56 | 753.76 | 752.73 | 742.72 | 668.98 | 475.31
MAX VEL ERR 74.39 74.08 74.02 73.42 69.60 72.64
POS ERR/SIG 7.18 7.63 7.62 7.51 6.71 5.29
VEL ERR/SIG 13.24 13.23 13.21 13.01 11.69 8.53
FIN POS ERR 22.79 33.77 33.64 33.10 62.63 | 357.01
FIN VEL ERR 4.19 4.14 4.14 4.17 7.56 26.93

g, = .01875 m2/sec5, g = 1/20 sec! Aﬂ

RSS POS ERR 91.25 90.60 85.35 68.08 56.64 53.87
RSS VEL ERR 16.16 15.96 14.21 10.31 8.35 7.85
MAX POS ERR | 258.69 | 256.66 | 229.88 | 158.98 | 192.30 | 201.93
MAX VEL ERR 41.88 41.36 34.48 27.63 33.33 36.57
POS ERR/SIG .98 2.07 1.99 1.54 1.26 1.1
VEL ERR/SIG .70 3.69 3.40 2.13 1.48 1.07
FIN POS ERR 25.66 27.66 92.88 90.54 30.87 34.17
FIN VEL ERR 1.46 1.26 5.49 | 5.01 1.02 2.32

[FS T )

e

'
|
i
1
.
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Table 7.1 Initial Evaluation of Process Noise Estimatiorn Algorithm

(Continued)
W, Process Noise (m4/secjj)

.00 .01 .10 1.00 10.00 | 100.00

q, = 4.5 mzlsecs, g =1 sec'T
RSS POS ERR | 107.12 { 107.04 | 107.04 | 107.02 } 106.46 | 167.17
RSS VEL ERR 19.18 19.15 19.15 19.11 18.54 29.46
MAX POS ERR | 300,99 | 300.72 { 300.71 300.57 | 297.52 | 482.87
MAX VEL ERR 43.44 43.43 43.43 43.35 42.18 83.83
POS ERR/SIG 2.06 2.14 2.14 2.15 2.94 3.63
VEL ERR/SIG 2.83 2.82 2.83 2.83 2.94 5.54
FIN POS ERR 42.03 44 .02 43,93 43.07 15.94 69.01
FIN VEL ERR 1.12 1.16 1.15 1.08 5.58 15.39

9, = 1.8 m’/sec”, 8 = 0

RSS POS ERR 55.80 56.01 56.00 55.87 54.95 | 119.60
RSS VEL ERR 8.67 8.67 8.66 8.56 6.76 22.61
MAX POS ERR { 139.95 | 140.59 | 140.56 | 140.25 124,13 | 399.38
MAX VEL ERR 28.73 28.73 28.72 28.61 27.08 66.56
POS ERR/SIG 72 .74 .74 .75 .92 2.22
VEL ERR/SIG .42 .42 .42 .42 .49 2.10
FIN POS ERR 80.52 82 .82 82.57 79.23 38.83 48.53
FIN VEL ERR 11.51 11.57 11.50 10.58 1.35 3.21

| R



q-process noise terms for the measurement bias states were: 10'3

3 for the altimeter bias; 10'5 m4/sec3 for the clock bias; and

7

m4/sec
10'6 m4/sec for the clock drift. The g-process noise terms for the
measurement bias states were not varied in the test summarized in
Table 7.1. Since the altimeter process noise was to be estimated, the
non-stationary term used in the basic twelve-state filter was elimi-
nated. It was anticipated that the Q-estimator would determine the
proper value of process noise for the altimeter bias state. The pro-
cess noise estimates were restricted to value; greater than 10’14 in
all cases.

The results of the Table 7.1 tests indicate that the Q-
estimator is capable of improving the performance of the filter com-
pared to the performance of the corresponding non-adaptive filter. The
performance changes became more pronounced as the q-process noise is
increased but the algorithm did not appear to have the instability of
the Beta-estimator.

The Case 1 and Case 7.5 initial conditions were selected for
full flight tests with g-process noise in the acceleration components

n and 10 m4/sec]]

equal to 1 m4/sec respectively and with the gq-process
noise for the measurement bias states that were used in the Table 7.1

tests. Case 14, using the initial conditions of Case 1, is summarized
in Table 7.2 and Figure 7.1. Case 15, using the initial conditions of

Case 7.5, is summarized in Table 7.3 and Figure 7.2.
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Table 7.2 Case No. 14 Performance (q (0) = .225 m?/sec’,
8 = 1/20 sec™!, W, = 1 m¥/sec’))

Flight Phase Final Times (sec)
598.75 [1013.75 {1295.00 {2760.00 {5100.00 |6687.50
RSS POS ERR 56.92 | 136.67 25.41 155.54 | 209.87 {1123.74
RSS VEL ERR 6.88 1.16 .43 1.38 1.19 8,78
MAX POS ERR 136.65 | 220.43 | 123.52 | 426.45 | 498,78D{1308.55
MAX VEL ERR 29.94 1.82 2.26D 8.91 10.03 | 137.36
POS ERR/SIG 1.20 4.23 2.77 2.98 6.96 67.38
VEL ERR/SIG 1.07 1.21 .46 .38 .40 2.12

Table 7.3 Case No. 15 Performance (qa(O) = 1.8 mz/secs, g =0,
W, =10 m4/sec]])

Flight Phase Final Times (sec)
598.75 11013.75 |1295.00 |2760.00 }5100.00 |6687.50
RSS POS ERR 54.95 { 141.30 27.37 | 147.25 | 185.13 1007.69
RSS VEL ERR 6.76 1.73 1.06 2.94 2.97 6.27
MAX POS ERR 124.13 | 229.34 | 128.93 | 504.26 | 603.97 |1200.32
MAX YEL ERR 27.08 3.91D 7.52D] 25.51 30.89 | 110.09
POS ERR/SIG .92 3.73 2.41 2.30 4.34 52.22
VEL ERR/SIG .49 .65 A .25 .37 1.01
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The predicted process noise terms were generally optimistic.

This is evident from the standard deviation curves of Figures 7.1 and

7.2. The gains became small and the filter had difficulty following

the aircraft position.

flight.

altimeter process noise.

A test was made using the Case 1 initial

Errors became unacceptably large later in

In addition, the g-estimator was not determining the proper

conditions in which

the altimeter bias gq-process noise was increased to 10 m4/sec3. This

test used the acceleration state g-process noise of 1 malsecn as in

Case 15. The results are given in Table 7.4 and are shown in Figure

7.3. Although there is some improvement, the final flight phase RSS

position error was still greater than one kilometer.

The altimeter bias

g-process noise was increased further but the filter performance did

not improve,

5
Table 7.4 Case No. 16 Performance (qa(o) = ,225 mz/sec .

8 = 1/20 sec”', W, = m4/sec]])
Flight Phase Final Times (sec)

598.75 11013.75 [1295.00 12760.00 |5100.00 6687.50
RSS POS ERR 56 .53 157.16 23,73 | 150.72 | 174.39 }1065,25
RSS VEL ERR 6.88 1.12 .35 1.71 1.05 3,78
MAX POS ERR 136.64 | 246.86 | 157.89 | 398.25 | 479.55 |1218.16D
MAX VEL ERR 29.94 1.82 1.380f 11.04 9.47 36.83
POS ERR/SIG 1.19 3.74 2.40 1.35 5.12 50,91
VEL ERR/SIG 1.08 1.16 .50 .4?41 .36 1.29
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The N-estimator was then modified so that only the acceleration

process noise terms were estimated.

Spot checks of 600-second tests

were made to determine the validity of Table 7.1 for the reduced state

Q-estimator.

The revised Q-estimator resulted in better performance than

the corresponding Table 7.1 tests but the relative behavior of the re-

vised filters was similar to the behavior shown in Table 7.1.

The re-

vised Q-estimator was tested for the entire flight using the Case 1,

Case 3, and Case 7.5 initial conditions with acceleration g-process noise

equal to 1 m4/sec]1

, 10 m4/sec

11

respectively.

The resuits, identified

as Cases 17, 18, and 19 are given in Tables 7.5 through 7.7 and in

Figures 7.4 through 7.6.

In general, the revised Q-estimator performance

is similar to the performance of the 12-state filter with some improve-

ment early in flight and some degradation later in flgiht.

Table 7.5 Case No. 17 Performance (qa(o) = 225 m2/sec5,

g = 1/20 sec‘1, W=1 m4/sec]1)

Flight Phase Final Times (sec)

598.75 [1013.75 {1295.00 {2760.00 {5100.00 |6687.50
RSS POS ERR 56.18 | 142.75 21.24 | 208.25 | 102.21 55.42
RSS VEL ERR 6.88 .52 .33 1.93 1.00 3.57
MAX POS ERR 136.66 | 223.29 | 140.59 | 842.82 | 229. 53| 110.99D
MAX VEL ERR 29.94 1.90 1.44 8.69 8.85 26.75D
POS ERR/SIG 1.14 1.98 1.48 .82 1.22 1.78
VEL ERR/SIG 1.08 1.08 .53 .49 .33 1.02
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[ Table 7.6 Case No. 18 Performance (qa(O) = ,01875 m2/sec5,

g =1/20 sec'], W=10 m4/sec]])

Flight Phase Final Times (sec)

598.75 {1013.75 [1295.00 {2760.00 {5100.00 |6687.50

RSS POS ERR 56.59 | 143.35 20.83 | 235.26 | 104.62 62.26
RSS VEL ERR 8.34 1.58 .46 2.20 1.64 3.26
MAX POS ERR 192.29 | 233.12 | 142.56 | 925.12 | 283.80 | 114.7¢%D
MAX VEL ERR 33.33 2.75D 2.10D| 10.82 13.34 34.18
POS ERR/SIG 1.19 1.94 1.35 .87 1.17 1.93

VEL ERR/SIG 1.48 73 .26 [ .23 .21 .64 i
|

Table 7.7 Case No. 19 Performance (qa(O) = 1.8 mz/secs, g8 =0,

W=10 m4/sec1])

Flight Phase Final Times (sec)

598.75 {1013.75 {1295.00 {2760.00 |5100.0Q0 [6687.50

RSS POS ERR 54.66 | 152.54 22.2Q | 234.54 | 105.32 62.14
RSS VEL ERR 6.76 1.66 .50 2.47 2.04 3.13
MAX POS ERR 123.40 | 240.82 | 152.45 | 921.55 | 272.93 | 115.45D
MAX VEL ERR 27.08 3.63D 2.14D 13.80 17.07 33.97
PGS ERR/SIG .89 2.04 1.44 .87 1.17 1.90
VEL ERR/SIG .49 .61 .26 .23 .23 .57
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7.3 Adaptive Age-Weighting

7.3.1 Development of the adaptive age-weighting algorithm.

Tarn and Zaborszky [80] pointed out that, within the constraints of

the modeled noise statistics, the Kalman filter assumes that observations
taken at a time in the past contribute the same amount of information

as current observations. They developed a simple technique to downgrade
the influence of past measurements by modifying the measurement noise
statistics. Using their modification, the linear observation expressions

are assumed to have the form 4

X(tk) = H(tk)‘)&(tk) + _E_k :
Elc,] = O (7.12) |
T - k=-j
E[Eksj] s Rjajk
where: s > 1;

tk is current time; and

tj is a time in the past.

The result can be expressed as a modification to the time update covari-

ance equation P
7/
T / §
P = ¢(tk,tk_]) sP(t, 1) o (t, .t ;) +r(t,) (7.13) ) i
e :
The expression for P  that results from Eq. 7.13 is used then in place//
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of P in the remaining equations of the sequential filter.

Fagin [81] developed a similar technique based on a recursive
least squares derivation. Hagar [77:48] showed that Fagin's exponential

weighting factor is related to Tarn and Zaborszky's factor as follows:
s = exp[(tk - tj) /1] (7.14)
where: v is an arbitrary factor.

Age-weighting can be applied as a non-adaptive technique by choosing a
constant s or 1. Hagar [77:79-80], however, suggested the use of the
predicted covariance of the residual to determine the factor s. The
following technique is a modification to Hagar's suggestion and is iden-
tical to the covariance double update of Heck [82:191-196].

If Yk is an estimate of the variance of the residuals, then
the estimate of the residual variance is set equal to the predicted
residual variance as in Eq. 6.22 except that P' is used to designate

the covariance matrix that will satisfy the equality.

If 'FL is related to Fk by

P = P, (7.16)

then Eq. 7.15 can be solved for the scalar s where the measurement

is assumed to be a scalar.




247
oo P (7.17) ,
s = .
) |
HkPkHk |

The navigation filter then modifies the a priori covariance matrix in

accordance with Eq. 7.16. Note that this technique differs from that of
Tarn and Zaborszky's result, Eq. 7.13, in that the factor s is assumed
to apply to the discrete process noise matrix T as well as to the pre-

vious a posteriori covariance matrix.

Since the covariance matrix must be positive definite, s must
be positive. In fact, to satisfy the restriction on values of s from
Tarpn and Zaborszky's algorithm and from Fagin's exponential from, s
must be greater than or equal to unity. Heck [82:194] suggested imple-
menting a maximum value for s of 1.2. A similar algorithm suggested
by Lear [83] would also limit s to a maximum of 1.2.

The calculation of Yi remains to ve discussed. Hagar suggested
using the mean of the square of the latest N residuals. This has
the advantage of smoothing large fluctuations caused by measurement
noise. If N is too large, however, the adaptive parameter may be
slow to recognize aircraft turns. The situation is further complicated
for GPS users because, if three satellites are visible and the user
has an altimeter implemented, then the user has a sequence of seven
independent and scatistically different measurements. Also, the assumed
measurement noise variance R is not necessarily stationary though it

may vary slowly. To eliminate the requirement that arrays of residuals




be maintained for each measurement type, the adaptive age-weighting
algorithm tested in this study used only the square of the current mea-
surement residual as its estimate of the residual variance. The upper
limit on the weighting factor should prevent disastrous modifications
based on large measurement noises. If, however, a measurement source
fails and eontinually provides large residuals, then the continued appli-

cation of the factor may cause difficulties.

The adaptive age-weighting algorithm was implemented in two modes.

In the first mode, the age-weighting factor was calculated and applied
for all measurements. In the second mode, the factor was not calculated
for the range-rate measurements. The philosophy behind the second method
is made apparent by examining Eq. 7.14. Since the pseudo-range measure-
ment and the pseudo-range-rate measurement are time-tagged with the same

time, the age-weighting factor for the covariance matrix should be unity.

7.3.2 Results of adaptive age-weighting tests. Both adaptive

age-weighting algorithms were tested using various combinations of cor-
relation time and spectral level noise magnitude. Poor filter perfor-
mance resulted in all tests with 1ittle or no improvement over the
corresponding non-adaptive filters. Analysis of the results indicated
that the method may be more suited as a covariance maintenance technique
for applications where the covariance matrix would otherwise vanish or
become very small. The exponentially correlated random acceleration

model has no requirement for such a covariance maintenance scheme.
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7.4 Adaptive Process Noise Weighting

7.4.1 Development of the adaptive process noise weighting

algorithm. The a priori covariance matrix P defines a region of
uncertainty about the a priori state estimate. A portion of the region
is due to uncertainty in the initial conditions. This region is ac-

counted for by the ¢P¢T

term in Eq. 4.69. The rest of the region of
uncertainty is due to process noise that may occur during the time in-
terval of the covariance propagation. If the previous a posteriori co-
variance matrix P is correct and if the system dynamics as represented

T term is

by ¢ are reasonable, then it can be assumed that the ¢P¢
reasonably accurate. It can be argued then that any deviation of the
true state beyond the region of uncertainty as defined by P is due to
an error in the process noise matrix T. Similarly, if the true state
remains in a region about the predicted state that is smaller than that
specified by P, then it can be argued that the filter process noise
matrix is too 1arge.* These assumptions form the basis for the adaptive

process noise weighting algorithm.

Assume that the desired a priori covariance matrix is given by

Pr(t) = o(tyat, )P(t, e (t,t, 1) +sr(t)  (7.18)

*
The assumed statistics must be considered before deciding that the state
is "in" or "out" of its region of uncertainty.
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Substituting Eq. 7.18 into Eq. 7.15 yields '

1

T T
v, - Ho(t, ,t, ;)P(t, )¢ (t st, ;)H, - R
s = -k k™' vk? k-1 k-1 k’"k=1""k k (7.19)

T
HkI‘Hk

The adaptive process noise weighting algorithm is implemented by cal-
culating the factor s wusing Eq. 7.19 and then calculating the a priori
covariance matrix using Eq. 7.18. The filter equations then use the
modified a priori covariance matrix for the calculation of the gain and
for the covariance matrix measurement update. Since process noise is
not added between the processing of the pseudo-range measurement and the
processsing of the pseudo-range-rate measurement, process noise weighting
was not accomplished when the pseudo-range-rate measurements were pro-
cessed.

For this technique, the factor s must be greater than or equal
to zero. A value of s between zero dand unity effectively lowers the
process noise added to the propagated covariance matrix. To prevent
difficulties caused by large measurement noises, a maximum value of s

was specified.

7.4.2 Results of adaptive process noise weighting. The adap-

tive process noise weighting algorithm was tested using various values
of correlation time, spectral Tevel process noise, and maximum allowable
weighting factors. For those filters which assumed high maneuver vari-
ance, the performance was generally worse than the performance of the

corresponding non-adaptive filter in all phases of flight. When the
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maneuver variance was decreased, the adaptive process noise weighting
algorithm improved the performance of the takeoff and departure flight
phases but resulted in worse performance during cruise, approach, and

landing.

7.5 The Aidala-Davis Performance Index

7.5.1 Disadvantages of previous performance indices. The

performance indices used in the adaptive age-weighting and adaptive
process noise weighting algorithms have three major disadvantages.
First, they can be calculated only for scalar measurements. Second,
they use a single-sample variance to estimate the variance of the resi-
duals. And, third, the value of the index can be strongly influenced by
the type of measurement. The first two disadvantages also apply to the
Q-estimator. A performance index developed by Aidala and Davis [78]

eliminates these disadvantages.

7.5.2 Derivation of the index. Aidala and Davis [78] derived

the sequential filter equations utilizing the classical method of least
squares with a somewhat unorthodox performance index. Following is an
outline of their derivation.

Assume a system defined by the linear difference equation
X

Xl = ikt B (7.20)

where: Xy is a p-dimensional state vector;
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¢k+l,k is the state transition matrix;
Bk is the state noise matrix; and ? 

Wy is the process noise vector.

The observations are defined by

Yy - Hkék e (7.21)

where: xk is an m-dimensional measurement vector;

Hk is the observation-state matrix; and

Yy is the observation noise vector.

The statistics of Eqs. 7.20 and 7.21 are as follows:

Elx,] = X, (7.22a)
EL(xy - X,) (% - %07 = P, (7.22b)
Elw ] = W, (7.23a)
Elw; - Ej)(ﬂk - Wk)T] = Qs (7.23b) ;j
Ele] = 0 (7.242) ‘
Eleed = RSy (7.24b)
EC(x, - x ) (w, - LTO)T] = 0 (7.25a)
E[(x, - X)eg] = 0, for all k (7.25b)
EL(w; - Ej)gl] = 0, forall j and k (7.25¢)
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where: djk is the Kronecker delta;

X; 1s the a priori estimate of the state x,; and

W, 1is the a priori estimate of the noise w,;

Note that in the definition of the system given above, reference is made

to an estimate of the process noise vector w.. The filter equations to

be derived, however, are oriented toward the estimation of the state x..

The following constraint will be placed on the estimates:

-

X#lln = %kl n * B (7.26)

where: 5k+1ln is the optimal estimate of X based on n

m-dimensional observations;

!k+1|n is the optimal estimate of W based on n

m-dimensional observations.

Equation 7.26 ensures that the estimates satisfy the system equations.

The following equivalences should be noted:




where: Ty is the discrete process noise matrix discussed in

Par. 4.5.

Jsing the system defined by Eqs. 7.20 through 7.26, Aidala and

Davis defined a performance index as follows:

1

N TR L B P
In = 12 (%10 - X) P (o) 7 X)
n-1 T 1 - _
+1/2 © (w -w) Q, (!aln - !&) W

g0 *In =2

+1/2 120 (y, - Hzgﬂln>T R;1 (y, - ng%ln) (7.27)
The first term on the right hand side of Eq. 7.27 is a measure of the
error in the a priori estimate of the initial conditions normalized
(weighted) by the a priori covariance matrix for the estimate of the
intital conditions. The second term on the right hand side of Eq. 7.27
is a measure of the system noise normalized by the process noise covar-
iance matrix. The last term is a weighted least squares term to account
for data-fit errors. The performance index is thus a quantitative mea-

sure of the estimation process with a good intuitive basis.

The solution to Eq. 7.20 is given by

Bw. , k=1,2,. .. (7.28)
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Equation 7.28 is the discrete analogue to Eq. 4.62. If Eq. 7.26 is to
constrain the estimates, then Eq. 7.28 can be applied also to the opti-
mal estimates.

k-1

0 gaBiMy e ko= T2 . (7.29)

X =0 X
Zk|n k,0~0|n 320

Aidala and Davis proceed to develop filter equations by minimiz-
ing J, under the constraints inposed by Eq. 7.26. The independent
vectors in Eq. 7.27 are the a posteriori estimate of the initial state,
io|n and the a posteriori estimate of the process noise len.

j=0,1,. . . .n-1. Aidala and Davis minimize Jn by taking the partial

derivatives of Eq. 7.27 with respect to &oln and . Jj=0,1,. . .,n-1,

~j[n
and setting the partials equal to zero. By analyzing the effect of an
additional measurement on the optimal estimate, the secuential filter
equations are derived. For convenience, the sequential filter equations,

using the above notation, are summarized as follows:

etk © ¢k¢1,kxk!k + Bkyk|0 (7.30a)
_P_ = ¢ p \!‘T + 1 (7 30b)
k+l k+1.k kYKk+1,k © 'k .30b)
K B H (M P D+ R )T (7.30¢)
k1 KETTR+HT k41 k+1 kH1 k+1 . ;
Tkl T Xtk + ﬁﬂ(ykﬂ - Hk+15k+1|k) (7.30d)
|
Pk*] i (l - 'ﬁ(*’]Hk"'])Pk"’] (7.30@) i
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A measurement residual is defined by

: Ze = 4o HXgea (7.31)

Aidala and Davis, after considerable algebra, show that the performance

index of Eq. 7.27 can be written in terms of the residuals.

" T s T -1
I, = ]/ZQE] _z_Q(HQPQH2 +R) z, (7.32)
Note that the bracketed term in Eq. 7.32 is (see Eq. 6.22) ;
E[sz ] = H PH + R for all ¢ (7.33)
) P A P ’ ’

The performance index is a random variable and, as such, its statistical

properties can be examined. It can be shown that

Twp -1 = m, for all ¢.
E[EQ(nggHQ + Rz) 51] (7.34)
g
where: m 1is the dimension of the measurement vector.

The mean and covariance of Jn are given by

E[Jn] = mn/2 (7.35)
ELQ, - EL, 1% ]= my2 (7.36)
where: Jn is Chi-Square distributed [90:178] if all statistics

are Gaussian.
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As the number of measurements gets large, adaptive decisions,
based on a performance index as evaluated by Eq. 7.32, are difficult,
To eliminate this <ifficulty, Aidala and Davis introduced a modified per-

formance index.

n
_ n-1r Ty 5 ol -1
Ln = 1/2£E]y [Eﬁ(Hzszl + RQ) z, -m] (7.37)

where: 0<vy <.

The mean and covariance 6f the modified performance index are bounded.

E[L] = 0 (7.38a)

2 m 1 - 2n
ElLy] = 7 — % (7.38b)

n 2 1 2

-y

. 29 _ m

Tim E[Ln] - 2 (7.38¢c)
noe 2(1 - v°)
The modified index can be expressed in a recursive form as follows:
T 5 Wl a0

Lper = Y * 1720z (i qPragfiney + Roag) 200y - (7.39)

7.5.3 Implementation of the Aidala-Davis index. The perfor-

mance index of Eq. 7.39 should be a good quantitative measure of system
performance. The difficulty is in the selection of the memory factor

v and the developmant of a gain modification scheme. In tests imple-
menting the performance index, only the aircraft portion of the process
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noise matrix was modified based on the value of the performance index.
This approach was selected under the assumption that aircraft maneuvers
were the primary source of errors in the state estimate.

After calculating Lk using Eq. 7.39, the a priori covariance

matrix was modified as follows:

ko= Prsi)r (7.42)

ac

where: Fac represents the aircraft state portion of the dis-
crete process noise matrix, T3 and

S(Lk) is a factor based on the performance index, Lk‘

Prior to describing the functional form of S(Lk) chosen for
the numerical example considered in this investigation, the behavior
of Lk must be examined beyond the determinatior of mean and variance.
Of importance is the fact that the performance index has an absolute
Tower 1imit, i.e., if all residuals are zero, the performance index has
a finite lower bound. To demonstrate this behavior, set the residuals

in Eq. 7.39 equal to zero giving

Leep = vbp - m/2 (7.43)

The solution to the difference equation of Eq. 7.43 can be obtained by

using z-tranform theory [84:384-393]. The z-transform of Lysp 1S

given by
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2Lyq] = vIL] + 202
= zZ[Lé] - zL0 + 2[-m/2] (7.44)
Solving Eq. 7.44 for the z-transform of Li yields
Myl = s AL - s R (w2) (7.45)
Y 0 zZ-y Z
where: z/(z-1) is the z-transform of unity.
Expanding Eq. 7.45 by partial fractions
Z[Li] Tz f Y Ly * g 1 1 Y 2 E Y g'l 1 Y Z f 1 (7.46)
Taking the inverse transform leads to
L= v L +(2(]m_ Y)) - Ty (7.47)
which, in the limit as k - «», yields
Lpin = 1M b o= -mﬂ_—ﬂ- (7.48)

k » =

The results of Eq. 7.48 could have been obtained by applying the Final
Value Theorem for z-transforms [84:390-391].

The calculation of S(Lk) in Eq. 7.42 must consider the limi-
ting behavior of the index. In the algorithms tested, the calculations

used to determine S(Lk) are summarized as follows:
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S! (Lk) - 1 for pseudo-range and altimeter

s(t,) = measurements
s (Lk) for pseudo-range-rate measure-
ments (7.49)
exp(C]Lk) if Lki Lmax (7.50a)
$'(L) =
S ax il Lo (7.500)
¢, = 1" min) (7.51)
Lmin
. In(s' )
- max
Lyax = C (7.52)

[f the index memory factor vy 1is small, then the Chi-Square
distribution of Lk can cause large magnification of the performance

index by causing small absolute values of L This can be disas-

min®
trous when the performance index increases because of aircraft turns.

Implementation of Eq. 7.49a allows for the reduction of process
noise if the performance index is below its mean value. Since process
noise is not added normally when the pseudo-range-rate measurement is
processed, Eq. 7.49b is implemented to insure that the covariance matrix
does not become non-positive definite.

When the performance index equals its minimum values, the factor
takes on the value of Sﬁin' The primary purpose of S&in is to scale
the effect of the performance index Lk on the factor S'(Lk). The

factor C1Lk is a function of S'min and the number of standard
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deviations that Lk departs from the mean. For large values of v
the modified performance index effectively includes more terms in the
summation. Since the Chi-Square distribution approaches a normal dis-
tribution as the number of terms increases, the statistical behavior
of C1Lk is approximately Gaussian for large y. For small <y , how-
ever, the performance index may have poorly behaved statistics. For
v=0 , a single residual determines the gain modification.

The implementation method described above was intuitively devel-
oped. Many other possibilities exist, for example, on/off process
noise depending on the value of the performance index or a linear func-
tion of the performance index. Each method would have to be analyzed
using specific parameters. The method described was applied to an ADR

filter using the initial conditions of Cases 1 through 4 and 7.5.

7.5.4 Results of the Aidala-Davis Index Implementation. The

algorithm implementing the Aidala-Davis index was tested using the
jnitial conditions of Cases 1 through 4 and 7.5 for the first 600 sec-
onds of flight. The performance of the filter using the initial condi-
tions of Cases 1, 4, and 7.5 was considerably worse than the correspond-
ing non-adaptive filter. This is similar to the adaptive process noise
weighting results for the high noise cases except that the magnification
jnherent in the exponential function magnified the errors. The Case 2
and Case 3 initial conditions, however, did result in better navigation
results for the initial tests. Table 7.8 lists the performance indi-

cators of the Aidala-Davis index implementation for Case 2 and Case 3




Table 7.8 Initial Results of the Aidala-DavisIndex Filter

Memory Factor (y)

non-
adaptive| .40 .50 .60 | 707 .90
9y = 375 m/sec’, § = 1 sec™!, .1 < S*(L) < 1000,

RSS POS ERR | 298.96 | 70.91 | 70.08 | 73.21 | 70.89 | 79.43 | 90.58
RSS VEL ERR | 34.57 | 1.1 [ 12.92 | 14.00 | 14.01 | 1417 | 15.49
MAX POS ERR | 758.56 | 203.27 | 194.61 | 196.51 | 190.56 | 202.14 | 274.87
MAX VEL ERR | 74.39 | 28.11 | 37.970| 33.53 | 40.27¢| 32.63 | 38.31
POS ERR/SIG | 7.8 | 14| 121 | 21| 132 .46 | 1.8
VEL ERR/SIG | 13.24 7 .95 93| 122 192 e
FIN POS ERR | 22.79 | 53.76 | 21.96 | 67.61 | 13.24 | 27.06 | 30.15
FINVELERR | 4.29 | 1.78| 176 | 579 | 103 152 2.3

q = 01875 m‘/sec’, 8 = 1/20 sec™', .1 < §'(L,) < 1000.
RSS POS ERR | 91.25 | 50.88 | 51.50 | 49.29 | 52.41 | 55.87 | 57.67
RSS VEL ERR | 16.36 | 7.55| 7.25| 7.1 | 7.90] 9.42| 9.70
MAX POS ERR | 258.69 | 149.02 | 137.23 | 138.07 | 143.84 | 152.11 | 128.98
MAX VEL ERR | 41.88 | 28.81 | 29.27 | 29.40 | 28.77 | 37.19 | 28.72
POS ERR/SIG | 1.98 .93 .98 9] o | 10
VEL ERR/SIG | 3.70 .67 72 7 79| 1.00 91
FIN POS ERR | 24.94 [ 22.11 | 19.39 [ 18.42 | 18.09 | 18.39 | 18.64
FIN VEL ERR | 1.44 | 1.08 .98 .95 .93 .90 .87

i O i i i
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initial conditions and for various values of the Aidala-Davis index
weight v.

The initial tests showed a marked improvement over the non-
adaptive cases in all parameters except the Case 2 initial condition
final position error. Full flight tests were accomplished with a mem-
ory factor y equal to /.5. Using the Case 2 initial conditions,
the full flight test diverged. The maximum value of the process noise
weight S'(Lk) was reduced to 10. The filter, designated as Case 20,
did not diverge during the flight but did have unacceptable performance.
Table 7.9 and Figure 7.7 summarize the Case 20 results.

Case 2! was a full flight test using the Case 3 initial condi-
tions and a maximum process noise weight equal to 1000. The results of
Case 21 are given in Table 7.10 and are shown in Figure 7.8. Many
adaptive filters which recognize aircraft turns quickly are also sensi-
tive to measurement noise or turbulence. When sensitivity is reduced,
sluggish response to a maneuvering aircraft is usually the result. The
Case 21 conditions, however, improved the performance of the navigation
filter during the takeoff and landing phases of flight without severely
degrading the filter performance during cruise. Case 21 appears to have

the ability to steer a safe course between this Scylla and Charybdis of

the navigation filter.
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Table 7.9 Case No. 20 Performance (qa = .375 m2/sec5, g =1sec ',

v = 707, .1 < S'(L) <10)

1

Flight Phase Final Times (sec)

598.75 11013.75 }1295.00 }2760.00 |5100.00 }6687.50
RSS POS ERR 109.23 | 128.57 | 149.49 [1626.93 |2082.81 |1554.10
RSS VEL ERR 18.90 1.70 k3.52 6.59 7.92 3.61
MAX POS ERR 271.33 242 32| 971.91€| 29149. |3866.80D|1532.68
MAX VEL ERR 40.18 5.51D| 63.67 90.20 | 181.08E| 24.45
POS ERR/SIG 2.38 1.73 8.33 5.08 35.96 57.86
VEL ERR/SIG 4.13 .74 5.14 2.36 3.19 1.64

Tahle 7.10 Case No.21 Performance (qa = .01875 m2/sec5, B = 1/20 sec”

y = .707, .1 < s'(L,) < 1000)

Flight Phase Final Times (sec)

598.75 |1013.75 [1295.00 |2760.00 15100.00 |6687.50
RSS POS ERR 55.87 | 142.76 24.48 | 176.40 | 102.81 39.76
RSS VEL ERR 9.42 1.39 .29 1.57 .73 3.98
MAX POS ERR 162.11 | 231.08 | 159.69 | 716.15 | 202.33 98.69D
MAX VEL ERR 37.19 2.59 1.460 7.60 4.82 31.65
POS ERR/SIG 1.10 1.95 1.77 77 1.29 1.23
VEL ERR/SIG 1.00 .69 41 .62 .55 .74

1
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CHAPTER 8
SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

8.1 Summary

The sequential estimation techniques investigated in this study
provide "optimal" estimates if the filter has an accurate representa-
tion of the system dynamics. With respect to the aircraft, this re-
quires that either the acceleration is known a priori and is included in
the filter algorithm, or that an accurate model for the acceleration is
available and that the unknown parameters for the model are included in
the filter state vector. Because of the inherent character of aircraft
trajectories, a priori knowledge of aircraft acceleration is unavailable
and no computationally tractable model exists which will precisely model
the acceleration. Also, because of the Tack of a true aircraft model,
the goal of an "optimal" estimate should be replaced with the require-
ment for a "satisfactory" model. A satisfactory model is one which is
easily implemented and which will result in accurate and reliable filter
performance. The continuous coverage by the Global Positioning System
(GPS) satellites and the short prediction time intervals will allow
approximate models to be used successfully by the navigation filter.

Success ful evaluation of navigation algorithms for accuracy and
reliability required two fundamental efforts. The first effort was the
design and verification of a simulation computer program to realistical-

ly represent a user trajectory and the corresponding satellite

268
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observations. The second major effort involved the derivation, imple-
mentation, and evaluation of the various navigation algorithms. The 1:
results of these efforts, as presented in this dissertation, are sum-

marized in the following.

8.1.1 The simulation program. To design the simulation com-

puter program, it was necessary to understand the major elements of y
the GPS, its concepts, and its environment. The primary functional
segments of the GPS include the Control System Segment, which is re-
sponsible for ephemeris generation and satellite data maintenance; the
Space System Segment, which consists of the navigation satellites; and f
the User System Segment, which includes the hardware and software
necessary to provide a navigation fix.

The specific models and methods used to simulate motion of the
GPS satellites, the satellite navigation signals, and a typical user 1
were described. The simulation program is coded in modular form to
allow flexibility in the choice of system models, navigation algorithms,
and user trajectories. The resulting computer simulation is a valuable
tool which can be used to provide a realistic simulation for navigation .
algorithm studies. As adopted for use in this dissertation, the accur-
acy of the simulation is sufficient for initial algorithm investiga-
tions. Because of its inherent flexibility, the program can be up-

graded by incorporating more exact models of the GPS and the user equip-

ment. The information in Chapters 2 and 3 of this dissertation and the
reference. :ited cai e used to guide a programmer in his selection of

alternate simulation models. ¥
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8.1.2 Navigation studies. The sequential equations for the

linear, minimum variance filter were derived. The requirement for ac-

curate covariance matrix propagation was discussed and a new technique

to aid in the numerical integration of the covariance matrix different-
ial equation was developed. The sequential filter equations served as

a framework for the development of several navigation algorithms.

Four aircraft models were investigated. The velocity dead-
reckoning model maintained finite filter gains because of the inclusion
of process noise in the differential equation of velocity. Such
process noise is representative of uncorrelated random accelerations.
In order to be competitive with other algorithms, the process noise
assumed by the filter must be large. Otherwise, the filter gains will
be inadequate to track an aircraft maneuver. The assumption of Targe
uncorrelated random acceleration is not only intuitively displeasing

but also degrades filter performance during the cruise portion of

flight.

A second aircraft model was based on the assumption that the
acceleration is an exponentially correlated random variable. Over the
prediction interval, acceleration is assumed to be a constant equal to !
the last estimated value. The model can be referred to as an accelera-
tion dead-reckoning model. Because of the effects of the correlation
time parameter, this model permits the maintenance of reasonable filter : K
gains with low magnitudes for the spectral level acceleration process
noise. The numerical results established that the exponentially cor-

related random acceleration model could maintain track during aircraft
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maneuvers and could also improve the cruise phase performance as com-
pared to the velocity-dead-reckoning model. Much of the inprovement
in filter performance may be due to the estimation of acceleration
whereas acceleration is not estimated in the velocity-dead-reckoning
model.

A third aircraft model is a minor variation of the exponen-
tially correlated random acceleration nodel. With infinite correlation
time, the acceleration is characterized as a random walk. This model is
a limiting case ot the exponentially correlated random acceleration
model and provided numerical results similar to the results seen for
correlation times of twenty seconds and longer.

The fourth aircraft model, the Beta-estimator, was based on
the assumption that the acceleration has an exponential character. This
model requires the estimation of correlation time and thus increases
the size of the filter state vector, the required computer sterage, and
the required computer run time. The model also, unfortunately, adds an
instability to the algorithm because of the difficulty in matching
exponential functions to rapid acceleration changes during aircraft
turns. Since the correlation time associated with the assumed exponen-
tial acceleration affects the covariance matrix propagation, the entire
filter operation is subjected to erratic behavior associated with the
state of the aircraft.

Adaptive techniques were tested in an attempt to improve the
per .rmance of 'he e ponentially correlated random acceleration models.

Three basic adaptive methods were tested. The first method, the
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Q-estimator, employed a secondary filter to estimate the spectral level
process noise magnitude. When applied to the estimation of accelera-
tion noise magnitude only, the performence of this filter was slightly
improved compared to the non-adaptive resuits. This method, however,
significantly increases program complexity.

The second adaptive method used a single-sample variance of
the residuals to scale the a priori covariance matrix (adaptive age-
weighting) or to scale the process noise matrix (adaptive process noise
weighting). The former method was unstable, probably because of the
size of the covariance matrix elements; the latter method did not im-
prove performance during maneuvers without degrading performance during
cruise.

The third adaptive method was based on a performance index with
a direct relationship to the loss function of the sequential filter
equations. This method has the capability to consider vector measure-
ments, to effectively use a muiti-sample variance of the residuals,
and to combine different measurement sources. The numerical results
showed that the filter could perform as an adaptive filter should,
i.e., filter gains were increased during maneutvers and were decreased

during cruise.

8.2 Conclusions

Based on the numerical tests, it can be concluded that an
aircraft model which assunes the acceleration to be exponentially

correlated will provide an accurate navigation fix with 1ittle danger
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of filter divergence. In addition, the Aidala-Davis performance index
can be incorporated into the algorithm easily and will enhance the
performance of the filter.

Based on the total effort expended in this investigation, the

following additional conclusions are offered:

1. The influence of geometry on filter performance is perva-
sive. In fact, those algorithms which had covariance behavior that
severely distorted the geometrical predictions, generally performed
poorly.

2. Satellite clock errors are critical. Because the satellite
clock errors will appear as biases over short time intervals, the navi-
gation filter will move the estimated user position to minimize the
residuals. Locations of the satellites and the signs of the clock
errors can cause large position errors without a large measurement
residual to indicate difficulties.

3. The Phase II configuration is inadequate for terminal
area navigation. If, in the simulated flight, the aircraft had to land
at T = 45 minutes, he would be landing with an extremely poor geomet-
rical configuration. Considering effects of maneuvers, the errors
could easily exceed one kilometer.

4. Numerica. tests, which were performed in the early stages
of this research, showed that an altimeter is a valuable additional
sensor. Also, if the altimeter errors are significantly worse than

that of th: adopted model, then an ill-conditioning between the altitude

estimate and the altimeter bias estimate can occur.




5. Adaptive methods which cause significant changes to the
covariance matrix, can result in unstable performance if the covariance

matrix is not small.

8.3 Recommendations

Based on the overall efforts of this investigation, the follow-
ing recommendations can be made with regard to navigation algorithm

selection:

1. The algorithm should estimate acceleration.

2. The algorithm should have reasonable steady-state gains
when tested with a constant satellite-user geometry. Algorithms which
allow the covariance matrix to vanish or to become unrealistically
small are not acceptable.

3. Any schemes to modify filter performance based on detecting
maneuvers should operate via the process noise matrix. With a realis-
tic covariance matrix, modification of the a priori covariance matrix
(as in the adaptive age-weighting method) or modification of the covar-
iance matrix propagation (as results from the Beta-estimator) can lead

to disastrous results.

The aircraft model based on exponentially correlated random
acceleration can be combined with the Aidala-Davis performance index
and a covariance modification scheme similar to that tested in Chapter
7 to provide an algorithm which meets the criteria of the above recom-

mendations. Assuming adequate computer storage and time, this
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algorithm can be easily implemented on an on-board computer for GPS

user navigation.

8.4 Future Efforts

Future efforts should be directed toward a sensitivity anal-
ysis of the recommended algorithm. In particular, the following modi-
fications should be made to the simulation program for further tests of

the algorithm:

1. A more accurate GPS hardware/software representation
should be incorporated. Because this study was initiated early in the
development of the GPS program, certain elements of the hardware/soft-

ware had not yet been specified. As more precise knowledge of the com-

puter/receiver interface and the downlink data message is made available,

the information should be incorporated into the simulation.

2. The algorithm should Be tested with less accurate user
clocks. The clock simulation adopted for the tests is equivalent to
a good quartz crystal clock. Clock accuracy on the order of the timing
used in on-board computers should be considered.

3. The adopted receiver accuracy is between that associated
with the Precision code and that associated with the Clear/Acquisition

code. Sensitivity to this error source should be investigated.

4. A rate gyro should be investigated as an additional sensor.

5. Tests shculd be made with targer wind gusts.
6. Othcr flight profiles, such as an over-the-pole flight and

a North-South trajectory, should be included to verify the results,
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In addition to further testing of the recommended algorithm,
the algorithm itself could be modified to provide additional insight.

For example,

1. The aircraft model could be reduced to the velocity dead-
reckoning model. Additional analysis of this model is required if a
user has inadequate computer capability for the recommended algorithm,

2. A simpler covariance modification scheme could be used
with the Aidala-Davis performance index.

3. Parameter sensitivity analyses should be reaccomplished
é for the algorithm using selected realizations of the scenario. Such
an effort is required to verify the sensitivity analyses contained in

this report.

Prior to actual on-board testing of an algorithm, all available
information should be examined and the appropriate modifications made
to the simulation computer program. The recommended algorithm should
then be evaluated using the techniques of this dissertation. It is
expected that the recommended algorithm will perform satisfactorily in

the ground simulation and in the on-board tests.




APPENDIX A

[ OV Sy s

COORDINATE SYSTEMS

One of the characteristics of the Global Positioning System is
its use of a worldwide common coordinate grid. The navigation signals

and the downlink data will, after processing, locate a user at a spe- )

cific point in a coordinate system common to users worldwide. The re-
lationships between the GPS coordinate system and other systems can be
used to transform the ravigation output to coordinates in a desired
sys tem.

Coordinate systems are defined by specifying an orgin, the di-
rection of the positive third-(z-) axis, the fundamental (xy-) plane
which is perpendicular to the positive third-axis, and the direction of
the first-axis which is in the fundamental plane. The second-(y-) axis
will always be defined to compiete a right-handed coordinate system.

In the simulation and test programs, the common grid is assumed to be
the geocentric earth-fixed (GEF) system. The origin of the GEF system
js the center of the Earth (the geocenter). The positive third-axis is
assumed to be aligned with the Earth's angular velocity vector. The
GEF system is simulated as an "earth-fixed" system by assuming that
polar motion is negligible. The fundamental plane is the equatorial
plane, and the first-axis is aligned with the Greenwich meridian.

Satellite state propagation is accomplished by taking the

Kepleriar elements :* an epoch and determining the satellite

277




278

position and inertial velocity in the orbital plane. The orientation

of the orbital plane is assumed to be fixed in an inertial coordinate
system. For the simuylation and test programs, the geocentric inertial
(GI) system is defined to be the inertial system. The origin of the

GI system is at the geocenter. The positive third-axis is aligned with
the Earth's angular velocity vector. The first-axis is assumed to be
aligned with the GEF first-axis (Greenwich meridian) at T = 0. In the
simulation and test programs, precession and nutation have not been
modeled. The orientation of the GI system is therefore the mean orienta-
tion for the entire test flight. It should be noted that corrections

for polar motion, precession, and nutation will be accopplished by the
Control System Segment. User processing of the downlink satellite
ephemeris data will result in satellite positions in an earth-fixed
system. The effects of precession, nutation, and polar motion will not
effect a user over the one-hour applicability of the ephemeris information.
Figure A.1 shows the relationship between the GI system and the GEF
system.

Figure A.1 also shows an additional rotation about the Earth's
angular velocity vector equal to the user's longitude. It is convenient
to describe the North-East-Down (NED) directions by examining the
meridional section of the reference ellopsoid at the user's longitude
(Fig. A.2).

The origin of the Topocentric North-East-Down (TNED) system is the
user's location. The user's subpoint is the point on the reference

ellipsoid nearest the user. The vector from the user to the user's
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subpoint is the direction a plumb bob would point if the ellipsoidal
Earth were homogeneous. This direction is called the local vertical.
The third-axis of the TNED system is along the local vertical, pointing
toward the center of the Earth. The third-axis does not point directly
at the geocenter unless the user is on the equator or at one of the
poles. The fundamental plane of the TNED system is the local horizon-
tal which is defined as the plane perpendicular to the local vertical

at the user's location. The local horizontal is parallel to the plane
which is tangent to the ellipsoid at the user's subpoint. The first-
axis of the TNED system is along the intersection of the local horizon-
tal plane and the plane of the user's meridian. The first-axis is posi-
tive toward the North pole. The second-axis points Last, completing the
right-handed coordinate system.

If a column matrix is defined to consist of the basis vectors
of a coordinate system and a second column matrix consists of the com-
ponents of a vector along the basis vectors, then a vector can be defin-
ed as the inner product of the matrix of components and the matrix of
basis vectors. For example, if the basis vectors of the GI coordinate
sys tem are.i. Q. and &, then the satellite position vector, which has

components X, Y, and 2 along L. Q. and K. can be written

- XL+ oY) o+ K (A.1)

or as the inner product




282

R, = Y,2] [i] = RlB (A.2)
J
K
where: ﬁ: = [X, Y, z]; and (A.3)
e T
B - [I’ J: 'i] (A~4)

If the basis vectors for the GEF coordinate system are i, j,

and k, then the satellite position vector can also be written

s . _ ] T
R =Xi+Y¥j+Zk = [X,¥,2] )i/ = R'B (A.5)
hi
k
where: RI = [X, Y, 2]; (A.6)
T _ r:
B = [l’ R l(.] (A-7)
The relationship between the GI components of Bs and the GEF
components of Bs is given by j
F - . 1 $ %i
X cos weT sin weT 0] X ;
Rg = |Y| = |-sin T cosa Of [V (A.8)
~ |4
VA 0 0 1 |Z I3
)L Iy
- 5
Ry = [wgTIgRg
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The matrix representing a rotation of weT degrees about the
third coordinate axis is expressed as [weT]3. Similar rotation matrices

can be defined for rotations about the first and second coordinate axes.

1 0 0
[a]] = |0 cos a sin o (A.9)
0 -sin a cos o
cos a 0 -sina’
(o] = 0 1 0 (A.10)
_sin a O cos a—

Complex rotations can be expressed as a product of rotation mat-
rices. For more information on the properties of rotation matrices see
Eisenman [85).

The components of the satellite position and inertial velocity
vectors are first computed in the GI coordinate system and rotated to

- the GEF coordinate system as follows:

R [weTJ3és (A.1)
vé‘" - [wena\}s(” (A.12)
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The user's location can be specified by the three parameters:
geodetic latitude ¢, longitude 1, and altitude above the reference
ellipsoid h. Unless otherwise specified, altitude will imply altitude
above the reference ellipsoid and latitude will imply geodetic latitude.

The routine TOP2GEF, as used in the computer programs, solves
for the GEF components of user position and relative velocity. The input
to TOP2GEF is user location expressed as latitude, longitude, and
altitude and the user's relative velocity expressed as velocity North

vy? velocity East v_» and velocity down Vpr The components of the

E
relative velocity vector v are rotated into the GEF system using

-l
]

[-2130 + n/2], v ‘ (A.13)

R
where: v = [VN’ Vs vD]. (A.18)

The user's position vector R is calculated using

R = xi+yj+zk = R'B (A.15)
v o= ag [1 - e251n2¢]-1/2 (A.16)
x = (v + h)cos¢ cosx

y = (v + h)cos¢ sina (A7)

z = (v (l-ez) + h)sing

where: a, is the semi-major axis of the reference ellipsoid;
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e 1is the eccentricity of the ellipsoid; and

RT = [x,y, z]. (A.18)

It is frequently necessary to determine the latitude, longitude,

and altitude of a point whose components are given in the TNED system.

aro= axyiy ¥ axgip * axgkp = ar'b (A.19)
T
where: ar’ = [AXN, AXp, AxD]; and (A.20)
b' = [iy, jes knl (A.21)
Ine dg» Xpd- .

Latitude, longitude, and altitude can be obtained by first rotating ar
into the GEF system, then adding the result to the GEF components of the

user position vector.

R+aAR = R+ [~A]3 [ + n/2]2Ar (A.22)

The result of Eq. A.22 is then used to solve for latitude, longitude and
altitude. Unfortunately, there is no closed expression for geodetic

latitude on the reference ellipsoid as a function of the GEF components.
A recursive algorithm must be used. !

If the vector Ar is small, the latitude, Yongitude, and a

altitude can be approximated by I}
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b+ Ap = ¢+ 3¢/Q£IR Ar (A.23)
A AN = A+ /arp A (A.24) "
h+ah 2 h+ 3h/agJR Ar (A.25)

The partial derivatives in Eqs. A.23 through A.25 are approxi-

mated as follows:

ax/ ax

3%  _ N

axn ax/ 3¢ (A.26)
Ix/ ax

IN _ E

3§E T ax/ax (A.27)

3h  _

3;5 = -1 (A.28)

The terms ax/axN and ax/axE are evaluated from the rotation

equation
-
[ax,
by| = [allo+n/2] (h.29)
AR = lay| = [-r],[¢+n/2 ax A.23
A7 3 2 E
LA)(DJ
yielding
ax/axy = -sin ¢ cos A (A.30)
ax/axg = -sin ) (A.31)
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Differentiating Eqs. A.17 yields the following results:

-[ae(l-ez)(l-ezsin2¢)'3/2+h] sin ¢ cos A (A.32)

IR/ 3

-1/2

Ix/ 3 -[ae(l-ezsinzo) +h] cos ¢ sin A (A.33)

Equations A.26 and A.27 can now be evaluated. The results are

stored in the parameters R20 and R21’

R

20 = (e/axlp)”) ag(1-e2)(1-eZsin?9) 2 4 1 (.30

'1/2+h] cos ¢ (A.35)

R2] = (ax/axE &)'] [ae(l-ezsin2¢)

To first order, the latitude, longitude, and altitude of the

point (R + 4R) are

o+ 88 = ¢+ Axy/Ryg (A.36)
A+ AL =+ AXE/R2] (A.37)
h+ah = h - AXp (A.38)

On a spherical earth, Eqs. A.34 and A.35 reduce to

R20 = agt h (A.39)

R (ae + h) cos ¢ (A.40)

21




APPENDIX B
THE GENERATION OF RANDOM NUMBERS

Uniformly Distributed Numbers

Three types of random number distributions were required in the
simulation and testing programs: independent random numbers with uni-
form distribution; independent random numbers with Gaussian distribution;
and random numbers with exponential correlation. The computer system
used in the numerical tests was a Control Data Corp. CDC-6600, UT-20
operating system. The computer system has a random number generator
called RANF which is a "multiplicative congruential" generator. De-
tails of the exact methods used in RANF and the implications of the
method are available in [86:Par. 13.9]. To satisfy the noise-generation
requirements of the simulation program adopted in this study, RANF is
used to provide independent random numbers with uniform distribution

between zero and one. The mean and variance of RANF are given by:

E[RANF] = 1/2 (8.1)
ELRANFZ] = 1712 (8.2)

Gaussian Distribution

The Central Limit Theorem states that the summation of inde-
pendent random variables with a common distribution approaches the

Gaussian or normal distribution as the number of samples gets large
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[87:229]. Using this theorem, a random variable which is defined as

follows:

12
x = L (RANF, - 1/2) (B.3)

will be assumed to have Gaussian distribution. The mean and variance

of x are given by

E[x] = O (B.4)

EC(x - EIxD? = 1 (8.5)
The random variable of Eq. B.3 provides a good approximation to the
Gaussian distribution between plus/minus six standard deviations.

Hamming [55:309-323] discusses generation of uniform distributions

and Gaussian distribution in more detail.

Exponentially Correlated Random Numbers

The third type of random variable that is required must have
exponential correlation. Kochenburger [71:Chap.9] discussed the simu-
Tation of an exponentially correlated random process by attempting to
match the power spectral density of the process. Lear [89] analyzed,
in detail, the behavior of an exponentially correlated random sequence.
Lear's method was incorporated into the simulation and test programs.

The random numbers were generated using the following equation:

Wi = oweqexe(=(t -t q)/x

¢ o/ = expl-2(t -, /7T x (8.6)

p—pw—e—r>

i
q
3




where: t is the desired correlation time;

tk-] < tk; and

x is calculated using Eq. B.3.
The mean, variance, and covariance kernel of Eq. B.6 are given by:

Elw ] = Elw,_] = - -+ = EW] = Wo (8.7)

ElWC] = o (8.8)

E[ijk] = UzexP("(tk‘tj)/T): t.

Repeatability and Independence

By saving the contents of the random number generator RANF be-
tween time steps for each noise source, the random numbers generated
identical results for all computer tests. Also, by choosing starting
values for RANF that were sufficiently separated in the period of RANF,

independence of the various noise sources was assured.

{




APPENDIX C 1
THE MEASUREMENT PARTIALS

Expressions for psuedo-range, pseudo-range-rate, and altimeter
measurements can be separated into three parts: a part which is deter-
mined by the positions and velocities of the satellite and the user; a
part which is a function of variables to be estimated by the filter
other than the user's position and velocity; and any remaining terms.
The only remaining term which was evaluated by the tested user algor-

ithms was an atmospheric delay in the pseudo-range measurement. In ad-

dition to user position and velocity, the variablies to be estimated in-
clude user clock bias, user cl.ck drift, and altimeter bias. Each of K
these terms can be considered to be an unknown measurement bias. Values

estimated for each term may actually contain contributions from sources

other than those suggested by their names. For example, unaccounted

equipment delay in the user electronics will affect the estimation of

the "user clock bias.”
The expressions for the observations as required in Eq. 4.80

are given by: |

G (X,T) = o+ a * Saum (C.1)
' 6,(X,T) = o+ a, (C.2)
Gh(x,T) = h+ 8 (C.3)

29
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where: p is the line-of-sight range between the user and
the satellite;
o is the range~-rate between the user and the satellite;
a, and a, are user clock bias and user clock drift ex-
pressed in units of distance and velocity by multiply-~
ing the time values by the vacuum speed of light;
Gatm is the atmospheric delay expressed in units of
distance;
h is the altitude of the user above the reference
ellipsoid; and

éh is the altimeter bias.

If ays 3y, and 6, are to be estimated, then the follawing

partial derivatives are required:

.._.E. = ] . _L= ] . __h_ ='| (C.S)

—h = - (C.6)
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The altimeter observation-state matrix for the basic twelve-state filter
is

H = [00-1:000:000:100] (c.7)

The partial derivatives for the range and range rate can be
derived as follows. From Par. 3.6.1, the range is computed by the fol-

lowing relation

o = [(X-x)2 + (Y-y)% + (2-2)27172 (c.8)

where: X, Y. and Z are the Geocentric - Earth - Fixed compo-

nents of the satellite position vector, Rg = [X,Y,Z]; and

X,Y, and z are the GEF components of the user position

vector, RT = [x,y,z].

Taking the partial derivative of Eq. C.8 with respect to the user GEF

position coordinate yields:

N (X - x) (Y -y) 3 -(Z - 2)
R = ————— ; —e— = ——————————— ; — = e (C.g)
X e Y e P4 .

Equations C.9 contain the three GEF components of the unit vector dir-
ected from the satellite to the user. Defining lui as the unit vector

from the user to the satellite, the partial derivative of the range with

respect to the GEF components of the user's position vector is given by:




- .,
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+
p Ip o 80' T .
_ = —_—y =, —| = -]U‘i (C.]O)
3R Xy 3z GEF
where: ]ui is a column matrix of the GEF components of the
GEF
vector 101.

The desired state vector, however, is oriented along the North-East-Down
directions. Using the chain rule, the partial derivatives with respect

to the user's position in a Geocentric-North-East-Down (GNED) coordinate p

system are:
ap Jp oX N dp dY . dp 3z
BXN X 3XN y axN 3z BXN
Ip dp X dp 3y 3p 3z
L o222 e (c.1)
IXg ax  dxg 3y g oz dXg
3o 30  9IX dp dY dp 3z
— =—-_—+_.———+—___—
xXp X axpy Ay axp 3z 3xXp |

Equation C.11 can be written in matrix form:

| ]
: |
z.

- — vt
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] ax ay ezl [ap
2 Xy Xy D ;
XN (XN XN XN X
ap 9X 3y Az 30
SO I oA B Rt (C.12)
R] < R} <
Xg axg xp AXp| [y
ap ax Jy az ap
' Xy Xy 3 ;
| #p] Xp Mp dxp| 32|

The coordinate transformation from the GNED directions to the

GEF was given in Appendix A.

R = [-x]3[¢ + n/2]2 RGNED (C.13)

where: X is longitude;
¢ is geodetic latitude; and
[-]2 and [-]3 represent standard rotation

matrices.

The matrix in Eq. C.12 corresponds to the inverse of the rotaticn mat-
rices in Eq. C.13. The partials given by Eq. C.9 can be computed using
the GEF components then rotated to obtain the partials with respect

to the GNED components. i.e.,

v
1A
!
i
i
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e = [-e-n/2,], % (C.14)
BRGNED 2“3 3R

Equation C.10 implies that the partial of the range with respect to
user position vector components in any frame is equal to the components
of the unit vector in that frame. With this fact, Eq. C.14 can be used
to rotate the components of the unit vector to the orientation of any
desired coordinate system.

A programming simplification can be obtained with the above
analysis. The range vector from the user to the satellite, expressed

in Topocentric-North-East-Down (TNED) components, is given by:

p = [r cos el cos az, p cos el sin az, -p sin ellb (C.15)

where: b is a matrix consisting of the basis vectors of the

TNED coordinate system. (See App. A.)

The unit vector along the range vector is

1i = [cos el cos az, cos el sin az, -sin ellb
T ‘
= 1,b (C.16)

The components of unit vectors aligned in specific directions are equal

regardless of their origin. Therefore,

1. = 1. (C.17)
YIrNED UTGNED

e e = g
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Since elevation and @Zimuth are normally obtained as part of the satel-
lite ephemeris operation, the partial derivative can be obtained using
Eq. C.16 without any reference to rotation matrices.

The range-rate is given by Eq. 3.38.

. E(X-x) (Vy-v, + oy )+ (Y-y) (Vy-v, -uX)+(2-2) (V;-v,)]
o=

1/2
[(x-x)% + (-y)2 + (2-2)2] " (3.38)

where: VX’VY’ and VZ are the GEF components of the satellite

inertial velocity vector, Vo = [VX,VY,VZ] (See Eq. A.12)

vx,vy, and v, are the GEF components of the user's rela-

tive velocity vector, V = [Vx’Yy’vz] (See Eq. A.14)

W is the rotation rate of the Earth; and

the denominator in Eq. 3.38 is the range.

It can be verified from Eq. 3,38 that

o=

. (c.18)
UTGEF
Therefore, Eq. C.16 can be used to evaluate the partial derivative of
range rate with respect to the TNED components of the user's relative
velocity vector.

To evaluc.: “he partials of range-rate with respect to the GNED

position, the chain rule is used to obtain
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= [‘¢'“/2]2[A]3

~3Vx BVX BVZ
BXN BXN 3XN
avx avy 3VZ
BXE BXE BXE
3Vx avy sz
L8XD 3xD BXD

— 1 (C.

The magnitude of the range-rate seen by a suer is affected by his posi-

tion on the earth.

accounts for this effect.

The first term on the right hand side of Eq. C.19

A change in user position also changes the

orientation of a user's relative velocity vector in the GEF frame. The

19)

second term on the right hand side of Eq. C.19 accounts for this effect.

3.38.

The two vectors in Eq. C.19 are evaluated directly from Eq.

% . [vy - Vy = wgY + o(X - x)/o/p

ax

p = - .

B = Dvy - Vy oY sy - y)elle

ay

9 .

— =Qv, -V +0o(Z - 2)/0)lp

3z

3 ~=(x=x) -(Y=y) -(2-2)
avx <] avy [ 3vz P

(C.20)

(C.21)




The remaining matrix in Eq. C.19 will be identified as D. The

D matrix will not be zero since Eq. C.13 also applies to the rotation

of the velocity components, i.e.,

vV = [->\]3 [s + 11/2]2 VGNED (c.22)

A change in user position changes the latitude and longitude of the user
and will therefore change the values of the GEF components of the user's

relative velocity.

Geodetic latitude cannot be expressed as a closed form function
of the cartesian coordinates for an eccentric Earth. Intuitive argu-
ments will be used in the following analysis to derive the partial de-
rivatives.

Note that the elements of V 1in Eq. C.22 have no dependence
on altitude or, equivalently, Xp- Therefore, the third row of the
matrix D 1is zero. Also, from the definition of geodetic latitude
and longitude on the reference ellipsoid, a movement in the North-
South direction has no effect on longitude and movement in the East-
West direction has no effect on latitude. After expanding the ele-

ments of D using the chain rule and after considering these remarks,

the matrix D is given by

My 2 vy ¢ Mg 20
¢ 3XN 3¢ 3XN 3o 3XN
D - | Mx vy A 0 (c.23)
A a 3 oA 3XE
. 0 0 0
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From Eqs. A.34 and A.35

%%E = [ae(l~-e2)(1-|=.'2sin¢>)':‘]/2 + h]! (C.24)
%‘?‘(‘ = [(ae(l-ezsinzct,).]/2 + h)cos ¢._]'.| (C.25)
t

The rotation matrices used in Eq. C.22 can be expanded as follows:

-sin ¢ cos » -sin ¢ sin A cos ¢
[-¢-n/2]2[A]3 = -sin cos A 0 |[(C.26)

~C0S ¢ COS A -COS ¢ sin A -Sin ¢

The remaining terms of D are obtained by substituting Eq. C.26 into

Eq. C.22 and taking the appropriate partials.

31£ = (~vy COs ¢ + v, sin ¢) cos A (c.27)
2¢

sz_ = (-VN cos ¢ + vq sin ¢) sin i (C.28)
1]

¥z = -y, sin ¢ - v, cos & (C.29)
EY) N D

Bvx . .

= - (VN sin ¢ + v, cos ¢) sin A - Vg €OS ) (€.30)
va

> % - (VN sin ¢ + v, cos ¢) cos X - Ve sin A (€c.31)

It was previously shown that the components of unit vectors
aligned in specific directions are equal regardless of the origin. Sim-
ilarly, the components of the user's relative velocity vector, aligned
in specific directions, will not change as the origin of the coordinate

system is changed. Accordingly, the partial derivatives which were
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derived with respect to the GNED components of the user's relative
velocity vector are identical to the partial derivatives with respect
to the TNED components.

Summarizing the results:
E = ['@'“/2]2[A]3 30 (C.32)
ar Y oR
o OB
Eq. C.26 Eq. C.9
36 3 9"&
¢ = [¢-n21,1\; - + D3y (C.33)
Eq. C. 26 Eq. C.20 Eq. C.21
p , ap
== w2l Dly gy (C.34)
-~ T \,—.\_/
Ea. C.26 Eq. C.21
where: The D matrix is evaluated using Eq. C.23 through C.31;
and
r and v are column matrices of the TNED components of
the user's position and relative velocity vectors.
Equations C.32 and C.34 can be replaced by Eq. C.16.
iﬂ = iﬂ = [-cos el cos az, -cos el sin az, sin el] (€.35)
ar v

The observation-state matrices for the pseudo-range and pseudo-

range-rate measurements are:
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b 20003:000:010] (C.36)
TNED

$000:001] (.37)
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