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THE ROLE OF THE INTERACTOR IN DECOUPLING 

1 . L

PETER L. FALS and WILLIAM A • ~ ~VXCH* I ~ ..•~~-..
_ _ _ _

Lefsohetz Center for Dynamical Systems, Division of ~~
Applied Mathematics Brown University, Providence, R.X. 02912 

~~~

Abstract relating the interactor to decoupling via

Given any proper rational transfer 
state feedback are developed. The

matrix, T(s), a special lower left tn- 
question of triangular decoupling with
arbitrary pole assignment is examined in

angular polynomial matrix, 
~~~~~~ 

called section 3. Some comments and extensions
the interactor has been defined and are considered in section 4.
shown to be (together with the rank of
T(s) ) a complete invariant under dy— 2. The Interactor and State Feedback
namic compensation. In this paper , the
interactor is used to develop results ~~ 

Let S be the set of all proper
rational transfer matrices T(s) of full

decoupling and pole placement via feed— rank p
back. For example, it is shown that T 

such that the first rows,

triangular decoupling with arbitrary pole T (s), are independent. If T(s) is an

assignment is always possible using state
feedback and that decoupling with element of S, then the interactor is

arbitrary pole assignment is always defined by means of the following lemmas

possible using dynamic compensation. ((1]):

Lemma 2.1: Let T(s) be an m x m ele-
ment of S. ~~1~en there is a unique
nonsingu].ar matrix 

~~~~ 
of the form

f f

1. Introduction ~~~~ 
1
~.r
(5)t

~
i
~~

(8 ~~,. . . ,s ~) (2.2)

Given any proper rational transfer where
matrix T{s), a special lower left tri-
angular matrX~c, ~~~~~~ 

called the r 1 0 ...
interactor has been defined and shown to
be (together with the rank of T(s)) a HT(s) 1h21

(s) :~ 
(2.3)

complete invariant under dynamic compensa-
tion ((1)). In this paper, the interactor Lhml (5) 1

~
’m2~~~ 

... iJ
is used to develop results on decoupling
and pole placement. In particular, it is and h~~ (s) is divisible by s (or is

shown that a square system can be decoupled zero) such that
via linear state feedback if and on).y if
the interactor is diagonal, that tri-
angular decoupling with arbitrary pole u r n  

~T
(s)T(s) (2.4)

assignment is always possible using state
feedback, that decoupling with arbitrary
pole placement is always possible using with nonsingular.
dynamic compensation (state feedback and
input dynamics) ((2]), and that certain of Lemma 2.5: Let T(s) be a p X rn ele—

these properties are generics. ment of S Ith p c m~~~~hen there T~ a

In section .2, the interactor is de- un~i~ue nonsi~~~Tar lower left 
triangular

fined for reference and some basic results 
p )C p matrix F T (s) of the form (13)
such that
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~T
(s)T(s) K.~. (2.6) 0 

—

0
Lemma 2.7: Let T(s) baa p x m ale— a —1ment of S ~IEh p> m and let Tm tIY $ 1 ... 0
be the nonsingular matrix consisting of 0 1 0
the first m rows of T(s). Then there S(s) : : (2.10)
is a unique nonsingular lower left tn —
angular p x p matrix F;~~(s) of the 0 s 0
form
— 

r~rn 
0
~1 ~~

.

I I (2.8)

~~Y1
(5) i2(s~J and {~1, ,am} being the column

where y (s),y~~(s) are relatively left degrees of P ((4]). The feedpack pair1 (F,G) can be chosen to obtain anyprime and 
~~~~ 

is a nonsi~gular lower arbitrary column proper P~ G~’~ 
having

left triangular (p—rn) x (p—rn) matrix in the same column degrees as P(s). It fol—Rermite normal form with monic diagonal -lentries such that lows that T (s) P(s)P (s) and iti
C —l

u r n  F; (s)T(s) = 
inverse, P~ ,0(s)P (s), are both proper

T £ and hence, that linear state variable
feedback can be represented by the dy-!L~~ a constant matrix of rank in namic compensator T (a) (i.e., by

whose final P - m rows are zero. postmultiplication of T(s) by 
~~~~~~The interactor is of critical This leads to:

importance in questions relating to de-
coupling as will be shown in the sequel. Proposition 2.11: The interactor

Let T(s) be an element of ~~ is an invariant under linear state van-Then it is well-known that T(s) can be able feedback.
written in the form R(g)P 1(a) where
R (s),P (a) are relatively right prime Proof: By definition, lix F;~~(s)T(s) —

polyncmia~. matrices and P(s) is column s-~~proper. Under linear state variable with K~ nonsingular. However,
feedback of the form u — Fx + Gv , G non- lix P(s)P~~ (s) — C and so it followssingular, the open loop transfer matrix F,G
T(.) is transformed into the cloud loop that lix F; (s)R(s)P 1 (s)transfer matrix TF,G(s) given by T F,G

TF,G S =R (5)(P($)—F($)r’G=Rc$)ç~~(5)(2.9) ~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~ 
— is

nonsingular. The proposition follows froa
where F(s) — PS (s) with the uniqueness of the interactor.

Th.oram 2.12 (Cf. (4)) A system charac-
terized by a nonsinqular, proper, rational .3
in x in transfer matrix T(s) can be dc-
coupled via linear state variable feedback
if aM only if the interactor is
diagonal. —

1457
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Proof: If T(s)  — R(s)P~~ (s) can be polynomial of degree f~ + P ji then
decoupled using state feedback, then D(s)R(s) is a column proper polynomialthere is a feedback pair (F,G) such matrix with deg d~ = the i—tb colum.
that R(s)P

~~G
(s) — D(s) with D(s) a degree of P(s). It follows that there

diagonal transfer matrix. Since a feedback pain (F,G) such that

is invariant under state feedback, ~~~~~~ 
= D(s)R(s) and hence, that the

lix F;,~,(s)D(s) — K a diagonal non- closed loop transfer matrix
—

= R(s)R 1(s)D~~ (s) = Rd(s)D (s). Thus,singular matrix and so, 
~~~~ 

is mdiagonal.

Conversely, if F;~~(s) is ~ (f ~ +~~~) poles can be assigned

arbitrarily using this technique. Ifdiagonal, then F;T(s)R(s) can be deg(det K(s)) q and deg(det Rd(s))written in the form P ,.(s) for an m

appropriate feedback pair (F,G) (where 
p~ = p, then deg (det i ( s ) )  q — p

T(s) — R(s)P~~ (s)) since R(s) is m

nonsingular (i.e. det R(s) ~ 0). It and ~((f~+~~) = n — q + p = n — (q.-p) .
1

(s) The q - P poles which cannot be assign-follows that — R(5)P;
~G ed correspond to system zeros (those of

— F;;1(~) is the diagonal matrix with det’R(s)) which must be “cancelled” via
—f state feedback.

diagonal entries a ~~. In other words , It should also be noted that ifT~,~~(s) is the transfer matrix of an T(s) is a p x m transfer matrix in S
integrator decoupled system. with p < m, then the above results can

be used by simply adjoining additionalSuppose that T(s) is a non- rows to R(s) in an appropriate fashion.singular , proper, rational m x m
transfer matrix add that 

~~~~ 
is Theorem 2.14: Let T(s) be a proper

diagonal so that T(s)  can be decoupled rational p x m transfer matrix with
using state feedback. How many poles can p < m and suppose that T(s)  is of full
be arbitrarily assigned while simultane- ra~k p. Let D(s) be any proper
ously d.coupling the system? To answer Pi~Tonal ~~~ p diagonal tran~~er matrix
this question, let T(s) — R(s)P~~ (s) such that is proper. Then
with R(s),P(s) relatively right prime there is an element T (s) of S suchand F(s) column proper. Then a(s) C —

can be written in the form that T( s)T
~~

(s) — D(s).

R(s ) — Rd (s)R( s)  (2.13) Proof: An immediate consequence of
Theorem 4.5  of (1) .

where ad (s) is a diagonal matrix with This theorem (cf. (2)) essentially
diagonal entriis nj(s) such that r (a) states that decoupling with “arbitrary”
is the greatest common divisor of the ith pole placement is always possible using

a combination of state feedback and input
row of K(s ) • Let Pj — deg ri (s) and dynamics (i.e. so-called dynamic
let f~ be as in th. definition of compensation).

If D (s) is a diagonal matrix

with diagonal entries d~ (s) where each

d~ (s) is an arbitrary (Hurwitz)

1458 —
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3. Triangular Decoupling Using lix A(s) (F;T(s)R(s)U(s)1~~ 
0 (3.4)

In this section, it will be shown and
that triangular decoupling with
arbitrary pole assignment is always
possible using state feedback. El 0 0 ... o

Theorem 3.1: A system characterized by I~2l~’} 
1 0 ... 0

a nonsingularq proper, rational m x ~~ 

E(s) . . . (3.5)

transfer matrix T(s) can always be
triangularly decoupled with all closed Ie~1

(s) e~
(s) . ... 1

loop poles arbitrarily assigned using
linear state variable feedback.

p f —l 
It follows from (3.3) that D( s) — A(s)

K(s) ,P(s) relativ;ly right ;rime 
+ E(s)F;T(s)R(s)U(s) or, equivalently,

lower left triangular and P(s)  column
proper. Let U(s) be a unimodular
polynomial matrix which reduces 

D(s) = A( s) + F;T(5)l
~~
5Ufl5)

~T ( s) R ( s)  to row proper , lower left 
( 3.6)

triangular Hermite normal form i.e., + (E(s)~ IJF;T(s)R(s)U (s)

( a
(S) 0 ~ ... Let P(s) — A(s) + 

~~~~~~~~~~~~~ 
Then

I P(s) is triangular and det F(s) =

q21(s) q22(s) 0 ... 0

F;.p(5)R(5)U(5) — I : : 
det D (s) — fld~ (s) in view of (3.6). By

4 (~) ... %,~(5~j 
virtu, of (3.4),

(3.2) 
~~~~~ ~

(s) 1F;T(s) k(s)U(s)I
’ — I (3.7)

where qj j(s) is a nonzero monic poly—
nosnial and deg qj j(s) — k~ . Note that which implies

~ k~ — n — deg (det F ( s ) )  — ~~~ ~~~~~~~~~~~~~~~~ 
l (~ ) )~~1. — I (3.8)

deg(det F; (s)R(s)).
- T In other words, P(.)U ‘(a) is colui n
Now let D(s) be a diagonal matrix prop.r and of the same column degrees as

with diagonal entries d~ (s) wher• •ach ~~~~~~~~ 
(a fortiori as P(s)). Thus,

d~ (s) is an arbitrary (Hurwitz) poly— there ii a_ f eedback pair (F ,G) such that

nomial of degree k~. If 0(5) is right ~P’,G~
’
~ 

— • A (s)U 3 (s)

divided by IF ;T(s)R (s)U (s)J ~~~, then + F;f (s)R (s) and dat 
~~~~~ 

— ai~~~d~ (s)

- ~
- D(s) (F;.~(s)R(s)U(5) i~ — A(s) IF;,~(s)R(s)U(s ) 1~~ 

~~~. Thus , th. theorem

+ 
(3.3) i. coem.nts and Hxtenaion~

wt ere Th. results obtained her. are
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indicative of the role the interactor (5] W. Wolovich and P. Falb, On the
- 

can play in decoupling problems using structure of multivaniable systems,
state feedback. Extensions to the case SIAM 3. on Control , 7 , 1969.
of output feedback can be readily S 

—

developed for , under linear output feed— (6] P. Palb, On generic properties of
back of the form u = —Hy + Gv, G systems defined by transfer matrices
nonsingular, the open loop transfer to appear.
matrix T(s) is transformed into the
closed loop transfer matrix TH,G(s)
given by

T (B) = R(s)(P(s) — HR ( s) ]~~~GH,G 
—l (4.1)

= R (s)PH ,G (s) .

This leads, for example, to an immediate
translation of Theorem 2.12 for output
feedback.

Since the pole placement results
are constructive, they lead to specific
procedures for implementing the requisite
compensators. However , the questions of
minimality and stability of the compensa-
tors remain to be treated.

Finally, there is the question of - 
-

F. to what extent the results obtained here
are “generic”. The answer to this
question rests on showing that the inter-
actor 

~~~~ 
is, in an appropriate sense,

a continuous function of the transfer
matrix T(s). This is examined in [6).
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