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The Global Positioning System (GPS) will be a constellation of

24 satellites placed in 12-hour, 63 degree inclination, circular orbits.

The satellite configuration is designed to provide accurate three-

dimensional position, velocity, and time information by transmitting

signals from which users can extract range and range-rate measurements.

This investigation describes the passive-ranging concept of the system

and the various hardware, software, and environmental factors which de-

termine system accuracy. The simulation of a New York-to-Chicago air-

craft flight with satellite range and range-rate measurements and with

barometric altimeter measurements is used to numerically evaluate navi-

gation algorithms. The satellite configuration used in the simulation

is the limited operational configuration which consists of only nine

satellites. For 95 per cent of the simulated flight, only three satel-

lites are visible to the user.

The search for acceptable navigation algorithms begins with a

review of a l 4near filtering and prediction theory. A filter model for
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the aircraft is developed based on the assumption of an exponentially

correlated random acceleration. The resulting model, combined with

measurement bias models, is incorporated into an extended Kalman filter.

Numerical results show that, for the basic filter model, filters which

maintain good accuracy during the maneuvering phases of flight have

poor performance during cruising flight and, conversely, filters which

perform well durin9 cruise, have degraded accuracy during maneuvers.

Finally, several adaptive algorithms are evaluated. Nuierical

results show that a simple adaptive index can be used to enhance the

performance of the basic filter model without a substantial increase in

the navigation algorithm program complexity.

Using the simulated flight adopted for this study, root-sum-

square position errors generally less than 100 meters were achieved.

The results show that accuracy is strongly dependent on user-satellite

geometry. Maximum position errors equal to at least 700 meters occurred

at a time of poor geometry in all algorithms which were considered.
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CHAPTER 1

INTRODUCTION

1.1 Some Historical Remarks on Navigation

In Greek mythology, Odysseus sailed safely by the Sirens only

to encounter the monsters Scylla and Charybdis, traditionally located

in the Straits of Messina between Italy and Sicily. Scylla was a squid-

like monster with six long necks, each with a head on it with three rows

of teeth. Charybdis was a whirlpool which sucked in water and belched

it out three times a day. Odysseus steered between the two monsters

with limited success. He survived to continue on to Ithaca but Scylla

was able to catch and devour six of his men [1:133-134]. Although no

mention is made of Odysseus' navigation technique in the Straits of

Messina, the episode may be one of the earliest references to the re-

quirement for accurate navigation.

Methods for the determination of latitude from direct obser-

vations of the sun and stars had been known since Hipparchus, Menelaus,

and Ptolemy created and refined trigonometry to aid in the telling of

time, calendar-reckoning, and navigation [2:119]. Determination of

longitude, however, remained a difficult problem. After 1514, the di-

rection of the moon relative to the stars was used to calculate

Bracketed numbers indicate references as enumerated in the Bibliography
section. Unless noted otherwise, numbers following the colon are page
numbers.
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longitude. An error of one minute of angle, an accuracy beyond the

capabilities of Sixteenth Century equipment, resulted in an approximate-

ly 1/2-degree (60 km) longitude error. This limitation, attenuated by

the difficulties in taking measurements from heaving ships, resulted

in longitude errors on the order of 150 km. In the absence of other

longitude determination techniques, considerable effort was expended

to improve the prediction of lunar motion in order to improve longi-

tude determination accuracy [2:336].

In 1712, recognizing that other methods had to be developed,

the British government established the Commission for the Discovery of

Longitude which offered rewards up to 20,000 pounds sterling for ideas

on how to compute longitude. The Flemish cartographer Gemma Frisius

(1508-1555) had suggested in 1522 the use of time to determine longi-

tude [3:245]. To be competitive with the 1/2-degree accuracy of the

lunar methods, however, time on board the ship had to be accurate to

two minutes for the duration of the voyage. Clocks with such accuracy

did not exist until John Harrison (1693-1776) invented the chronometer

in 1761 [2:337]. With chronometers, celestial navigation techniques

could be used to determine latitude and longitude on the open seas to

accuracies on the order of a few kilometers.

1.2 Classification of Navigation Techniques

Navigation techniques can be placed into four broad categories:

celestial navigation, pilotage, dead-reckoning, and radio navigation.

Pilotage is simply the use of maps to determine position. When a user
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is in uncharted areas or is away from known shorelines, this method is

inapplicable. It is interesting to note that currently there is con-

siderable interest in the use of landmark tracking, a form of pilotage,

for cruise missiles and space satellites.

Dead-reckoning, or "deduced reckoning," is based on the propa-

gation of a user's position using knowledge of the velocity and a pre-

viously known location. Inertial navigation systems, which sense ac-

celeration, can be referred to as acceleration dead-reckoning systems.

When used without other navigation aids, such as periodic position

updates, dead-reckoning methods are subject to long-term drift errors

caused by errors in the sensed velocity (or acceleration).

Celestial navigation is the use of angular measurements of the

sun, moon, and stars to determine latitude and longitude on the earth.

As discussed previously, accurate longitude determination also requires

accurate knowledge of time. Prior to the introduction of radio naviga-

tion systems, celestial navigation was the only method for open seas

navigation which provided acceptable accuracy.

Radio navigation techniques have been in widespread use since

World War II. Perhaps the simplest position determination method,

based on radio signals, is radio direction finding to determine lines-

of-position on the Earth's surface. The intersection of two lines-of-

position determine the position of the user. Current ground-based ra-

dio navigation systems include: LORAN-C (LOng-RAnge Navigation); OMEGA

a global version of LORAN: and VOR/DME, a line-of-sight high-frequency

system. Up to 80 radio navigation systems or system variants have been
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identified [4]. Accuracy and range capabilities of selected systems

are summarized in Figure 1.1.

For ground-based radio navigation systems, low frequencies are

needed to increase coverage because, for the lower frequencies, the

signal follows the curvature of the Earth for longer distances. Most

radio navigation concepts require accurate tracking of the signal wave-

form, however, and, as frequency decreases, errors in tracking the sig-

nals increase.

In 1958, the use of a satellite-based radio navigation system

was proposed [5]. The concept called for the measurement of the

Doppler shift in satellite transmitted signals and was eventually in-

corporated into the TRANSIT navigation satellite system. A primary ad-

vantage of a satellite-based system is the increased coverage without

decreased signal tracking accuracy.

The TRANSIT system requires the use of a Doppler curve for

the entire satellite pass and, therefore, is limited to slow moving

users, such as ships, or to use as an auxiliary navigation aid for

other systems such as inertial navigation systems. In December 1973,

the Department of Defense approved the first phase of a new navigation

satellite program which combined elements of the Air Force Program 621B

and the Navy TIMATION program. The system, designated the NAVSTAR

Global Positioning System, is scheduled to be fully operational in

1984. The fully operational system is expected to have horizontal and

vertical position accuracy on the order of 10 meters for 90 percent of

the timle and will provide nearly continuous navigation fixes (after
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establishing an initial fix). The key element of the NAVSTAR system is

the atomic frequency standard to be on board each of 24 high-altitude

satellites. Transmission of accurate time signals from the satellites

will permit a user to determine accurate ranges or range-differences

from a number of satellites. These measurements can be used to deter-

mine the user's three-dimensional position and time [6].

If a NAVSTAR user has four simultaneous independent satellite

measurements, then three-dimensional position and time can be calculated

using deterministic solutions. If the measurements are not perfect,

however, then algorithms based on deterministic solutions can result in

non-optimal state estimates. Also, if the observations are available

sequentially, then sequential estimation techniques should be used.

If other navigational aids such as a barometric altimeter are

used, then the navigation algorithm must integrate the auxiliary sensor

measurement into the solution. Any a priori knowledge of the user's

state should also be considered in the algorithm. It is fortunate that

a wealth of information exists from which a NAVSTAR user can derive an

algorithm which minimizes the effects of observation errors, operates

sequentially, optimally combines different measurements sources, and

considers the a priori information. Such information is to be found in

recent advances in estimation theory, a theory with beginnings in the

early Nineteenth Century.

1.3 Historical Background of Estimation Theory

At the age of eighteen, Karl Friedrich Gauss (1777-1855)
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invented the method of least squares [2:870]. fie used his new method

to derive a set of orbital elements for the minor planet Pallas. The

development of the least squares technique was the beginning of esti-

mati on theory.

The Wiener-Kolmogorov theory of filtering and prediction was

described in detail by Norbert Wiener (1894-1964) in 1949 [7]. This

theory centered on the derivation of the Wiener-Hopf Equation, an in-

tegral equation which specified the construction for the gain of an

optimalestimator. The work of Wiener and Kolmoqorov was the first

major contribution to estimation theory since Gauss' least squares.

Much effort in the 1950's was devoted to the application of

the conuter in estimation theory. The Wiener-Hopf Equation, an in-

tegral equation, was not appropriate for computer use unless an expli-

cit solution could be obtained. Since explicit solutions were avail-

able only in certain restricted cases, most computer applications used

least squares or recursive least squares methods. In 1960 and 1961,

Kalman and Bucy [8] [9] transformed the Wiener-Hopf Equation into an

equivalent set of differential equations. Although this did not make

explicit solut ins for the optimal gain easier to derive, it did place

the gain computation into a form well adapted to the digital computer.

The resulting formulation has tremendous practical utility.

*"Optimal," in this case, means "unbiased, linear, minimum variance."
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1.4 Purpose and Scope of the Dissertation

Since its appearance in 1961, Kalman filtering has been ap-

plied to countless aerospace systems. It is the purpose of this dis-

sertation to apply the Kalman filter to another aerospace problem, i.e.,

aircraft navigation using the NAVSTAR Global Positioning System naviga-

tion satellites. The problem specified has one outstanding challenge -

the lack of any reasonable (computationally tractable) model, stochastic

or deterministic, that will describe the behavior of an aircraft.

The scope of this paper is limited to the use of an extended

sequential Kalman filter after acquisition of the GPS navigation signal.

In addition, applicability to a low-cost user further restricts the

scope, especially in the use of auxiliary sensors (i.e., no inertial

navigation systems) and receiver capabilities (no simultaneous recep-

tion). A discussion of all factors to be considered in actual imple-

mentation of a navigation algorithm is beyond the scope of this study.

The characteristics of specific hardware items, which would be influ-

ential in determining the exact implementation method, were not inte-

grated into the analyses. The accuracies of available equipment, such

as altimeters, were approximated in the study.

This dissertation evaluates several adaptive and non-adaptive

methods for implementing sequential estimation techniques into GPS user

navigation algorithms. Although the analyses are based on the limited

operational phase of the GPS and low-cost user equipment, the algorithms

are expe ed to be applic'.blc for many user categories in both the lim-

ited operational and fully operational phases of GPS. Each estimation
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technique is described in general terms. The specific formulation for

the user navigation algorithm is then derived. The algorithms are test-

ed using a simulated New York-to-Chicago flight with satellite and alti-

meter measurements. Using many different values for the filter para-

meters, the performance of each algorithm during the takeoff and depar-

ture portions of flight is analyzed. Based on these initial evalua-

tions, selected algorithms are tested using the entire 111-minute

simulatea flight. The results are presented using plots and tabular

summaries of errors in the estimated position, velocity, and measure-

ment bias states.

1.5 Results of the Dissertation

It will be shown that comparatively simple filter models can

be used to successfully estimate the state of a maneuvering aircraft.

In addition, the analysis of adaptive techniques will show that measure-

ment residuals can be used to modify the parameters of the filter model

to improve overall performance of the navigation algorithm. Because the

numerical tests are based on a single Monte Carlo trial, the conclusions

of the study can be interpreted as an elimination process, i.e., based

on the numerical results, certain filter algorithms should be elimi-

nated as candidates for implementation. Those algorithms which "sur-

vived" the tests must be tested further.

1.6 Overview of the Dissertation

Chapter 2 is a description of the Global Positioning System.
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Included in Chapter 2 are brief descriptions of current navigation sys-

tems that the GPS is designed to replace. Also discussed are those

elements of the GPS and its environment that are critical to navigation

algorithm testing. The limited operational capability phase of GPS and

the low-cost user, two restrictions of this study, are described also.

Chapter 3 specifies the methods used to develop the simulated user tra-

jectory and the measurements which were used in the analyses. The

methods used are adequate for initial testing of navigation algorithms.

In more detailed tests, the simple models described in Chapter 3 may be

replaced by the more accurate and more detailed models which are re-

viewed in Chapter 2.

Chapter 4 is a review of linear estimation theory. A specific

formulation of the general results is derived. Algorithms for three

basic estimation philosophies are outlined.

Chapter 5 derives the basic twelve-state acceleration dead-

reckoning (ADR) model. Also described are the parameters which will be

used throughout the study to evaluate the navigation algorithms. The

twelve-state ADR model test results are given in Chapter 5. Chapter 6

examines a nine-state velocity dead-reckoning (VDR) model and expands

the analysis of the twelve-state ADR model. Chapter 6 also derives and

examines an algorithm which estimates the inverse correlation time para-

meter of the ADR model. Chapter 7 derives and examines an algorithm

which estimates the spectral level process noise parameter of the ADR

model. Three easily-implemented adaptive indices are discussed also.

The implementation method and results for each of the adaptive indices



are described. Chapter 8 summarizes the results of the study and makes

recommendations for follow-on analyses.



CHAPTER 2

DESCRIPTION OF THE NAVSTAR

GLOBAL POSITIONING SYSTEM

2.1 Current Navigation System

The NAVSTAR Global Positioning System (GPS) is a navigation

satellite program which is scheduled to be operational in 1984. The

system is designed to replace the ground-based navigation systems

LORAN-C and OMEGA, and the navigation satellite system, TRANSIT.

The LORAN-C system is a ground-based radio navigation system

operating between 90 and 100 khz. A LORAN-C network consists of a mas-

ter station and at least two slave stations. The master station radi-

ates a pulsed transmission which is received by the slave stations.

After precise, fixed time delays from reception of the master station

signal, the slave stations transmit groups of pulses similar to that

transmitted by the master station. Each group of pulses is coded to

identify the transmitting station. Two independent range-di fference

measurements are obtained by measuring the differences in the times-of-

arrival of the signals from two transmitters relative to the time-of-

arrival of the signal from a third transmitter. Each range-difference

places the user on a hyperbola on the Earth's surface. Recall that a

hyperbola is defined ar a curve for which the difference of the dis-

tances of any point on the curve from two fixed points is constant.

The fixed points are the foci of the hyperbola and, in LORAN-C, are

12
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located at the transmitting stations. The intersection of the two

hyperbolas, determined from two independent range differences, defines

the user's position on the Earth's surface. Altitude of the user can-

not be determined using LORAN-C because the transmitting stations are

all in the plane of the Earth's surface [10:1-7][11:35-41].

The accuracy of a LORAN-C navigation fix is a function of in-

strumentation accuracy and knowledge of radio wave propagation and also

varies with user-transmitting station geometry and range. Within the

service region of a LORAN-C network (2000-3000 km) accuracies are typi-

cally on the order of 25 to 100 meters [4:Table 2-7][11:54].

The OMEGA system is also a ground-based hyperbolic system

which uses time difference measurements. However, it operates between

10 and 14 khz. In this frequency range, OMEGA can provide worldwide

coverage with only eight transmitting stations. With these eight sta-

tions, there is sufficient redundancy in the selection of transmitting

stations that good user-transmitting station geometry can usually be

assured. OMEGA does not provide altitude information. Because of the

long signal propagation distance over land and sea surfaces, the accu-

racy of OMEGA is a function of the predictability of radio wave propa-

gation. Typical accuracies for OMEGA are on the order of two to five

kilometers [4:Table 2-7][11:41-47].

Satellites have inherent characteristics that make them

As will be evident in later discussions, user-transmitting station ge-
ometry is a basic factor in maximizing the accuracy of any navigation
concept that depends on a geometric solution. For example, poor selec-
tion of stars can result in a poor celestrial navigation fix.
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attractive as navigation signal transmitting stations. A proper choice

of the orbits and the number of satellites will insure global coverage

with good user-satellite geometry. Also, the propagation of satellite

signals is more predictable than the ground-wave propagation of LORAN

and OMEGA. Furthermore, three-dimensional position determination is

also possible using satellites. The TRANSIT system attempted to take

advantage of some of the desirable characteristics of satellites as

navigation signal transmitters.

The TRANSIT system, operational since 1964, consists of five

satellites in 1100 km polar orbits. The satellites transmit stable

frequency signals at 150 mhz and 400 mhz. Position fixes are obtained

by taking precise measurements of the Doppler frequency shifts from a

satellite. Because the determination of a single navigation fix re-

quires about 15 minutes [12], the TRANSIT system does not provide real-

time position determination and is restricted to users with low dynamics

such as ships. During the observation time interval, the user must

either remain stationary or he must predict his position by dead-reckon-

ing or other means.

In addition, TRANSIT satellites are not visible continuously.

The system can, however, provide periodic position resets to an iner-

tial navigation system (INS) and thereby limit the divergence of the

INS solutions. Also, a single Doppler observation from a TRANSIT satel-

lite pass can be used to improve the performance of systems such as an

INS.
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To achieve 200 meter navigation accuracy, the TRANSIT

satellites must maintain transmission frequency stability to within

one part in 109 for an observation interval of about 15 minutes [13]

[14:84]. The quartz crystal clocks used on the TRANSIT satellites

have demonstrated short term stabilities better than one part in 1010

[14:101][15]. Whereas Doppler navigation satellites require accurate

frequency over the observation interval, satellites in a passive-

ranging system require accurate time. Accurate time requires good

long-term frequency stability which can be achieved using atomic fre-

quency standards. The development of atomic frequency standards cap-

able of operation in a space environment has made a passive-ranging

navigation satellite system possible. A primary advantage of a

passive-ranging system is its ability to provide a measurement within

fractions of a second. With a sufficient number of satellites visible,

a real-time position fix can be made on a near-instantaneous basis.

Hence, the system need not be restricted to slow moving or stationary

users.

The Global Positioning System is such a passive-ranging system.

This chapter describes the purpose of the GPS, its characteristics, and

its operation. The three primary segments of the GPS are discussed.

These segments are referred to as the Control .System Segment, the Space

System Segment, and the User System Segment.

The GPS navigation signals are based on pseudo-random-noise

(PRN) sequences. This chapter describes how the PRN sequence is gene-

rated by the satellite and how the user equipment can detect the signal.

Atmospheric and relativistic effects are described also. In addition,
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the limited operational phase of GPS (Phase II) and the application for

a low-cost user are discussed since the primary objective of the disser-

tation is to evaluate navigation algorithms under these two restrictions.

2.2 Role and Characteristics of GPS

The role of the GPS will be to provide accurate three-dimen-

sional position, velocity, and time information to its users. The satel-

lite signals, when processed, will give the position, velocity, and

time in the GPS coordinate frame. All GPS information will be refer-

enced to a common coordinate system. The navigation signals, available

continuously, will provide the navigation information on a near-

instantaneous basis in all weather conditions. Since the GPS users will

be passive with respect to the satellites (the users will only receive

the satellite signals), they will not require transmitting equipment

and the system can support an unlimited number of users.

2.3 The GPS Concept

Given the range measurements from three satellites whose posi-

tions are known, a user can determine his location at the intersection

of three spheres whose centers coincide with the locations of the

satellites.* A GPS user with a synchronized clock and knowledge of all

clock biases and signal delays can compute range by using the time

difference between the satellite clock time at signal transmission and

It is assumed that the user can resolve any ambiguities in the solution
and that the satellite geometry does not cause any singularities.
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the user's clock time at the time-of-arrival of the satellite signal.

To eliminate the requirement that the user have an expensive

clock, a fourth satellite can be used to enable the user to conpute his

clock bias. This is similar to processing three independent range-

differences which also requires four satellites. When four satellites

are used to determine three-dimensional position and clock bias, the

user is located at the intersection of three hyperboloids of revolution.

In the above description, it is assumed that the user can take

pseudo-range* measurements simultaneously from the required number of

satellites. A user equipped with a receiver that takes the measurements

sequentially, one satellite at a time, must use techniques that account

for his motion and his clock drift. A moving user with a sequentially-

tracking receiver can improve his navigation fixes by estimating his

velocity and clock drift using pseudo-range-rate measurements which

directly sense the components of velocity along the line-of-sight

vector and the clock drifts. Recursive filter algorithms are available

for the case where the measurements are to be processed sequentially.

A range-rate measurement can be obtained by differencing range

measurements and dividing by the time interval between measurements.

However, since a carrier tracking loop will be required in the user re-

ceiver, a more accurate measurement of range-rate is available using

the difference between the carrier tracking loop oscillator frequency

and the user oscillator frequency. If the user oscillator and the

The measured time displacement is defined as pseudo-range since it in-
cludes the clock bias.
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satellite oscillators are operating at the nominal frequency and other

effects (atmospheric and relativistic) have been eliminated, then the

difference between the carrier tracking loop oscillator frequency and

the user oscillator frequency is a function of range-rate (velocity

along the line-of-sight) only. The user oscillator, however, will be

offset from the nominal frequency because perfect oscillator adjustment

is impossible to achieve and maintain. The measurement of the differ-

ence between the carrier tracking loop oscillator frequency and the

user oscillator frequency, which includes the effect of the user oscil-

lator frequency offset, will be called a pseudo-range-rate measurement.

It is assumed that the user oscillator drives the user's clock. The

deviation of the user oscillator frequency from the nominal frequency

will, therefore, be referred to as clock drift since the frequency

deviation causes the user's clock to drift with respect to a nominal

clock.

2.4 Control System Segment

The Control System Segment of the GPS will track the GPS sat-

ellites, determine the satellite ephemerides and clock parameters, and

transmit this information to the satellites. The satellites will re-

transmit this data to the users. Orbit corrections and satellite

clock frequency adjustments can be made also via the Air Force Satellite

Control Facility, Sunnyvale, California.

Satclite tracking will be accomplished using four monitor

stations (MS) located at Vandenburg AFB, California; Elmendorf AFB,
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Alaska; Wahiawa, Hawaii; and Guam. Each monitor station will receive

and process the satellite navigation signals. Each station will edit

the satellite data and transmit the edited data along with meteorolog-

ical and other pertinent information to the Master Control Station.

Satellite ephemerides and clock data will be determined by the

Control System Segment. The Master Control Station (MCS), located at

Vandenburg AFB, will receive data from the monitor stations every 15

minutes. The MCS will correct the data for known biases such as atmo-

spheric delays, antenna lever arms, and relativistic effects. The

data will be smoothed and'placed on a file for transmission to the I

Naval Surface Weapons Center (NSWC), Dahlgren, Virginia.

Using the smoothed data, the NSWC will perform a batch esti-

mate for the satellite state at a specified epoch and for the monitor

station locations. The NSWC batch estimate will be performed approxi-

mately weekly. An ephemeris epoch will be defined at the end of the

estimation period and the NSWC will then integrate the state forward

from the estimation epoch to the ephemeris epoch. Then the state and

state transition matrix will be integrated forward to predict satel-

lite ephemerides for approximately two weeks. (See Figure 2.1.) The

frequency and time span of the batch estimate may vary depending on

satellite anomalies and confidence levels. Furthermore, the NSWC will

have the capability to process the uncorrected data during diagnostic

studies.

The NSWC will provide the MCS with the ephemeris epoch condi-

tions, the predicted satellite ephemerides, and partial derivatives to
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RUNNING EPHEMERIS SOLUTION
(CURRENT TIME)4b PARTIAL DERIVATIVES

PROPAGATING DAILY

PDEEICTICNS FROM EPOCH

C PARTIAL DERIVATIVES

EPOCH/ fv H PARTIAL DERIVATIVES

RELATES TRAJECTORY
TO MEASUREMENTS

Figure 2.1 Ephemeris Determination About a Predicted
Reference Solved at an Epoch

propagate corrections to epoch conditions forward to a future time (the

state transition matrix). In addition, the NSWC will provide revised

monitor station locations and the measurement partials for the monitor

stations. The partials will be determined during the integration of

the predicted trajectory.

The MCS will use the NSWC trajectory and partial derivatives

in conjunction with the smoothed 15-minute data to determine current

ephemeris and clock data for the satellites. This will be a near-real-

time estimation using a Kalman estimator. Finally, the MCS will make

daily predictions of the satellite ephemerides and clock behavior. The

accuracy goal of the daily ephemeris generation is 1.5 meters (one
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sigma) line-of-sight error [16]. The daily prediction will be broken

down into nominal hourly periods. A set of Keplerian elements and

seven correction terms will be used to fit the hour-long periods of the

daily ephemeris prediction for each satellite. The fit to the daily

prediction is expected to be within 0.01 meters 117:491. The MCS will

then format a daily group of ephemeris data sets and provide it to the

upload station, also located at Vandenburg AFB, for transmission to the

satellites. Each satellite will store a daily group of ephemeris data

sets and will update the transmitted ephemeris data nominally every

hour. After truncation into the satellite data stream, the fit to the

hourly predicted ephemeris is expected to be within 0.10 meters [17:45].

.2.5 Space System Segment

The Space System Segment includes the satellites, the launch

equipment, and the associated hardware/software required to provide

space-based radio navigation signals. In the following paragraphs, the

satellite constellations for both the limited operational capability

phase and the fully operational phase of the GPS will be described. Ac-

curate frequency standards, which are the key hardware elements in the

GPS satellites, will be analyzed. The navigation signal format will be

described and the atmospheric and relativistic effects on the genera-

tion and propagation of the signal will be discussed.

2.5.1 Satellite constellations.

2.5.1.1 Phase III constellation. The fully operational (Phase

I11) Space System Segment will consist of twenty-four satellites in
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one-half-sidereal-day orbits (20,183 km altitude). Nominal inclination

will be 63 degrees. Eight satellites will be in each of three orbital

planes with the ascending nodes of the planes separated by 120 degrees.

Within each plane, the satellites will be equally spaced. (See Figure

2.2.)

2.5.1.2 Phase II constellation. This dissertation evaluates

navigation algorithms for the Phase II GPS, a limited operational capa-

bility phase scheduled for 1979. The Phase II constellation will con-

sist of nine satellites equally spaced in three orbit planes with the

ascending nodes of the orbit planes separated by 120 degrees. Table

2.1 specifies the planned orbit for the Phase II satellites.

Table 2.1 Phase II Orbital Elements

Longitude of Time to
Satellite Ascending Node Ascending Node

(deg) (sec)

1 -130. 0.

2 -130. -14400.
3 -130. 14400.

4 110. 0.

5 110. -14400.

6 110. 14400.
7 -10. 0.

8 -10. -14400.

9 -10. 14400.

Note: All satellites have Period = 43082.049456 sec; Semi-
major axis = 26561.820982 km; Inclination = 63 deg; Eccentricity = 0;
and Epoch of Elements = 0 sec.
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Figure 2.2 Orbital Configuration
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The primary impact of Phase II with respect to the fully

operational phase is the reduced number of satellites visible to a

user. Whereas Phase III will provide six to eleven visible satellites,

Phase II will provide only two to six visible satellites. Figure 2.3

shows the expected number of satellites visible to users at various

latitudes for Phase II and Phase III.

2.5.2 Satellite clocks.

2.5.2.1 Atomic frequency standards. Clocks count the number

of occurrences of a periodic phenomenon. The gears in an ordinary clock

count the swings of a pendulum and move the hands on a clock face. In

an electronic clock, an electronic counter counts the cycles of an os-

cillator and updates the display. In an atomic clock, the oscillator

frequency is controlled by the frequency of an atomic transition. In

an atomic transition, electrons move between specific energy levels and

either absorb or emit energy at a frequency which is proportional to the

difference between the energy levels. Since the allowable energy lev-

els have precisely known quantum values, the frequency of the energy

associated with the transition is very stable. The high stability of

an atomic transition distinguishes the atomic clock from clocks whose

periodic phenomenon is dynamical. It should be noted that most atomic

frequency standards use an atomic transition to control a quartz oscil-

lator. The vibration of the quartz crystal oscillator is the periodic

phenomenon which is counted [19].

Quartz clocks, without synchronization by atomic transitions,

were used in the TRANSIT navigation satellites [13]. Quartz clocks have
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proven portability and recent manufacturing methods have improved con-

siderably their stability [20]. In the following discussions, quartz

clocks will be included for comparison with their more complex atomic

counterparts.

Atomic sources, commonly used in current frequency standards,

include (1) cesium beam resonators; (2) hydrogen masers, and (3) rubi-

dium vapor cells. Descriptions of the operation of these clocks and

other possible atomic standards are available in [21] and [22]. Atomic

clocks can be compared with respect to cost, stability, reliability,

and production experience. Relative figures of merit f have been

assigned to the common clock types by Kartaschoff and Barnes [22].

(See Table 2.2.)

Table 2.2 Relative Comparisons of Standard
Frequency Generators [22]

Cesium Rubidium Hydrogen Quartz
Parameter (code) Standard Vapor Cell Maser Crystal

Initial Cost (a) 1 .5 5.0 .1

Support (b) 1 .5 10.0 .1

Stability (c) 1 .1 10.0 .01
Reliability (d) 1 1.0 .2 10.
Production

Experience (e) 1 .5 .1 10.

Figure of Merit (f) 1 0.2 0.004 100.0

f cd-e

a-.1
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2.5.2.2 Clock stability measures. Oscillators have an output

of the form

V(t) = [V0 + E(t)] sin[21vfot + (t)] (2.1)

where: Vo is the nominal amplitude;

f is the nominal frequency;

e(t) is the amplitude deviation; and

0(t) is the phase deviation.

The instantaneous fractional frequency deviation is defined as

y(t) = 2 fo (2.2) i

An important measure of a clock is its frequency stability.

Several methods have been proposed to characterize frequency stability.

In the frequency domain, the one-sided spectral density is defined

as [23:116]

S (f) 41 Ry(T)COS(2nfT) dT (2.3)

0

where: R y(t) is the auto-correlation of y(T).

In the time domain, stability can be characterized by the N-sample var-

iance. The time average of the fractional frequency deviation over a

sample duration T is defined by
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tk + t

1 (t k+ 4-T (k)
Yk 1 y(t)dt - -~tk-'2.fo T  

k  (2.4)

tk

If N samples are taken at a repetition period T = tk+l  tk , then

the N-sample variance is given by

1 N 17 N 2k 25
a 2 (N,T,,t) _-- (2.5)

i I k=l

The Allan variance is the most commonly used stability measure

for atomic frequency standards. Allan variance is obtained using

Eq. 2.5 with a sample size of two, N = 2, and no dead time, T =

022T (2.6)

where: <.> denotes the infinite time average.

The Allan variance may be estimated for a set of M data points as fol-

lows [24]:

1 M 2
0y(2,T) Z - i (Ayi) (2.7)

where: Ay is the difference between adjacent frequency measurements

over a nominal sample time.
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Barnes [23] and Allan [25] provide comprehensive discussions

of stability measures and show the relationship between spectral den-

sity in the frequency domain and the Allan variance in the time domain.

Other forms of stability measures are discussed by Lindsey and Lewis

[26]. For more details on frequency stability measurement see Allan

[27].

Figure 2.4 [13] depicts the range of stabilities, expressed

as Allan variance, available in commercial clocks. The GPS specifica-

tion for developmental satellite clocks [28: Par. 3.7.2.4.3] has been

included on Figure 2.4 for reference.

The variance of a time interval measurement is related to the

Allan variance by

2 2 2(2)a = T20 (2,T) (2.8)
y

Using the specification for the GPS satellite clock, the standard devia-

tion of a time interval of 10,000 seconds (2.78 hours) is ten nanosec-

onds. For a one week interval, the standard deviation is 604.8 nsec.

Current GPS plans call for the testing of a cesium beam atomic

clock on the first satellite, Navigation Technology Satellite No. 2

(NTS-1I), scheduled for launch in 1976. Rubidium vapor atomic clocks

are planned for the five Navigation Development Satellites (NDS). If

flight proven, later GPS satellites may use cesium clocks.

Additional information on the design and capabilities of

atomic clocks is available in References 29 through 33.
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2.5.2.3 Satellite clock timing data. Satellite clock time

will be expressed as "Z-count" which is the number of seconds from a

weekly epoch divided by 1.5. Using this transmitted Z-count, the user

will be able to time-tag any bit in the received signal by counting

bits from an epoch associated with the transmitted Z-count. This will

provide a nominal time-tag es .

The capability to adjust the frequency of the satellite clock,

via the Air Force Satellite Control Facility, will exist. The preci-

sion of the frequency adjustments will be four parts in 1012 over a

range of plus/minus two parts in 109. Also, the Master Control Sta-

tion will have the capability to adjust the phase of the satellite

clocks,

To increase timing accuracy, the satellite data stream will

contain clock correction data. In addition to an "age of data" word,

the clock data will include:

Epoch for the clock correction polynomial, toc;

Clock bias at epoch, Ato;

Clock drift at epoch, Af/f; and

Clock drift rate, D/2

The clock data, transmitted by the satellite, will be changed

by the satellite nominally every hour. The clock parameters will be

chosen to best fit the expected clock error over the hourly period us-

ing the polynomial

Dat (T & At +-(T s -toc)+iTs toc) (2.9)
s 0
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where: Ts is the GPS time at signal transmission.

The user will correct the nominal time tag es  to determine the esti-

mate of the satellite transmission time ts

ts = es - Ats(e S ) (2.10)

Note that the argument of the user's clock correction polynomial is the

nominal time-tag es because the true system time at transmission Ts

is not available. Even if the fit in Eq. 2.9 is perfect, Eq. 2.10 will

not, in general, provide the exact answer. If more accuracy is needed,

the user can repeat the computation of Eq. 2.10 using ts as the argu-

ment of the clock correction polynomial. This is a successive approxi-

mation technique. After applying the clock correction information,

satellite clock time accuracy is expected to be on the order of a few

nanoseconds over a one hour period.

2.5.2.4 Relativistic effects. Cretcher [34] has shown that

the only relativistic effects of concern for GPS are clock corrections.

Relativistic effects on signal propagation and on satellite dynamics

are negligible. A clock in a twelve-hour circular orbit will have a

relativistic drift of +38 psec/day with respect to a clock at mean sea

level on the earth. This is the primary relativistic effect. Second

order effects and orbit eccentricity effects are negligible. For the

one-hour period between changes in the transmitted clock correction

parameter set, the relativistic effects can be included in the correc-

tion parameters. Furthermore, satellite clock frequency can be adjusted

to account for the relativistic effects. Prior to launch, the P-code of
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a GPS satellite clock could be adjusted to have a code rate of

10.22999999545 x 1O6 bits-per-second. Then, assuming that only the

bias effect of the general relativity term affects the clock., an Earth-

bound user would see a code rate of 10.23 x 106 bits-per-second.

If relativistic effects are accounted for by the GPS using

satellite clock adjustments or by modifying the downlink clock para-

meters, most users will not have to concern themselves with relativ-

istic effects. If the GPS is used by earth satellites for autonomous

tracking, however, relativity may have to be considered because the

satellite velocities and the gravitational potential at the user

satellite may cause relativistic effects to be non-negligible. The

extent of the required corrections depends on the accuracy requirements

and the user satellite orbit. A detailed analysis would have to be

performed for the specific mission of concern to determine the magni-

tude of these effects.

2.5.3 Satellite signal structure.

2.5.3.1 Pseudo-random-noise sequences. The navigation signals

are pseudo-random-noise (PRN) sequences transmitted on two frequencies

in the L-band. The primary frequency Ll is 1575.42 mhz and the sec-Ii

ondary frequency L2  is 1227.6 mhz. The PRN sequences will be produc-

ed by linear feedback shift-register generators.

A linear feedback shift-register generator (SRG) shifts the

contents of each stage of the generator toward the output stage and

modulo-2 adds the contents of the specified stages for feedback to the
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initial stage. The SRG shown in Figure 2.5 will produce the 31-bit

sequence

l llO00110llOlOlO0001001OllQO

when the stages are initially loaded with ones. For a five-stage SRG

this is a maximal sequence, i.e., it is the longest sequence possible

for the specified number of stages in the SRG that will yield sequences

of 31 bits. All other connections produce sequences shorter than 31

bits. The length of the PRN sequence produced by a non-maximal SRG

depends on the initial contents of the SRG states.

Figure 2.5 A Five - Stage Maximal Linear Shift-Register
Generator

Ristenbatt [35] provides a good discussion of shift-register-

generators. He shows that the length of a maximal sequence is

L = 
2n -1 (2.11)

where: L is the lei'gth of the maximal sequence; and

n is the number of stages in the SRG.
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The number of maximal sequences possible for an n-stage SRG is given

by

S(2
n  - ) (2.12)
n

where: 0 is Euler's phi-function evaluated as (k) - k - 1 if k

is prime. otherwise, *(k) - ki - 1)/Pi and P1 are the

prime factors of k.

Table 2.3 gives the number of maximal sequences possible for n-stage

SRGs.

Table 2.3 Number of Maximal Sequences

Number of
Number of Maximal Sequence Maximal Length
Stages Length Sequences

2 3 1

3 7 2
4 15 2

5 31 6

6 63 6

7 127 18

8 255 16

9 511 48

10 1023 60

11 2047 176

12 4095 144

13 8191 630

14 16383 756
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Ristenbatt further states that the tap selections required for

a maximal n-stage SRG can be determined from the primitive irreducible

polynomials of degree n. Such polynomials will have an odd number of

terms and will include the nth power term and the constant term.

Table 2.4 lists the polynomials corresponding to maximal SRGs with up

to six stages.

Table 2.4 Polynomials for Maximal Length Sequences

Number of Maximal Sequence
Stages Length

2 3 x2 +x +1

3 7 x3 + x1 +1
x 3 + x2 +1

4 3
15 x4+ x +1

x4 + x3 +

5 31 x5 + x2 +1

5 3x + x +1

5 + X2  1 l +1
x + x + x3 + x + 1

x5 +x4 3 3  +1

663 x6 + x I +1l
x6 + x + 1

xx 5 4 x2 + l 1

x + x + x4 + x + 1

x6 + x4+ x3 + x1 + 1!

~6 1 ~+
6~~ 63 x + x 11

x6 + x5 + x3 + x2 +1

ow i n g... .. . m,, Jl .. i. . .- ... . .i l --
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The auto-correlation functioh, of a PRN sequency of length N

is shown in Figure 2.6.

Figure 2.6 Ideal Auto-Correlation Function tor an N- Bit PRN
Sequence

Unfortunately, the cross-correlation between two maximal se-

quences may be undesirably high as the period becomes shorter. This

is detrimental to the mutiplexing of twenty-four satellites on the

same frequency. Gold [36] has developed a method of determining fam-

ilies of SRG-generated PRN sequences that have low cross-correlations.

He shows that any two polynomials corresponding to maximal n-stage SRGs

can be multiplied to give the polynomial corresponding to a non-maximal

2n-stage SRG. The number of members in each family is 2n + I and the
length is 2- 1. The cross correlation e among the family members

will satisfy the inequality

(n+l)/2 for n odd

e <t = (2.13)

2 + I for n even, n~mod 4
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Thus, if a specified auto-correlation characteristic requires an n-stage

SRG, Gold's procedures will specify non-maximal 2n-stage SRGs with

significantly lower cross-correlations.

2.5.3.2 GPS navigation signals. Two PRN sequences are trans-

mitted by each satellite: a Precision (P) code and a Clear/Acquisition

(C/A) code. The P-code bit rate is 10.23 x 106 bits-per-second (10.23

mbps). The bit width is 97.75 nsec. The P-code is generated by com-

bining an Xl code and an X2 code. Two twelve-stage SRGs are used to

generate the Xl code and two twelve-stage SRGs generate the X2-code. A

combination of four twelve-stage SRGs can be connected to give a P-code

sequence lasting up to 318 days. However, the SRGs are implemented so

that the Xl-code component period is 1.5 seconds and the P-code se-

quence for each satellite repeats every seven days. This method allows

a user to quickly shift his local code for signal acquisition.

The C/A-code is a 1023-bit sequence with a bit rate of 1.023

mbps. The sequence repeats every millisecond. Bit width is 977.5

nsec. The sequences are from the 1023-bit Gold family and require two

ten-stage SRGs whose tap connections correspond to the product of poly-

nomials for maximal ten-stage SRGs. Although there are 1025 members in

this family, only 36 will be selected for GPS use, thus improving on

the maximum cross-correlation of 65 for the entire 1023-bit Gold family.

The Xl-code epoch provides basic synchronization for satellite signal
generation. The number of Xl epochs from midnight Saturday night/
Sunday morning is referred to as Z-count. (See Par. 2.5.2.5.)
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The P-code sequence is so long that very accurate position and

time information for both the user and the satellite is required to

lock on to the P-code. The C/A sequence, however, is only one milli-

second long and requires much less shifting of the user generated code

to correlate the received code. The disadvantage of a short code is

ambiguity. The user can correlate a received C/A code in steps of one

millisecond, each time changing his pseudo-range measurement by approx-

imately 300 km (i.e., the speed of light multiplied by one millisecond).

A pseudo-range measurement residual of 300 km can be accounted for by

changing the user's assumed position by 300 km along the line-of-sight

between the user and the satellite, or by changing the user's clock

bias by one millisecond, or by a combination of a change in the user's

estimated position and estimated clock bias. The details of the acqui-

sition methods and ambiguity resolution are beyond the scope of this

dissertation. For further information, see [37] and [38].

2.5.3.3 Data modulation. Data is modulated onto the PRN

sequence by modulo-2 addition of a 50 bps data stream to the P-code and

to the C/A-code. The resulting P-signal and C/A-signal are used to

biphase-modulate a continuous carrier. In biphase modulation, if a

"zero" code state is indicated by so = cos(wt - 900), then the "one"

code state is indicated by s, = cos(wt + 900). The secondary frequency

(L2 ) contains either the P-signal or the C/A-signal. The primary fre-

quency (L1) carries both the P-signal and the C/A-signal in phase

quadrature. (See Table 2.5.)
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Table 2.5 Signal Phase for Composite P- and C/A-Codes

Code State Composite Signal
Phase

P C/A

0 0 0.00

1 0 -70.50

0 1 109.50

1 1 180.00

2.5.3.4 Signal detection. The preceding information is based

on current specifications of the satellite navigation signals. Though

details may change, the structure of the signal is expected to conform

closely to the signal described in the previous paragraph. User equip-

ment for a given signal structure can be designed in many ways. It is

impossible to describe "the" user receiver. Certain similarities, how-

ever, must exist among all users. These similarities and basic user

equipment functions will be discussed briefly.

The following are some general remarks about variations in the

user receivers:

1. In a simultaneous receiver, certain portions of the

equipment are duplicated and additional equipment is needed for switch-

ing.

2. A user of both the L1 and L2 frequencies must have

equipment to multiplex the data.

3. Code switching between the P- and C/A-codes must be

incorporated for the precision user.
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Given frequency, code, and satellite identifier, Figure 2.7 is a basic

functional diagram of a user receiver, called a correlation receiver.

In addition to the usual radio frequency (RF) and intermediate

frequency (.IF) functions, the correlation receiver includes a correla-

tor, a code tracking loop, and a carrier tracking loop. A Costas loop

will probably be used in the carrier tracking loop since modulation is

biphase. A Costas loop for biphase modulation consists of two branches.

One branch detects the "zero" state (so) and the second branch detects

the "one" state (Sl). The Costas loop will extract the data and pro-

vide Doppler information. The carrier tracking loop recovers the code

tracking loop error signal which is then fed back to the code tracking

loop. The code tracking loop adjusts the local code generator in re-

sponse to the code tracking loop error signal. The correlator multi-

plies the received signal by the locally generated code signal. A per-

fect receiver would have the correlator output appear as shown in Fig-

ure 2.6 and would maintain lock at the peak of the auto-correlation

function.

The Doppler information from the carrier tracking loop pro-

vides a pseudo-range-rate measurement because the offset of the carrier

tracking loop oscillator from the local oscillator is determined by the

relative velocity between the user and the satellite and by the fre-

quency offset of the local oscillator. The pseudo-range measurement is

obtained by differencing the phase of the local code, which is corre-

lated to the incoming code, and the phase of a local reference. This
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phase difference, equivalent to a time displacement, is a measure of

transit time (range) and the phase bias of the local reference.

2.5.4 Atmospheric excess time delay. The velocity of propa-

gation of radio waves in the atmosphere is not equal to the vacuum

speed of light. In the ionosphere, radio wave velocity is affected by

free electron density. In the lower atmosphere, radio wave velocity is

affected by pressure, temperature, and humidity. The result is a tran-

sit time that is greater than the time predicted by using the vacuum

speed of light. The excess time delays due to atmospheric effects are

described in more detail in the following paragraphs.

2.5.4.1 Ionospheric delay. The one-way transmission time for

an RF pulse from a satellite to a user is given by [39:19]

R

t f n'(s)ds (2.14)C

where: c is the vacuum speed of light;

n' is the group refractive index; and

the integral is taken over the ray path.

The group refractive index for frequencies above VHF can be evaluated

using

n' =n + f dn (2.15)

... .-" .. ..... ... . mlitml "'. ... .. .. .'..... ....II....ilif- ..... ..
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f2 1/2

e1 (2.16)

e2 Ne (2.17)

p 42 0m

where: f is the frequency of interest;

fp is the plasma frequency;

n is the ionospheric refractive index;

v is the velocity of propagation;

e is the electron charge;

Co is the permittivity of free space;

m is the electron mass; and

Ne is the free electron density.

Equation 2.14 can be used to obtain an expression for iono-

spheric excess time delay.

R

n' ds _ R (2.18)

where: R is the line-of-sight range.

Neglecting ray bending, the ionospheric delay is
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eion 2  Ne ds (2.19)

The integral requires that ionospheric electron density be known along

the ray path.

The primary effects on an electron density profile are diurnal

(day/night), seasonal (winter/summer), latitudinal (polar/equatorial),

and solar (sunspot cycle). Ionospheric models generally include para-

meters whose values are based on the above effects. A static model of

the ionosphere will be developed for GPS users. The values of the

parameters for the GPS model will be transmitted in the satellite data

stream.

Many models of ionospheric electron density have been developed

and evaluated. One of the most popular is the Chapman model which can

be defined as follows [39:11]:

Ne(h) = Nm exp i1 (1 - z - eZ)] (2.20)

h - hm
Z = m

where: hs is the scale height;

Nm is the peak electron density; and

hm is the altitude of peak electron density.
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'Ray-tracing methods perform a numerical integration of Eq.

2.19. Many ray-tracing methods model the electron density as a series

of Chapman layers. For GPS user implementation and for purposes of

basic navigation algorithm evaluation, ray-tracing methods are too com-

plicated and time consuming.

Rao, Youakim, and Yeh [40] evaluated the capabilities of em-

pirical ionospheric delay models of varying complexity. In all cases,

the model parameters were adjusted to fit the data available for select-

ed time periods. The resulting root-mean-square residuals in iono-

spheric vertical group delay were on the order of 1 nsec to 7 nsec. The

vertical group delay is the excess one-way transit time for a satellite

directly overhead. For a satellite at ten degrees elevation, the obliq-

uity factor is approximately 5.8. An error of 1 nsec in vertical group

delay corresponds to a 5.8 nsec error for a satellite at ten degrees

elevation.

It must be noted that the models evaluated by Rao, et al, were

used to fit periods of available data after the data had been obtained.

If a model with parameters fitted to a period of time is used to predict

the delays in another time period, it is reasonable to expect larger

errors. However, it must be noted that the models evaluated were fit-

ted to time periods ranging from four months to one year. Using the

GPS data stream, a model can have its parameters adjusted frequently

based on the best available information. This more frequent updating

will result in smaller errors.

I
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The Bent ionospheric model (41] is a complicated empirical

model which was evaluated also against a large volume of available data.

The Bent model had RMS errors ranging from 12% to 30% of the vertical

group delay.

Pisacane, Feen, and Sturmanis [42] evaluated algorithms for

long-term ionospheric prediction and algorithms for near-real-time

prediction. For vertical group delays ranging from 5.6 nsec to 28.3

nsec, the RMS of the residuals ranged from 18% to 55% of the vertical

group delay [42:68].

Wand [39] combined sets of ray-tracing results to obtain an

empirical expression for ionospheric delay which is a function of user-

satellite geometry, scale height of the ionosphere, height of peak

electron density, and plasma frequency at peak electron density.

The ionospheric delay model to be evaluated using the NTS-II

satellite is as follows [17:43-45]:

F [5.xlO9+( 3 i 1 -- sec,lxl<1.57

ion= i =0 (2.21)

F (5.xlO 9) sec,IxIl_1.57

3
x = (t - 50,400)/( i m1)  (2.21a)

I=0

F = 1. + 16. (.53- el) 3  (2.21b)

t = (43,200 xion + T) mod 86,400 sec (2.21c)
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m = ion + .064 cos (Xion - 1.617) semi-circles (2.21d)

ion = + sin az semi-circles (2.21e)
Cos ion

+ T cos az semi-circles, < .416 semi-circles

ion

semi-circles, o > .416 semi-circles

(2.21f)

0.01 37
= 0+ -.07 - 0.022 semi-circles (2.21g)

The satellite transmitted terms are:

Ci- coefftcients of a cubic equation representing the am-

plitude of the vertical group delay as a function of m;

Bi - coefficients of a cubic equation representing the nor-

malized period of the model (true period divided by 2w)

as a function of 0m"

The user supplied terms are:

el - elevation angle between the user and the satellite

(semi-ci rcles);

az - azimuth between the user and the satellite, measured

clockwise positive from true North (semi-circles);

p - user geodetic latitude (semi-circles);

- user longitude (semi-circles);

T - GPS time of signal reception (sec);
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Intermediate calculations to be performed by the user include:

F - obliquity factor (dimensionless);

t - local time (sec);

m " geometric latitude of the earth projection of the iono-

spheric intersection point (semi-circles);

Xion - longitude of the earth projection of the ionospheric

intersection point (semi-circles);

ion- geodetic latitude of the earth projection of the iono-

spheric intersection point (semi-circles);

4, - earth central angle between user position and earth pro-

jection of ionospheric intersection point (semi-circles).

The result of Eqs. 2.21 is applicable to the ionospheric ex-

cess time delay for the primary frequency L. For the secondary fre-

quency L2 , the correction term must be multiplied by (LI/L 2 )
2

which, for the designated frequencies, is 1.647. The satellite trans-

mitted terms are expected to be valid for ten-day periods.

Other models for ionospheric delay include a truncated

Appleton-Hartree equation evaluated by Rohde [43], and a model suggest-

ed for use in the NASA Deep Space Tracking Network [44:22-23].

2.5.4.2 Tropospheric delay. Equation 2.14 also applies to a

neutral atmosphere. The neutral atmosphere of importance to GPS con-

sists of the troposphere, which extends to about 10 km, and the strato-

sphere, which extends to about 50 km [45). In these regions, the index

of refraction n varies with pressure, temperature and humidity. The
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index of refraction is used to define the parameter called refractiv-

ity Nr as follows:

Nr : (n - )1O6 (2.22)

Using Eq. 2.22, the tropospheric excess time delay is given by

Rl 6 T- S
10-6~6trop - c N ds (2.23)

R

The refractivity can be partitioned into a dry component Nd

and a wet component Nw.

Nr = Nd + Nw (2.24)

The two components can be evaluated using

Nd = 77.6 P/T (2.25)

Nw = 3.73 x 10 e/T2  (2.26)

where: P is total pressure (ob);

T is temperature (OK); and

e is the partial pressure of the water vapar (mb).

Hopfield used the partitioned refractivity expressions in

quartic equations to model a refractivity profile [46]. The CRPL Refer-

ence Atmosphere, 1958, used a refractivity model for three altitude

ranges ba-,ed on a sea level refractivity [47].

iI
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Altschuler [48) evaluated a model for tropospheric excess

time delay from an aircraft to a satellite as a function of the delay

for a sea level user, the aircraft altitude, and the sea level refrac-

tivity. The standard deviation of the errors in the model was 1.3 nsec

for satellites at 5 deg elevation. Using an average value for sea

level refractivity of 324.8, the expected error for 5 deg elevation in-

creased to 6.7 nsec. At higher elevation angles, the delay and the ex-

pected error in the calculated delay decrease.

Altschuler and Kalagher [49] have developed tropospheric delay

models more suited to GPS users because they avoid transcendental and

trigonometric expressions. The Jet Propulsion model suggested for use

by the NASA Deep Space Tracing Network [44:22-23] was adapted for use

in the simulation. (,See Par. 3.5.2)

Most models examined assumed a profile which was based on sea

level refractivity. An aircraft may be above much of the troposphere

and could reduce the error in the delay computation by using readily

available pressure and temperature information at aircraft altitude to

estimate the refractivity.

2.6 User System Segment

2.6.1 Classes of users. The User System Segment includes all

the hardware and software needed to determine the user's position, velo-

city, clock behavior, and other parameters as required. Various class-

es of users have been defined based on user requirements and character-

istics such as desired accuracy, user motion, jamming immunity, and
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cost [50]. Navigation algorithms evaluated in this dissertation are to

be applicable to a low-cost user.
ji

2.6.2 The low-cost user. The low-cost user will have a se-

quential receiver that operates on a single frequency, and will have a

minimum of auxiliary sensors. A sequential receiver is cheaper than a

simultaneous receiver because the simultaneous receiver is effectively

four receivers. A sequential receiver eliminates the additional hard-

ware required by the simultaneous receiver. The disadvantage is the

requirement for a more complex navigation algorithm to account for user

motion and clock drift.

The low-cost user will have a single-frequency receiver and

will save the cost of the additional hardware required by a dual-

frequency user. The disadvantage for the single-frequency user is the

lack of accurate real-time ionospheric delay computation.

Ionospheric delay is inversely proportional to the square of

the frequency. A dual-frequency user can process the phase difference

between the code received on L, and the code received on L2  to

calculate the ionospheric delays [51]. The single-frequency user must

use a static model for ionospheric delay. Satellite data will include

parameters for an ionospheric delay model. The specific structure of

the ionospheric delay model will be evaluated in the GPS developmental

tests. (See Par. 2.5.4.1.)

It is assumed that the low-cost user has a barometric alti-

meter. This is a basic item of aircraft equipment. The low-cost

restriction is not violated by requiring a digitized signal from the
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altimeter. Analog-to-digital converters are available in microcircuits

for costs which are negligible when compared to other items of required

equipment.

I--



CHAPTER 3

SIMULATION OF THE

GLOBAL POSITIONING SYSTEM

3.1 Simulation Philosophy

Since one of the goals of this dissertation is the evaluation

of the behavior of several proposed Global Positioning System (GPS)

user navigation algorithms, the procedure for simulating the GPS is of

critical importance. To accomplish this goal, portions of the GPS

Space System Segment and an approximate model which describes the

user's dynamics were used to generate simulated observations. Select-

ed navigation algorithms were tested by varying the parameters of the

filter and examining the filter performance. All navigation filters

were tested using a single set of observations. Extensive tests were

made using a small portion of the generated data, i.e., that portion

which corresponded to the first ten minutes of flight. Selected fil-

ters, which appeared to have good performance, were tested also for

the entire simulated trajectory.

The simulation philosophy was designed to produce a physically

realizable set of data points against which the filter could be tested

and evaluated. The simulation used sinlified models of the GPS system

which was described in Chapter 2 because the use of simple models re-

duces the computer time requirements and increases the programmer's

control of the error behavior. With a reasonable choice of parameters,

54
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a set of realizable trajectory and measurement data points can be

generated.

The simulation program can be separated into five parts:

1. Simulation of the satellite dynamics;

2. Simulation of the user dynamics;

3. Simulation of system instruments, especially the

clocks;

4. Simulation of the environment, i.e., atmospheric

delays; and

5. Generation of the measurements.

Figure 3.1 depicts the role of the simulation in the generation of the

measurements, the filter processing, and the filter evaluation. This

chapter will describe each part of the simulation in more detail.

3.2 Simulation of Phase II GPS Constellation

For simplicity, the simulated GPS satellites are assumed to be

in circular orbits about a point-mass Earth. Table 2.1 lists the orbit-

al elements for the simulated satellites. The simulated GPS user as-

sumed the same model. Satellite position can thus be determined using

a closed form solution and a set of Keplerian elements at an epoch.

For basic navigation algorithm evaluation, it is unnecessary to include

higher order geopotential terms or other perturbing forces because

errors in the user calculated satellite positions can be simulated more

easily and more predictably by corrupting the users orbital elements.
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Table 3.1 lists the user data base almanac for the satellites which are

visible in the basic simulation.

Table 3.1 User Data Base Orbital Elements

Longitude of Time to
Satellite Ascending Node Ascending Node Period Inclination

(deg) (sec) (sec) (deg)

1 -130. 0. 43082.051000 63.

2 -130. 0. 43082.049456 63.00002292

5 110.00002292 0. 43082.049456 63.

7 -10. 0.0025 43082.049456 63.

Note: All satellites were assumed to have zero eccentricity. The time
associated with these elements is T = 0.

3.3 Aircraft Trajectory Simulation

3.3.1 Aircraft simulation philosophy. The goal of the simula-

tion is to determine a sequence of position and velocity vectors which

represents possible aircraft motion. The aircraft simulation does not

attempt a rigorous definition of the airplane trajectory. Differences

between the computed numerical values and the values that would result

from a more rigorous solution to the differential equations of motion

can be attributed to wind gusts. In fact, the basic simulation provid-

ed a trajectory that was unreasonably smooth. To "bounce" the aircraft,

a perturbation to the position and velocity is applied at the end of

each 1.25 second interval. (See Par. 3.3.3.)
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3.3.2 Aircraft model. The aircraft model is similar to that

used in [51]. The aircraft is modeled as a point mass. The aircraft

is described by the heading angle a, horizontal speed V, altitude

rate h, altitude above the reference ellipsoid h, geodetic latitude

4, and longitude X.

A series of waypoints consisting of latitude, longitude, alti-

tude, and horizontal speed must be specified. The simulated aircraft

attempts to pass through each waypoint. The waypoints used in the

simulation represent a flight from New York to Chicago. (See Table

3.2.)

At the beginning of each integration step, the aircraft state

is compared to the current waypoint requirements. If the distance to

go to the current waypoint is small, the next waypoint is selected.

Distance-to-go in radians of arc is calculated using

= cos I (sin Oi sin 0 + cos ci Cos 0 cos(xi-x)] (3.1)

where: €i and xi are the geodetic latitude and longitude of the

waypoint.

Figure 3.2 depicts the aircraft model simulation. Table 3.3 lists the

aircraft response model parameters. The waypoint altitude is used as a

command to a second-order response model. Waypoint speed is used as a

command to a first-order response model. The user's latitude and long-

itude are compared to the latitude and longitude of the waypoint and a

desired heading angle is commanded. The commanded heading angle ec

is computed using:
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Table 3.2 New York to Chicago Waypoints

Geodetic Horizontal Time
Latitude Longitude Speed Altitude Reached
(deg N) (deg E) (m/sec) (m) (sec)

40.400 -74.000 0. 0. 0.00

40.415 -73.992 75. 0. 50.00

40.534 -73.933 160. 600. 155.00

40.534 -73.716 180. 1800. 270.00

40.420 -87.467 240. 11300. 5228.75

41.350 -87.467 180. 4900. 5832.50

41.370 -87.650 165. 3000. 5948.75

41.259 -87.767 75. 2100. 6123.75

41.250 -87.609 75. 900. 6323.75

41.387 -87.600 65. 0. 6567.50

41.420 -87.600 25. 0. 6687.50

Table 3.3 Aircraft Trajectory Simulation Parameters

Velocity rate gain .2 sec -l

Velocity rate limit 1.5 m/sec 2

Turn rate gain .2 sec-1

Lateral acceleration limit 5.67 m/sec2

Altitude rate gain .025 sec 2

Altitude rate limit 12. m/sec

Altitude time constant 3. sec
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cos oi sin(A i - A)

sin (3.2)

Equations 3.1 and 3.2 are solutions for great circle paths on a spheri-

cal earth [52:45-46].

The numerical integrator is a fixed-step fifth-order Runge-

Kutta method. Commanded heading angle, speed, and altitude are not al-

lowed to change at the intermediate derivative evaluations. Rate lim-

its, however, are enforced at all derivative evaluations. The integra-

tion step size is equal to the interval between measurements of 1.25

sec.

The rate of change of horizontal speed and the vertical

speed have limits fixed by the programmer. Maximum turn rate is a func-

tion of horizontal speed and a programmer-supplied maximum lateral ac-

celeration alat.

- alat (3.3)
emax V

The first-order loop that forms the input to the numerical al-

titude integrator is solved analytically at the start of each time

step. To prevent the appearance of large vertical accelerations caused

by large changes in vertical velocity, the input to the numerical al-

titude integrator is limited to a range about the user's altitude at

the beginning of each time step.

A fixed-step integrator is used because high accuracy is not

required and the discontinuities in the acceleration limits cause a
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variable-step method to take excessive time. In numerical tests, the

variable-step integration required many iterations to converge to the

time of the acceleration discontinuity. From that point, the variable-

step integration quickly completed the integration step. The results

of the fixed-step integration differed from the variable-step integra-

tion on the order of a few centimeters if a limit occurred during the

integration step. If a limit did not occur, the fixed-step integration

and the variable-step integration provided nearly identical results.

The numerical integrator also solves the differential equa-

tions for user geodetic latitude and longitude.

VV cos 6 (3.4)

S (v + h) cos(3.5)

a e

( e2  2 1/2  (3.6)

where: ae is mean equatorial radius of the Earth, and

e is eccentricity of the reference ellipsoid.

3.3.3 Gust model. The results of the integration were un-

realistically smooth. To "bounce" the airplane, a gust model was added

to the simulation. For one dimension, the gust model is represented by

the following differential equations:

I[
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AX = AV, AX(t ) = 0

Av = Aa, Av(t o ) = 0

A; = -6a Aa + w , Aa(t ) = 0

1a = w, 6(t o) = 0 (3.7)

where: wa and w 0 are random processes.

The a priori statistics for wa and we are given by

E[w a] = 0, E[wa(t)Wa(i)] = q 6(t-,) (3.8)a a a a

E[we] = 0, E[w (t)w (i)] qCs(t-t) (3.9)

where: 6(t) is the Dirac delta function.

Assuming that w a and i a are constant over the integration

step, the position and velocity are determined by integrating Eqs. 3.7.

The results of the integration from T to T+AT are as follows:

AX(T+AT) [ AT + 1 - exp(-ra AT)]wa (T) (3.10)

a

Av(T+AT) = [exp(oa AT) + aAT - l]wa (T) (3.11)
Ba

The user trajectory simulation incorporates three sets of gust

equations for each of the three user coordinates. As implemented, the

forcing terms wa are obtained from a Gaussian random number generator.
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Position and velocity perturbations are calculated using Eqs. 3.10 and

3.11. The perturbations are added to the results of the numerical inte-

grator at the end of each integration step. The horizontal position

perturbations are added to the latitude and longitude as follows:

Ax N (T+AT)

*(T+AT) = '(T+AT) + aXN/T (3.12)

X E(T+AT)

x(T+LT) = '(T+AT) + (3.13)aXE/a x

where: The primes indicate the no-gust integrator results; and

the partial derivatives are given in Appendix A.

The vertical position gust term and the three gust velocities are add-

ed directly to the corresponding user states.

Inverse correlation time is modified at each time step accord-

ing to the relations:

a (T+AT) = 5a(T) + aB w (T) (3.14)

n Baa (3.15)ami n  ax

where: a is the standard deviation of the inverse correlation

time;

and are limits on a and
amin amax

w is a random number, N(0,1).
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For the adopted simulation, the gust model parameters were

identical for all aircraft directions. The initial inverse correlation

time was 1 sec - and the standard deviation was 0.001 sec - 2 . In-

verse correlation time was limited between 0.25 sec- l and 10. sec - l .

The standard deviation of the forcing terms wa was 0.01 m/sec 3 . The

forcing functions are obtained from a Gaussian random number generator.

(See Appendix B.)

The profile of the simulated trajectory is shown in Figures

3.3 through 3.6.

3.4 Clock Simulation

The basic signal transmitted to the user will be the satel-

lite's indicated time of transmission. If the satellite were manned,

the astronaut would say, "At the tone, the time will be 144,000 Z - - -

beep." The user would then determine the time he receivcd the tone and

would process the difference between the user's time of reception and

the time of the tone as given by the "astronaut." As previously dis-

cussed (Par. 2.5.2.3), the "astronaut" will also provide the epoch for

the Z-count and the clock correction data. The following describes how

the uncorrected "tone" is simulated and how the clock correction para-

meters are determined for the simulation.

Three independent clock error sources were simulated: a noise

free error with a polynomial form cl; an error caused by exponentially

correlated frequency noise 2 and a random walk bias error £3" The

noise free error term is simulated using the polynomial
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eI(T) a2 + a3 (T - a1) + a4 (T - a,)2  (3.16)

where: T is system time; and

ai , i = 1,2,3,4 are similar to t oct o, f/f, and D/2 in

in the satellite data stream. (See para. 2.5.2.3.)

The time derivative of Eq. 3.16 gives the clock drift required for the

pseudo-range-rate measurements.

YT) = a3 + a4 (T - a,) (3.17)

In the simulation, the clock frequency noise is assumed to be

exponentially correlated in time with zero mean and standard deviation

d The following discrete time equation is used to generate this term:

Y2(T+AT) = ;2(T) exp(-AT/Tc)

+ Of[l - exp(-2AT/Tc)]1/2 w2(T) (3.18)

where: T is a discrete step size;

Tc is the correlation time; and

w is a normally distributed random number with zero mean

and unit variance, N(Ol).

The corresponding phase error is generated by "integrating" Eq. 3.18.

E2(T+AT) = 2(T) + 2 [e2 (T+AT) + 2(T)]AT (3.19)

An additional phase noise is generated by a simulated random walk.
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c3(T+AT) c3 (T) + op w3 (T) (3.20)

where: a is the standard deviation of the random walk; and

w3  is a random number, N(Ol).

The clock error propagation for the three error sources is

summarized as follows:

;(T) - 1 = (T) = a3 + a4 (T-al)

+ ;2 (T-AT) exp(-AT/Tc )

+ Of[l - exp(-2AT/Tc)]1/2 w2(T-AT) (3.21)

6(T) - T = c(T) a2 + a3 (T-al) + !a 4 (T-al) 2

+ (T-AT) + I (T) + (T-AT)] AT

+ E3(T-AT) + opw3 (T-AT) (3.22)

Figure 3.7 shows the results of the simulation of the clock errors us-

ing the parameters of Table 3.4. Only those satellites visible to the

user in the basic simulation are shown.

The clock correction polynomial for the user data base is ob-

tained using least squares fits to the curves of Figure 3.7. One linear

fit for each satellite is used for the 1.86 hour flight time. The

parameters of the least-squares fits are given in Table 3.5. Note that

the RMS errors after correction were on the order of the errors expect-

ed for the GPS satellites. (See Par. 2.5.2.3.)

f
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Table 3.5 Results of Linear Fits to Satellite Clock Biases

Satel I i te 1 2 5 7

Number of Samples 1327 248 1327 1124

Minimum bias (nsec) -.06 -.36 -.13 -55.15

Maximum bias (nsec) 33.61 2.93 82.33 12.95

RSS error after least-

squares fit (nsec) 7.62 .18 4.38 2.99

There are various approaches that can be used for the clock

simulation including a method suggested by Meditch that more accurately

represents an Allan variance curve [53]. The approach used in this

study was chosen because it is quickly implemented, the error behavior

is easily understood, and, with a proper choice of parameters, it will

result in a root-sum-square (RSS) error close to that expected for the

GPS satellite clocks. This latter requirement is critical. Early al-

gorithm tests yielded results which were interpreted first as classical

filter divergence. On closer inspection, it was determined that the

measurement residuals were low and that the gains had not decreased.

This suggested that filter divergence was not the problem. The diffi-

culty was actually caused by large satellite clock errors. During the

first half of the flight, two satellites with large clock errors of

identical sign were oriented so that the errors counteracted each other.

The estimate of the user position was determined to minimize the squares

of the residuals from the satellite range measurements. During flight,
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one satellite reached its zenith and passed into the same half-plane as

the other satellite. At that point, the clock errors reinforced each

other and the user estimated position moved to decrease the measurement

residuals. The result was an increase in actual user position error

and a decrease in the observation residuals. Unpredictable clock errors

will vary in sign and no guarantee can be made that the positions of

the satellites will be such that the clock errors counteract, rather

than reinforce, each other. Accordingly, the satellite clock errors

are a critical factor for navigation accuracy.

3.5 Atmospheric Delay Simulation

3.5,1 Ionospheric delay simulation. The simulation program

assumes that the ionosphere is a constant electron density layer.

Three parameters describe this ionosphere model: altitude above the

reference ellipsoid for the bottom of the ionosphere hmin; altitude

above the reference ellipsoid for the top of the ionosphere h and

the vertical group delay 6vg" The ionospheric delay resulting from

the model is a function of the obliquity factor which is the ratio of

the length of the path through the ionosphere at an elevation angle

el, to the length of the path at 90 deg elevation. The vertical path

length is hmax - hmin* At L-band frequencies, ray-bending causes an

elevation error less than 0.003 deg for a satellite at ten degrees

elevation [39]. Therefore, ray bending is neglected in the simulation.
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Ionospheric delay is calculated as follows:

-ion zvert 6vg (3.23)

vert - hmax hmin  (3.24)

RminRmax sin[sin-I(R cos el/Rmin )-sin- (R cos el/Rmax)].

R cos el

0' < el < 90' (3.25)

where: R is the geocentric radius of the user;

Rmin (R -h) + h ;

Rmax = (R - h) + h;max and

h is the user's altitude above the reference ellipsoid.

Equation 3.25 is an approximation to the path length based on an assump-

tion that the ionospheric layer is spherical in the vicinity of the

user.

Wand [39] states that typical values of the height parameters

in the model he evaluated can be used somewhat arbitrarily since the

plasma frequency is more important in determining the delay. Accord-

ingly, the height parameters hmin and hmax in Equation 3.25 are kept

constant for the simulation. The vertical group delay, which can be

considered similar to Wand's plasma frequency term, is simulated as

an exponentially correlated random variable as follows:

vg(T+AT) = vg + c vg(T+AT) (3.27)

vgdg v
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vg (T+AT) = (T) exp(-B gAT)

+ avg [ - exp(-28 vgAT)] 112w vg(T) (3.28)

Vgmin <6vg < 6Vgmax  (3.29)

where: 6vg is the mean vertical group delay;

8vg is the inverse correlation time for the vertical

group delay;

a is the standard deviation of the vertical groupvg

delay;

Wvg is a random number, N(0,1); and

6 and 6 are limits on the vertical groupVgmi n Vgma x

delay.

Small scale irregularities in the ionosphere cause fluctuations

in propagation time called scintillations. Scintillations are larger in

the equatorial and polar regions than in the middle latitudes and the

scintillations are larger for low elevation angles. Ionospheric scin-

tillations have been examined by Wand [39] and in [54:133-144].

A small amount of scintillation is included in the simulation

as an uncorrelated, Gaussian random variable.

S ion(T+AT ) = Sion WSion (3.30)sin [(el 2 + .3152)1/2]
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where: a is the standard deviation of the scintillation; and
ion

WS ion is a random number N(0,1).

The ionospheric delay parameters used in the basic simulation are given

in Table 3.6 and the realization for the vertical group delay of Eq.

3.27 is shown in Figure 3.8.

Table 3.6 Ionospheric Delay Simulation Parameters

Vertical Group Delay
Layer Limits Mean Std. Correlation Initial
Base Top Delay Deviation Time Min/Max Delay
(km) (km) (nsec) (nsec) (sec) (nsec) (nsec)

50.0 500.0 40.0 5.0 1000. 0/100. 40.

Scintillation Model: a 1.0 nsecion

C I.

TIME. [5f C, 3 1lO0

,' Figure 3.8 Ionospheric Vertical Group Delay

(2.
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3.5.2 Tropospheric delay simulation. The tropospheric delay

model used in the simulation is the JPL model [44:22-23].

6.3237 NSLexp(-h/Htrop) (3.31)Strop _,=

(sin el + .06483)1"4 338.0

where: 6trop is the excess time delay in nsec;

Htrop is the scale height; and

NSL is sea level refractivity.

Sea level refractivity is simulated as an exponentially cor-

related random variable as follows: H

NsL(T+AT) = NS + cN(T+ T) (3.32)

£N(T+T) = SN(T) exp(-ONAt)

+ aN [1 - exp(-2N 6T)]I/2 WN(T) (3.33)

NSL mi NSL ± NSL (3.)

where: NSL is the mean sea level refractivity;

aN  is the inverse correlation time for the sea-level

refracti vi ty;

aN  is the standard deviation of sea level refractivity;

wN is a random number, N(O,1); and

NSLmi n and NSLmx are limits on the refractivity.

ma
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Tropospheric scintillation is simulated as follows:

S Wstro (T)

Strop(T+ATT) t (3.35)trop sin el (.5

where: S  is the standard deviation of tropospheric scintill-

Strop

ation; and

WS is a random number, N(O,1).
trop

In this investigation, the tropospheric simulation used the

parameters given in Table 3.7. The realization of the sea level refrac-

tivity is shown in Figure 3.9.

Table 3.7. Tropospheric Delay Simulation Parameters

Sea Level Refractivity Model

Mean Std. Correlation Min/Max Scale
Refractivity Deviation Time Height

(sec) (km)

325. 30. 1000. 262./338. 7.62

Scintillation Model: a = 0.9 nsec
trop

3.6 Measurement Generation

3.6.1 Ranae-time algorithm. The user trajectory simulation

provides a sequence of position and velocity vectors which represent
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aircraft motion. Each user state vector applies at a time T the true

GPS time when a measurement is taken. To calculate the measurement,

the simulation must determine the true time the satellite sent the

signal.

The range-time equation is defined as follows:

Rs(T s ) - R(T) + at(T,R(T), Rs(Ts)) - T - Ts  (3.36)
c -s s atm - -

where: Ts  is the true GPS time when the satellite sent the sig-

nal which Is received by the user at T;
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R (Ts ) is the position vector of the satellite at the time

of signal transmission, Ts;

R(T) is the position vector of the user at the signal time-

of-arrival, T; and

6atm is the total atmospheric delay.

Equation 3.36 is solved recursively for Ts  using a false-

position method [55:45-47]. The position of the satellite is propa-

gated from the ephemeris data. User position remains constant based

on the user trajectory simulation. Vertical group delay and sea level

refractivity remain constant during the range-time recursion but the

total atmospheric delay will change because of changes in elevation

angle during the recursion. In the simulation, the range-time equa-

tion converged within 0.033 nsec (1 cm).

3.6.2 Pseudo-range measurement generation. AftEr solution of

the range-time algorithm, the measurements are generated. A pseudo-

range measurement consists of the time of signal transmission, as indi-

cated by the satellite, and the user's indicated time of reception.

The behavior of the user's clock is simulated identically to

the satellite clock simulation. (See Par. 3.4.) Table 3.4 includes the

user clock simulation pdrameters and Figure 3.10 shows the realization

of the user clock errors. The clock errors are added to the true times

to give the indicated received time O(T) and the indicated transmis-

sion time e s(Ts). To attempt to account for miscellaneous receiver

errors, quantization errors, and multipath effects, an additional
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Gaussian noise is added to the indicated satellite time. For program-

mer convenience, this additional noise term is added in the algorithm

testing program. It can be assumed that this noise term is imbedded in

the satellite phase error term, as simulated using Eq. 3.21.

3.6.3 Pseudo-range-rate measurement generation. A pseudo-

range-rate measurement that is obtained from the carrier tracking loop

is relatively free of atmospheric effects. In the simulation procedure,

the pseudo-range-rate measurements are generated by combining range-

rate, relative drift between the user clock and the satellite clock,

and a Gaussian noise.

Range-rate is given by:

(1 " _v(M) (3.37)

where: p is the range-rate;

V (I) is the inertial velocity vector of the satellite;

v( 1 ) is the inertial velocity vector of the user; and

indicates the vector dot product.

The computer programs used in this study normally maintain the

components of the inertial satellite velocity vector rotated into the

Geocentric Earth-Fixed (GEF) frame and the components of the relative

user velocity vector rotated into the GEF frame. If the unit vectors

i_, J, and k represent the basis vectors of the GEF coordinate system,

then the following position and velocity vectors are defined:

A -t
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1. Position vector of the satellite:

R = Xi + Y J + Zk

2. Inertial velocity vector of the satellite rotated into the

GEF frame:

VS (I) = V + Vyj + Vzk

3. Position vector of the user:

r = xi + yI+zk

4. Relative velocity vector of the user rotated into the GEF

frame:

_(rel) = Vi + V +
t x-+ V y z

Using these definitions, the range-rate can be calculated as

[(X-x.)(Vx-vx+wey) + (Y-y)(V y,eX) + (Z-z)(VZ-vz)]
[(X-x)2 + (Y-y)2 + (Z-z) 2] /2

(3.38)

where: We is the Earth's angular velocity.

The pseudo-range-rate measurement is formed using

Yp(T) = ,(T) + c[(T) - 6s(Ts)] + oa w.(T)

where: Y. is the pseudo-range-rate;
p

and s are the user and the satellite clock drifts;

. is the standard deviation of pseudo-range-rate; and

w. is a random number, N(O,1).
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3.6.4 Altimeter measurement generation. In the simulation,

the altimeter measurement is formed by adding to the true user altitude

above the reference ellipsoid, a bias term (which the user may attempt

to estimate), and an uncorrelated zero-mean noise term. The true alti-

tude is computed by the user trajectory simulation. The simulated bias

is selected to represent two error sources: an initial sea level bias

which propagates to the user's altitude assuming an exponential pres-

sure profile, and a distance-correlated random variable which repre-

sents aircraft motion through the air mass and motion of the air mass

itself.

The initial sea level bias results in a bias error at alti-

tude as follows:

6Yhl (T) = 6YhSL exp(h(T)/Halt) (3.39)

where: Halt is the altimeter scale height; and

6Yh SL  is the sea level bias.

The distance-correlated bias is simulated using

6yh 2(T+AT) = 6Yh2 (T) exp(-VAT/Dal t)

+ oh2 [1 - exp(-2VAT/Dalt)]1/2 wh(T) (3.40)

where: V is the user's horizontal speed; and

Dalt is the correlation distance.
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The uncorrelated noise term is simulated using

6Yh3(T+AT) = h Wh3(T) (3.41)

3 3 3

where: Oh is the standard deviation of the uncorrelated noise.h3

The mean deviations oh and oh are simulated as functionsh2 h3

of altitude similar to Lear's recommendations [56].

ah2 0 h + (ah 2h) 2  (3.42)
2SL 2

2 02 + [ahexp(h/Hh )]2  (3.43)
Oh 3 h SL h3 h3]

where: oh  and 'h are the standard deviations at sea2SL 3SL

level; and

ah 29 h3, and Hh3 are arbitrary parameters.

The altimeter measurement is generated as follows:

Yh(T) = h(T) + 6Yh (T) + Yh 2(T) + Yh3 (T) (3.44)

Table 3.8 specifies the parameters used in the basic simula-

tion. Figure 3.11 shows the correlated bias term, h + SYh2.
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Table 3.8 Altimeter Bias Simulation Parameters

Exponentially Correlated Uncorrelated Sea Level
Std. Deviation Correlation Distance Std. Deviation Bias

a 2 (h) 100.00 km o2 (h) 10.0 m
h2 Oh3

o2 (h) = 2.72 + (.0035h) 2 m 2

22
o h (h) = [.70 exp(h/7110.)] in

I..

C,

V)

Cr C;

g4

0 II 2?. 55C I

Figure 3.11 Correlated Altimeter Bias



88

3.7 User-Satellite Geometry of the Simulation

The navigation accuracy attainable in a satellite ranging sys-

tem is strongly affected by the user-satellite geometry. Bogen [18]

has analyzed this geometric effect for the GPS using a performance in-

dex called geometric dilution of precision (GDOP). It will be shown in

Chapter 4 that the linear minimum variance unbiased estimate of a state

is given by

x = (HTR-IH)-lHTR'Iy (3.45)

where: R is the covariance matrix of the measurements;

H is the observation-state relationship

y = Hx + c (3.46)

y is the observation vector.

The covariance of the a posteriori estimate is given by

P = (HTR-IH)"l (3.47)

A GDOP analysis was performed using the user-satellite geome-

try of the adopted simulation. The analysis was accomplished by setting

the R matrix in Eq. 3.47 equal to the identity matrix and by using an H

matrix whose rows corresponded to simultaneous pseudo-range measurements

from each visible satellite and to an altimeter measurement. Appendix C

describes the form of the individual rows of the H matrix. Since a mini-

mum of three satellites is visible in the simulated profile, then up to

four state parameters can be considered in the GDOP analysis. If only

owli
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three-dimensional position of the user is to be estimated, then

(H T R_1 14) 1  is a 3x0 matrix whose diagonal eleurnts represent the varn-

ances of the position component estimiates that result from processing

si mul taneous pselido-range meas ureiten ts and anr al timeter aveas uremlen t.

The user-satellite geometry of' the adopted simulation is shown

in riguro 3. 17 and the ('1 OW analyst-, yields tire position component

standard deviationN as shownl in Figure 3.13. If the user clock bias is

added to the state vec tor, then [i Iure 3.14 represents the results of

the GtIOP analysis. Figure 3.14 is limtited to values of standard devia-

tion of twelve or- less. A continuous solution of thv four-state esti-

mate with the three satell1ites and altiimter would have a singularity

in the vicinity of 2770 %ec.

ri qure:. 3.1 3 and .1 4 ripresent the standard deviations of the

estimated state parameters that result if simul taneous pseudo-range

observations of ali visi ble satellites and an al ti me ten measuremeitnt

are used in a leas t-squjarxes sol ution with no a proiinformation from

any previous es timates ond with identical weighting of all measurv-

iien ts. it was asswited that all meiasureiients have uncorre'lated noise

with standard deviation one mevter for the figures shown.

The henefi t of the GPOP analysis is that it. depicts the in-

formation content on the meastirements at any given time*. The analysis

does not account for dynamics or larger state vectors that may be in-

cluded in actual navigation Algorithm implementation. Nor are the re-

sults of the analysis quantitativt.ly exact for algorithiii that differ

from the assumptions of the GOOP analysis. In navigation algorithm
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tests performed for this dissertation, the behavior of the standard

deviations closely paralleled the character of the GDOP curves. The

errors in the estimated state vector components also had a remarkable

similarity to the GDOP analysis results.

S



CHAPTER 4

LINEAR ESTIMATION THEORY

AND

THE KALMAN-BUCY FILTER

4.1 Background of Linear Estimation Theory

4.1.1 Description of the linear system. Linear estimation

theory concerns itself with the problem of estimating the values of a

random process x(t) that is governed by a linear differential equa-

tion.

_ = A(t)x + B(t)u(t), x(t ) = xo (4.1)

where: x is the state vector;

A(t) is the plant matrix;

B(t) is the noise matrix; and

.q(t) is the process noise vector.

In the following discussion, the state vector will always be assumed to

be a random process since dynamical systems, such as aircraft and

clocks, can generally be represented using differential equations such

as Eq. 4.1.

The plant noise vector u(t) is a random process with statis-

tics given by

E[u(t) = 0, E[u(t)u Q(t)6(t-T) (4.2)

93
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where: 6(t-T) is the Dirac delta function;

Q(t) is the spectral level process noise covariance

matrix and is non-negative definite.

Observations of the system can be assumed to be available con-

tinuously. A linear observation will be described by

y(t) H(t)x(t) + c(t) (4.3)

where: H(t) is the observation matrix;

&(t) is the observation noise vector; and

y(t) is the observation vector.

The measurement noise vector &(t) is a random process with statistics

given by

T
E[&(t)] 0, E[e(t)L (T)] R(t)6(t-t) (4.4)

where: R(t) is the continuous measurement noise covariance

matrix.

When the observations are available at discrete times, they

will be described by

= H(tj)x(tj) + &j (4.5)

The statistics of the random sequence _ are given by

E[Ej] 0, E[ j] -- Rj6 jk for all j and k (4.6)

i j
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where: 6jk is the Kronecker delta; and

R is the discrete measurement noise covariance matrix.

In the following discussions, all cross-correlations among the terms

used in Eq. 4.1 and Eq. 4.3 or Eq. 4.5 will be assumed equal to zero.

4.1.2 The Wiener-Hopf equation. Until 1949, the major tool

in linear estimation theory was Gauss' method of least squares. This

method is still in widespread use for many problems but it is not

easily adapted for sequential estimation. The method of least squares can

also be very inefficient, especially for real-time computer implementation.

The Wiener-Hopf equation [7) specifies the requirement for the

gain of an optimal estimator using continuous measurements. The linear

optimal estimate has the form

ti(tllt) = f W(tIT)y(T)dT (4.7)
to

where: x(ti(t) is the estimate of the state at time tI after

processing all measurement up to time t; and

W(tl,t) is the filter gain.

The Wiener-Hopf equation is

T tTE[(tl)y (s)]- f W(t1 ,T)E(y(T)Y_ (s)]dT = 0 (4.8)
to
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If the matrix W(tl T ) satisfies the Wiener-Hopf equation, then Eq.

4.7 is the optimal estimate. Meditch [57:292-294] shows that this is a

necessary and sufficient condition for the estimate to be optimal in a

minimum variance sense.

By taking the partial derivative of Eq. 4.7 with respect to t,

the filter differential equation can be derived.

x = A(t) + K(t) (_(t) - H(t)) (4.9)

where: K(t) is defined to be W(t,t).

Meditch [57:Chap. 8] shows that the gain term required in Eq. 4.9 can

be related to the covariance matrix P as follows:

K(t) = P(tlt)HT (t)R-I (t) (4.10)

where: P(t(t) E[(x(t)-i(t~t))(x(t)-x(tlt))T]

Equation 4.10 can be used to replace the integral equation for W(t,t)

by an integral equation for P(tit). The practical difficulty of

developing a solution to the integral equation remaims.

4.1.3 Kalman-Bucy filtering. In 1961, Kalman [8] derived an

expression for the optimal estimate when the measurements are available

at discrete times. This derivation emphasized the concepts of system

state, state transition matrix, and white noise processes. The optimal

estimate was derived to bc a conditional expectation. Kalman showed

that the optimal estimate is the orthogonal projection of the state

f._L --. _ ... , ,,_ i...... . ... i....... ...... . .. .. L , ., L,,....... . ,, .............. .. ..... ......
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onto the space generated by the measurements. Kalman also described

the duality between the estimation problem and optimal control theory.

Kalman and Bucy [9] derived the differential equation for the

covariance matrix. This can be accomplished by taking the partial de-

rivative of the integral equation for P(tjt) with respect to t.

The result is given by

0(tjt) = A(t)P + PAT(t) + B(t)Q(t)BT(t)

- pHT(t)R-I (t)H(t)P (4.11)

For the calculation of the optimal gain, the differential equation of

Eq. 4.11 replaces the Wiener-Hopf integral equation. For computer

applications, the differential equation is considerably easier to imple-

ment.

The algorithm resulting from the works of Kalman and Bucy is

frequently referred to as the Kalman-Bucy filter, (or, more simply, the

Kalman filter) and the gain is often called the Kalman gain. The equa-

tions that constitute the Kalman-Bucy filter can be derived in many

ways. This chapter will derive the filter equations by first showing

that, under certain fairly general conditions, the conditional mean is

the optimal estimate, and then by deriving an explicit expression for

the conditional mean assuming Gaussian statistics.

An excellent introduction to Kalman filtering is given by

duPlessis [58]. A report by the Mitre Corp. [59] also provides a good

intuitive derivation of the Kalman filter equations. Several texts that

describe the Kalman filter are available. Jazwinski [60] emphasizes
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stochastic calculus in the derivation of the Kalman filter Jazwinski

also described many options to the basic algorithm. Meditch [57] de-

rives the Kalman filter and provides good example problems for exercis-

ing the filter. Applications are emphasized in a text published by The

Analytical Sciences Corporation [61] and in a report edited by Leondes

[62].

4.2 Criterion for the Optimal Estimate

4.2.1 The loss function. Consider x the parameter to be

estimated, to be a scalar. The estimate of x will be denoted i. A

good estimate is one which minimizes Ix-kl , the absolute error o, the

estimate. To eliminate the absolute value operation, this can be re-

stated to say that a good estimate is one which minimizes (x-) 2 . The

term (x-x) 2 will be called the penalty or loss function.

L (x-) 2  (4.12)

The loss function of Eq. 4.12 is continuous and differentiable to the

same extent that x is continuous and differentiable. Equation 4.12

is a quantitive expression of the failure of i to estimate x. The

loss function of Eq. 4.12 has the following properties:

1. it is a scalar;

2. if i = x, the loss is zero;

3. the amount of loss is a monotonically increasing function

of the departure of the estimate from the true state; and

4. it is symmetric.
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The absolute minimum of the loss function is zero, implying

that the estimate should be

= x (4.13)

If x is random, there is no way to calculate the right hand

side of Eq. 4.13. The criterion that the estimate minimize L can be

restated to require that the estimate minimize the expected value of L

conditioned on the realization of the measurements y.

E[Lly] = E[(x - x)21y] (4.14)

Under some general restrictions, an expression for i which

minimizes the expected loss can be derived. The estimate which mini-

mizes Eq. 4.14 will be called the "optimal" or "best" estimate.

4.2.2 Minimization of the loss function. To minimize the

expected loss, set the first derivative of Eq. 4.14 with respect to

x to zero.

E[Lfy] = 2 E[xly] - 2 E[xiy] = 0 (4.15)ax

In Eq. 4.15, x is an independent variable. Therefore,

E[Riy] = i (4.16)

Substituting Eq. 4.16 into Eq. 4.15 and solving yields

x = E[x~y] (4.17)
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Equation 4.17 is the desired expression for the optimal estimate. The

result is intuitively pleasing - it states that the best estimate of x

is the expected value of x conditioned on the measurements.

For an n-dimensional state vector x, the loss function will

be defined as follows:

L(x- ) = (x-_) T (x-) (4.18)

If x is one-dimensional, Eq. 4.18 reduces to Eq. 4.12. Equa-

tion 4.18 has the four properties of Eq. 4.12 discussed in Par. 4.2.1.

The minimization of the conditional expectation of Eq. 4.18 is accomp-

lished by setting the first derivative of the conditional expectation

with respect to the estimate to zero.

ax - )T (x- )3 = 2 E[xT_]

- 2 E[xTly] = 0 (4.19)

The solution to Eq. 4.19 is the conditional mean,

k = E[xIy _] (4.20)

which reduces to the result for the scalar case if x is one'dimensional.

Jazwinski [60:Chap. 5] and Meditch [57:Chap. 5] discuss loss

functions in more detail. In particular, loss functions with the four

properties of Par. 4.2.1 are examined without reference to a specific

expression for the loss function. It can be shown that the conditional

mean is the optimal estimate if the loss function has the four
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properties listed in Par. 4.2.1 and if the probability density function

of x is symmetric and unimodal [37:160-161]. For the loss function

of Eq. 4.18, the conditional mean is the optimal estimate without re-

strictions on the probability density function. The estimate which

minimimizes the loss function of Eq. 4.18 is called the minimum variance

or minimum mean square estimate.

4.3 Evaluation of the Conditional Mean.

4.3.1 An expression of the conditional mean. The conditional

density function, for a scalar x, will be evaluated using Bayes Rule:

p(xly) = p(ylx) p(x) / p(y) (4.21)

Bayes Rule is derived using the following statement:

The probability that two events jointly occur is equal to the
probability that the first event occurs times the probability
that the second event occurs given that the first event
occurred.

Since "first event" and "second event" can apply to x and y in

either order, this statement can be written:

p(x and y) = p(x) p(ylx) = p(y) p(xly) (4.22)

from which Bayes Rule follows directly.

For a scalar x and Gaussian statistics, the mean and vari-

ance are easily identified from the probability density function:

1 exp [-(x)- x)2/2 2]  (4.23)p(x) 7 -Trox 43(
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where: x is the random variable;

Wx is the mean; and

Sx is the standard deviation about the mean.

At this point, a linear relationship between the state and the

observation will be assumed:

y = Hx + c (4.24)

where: H is a scale factor for the scalar case; and

is the random measurement error, N(O,o ).
E

The variance of the measurement can be obtained as follows:

2 E[(y - ) 2  E[(Hx + -Ho) 2]
yy x

= + 2H a x + 02 (4.25)x £C E

If x and e are uncorrelated, Eq. 4.25 becomes:

2 = H 22 + G2 (4.26)
y x

Equation 4.26 is used to describe the probability density of the mea-

surement y.

p(y) 1 exp [-(y Hpx)2/2o2] (4.27)

exp [-,y-- y

YI
'27-

ALL_
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Following duPlessis' argunmnt [58], the conditional probabil-

ity density p(ylx) is equivalent to the probability density for

the specific value of , given by

- y - Hx (4.28)

Substituting Eq. 4.28 into the Gaussian form for the probability den-

sity function of , gives

p(, y - lix) p(yJx)

exp [-(y - l1x)2/2,2] (4.29)

Substituting Eqs. 4.23, 4.27, and 4.29 into Bayes' Rule, Eq. 4.21,

gives

- + -- (y - H) (4.30)

By comparison with the Gaussian form, the conditional expectation is:

l2 2

o x

E[xIY] " + "-2j (y " Hi)Ix (4.31)

y

Substituting Eq. 4.26 into Eq. 4.31 9ves the expression for the opti- 

eal estimate in the scalar case.

ma esiaei hesaa ae
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H0
2

E[xIy] = + H2o2 (y - Hp.)  (4.32)
X L

If the state and the measurement noise are correlated, the

optimal estimate can be formed by substituting Eq. 4.25 into Eq. 4.31.

An expression for the conditional expectation in the vector

case will now be developed. The n-dimensional state vector and the

i-dimensional observation vector are combined into a single vector z

of dimension z + n.

z : , (4.33)

The joint density function, if Gaussian statistics are assumed, is

given by

p(x,y) = p(z) 1
/(2) n+ I P

exp [ -T P - E[z])) (4.34)

Pyx Pyy]

Pxx = E[(- E[x])(x - E[x])T] (4.35)

Pxy =  E[(X- E[x])(y - E[y])T] (4.36)

T (4.37)
Pyx =  Pxy
Pyy = E[(,y_- E~y])(yj- EJ]T] (4.38)

!1



105

The inverse of P is

[A B

-l1 
T

L(Pxx - P P P P ( p p-1 p ) I
x yyy yx xx xy yy yx xx XY

Pl (P -P p 1 Py)- (P P P 1 p )-

yy yx xx X yyy yx yy yxxx Xy

(4.39)

Using an alternate form of Bayes' Rule given by

p(xly) p(x,y)/p(y) (4.40)

and

p(y) 1

I, PP- 1

i2){yyl

[. - _ yy y -E )] (4.41)

Equations 4.34 through 4.41 can be conbined to give

/ II E [)1] T TB

expJ- ~ C] A B 1(
2 y E(y] BT C -F y E[yJ/

(4.42)
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If m is defined as

m E[x] + P P- (y~ EWy) (4.44)

and using

A = (P - pP 1 r P )1 (4.45)
xx xy yy yx

the exponent can be reduced to

( _ !ET (p - P 1 P (x-M) (4.46)

The covariance matrix, P can be written

P Pxx -Pxy p yx pxy -1 0(4.47)

0 pyy pyy pxy I

The determinant of the covariance matrix is

IPI = lxx - ~xy yy Pyx liyy 4.8

Substituting Eq. 4.46 and Eq. 4.48 into Eq. 4.42 yields

xx XYyy yxI

exp 21 (- )T (p -P, P~ 1 1xn)

(4.49)

By comparing Eq. 4.49 with the Gaussian form, the conditional

mean is given by
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E[xlyj = m = Efjx + Pp (y E[y])

• - E- (4.50)

and has covariance

P = P P (45P
xly xx xyPyy Pyx (4.51)

For the optimality conditions discussed in Par. 4.2.1, m, as determin-

ed by Eq. 4.50, is the optimal estimate.

Assuming the following linear observation-state relationship

for vector measurements*

y = Hx (4.52)

where: E[j = 0 (4.53)

E:ccT ] = R (4.54)

then Eq. 4.36 becomes

P = xxH + E[ x ] (4.55)

If there is no correlation between the state and the measurement noise,

Eq. 4.55 becomes

P = P xxHT (4.56)

The covariance of the measurements is defined by

P = E[(y - EyL]) (y - E[y])T  (4.57)
yy

Equations 4.52 through 4.54 are identical to Eqs. 4.5 and 4.6 for a
single measurement.
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Substituting Eq. 4.52 into Eq. 4.57, applying the expectation operator,

and assuming no correlation between the state and the measurement

noise, Eq. 4.57 becomes

P = HP xxHT + R (4.58)
Pyy

Substituting Eq. 4.56 and Eq. 4.58 into Eq. 4.50 gives

E[xly] - E[x] + Pxx HT(HPxxHT + R) I (y - E[y])

= -x + K(y - H x ) (4.59)

where: K = PxxHT(HPxx HT + R)-l (4.60)

As used in Eq. 4.59, K is the filter gain.

The expression for the covariance matrix, Eq. 4.51, becomes

P xly= Pxx - PxxHT(HPxxH T + R)-1 HPxx = (I - KH)Pxx (4.61)

4.3.2 Time propagation of the conditional mean and its

caa . Equations 4.59 and 4.61 represent the measurement update.

If the state is a dynamical system and measurements are available at

discrete times, then the mean P and its covariance Pxx will pro-

pagate with time. The mean and covariance terms in Eqs. 4.59 and 4.61

must be the values propagated to the time of the measurement.

A linear differential equation will be used to describe the

state dynamics.

_ = A(t)x + B(t)u(t), x(t o ) A (4.1)
0
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The solution to Eq. 4.1 is given by Liebelt [63:40-48].

t

x(t) = .t)Xo + f '(t,s)B(s)u(s) ds (4.62)

where: 0 is the state transition matrix which satisfies

the differential equation

1(t,t ) = A(t)4D(t,t 0 ), (to,to) I (4.63)

The integral expression in Eq. 4.62 is a stochastic integral. The

ability to actually evaluate the integral depends on the character of

the random process u(t) . For purposes of further discussion,

evaluation of the integral is not required. For further information

on stochastic integrals, see Jazwinski [60].

The conditional expectation is applied to Eq. 4.62. If the

process noise u(t) is independent of the measurements, then the

propagated conditional mean is given by

E[x(t)Iy(to)] = D(t,to)o (4.64)

It will be assumed that all measurements up to and including

any measurements taken at to were processed to obtain xo . This

does not require that a measurement be available . to

The propagated covariance matrix is determined by using Eqs.

4.62 and 4.64 to form

x(t) - EE(t)ly(to) = 0(t,to)( o - )

t
+ )', (t,s)B(s)A(s) ds (4.65)

0!
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Substituting Eq. 4.65 into

P(t~t o )  NOit

E[(x(t) - E[x(t) y(t0 )])(x(t) E[x(t)jy(tO)]) T]

(4.66)

yields

NOt - 'P(t'to)Px  411'(tto)

+ ft 0(t,t O) E[( o- o)u(s)jy(to)] BT(s) OT(t,s) ds
to 0

t D(ts) B(s) E[u(s)(X o) (to)] 4T(t to) ds+ to

+ tf ft o(t,s) B(s) E[u(s)u(r)IY(to)] BT(r)PT(t,r)dr ds
to0 0

(4.67)

If the process noise and the state are uncorrelated, the middle

integrals of Eq. 4.67 are zero. If the process noise is independent

of the measurements and is uncorrelated in time, then

E[u(s)u T(r)] = Q(s)6(r - s) (4.68)

Substituting Eq. 4.68 into Eq. 4.67 and evaluating one integral based

on the properties of the Dirac delta function, the propagated covariance

matrix is given by

17(t) =  4,(t,t 0)Pxo01YO J T(t,to)

t T T
+ It 0(t,s)B(s)Q(s)B (s)' (t,s) ds (4.69)

Ji0



Equations 4.64 and 4.69 represent the time propagation of the estimate

and its covariance.

4.3.3 Unbiased property of the linear estimate. The linear

estimate of Eq. 4.59 is repeated here for convenience.

x = +K(y- Hpx) (4.59)

According to Llebelt [63:137] and Tapley [64], an estimate is defined

to be unbiased if, given a value for the state, the following equality

is satisfied:

E[x] = x (4.70)

Equation 4.70 implies that the state x is the independent variable.

Therefore, the expectation of x is x itself.

-x = E[xJ = x (4.71)

Substituting Eq. 4.71 into Eq. 4.59 and applying the expec-

tation operator gives

E [x x + KE[.] - KHx (4.72)

Substituting Eq. 4.52 into Eq. 4.72 gives the sequence

E[xj] - + KE[Hx + .] - KHx

= x + KHx - KHx

X
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Thus, the linear estimate of Eq. 4.59 has been shown to be an unbiased

estimate where Eq. 4.70 defines the unbiased property. Jazwinski

[60:150] and Sorenson [65:5] used an alternate definition of an unbias-

ed estimate given by

E[x] = E[x (4.73)

Jazwinski and Sorenson show that the estimate of Eq. 4.59 is unbiased

using the definition of Eq. 4.73.

The choice betweern Eq. 4.70 and Eq. 4.73 as the requirement

for an unbiased estimate is a function of the definition for the en-

semble of the estimates and the definition for the ensembleof the ran-

dom variables. Equation 4.73 states that the ensemble average of the

estimates for the ensemble of the random variables must be equal to the

ensemble average of the random variables. Equation 4.70 states, how-

ever, that the ensemble average of the estimates for aj#ealization of

the random variable must be equal to the realization of the random vari-

able. This distinction can be illustrated by the following example.

Given a bucket of resistors and a bucket of ohmmeters, a user will

measure the resistance of the resistors. Equation 4.70 states that if

one resistor is pulled from the bucket and its resistance is measured

using all the ohmmeters, then the average of the measurements will equal

the resistance of the resistor. Equation 4.73 states that if all the

resistors are measured using all the ohnineters on each resistor, then

the average of the measurements will equal the average resistance of

the resistors. Thus, Eq. 4.70 and Eq. 4.73 are complementary require-

ments rather than conflicting requirements.
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4.4 Linearization

The results of linear filtering theory can be easily applied

to non-linear systems by assuming the existence of a nominal trajectory

and a perturbation to the nominal trajectory. The linear estimation

equations are then used to estimate the perturbation state.

Assume the following non-linear differential equation:

F(X,t), X_(to) = x (4.74)

Expand Eq. 4.74 about a nominal trajectory, X

=+

- F(X,t) + [ _.+ H.O.T. (4.75)

where: [ ] indicates that the partial derivative is

evaluated on the nominal trajectory.

Equation 4.75 is separated into a nominal part and a pertur-

bation part.

S= F(X*,t), X*(t o) = X (4.76)

rF*L= x + H.O.T., x(to) = (4.77)

Deterministic control inputs, if present, can be added to the nominal

system, Eq. 4.76. Random inputs can be added to Eq. 4.77.
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If higher order terms are deleted and a linear process noise term is 4
included, then Eq. 4.77,takes the form

= -J x+ Bu, x(to) = xo (4.78)0l

Similarly, a non-linear observation-state relationship can be

linearized.

Gt X* *

G,t) = qL + x,t) = G(X ,t)

= G(X,t) + x + H.O.T. (4.79)

If Y is the actual measurement given by

Y G(X,t) + (4.80)

then the residual is given by

y G(Xt) x + + H.O.T. (4.81)

Deleting the higher order terms,

= [ _]*x+: (4.82)

Equations 4.78 and 4.82 are the linearized equations correspon-

ding to Eqs. 4.1 and 4.52 respectively with the following equivalences:

A(t) = [4F1 (4.83)

H = [-JF (4.84)
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4.5 Differential Equations for the Covariance Matrix

The propagated covariance matrix was given by Eq. 4.69.

F(t) = P(t,to)P(to)oT (t,t0)

t T T+ f D(t,s)B(s)Q(s)B (s), (t,s)ds (4.69)
to

The covariance matrix required in the measurement update, Eqs. 4.59,

4.60, and 4.61, is the result of Eq. 4.69 at t = tk

Pxx(tk) = P(tkltk I) = F(tk) (4.85)

where: tk-l is the time of the previous measurement.

For purposes of the following discussions tkl = to.

Evaluation of Eq. 4.69 must be accomplished numerically in many

applications. To derive a differential equation for the covariance

matrix, Leibnitz's Rule is applied to Eq. 4.69. Using the differential

equation for the state transition matrix, Eq. 4.63,

;(t,to ) = A(t) (t,to), (to,t o) = 1 (4.63)

000

the differential equation is given by

i(t) = A(t)?(t) + P(t)AT(t) + B(t)Q(t)BT(t),

t o ) Pxy (4.86)

The solution to the linear differential equation, Eq. 4.86, as

given in Eq. 4.69, can be separated into a homogeneous solution and a
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particular solution. The particular sQlution will be designated r and

will be referred to as the discrete process. noise matrix. The integral

of Eq. 4.69 can be replaced with a quadrature relation which will lead

directly to the differential equation

1(tk,t) = D(tkL)B(t)Q(t)BT (t)JT(tk*t),

r(tk~tk) = 0 (4.87)

The covariance matrix update equation is then

P(tk) = D(tkto)P(to) T(tkto) + r(tk~to) (4.88)

Covariance matrix propagation using Eq. 4.88 requires the integration

of Eq. 4.63 forward in time and the integration of Eq. 4.87 backward in

time. The requirement to store or recompute the state transition matrix

for the backward integration of Eq. 4.87 reduces the attractiveness of

the method.

The particular solution of Eq. 4.69 has been defined as

t
r(t) = tf P(ts)B(s)Q(s)BT(s)DT(ts)ds (4.89)

Leibnitz's Rule can be applied to Eq. 4.89.

t

(t) = B(t)Q(t)BT(t)+t/'(t,s)B(s)Q(s)BT(s)JT(t,s)ds
0

t

t/f D(t,s)B(s)Q(s)BT(s);T(t,s)ds (4.90)

!I.1
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Substituting Eq. 4.63 into Eq. 4.90 yields

v~) B(t)Q(t)B T(t)

to

t

0$t's)B(s)Q(s)BT(s)OT (t,s)A T(t)ds (4.91)

Since the plant matrix A(t) is not a function of the parameter of inte-

gration. it can be moved outside the integrals.

-t

+ A(t) Df(t~s)B(s)Q(s)B T(s)'D T(ts)dj

.0

Substituting Eq. 4.89 into Eq. 4.92 yields

i(t) -A( t)v( t) + v(t)AT(t) + B(t)Q(t)8IT (01

v'(t 0 ) . 0 (4.93)

where: 1v(t 0 ).O,the initial condition is obtained from Eq. 4.89.

Thus, the covariance matrix can be propagated by integrating Eqs. 4.63

and 4.93 forward in time and substituting the results into
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T(tk) = ¢(tk to)P(to)'T(tk,to) + r(tk) (4.94)

The selection of a covariance matrix propagation method must be

based on an analysis of the efticiency and stability of the various

methods for each specific application. Such an analysis must consider

the system model and parameters and the user's requirements and capabil-

ities.

Each covariance matrix propagation technique can be shown to have

a maximum number of equations that must be integrated. Equation 4.86

requires the integration of a maximum of n(n+l)/2 equations for an

n-dimensional state. Equations 4.8P nd 4.94 require the integration

of a maximum of n2+n(n+l)/2 equations because the state transition ma-

trix must also be integrated. Selection of Eq. 4.86 as the covariance

matrix propagation method cannot, however, be based solely on the analy-

sis of a theoretical maximum number of equations to be integrated. The

system model must be considered also. Frequently, the differential

equations of the individual elements of the matrices may be solved

analytically, thereby avoiding the requirement to numerically integrate

these elements. This is especially true for the elements of the state

transition matrix.

A count of the equations to be integrated after removing the

analytic solutions is still an incomplete criterion. The user's accu-

racy requirement and his capabilities must be considered. A user with

loose accuracy requirements can expand the state transition matrix in a

power series as follows:
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(t,to) = I + A(to)(t-tO ) + 4[A 2 (t0 )+A(to)](t-to)
2+... (4.95)

Typically, the power series is not expanded beyond the quadratic term.

The low accuracy user can also replace the discrete process noise ma-

trix of Eq. 4.88 and 4.94 with an approximation.

r(t) z B(to)Q(to)BT (to,) (t-t0 ) (4.96)

The implementation of Eqs. 4.95 and 4.96 with Eq. 4.94 effectively

eliminates the need for numerical integration.

A user who requires an accurate covariance matrix must concern

himself with the numerical stability and the computer time requirements

of the methods. Numerical integration of Eq. 4.86 is often time-

consuming when high accuracy is specified. Applications of Eq. 4.86

with variable step integrators usually specify tolerances on the inte-

gration of the covariance matrix which are less stringent than the

tolerances specified for integration of the state. This will reduce

the time requirement for the numerical integrations but it will also

reduce confidence in the resulting covariance matrix.

In general, the state transition matrix can be integrated with

accuracies on the order of the accuracy of the state integration. With

an accurate state transition matrix, the propagated initial covariance

matrix Op T will be accurate. The discrete process noise matrix r

generally contributes terms to the covariance matrix r ,which are

orders of magnitude less than the contribution of the fpT tr
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Consequently, errors in the discrete process noise matrix are less influ-

ential in causing errors in the T matrix. This is a fortunate situa-

tion because the spectral level process noise matrix Q is often of

dubious accuracy. Frequently, Eq. 4.96 is used to generate the dis-

crete process noise matrix for Eq. 4.94.

Equation 4.96, however is incomplete. It does not describe

the c~ohrert propagation of a spectral level noise among the elements of

the discrete procssnoise matrix. For example, it can be argued that

the only spectral level noises which influence an aircraft are random

forces or, equivalently, accelerations. Accordingly, the only non-zero

elements of BQBT should be in the accelerationts . Equation 4.96

will not propagate spectral level acceleration noise into t sition

or velocity states although, intuitively, a result of acceleration

noise is an uncertainty in the position and velocity of the aircraft

as well as an acceleration uncertainty.

Integration of Eq. 4.87 or Eq. 4.93 will produce non-zero

values in all elements of the covariance matrix that are affected by

spectral level noise terms. Because of the relative magnitude of the

discrete process noise matrix compared to the covariance matrix itself,

integrating the discrete process noise matrix separately allows the use

of a relaxed tolerance on that part of the system which is least known.

When the result is added to an accurate (PeT terms, the covariance

matrix F can maintain accuracy on the order of that specified for the

integration of the state transition matrix.
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The numerical advantages of separate integration of the dis-

crete process noise matrix can bp overshadowed by the requirement for

the backward integration of Eq. 4.87. Equation 4.94, is a forward inte-

gration and eliminates this disadvantage. Also, some high-order vari-

able step numerical integration techniques such as a Runge-Kutta (7)8

[88", will not operate properly for quadratures such as Eq. 4.87. The

form of Eq. 4.94, however, can be integrated successfully using the

variable-step Runge-Kutta (7)8 algorithm.

The navigation algorithms evaluated in this study are examples

of the dangers inherent in selecting a method without examination of

the system model. For all algorithms studied, the state transition

matrix and the discrete process noise matrix are solved analytically.

The techniques discussed herein are the basic covariance ma-

trix propagation techniques. Many variations have been developed, and

other alternate approaches should be considered prior to selection of a

specific method for the covariance matrix propagation.

4.6 Linear Estimation Algorithms

The estimation equations developed in this chapter will be im-

plemented into three basic algorithms. In each case, a comprehensive

set of equations is shown. Specific applications of the algorithms must

determine the precise form of the equations to be evaluated, otherwise

the computation will be inefficient and may have numerical-difficulties.
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4.6.1 The standard sequential filter. The equations developed

for the minimum variance estimate are used in a sequential filtering

algorithmi for a non-linear system.

1. Propagate the nominal state vector, the state transition

matrix, and the covariance matrix to t k9 the time of the measurement.

;*(t) = F(X*t), X(tk-1) = 4-1

(t't k-l) A(t) o(tst k- 4 (tk-l'tkl1) I

where P+t = .PAT + BQB T, PF(tk-1) = k-l

2. Compute the gain at tk

TkHk(Hkfk k .Rk) -

3. Propagate the estimated perturbation state.

Ak "(tk-tk-lNkl

or _ A(t)V, I(tk-l) = xk-l

4. Calculate the observation residual.

yk 4 - G L~, tk)
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5. Estimate the state correction.

Ak + K k(yk - "J4)

6. Update the covariance matrix.

P = (I - KkHk)Pk

7. Replace k with k-I and go to 1.

4.6.2 The extended sequential algorithm. An examination of

the standard sequential algorithm shows that the propagation of the

nominal trajectory is based solely on X the initial estimate of the

state, despite knowledge that the best estimate of the state at a time

tk-l is 4-1 + xk-l" This results in errors that depend on the non-

linearity of the system and the departure of the nominal state from the

true state.

The difference between the nominal and the true states can be

made smaller by assuming that the estimate is closer to the true state

and rectifying the nominal accordingly. After rectification, the es-

timated perturbation is zero. The extended sequential algorithm can

be summarized as follows:

1. Integrate to tk the nominal state X and the covarlance

matrix.

I= F(,t), Y(tkl) =

= AP+ FAT + BQBT, r(tkkl) = Pk-l
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2. Compute the gain.

k k k'J*k+ k)1

3. Determine the observation residual.

= 2 - G_(k,tk)

4. Estimate the perturbation state.

= Kk

5. Update the covariance matrix.

Pk = (I - KkHk)Fk

6. Rectify the nominal trajectory.

7. Replace k with k-l and go to 1.

For a linear system, the standard sequential filter and the

extended sequential filter will provide identical results.

4.6.3 The batch filter. The batch filter is designed to take

many observations and estimate the state at a specific epoch. If all

the measurements are taken at the epoch, a single step of the sequential

estimator defines the estimate. If, however, measurements are available

at times t£ and the epoch for the estimate is tk, then the observa-

tion-state relationship must be moified.
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Y, Ht(X t tQPt) +

If a vector Yk is to represent z measurement vectors, then a new

observation-state relationship can be defined.

Yi H 1 (11 'tl )"(tl Itk)" L-I

Y2 Hz(A2'tz)t(t2'tk) -A2

4k = - + (4.97)

V3  H3(X3 t3 ) (t3.tk) 43

Equation 4.97 can be rewritten.

k = Hkk+ (4.98)

The correspondence between Eq. 4.97 and Eq. 4.98 is obvious. Equation

4.98 can be interpreted as an expanded observation-state relation and

is equivalent to Eq. 4.52.

If each measurement is a p-dimensional vector, then Hk in

Eq. 4.98 is dimensioned (1p x n) and the 4 and 4 vectors are

ip-dimensional. The gain term as expressed in Eq. 4.60 is repeated

here.

Kk kHT(HkPkH T + RR) 1  (4.60)k kk kk )
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To account for an augmented Lk the term Pk is changed to an

(ep x xp) matrix as follows:

R1 0 0. . .0

0 R2  0 0
Rk  0

0 0 0 

The gain term as expressed in Eq. 4.60 requires the inversion

of an (ep x zp) matrix. Using matrix identities, an alternate ex-

pression for the gain can be obtained.

Kk  1 ( + H RklH k)lHTRkI  (4.100)

Equation 4.100 requires the inverse of an (n x n) matrix.

Though it is possible to execute the batch algorithm using a

(p x n) Hk matrix and a (p x p) Rk matrix, there is a considerable

penalty in storage. If the measurement noise matrix is as shown in

Eq. 4.99, the term HkRkIHK in Eq. 4.100 can be evaluated using the

summation

HTRIH = (tiptk)HT(Xi,ti)Ri Hi(Xi,ti) (ti,tk) (4.101)
k k k k'i)~ i'k

i~l -NO
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Similarly, the term HTRk1 I can be evaluated using

T- 1 T IH kR k il T(tistk)Hi(Xi'ti)RiYi (4.102)

If tk, the desired time for the estimate is equal to to, the

initial time, then an appropriate algorithm for the batch filter is as

follows:

1. Set: i 1
--- I

L P0

M = Lx'-0

2. Integrate from ti1  to t

= F( ,t), Y(t) :X

: , D(t ,t ) I

3. Increment L.

T I ,(
L = L + D (ti,t )Hi((,ti)RIiitH)4(ti)to)

4. Compute the observation residual.

S -1i - 1i(XiIti

5. Increment M.

M = M + 4T(ti,to)Hi(Xi,ti)Ri 1

I I -i

6. If more measurements, i=i+l and go to 2.
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7. Estimate the initial conditions.

x o = L- M

X0 =LM-o"

8. Update the covariance matrix.

Po = L-1

4.7 Summary

The conditional mean was shown to be an unbiased estimate, op-

timal in a minimum variance sense. The conditional mean is also the

maximum likelihood estimate in the case of symmetric, unimodal proba-

bility density functions.* Assuming Gaussian statistics, a linear

state equation, and a linear observation state relationship, expressions

for measurement updates and time updates of the conditional mean and

its covariance were developed. A method for linearizing a non-linear

problem was shown and the results of linear estimation theory were ap-

plied to the linearized problem. Three basic filtering algorithms were

described: the standard sequential fIIter (Kalman filter); the extended

sequential filter (the extended Kalman filter); and the batch filter.

If the probability density function is not symmetric and unimodal, the

maximum likelihood estimate is of questionable value.



CHAPTER 5

DEVELOPMENT OF A BASIC FILTER MODEL

5.1 Navigation Applications of the Sequential Filter

A sequential filter, as derived in the original works of

Kalman [8] and Kalman and Bucy [9], will provide the optimal estimate

if:

1. The dynamic system model and the observation model

are linear;

2. The dynamic system model and the observation model

are correct;

3. The a priori statistics for the initial conditions of

the state and for the noise models are Gaussian with zero mean and

known covariance.

In real-world filter applications, precise knowledge of the

system model and the noise statistics is not available. Nishimura [66]

has analyzed the behavior of the sequential filter with incorrect sys-

tem models, noise statistics, or initial condition statistics. Assum-

ing the correct linear system model, Nishimura shows that, if the

statistics are chosen conservatively (i.e., the filter assumes a magni-

tude of the covariance of the noise which is larger than the actual

noise covariance magnitude), then the actual errors will be within the

range specified by the suboptimal covariance matrix. As would be

129
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expected, the statistics should not be excessively conservative or the

filter may become ill-conditioned.

The application of sequential filters to orbit determination

problems has been successful since system models are available which

will adequately predict the state of a spacecraft for long periods of

time. For example, using Keplerian elements and a set of seven correc-

tion parameters, the line-of-sight position error for a GPS satellite

is expected to be less than 1.5 meters (one sigma) for a one-hour

prediction [16].

Unfortunately, the dynamic models for a maneuvering aircraft

cannot predict adequately the behavior for more than a few seconds.

Sequential filters, however, have been applied successfully to aircraft

navigation systems especially when an inertial navigation system (INS)

is used [62]. With an INS, the ability of onboard computers to inte-

grate accelerometer data at high sampling rates compensates for the

prediction errors of an assumed aircraft dynamic model. The sequential

filter is especially useful when an INS is augmented with additional

equipment such as an altimeter or a LORAN receiver. The sequential

filter for the augmented INS can be used to determine measurement er-

rors in the INS, to optimally combine the measurements with the INS

measurements, and, using the additional measurements, to automatically

damp the 84-minute and the 24-hour oscillations of an INS [67]. Errors

in system models frequently will not cause large errors over short

estimation time spans. For example, air-to-air missiles, with short

flight times, have used approximate models in sequential filters to

obtain an effective guidance solution.
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The low-cost GPS user fates a challenging filter implementa-

tion problem - he does not have the ability to accurately model air-

craft motion; he does not have sampling rates as high as INS users;

and he must maintain an accurate estimate of the state for long time

intervals. No general remarks can be made about the effects of incor-

rect system models on filter performance. The development of an ade-

quate model for a specific implementation is the engineering challenge

facing the filter designer.

Brock and Schmidt [67] state that, because of the lack of a

good model, the results obtained with a sequential filter in aircraft

applications may not be much better than the results obtained with

deterministic solutions. Using the parameters that optimized a select-

ed model (Par. 5.5.2), Singer [68] states that the filtet is operating

almost as a least-squares filter with no a priori information. Counter

to these discouraging remarks are some factors which motivate the use

of a sequential filter.

1. A sequential filter (Par. 4.6.2) is not difficult to

implement. Measurements can be processed as scalars, further simplify-

ing the filter coding. A simple sequential filter will require only a

limited amount of data storage.

2. The sequential filter easily conines different measure-

ment sources.

3. Non-stationary noise can be accomodated easily.
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4. With appropriate choices of a system model and

statistics, the sequential filter should perform as well as deter-

ministic solutions or least squares methods.

In this chapter, a basic aircraft model will be developed for

the extended sequential filter. Initially, the system equations will

be specified arbitrarily but with intuitively pleasing characteristics.

The equations will be modified so that the resulting system model can

be accommodated by the Kalman filter. Then it will be shown that, with

certain restrictions, the equations specified originally are satisfied

by the resulting filter model. The aircraft model is referred to as an

acceleration dead-reckoning (ADR) model with exponentially correlated

random acceleration. The state transition matrix and the discrete pro-

cess noise matrix for the basic model will be detenined analytically.

The measurement bias states and their statistics as assumed

by the filter will be discussed. The simulated me asurement rejections,

the additional noise terms, and the testing philosophy for the basic

filter will be described. The quantitative parameters that will be

used to evaluate filter performance throughout this study will be de-

scribed. Finally, the basic filter mdel will be evaluated.

5.2 Components of the State Vector.

5.2.1 Aircraft states. The basic state vector consists of

the parameters listed in Table 5.1. Position states are an obvious P

requirement for navigation purposes. Velocity is included because the
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Table 5.1 Filter Parameters for the Twelve-State
Acceleration Dead-Reckoning Model

Process
Initial Corr'e- Noise

Initial Standard lation Spectral
State Error Deviation Time Density

North Position Error. 
6 
XN 49.96 m 60.0 m 0.

East Position Error. 6xE -42.43 m 60.0 m 0.

Vertical Position Error. xD  10.00 m 20.0 m 0.

North Velocity Error, 
6
vN 0. M/sec 0. m/sec 0. A

East Velocity Error, *rE 0. m/sec 0. m/sec 0.

Vertical Velocity Error, SvD 0. m/sec 0. m/set 0.

North Acceleration Error, -1.39 m/sec 2.5 m/sec
2  

* sec * m
2
/sec

5

East Acceleration Error, 6aE -.56 m/sec 2.5 m/sec
2  

* sec * m
2
/sec

5

Vertical Acceleration Error, Sa0  0. M/sec 2.5 m/sec
2  

* sec * 2 /sec
5

Altimeter Bias Error. Y -10.00 m 20.0 m 500. sec 2 mn/sec
5

Clock Bias Error, 6a1  29.98 m 60.0 m* 7.2x10
"4 

m 
2
/sec

Clock Drift Error. 6&2 -.30 m/sec 6.0 m/sec 1800. sec 1.OxlO
4 
m /sec

3

*Parameters to be varied.

**Clock bias includes a random walk term. This is equivalent to an infinite correlation time.

***Altimeter noise is evaluated as a function of estimated altitude (See Eq. 5.47)
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measurements are taken sequentially. Over the 1.25 second measurement

interval, the aircraft can move 300 meters. Acceleration states were

included also. If accelerations are not included, only an uncorrelated*

random acceleration can be modeled in a Kalman filter. Air-

craft accelerations are assumed to be correlated in time with correla-

tion times ranging from one second to one minute depending on the flight

profile [51] [68]. The shorter correlation times apply to atmospheric

turbulence while the longer correlation times are appropriate for slow

turns. Evasive maneuvers are modeled typically with correlation times

from ten to thirty seconds. Inclusion of the acceleration states per-

mits modeling the acceleration as a correlated random variable. In

addition, the estimated accelerations can be used to improve the air-

craft state prediction.

As implemented, the actual filter states represent the errors

in the assumed position, velocity, and acceleration. The aircraft

state is expressed in the Topocentric-North-East-Down (TNED) coordinate

system where the origin of the coordinate system is located at the

user's a priori position. (See App. A.) The a priori user position

vector in the TNED system is identically zero. The precise formula-

tion of the filter model follows.

5.2.2 Aircraft model. The model for the aircraft will be

developed for one dimension. Identical models are implemented for all

Unless specified otherwise, correlation will imply correlation in
time.
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aircraft directions although specific values of the model parameters

need not be identical. For the one-dimensional case, the states will

include position r or position error 6r; velocity v or velocity

error Sv; and acceleration a or acceleration error 6a. A nominal

state is defined to include the nominal position r, the nominal velo-

city v, and the nominal acceleration a. The relationship between the

true state vector x, the nominal state vector 7, and the perturbation

state vector 6x is as follows:

Sr+ 6r

x= X + = + 6v (5.1)

The goa of K 6aI
The goal of the following development is to detemine a linear

system model suitable for Kalman filter application. In matrix-vector

notation, a linear model has the form

= A(t)x + B(t)u (5.2)

where: x is the state vector which, for navigation algorithms,

usually includes a position error, a velocity error,

and an acceleration error, and

B(t)u is a random forcing function.

There are many assumptions that can be made in the development

of the basic system model. Changing any of the assumptions may result

in a different system model or different expressions for the parameters

of the model. In the following, a specific sequence of assumptions,
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intuitive approximations, and engineering decisions will be outlined.

The result is a system model that has been numerically tested with good

results. In addition, the model has some characteristics that make it

desirable for sequential filter applications. Perhaps the most desirable

characteristic of the model is that the gain terms have non-zero steady-

state values. Other intuitively pleasing characteristics include:

1. The model approximates exponentially correlated accel-

eration;

2. There is a finite upper limit on acceleration uncertain-

ty;

3. The exponentially correlated model has a finite power

spectrum.

For the one-dimensional case, the prescribed system model will

consist of position r, velocity v, and acceleration a. The govern-

ing equations for the prescribed model are as follows:

= v, r(tk) rk

= a, v(tk) vk (5.3)

where: a is a random variable with statistics

E[a(t)] = a(tk) = ak (5.4a)

E[(a(t) - E[a(t)])(a(T) - E[a(T)])]

o 2 exp(-01t - TI) (5.4b)
m
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Some remarks on Eqs. 5.3 and 5.4 are in order. If one con-

siders the set of all possible realizations of a system, then at

t = tk the state can only be specified in terms of the mean and co-

variance of the entire set. A subset can be defined, however, which

consists of all members of the set whose state at t = tk has the

realization rk, Vk, and ak. It is this subset which constitutes the

ensemble described by Eqs. 5.3 and 5.4.

The filter model to be developed from Eqs. 5.3 and 5.4 is

used for each of the three aircraft directions. No correlation between

the directions is assumed. The model will be referred to as an accel-

eration dead-reckoning model with exponentially correlated random ac-

celeration. A random variable with the a oriori statistics described

by Eq. 5.4b will be referred to as an exponentially correlated random

variable (ECRV).

The solutions to Eqs. 5.3 are given by [5:Par. 2-3]:

t

r(t) = rk + vk(t - tk) +J' a(s) (t - s) ds (5.5)
tk

t

v(t) : vk +fa(s) ds (5.6)
tk

where: the integrals are stochastic integrals.

If the nominal state is defined to be the mean solution to

Eq. 5.3, then taking the expectation of Eqs. 5.5 and 5.6 yields
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r(t) = E[r(t)]

ak(t - tk)
rk + vk(t - tk) + - (5.7)

V(t) = E[v(t)] = vk + ak(t - tk) (5.8)

Unfortunately, the statistics of Eqs. 5.4 cannot be accommo-

dated by c Kalman filter. The system models of Eqs. 5.3 and 5.4 can,

however, be transformed into a model that satisfies the uncorrelated

noise restriction of the Kalman filter. This transformation is

accomplished by adding to Eq. 5.3 an acceleration state which is driven

by a white noise forcing function. This "augmented state" method is

referred to as Wiener-Kolmogorov whitening in Singer [68]. Bucy and

Joseph, [69:147] refer to the method as the Bode-Shannon technique of

approximating the spectral density. The method is an application of

a theorem quoted by Kalman [8:45] that "Given any random process with

mean E(x(t)] and covariance E[x(t)x(T)] , there exists a unique

Gaussian random process with the same mean and covariance."

The transformation of the random process of Eqs. 5.4 can be

accomplished by using the Wiener-Khintchine theorem which states that

the autocorrelation function and the power spectrum form a Fourier

transform pair [70:431]. The power spectrum of white noise is given

by

Fw(jw) = f exp(-jwz)qa6(z) dz = qa (5.9)

where: qa is the spectral density of the white noise; and

6 is the Dirac delta function.
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The power spectrum of the ECRV of Eqs. 5.4 is derived as

follows:

Fo(jw) = f exp(-jwz)om exp(-,Izl) dz

2aa2
(6 - jW) (U + jW) (5.10)

The transfer function of the shaping filter can be derived

from Eqs. 5.9 and 5.10 as follows [67] [69:271]:

2

Fj OW) =

1 1
~ I, q8  (5.11)

= F s(J) F s(-jw) Fw (j,) (5.12)

The transfer function of the shaping filter is obtained by

setting jw = s to obtain the Laplace transform.

F ((5.13)

The time domain representation of the shaping filter is given by

= 6a + wa, 6a(tk) = (5.14)

a = 0, a(tk) = ak (5.15)

where: wa is a white noise forcing function with statistics
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E[wa ] = 0

E[wa (t)Wa ().] =2t26(t- T) = q a6(t- T) (5.16)

The mean of Eq. 5.4a is satisfied by a using Eq. 5.15. The

mean of Sa must therefore be zero. By specifying zero initial con-

dition and zero mean white noise, the mean of 6a is zero and the mean

of the shaping filter satisfies Eq. 5.4a. Note that if the accelera-

tion a were modeled in Eq. 5.14 instead of 6a, then the mean of

Eq. 5.4a would not be satisfied. It will be shown (Par. 5.2.4) that

the correlation function of Eq. 5.4b is satisfied under certain condi-

tions.

Equations 5.14 and 5.15 describe the random variable

a = a + 6a as a constant with a region of uncertainty given by

0a(t) =  aa(tk) exp(-2(t - tk))

qa
+ - [1 - exp(-2(t - tk))] (5.17)

where: qa = 2

Equation 5.17 will be derived later in this chapter.

Figure 5.1 illustrates the random variable a with regions

of uncertainty based on a value of a2  and two values of correlation
2

time. Initial uncertainty cia(tk) is assumed to be zero. Figure

5.1 also illustrates the result of an estimation of acceleration at a

time tk+l which results in an estimate ak+l and an a posteriori

!I
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Figure 5.1 Exponentially Correlated Random Acceleration
Covariance Propagation.

2

variance of Oa(tk+l . Note that the region of uncertainty has a :

finite steady state value equal to m .

MCore details on shaping filters are available in Sorenson and

Stubberud [65:15-20], Kochenburger [71:434-439], Wiener [7:Chap. 2],

and Laning and Battin [72:217-218].

If the random variable a Y + 6a is substituted into

Eqs. 5.5 and 5.6, and the expectation operator applied, then Eqs. 5.7

and 5.8 will remain valid. If the state vector is to consist of 6r

and 6v, the error quantities, then Eqs. 5.3 become

r+ 6r = v + 6v, T(t k ) + 6r( t k ) = r k  (5.18)

+ iv=a +6a, V(tk ) + 6v(tk ) vk (5.19)
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Equations 5.18 and 5.19 can be separated as follows:

r = v, (tk) = rk (5.20)

v = a, v(tk) = vk (5.21)

6r = dv, 6r(tk) = 0 (5.22)

iS = 6a, 6v(tk) = 0 (5.23)

The system defined by Eqs. 5.15, 5.20, and 5.21 has the mean solution

of Eqs. 5.4, 5.7, and 5.8. The filter model is given by Eqs. 5.14,

5.16, 5.22, and 5.23. Note that the statistics of the filter model,

Eq. 5.16, are consistent with the restrictions of the Kalman filter.

5.2.3 Summary of the aircraft model equations. In summary,

the specified aircraft model of Eqs. 5.3 and 5.4

= v, r(tk) = rk (5.3)

= a, v(tk) = vk  (5.4a)

where: E[a(t)] = a(tk) = ak

E[(a(t) - EEa(t)])(a(T) -E[a(T)])]

= 2

amexp(-si t-TI)  (5.4b)

is whitened to determine a form compatible with the Kalman-Bucy filter.

The mean state propagates according to Eqs. 5.4a, 5.7, and 5.8.
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T(t) = rk + vk(t-tk) + ak(t-tk)2/2 (5.7)

(t) = vk + ak(t-tk) (5.8)

T(t) = ak  (5.4a)

The state used by the filter is governed by Eqs. 5.14, 5.16, 5.22, and

5.23.

6r = 6v, dr(tk) = 0 (5.22)

= a, 6v(tk) = 0 (5.23)

5a = - 6a + w 6a(tk) 0 (5.14)

where: E[wa ] = 0

E[wa (t)Wa (T)] 2 a2(t-T) (5.16)

In matrix form, the filter model is

x = Ax + Bu (5.2)

x = [6v, 6r, 6a] (5.24)

A = 0 j (5.25)

0 -

Bu = (5.26)
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5.2.4 Proof of the shaping filter. It will now be shown that

the random process which is the solution to the shaping filter of Eqs.

5.14, 5.15, and 5.16 duplicates the mean and covariance of Eq. 5.4. The

solution to Eq. 5.14 for arbitrary 6a(tk) is

6a(t) = 6a(tk)exp[-a(t-tk)]

t
+ wa (s)exp[- (t-s)]ds (5.27)

tk

where: the integral is a stochastic integral.

The solution of the random process a = a + 6a is given by

a(t) = ak + 6a(tk)exp[-a(t-tk)]

t
+ f wa(s)exp[-a(t-s)]ds (5.28)

tk

Taking the expectation of Eq. 5.28 yields

E[a(t)J = E~ak] + E[6a(tk)Jexp[-O(t-tk)] (5.29)

If at each time ti the estimate of the acceleration perturbation is

set equal to zero and Eq. 5.15 is initialized with an unbiased estimate

of acceleration, then Eq. 5.29 yields

E-a(t)] ak

The mean statistic of Eq. 5.4a is therefore satisfied.
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The covariance kernel is determined by

P(t,t) = E[(a(t)-E[a(t)])(a(i)-E[a(i)])] (5.30)

Using Eqs. 5.28 and 5.29 gives

ti
P(t,T) = r E[w (s)w (r)]exp(-.3(t-s))exp(-_l(t-r))drds

tktk a at k tk (5.31)

Substituting Eq. 5.16 into Eq. 5.31

t2
P(t,t) = f f 2o ,(r-s)exp(-L,(t-s))exp(-v(t-r))drds (5.32)

tk tk

Note that the Dirac delta function is zero if r $ s. Assum-

ing that t _ t t k , the upper limit of the outer integral of Eq.

5.32 can be changed to since s - , 9(r-s) is equal to 7ero.

P(t,1) = f f 2Loom, (r-s)exp(-k (t-s))exp(-I;(t-r))drds (5.33)

tk tk

At this point, the integral property of the Dirac delta function

If S(r-s)g(r)dr = g(s), if tk -_ S_ (5.34)
tk

is applied to Eq. 5.33 giving

P(t,) - f 2vo xp(-ti(t-s))exp(-v(,-s))ds (5.35)

tk

Evaluating the integral in Eq. 5.35 yields

P(t.) 2 exp[- (t-O] - , 2 xp[- (t-tk) ]e xp [ -0(1- tk )] (5.36)

i
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Equation 5.36 immediately provides the solution to the propagation of

the covariance of the acceleration.

2a (t = 2[1 - exp(-2oAt)] (5.37)

Unfortunately, Eq. 5.36 does not satisfy the variance statistic of

Eq. 5.4b unless tk = - Satisfaction of this requirement implies

that the shaping filter has reached steady state. Accordingly, the

initial covariance term for the exponentially correlated acceleration

state must be specified as a2 the steady state variance.

Jazwinski [60:123] also showed that the random process of Eqs.

5.14 and 5.16 resulted in an ECRV. He avoided any requirement on

t < 0 by specifying that the initial condition 6 ak was a random
2k

variable with mean zero and variance a 2

This steady state requirement is of greatest concern when an

ECRV is to be simulated. In a simulation, either the initial condition

2must be a random variable with zero mean and variance am or the pro-

cess should be run for several time constants (correlation times) be-

fore exponential correlation is required. In filter model applications,

the initial time is the time of the last measurement and almost never

2has a variance equal to d2 nor is the time between measurements likely

to be several time constants. Despite this discrepancy in the rigorous

sense, the state augmentation method will be used because it is easily

implemented. It should be noted that the assumption of exponential

correlation is itself an approximation.
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5.2.5 State transition matrix and covariance matrix propaga-

tion. As implemented in the filter, the covariance matrix is propa-

gated using the concepts of Par. 4.5.

;(t,tk) = A(t)s(ttk), (tk,tk) I (5.38)

r(t) = A(t)r + rAT(t) + B(t)Q(t)BT(t), r(tk) = 0 (5.39)

T
r(tk+l) = 0(tk+l tk)P(tk) (tk+ltk) + F(tk+l) (5.40)

If the correlation times and the measurement interval At

are fixed, Eqs. 5.38 and 5.39 can be solved analytically. The results,

with tk+l = tk + At , are:

I t ,r(B) 1 t [I + 0At + exp(-aAt)]/$2

ra

*(tk+AtItk) = 0 1 va () = 0 1 [1 - exp(-BAt)]/

0 0 Oaa(s) 0 0 exp(-aAt)

(5-.41)

At 3  A2
qrAt + qv + qa rr q v + qayv ( )  qa(raW)

t2

r(tk+At) q + a rv v At+ qYvv(B) ava()

qa Yra(a)  qa Yva (s)  qayaa (a)

(5.42)

where: qrI qv, and q are the diagonal elements of the spectral

level process noise covariance matrix, BQBT; and
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y elements are as follows:

'Yrr [ -exp(-28At) - 40At exp(-ot)

+ 2(a~t)3/3 - 2(aAt)2 + 2st + 111(2o 5

At t5 (120 - $At/36 + 5(oAt)21/504 - (s~t) 3/360

+ 17(aAt) 4/25920 - 41(W~) 5 /302400 + .

'rv Lexp(-2e~t + (2B~t-2)exp(-s~t)

2 2oAt + 1]/( 4~

- t4[1/8 - st/12 + 50 t 2/4 - (Bt 3/

-At~t/ - t6+1 At) /144 - l(~t) /0O

+ 17(s~t) 4/5760 -(COW /608 +

-
r

- t3[1/6 - sAt/4 + 71(aAt)2/60 -()
3

+ WOW At4/1680 _ (SAt)5/320 +

YVa = [-exp(-28at) + 4exp(-6At) +)2o82-3) (2

3[ t2 1/3 - aAt/2 + 7(aAt) 2/24 - (0t 3/

+ 31(o~t)4/7520 - (obt) /80 +

Yva = [1x(Ut -ex 2et)](2)+13(02

= At2[1/ - 8at/ + (sAt) 2/24 -Ot)

+ 2 (sAt) 4/15 - 2(oAt)5/45 +
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For convenience, At will not be incorporated into the argument list of

of the y elements or the elements era' va' and Caa"

For the discrete process noise matrix r the solutions are

given both in a closed form and in a power series form. The power

series are shown because the analytical expressions are numerically ill-

conditioned if a~t is small. The state transition matrix can also be

numerically ill-conditioned for small aAt. The power series expres-

sions for the state transition matrix elements are easily formed from

Eq. 5.41.

Use of Eqs. 5.41 and 5.42 eliminates the need for numerical

integration in the filter implementation. State propagation is accom-

plished using Eqs. 5.7, 5.8, and 5.4a. Covariance matrix propagation

is accomplished using Eq. 5.40 where the state transition matrix and

the discrete process noise matrix are pre-calculated.

The GPS filter mechanization includes three independent d;men-

sions, each modeled in accordance with the one-dimensional analysis out-

lined here. Obviously, the parameters for the three dimensions need not

be identical.

5.2.6 Measurement bias state. The measurement bias errors

included in the state vector were selected based on the possible magni-

tudes of the bias errors and their effects on the measurements. The

user clock bias and clock drift errors can become unacceptably large un-

less the user has a calibrated atomic standard. The user clock bias and

clock drift errors will cause one-for-one errors in the pseudo-range and

pseudo-range-rate measurements respectively. For example, a user with a

.. .. .. . . . . . . . . .
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flat frequency stability of one part in 108 on an Allen variance curve

will have a clock bias uncertainty equivalent to 10 km after one hour.

This implies that the uncertainty of the pseudo-range measurements will

be at least 10 km. The pseudo-range-rate measurement will have an un-

certainty of 3 m/sec.

Altimeter bias errors can also become large although they do

not take on the unbounded character that the clock errors can have.

Cole [73] provided an analysis of a 300 millibar pressure surface which

is near the 9 km level. Standard deviations of the distance-correlated

data ranged from 90 meters to 180 meters. Standard deviations for time-

correlated data ranged from 40 meters for one-half hour to 60 meters

for four hours. Lear [56] analyzed atmospheric data and, for a 9 km

level, determined a standard deviation of 315 meters with sea level

pressure updates and a standard deviation of 340 meters if no sea level

pressure updates are used.

The altimeter bias error was included as a state because:

1. Expected errors are on the order of the ambiquity in

the C/A PRN code;

2. The altimeter bias error is a correlated error;

3. The effect on the altimeter measurement is one-for-one,

i.e., a one meter bias error leads to a one meter altimeter error in

the altimeter measurement.

The state vector could include the various noise sources that

contribute to the measurement errors. Since the forcing functions of

the simulated error sources are uncorrelated random variables (within
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the capabilities of the random number generator), a filter that in-

cludes all the simulated error sources could be designed within the

restrictions of a Kalnan filter. For simplicity, however, a single

state for each of the measurement biases was assumed adequate.

5.2.7 Measurement bias error models and statistics. To prop-

erly evaluate the performance of the aircraft model, the measurement

bias models and statistics used in the filter should closely match the

models and statistics used in the simulation within the constraints of

the filter. To corrupt the measurement bias model statistics would

cause non-optimal filter performance even if a perfect aircraft model

is available. Using the best information for the measurement bias

models places the burden of performance on the aircraft model.

The simulated clock drift used only an exponentially correlated

noise term. The filter model for the clock drift used the correlation

time that was used in the simulation and a state model identical to the

aircraft acceleration model. The spectral level process noise was ad-

justed so that the discrete process noise resulted in a value equal to

the variance of the simulated forcing function. The clock drift forc-

ing function of Eq. 3.21 has the form

af[l - exp(-2Bait)] 1 / 2 wf

where: is the standard deviation of the clock drift;

Of is the inverse correlation time of the clock drift;

At is the time interval (1.25 sec); and

wf is a random number, N(O.l).
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The discrete process noise for an ECRV from Eq. 5.37 is

qfyf = -f (1 - exp(-2afAt))

The spectral noise qf required to match the simulated ECRV is there-

fore

qf = 2 fOff
2  (5.43)

which is the result for an ECRV at steady state.

The formulation of the filter model automatically accounts for

the effect of clock drift errors on clock bias errors. The simulation,

however, also included a random walk term as an additional clock bias

error source. For a random walk, the relationship between the discrete

process noise and the spectral level process noise is represented by

y = qAt (5.44)

Since the simulation used the forcing function ab wb (see Eq. 3.20)

the requirement to match the simulation of the random walk is

b2

qb = Ob/At (5.45)

The simulated altimeter bias included errors from two sources:

a sea level bias error and a distance correlated term. In the filter,

the altimeter bias error is modeled as an ECRV with a constant correla-

tion time of 500 seconds. The correlation time associated with the
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simulated correlation distance of 100 km and the maximum aircraft speed

of 240 m/sec is 417 seconds. As in the clock drift term, the relation

between the spectral level noise and the standard deviation used in the

simulation is

q 2 B 2

where: a2  is defined in Eqs. 3.40 and 3.42.

For the altimeter, the variance of the correlated error was specified as

a function of altitude in the simulation. The filter model used the

same function to determine the variance of the altimeter bias noise

magnitude. It should be noted that this violates the assumption of

stationarity implied in the development of the state augmentation method

since the statistics are a function of altitude. Again, this failure

of the method in the rigorous sense will be overruled based on engineer-

ing judgement.

The portion of the model that is associated with the measure-

ment bias states can be described independently of the aircraft model.

In the following, a summary of the measurement bias model is given

which includes the values of the parameters selected to match the simu-

lated biases. The differential equation for the measurement biases is:
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6y h 0 0 Uyhh

d 6a1  0 0 1 6a1  + Ub

682 0 0 -0 6a Uf

-1/500 0 0 6yh Uh

- 0 0 1 6al + ub (5.46)

L 0 0 -1/1800 62 J L UfI

The statistics for the filter assumned process noise terms are given by:

E-IuhJ = 0

E[uh(t)uh (T)] = qh6( t-T)

= 2(1/500)(2.72 + (.0035 h(t)) 2 (t-T)

= .002916 6 (t-,r) m2/sec2  (5.47)

where: the altimeter statistic is evaluated at zero altitude.

The clock bias noise term for the simulated random walk has statistics:

Efub] = 0

E~ btubT~ b6= tT = .0072 6(t-T) M2 /e2

(5.48)
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The clock drift filter statistics are given by

E~uf] = 0

Eluf(t)Uf(T)J = qf6(t-T) =.0001 6(t-tr) m 2/sec 4  (5.49)

The state transition matrix for the measurement bias portion of the

model is

aa(8h) 0 0

(P(t+LAt~t) = 0 1 Of)

0 0 'aa( f)

[9975 0 01

0 1 1.24956 (5.50)

L0 0 .99931,

where: the terms *aa and o va refer to the results described in

Eq. 5.41.

The discrete process noise matrix for the measurement bias model is

0 0 1
0 q b qAt + qfyvv(3f) qfyva(6f)

.0364 0 0

- 0 9.651x10-4  7.807x10-5  (5.51)

0 7.80xlO-5 .249xl0- j
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The initial errors and the initial covariance matrix are given in

Table 5.1.

5.3 Measurement Rejections

To simulate signal dropouts and measurement rejections, the

measurements are randomly rejected. Satellite measurements are reject-

ed five percent of the time and altimeter measurements are rejected two

percent of the time. When a measurement is rejected, the covariance

matrix is propagated and the state is predicted based on the a priori

information. Therefore, the contributions to the performance measures

listed below are due solely to a priori data when a measurement is

rejected.

5.4 Uncorrelated Measurement Noise

To simulate uncorrelated measurement noises, the filter test

program adds Gaussian noise to the satellite indicated clock time, the

pseudo-range-rate measurement, and the altimeter measurement. The

standard deviations of these uncorrelated noises are as in Table 5.2.

Table 5.2 Additional Gaussian Measurment Noise

Standard Deviation

Indicated Satellite Time 1. meters (,,,3.33 nsec)

Pseudo-Range-Rate .02 m/sec (.0667 nsec/sec)

Altimeter 20. meters
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The filter assumed the measurements to have uncorrelated noise with

the standard deviations of Table 5.3. The assumed noise magnitudes of

Table 5.3 should bound the values in Table 5.2.

Table 5.3 Measurement Noise Assumed by the Filter

Standard Deviation

Pseudo-Range (25. + 6.25 csc 2el) 112 meters

Psuedo-Range-Rate .1 m/sec

Altimeter (400 + h2 x 10-6)1/2 meters

5.5 Testing the Selected Model

5.5.1 Independent variables for sensitivity studies. The

model has been selected and must be tested using the simulation of

Chapter 3. Values have been assigned to most of the model parameters.

The measurement bias model parameters are specified to match the simu-

lated biases. (See Para. 5.2.7.) The initial condition statistics for

both the aircraft and the measurement states are chosen to be consist-

ent with the errors in the initial state. The aircraft inverse correla-

tion times and the maneuver variances m (or the spectral level

aircraft noise q 2 2 ) remain to be specified. Values of correla-

tion time and maneuver variance will be identical for all aircraft di-

mensions. This will decrease the number of variables considered in the

sensitivity analysis.,

Prior to proceeding with the sensitivity study, limits on the

values of maneuver variance and correlation time were selected.

*1
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Correlation time limits were one second to 50 seconds based on sug-

gestions in Singer [68], Hampton [741, and Kanyuck [75]. Singer used

a probability density function as in Figure 5.2a and arrived at the

vaniance

a2  [1 + 4 P(a ) P(O)J/3 (5.52)
n weax max

Asher [163 suggested the use of a double triangular density as in Fig-

ure 5.2b to arrive at

am (a2 ma m am + am )/6 (5.53)

P (a)

P(Q)I ~a ) - (P(Q) +,-2P(amx )) a
ALPamax) 

2ainax ma j malax)

-a maxa max

Figure 5.2a Acceleration Probability Density (Singer [68])

P( a)

Figure 5.2b Acceleration Probability Density (Asher [76])
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The possibilities are limitless. An upper limit on maneuver variance

was chosen by assuming a density function as follows:

1
P(a) = a 1 .5 riVsec'

= 0, a 1.5 WVsecL (5.54)

The maximum longitudinal acceleration allowed in the simulation is 1.5

m/sec 2. Knowing this basic fact about: the aircraft, the maximum uncer-

tainty for any acceleration estimate should be 1.5 m/secL. This can be

assum ed to be the steady state value for the variance though additional

information on flight conditions would change the value. The manuever

variance upper limit was chosen, therefore, as 2.25 m/sec . The lower

limit was selected duriqj the optimization process as that vilue which

did not yield acceptable filter performance.

5.5.2 Optimization baseline. Fhe independent variables for

optimization of the filter are the correlation time i and the maneuver
2

variance "m" These parameters will be identical for each aircraft di-

rection. The optimization effort involved analyzing the perfonlance of

the filter for the first 600 seconds of flight. This portion of flight

is characterized by a maneuvering aircraft trajectory (takeoff and de-

parture) and a worse than average geont try with three satellites visi-

ble. A difficulty encountered in the study was the choice of perforneance

In the simulation, this acceleration limit applies to longitudinal
accelerations but does not necessarily bound the lateral and vertical
accelerations.
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indicator. No single quantitative value is adequate to rank the per-

formance of the filter with varying parameters. Table 5.4 summarizes

the results of the optimization effort using the following performance

measures:

1. RSS position error in meters (RSS POS ERR): Effec-

tively, the North, East, and Down components are combined for n measure-

ment intervals using

(xti-xYti)) 2 + (x E(ti )-x E(t ))2

+ (xo(ti)-XD(ti))2]] I/2 (5.55)

2. RSS velocity error in m/sec (RSS VEL ERR): Similar

to RSS position error except the velocity states and covariances were

used.

3. Maximum position component error in meters (MAX POS

ERR): This term is the maximum position error that occurs in any compo-

nent direction. Because of the satellite geometry the North component

usually was the source for this term. The value is suffixed with an "E"

if the maximum error is in the East direction or with a "D" if the maxi-

mum error is in the Down direction.

The parenthetical mnemonics will be used later in this report to
represent the corresponding performance indicator.
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4. Maximum velocity component error in m/sec (MAX VEL

ERR): Similar to maximum position component error except the velocity

errors were used.

5. Position RSS error/standard deviation (POS ERR/SIG):

The ratio of the RSS position error to RSS position standard deviation.

In an ideal situation, this term should be approximately unity indicat-

ing that the filter estimates its error accurately, i.e., it is not too

conservative nor too optimistic.

6. Velocity RSS error/standard deviation (VEL ERR/SIG):

Similar to position RSS error/standard deviation except using the velo-

city terms.

7. RSS final cycle position error in meters (FIN POS

ERR): Similar to RSS position error except the summation applies only
,

for the last cycle of measurements.

8. RSS final cycle velocity error in m/sec (FIN VEL

ERR): Similar to RSS final cycle position error except velocity terms

were used.

9. RSS position standard deviation in meters: Similar

to RSS position error except the position terms of the covariance matrix

were used.

(PXN (t + PXX (t (ti)) (5.56)
i~l N E E D Dt)]1/

A cycle of measurements includes a pseudo-range and pseudo-range-rate
measurement from each satellite and an altimeter measurement.
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Table 5.4 Initial Evaluation of Exponentially Correlated Random Acceleration Filter

Maneuver
Variance Cerrelation Time (sec)

(m2/sec 4 1.00 3.33 5.00 6.25 110.00 1.20.00 33.33 50.00

RSS Position Error (m)

2.25 107.20 69.37 63.99 62.11 59.83 58.75 58.75 59.04

.75 163.92 94.03 80.70 75.55 68.60 64.65 64.41 65.40

.375 220.33 122.63 101.57 93.05 81.07 73.86 73.57 75.70

.1875 299.32 165.98 135.01 121.97 103.11 91.38 91.13 94.94

.0225 786.26 455.53 379.77 343.94 285.01 241.35 235.94 243.92

RSS Velocity Error (m/sec)

2.25 19.18 12.77 11.18 10.55 9.68 9.19 9.17 9.30

.75 24.98 17.19 14.90 13.88 12.31 11.24 11.15 11.40

.375 29.45 20.81 18.06 16.78 14.76 13.32 13.21 13.58

.1875 34.59 25.07 21.89 20.37 17.92 16.17 16.07 16.60

.0225 55.06 43.13 39.38 37.38 33.76 30.90 30.72 31.52

Maximum Position Component Error (m)

2.25 301.31 183.37 157.20 149.77 147.33 149.19 153.36 157.68

.75 442.08 254.11 214.77 196.33 183.18 180.71 188.04 197.88

.375 575.59 314.87 264.53 241.57 225.84 219.26 224.46 232.84

.1875 760.01 418.98 329.33 298.14 270.84 258.47 260.80 267.47

.0225 1805.84 1081.83 896.48 805.01 659.65 549.08 532.32 548.54

Maximum Velocity Component Error (m/sec)

2.25 43.44 32.82 30.72 30.13 30.33 30.57 30.48 30.20

.75 54.24 41.66 37.72 35.84 33.00 31.55 31.62 32.78

.375 63.45 47.45 43.82 41.94 38.82 36.74 36.94 37.88

.1875 74.44 52.93 49.32 47.52 44.29 41.87 41.82 42.54

.0225 121.64 91.40 80.82 75.55 67.23 60.14 58.09 58.34

Position RSS Error/Standard Deviation

2.25 2.06 1.22 1.11 1.07 1.03 1.04 1.07 1.11

.75 3.51 1.86 1.57 1.46 1.33 1.27 1.29 1.34

.375 5.01 2.58 2.10 1.92 1.66 1.53 1.55 1.61

.1875 7.18 3.70 2.96 2.66 2.23 1.98 1.99 2.10

.0225 21.59 11.66 9.53 8.54 6.96 5.81 5.67 5.88 1
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Table 5.4 Initial Evaluation of Exponentially Correlated Random Acceleration Filter
(Continued)

Maneuver
Variance Correlation Time (sec)

(m /sec4) 1.00 3.33 1 5.001 6.25 110.00 120.00 133.33 150.00

Velocity RSS Error/Standard Deviation

2.25 2.83 1.39 1.16 1.08 1.02 1.00 1.09 1.20

.75 5.64 2.81 2.28 2.08 1.87 1.73 1.84 2.01

.375 8.67 4.38 3.53 3.19 2.72 2.51 2.63 2.86

.1875 13.24 6.75 5.43 4.88 4.10 3.70 3.82 4.12

.0225 44.76 23.12 18.72 16.78 13.76 11.67 11.46 11.88

RSS Final Cycle Position Error (m)

2.25 43.01 60.06 59.71 58.95 56.28 50.64 1'46.01 42.32

.75 24.97 44.96 56.49 44.54 42.62 38.44 34.94 32.25

.375 16.85 32.88 34.82 34.90 34.18 31.53 29.17 27.50

.1875 22.51 18.71 23.61 24.87 26.06 25.66 24.84 24.36

.0225 21.01 80.68 40.40 23.38 12.02 18.48 22.69 26.30

RSS Final Cycle Velocity Error (m/sec)

2.25 1.11 4.88 5.13 5.17 4.96 4.12 3.39 2.87

.75 2.23 2.59 2.85 2.89 2.81 2.41 2.08 1.86

.375 3.33 1.52 1.91 1.98 2.00 1.82 1.66 1.55

.1875 4.28 .71 1.27 1.37 1.47 1.46 1.40 1.35

.0225 6.97 4.53 1.68 .71 .52 .79 .87 .90

RSS Position Standard Deviation (m)

2.25 52.03 56.93 57.84 58.07 57.92 56.39 54.70 53.25

.75 46.73 50.70 51.50 51.74 51.78 50.88 49.83 48.92

.375 44.01 47.54 48.30 48.56 48.74 48.24 47.55 46.91

.1875 41.66 44.88 45.63 45.93 46.26 46.14 45.73 45.30

.0225 36.43 39.06 39.87 40.26 40.96 41.53 41.61 41.51

RSS Velocity Standard Deviation (m/sec)

2.25 6.79 9.17 9.67 9.81 9.82 9.17 8.41 7.74

.75 4.43 6.12 6.54 6.69 6.80 6.51 6.07 5.67

.375 3.40 4.76 5.12 5.27 5.43 5.30 5.02 4.74

.1875 2.61 3.71 4.04 4.18 4.37 4.37 4.21 4.03

.0225 1.23 1.87 2.10 2.23 2.45 2.65 2.68 2.65
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10. RSS velocity standard deviation in m/sec: Similar

to RSS position standard deviation except the velocity terms of the co-

variance matrix were used.

The data in Table 5.4 were generated with the approximation

012,12 = 1 whereas the correct value should be €12,12 = exp(-l.25/1800)

= .9933. This discrepancy was corrected for the full flight test runs.

In all cases, the differences in performance did not affect the tend-

encies illustrated in Table 5.4. It was therefore decided that the

optimization runs yielded an adequate indication of the sensitivity of

the performance to the values specified for am and . This approxi-

mation to *12,12 was corrected for subsequent tests.

5.5.3 Full flight tests. Based on a qualitative analysis of

Tables 5.4, four pairs of maneuver variance and correlation time were

chosen for further analysis. The choices are:

Case 1. am = 2.25 m2/sec4 , 1/8 = 20 sec; This pair

of parameters resulted in low RSS errors and low maximum errors. Also,

the ratio of RSS error to standard deviation was near unity. The para-

meters are representative of a turning aircraft.

Case 2. a2 = 0.1875 m2/sec4, 1/8 = 1 sec; This pair
m

of parameters provided a good final state estimate. At the final time,

the aircraft is climbing to altitude and no turns have been initiated

for about 200 seconds. The parameters are representative of cruising

flight with some turbulence.
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Case 3. a2 = 0.1875 m2/sec 4 , l/a = 20 sec: This pairm

of parameters was selected because it has the same maneuver variance

as Case 2 and the same correlation time as Case 1.

Case 4. G2 = 2.25 m 2/sec4 , I/a = 1 sec: This pair ofm

parameters was chosen because it has the same maneuver variance as Case

1 and the same correlation time as Case 2.

Tables 5.5 through 5.8 summarize the performance of Cases 1

through 4. The performance measures for each flight phase are as

described in Par. 5.5.2. Figures 5.3 through 5.6 are plots of the

estimator errors and the estimator standard deviations for Cases 1

through 4. The errors plotted are the RSS of the errors for an inte-

gral number of measurement cycles except for the first 18.75 seconds

of Phase 1 when the absolute value of the error is plotted after each

measurement interval. The standard deviations are the square roots of

the appropriate diagonal elements of the covariance matrix. The plotted

standard deviations (dashed lines) are calculated in the same manner as

the plotted error curves (solid lines). This plotting method was chosen

to reduce storage and computer time. Because of the use of RSS values,

two cautions should be observed in the interpretation of the error

curves:

1. The plotting method gives a smoother curve than that

which would result if the errors after each measurement were plotted.

2. Sign changes are not shown. An important example

of a sign change occurs when satellite number 5 crosses its zenith.
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At this point, the East position error and the user clock errors

change signs. The error curves, however, show only a sudden dip in

error.

The entire flight is analyzed using parameters identical to

those in Table 5.4 except that the summations are applied only for

selected flight phases. The time limits and characteristics of the

flight phases are as follows:

Phase 1. 0 < T < 598.75 sec; During this portion of

flight, the aircraft executes the departure trajectory and begins a

cruise to altitude. Three satellites are visible with a poor geometry.

Phase 2. 598.75 < T < 1013.75 sec; Climb to altitude

continues. Three satellites are visible and the geometry is poor.

Phase 3. 1013.75 < T <_ 1295.00 sec; Cruising alti-

tude is reached near the end of this phase of flight. Four satellites

are visible. The geometry is very good.

Phase 4. 1295.00 < T < 2760.00 sec; The aircraft is

at cruising altitude. Three satellites are visible with an extremely
I.

bad geometry near the end of this flight phase.

Phase 5. 2760.00 < T < 5100.00 sec; The aircraft con-

tinues its cruise. Three satellites are visible and the geometry im-

proves through this flight phase.

Phase 6. 5100.00 < T -_ 6687.00 sec; This flight

phase includes approach and landing. Three satellites are visible and

the geometry is good.
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Table 5.5 Case No. 1 Performance (a 2 2.25 m2/sec4 ,  = 120 sec -1

Flight Phase Final Times (sec)

598.75 1013.75 1295.00 2760.00 5100.00 6687.50

RSS POS ERR 58.66 139.66 18.98 236.35 101.07 52.62

RSS VEL ERR 9.18 2.64 .52 2.11 1.81 2.50

MAX POS ERR 149.36 227.49 128.45 b72.41 312.17 110.60D

MAX VEL ERR 30.58 6.27 1.85 10.92 13.27 18.62

POS ERR/SIG 1.04 1.75 1.02 .86 1.13 1.65

VEL ERR/SIG 1.00 .36 .14 .30 .31 .66

Table 5.6 Case No. 2 Performance ( = 1875 m2/sec4 , B = 1 sec " )

Flight Phase Final Times (sec)

598.75 1013.75 1295.00 2760.00 5100.00 6687.50

RSS POS ERR 298.96 125.35 18.15 211.17 97.20 50.08

RSS VEL ERR 34.57 2.18 .32 1.08 2.79 3.40

MAX POS ERR 758.56 221.41 122.41 708.81 273.36 105.98

MAX VEL ERR 74.39 4.58 1.30 5.13 2.79 19.98

POS ERR/SIG 7.18 1.66 1.08 .81 1.14 1.66

VEL ERR/SIG 13.24 .85 .22 .40 .31 2.47

- -..
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Table 5.7 Case No. 3 Performance (am  .1875 m2/sec 4 , a 1/20 sec 1)

Flight Phase Final Times (sec)

598.75 1013.75 1295.00 2760.00 5100.00 6687.50

RSS POS ERR 91.25 133.40 20.00 205.63 100.63 46.02

RSS VEL ERR 16.16 1.45 .32 1.70 .81 2.78

MAX POS ERR 258.69 222.93 133.78 801.10 236.74 168.05

MAX VEL ERR 41.88 2.71 1.48 8.15 5.41 27.41

POS ERR/SIG 1.98 1.79 1.33 .81 1.21 1.54

VEL ERR/SIG 3.70 .48 .26 .51 .36 2.28

Table 5.8 Case No. 4 Performance (ma = 2.25 m 2/sec 4, = 1 sec 1 )

Flight Phase Final Times (sec)

598.75 1013.75 1295.00 2760.00 5100.00 6687.50

RSS POS ERR 107.12 142.58 18.21 238.38 97.96 56.90

RSS VEL ERR 19.18 3.15 .72 1.75 1.31 3.21

MAX POS ERR 300.99 242.22 123.80 811.31 370.02 107.80D

MAX VEL ERR 43.44 5.77 2.33 8.18 8.80 18.87

POS ERR/SIG 2.06 1.72 .78 .81 1.96 1.73

VEL ERR/SIG 2.83 .46 .15 .26 .23 .70
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5.5.4 Summary of flight tests. This chapter was concerned

with the acceleration dead-reckoning navigation algorithm which was

based on the assumption that acceleration is an exponentially correlated

random variable. The statistical basis of the model was described and

its modification into a form suitable for sequential filter implement-

ation was detailed. Following a discussion of measurement bias models,

the performance evaluation technique, used throughout this study, was

described. These techniques were applied to an evaluation of the ADR

filter. The results of this evaluation show that the navigation al-

gorithm had satisfactory performance for a wide range of parameters. A

single set of parameters which optimizes all performance indicators for

the entire flight cannot be determined. In the following chapters,

other algorithms will be tested and their performance will be compared

to the performance of the ADR navigation algorithm.

tI



CHAPTER 6

NON-ADAPTIVE MODIFICATIONS

6.1 Discussion of System Model Development

In Chapter 5, a basic system model for the navigation filter

was defined. The system model consisted of an assumed aircraft model

and an assumed measurement model. The state vector for the aircraft

model included the components of the aircraft position vector and the

components of the aircraft velocity vector. The components of the

aircraft acceleration vector were added to the aircraft state vector

under the assumption that the aircraft acceleration could be approxi-

mated as an exponentially correlated random process.

A dynamical system, such as an airplane, can be modeled exactly

by including the position vector components and the velocity vector

components in the system state vector. The accelerations (forces),

however, must be completely known and described in the appropriate

coordinate system. In many examples, such as satellite orbit deter-

mination, the forces may be known to a high degree of accuracy. Perfect

knowledge of the forces, however, never exists in real-world applications.

At this point in the discussion, filter restrictions on the form of
the acceleration model are immaterial.

176
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If the unknown and unmodeled forces* are random and uncorrelated, the

Kalman filter can be used with a basic position/velocity model by in-

cluding velocity process noise to represent an uncorrelated random

acceleration. In such cases, the filter requires the correct statistics

for the random acceleration. Incorrect and possibly catastrophic filter

operation can be caused by either an erroneous acceleration model or by

incorrect a priori statistics for the random acceleration.

Frequently, the unknown forces may have a known structure with

unknown parameters. In other cases, a structure for the unknown forces

can be derived based on their statistics. This latter procedure was

followed in Chapter 5 for the case of an exponentially correlated random

acceleration. If the assigned structure correctly represents the un-

known forces, then the filter will perform optimally . For example, if

the acceleration is exponentially correlated, then the basic filter

defined in Chapter 5 is the optimal filter. As another example, if a

constant acceleration structure is modeled by the filter and if the

true acceleration is a constant, then the filter is the optimal filter.

Note that there is no process noise matrix in this latter example. If

a constant acceleration assumption is modeled with acceleration process

*The unmodeled forces include non-linea terms from the expansion of the

forces where a linearized model is used.

At this point, it must be assumed that the structure assigned to
the forces satisfies any filter restrictions.
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noise, then the model is a random walk model. In this case, the filter

is optimal if the true acceleration is a random walk.

For purposes of this study, the terminology "model compensation"

will be applied to any technique that involves modification of the

system model only, i.e., the filter equations are not modified. If the

model is correct, then the filter is the optimal filter. Model compen-

sation techniques will be classified as non-adaptive techniques where

"adaptive" implies a modification of the filter equations.

It can be argued easily that all real-world filters use model

compensation techniques since perfect knowledge of a system and its

statistics is never available. In general, however, the term is usually

applied to the assignment of structure to small, random, unmodeled

forces. In the case of the algorithms evaluated in this dissertation,

the primary emphasis is on model compensation for acceleration.

6.2 Uncorrelated Random Acceleration Model

Numerical tests were performed using a model in which the

acceleration was assumed to be a zero mean, uncorrelated random variable.

If this model can be made to operate adequately compared to the exponentially

correlated acceleration model, then the dimension of the state vector

can be reduced by eliminating the three acceleration states. Computer

run-time and storage will be reduced accordingly. This model can be

referred to as a velocity dead-reckoning (VDR) model. A one-dimension-

al example of the VDR model is summarized as follows:
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6 = 6v, 6r(t0) = 6ro
(6.1)

60 = Ua, 6v(t 0 ) = 6v (

where: 6r is the position error;

6v is the velocity error; and

ua is random velocity noise with statistics

E[ua] = 0

(6.2)

E[ua (t)ua (T)] = qv6(t-T)

Identical VDR models were implemented for each aircraft direction.

Initial testing of the VOR model was accomplished using the first

ten minutes of flight in a manner similar to the evaluation runs of

Par. 5.5.2. Table 6.1 summarizes the performance of the VDR filter with

varying velocity noise magnitude qv"

Table 6.1 Uncorrelated Acceleration (VDR) Filter Performance

Velocity Noise Magnitude (m2/sec3)

.9375 2.8125 11.25 28.125 100.00 281.25

RSS POS ERR 203.78 131.14 85.51 71.30 62.30 59.58

RSS VEL ERR 27.88 21.64 16.190 13.87 12.02 11.40

MAX POS ERR 526.85 347.71 229.00 183.24 152.28 146.64

MAX VEL ERR 61.48 48.12 36.94 33.49 30.65 29.11

POS ERR/SIG 4.50 2.60 1.45 1.06 .72 .52

VEL ERR/SIG 7.08 3.54 1.50 .88 .44 .26

FIN POS ERR 50.22 52.83 64.00 73.26 85.66 92.63

FIN VEL ERR 1.41 2.79 5.55 7.83 11.20 13.08
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For the cases which were considered in developing Table 5.4,

an intuitive value for maximum maneuver variance of 2.25 m 2/sec4 was

arrived at using the maximum longitudinal acceleration of 1.5 m/sec
2

Similarly, an intuitive value of velocity noise can be arrived at by

considering that a maximum acceleration of 1.5 m/sec2 for the 1.25

second measurement interval results in a velocity change of 1.875 m/sec.

Using the square of 1.875 m/sec as the desired discrete velocity

2 3
process noise, the spectral level velocity noise should be 2.8125 m /sec

Table 6.1 indicates that, as the noise magnitude increases,

the RSS errors and the maximum errors decrease but the errors at the

end of the 600 seconds of flight increase.

6.3 Additional Exponentially Correlated Acceleration Tests

To further analyze filter behavior with increasing noise mag-

nitude, the exponentially correlated acceleration (ADR) filter of

Chapter 5 was implemented using a wider choice of maneuver variances

for the 20-second correlation time and also by examining filter be-

havior with infinite correlation time. The 20-second correlation time

results are shown in Table 6.2. The infinite correlation time results

are summarized in Table 6.3. A value for acceleration noise magnitude

qa equal to 1.8 m2/sec 5 and an infinite correlation time 6 = 0 re-

sults in a discrete acceleration process noise term of 2.25 m2/sec 4 for

a 1.25 second measurement interval.

The jehavior of the 20-second correlation time and the infinite

correlation time filters is similar to the uncorrelated acceleration
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Table 6.2 Twenty-Second Correlation lime ADR Filter Performance

2 5Acceleration Noise Magnitude (m /sec 5)

.0225 .225 2.25 4.50 10.00 22.50

RSS POS ERR 85.62 58.66 55.94 55.84 55.89 56.20

RSS VEL ERR 15.33 9.18 8.39 8.75 9.36 10.17

MAX POS ERR 248.24 149.36 141.80 141.34 139.23 139.78

MAX VEL ERR 40.56 30.58 29.43 28.40 27.62 27.83

POS ERR/SIG 1.84 1.04 .75 .67 .58 .49

VEL ERR/SIG 3.34 1.00 .44 .36 .29 .24

FIN POS ERR 26.35 50.01 80.46 88.12 94.10 97.48

FIN VEL ERR 1.52 4.11 11.11 13.18 14.99 16.34

Table 6.3 Infinite Correlation Time ADR Filter Performance

Acceleration Noise Magnitude (m
2/sec 5)

.018 .03 .18 1.80 18.00 180.00

RSS POS ERR 63.70 60.40 56.95 55.80 56.50 60.15

RSS VEL ERR 10.95 9.91 8.28 8.67 10.79 14.92

MAX POS ERR, 198.48 173.72 147.92 139.95 138.81 144.16

MAX VEL ERR 32.30 28.96 31.37 28.73 28.08 43.57

POS ERR/SIG 1.32 1.21 .98 .72 .48 .26

VEL ERR/SIG 2.00 1.59 .80 .42 .24 .14

FIN POS ERR 29.58 32.96 50.11 80.52 97.78 100.91
FIN VEL ERR 1.68 1.93 4.25 11.51 16.81 24.16
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filter. That is, as the magnitude of the noise increased, the RSS

errors and the maximum errors decreased while, at the end of the 600

seconds of flight, the errors increased. Within the noise ranges

considered, the errors appeared to have limiting values. The maximum

errors, however, were significantly larger for the low noise cases.

An intuitive explanation for filter behavior with increasing aircraft

noise magnitudes can be given. If the filter aircraft noise is low,

then the filter changes the values of the predicted aircraft state

at a slow rate. Consequently, the filter will be unable to track a

rapid turn. During such a maneuver, the errors can become quite large.

If the filter aircraft noise is high, then the errors in the navigation

fix are bounded by the measurement bias errors and measurement noise.

Tables 6.4 and 6.5 summarize the performance of uncorrelated

acceleration filters for the entire flight. Table 6.4 is based on a

velocity noise of 2.8125 m2/sec 3 (Case 5) and Table 6.5 is based on a

velocity noise of 281.25 m2/sec 3 (Case 6). Figures 6.1 and 6.2 depict

the filter performance of Cases 5 and 6 respectively.

The infinite correlation time ADR filter was tested for the

entire flight using an acceleration noise of .18 m2/sec 5 (Case 7) and

an acceleration noise of 18. m2/sec 5 (Case 8). Case 7 performance is

summarized in Table 6.6 and is shown in Figure 6.3. Case 8 performance

is summarized in Table 6.7 and is shown in Figure 6.4.
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Table 6.4 Case No. 5 Performance (qv= 2.8125 m
2/sec 3)

Flight Phase Final Times (sec)

598.75 1013.75 11295.00 2760.00 5100.00 6687.50

RSS POS ERR 131.14 147.46 18.66 238.81 97.48 57.75

RSS VEL ERR 21.64 3.02 .65 1.59 1.17 5.48

MAX POS ERR 347.71 253.01 127.52 819.03 368.41 131.75

MAX VEL ERR 48.12 6.57 2.64 7.28 7.51 37.56

POS ERR/SIG 2.60 1.79 .76 .81 1.05 1.74

VEL ERR/SIG 3.54 .48 .14 .25 .21 1.23

Table 6.5 Case No. 6 Performance (qv = 281.25 m2/sec3)

Flight Phase Final Times (sec)

598.75 1013.75 1295.00 2760.00 5100.00 6687.50

RSS POS ERR 59.58 145.00 29.76 231.72 106.58 63.48

RSS VEL ERR 11.40 7.59 6.48 7.76 7.45 9.31

MAX POS ERR 146.64 292.46 133.65 736.25 529.09 145.57

MAX VEL ERR 29.11 18.24 21.070 25.78 37.08 30.23E

POS ERR/SIG .52 1.09 .32 .68 .67 .72

VEL ERR/SIG .26 .17 .16 .17 .17 .23

.... I
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Table 6.6 Cas, No. 7 Performance (q = .18 m2/sec 5 , a = 0)

Flight Phase Final Times (sec)

598.75 1013.75 1295.00 2760.00 5100.00 6687.50

RSS POS ERR 56.95 140.40 19.35 235.70 101.81 51.71

RSS VEL ERR 8.28 2.67 .52 2.44 2.31 2.43

MAX POS ERR 147.92 228.55 131.01 872.11 302.03 111.06D

MAX VEL ERR 31.37 7.02 1.95D 15.98 18.61 18.81

POS ERR/SIG .98 1.76 1.05 .86 1.13 1.62

VEL ERR/SIG .80 .34 .14 .32 .36 .63

Table 6.7 Case No. 8 Performance (q = 18. m2/sec5 ,

Flight Phase Final Times (sec)

598.75 1013.75 1295.00 2760.00 5100.00 6687.50

RSS POS ERR 56.50 144.07 23.38 246.02 104.64 61.64

RSS VEL ERR 10.79 10.82 5.45 10.32 9.70 8.60

MAX POS ERR 138.81 278.69 141.66 821.83 466.69 173.92E

MAX VEL ERR 28.08 28.56 15.50 57.43 73.95 41.56

POS ERR/SIG .48 1.14 .41 .76 .77 .96

VEL ERR/SIG .24 .26 .19 .23 .26 .31
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6.4 Estimation of Inverse Correlation Time

As is evident by an analysis of Tables 5.4 through 5.8 and 6.1

through 6.7, the ability of the filter covariance matrix to bound the

errors varies with the process noise covariance. Large values of noise

magnitude make the covariance matrix conservative; small values of noise

magnitude result in overly optimistic covariances. In addition, the

position covariance performance is not necessarily consistent with the

performance of the velocity covariance.

The correlation time assumed by the navigation filter will

affect the propagation of the covariance matrix by changing the state

transition matrix and by changing the amount of discrete process noise

added to the covariance matrix. Figure 6.5 depicts the elements of the

discrete process noise matrix for unity spectral level noise and a

sampling interval of 1.25 seconds. Note that the rates of change of

the elements are not identical. For example, an increase in correlation

time from one second to 20 seconds changes the discrete position noise

covariance by a factor of 1.81, the discrete velocity noise covariance

by a factor of 2.20, and the discrete acceleration noise covariance by

a factor of 2.56. Estimation of correlation time would, hopefully,

result in more consistent covariance performance and lower errors.

6.4.1 Development of the Beta-estimator. The structure of

the exponentially correlated acceleration model was based un assumed

statistics for random acceleration. By assigning an exponential struc-

ture to the acceleration itself and assuming that the acceleration noise
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is uncorrelated, a model can be developed that will permit estimation

of inverse correlation time.

Assume the following system model:

= v, r(to) = ro

= a, v(to) = V0  (6.3)

: - a + ua, a(to) a

a 0 0:uP, (to )  0

where: E[u a] = 0, E[u a(t)u a()] = qa 6(t-T) (6.4)

E[u = 0, E[uu(t)u(T)] = q (t-.) (6.5)

The parameters of Eq. 6.3 can be separated into a nominal state

and a perturbation state in accordance with:

r = r + 6r

v = v+ 6v (6.6)

a = a + 6a

3 = 13+6

The differential equations can be partitioned into a set of

non-linear equations to be used for time propagation of the estimate in

the extended sequential filter;

- , - II. -
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r =  V, r(tk) =  rk

V = a-, V(tk) = vk• (6 .7)

= - a, (tk) ak

= 0, T(tk) = k

and a set of linear differential equations which describe the deviation

in the state from the solution to Eqs. 6.7

6r = 6v, 6r(tk) =

VG = sa, 6V(tk) = 0 (6.8)

6a = -06a - a6 + ua , 6a(tk) = 0

= u6, 66(tk) =0

where: ua and uB have the statistics of Eqs. 6.4 and 6.5.

The solution to the non-linear time-propagation equations, Eqs.

6.7, is not the mean solution of Eqs. 5.7, 5.8 and 5.14. Since the ac-

celeration itself is assumed to have exponential behavior, the solution

to Eqs. 6.7 is given by

F(t) = rk + Vk(t-tk) + ra( k) ak

V(t) = vk 0 )ak (6.9)

a(t) = aa(k)ak

where: Ora(sk)' va(ak), and Oaa(ok) are defined in Eqs. 5.41.

rak!~
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The state transition matrix and the discrete process noise matrix

can be analytically determined using Eqs. 4.63. and 4.69.

The matrix A is determined from Eqs. 6.8.

6r 0 1 0 0 6r 0

tSV 0 0 1 0 6v 0

6a0 0 -T -a 6a + Ua(.)

6a 0 0 0 0 6u 8

6x A6x +By

Solving Eq. 4.63 yields the state transition matrix

I At ra(ak) akora('k)

0 1 0 va(ak) akV()

40k+l' tk) 0 0 ak) aa(k)6.1

0 0 0 1

where: Ora' tva and 0a are defined in Eqs. 5.41.;

r =(~ [exp(-BAt) - (Wt) 2/2 -4sAt - 1]/C, (6.11a)

ova (0) = [-exp(-aAt) -aAt + 11/a2 (6.11b)

Oa(a) = [exp(-BAt) - 1]/0 (6.110)

At = t k+l - tk
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Equation 4.69 yields the discrete process noise matrix r.

r1, r , 1r,3 rl,4

rl 2 i r,2 r2,3 r2,4

r(tk+l) r (6.12)
r 1,3 2, 3  r3, 3  3,4

r 1A r 2,4 r3,4 r4,4

2,

where: rll qaYrr k) + qBak~r(Bk )

rq 2 ,

ri, 2 = qaYrv(ak) + q2akYrv(6k )

rl3 = qaYra(B ) + q a 2 B)
1, ayr a B k) ra(

r 1,4 q aYrB)

2,

r2.2 = qaYvv(k) + q av

Y' 8 kyvN23 = qaYva(k )  + q a2 ' k)

r2, 4  B q~kyva(k)

r3, 3  = ayaa( k ) + qak'yaa(ak )

r .q

3,4 = a (k )

r4,4 = qBY6(0k)
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[-exp(-20At)/2 + (( At) 2+2)exp(-6At)

5 43
+ WO~t /20 - (BAt) /4 + 2( 3At) /3

-6t) + At - 3/2]!1 3

= Lt7o1/252 - szt/576 + 13( At) 2/25920

-(t6At) 
3/8640 + 19(oAt) 4 /831600 - ] (6.13a)

[ exp(-2L,.t)/ 2 + [ 2~t /2+8At-1]exp(-6.At)

+ (SAt) 4/8 - ( At) 3/2 + (6At)2 - t + 11211c 6

= t6[1/72 - 6At/144 + 13(o\t)2/576O

- ( ,At) 3/1728 + 19( t) 4/151200

- 29(tit) 5/1209600 + ](6.13b)

y~() [-exp(-2,,At)'2 + [(~t) 2+2]exp(- 3At)

+ (6,xt) 3/6 -( ,t)21/2 + A - 3/2] /

= t[1/30 - At/48 + 41( ,At) 2/5040

- 7(sAt)3I/2880 + 109(aAt) 4/181440

- 310,50 5/241920 + .1(6.13c)
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),( ) =-[exp(- At) + ( At)3 /6 - At2/

+ 4

=-At 4 [1/24 - At/120 + ( ,At)2/720 -(iAt)
3 /5040

+ (6.%t) 4/40320 - (OAt)5/362880 + *] (6.13dJ)

, V(6) =(-exp(-2,At)/2 - 2St exp(- 3At) + U~AW)3 /3

2
WO(~t + ;-,t + 1/2]

[1/20 - At/36 + 5( ,At) /504

-( ,.%t) /360 + 17(t3At) /25920 - 41( ,At) /302400]

(6. 13e)

'~,a~ =[exp(-2.;At)/2 +4 (cAt-l)exp(-ot)

+ (.At) 2/12 - t .t + 12/,

=At
4 [1/8 - ,t/12 + 5( At) 2 /144 - (SAt) 3/90

+ 17(oAt) 4/5760 - 41 (SAt)5 /60480

+ 167( At) 6/1209600 - 23( At) 7/907200 + '
(6.13f)
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yv(l) = -[exp(-lAt) + (1, At)2/2 - at 1]/L

-At 3[1/6 - 1,At124 + (iit)2/120 + (i1At)3/720

- (1,t) 4/5040 + (IAAt) 5/40320- (1,At) 6/362880 +

(6.13g)

aa( ) [-exp(-21;At)/2 + 2exp(-iAt) + At - 3/2]/ 2

= ,t 3 [1/3 - M t/4 + 7(1;At)2/60 - (iAt) 3/24

4 5 6
+ 31(i ,t) /2520 - ( ;,\t) /320 + 127(,,.\t) /181440

17( . t) 7/120960 + ] (6.13h)

a 1 ( ) -[exp(-I;At) + ,At - 1]11,2

-,t 2 (1/2 - 1At/6 + (,,\t)2/24 - 3120

+ (1,At) 4/720 - (i;.Nt)5/5040 + (1,At) 6/40320

7
- (.\t) /362880 + (6.131)
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Y = qa At (6.1 3j)

and the remaining y functions are defined in Eqs. 5.42.

6.4.2 Results of the Beta-estimator. The -estimator was

tested in the same manner as previous algorithm tests. The first

ten minutes of flight were used to evaluate the behavior of the a-

estimator with varying process noise in the a terms. Following this

analysis, full flight tests were made using selected parameters. The

tests used the initial parameters of the four exponentially correlated

acceleration models which were used to obtain Tables 5.6 through 5.9.

Also, an initial correlation time of infinity and a spectral level ac-

celeration noise of 1.8 m2/sec5 were tested. The initial conditions as-

sociated with this latter case will be referred to as the "Case 7.5"

initial conditions. The standard deviation of all inverse correlation
times was initially assumed to be 1. x l0 - 3 sec for all cases. For

each set of initial conditions, the process noise term for the inverse

correlation time was varied from 10 sec - 3 to 10-8 sec - 3 and was iden-

tical for all directions. The results are given in Table 6.8.

As the (-process noise increased, the filter sensitivity in-

creased and the performance parameters generally improved. For those

cases where the spectral level of the acceleration noise was low and

a-process noise was high, the filter diverged. Filters with high spec-

tral level acceleration noise appeared to be more stable. A value of

(-process noise equal to l0 - 4 sec - 3 seemed to perform well in all
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Table 6.8 Initial Evaluation of Beta-Estimation Algorithm

a-Process Noise (sec -3 )

l2-state 1 10-811- 10 1 1 0-22 5
qa 225 m /sec , s(O) = 1/20 sec -I

RSS POS ERR 58.66 60.73 57.14 53.76

RSS VEL ERR 9.18 8.80 8.17 6.35

MAX POS ERR 149.36 147.81 147.15 127.73

MAX VEL ERR 30.58 30.22 30.19 30.32 Filter

POS ERR/SIG 1.04 1.08 1.00 .98 Diverged

VEL ERR/SIG 1.00 .96 .86 .73

FIN POS ERR 50.01 50.14 50.67 47.78

FIN VEL ERR 4.11 3.39 4.34 4.07

qa= .375 m2/sec , (0) = 1 sec

RSS POS ERR 298.96 295.10 253.57 62.34

RSS VEL ERR 34.57 33.82 30.59 9.89

MAX POS ERR 758.56 733.42 577.57 239.61

MAX VEL ERR 74.39 73.25 72.85 35.83 Filter

POS ERR/SIG 7.18 7.08 6.01 1.59 Diverged

VEL ERR/SIG 13.24 12.94 10.86 2.09

FIN POS ERR 22.79 40.20 32.83 28.74

FIN VEL ERR 4.19 .75 .98 2.08

qa= .01875 m2/sec
5, a(0) = 1/20 sec

-I

RSS POS ERR 91.25 85.24 69.10 56.29

RSS VEL ERR 16.16 13.63 11.32 11.00

MAX POS ERR 258.69 251.28 241.14 184.40

MAX VEL ERR 41.88 40.60 38.67 145.17 Filter

POS ERR/SIG 1.98 1.85 1.48 1.35 Diverged

VEL ERR/SIG 3.70 3.09 2.42 3.35

FIN POS ERR 25.66 24.11 23.80 18.89

FIN VEL ERR 1.46 1.45 1.50 .53

m ~- .
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Table 6.8 Initial Evaluation of Beta-Estimation Algorithm
(Continued)

B-Process Noise (sec -3

1-state 10 j 10-6 10- 110 i2

_a_ : =4.5 m2/sec5, 00) = I sec

RSS POS ERR 107.12 109.70 108.44 67.85 56.63

RSS VEL ERR 19.18 19.02 18.85 12.79 7.41

MAX POS ERR 300.99 294.88 289.49 187.75 147.19

MAX VEL ERR 43.44 42.12 41.48 41.32 47.91

POS ERR/SIG 2.06 2.11 2.08 1.18 .96

VEL ERR/SIG 2.83 2.80 2.76 1.21 .56

FIN POS ERR 42.63 55.92 56.18 69.66 62.93

FIN VEL ERR 1.12 3.47 3.54 7.05 5.15

qa = 1,8 m 2 /sec , 0(0) : 0

RSS POS ERR 55.80 55.87 54.94 53.90

RSS VEL ERR 8.67 8.61 7.98 7.02

MAX POS ERR 139.95 139.99 139.82 140.98

MAX VEL ERR 28.73 Not 28.69 26.77 35.79E

POS ERR/SIG .72 Tested .72 .73 .89

VEL ERR/SIG .42 .42 .41 .48

FIN POS ERR 80.52 80.28 77.69 53.33

FIN VEL ERR 11.51 11.37 10.12 3.52

i
.1
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600-second tests. Accordingly, full flight tests were made using the

initial conditions of Cases I through 4 and 7.5 and using a a-process

noise equal to 10- sec -3 . The full flight results are summarized in

Tables 6.9 through 6.13 and are shown in Figures 6.6 through 6.10.

If the B-estimator did not diverge, the results were generally

better than the corresponding 12-state filter. The a-estimator, however,

was unstable. This is especially evident by Cases 9 and 11 where the

filter performed well during the takeoff and departure flight phases

then continued to perform slightly better than the 12-state filter

through the cruise portion of flight. After the turn at 5230 seconds,

however, the filter diverged. The impact of the turn at 5230 seconds is

sharply evident in Case 10.

Based on the 600-second tests, reducing the B-process noise

may eliminate this divergence. Reduction of 8-process noise, however,

also tends to inactivate the estimation of inverse correlation time so

that the 8-estimator algorithm reduces to the basic 12-state case.

6.5 Summary of Non-Adaptive Modifications

The assumption that the random acceleration is uncorrelated

reduces the dimension of the aircraft state by eliminating the acceler-

ation components. This assumption also reduces the capability of the

navigation algorithm to predict aircraft position and velocity since the

assumed acceleration is zero. The results of the uncorrelated random

It may be possible to use the estimated position and velocity of the

aircraft to compute acceleration by a deterministic formula. The time
propagation of the aircraft state can then be accomplished using an
acceleration dead-reckoning formula.
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Table 6.9 Case No. 9 Performance (q~ a .225 m /sec5  s(0) =1/20se

qO .0001 sec-3 ) (Continued)

Flight Phase Final Times (sec)

598.75 1013.75 1295.00 2760.00 15100.00 6687.50

RSS POS ERR 53.76 139.76 19.04 234.69 100.10
RSS VEL ERR 6.35 2.13 .44 1.66 1.00

FilterMAX POS ERR 127.73 228.43 129.01 857.58 300.95 Dvre

MAX VEL ERR 30.32 4.51 1.42 8.12 6.87

POS ERR/SIG .98 1.77 1.05 .86 1.14

VEL ERR/SIG .73 .35 .14 .31 .27

Table 6.10 Case No. 10 Performance (q~ a .375 m2/sec5  o(0) I sec~1

=O .0001 sec-3)

Flight Phase Final Times (sec)

598.75 1013.75 1295.00 2760.00 5100.00 16687.50

RSS P05 ERR 56.29 133.80 20.18 195.81 100.47
RSS VEL ERR 11.00 1.20 .35 1.12 .53

MAX P05 ERR 184.40 223.73 675.09 675.09 224.50 le
MAX VEL ERR 145.17 1.90 5.42 5.42 .53 Diverged
P05 ERR/SIG 1 .35 1 .82 .81 .81 1 .22

VEL ERR/SIG 3.31 .70 .49 .49 .42
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Table 6.11 Case No. 11 Performance (q = .01875 m2/sec5,

p(0) = 1/20 sec-
1 , q, = .0001 sec

-3)

Flight Phase Final Times (sec)

598.75 1013.75 1295.00 2760.00 5100.00 6687.50

RSS POS ERR 72.34 124.44 16.61 238.55 99.81 62.24

RSS VEL ERR 9.89 1.92 .58 1.76 1.14 39.52

MAX POS ERR 239.61 215.26 110.73 863.78 317.39 949.22

MAX VEL ERR 35.83 3.88 1.66 8.79 8.24 998.89

POS ERR/SIG 1.59 1.59 .89 .86 1.13 1.83

VEL ERR/SIG 2.09 .39 .17 .27 .28 3.17

Table 6.12 Case No. 12 Performance (q a 4.5 m2/sec 5, a(O) 1 sec-l

= .0001 sec -3) (Continued)

Flight Phase Final Times (sec)

598.75 1013.75 1295.00 2760.00 5100.00 6687.50

RSS POS ERR 67.85 144.78 17.75 242.85 99.97 56.97

RSS VEL ERR 12.79 4.39 1.28 3.36 2.64 3.04

MAX POS ERR 187.75 246.43 119.27 853.68 419.48 67.02

MAX VEL ERR 41.32 11.32 5.39 19.82 19.51 28.17

POS ERR/SIG 1.18 1.62 .60 .81 1.01 1.52

VEL ERR/SIG 1.21 .46 .12 .19 .25 .29
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Table 5.13 Case No. 13 Performance (qa = 1.8 m2/sec 5  () 0,

= .0001 sec3)

Flight Phase Final Times (sec)

598.75 1013.75 1295.00 2760.00 5100.00 6687.50

RSS POS ERR 54.94 142.62 18.07 241.07 99.31 56.75

RSS VEL ERR 7.98 5.11 1.04 2.55 2.03 3.45

MAX POS ERR 139.82 233.12 121.35 855.51 386.69 109.210

MAX VEL ERR 26.77 11.69 3.90D 12.69 13.57 39.56

POS ERR/SIG .73 1.57 .68 .82 1.05 1.56

VEL ERR/SIG .41 .34 .12 .21 .25 .38

acceleration model, however, were competitive with the exponentially

correlated acceleration models of Chapter 5. If computer time and/or

storage are critical, the numerical results indicate that implementa-

tion of the uncorrelated random acceleration model will not result in

a severe loss of accuracy. Testing of the exponentially correlated

random acceleration model with an assumption of infinite correlation

time demonstrated that this model also can be competitive with models

using correlation times from one to fifty seconds.

Given the "competitive" performance of the uricorrelated random

acceleration model and the infinite correlation time model, one might

question the implementation of the more complex algorithm of Chapter 5.

Following are some justifications for use of correlation times from one

to fifty seconds.

!:J1

. .........
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1. The uncorrelated random acceleration model and the

infinite correlation time random acceleration model simply appear to

be less complex because they have reduced the numbers of parameters

from the two associated with finite correlation time exponentially cor-

related random acceleration models (qa and o) to one (qv for the

uncorrelated model and qa for the infinite correlation time model).

In reality, the simpler models have given up flexibility by losing one

degree of freedom.

2. Intuitively, aircraft acceleration is not uncorrel-

ated nor does it have an infinite correlation time.

3. It can be shown that for i = - , (uncor-

related random acceleration) and for = 0 (infinite correlation time),

the steady-state a posteriori position covariance vanishes. This be-

havior was also pointed out by Singer [68]. Accordingly, the steady-

state filter gains are determined by the discrete process noise matrix

r.

In an attempt to improve the performance of the exponentially

correlated random acceleration algorithm, the filter state vector was

expanded to include the inverse correlation times for the three aircraft

directions. To accomplish this, the filter model was changed from a

nominal constant acceleration assumption to a nominal exponential

acceleration assumption. The resulting algorithm was unstable. The

instability is probably due to the attempt by the algorithm to fit jumps

in acceleration with exponential curves. The correlation time of the
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estimated exponential acceleration resulted in adverse behavior of the

covariance matrix propagation which, in turn, yielded catastrophic

estimation results. This is apparent in the large increases in both

covariance matrix and estimation errors shown in Figures 6.6 and 6.8.

An exponentially correlated random acceleration model depends

on the parameters qa9 spectral level acceleration noise magnitude, and

a, the inverse correlation time. Since estimation of inverse correlation

time failed to produce improved algorithm performance without a loss in

reliability, one is naturally led to consider the estimation of qa"

The technique chosen to accomplish estimation of qa requires a modifi-

cation to the Kalman filter operation. Accordingly, the Q-estimation

algorithm will be classified an adaptive modification and will be dis-

cussed in the following chapter.

In this study, "non-adaptive" algorithms use the measurement residuals
only to update the estimate of the state. (See Par. 4.6.) In the
"adaptive" algorithms of this study, the measurement residuals will be
also used to indicate non-optimal filter performance so that the algo-
rithms can modify the filter operation.



CHAPTER 7

ADAPTIVE MODIFICATION OF FILTER STATISTICS

7.1 The Meaning and Uses of Measurement Residuals

If a Kalman filter is operating satisfactorily, then the cov-

ariance matrix will bound the errors in the estimated state. Without

knowledge of the true state, however, the user cannot calculate the

errors in the estimate. Therefore, he cannot determine whether the

covariance matrix is correct for a given application. The covariance

of the observation residual, however, is a natural product of the esti-

mation process. Since the user calculates the residual as part of the

filter operation, he can compare the statistical properties of the re-

siduals with the statistics as predicted by the filter. If the predicted

covariance matches the actual statistical behavior, then it can be as-

sumed that the filter is operating properly.

In its normal mode of operation, the Kalman filter uses the re-

sidual only to correct the a priori estimate of the state. The a priori

state error covariance matrix, the measurement noise covariance matrix,

and other filter parameters are assumed to be correct. Adaptive methods

It must be emphasized that small observation residuals are not a guaran-
tee that the error in the estimate is small. An ill-conditioned system
may have small residuals, but large errors in the estimate.

217



218

seek to modify the filter gains either directly or by changing the

values of the covariance matrices that are used in the gain computation.

Adaptive methods generally consist of a performance index, which is a

quantitive indicator of filter behavior, and a gain modification scheme,

which is the specific technique used to modify the filter parameters.

Frequently, the performance index is calculated using a sample variance

of the residuals and the covariance of the residuals as determined from

the a priori statistics. The gain modification scheme can be based

on the formulation of the performance index or it can be an intuitively

developed method.

The goal of any adaptive method is to permit a filter with in-

correct a priori statistics to function satisfactorily. In systems with

stationary statistics, successful ddaptive methods can provide the user

with better knowledge of the statistics in addition to providing an

improved estimate of the state. If the statistics are not stationary

but vary slowly with respect to the sampling interval, then adaptive

methods may still improve the statistics assumed by the filter. For

systems with rapidly changing statistics, the sample variance of the

residuals, used to calculate the performance index, can be of question-

able value since a sample variance is computed either using a number

of past residuals, thereby including residuals from a time when the

statistics were different from the current statistics, or by using a

very limited number of residuals (for example, only the current residual)

and is, therefore, of poor statistical significance. Unfortunately, it

is for the case of rapidly changing statistics that an adaptive method

j
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may be a requirement to maintain accuracy in the estimate and confidence

in the covariance.

The statistical parameters for an exponentially correlated

random acceleration model of an aircraft in cruising flight include

typically a short correlation time and a low maneuver variance. The

parameters for a maneuvering aircraft consist typically of large corre-

lation times and large maneuver variances. The regimes of flight are

not distinct and may be characterized by any combination of correlation

times and maneuver variances within physical limits. More critical than

the wide range of values for aircraft model parameters is the rapidity

with which the aircraft may change from one flight regime to another.

In Chapter 5, the exponentially correlated random acceleration

model was tested assuming stationary statistics for the aircraft mode].

As would be expected, no single set of parameters was "best" for all

performance indicators. For this study, adaptive methods were derived,

implemented, and tested in an attempt to find a filter which was compet-

itive with the best performance indicators combined from the non-adaptive

filter tests. To accomplish this, the intital conditions of Cases 1

through 4 and 7.5 were used with adaptive methods in the hopes of im-

proving the poor performance areas of each filter without incurring a

severe degradation in the good performance indicators of the non-adap-

tive filter.

Four adaptive methods were tested and the performance was eval-

uated using the simulated New York-to-Chicago flight. The four
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algorithms studied are:

1. The Q-estimator in which the residual is used in a

secondary filter to sequentially estimate elements of the process noise

matrix.

2. Adaptive age-weighting in which the residual is used

to directly scale the a priori covariance matrix.

3. Adaptive process noise weighting in which the re-

sidual is used to alter the a priori covariance matrix by applying a

scale factor to the discrete process noise matrix.

4. An adaptive algorithm using a performance index

developed by Aidala and Davis [78]. The performance index is used in

an intuitively developed scheme to alter the amount of process noise

added during the time propagation of the covariance matrix.

7.2 Estimation of the Spectral Level Process Noise Magnitude

7.2.1 Development of the Q-estimator. The results obtained

using the Beta-estimation algorithm indicate a limited ability to match

widely varying noise conditions. A filter that estimates the magnitude

of the spectral level noise will now be examined. The development is

similar to Tapley and Hagar [79] and Hagar [77:Par. 3.6]. Basically,

the Q-estimator is the application of a Kalman filter to the estimation

of the elements of the spectral level process noise matrix Q. Assum-

ing scalar measurements, the extended sequential algorithm is implemented

with the following definitions:
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_q is a vector composed of the elements of the

matrix B(tk)Q(tk)BT(tk) (see Eqs. 4.11 and 4.69);

rk is the measurement residual;

Sk is the a priori q-covariance matrix defined by

Sk E[( qk ( k -k k) T Irk-1];

Sk is the a posteriori q-covariance matrix defined by

Sk = E[(4 - k)(lk " qk ) T  Ir k]; !

Wk is the discrete q-process noise matrix;

Jk is the q-observation-state matrix;

A is the q-observation residual. This will be defined

2 2to be rk E[r I and will be shown to be equal to Jkqk assuming

_=q + 6q; and

Tk is the q-measurement noise term.

*The prefix "q-" will be used to distinguish the parameters of the filter

which is used to estimate q from the parameters used in the filter which
estimates the aircraft and measurement states.
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The sequential Q-estimator algorithm is given as follows:

1. Propagate the state q and its covariance assuming

an identity state transition matrix.

k = _4-l

Sk = Sk-l + Wk

2. Compute the gain.

-T-T -1Mk = -kJT(JkgkJT + Tk)

3. Determine the q-observation residual.

k : r' ( HkHT+ R)

r k k k

4. Estimate the q-corrections.

Aq = MkAk

5. Update the q-covariance matrix.

Sk = (I - MkJk)Sk

6. Rectify the spectral noise terms.

At this point, the elements of _k are stored in the spectral noise

matrix and the Kalman filter equations are used to obtain a navigation

fix.
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The primary difficulty in the Q-estimation algorithm is the

development of the q-observation-state relationship J. Since the q-

observation is defined to be the square of the measurement residuals,

then the q-observation residual is the difference between the square

of the measurement residual and the expected value of the square of the

measurement residual. In other words, the q-observation residual is the

difference between the single-sample variance of the residuals and the

predicted variance of the residuals. Using the linear equations, the

predicted residual is given by

r Yk - HkX (7.1)

The a priori state vector is predicted using

-= D(t tk l) _1  (7.2)

The scalar measurement is assumed to be (see Eq. 4.52)

Yk= Hk4 + Ek 
(7.3)

The actual state is assumed to propagate as

S= (tk'tk-l)-- + 9k (7.4)

where: . represents the discrete process noise contribution.

Substituting Eqs. 7.2 through 7.4 into Eq. 7.1 provides an

expression for the predicted residual rk.
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rk = HkO(tk-tk-l)(--l" + Hk- + Ek (7.5)

Applying the expected value operator to the inner product of the predic-

ted residual yields

E[FkfkT ]  = kE[ k = Hkc(tkt k-l)P(tk-l) T(tk,tk-l)Hk

+ Hkr(tk)HT + Rk (7.6)

where: F(tk) is the discrete process noise matrix and contains

the elements of the spectral level noise matrix Q(tk)

as evaluated using Eq. 4.89.

The q-observation-state matrix J can be obtained from Eq. 7.6

by expanding Hkr(tk)HT in terms of the elements of the spectral level

noise matrix. Equation 5.22 becomes

E[F] = Hk (tk,tk l)P(tkl) (tk,tkl)HT + Jk + Rk (7.7)

The term Hkr(tk)HT  has been replaced by the product of the

vector composed of the elements of the spectral level noise matrix and

the matrix Jk" The q-observation-state relationship is contained in the

elements of Jk' The determination of J will be discussed later. Hagar

[79:101) has shown that the replacement is valid for scalar measurements.

The square of the true residual is assumed to be

k Hk (tk,tkl)P(tkl),(tktkl)H k

+ J( + 4)+Rk (7.8)

.. .. .IIII - -. . . . . ... . .. , ,.. . . . . .. ... . J.
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The q-measurement residual is then

Ak 2r - E[ k] J JkLk (7.9)

If only the diagonal elements of the spectral level process noise

matrix are to be estimated using only pseudo-range, pseudo-range-rate,

and altimeter measurements, then the resulting expressions for the basic

twelve-state filter are

qT : E,, ,Q12,12] (7.10)

J = [JiJ2, .,J 1 2] (7.11)

where: J = H2At

2 = HAt

2H 2 t

= H2At

J H2 At3/3 + HIHt2 + H2At

J5 = H2 A t /3 + H2H5At
2 + H2At

6 = H2At3/3 + H3H6At2 + H2 At

7 = Hr2 (N + 2HIHr(0N) + H 2
7rr(ON) 14yrv N' H4yvv (N)

= 2 2
8 H2Yrr(aE) + 2H2H5yrv(6E) +Hyvv(BE)
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9 2 rr 0 + 2H3H6 y.rv D) + HYvv( D)

= 2

10 1 0ya lt2= H22At

12 llYvv(clk) + 2HlHl2yva(clk) + Hl2Yaa(6clk); and

the y terms are defined in Eq. 5.42.

Estimation of the diagonal elements only has the following ad-

vantages compared to estimation of the entire spectral noise matrix:

1. The size of the Q-estimator state is limited to the

same size as the navigation algorithm state. Including a 9x9 Q-matrix

for the aircraft states and a 2x2 Q-matrix for the clock states would

increase the q-estimator state to 49 terms.

2. Positive-definiteness of the Q-matrix can be assured

by insuring that all the elements of q are positive.

3. The results are easily implemented into the basic

filter mechanization where an analytical solution for the discrete

process noise matrix is used.

The q-process noise matrix Wk and the q-measurement noise Tk

remain to be specified. For the-test runs, the q-process noise matrix

was a diagonal matrix with constant values. The measurement noise term
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Tk was computed as follows:

T A 2
0o 0

(7.11)

Tk =0.9 T + A2

This simple method maintains a finite positive value for the q-

measurement noise term without the requireient to maintain a table of

residuals.

Systems with inertia cannot experience instantaneous changes in

position and velocity. Uncorrelated random process noise for such

systems cannot, therefore, appear as position and velocity terms. Ac-

cordingly Q 1IQ2,2' and Q3,3 should be identically zero. Physically

non-realizable process noise can be included, however, if their appear-

ance can be justified as approximations to physically justifiable noise.

In fact, the spectral level process noise (white noise) used in the de-

velopment of the exponentially correlated random acceleration model is

not physically realizable. Also, if it can be shown that the inclusion

of a physically non-realizable noise improves the performance of a fil-

ter, then arguments against their appearance may become superfluous.

7.2.2 Results of O-Estimator Tests. The 600-second tests of

the Q-estimator are sunarized in Table 7.1. For these tests, the

acceleration process noise terms and the measurement bias process noise

terms were estimated. The q-process noise terms for the acceleration,

identified as Wa. were identical for all acceleration components. The
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Table 7.1 Initial Evaluation of Process Noise Estimation Algorithm

Wa Process Noise (m4/sec
)11

.00 2 01 i .10 1.00 10.00 100.00
5

q a = .225 m /sec ,  = 1/20 sec -

RSS POS ERR 58.66 58.90 58.60 56.52 62.81 60.43

RSS VEL ERR 9.18 9.16 8.96 6.88 9.01 10.40

MAX POS ERR 149.36 149.30 148.75 136.65 204.77 156.79

MAX VEL ERR 30.58 30.56 30.37 29.94 33.73 34.82

POS ERR/SIG 1.04 1.08 1.10 1.20 1.32 1.15

VEL ERR/SIG 1.00 1.00 1.03 1.07 1.35 1.08

FIN POS ERR 50.01 52.52 38.62 15.61 34.75 37.18

FIN VEL ERR 4.11 4.09 .87 .45 1.06 2.35

qa = 375 m21/sec 5
, 6 1 sec -l

RSS POS ERR 298.96 297.81 297.44 293.83 266.05 221.49

RSS VEL ERR 34.57 34.47 34.44 34.22 32.62, 32.72

MAX POS ERR 758.56 753.76 752.73 742.72 668.98 475.31

MAX VEL ERR 74.39 74.08 74.02 73.42 69.60 72.64

POS ERR/SIG 7.18 7.63 7.62 7.51 6.71 5.29

VEL ERR/SIG 13.24 13.23 13.21 13.01 11.69 8.53

FIN POS ERR 22.79 33.77 33.64 33.10 62.63 357.01

FIN VEL ERR 4.19 4.14 4.14 4.17 7.56 26.93

qa = .01875 m2/sec
5, B = 1/20 sec

-1

RSS POS ERR 91.25 90.60 85.35 68.08 56.64 53.87

RSS VEL ERR 16.16 15.96 14.21 10.31 8.35 7.85

MAX POS ERR 258.69 256.66 229.88 158.98 192.30 201.93

MAX VEL ERR 41.88 41.36 34.48 27.63 33.33 36.57

POS ERR/SIG 1.98 2.07 1.99 1.54 1.26 1.11

VEL ERR/SIG 3.70 3.69 3.40 2.13 1.48 1.07

FIN POS ERR 25.66 27.66 92.88 90.54 30.87 34.17

FIN VEL ERR 1.46 1.26 5.49 5.01 1.02 2.32
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Table 7.1 Initial Evaluation of Process Noise Estimation Algorithm
(Continued)

Wa Process Noise (m4/sec
)11

.00 .01 1 .10 1.00 10.00 100.00

qa 4.5 m2/sec5, B 1 sec -

RSS POS ERR 107.12 107.04 107.04 107.02 106.46 167.17

RSS VEL ERR 19.18 19.15 19.15 19.11 18.54 29.46

MAX POS ERR 300.99 300.72 300.71 300.57 297.52 482.87

MAX VEL ERR 43.44 43.43 43.43 43.35 42.18 83.83

POS ERR/SIG 2.06 2.14 2.14 2.15 2.94 3.63

VEL ERR/SIG 2.83 2.82 2.83 2.83 2.94 5.54

FIN POS ERR 42.03 44.02 43.93 43.07 15.94 69.01

FIN VEL ERR 1.12 1.16 1.15 1.08 5.58 15.39

qa = 1.8 m 2/sec
5, 5 = 0

RSS POS ERR 55.80 56.01 56.00 55.87 54.95 119.60

RSS VEL ERR 8.67 8.67 8.66 8.56 6.76 22.61

MAX POS ERR 139.95 140.59 140.56 140.25 124.13 399.38

MAX VEL ERR 28.73 28.73 28.72 28.61 27.08 66.56

POS ERR/SIG .72 .74 .74 .75 .92 2.22

VEL ERR/SIG .42 .42 .42 .42 .49 2.10

FIN POS ERR 80.52 82.82 82.57 79.23 38.83 48.53

FIN VEL ERR 11.51 11.57 11.50 10.58 1.35 3.21
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q-process noise terms for the measurement bias states were: 1O- 3

m 4/sec 3 for the altimeter bias; 10- 5 m4/sec 3 for the clock bias; and

lO-6 m4/sec 7 for the clock drift. The q-process noise terms for the

measurement bias states were not varied in the test summarized in

Table 7.1. Since the altimeter process noise was to be estimated, the

non-stationary term used in the basic twelve-state filter was elimi-

nated. It was anticipated that the Q-estimator would determine the

proper value of process noise for the altimeter bias state. The pro-

cess noise estimates were restricted to values greater than 10-14 in

all cases.

The results of the Table 7.1 tests indicate that the Q-

estimator is capable of improving the performance of the filter com-

pared to the performance of the corresponding non-adaptive filter. The

performance changes became more pronounced as the q-process noise is

increased but the algorithm did not appear to have the instability of

the Beta-estimator.

The Case 1 and Case 7.5 initial conditions were selected for

full flight tests with q-process noise in the acceleration components

equal to 1 m4/sec I I and 10 m4/sec I I respectively and with the q-process

noise for the measurement bias states that were used in the Table 7.1

tests. Case 14, using the initial conditions of Case 1, is summarized

in Table 7.2 and Figure 7.1. Case 15, using the initial conditions of

Case 7.5, is summarized in Table 7.3 and Figure 7.2.
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Table 7.2 Case No. 14 Performance (qa(O) = .225 m2/sec 5 ,

1l 4 110 = 1/20 sec- I , Wa = I m4/sec I)

Flight Phase Final Times (sec)

598.75 1013.75 1295.00 2760.00 5100.00 6687.50

RSS POS ERR 56.92 136.67 25.41 155.54 209.87 1123.74

RSS VEL ERR 6.88 1.16 .43 1.38 1.19 8.78

MAX POS ERR 136.65 220.43 123.52 426.45 498.78D 1308.55

MAX VEL ERR 29.94 1.82 2.26D 8.91 10.03 137.36

POS ERR/SIG 1.20 4.23 2.77 2.98 6.96 67.32

VEL ERR/SIG 1.07 1.21 .46 .38 .40 2.12

2 5I

Table 7.3 Case No. 15 Performance (q a(0) = 1.8 m2/sec 5  0,

Wa 4 11
Wa = 10 m4/sec

Flight Phase Final Times (sec)

598.75 1013.75 1295.00 2760.00 5100.00 6687.50

RSS POS ERR 54.95 141.30 27.37 147.25 185.13 1007.69

RSS VEL ERR 6.76 1.73 1.06 2.94 2.97 6.27

MAX POS ERR 124.13 229.34 128.93 504.26 603.97 1200.32

MAX VEL ERR 27.08 3.91D 7.52D 25.51 30.89 110.09

POS ERR/SIG .92 3.73 2.41 2.30 4.34 52.22

VEL ERR/SIG .49 .65 .41 .25 .37 1.01
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The predicted process noise terms were generally optimistic.

This is evident from the standard deviation curves of Figures 7.1 and

7.2. The gains became small and the filter had difficulty following

the aircraft position. Errors became unacceptably large later in

flight. In addition, the q-estimator was not determining the proper

altimeter process noise.

A test was made using the Case 1 initial conditions in which

the altimeter bias q-process noise was increased to 10-1 m4/sec . This

test used the acceleration state q-process noise of 1 m4/sec II as in

Case 15. The results are given in Table 7.4 and are shown in Figure

7.3. Although there is some improvement, the final flight phase RSS

position error was still greater than one kilometer. The altimeter bias

q-process noise was increased further but the filter performance did

not improve.

2 5
Table 7 4 Case No. 16 Performance (qa() = .225 m /sec

= 1/20 sec -1, Wa = I m
4/sec ll)

Flight Phase Final Times (sec)

598.75 1013.75 1295.00 2760.00 5100.00 6687.50

RSS POS ERR 56.53 157.16 23.73 150.72 174.39 1065.25

RSS VEL ERR 6.88 1.12 .35 1.71 1.05 3.78

MAX POS ERR 136.64 246.86 157.89 398.25 479.55 1218.16D

MAX VEL ERR 29.94 1.82 1.38D 11.04 9.47 36.83

POS ERR/SIG 1.19 3.74 2.40 1.35 5.12 50.91

VEL ERR/SIG 1.08 1.16 .50 .48 .36 1.29
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The Q-Estimator was then modified so that only the acceleration

process noise terms were estimated. Spot checks of 600-second tests

were made to determine the validity of Table 7.1 for the reduced state

Q-estimator. The revised Q-estimator resulted in better performance than

the corresponding Table 7.1 tests but the relative behavior of the re-

vised filters was similar to the behavior shown in Table 7.1. The re-

vised Q-estimator was tested for the entire flight using the Case 1,

Case 3, and Case 7.5 initial conditions with acceleration q-process noise

equal to 1 m /sec1 I, 10 m4/sec II respectively. The results, identified

as Cases 17, 18, and 19 are given in Tables 7.5 through 7.7 and in

Figures 7.4 through 7.6. In general, the revised Q-estimator performance

is similar to the performance of the 12-state filter with some improve-

ment early in flight and some degradation later in flgiht.

Table 7.5 Case No. 17 Performance (qa(O) = .225 m2/sec

=1/20 sec- l, W = l m4/sec ll)

Flight Phase Final Times (sec)

598.75 1013.75 1295.00 2760.00 5100.00 6687.50

RSS POS ERR 56.18 142.75 21.24 208.25 102.21 55.42

RSS VEL ERR 6.88 .52 .33 1.93 1.00 3.57

MAX POS ERR 136.66 223.29 140.59 842.82 229. 53 ll0.99D

MAX VEL ERR 29.94 1.90 1.44 8.69 8.85 26.75D

POS ERR/SIG 1.14 1.98 1.48 .82 1.22 1.78

VEL ERR/SIG 1.08 1.08 .53 .49 .33 1.02

NOUNS&
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2 5Table 7.6 Case No. 18 Performance (qa(O) = .01875 m /sec

1 /20 sec -1 , W = 10 m4/sec ll)

Flight Phase Final Times (sec)

598.75 1013.75 1295.00 2760.00 5100.00 6687.50

RSS POS ERR 56.59 143.35 20.83 235.26 104.62 62.26

RSS VEL ERR 8.34 1.58 .46 2.20 1.64 3.26

MAX POS ERR 192.29 233.12 142.56 925.12 283.80 114.75D

MAX VEL ERR 33.33 2.75D 2.1OD 10.82 13.34 34.18

POS ERR/SIG 1.19 1.94 1.35 .87 1.17 1.93

VEL ERR/SIG 1.48 .73 .26 .23 .21 .64

2_ 5

Table 7.7 Case No. 19 Performance (qa() 1.8 m2/sec 5, = O,

W =10 m 4/sec 11)

Flight Phase Final Times (sec)

598.75 1013.75 1295.00 2760.00 5100.00 6687.50

RSS POS ERR 54.66 152.54 22.20 234.54 105.32 62.14

RSS VEL ERR 6.76 1.66 .50 2.47 2.04 3.13

MAX POS ERR 123.40 240.82 152.45 921.55 272.93 115.45D

MAX VEL ERR 27.08 3.63D 2.14D 13.80 17.07 33.97

POS ERR/SIG .89 2.04 1.44 .87 1.17 1.90

VEL ERR/SIG .49 .61 .26 .23 .23 .57
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7.3 Adaptive Age-Weighting

7.3.1 Development of the adaptive age-weighting algorithm.

Tarn and Zaborszky [80] pointed out that, within the constraints of

the modeled noise statistics, the Kalman filter assumes that observations

taken at a time in the past contribute the same amount of information

as current observations. They developed a simple technique to downgrade

the influence of past measurements by modifying the measurement noise

statistics. Using their modification, the linear observation expressions

are assumed to have the form

_(tk) = H(tk)x(tk) +

E[ R] = 0 (7.12)

T -E[LkLj] = s Rj6jk

where: s > 1;

tk is current time; and

tj is a time in the past.

The result can be expressed as a modification to the time update covari-

ance equation 7/1
//

kv 4~t k-) sP(tk-1) PT (tk t k-l + r(tk) (7.13)

The expression for P that results from Eq. 7.13 is used then in place/



246

of P in the remaining equations of the sequential filter.

Fagin [81] developed a similar technique based on a recursive

least squares derivation. Hagar [77:48] showed that Fagin's exponential

weighting factor is related to Tarn and Zaborszky's factor as follows:

s = exp[(tk - tj) /T] (7.14)

where: r is an arbitrary factor.

Age-weighting can be applied as a non-adaptive technique by choosing a

constant s or T. Hagar [77:79-80], however, suggested the use of the

predicted covariance of the residual to determine the factor s. The

following technique is a modification to Hagar's suggestion and is iden-

tical to the covariance double update of Heck [32:191-196].

If Yk is an estimate of the variance of the residuals, then

the estimate of the residual variance is set equal to the predicted

residual variance as in Eq. 6.22 except that T' is used to designate

the covariance matrix that will satisfy the equality.

Y k t Hk'H + Rk (7.15)

If P' is related to Tk by

k = sTk (7.16)

then Eq. 7.15 can be solved for the scalar s where the measurement

is assumed to be a scalar.
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S Yk - k (7.17)

HkPkH

The navigation filter then modifies the a priori covariance matrix in

accordance with Eq. 7.16. Note that this technique differs from that of

Tarn and Zaborszky's result, Eq. 7.13, in that the factor s is assumed

to apply to the discrete process noise matrix r as well as to the pre-

vious a posteriori covariance matrix.

Since the covariance matrix must be positive definite, s must

be positive. In fact, to satisfy the restriction on values of s from

Tarn and Zaborszky's algorithm and from Fagin's exponential from, s

must be greater than or equal to unity. Heck [82:194] suggested imple-

menting a maximum value for s of 1.2. A similar algorithm suggested

by Lear [83] would also limit s to a maximum of 1.2.

The calculation of Yk remains to oe discussed. Hagar suggested

using the mean of the square of the latest N residuals. This has

the advantage of smoothing large fluctuations caused by measurement

noise. If N is too large, however, the adaptive parameter may be

slow to recognize aircraft turns. The situation is further complicated

for GPS users because, if three satellites are visible and the user

has an altimeter implemented, then the user has a sequence of seven

independent and scatistically different measurements. Also, the assumed

measurement noise variance R is not necessarily stationary though it

may vary slowly. To eliminate the requirement that arrays of residuals
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be maintained for each measurement type, the adaptive age-weighting

algorithm tested in this study used only the square of the current mea-

surement residual as its estimate of the residual variance. The upper

limit on the weighting factor should prevent disastrous modifications

based on large measurement noises. If, however, a measurement source

fails and continually provides large residuals, then the continued appli-

cation of the factor may cause difficulties.

The adaptive age-weighting algorithm was implemented in two modes.

In the first mode, the age-weighting factor was calculated and applied

for all measurements. In the second mode, the factor was not calculated

for the range-rate measurements. The philosophy behind the second method

is made apparent by examining Eq. 7.14. Since the pseudo-range measure-

ment and the pseudo-range-rate measurement are time-tagged with the same

time, the age-weighting factor for the covariance matrix should be unity.

7.3.2 Results of adaptive age-weighting tests. Both adaptive

age-weighting algorithms were tested using various combinations of cor-

relation time and spectral level noise magnitude. Poor filter perfor-

mance resulted in all tests with little or no improvement over the

corresponding non-adaptive filters. Analysis of the results indicated

that the method may be more suited as a covariance maintenance technique

for applications where the covariance matrix would otherwise vanish or

became very small. The exponentially correlated random acceleration

model has no requirement for such a covariance maintenance scheme.
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7.4 Adaptive Process Noise Weighting

7.4.1 Development of the adaptive process noise weighting

algorithm. The a priori covariance matrix P defines a region of

uncertainty about the a priori state estimate. A portion of the region

is due to uncertainty in the initial conditions. This region is ac-

counted for by the oft term in Eq. 4.69. The rest of the region of

uncertainty is due to process noise that may occur during the time in-

terval of the covariance propagation. If the previous a posteriori co-

variance matrix P is correct and if the system dynamics as represented

by o are reasonable, then it can be assumed that the OP T term is

reasonably accurate. It can be argued then that any deviation of the

true state beyond the region of uncertainty as defined by P is due to

an error in the process noise matrix 1. Similarly, if the true state

remains in a region about the predicted state that is smaller than that

specified by P, then it can be argued that the filter process noise

matrix is too large.* These assumptions form the basis for the adaptive

process noise weighting algorithm.

Assume that the desired a priori covariance matrix is given by

p'(tk) = '(tktkl)P(tk-l) T(tktk-l) + sl'(tk) (7.18)

The assumed statistics must be considered before deciding that the state
is "in" or "out" oF its region of uncertainty.

I>

It
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Substituting Eq. 7.18 into Eq. 7.15 yields

Yk-H ~tktT OT R
S " Hk¢(tk'tk-l)P(tk-I)o (tk'tk- l)Hk k (7.19)

H rHT
k k

The adaptive process noise weighting algorithm is implemented by cal-

culating the factor s using Eq. 7.19 and then calculating the a priori

covariance matrix using Eq. 7.18. The filter equations then use the

modified a priori covariance matrix for the calculation of the gain and

for the covariance matrix measurement update. Since process noise is

not added between the processing of the pseudo-range measurement and the

processsing of the pseudo-range-rate measurement, process noise weighting

was not accomplished when the pseudo-range-rate measurements were pro-

cessed.

For this technique, the factor s must be greater than or equal

to zero. A value of s between zero dnd unity effectively lowers the

process noise added to the propagated covariance matrix. To prevent

difficulties caused by large measurement noises, a maximum value of s

was specified.

7.4.2 Results of adaptive process noise weighting. The adap-

tive process noise weighting algorithm was tested using various values

of correlation time, spectral level process noise, and maximum allowable

weighting factors. For those filters which assumed high maneuver vari-

ance, the performance was generally worse than the performance of the

corresponding non-adaptive filter in all phases of flight. When the
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maneuver variance was decreased, the adaptive process noise weighting

algorithm improved the performance of the takeoff and departure flight

phases but resulted in worse performance during cruise, approach, and

landing.

7.5 The Aidala-Davis Performance Index

7.5.1 Disadvantages of previous performance indices. The

performance indices used in the adaptive age-weighting and adaptive

process noise weighting algorithms have three major disadvantages.

First, they can be calculated only for scalar measurements. Second,

they use a single-sample variance to estimate the variance of the resi-

duals. And, third, the value of the index can be strongly influenced by

the type of measurement. The first two disadvantages also apply to the

Q-estimator. A performance index developed by Aidala and Davis [78]

eliminates these disadvantages.

7.5.2 Derivation of the index. Aidala and Davis [78] derived

the sequential filter equations utilizing the classical method of least

squares with a somewhat unorthodox performance index. Following is an

outline of their derivation.

Assume a system defined by the linear difference equation

+ k+l, kk + Bk (7.20)

where: is a p-dimensional state vector;
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4 k+l ,k is the state transition matrix;

Bk is the state noise matrix; and

!kis the process noise vector.

The observations are defined by

Hk~ ~(7.21)

where: is an rn-dimensional measurement vector;

H k is the observation-state matrix; and

Ykis the observation noise vector.

The statistics of Eqs. 7.20 and 7.21 are as follows:

E[x ]= x (7.22a)-o -o0

E[(2 -i)(xo )T] P (7.22b)

E [lik(7.23a)

E[w. - t)(j w)T 6 (7.23b)
-k) - kkjk

E[4] 0(7.24a)

=[jk R kdjk (7.24b)

E [(2S - (w~ ~T] 0 (7.25a)

-[( _- T]= 0, for all k (7.25b)

E (Iij-~ )] =0 for all j and k (7.25c)
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where: 6jk is the Kronecker delta;

x_- is the a priori estimate of the state xi ; and

wi is the a priori estimate of the noise ±i;

Note that in the definition of the system given above, reference is made

to an estimate of the process noise vector wi. The filter equations to

be derived, however, are oriented toward the estimation of the state x..

The following constraint will be placed on the estimates:

Xk+lIn = k+l,kk n + BkWkIn (7.26)

where: +lIn is the optimal estimate of 4+l based on n

m-dimensional observations;

4+11n is the optimal estimate of tk+l based on n

m-dimensional observations.

Equation 7.26 ensures that the estimates satisfy the system equations.

The following equivalences should be noted:

=i

B TBkQk' k = k
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where: rk is the discrete process noise matrix discussed in

Par. 4.5.

Using the system defined by Eqs. 7.20 through 7.26, Aidala and

Davis defined a performance index as follows:

1/2 _jn T -
Jn = I/2( on - o) P  (ojn - 2 o )

n-i T 1( n
+1/2 E Y In -( Yn w

n T
+ 1/2 E (4- Hx n (_ H x ) (7.27)

Z=0t I n RznII )TIn

The first term on the right hand side of Eq. 7.27 is a measure of the

error in the a priori estimate of the initial conditions normalized

(weighted) by the a priori covariance matrix for the estimate of the

intital conditions. The second term on the right hand side of Eq. 7.27

is a measure of the system noise normalized by the process noise covar-

iance matrix. The last term is a weighted least squares term to account

for data-fit errors. The performance index is thus a quantitative mea-

sure of the estimation process with a good intuitive basis.

The solution to Eq. 7.20 is given by

k-l
= + 1 0 kj+lBjwj, k = 1,2,. . . (7.28)
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Equation 7.28 is the discrete analogue to Eq. 4.62. If Eq. 7.26 is to

constrain the estimates, then Eq. 7.28 can be applied also to the opti-

mal estimates.

k-i

41k1n k,oo j n ): 4 k,j+1B P I k = 1,2,. .(7.29)

Aidala and Davis proceed to develop filter equations by minimiz-

ing J. under the constraints in)osed by Eq. 7.26. The independent

vectors in Eq. 7.27 are the a poster!ori estimate of the initial state,

x n  and the a posteriori estimate of the process noise wl

J=O,l,. ,n-l. Aidala and Davis minimize Jn by taking the partial

derivatives of Eq. 7.27 with respect to XoIn and i jin j=O,l,. . .,n-

and setting the partials equal to zero. By analyzing the effect of an

additional measurement on the optimal estimate, the seouential filter

equations are derived. For convenience, the sequential filter equations,

using the above notation, are summarized as follows:

-k+Ilk = k~lkXkk + BkIo (7.30a)

-k+1 = kil,kPk +k A 0
P P 1 T +(7.30b)

k+l k+l,k k k+l,k + k(73b

KP H (H P +H T + R 1(73ck+1  k+1 k+1 k+l k+l k+l)  (7.30c)

kXl k+l lk+l +l(y*+l - Hk+lXk+llk) (7.30d)

( - K+1Hk+1)Pk+ I (7.30e)
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A measurement residual is defined by

4 - HkikIk-1 (7.31)

Aidala and Davis, after considerable algebra, show that the performance

index of Eq. 7.27 can be written in terms of the residuals.

n T - T I -
in = 1/2 E z_(HkP HZ + z (7.32)

R=l

Note that the bracketed term in Eq. 7.32 is (see Eq. 6.22)

E[zT] H HT + R ,for all z. (7.33)

The performance index is a random variable and, as such, its statistical

properties can be examined. It can be shown that

E[z T(H P H + R ) z ] = m, for all C. (7.34)

where: m is the dimension of the measurement vector.

The mean and covariance of Jn are given by

E[Jn] = mn/2 (7.35)n

E[(Jn - E[Jn]) 2 ]= mn/2 (7.36)

where: J is Chi-Square distributed [90:178] if all statistics

are Gaussian.

'A
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As the number of measurements gets large, adaptive decisions,

based on a performance index as evaluated by Eq. 7.32, are difficult.

To eliminate this Jifficulty, Aidala and Davis introduced a modified per-

formance index.

n n-I T - T R -1

Ln = I/2 f l [zT(HP H + R z -m] (7.37)n =l Z'JZ k z

where: 0 < Y <.

The mean and covariance of the modified performance index are bounded.

E[LnJ = 0 (7.38a)

E[L ] 1 2 (7.38b)
n -Y

lim E[L ] = m (7.38c)
n -on 2(l - y2)

The modified index can be expressed in a recursive form as follows:

P yL + 1/2[ (HnP HT + Rn)-z - m] (7.39)Ln+l n +1/ +ln+ln+l n+l -n+l

7.5.3 Implementation of the Aidala-Davis index. The perfor-

mance index of Eq. 7.39 should be a good quantitative measure of system

performance. The difficulty is in the selection of the memory factor

y and the developmnl2t of a gain modification scheme. In tests imple-

menting the performance index, only the aircraft portion of the process
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noise matrix was modified based on the value of the performance index.

This approach was selected under the assumption that aircraft maneuvers

were the primary source of errors in the state estimate.

After calculating Lk using Eq. 7.39, the a priori covariance

matrix was modified as follows:

Fk + S(Lk) rac (7.42)

where: rac represents the aircraft state portion of the dis-

crete process noise matrix, Fk; and

S(Lk) is a factor based on the performance index, Lk.

Prior to describing the functiona7 form of S(Lk) chosen for

the numerical example considered in this investigation, the behavior

of Lk must be examined beyond the determination of mean and variance.

Of importance is the fact that the performance index has an absolute

lower limit, i.e., if all residuals are zero, the performance index has

a finite lower bound. To demonstrate this behavior, set the residuals

in Eq. 7.39 equal to zero giving

L+ l' = yL' - m/2 (7.43)

The solution to the difference equation of Eq. 7.43 can be obtained by

using z-tranform theory [84:384-393]. The z-transform of L' is

given by
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Z[L +,] = yZ[L ] + Zf-m/2]

= zZ[L1~] - AL0 + Z[-m/2] (7.44)

Solving Eq. 7.44 for the z-transform of L yields

Z[L ] z j-Lo z~ 1 -q (m/2) (7.45)

where: z/(z-l) is the z-transform of unity.

Expanding Eq. 7.45 by partial fractions

z m _r z
Z[L] L + E! Tz- (7.46)

Taking the inverse transform leads to

= k LO +( m 2) ( 9l... (7.47)

which, in the limit as k - ,yields

L mi = lim L 2( m (7.48)

The results of Eq. 7.48 could have been obtained by applying the Final

Value Theorem for z-transforms [84:390-391].

The calculation of S(Lk in Eq. 7.42 must consider the limi-

ting behavior of the index. In the algorithms tested, the calculations

used to determine S(Lk) are summiarized as follows:
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S' (Lk) - 1 for pseudo-range and altimeter
S(Lk) =measurements

S ' (Lk) for pseudo-range-rate measure-
ments (7.49)

exp(ClLk) if L< Lma x  (7.50a)
S' (Lkd = So if Lk> L (7.50b)

max kLmax :

C ln(S' min) (7.51)
nmin

ln(S max)
Lmax - (7.52)

If the index memory factor y is small, then the Chi-Square

distribution of Lk can cause large magnification of the performance

index by causing small absolute values of Lmin' This can be disas-

trous when the performance index increases because of aircraft turns.

Implementation of Eq. 7.49a allows for the reduction of process

noise if the performance index is below its mean value. Since process

noise is not added normally when the pseudo-range-rate measurement is

processed, Eq. 7.49b is implemented to insure that the covariance matrix

does not become non-positive definite.

When the performance index equals its minimum values, the factor

takes on the value of S The primary purpose of %in is to scaleI~i i n"m n

the effect of the performance index Lk on the factor S'(Lk). The

factor ClLk is a function of S min and the number of standard
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deviations that Lk departs from the mean. For large values of y

the modified performance index effectively includes more terms in the

summation. Since the Chi-Square distribution approaches a normal dis-

tribution as the number of terms increases, the statistical behavior

of CILk is approximately Gaussian for large y. For small y , how-

ever, the performance index may have poorly behaved statistics. For

-y0 , a single residual determines the gain modification.

The implementation method described above was intuitively devel-

oped. Many other possibilities exist, for example, on/off process

noise depending on the value of the performance index or a linear func-

tion of the performance index. Each method would have to be analyzed

using specific parameters. The method described was applied to an ADR

filter using the initial conditions of Cases 1 through 4 and 7.5.

7.5.4 Results of the Aidala-Davis Index Implementation. The

algorithm implementing the Aidala-Davis index was tested using the

initial conditions of Cases 1 through 4 and 7.5 for the first 600 sec-

onds of flight. The performance of the filter using the initial condi-

tions of Cases 1, 4, and 7.5 was considerably worse than the correspond-

ing non-adaptive filter. This is similar to the adaptive process noise

weighting results for the high noise cases except that the magnification

inherent in the exponential function magnified the errors. The Case 2

and Case 3 initial conditions, however, did result in better navigation

results for the inital tests. Table 7.8 lists the performance indi-

cators of the Aidala-Davis index implementation for Case 2 and Case 3

A- -'... : .m .. 7,



262

Table 7.8 Initial Results of the Aidala-Davislndex Filter

non- Memory Factor (y)
adaptive 0. .40 .50 .60 .707 .90

qa = .375 m 2/sec5, 8 s ec, .1 < S'(Lk) < 1000.

RSS POS ERR 298.96 70.91 70.08 73.21 70.89 79.43 90.58
RSS VEL ERR 34.57 11.41 12.92 14.01 14.01 14.17 15.49
MAX POS ERR 758.56 203.27 194.61 196.51 190.56 202.14 274.87
MAX VEL ERR 74.39 28.11 37.97D 33.53 40.27E 32.63 38.31
POS ERR/SIG 7.18 1.14 1.21 1.21 1.32 1.46 1.80
VEL ERR/SIG 13.24 .71 .95 .93 1.22 1.12 1.61
FIN POS ERR 22.79 53.76 21.96 67.61 13.24 27.06 30.15
FIN VEL ERR 4.29 1.78 1.76 5.79 1.03 1.52 2.30

qa = .01875 mZ/sec ,  1/20 sec-, .1 < S'(Lk) 1000.

RSS POS ERR 91.25 50.88 51.50 49.29 52.41 55.87 57.67
RSS VEL ERR 16.16 7.55 7.25 7.11 7.90 9.42 9.70
MAX POS ERR 258.69 149.02 137.23 138.07 143.84 152.11 128.98
MAX VEL ERR 41.88 28.81 29.27 29.40 28.77 37.19 28.72
POS ERR/SIG 1.98 .93 .98 .94 1.01 1.10 1.11
VEL ERR/SIG 3.70 .67 .72 .71 .79 1.00 .91
FIN POS ERR 24.94 22.11 19.39 18.42 18.09 18.39 18.64
FIN VEL ERR 1.44 1.08 .98 .95 .93 .90 .87

monk"
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initial conditions and for various values of the Aidala-Davis index

weight y.

The initial tests showed a marked improvement over the non-

adaptive cases in all parameters except the Case 2 initial condition

final position error. Full flight tests were accomplished with a mem-

ory factor y equal to /777 Using the Case 2 initial conditions,

the full flight test diverged. The maximum value of the process noise

weight S'(Lk) was reduced to 10. The filter, designated as Case 20,

did not diverge during the flight but did have unacceptable performance.

Table 7.9 and Figure 7.7 summarize the Case 2U results.

Case 21 was a full flight test using the Case 3 initial condi-

tions and a maximum process noise weight equal to 1000. The results of

Case 21 are given in Table 7.10 and are shown in Figure 7.8. Many

adaptive filters which recognize aircraft turns quickly are also sensi-

tive to measurement noise or turbulence. When sensitivity is reduced,

sluggish response to a maneuvering aircraft is usually the result. The

Case 21 conditions, however, improved the performance of the navigation

filter during the takeoff and landing phases of flight without severely

degrading the filter performance during cruise. Case 21 appears to have

the ability to steer a safe course between this Scylla and Charybdis of

the navigation filter.



264

Table 7.9 Case No. 20 Performance (qa = .375 m2/sec5  I sec

y = .707, .1 < S'(Lk) <10)

Flight Phase Final Times (sec)

598.75 1013.75 1295.00 2760.00 5100.00 6687.50

RSS POS ERR 109.23 128.57 149.49 1626.93 2082.81 1554.10

RSS VEL ERR 18.90 1.70 k3.52 6.59 7.92 3.61

MAX POS ERR 271.33 242 32 971.91E 29149. 3866.80D 1532.68

MAX VEL ERR 40.18 5.51D 63.67 90.20 181.08E 24.45

POS ERR/SIG 2.38 1.73 8.33 5.08 35.96 57.86

VEL ERR/SIG 4.13 .74 5.14 2.36 3.19 1.64

Table 7.10 Case No.21 Performance (q = .01875 m2/sec5  B = 1/20 sec -,

y = .707, .1 < S'(Lk) < 1000)

Flight Phase Final Times (sec)

598.75 1013.75 1295.00 2760.00 5100.00 6687.50

RSS POS ERR 55.87 142.76 24.48 176.40 102.81 39.76

RSS VEL ERR 9.42 1.39 .29 1.57 .73 3.98

MAX POS ERR 152.11 231.08 159.69 716.15 202.33 98.690

MAX VEL ERR 37.19 2.59 1.460 7.60 4.82 31.65

POS ERR/SIG 1.10 1.95 1.77 .77 1.29 1.23

VEL ERR/SIG 1.00 .69 .41 .62 .55 .74
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CHAPTER 8

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

8.1 Summary

The sequential estimation techniques investigated in this study

provide "optimal" estimates if the filter has an accurate representa-

tion of the system dynamics. With respect to the aircraft, this re-

quires that either the acceleration is known a priori and is included in

the filter algorithm, or that an accurate model for the acceleration is

available and that the unknown parameters for the model are included in

the filter state vector. Because of the inherent character of aircraft

trajectories, a priori knowledge of aircraft acceleration is unavailable

and no computationally tractable model exists which will precisely model

the acceleration. Also, because of the lack of a true aircraft model,

the goal of an "optimal" estimate should be replaced with the require-

ment for a "satisfactory" model. A satisfactory model is one which is

easily inplemented and which will result in accurate and reliable filter

performance. The continuous coverage by the Global Positioning System

(GPS) satellites and the short prediction time intervals will allow

approximate models to be used successfully by the navigation filter.

Successful evaluation of navigation algorithms for accuracy and

reliability required two fundamental efforts. The first effort was the

design and verification of a simulation computer program to realistical-

ly represent a user trajectory and the corresponding satellite

268
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observations. The second major effort involved the derivation, imple-

mentation, and evaluation of the various navigation algorithms. The

results of these efforts, as presented in this dissertation, are sum-

marized in the following.

8.1.1 The simulation program. To design the simulation com-

puter program, it was necessary to understand the major elements of

the GPS, its concepts, and its environment. The primary functional

segments of the GPS include the Control System Segment, which is re-

sponsible for ephemeris generation and satellite data maintenance; the

Space System Segment, which consists of the navigation satellites; and

the User System Segment, which includes the hardware and software

necessary to provide a navigation fix.

The specific models and methods used to simulate motion of the

GPS satellites, the satellite navigation signals, and a typical user

were described. The simulation program is coded in modular form to

allow flexibility in the choice of system models, navigation algorithms,

and user trajectories. The resulting computer simulation is a valuable

tool which can be used to provide a realistic simulation for navigation

algorithm studies. As adopted for use in this dissertation, the accur-

acy of the simulation is sufficient for initial algorithm investiga-

tions. Because of its inherent flexibility, the program can be up-

graded by incorporating more exact models of the GPS and the user equip-

ment. The information in Chapters 2 and 3 of this dissertation and the

reference, :ited cai, 'e used to guide a programmer in his selection of

alternate simulation models.
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8.1.2 Navigation studies. The sequential equations for the

linear, minimum variance filter were derived. The requirement for ac-

curate covariance matrix propagation was discussed and a new technique

to aid in the numerical integration of the covariance matrix different-

ial equation was developed. The sequential filter equations served as

a framework for the development of several navigation algorithms.

Four aircraft models were investigated. The velocity dead-

reckoning model maintained finite filter gains because of the inclusion

of process noise in the differential equation of velocity. Such

process noise is representative of uncorrelated random accelerations.

In order to be competitive with other algorithms, the process noise

assumed by the filter must be large. Otherwise, the filter gains will

be inadequate to track an aircraft maneuver. The assumption of large

uncorrelated random acceleration is not only intuitively displeasing

but also degrades filter performance during the cruise portion of

fl i ght.

A second aircraft model was based on the assumption that the

acceleration is an exponentially correlated random variable. Over the

prediction interval, acceleration is assumed to be a constant equal to

the last estimated value. The model can be referred to as an accelera-

tion dead-reckoning model. Because of the effects of the correlation

time parameter, this model permits the maintenance of reasonable filter

gains with low magnitudes for the spectral level acceleration process

noise. The numerical results established that the exponentially cor-

related random acceleration model could maintain track during aircraft



271

maneuvers and could also improve the cruise phase performance as com-

pared to the velocity-dead-reckoning model. Much of the improvement

in filter performance may be due to the estimation of acceleration

whereas acceleration is not estimated in the velocity-dead-reckoning

model.

A third aircraft model is a minor variation of the exponen-

tially correlated random acceleration model. With infinite correlation

time, the acceleration is characterized as a random walk. This model is

a limiting case ot the exponentially correlated random acceleration

model and provided numerical results similar to the results seen for

correlation times of twenty seconds and longer.

The fourth aircraft model. the Beta-estimator, was based on

the assumption that the acceleration has an exponential character. This

model requires the estimation of correlation tii, and thus increases

the size of the filter state vector, the required computer storage, and

the required computer run time. The model also, unfortunately, adds an

instability to the algorithm because of the difficulty in matching

exponential functions to rapid acceleration changes during aircraft

turns. Since the correlation time associated with the assumed exponen-

tial acceleration affects the covariance matrix propagation, the entire

filter operation is subjected to erratic behavior associated with the

state of tfle aircraft.

Adaptivw' technilues were tested in an attempt to improve the

per rmdnce of 'he e ;)onvntially correlated random acceleration models.

Three basic adaptive methods were tested. The first method, the
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Q-estimator, employed a secondary filter to estimate the spectral level

process noise magnitude. When applied to the estimation of accelera-

tion noise magnitude only, the performance of this filter was slightly

improved compared to the non-adaptive results. This method, however,

significantly increases program complexity.

The second adaptive method used a single-sample variance of

the residuals to scale the a priori covariance matrix (adaptive age-

weighting) or to scale the process noise matrix (adaptive process noise

weighting). The former method was unstable, probably because of the

size of the covariance matrix elements; the latter method did not im-

prove performance during maneuvers without degrading performance during

cruise.

The third adaptive method was based on a performance index with

a direct relationship to the loss'function of the sequential filter

equations. This method has the capability to consider vector measure-

ments, to effectively use a multi-sample variance of the residuals,

and to combine different measurement sources. The numerical results

showed that the filter could perform as an adaptive filter should, f

i.e., filter gains were increased during maneuvers and were decreased

during cruise.

8.2 Conclusions

Based on the numerical tests, it can be concluded that an

aircraft model which assur.es the acceleration to be exponentially

correlated will provide an accurate navigation fix with little danger
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of filter divergence. In addition, the Aidala-Davis performance index

can be incorporated into the algorithm easily and will enhance the

performance of the filter.

Based on the total effort expended in this investigation, the

following additional conclusions are offered:

1. The influence of geometry on filter performance is perva-

sive. In fact, those algorithms which had covariance behavior that

severely distorted the geometrical predictions, generally performed

poorly.

2. Satellite clock errors are critical. Because the satellite

clock errors will appear as biases over short time intervals, the navi-

gation filter will move the estimated user position to minimize the

residuals. Locations of the satellites and the signs of the clock

errors can cause large position errors without a large measurement

residual to indicate difficulties.

3. The Phase II configuration is inadequate for terminal

area navigation. If, in the simulated flight, the aircraft had to land

at T = 45 minutes, he would be landing with an extremely poor geomet-

rical configuration. Considering effects of maneuvers, the errors

could easily exceed one kilometer.

4. Numerica. tests, which were performed in the early stages

of this research, showed that an altimeter is a valuable additional

sensor. Also, if the altimeter errors are significantly worse than

that of th - adopted model, then an ill-conditioning between the altitude

estimate and the altimeter bias estimate can occur.
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5. Adaptive methods which cause significant changes to the

covariance matrix, can result in unstable performance if the covariance

matrix is not small.

8.3 Recommendations

Based on the overall efforts of this investigation, the follow-

ing recommendations can be made with regard to navigation algorithm

selection:

1. The algorithm should estimate acceleration.

2. The algorithm should have reasonable steady-state gains

when tested with a constant satellite-user geometry. Algorithms which

allow the covariance matrix to vanish or to become unrealistically

small are not acceptable.

3. Any schemes to modify filter performance based on detecting

maneuvers should operate via the process noise matrix. With a realis-

tic covariance matrix, modification of the a priori covariance matrix

(as in the adaptive age-weighting method) or modification of the covar-

iance matrix propagation (as results from the Beta-estimator) can lead

to disastrous results.

The aircraft model based on exponentially correlated random

acceleration can be conined with the Aidala-Davis performance index

and a covariance modification scheme similar to that tested in Chapter

7 to provide an algorithm which meets the criteria of the above recom-

mendations. Assuming adequate computer storage and time, this
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algorithm can be easily implemented on an on-board computer for GPS

user navigation.

8.4 Future Efforts

Future efforts should be directed toward a sensitivity anal-

ysis of the recommended algorithm. In particular, the following modi-

fications should be made to the simulation program for further tests of

the algorithm:

1. A more accurate GPS hardware/software representation

should be incorporated. Because this study was initiated early in the

development of the GPS program, certain elements of the hardware/soft-

ware had not yet been specified. As more precise knowledge of the com-

puter/receiver interface and the downlink data message is made available,

the information should be incorporated into the simulation.

2. The algorithm should be tested with less accurate user

cocks. The clock simulation adopted for the tests is equivalent to

a good quartz crystal clock. Clock accuracy on the order of the timing

used in on-board computers should be considered.

3. The adopted receiver accuracy is between that associated

with the Precision code and that associated with the Clear/Acquisition

code. Sensitivity to this error source should be investigated.

4. A rate gyro should be investigated as an additional sensor.

5. Tests shculd be made with larger wind gusts.

6. Othcr flight profiles, such as an over-the-pole flight and

a North-South trajectory, should be included to verify the results.

~i
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In addition to further testing of the recommended algorithm,

the algorithm itself could be modified to provide additional insight.

For example,

1. The aircraft model could be reduced to the velocity dead-

reckoning model. Additional analysis of this model is required if a

user has inadequate computer capability for the recommended algorithm.

2. A simpler covariance modification scheme could be used

with the Aidala-Davis performance index.

3. Parameter sensitivity analyses should be reaccomplished

for the algorithm using selected realizations of the scenario. Such

an effort is required to verify the sensitivity analyses contained in

this report.

Prior to actual on-board testing of an algorithm, all available

information should be examined and the appropriate modifications made

to the simulation computer program. The recommended algorithm should

then be evaluated using the techniques of this dissertation. It is

expected that the recommended algorithm will perform satisfactorily in

the ground simulation and in the on-board tests.
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APPENDIX A

COORDINATE SYSTEMS

One of the characteristics of the Global Positioning System is

its use of a worldwide common coordinate grid. The navigation signals

and the downlink data will, after processing, locate a user at a spe-

cific point in a coordinate system common to users worldwide. The re-

lationships between the GPS coordinate system and other systems can be

used to transform the ravigation output to coordinates in a desired

system.

Coordinate systems are defined by specifying an orgin, the di-

rection of the positive third-(z-) axis, the fundamental (xy-) plane

which is perpendicular to the positive third-axis, and the direction of

the first-axis which is in the fundamental plane. The second-(y-) axis

will always be defined to complete a right-handed coordinate system.

In the simulation and test programs, the common grid is assumed to be

the geocentric earth-fixed (GEF) system. The origin of the GEF system

is the center of the Earth (the geocenter). The positive third-axis is

assumed to be aligned with the Earth's angular velocity vector. The

GEF system is simulated as an "earth-fixed" system by assuming that

polar motion is negligible. The fundamental plane is the equatorial

plane, and the first-axis is aligned with the Greenwich meridian.

Satellite state propagation is accomplished by taking the

Kepleriar elements , an epoch and determining the satellite

277

a --. M-



278

position and inertial velocity in the orbital plane. The orientation

of the orbital plane is assumed to be fixed in an inertial coordinate

system. For the simulation and test programs, the geocentric inertial

(GI) system is defined to be the inertial system. The origin of the

GI system is at the geocenter. The positive third-axis is aligned with

the Earth's angular velocity vector. The first-axis is assumed to be

aligned with the GEF first-axis (Greenwich meridian) at T = 0. In the

simulation and test programs, precession and nutation have not been

modeled. The orientation of the GI system is therefore the mean orienta-

tion for the entire test flight. It should be noted that corrections

for polar motion, precession, and nutation will be accopplished by the

Control System Segment. User processing of the downlink satellite

ephemeris data will result in satellite positions in an earth-fixed

system. The effects of precession, nutation, and polar motion will not

effect a user over the one-hour applicability of the ephemeris information.

Figure A.l shows the relationship between the GI system and the GEF

system.

Figure A.l also shows an additional rotation about the Earth's

angular velocity vector equal to the user's longitude. It is convenient

to describe the North-East-Down (NED) directions by examining the

meridional section of the reference ellopsoid at the user's longitude

(Fig. A.2).

The origin of the Topocentric North-East-Down (TNED) system is the

user's location. The user's subpoint is the point on the reference

ellipsoid nearest the user. The vector from the user to the user's
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subpoint is the direction a plumb bob would point if the ellipsoidal

Earth were homogeneous. This direction is called the local vertical.

The third-axis of the TNED system is along the local vertical, pointing

toward the center of the Earth. The third-axis does not point directly

at the geocenter unless the user is on the equator or at one of the

poles. The fundamental plane of the TNED system is the local horizon-

tal which is defined as the plane perpendicular to the local vertical

at the user's location. The local horizontal is parallel to the plane

which is tangent to the ellipsoid at the user's subpoint. The first-

axis of the TNED system is along the intersection of the local horizon-

tal plane and the plane of the user's meridian. The first-axis is posi-

tive toward the North pole. The second-axis points East, completing the

right-handed coordinate system.

If a column matrix is defined to consist of the basis vectors

of a coordinate system and a second column matrix consists of the com-

ponents of a vector along the basis vectors, then a vector can be defin-

ed as the inner product of the matrix of components and the matrix of

basis vectors. For exanle, if the basis vectors of the GI coordinate

system are L, J, and K, then the satellite position vector, which has

components X, Y, and a along i, J, and K, can be written

R Xi + YJ + ZK (A.l)

or as the inner product



282

R [ X, Y9Z,] [IT=F~ (A.2)
Rs I B

where: Ri T [x, y, z]; and (A. 3)

B [I J Q]. (A.4)

If the basis vectors for the GEF coordinate system are 1, ,j,

and k, then the satellite position vector can also be written

Es xij+ Yj+ Zk [xRz i T RB (A5

wheX, Y, Z], Y Z] (A .6)

-

B T sne o e (A.7)

z 0 0 1 Z

Rs [weTJ13RS



283

The matrix representing a rotation of weT degrees about the

third coordinate axis is expressed as [weT]3
. Similar rotation matrices

can be defined for rotations about the first and second coordinate axes.

1 0 0

[0]I= 0 cos Q sin a (A.9)

0 -sin Q COSca

cos a 0 -sin a

[ 0 1 0 (A.10)

sina 0 COSa

Complex rotations can be expressed as a product of rotation mat-

rices. For more information on the properties of rotation matrices see

Eisenman [85].

The components of the satellite position and inertial velocity

vectors are first computed in the GI coordinate system and rotated to

the GEF coordinate system as follows:

RS  [weT] 3Rs (A.)

V , = [WeT (A.12)
s [eT]3V5('
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The user's location can be specified by the three parameters:

geodetic latitude €, longitude \, and altitude above the reference

ellipsoid h. Unless otherwise specified, altitude will imply altitude

above the reference ellipsoid and latitude will imply geodetic latitude.

The routine TOP2GEF, as used in the computer programs, solves

for the GEF components of user position and relative velocity. The input

to TOP2GEF is user location expressed as latitude, longitude, and

altitude and the user's relative velocity expressed as velocity North

vN, velocity East vE, and velocity doon vD. The components of the

relative velocity vector v are rotated into the GEF system using

V + 1/2]2 v (A.13)

where: vT = [vN, vD]. (A.14)

The user's position vector R is calculated using

R= x+ y+ zk = RTB (A.15)

= ae [1 - e2sin2] (A.16)

x = + h)coso cosx

y = (v + h)cos sinx (A.17)

z = (l-e 2) + h)sino

where: ae is the semi-major axis of the reference ellipsoid;

- -I
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e is the eccentricity of the ellipsoid; and

RT = [x, y, z]. (A.18)

It is frequently necessary to determine the latitude, longitude,

and altitude of a point whose components are given in the TNED system.

A- AXN + AXEE + AXDA ArTb (A.19)

where: ArT = [AXN , AXE, AXD]; and (A.20)

Ti

bT = [D1 -E k-]" (A.21)

Latitude, longitude, and altitude can be obtained by first rotating Ar

into the GEF system, then adding the result to the GEF components of the

user position vector.

R + AR R + [-X] 3 [0 + r/212Ar (A.22)

The result of Eq. A.22 is then used to solve for latitude, longitude and

altitude. Unfortunately, there is no closed expression for geodetic

latitude on the reference ellipsoid as a function of the GEF components.

A recursive algorithm must be used.

If the vector Ar is small, the latitude, longitude, and

altitude can be approximated by
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€ + AO + .0/arlR Ar (A.23)

X + AX x + Wa Ar (A.26)

h + Ah h + ah/rIR Ar (A.25)

The partial derivatives in Eqs. A.23 through A.25 are approxi-

mated as follows:

_WxlaxN
-- (A.26)

ax n x/7 7E

-- = DX/3xE (A.27)x E  x/")

Dh = -1 (A.28)
MxD

The terms ax/)x N  and 3x/axE are evaluated from the rotation

equa ti on

A Xn

FA~iA[

AR = jAy = [-x]33[€n12]2 IAxEI (A.2g)

yielding

Wax/xN -sin cos A (A.30)

DX/3xE -sin x (A.31)
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Differentiating Eqs. A.17 yields the following results:

ax = -[ae (I-e')(l-e'sin2o) 3 / 2 +h] sin * cos x~ (A.32)

i/,x=-[ae (-e 2i2 0) -1/2+h] cos * sin A (A.33)

Equations A.26 and A.27 can now be evaluated. The results are

stored in the parameters R20  and R 21.

R -1 a a(l-e2)(l-e 2sin2 W)3/2 + h (A.34)

21 (/oE R- e ((1einiY 2+h] cos o (A.35)

To first order, the latitude, longitude, and altitude of the

point (R + AR) are

~+ A p = + AxN/R 20  (A. 36)

X X= X + AXE/R 21  (A.37)

h + A = h - xD (A. 38)

On a spherical earth, Eqs. A.34 and A.35 reduce to

R ae + h (A.39)

R2 (a e + h) cos 4~(A.40)
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APPENDIX B

THE GENERATION OF RANDOM NUMBERS

Uniformly Distributed Numbers

Three types of random number distributions were required in the

simulation and testing programs: independent random numbers with uni-

form distribution; independent random numbers with Gaussian distribution;

and random numbers with exponential correlation. The computer system

used in the numerical tests was a Control Data Corp. CDC-6600, UT-2D

operating system. The computer system has a random number generator

called RANF which is a "multiplicative congruential" generator. De-

tails of the exact methods used in RANF and the implications of the

method are available in [86:Par. 13.9]. To satisfy the noise-generation

requirements of the simulation program adopted in this study, RANF is

used to provide independent random numbers with uniform distribution

between zero and one. The mean and variance of RANF are given by:

E[RANF] 1/2 (B.l)

E[RANF2] = 1/12 (8.2)

Gaussian Distribution

The Central Limit Theorem states that the summation of inde-

pendent random variables with a common distribution approaches the

Gaussian or normal distribution as the number of samples gets large

288
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[87:229). Using this theorem, a random variable which is defined as

follows:

12
x = i (RANF. - 1/2) (B.3)

will be assumed to have Gaussian distribution. The mean and variance

of x are given by

E[x] = 0 (B.4)

E[(x - E[x])2] = 1 (B.5)

The random variable of Eq. B.3 provides a good approximation to the

Gaussian distribution between plus/minus six standard deviations.

Hamming [55:309-323] discusses generation of uniform distributions

and Gaussian distribution in more detail.

Exponentially Correlated Random Numbers

The third type of random variable that is required must have

exponential correlation. Kochenburger [71:Chap.9] discussed the simu-

lation of an exponentially correlated random process by attempting to

match the power spectral density of the process. Lear [89] analyzed,

in detail, the behavior of an exponentially correlated random sequence.

Lear's method was incorporated into the simulation and test programs.

The random numbers were generated using the following equation:

wk Wklexp(-tk-tkl)/1

a/l - exp(- 2(tk-tkl)/T) X (B.6)

k- k-l



290

where: T is the desired correlation time;

tk-l 1 tk; and

x is calculated using Eq. B.3.

The mean, variance, and covariance kernel of Eq. B.6 are given by:

E[wk] = E[Wkl] ..... E[w,] = w0  (B.7)

E[w 2] = 02 (B.8)

E[wjwki = 02exp(-(tk-t )/T), tj <t k  (B.9)

Repeatability and Independence

By saying the contents of the random number generator RANF be-

tween time steps for each noise source, the random numbers generated

identical results for all computer tests. Also, by choosing starting

values for RANF that were sufficiently separated in the period of RANF,

independence of the various noise sources was assured.



APPENDIX C

THE MEASUREMENT PARTIALS

Expressions for psuedo-range, pseudo-range-rate, and altimeter

measurements can be separated into three parts: a part which is deter-

mined by the positions and velocities of the satellite and the user; a

part which is a function of variables to be estimated by the filter

other than the user's position and velocity; and any remaining terms.

The only remaining term which was evaluated by the tested user algor-

ithms was an atmospheric delay in the pseudo-range measurement. In ad-

dition to user position and velocity, the variables to be estimated in-

clude user clock bias, user cl-ck drift, and altimeter bias. Each of

these terms can be considered to be an unknown measurement bias. Values

estimated for each term may actually contain contributions from sources

other than those suggested by their names. For example, unaccounted

equipment delay in the user electronics will affect the estimation of

the "user clock bias."

The expressions for the observations as required in Eq. 4.80

are given by:

G (XT) - p + a1 + 6atm (C.l)

G.(X,T) = p + a2  (C.2)

Gh(X,T) = h + 6h (C.3)
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where: p is the line-of-sight range between the user and

the satellite;

p is the range-rate between the user and the satellite;

aI and a2 are user clock bias and user clock drift ex-

pressed in units of distance and velocity by multiply-

ing the time values by the vacuum speed of light;

6atm is the atmospheric delay expressed in units of

distance;

h is the altitude of the user above the reference

ellipsoid; and

6h  is the altimeter bias.

If a,, a2, and 6h are to be estimated, then the following

partial derivatives are required:

aG aG. DGh
P l 1;- =P (C.5)
aI  a a2  a6h

For the altimeter measurement, one more partial is required.

aGh = -1 (C.6)

axD
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The altimeter observation-state matrix for the basic twelve-state filter

is

Hh = [0 0 -1 000 :000: 00] (C.7)

The partial derivatives for the range and range rate can be

derived as follows. From Par. 3.6.1, the range is computed by the fol-

lowing relation

= [(X-x)2 + (Y-y)2 + (Z-z) 2]I/ 2  (C.8)

where: X, Y, and Z are the Geocentric - Earth - Fixed compo-

Tnents of the satellite position vector, Rs = [X,Y,Z]; and

x,y, and z are the GEF components of the user position

vector, RT = [x,y,z].

Taking the partial derivative of Eq. C.8 with respect to the user GEF

position coordinate yields:

3P -(X- x) , -(Y -y) -(Z- z)

X P ,y ) z

Equations C.9 contain the three GEF components of the unit vector dir-

ected from the satellite to the user. Defining _ui as the unit vector

from the user to the satellite, the partial derivative of the range with

respect to the GEF components of the user's position vector is given by:
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DR a U zGEF

where: I iGE is a column matrix of the GEF components of the

vector .

The desired state vector, however, is oriented along the North-East-Down

directions. Using the chain rule, the partial derivatives with respect

to the user's position in a Geocentric-North-East-Down (GNED) coordinate

system are:

P p a DX a P ay ~P 3 Z

axN ax axN ay axN aZ a

ap ~ DP D 33'Z ap az

aXE ax ax E ay ax E 3Z DXE

ao ao x ap ay aP DZ

DXD a xD l 3XD D M

Equation C.11 can be written in matrix form:
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)p x )Y ')z h
N  N ')N axN ax

a) ax ay z 3
... ... (C.12)

IxE axE axE i)xE  ay

ax ay ;)z ,

O~xD  Ix D lixD axD  'az

The coordinate transformation from the GtNED directions to the

GEF was given in Appendix A.

R - 1-X13[0 + n/212 RGNED (C.13)

where: A is longitude;

0 is geodetic latitude; and

[']2 and ['13 represent standard rotation

matri ces.

The matrix in Eq. C.12 corresponds to the inverse of the rotaticn mat-

rices in Eq. C.13. The partials given by Eq. C.9 can be computed using

the GEF components then rotated to obtain the partials with respect

to the GNED components. i.e.,
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= -/22 (C.14)aRGNED

Equation C.lO implies that the partial of the range with respect to

user position vector components in any frame is equal to the components

of the unit vector in that frame. With this fact, Eq. C.14 can be used

to rotate the components of the unit vector to the orientation of any

desired coordinate system.

A programming simplification can be obtained with the above

analysis. The range vector from the user to the satellite, expressed

in Topocentric-North-East-Down (TNED) components, is given by:

p= [P cos el cos az, p cos el sin az, -p sin el]b (C.15)

where: b is a matrix consisting of the basis vectors of the

TNED coordinate system. (See App. A.)

The unit vector along the range vector is

Iij = [cos el cos az, cos el sin az, -sin el]b

I Ti b (C.16)

The components of unit vectors aligned in specific directions are equal

regardless of their origin. Therefore,

lui I ui (C.17)TNED GNED
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Since elevation and azimuth are normally obtained as part of the satel-

lite ephemeris operation, the partial derivative can be obtained using

Eq. C.16 without any reference to rotation matrices.

The range-rate is given by Eq. 3.38.

[(X-x)(Vx-vx+ey)+(Y-y)(Vy-vy-wex)+(Z-z)(Vz-vz)]

[(X-x)2 + (Y-y)2 + (Z-z)2] I / 2 (3.38)

where: Vx,V Y, and VZ are the GEF components of the satellite

inertial velocity vector, VS = [Vx,Vy,VZ] (See Eq. A.12)

Vxvy, and vz are the GEF components of the user's rela-

tive velocity vector, V = [V, vV z ] (See Eq. A.14)

we is the rotation rate of the Earth; and

the denominator in Eq. 3.38 is the range.

It can be verified from Eq. 3.38that

u-lUiGEF (C.18)

Therefore, Eq. C.16 can be used to evaluate the partial derivative of

range rate with respect to the TNED components of the user's relative

velocity vector.

To evaluz' . 'he partials of range-rate with respect to the GNED

position, the chain rule is used to obtain
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ap pav x  avx avz  ap

a aXN aXN xN i x

ap a avx avy avz  4

-[--R/232 X]3  - + - __ -- (C. 19)
axE ay axE axE axE  aVy

apap Dv x avy av z

axD 3z axD  ax0  ax av

The magnitude of the range-rate seen by a suer is affected by his posi-

tion on the earth. The first term on the right hand side of Eq. C.19

accounts for this effect. A change in user position also changes the

orientation of a user's relative velocity vector in the GEF frame. The

second term on the right hand side of Eq. C.19 accounts for this effect.

The two vectors in Eq. C.19 are evaluated directly from Eq.

3.38.

a; = [v x - - "ey + (X - x)/p]/p

ax

S Ivy V + weY + ;(Y - y)/p]/p (C.20)
ay

- =v z - VZ + ;(Z- z)/p)/p
az

a; -(X-x) a (Y-y) ; -(Z-z)
-- = _ " - - - - (C.21)

avx p avy p avz p
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The remaining matrix in Eq. C.19 will be identified as D. The

D matrix will not be zero since Eq. C.13 also applies to the rotation

of the velocity components, i.e.,

V = [-X] 3 [ + r/212 VGNED (C.22)

A change in user position changes the latitude and longitude of the user

and will therefore change the values of the GEF components of the user's

relative velocity.

Geodetic latitude cannot be expressed as a closed form function

of the cartesian coordinates for an eccentric Earth. Intuitive argu-

ments will be used in the following analysis to derive the partial de-

ri vati yes.

Note that the elements of V in Eq. C.22 have no dependence

on altitude or, equivalently, x.. Therefore, the third row of the

matrix D is zero. Also, from the definition of geodetic latitude

and longitude on the reference ellipsoid, a movement in the North-

South direction has no effect on longitude and movement in the East-

West direction has no effect on latitude. After expanding the ele-

ments of D using the chain rule and after considering these remarks,

the matrix D is given by

a av ao v
30 3)xN  30 ax N  I€ ,x N

E  xE

0 0 0

in"
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From Eqs. A.34 and A.35

(xN ae(le 2)(1-e
2slnn ) 3/2 + h]-I  (C.24)

ax = [(ae(1-e2sin 2W 1"12 + h)cos J-I (C.25)
axEe

The rotation matrices used in Eq. C.22 can be expanded as follows:

-sin € cos x -sin 4 sin X cos

[-=-/2 -sin x cos A 0 (C.26)

-cos o cos A -cos 0 sin x -sin 0
L

The remaining terms of D are obtained by substituting Eq. C.26 into

Eq. C.22 and taking the appropriate partials.

avx = (-vN cos 0 + Vd sin c) Cos A (C.27)

= (-vN Cos * + Vd sin 0) sin > (C.28)

9Vz = - VN sin 0 - vD cos (C.29)
Do
av

x (vN sin E + vD Cos sin x v E Cos A (C.30)

- - N sin + vD cos f) cos -v E sin (C.31)

It was previously shown that the components of unit vectors

aligned in specific directions are equal regardless of the origin. Sim-

ilarly, the components of the user's relative velocity vector, aligned

in specific directions, will not change as the origin of the coordinate

system is changed. Accordingly, the partial derivatives which were
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derived with respect to the GNED components of the user's relative

velocity vector are identical to the partial derivatives with respect

to the TNED components.

Summarizing the results:

= -[o-/212[x] 3  3P (C.32)

Eq. C.26 Eq. C.9

ap (C.33)
r- [-1-/212[A1 3  . + DV

Eq. C. 26 Eq. C.20 Eq. C.21

_ - [-_-i/2121N] 3  V (C.34-)

EQ. C.26 Eq. C.21

where: The D matrix is evaluated using Eq. C.23 through C.31;

and

r and v are column matrices of the TNED components of

the user's position and relative velocity vectors.

Equations C.32 and C.34 can be replaced by Eq. C.16.

ap= = [-cos el cos az, -cos el sin az, sin el] (C.35)
ar 3v

The observation-state matrices for the pseudo-range and pseudo-

range-rate measurements are:
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HP u (-1D :00 0:00o0o:0 oj (C. 36)

H;p TNED 000 00 1(.7
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