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THE ROLE OF THE INTERACTOR IN DECOUPLING

PETER L. FALB and WILLIAM A. Wo. 'VICH"

Lefschetz Center for Dynamical Systems, Division of
Applied Mathematics, Brown University, Providence, R.I. 02912

Abstract

Given any proper rational transfer
matrix, T(s), a special lower left tri-
angular polynomial matrix, ET(s), called

the interactor has been defined and

shown to be (together with the rank of
T(s)) a complete invariant under dy-
namic compensation. In this paper, the
interactor is used to develop results on
decoupling and pole placement via feed-
back. For example, it is shown that
triangular decoupling with arbitrary pole
assignment is always possible using state
feedback and that decoupling with
arbitrary pole assignment is always
possible using dynamic compensation.

1. Introduction

Given any proper rational transfer
matrix T(s), a special lower left tri-
angular matrix, ST(B), called the

interactor has been defined and shown to
be (together with the rank of T(s)) a
complete invariant under dynamic compensa-
tion ([1)). In this paper, the interactor
is used to develop results on decoupling
and pole placement. In particular, it is

shown that a square system can be decoupled

via linear state feedback if and only if
the interactor is diagonal, that tri-
angular decoupling with arbitrary pole
assignment is always possible using state
feedback, that decoupling with arbitrary
pole placement is always possible using
dynamic compensation (state feedback and
input dynamics) ([2]), and that certain of
these properties are "generic".

In section 2, the interactor is de-
fined for reference and some basic results

st AVAIL aad/er SPECIAL

relating the interactor to decoupling via
state feedback are developed. The
question of triangular decoupling with
arbitrary pole assignment is examined in
section 3. Some comments and extensions
are considered in section 4.

2. The Interactor and State Feedback

Let S be the set of all proper
rational transfer matrices T(s) of full
rank Py such that the first Pp XOWS,

'rp (s), are independent. If T(s) is an
T

element of S, then the interactor is

defined by means of the following lemmas

({11):

Lemma 2.1: Let T(s) be an mxm ele-

ment of . Then there is a unique

o LA L ——"3—_—_—7_7__—1——Hg_f

nonsingular matrix ET s of the form
f1 fn

ET(s) = HT(s)diag[s e8] (232)

where

1
1 (8)

tes O

HT(S) =

By (8) By, (s)

and hij(s) is divisible by s (or is
zero) such that

3
N

lim £.(s)T(s) = (2.4)
e Eqp(s) Kg

with KT nonsingular.

Lemma 2.5: Let T(s) bea pxm el
ment of S with p < m. Then there

unique nonsinguiar lower left triangu!
P X P matrix & (s) of the form %))

such that .

*This work was supported by the Air Force Office of
Scientific Research under Grant AFOSR 77-3182.




1im ET(B)T(S) = Kn.

s>

(2.6)

Lemma 2.7: Let T(s) bea pxm ele-
ment of S with p> m and and let T (s

be the nonsingular matrix consistin of
the first m rows of T(s). Then there

is a unique nonsingular lower Teft tri-
angular p x p matrix ¢ Tb) of the
form

0

13
Tm
Epls) = (2.8)
-Yl(.s) Yz(s)

are relatively left
prime and yz(s) is a nonsingular lower

left triangular (p-m) x (p-m) matrix in
Hermite normal form with monic diagonal
entries such that

where yl(s).Yz(s)

lim £, (s)T(s) = K,

g+
with KT a constant matrix of rank m
whose final p - m rows are zero.

The interactor is of critical
importance in questions relating to de-
coupling as will be shown in the sequel.

Let T(s) be an element of S.
Then it is well-known that T(s) can be
written in the form R(s)P l(s) where

R(s),P(s) are relatively right prime
polynomial matrices and P(s) is column
proper. Under linear state variable
feedback of the form u = Fx + Gv, G non-
singular, the open locp transfer matrix
T(s) 1s transformed into the closed loop
transfer matrix Tp (s) given by

Ty o(8) = R(8) [P()F(8)1 716 = R(s)P; ()(2.9)

where F(s) = FS(s) with

B ——

i —
1 0 . 0

s 0 aee 0

23 -1 :

'1 o 5..0

0 1 0

S(s) = |: > 2 (2.10)

. .32_1 s

0 8 0

: : e ok
b e

and {31,...,3m} being the column
degrees of P ([4]). The feedpack pair

(F,G) can be chosen to obtain any
arbitrary column proper Pp G(l) having

’
the same column degrees as P(s). It fol-

lows that T_(s) = P(a)PF]'G( ) and its
(s)P (s), are both proper

and hence, that linear state variable
feedback can be represented by the dy-
namic compensator Tc(s) (i.e., by

postmultiplication of T(s) by Tc(s)).
This leads to:

inverse, P

Proposition 2.11: The interactor ET(I)

is an invariant under linear state vari-
able feedback.

Proof: By definition, lim Ep(s)T(s) = K,
8+

with nonningulnr. However,

lim P(-)P G(s) = G and so it follows

s-Nn

that ii: ET(-)R(J)P G(l)

= 1i R(s)P™ P(s)P = K.G i
.’: ET(l) (s) (l) (s) F,G(') Ko s

nonsingular. The proposition follows from
the uniqueness of the interactor.

Theorem 2.12 (cf. [4])) A system charac-
eriz a nonsingular roper, rational
m x m transfer matrix T(s) can be de-

coupled via linear state variable feedback
%%_E3!.I_!!_I!_EES_EESSESEEEE ETI" is
agonal.

1457




Proof: If T(s) = R(s)P™!(s) can be
aecoupled using state feedback, then
there is a feedback pair (F,G) such

that n(.)p;fc(-) = D(s) with D(s) a
diagonal transfer matrix. Since ET(s)
is invariant under state feedback,
lim Er(s)D(s) = K a diagonal non-

S+
singular matrix and so, (s) is

diagonal.
Conversely, if ET(s) is
diagonal, then ET(l)R(s) can be
written in the form PF,G(S) for an
appropriate feedback pair (F,G) (where

T(s) = R(s)P"1(s)) since R(s) is
nonsingular (i.e. det R(s) # 0). It

1
follows that TF'G(I) = R(s)PF’G(s)

tr

= 5;1(0) is the diagonal matrix with
-f

diagonal entries s i. In other words,

Tr'c(l) is the transfer matrix of an

integrator decoupled system.

Suppose that T(s) is a non-
singular, proper, rational m x m
transfer matrix add that ¢g,(s) is

diagonal so that T(s) can be decoupled
using state feedback. How many poles can
be arbitrarily assigned while simultane-
ously decoupling the system? To answer

this question, let T(s) = R(s)P 1(s)
with R(s),P(s) relatively right prime
and P(s) column proper. Then R(s)
can be written in the form

R(s) = nd(-)i(-) (2.13)

where Rd(l) is a diagonal matrix with
diagonal entries ri(!) such that ri(s)

is the greatest common divisor of the i‘"
row of R(s). Let Py = deg rl(l) and

let !1 be as in the definition of
Ep(s). If D(s) is a diagonal matrix
with diagonal entries di(n) where each
d;(s) is an arbitrary (Hurwitz)

polynomial of degree fi + 040 then

D(s)R(s) is a column proper polynomial
matrix with deg di = 31, the i-th colum

degree of P(s). It follows that there
a feedback pair (F,G) such that

PF G(s) = D(s)R(s) and hence, that the
.

closed loop transfer matrix T, G(s)
’

= RsIR (@107 (s) = Ry(e)D71(s). Thus,
m

I (£+0;) poles can be assigned

1

arbitrarily using this technique. If
deg(det R(s)) = q and deg(det Rd(s))

m o
{ Py = P, then deg(det R(s)) = q - p

m
and :Zl((fiﬂ)i) =n-qgq+p=n- (g-p).

The q - p poles which cannot be assign-
ed correspond to system zeros (those of
det R(8)) which must be "cancelled" via
state feedback.

It should also be noted that if
T(s) is a p *x m transfer matrix in S
with p < m, then the above results can
be used by simply adjoining additional
rows to R(s) in an appropriate fashion.

Theorem 2.14: Let T(s) be a groger
rational p x m transfer matrix wit
P<m and su se that T(s) is of full
rank p. Let D(s) be an rYoper
rational p x p diagonal transser matrix
such that ET(B)CBI(s) is proper. Then
there is an element Tc(a) of S such

that T(s)Tc(s) = D(s).

Proof: An immediate consequence of
Theorem 4.5 of [1].

This theorem (cf. [2]) essentially
states that decoupling with "arbitrary"
pole placement is always possible using
a combination of state feedback and input
dynamics (i.e. so-called dynamic
compensation) .




3. Triangular Decoupling Using
State Feedback

In this section, it will be shown
that triangular decoupling with
arbitrary pole assignment is always
possible using state feedback.

Theorem 3.1l: A system characterized by
a nonsingular roper, rational m x m
transfer matrix Tisi can always be
triangularly decoupled with all closed
loo les arbitrarily assigned usin
Iinear state variable feiﬁSch.

Proof: Let T(s) = R(s)P l(s) with
R(s),P(s) relatively right prime, R(s)
lower left triangular and P(s) column
proper. Let U(s) be a unimodular

polynomial matrix which reduces
ET(s)R(s) to row proper, lower left

triangular Hermite normal form i.e.,

qll(s) 0 0... O
9y, (8) qzz(s) 0... O
ET(sHNans)= F .

a8 a8 ... qgls

(3.2)

is a nonzero monic poly-
Note that

where qii(')
nomial and deg qii(') = ki.

k, = n = deg(det P(8)) =

i
= deg(det ET(I)R(O)).

Now let D(s) be a diagonal matrix
with diagonal entries di(') where each
d (s) is an arbitrary (Hurwitz) poly-
nonial of degree ki‘ 1f D(l) is right
divided by [ET(l)R(I)U(l)] . then

= I\(-)[E.l.(-)l!(-)u(l)l'1
(3.3)

D(s) [£4(s)R(8)U(s) ™

+ E(s)
where

lim A(s) (6, (s)R(s)U(s) 172

S+

and

1

e,. (s)
E(s) = 21

see = O

ﬁuf’) %ﬁ(ﬂ

It follows from (3.3) that D(s) = A(s)
+ E(s)ET(s)R(s)U(s) or, equivalently,
that

D(s) = A(s) + ET(-)R(l)U(-)
+ [B(s)-I]ET(l)R(a)U(a)

Let P(l) = A(s) + E (s)R(l)U(s). Then

P(a) is trinngular and det P(s) =

det D(s) = Ildi(l)
1

virtue of (3.4),

in view of (3.6). By

lim B(s) (€4 (s)R(8)U(8) ]
'“

which implies

lim £ (s)R(8) (B(9)0™ (8117 = 1 (3.8)
g+

In other words, P(s)U }(s) is column
proper and of the same column degrees as
ET(I)R(I) (a fortiori as P(s)). Thus,

there is a f.odbcck pair (F, G) such that
ci® = B(s)U” (l) = A(-)u (s)
+£,(I)R(l) and det P, ') = aﬁd (s)

for some constant a. Thus, the thoorou

is established.

4. Comments and Extensions
The results obtained here are




———

indicative of the role the interactor [5]
can play in decoupling problems using
state feedback. Extensions to the case
of output feedback can be readily 6]
developed for, under linear output feed- [
back of the form u = -Hy + Gv, G
nonsingular, the open loop transfer
matrix T(s) is transformed into the
closed loop transfer matrix 'rH G(s)

’

given by

T, o(8) = R(s)[P(s) - HR(s)] G
' i (4.1)
= R(s)PH'G(s).

This leads, for example, to an immediate
translation of Theorem 2.12 for output
feedback.

Since the pole placement results
are constructive, they lead to specific
procedures for implementing the requisite
compensators. However, the questions of
minimality and stability of the compensa-
tors remain to be treated.

Finally, there is the question of
to what extent the results obtained here
are "generic". The answer to this
question rests on showing that the inter-
actor £T(s) is, in an appropriate sense,

a continuous function of the transfer

matrix T(s). This is examined in [6].

References

[1] W. Wolovich and P. Falb, Invariants
and canonical forms under dynamic
cggggnsat!on, SIAM J. on Control, 14

[2] W. Wonham and A.S. Morse, Decouplin
and le assignment in linear multi-
varIEEI. stems: a geometric
approach, . on Control, 8, 1970.

[3] W. Wolovich, "Linear Multivariable
Systems”, Springer-Verlag, New York,
1974.

[4] P. Falb and W. Wolovich, Decouplin
in the design and s th‘-In of multi-
variable control l*t%c-l, 1IEEE Trans.
u .

ntrol, -12, 7.

1460

W. Wolovich and P. Falb, On the
structure of multivariable systems,
SIAM J. on Control, 1, 1969.

P. Falb, On generic properties of
systems defined §y trans%er matrices

to appear.

e




&

I ke e S O o ot S e B S £ S S S~ SRl R |

SECURITY CLASSMICATION OF THIS PAGE (When Data Entercil)

T .
READ INSTRUCTIONS
\YREPORT DOCUMENTATION PAGE G MEAD BISTRUCTIONS
[ 2. GOVY ACCESSION NO.| R - MDG NUMBER
S bk 75,
’
) A4°L£ |
ITLE (and Subtitie) S. TYPE OF REPORT & PFR!INND COVERED

HE ROLE OF THE INTERACTOR IN DECOUPLING , ‘ 1) 1% |
5 e = " Bt - s.;ﬁ'enr;ammc ‘026. REPORT NUMEER
v = 8. s)
Peter L.fFalb AF@SR-77-3182
A ¢ Wolovich

| & it S

{ 9. PERFORMING ORGANIZAT! SS 10. ::gil{kzoERLKEMENTT. PROJEEST, TASK
Brown University UNIT NUMBERS

LEfschetz Center for Dynamical Systems‘/ Ol102F
Providence, R1 02912 / _2304]A a, a7

gy |

11. CONTROLLING OFFICE NAME AND ADDRESS 12. RT DATE
Air Force Office of Scientific Research/NM on 7
Bolling AFB DC 20332 13. ER
6
4. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Oftice) 1S. SECURITY CL ASS. (of this report)
UNCLASSIFIED

15a. DECL ASSIFICATION/DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, it different from Report)

18. SUPPLEMENTARY NOTES

Proceedings of the 1977 Joint Automatic Control Conference, San Francisco, Jun 22-24,
FA27-1140 p1456-1460

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

“ ‘ X(‘ Sab _?_

/

. ABSTRACT (Continue on reverse side If neceseary and identily by blocl¥ number)

Given any proper rational transfer mafrix, T(s), a special lower
left trimangular polynomial matrix, (E)(s), called the interactor
has been defined and shown to be (tog€ther with the rank of T(s))
a complete invariant under dynamic compensation. In this paper,
the interactor is used to dbelop results on decoupling and pole
placement via feedback. For example, it is shown that triangular ﬁ

decoupling with arbitrary pole assignment is always possible using
state feedback and that decoupling with arbitrary pole assignment
o ?z‘»

SECURITY CLASSIFICATION OF THIS PAGE (When Date
YPL 3% 774

v n - s

DD ':g:'fn 1473 E€0ITION OF | NOV 68 IS OBSOLETE

i

-




e TSR

- 5 N w14

% *CU!ITY C‘LASSIFICATOON OF THIS PAGE(When Data Entered)s

“20 . ABSTRACT (Continued)

is always possible using dynamic compensation.

S L SIS SN LIS

UNCLASSIFIED
SECURITY CLASSIFICATION OF Tu'® PAGE(When Dete Entered)

o— e et e ——— ..




