—_—

"AD=A052 731 CHARLES STARK DRAPER LAB INC CAMBRIDGE MA ‘F/@ 9/2
JOVIAL STRUCTURED DESIGN DIAGRAMMER (JSDD). VOLUME III. PROGRAM==ETC(U)
. FEB 78 & GODDARDs M WHITWORTH, E STROVINK F“.OZ-TM-O”O
UNCLASSIFIED R=1120-VOL=3=PT=1 RADC=TR=78=9=VOL=3=PT=1

=

RADC-TR-78-9, Vol III, Part 1 (of four)
. Final Technical Report
e February 1978
(]

T

T Program Description. '~ ¢
G. Goddard

M. Whitworth
<< E. Strovink

The Charles Stark Draper Laboratory, Inc.

DBC FiLE copy®

- - e

Approved for public release; distribution unlimited.

ROME AIR DEVELOPMENT CENTER
Air Force Systems Command
Griffiss Air Force Base, New York 13441

& JOVIAL STRUCTURED DESIGN DIAGRAMMER (JSDD) 1 o trn
|

i

. ;\‘

Because of the size of this volume, it has been divided into four parts.
Part 1 contains pages 1/2 - 123, 649 - 657, Part 2 contains pages 124 - 344,
Part 3 contains pages 345 - 592, Part 4 contains pages 593 - 648.

This report has been reviewed by the RADC Information Office (0I) and is
releasable to the National Technical Information Service (NTIS). At NTIS it
will be releasable to the general public, including foreign natioms.

RADC-TR-78-9, Vol III, Part 1 has been reviewed and is approved for
publication.

APPROVED: <=j;)_ z ? (144:;¢§Z£12%:27

DONALD VANALSTINE
Project Engineer

APPROVED: W‘({Ge g L

WENDALL C. BAUMAN, Colonel, USAF
Chief, Information Sciences Division

FOR THE COMMANDER: T _,QO/‘/A_Q_/

JOHN P. HUSS
Acting Chief, Plans Office

If your address has changed or if you wish to be removed from the RADC mailing
list, or if the addressee is no longer employed by your organization, please
notify RADC (ISIM) Griffiss AFB NY .13441. This will assist us in maintaining
a current mailing list.

Do not return this copy. Retain or destroy.

—— o i

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)
READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE pEr EAD INSTRUCTIONS

E [T, REPORT NUMBER 2. GOVT ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER
b RADC-TR-78-9, Vol III, Part 1'(of four) Q

A Ti T e OuOTII O™ £ OVERED

. é \'s STRUCTURED D’.I‘ESIGN _DIAGRAMMER (_JSDD), inal Technical Repeste
0 ? - T — e 76 — Octebwr 77

3 " \/ﬂ)'u."'\ﬂ_ m. o9 Y am LA\ ptionNg . - -
} Pavt L, J ‘-[R-1120 — o -
;) ——_— v — o~ ~

G./Goddard)

M. Ahitworth | 6] [F3pep2-76-C-p4p8 l

E. gtrovink
- ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK

N REA & WORK UNIT NUMBERS

The Charles Stark Draper Laboratory, Inc.

555 Technology Square / P.E. 62702C
Cambridge MA 02139 / 7.0. 55811412
11. CONTROLLING OFFICE NAME AND ADDRESS

Rome Air Development Center (ISIM) @

Griffiss AFB NY 13441

132

4. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office) 15. SECURITY CLASS.
e it e 8%

Same J é [UNCLASSIFIED
3 1Sa. DECLASSIFICATION/ DOWNGRADING

[N/A sC

16. DISTRIBUTION STA 8 Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

Same

18. SUPPLEMENTARY NOTES

RADC Project Engineer: Donald VanAlstine (ISIM)

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

Structured programming Preprocessor
Structured design diagram Flowcharter
Structured extension JOVIAL J3

Parse Invocation diagram

Paﬁser generator

20. A ITRACT (Continue on reverse side if necessary and identify by block number)
; e report presents a detailed description of the JOVIAL Structured Design
Diagrammer program implementation for purposes of maintaining or modifying the

system.\

DD , on'ss 1473 €0iTION OF 1 NOV 68 1S OBSOLETE UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

U S ———
e

:

"

Acknowledgement

Laboratory,
Howe Alr

[his report was prepared by The Charles Stark Drapger
Inc., under contract F30602=-16-C=-0408 with tne
Developiient Center at Griffis Air Force 3ase.

Especial credit 1is due Wmargaret Hamilton, who ploneered
principles of OStructured Programming at Urapger Lacoratory.
saydean Zeldin originally suggested the symnhology implemented in
the output of the JOVIAL Structured Design Diagrauer. Ihanks
should go also to William bDaly, who created the Structurei Design
Diagramumer for the HAL language (currently being used on the ASA

Space Shuttle project). The authors are indebtel tc¢ victor

Voydock for his invaluable assistance in implenenting a cowdlete
MULTICS user interface which was wused successfully for the
duration of the JSDD imolementation. The authors are also

yrateful to J. varton Dewolf whose iwany suggestions wWere of grect
assistance tarouihout this effort.

ACCESSION for /
NTIS Wit Soction A
ons t Section [
UNANNOHNET™ O

JIB N R o
e cccscranen e e e tasasananane ==

BY

DISTRIGUTION/AVAY A2LITY 007ES
s _ 5 CIAL]
b 1

“ BEST AVAILABLE COPY

~wr——

sk

PROGRAM DESCRIPTION

This document was produced to satisfy the requirements
of contract number F30602-76-C-0408 with the Rome Air
Development Center. It is one of four companion
volumess

* JOVIAL Structured Design Diagrammer (JSDD)
Report Suinmary

This document is a summary of the contents of
the JSDD Final Report.

* JOVIAL Structured Design Diagrammer (JSDD)
Final Keport]

fhis wvolume presents the design techniques
for implementing the JSDD and describes the
use of Structured Design Diagrams.

* JOVIAL Structured Design Diagrammer (JSHD)
Program Description

This volume presents a detailed descrintion
of the program implementation for purnoses of
naintaining and/or modifying the JS[DD.

* JOVIAL Structured Desian Diagrammer (JSDD)
User’s Manual

This volume presents the user’s view of the
JShD along with wuser options and other
information about running the proqram.

. BEST AVAILABLE COPY

: TABLE UF CUNTENTS |
N |
)
Section Page 1
1. Introauction 5
2. Computer lieiinition 7
3. System liescription 8
4, Pronram Description 9
4,1 TThe Strinc Fackaoe 11
4.2 Phase | Procram Structure 18
4.3 Phase | Modules, Variables, and CLonstants 41
4,4 Data Files Passed to Phase Z 64
4,5 Desion Diagram Generator ([UG) Program Structure 65
4,6 Phase z Moaules, Variables, and Constants 8
4,7 Invocation Diaarammer 105
4,5 Compllino the JSDU 112
b« Error Conditions 114
.1 FError Conditions in Phase | 114
b.¢ DG Error conditions and Lebucaina kessaces — — 116
5.3 Error Conditions in the Strinn Package 123
6. Uperator Instructions 123
7. Phase | Structurea Desian and Invocation Diagrams-.____124
f 8. Phase 2 Structured Design and Invocation Dianrams 345
9. Invocation Diamrammer Structured Desion andg
Invocation Lianrams 593
Rererences 648

Appendix At Representino Proorams as isinary Irees
Appendix ot Statement units, Statement tokens «nd ifappines
Appendix C: Uptimizing the Louble pufrerin: Systerm

4

BEST AVAILABLE COPY

le Introduction

In recent years, the digital computer software industry has
directed considerable effort toward the development of
design and implementation methodologies to ensure the
sufficiency, reliability, and maintainability of software
systems. The most widely known product of this effort |is
the 1loosely defined set of design and programming practices
called "Structured Programming" (see references 1, 2, and
3)e.

Structured Programming does not constitute a complete
software development methodology. Rather, it is a
collection of general guidelines for use by software
designers and implementors. As such, it provides no uniform
approach to system design and offers no method of evaluating
system sufficiency with respect to requirements or design.
Despite these shortcomings, adherence to the Structured
Programning principles can be of great assistance in
producing software systems which are reliable and
intellectually manageable.

The techniques of Structured Programming are sufficiently
general to allow system developers a tremendous amount of
stylistic freedom. However, the generality of the
techniques has made the development of a standard approach
to software analysis extremely difficult. The prototype
JOVIAL Structured Design Diagrammer (JSDD) 1is the first
component of an integrated software analysis and
documentation system which will address itself to this task.

The JSDD 1is an automated analysis and documentation system
which produces two types of diagrams: Structured Design
Diagrams (SDDs) and Invocation Diagrams. SDDs provide a
graphic display of program control logic. Invocation
Diagrams are a display of a software system’s functional
(calling) structure.

The JSDW processes digital computer programs written in
either JOVIAL J3 or Extended JOVIAL J3. Extended JOVIAL J3
is standard JOVIAL J3 as specified in reference 4 plus the
structured extensions to JOVIAL J3 (see JSDD Final Report)
which are based upon keference 5.

This document describes the internal structure of the JSDD
programs, with the objective of providing enough detailed
implementation information to allow their easy modification.

" BEST AVAILABLE COPY

i

An effort has been made to provide a top-down approach to
this detailed structural informations thus, it is hoped
that a high-level understanding of the JSDD can be acquired
by an untrained reader without any necessity on his/her part
to read through needless technical detail. By the same
token, the detailed information is still available (at lower
section levels) for systems engineering personnel.

2. Computer Definition

The JOVIAL Structured Design Diagrammer is designed to run
on all Honeywell Information Systems Inc. Series 6000
computers providing at least one disk drive, one line
printer, and 96K of user memory in addition to the memory or
separate input/output devices required by the GCOS operating
system identified in Section 3.

BEST AVAILABLE COPY

3. System Description

The JOVIAL Structured Design Diagrammer is designed to run
under the Honeywell Information Systems Inc. Series 60 Level

66 and Series 6000 General Conmprehensive Operating
Supervisor (GCOS) Version 1/6.

T W T —— Yy

4, Program Description

The JSIW consists of three programs, organized as two
conceptual "passes." The first pass 1is referred to
(interchangeably) as the "pesign Uiagram Database Generator"
(DLVG) or "Phase 1", Ihe second pass consists of two
programs, one which draws Structured Desigyn Diayrams (SDDs)
and another which draws Invocation DUiagraus. lhet i irst
program 1is referred to (interchangeahly) es the "Design
Diagram Generator® (DIiG) or "Phase 2". ‘the s~~ond progranu
is always called the "lInvocation Diagrawmer." (see Figure'4-1)

The first pass of tne JSDD is language-dependent, because it
must extract from the JOVIAL J3 1input prograsa enough
information to enable the SDU and the Invocation Diagram to
be drawn. To extract this knowledge requires an intinate
familiarity with JOVIAL J3 - hence, the language dependence.

However, the database produced by the first Dass is
language-independent, and consists of output files which
could just as well have been created ny a PL/I datavase
generator. this means that both Phase 2 and the Invocation
Diagrammer are language-indeonendent programs.

Thus, it is clearly beneficial to separate out that aspect
of the JSLD which is language dependent, so that the second
pass can be applied without alteration to other Jdatabases
created by non-JOVIAL datahase generators.

There 1is another reason for a two-pass structure, however:
Pnase 2 has an extensive 1list of options and formatting

capabilities. ILf an sSDD produced by ‘Phase 2 1is
unsatisfactory in some way, oftimes Phase | n2ed not be
re-run. Using the same database as before, Phase 2 is

capable of generating another entirely dissinilar SDD if
given different options. If the two-pass structure were not
present, Phase 1 would have tc be re-run as well, wasting
computation resources.

Section 4 is organized as followss Section 4.1 adiscusses
the extended string package developed for use in the JSDU3S
Sections 4.2-4.3 describe Phase 13 Section 4.4 discusses the
Phase | output deta filesi Sections 4.5-4.6 cover the
structure and operation of Phase 25 Section 4.7 describes
the Invocation Uiagrammners and Section 440 contains
instructions for compiling the JSDD progrause.

BEST AVAILABLE COPY

T TR A A AP P PN

DES!GN DIAGRAM DATA

JOVIAL J3 SOURCE BASE GENERATOR (DDDG)
WITH OR WITHOUT A SCAN AND PARSE
STRUCTURED EXTENSIONS | sgURCE CODE PARSE TABLES

INVOCATION DESIGN DIAGRAM
DIAGRAMMER GENERATOR (DDG)

INVOCATION
DIAGRAMS

STRUCTURED

DESIGN DIAGRAMS

Figure 4-1. Two-Pass construction of the JSiD

4.1. The String Package

The need for string manipulation subroutines is acute in
: compiler-like programs, whose only purpose is the
= transformation of one series of strings into another. The
string capability provided with JOVIAL J3 is insufficient
for such an application. Therefore, it was necessary to
create separate string-handling routines to provide an
elementary string capability.

Section 4.1.1 discusses the inadequacy of'.the JUVIAL string
capability, Section 4.1.2 discusses the format of "extended"
strings, Section 4.1.3 introduces the string routines,
Section 4.1.4 contains routine descriptions, and Section
4.1.5 lists compool and internal variables.

4,1.1 JOVIAL String Manipulation

JOVIAL J3 offers character string variables of static
E maximum length which can be compared and assigned. !
Character string 1literal constants can also be used. To 4
provide a sligntly wmore advanced capability, the built-in
function EYIE 1s capable of extracting a sub-string of a E
character variable, given a zero-based index into the string
and a leradth argument.

‘The fdndamental problem with this capability is that the
cur-ent length of a given character string is not available.
Fo that matter, neither is the (declared) maxinmum length,
ecept during compilation. Additionally the character
strings are right-justified. This forces tedious
subtraction calculations to get at the "real" text (using
BYTL).

A typical problem encountered with JOVIAL strings is the

lnability to assign spaces to a character string. The 4
statenents: '

ITEH AA H 1508

AA = TH()$
are meaningless - it is impossible to determine whether AA
contains 7 blanks, 10 blanks, | blank, or 150 blanks

(leadiny blanks in text strings are also lost in the same
way).

In an environment where complex substrings and

concatenations occur as often as arithmetic expressions,
this awkwardness is unacceptable.

o BEST_AVAILABLE COPY

4.1.2 cxtended String rormat

The solution to the string-handling problem is to encode the
length of the character string inside the string variable.
Then user-defined functions can perform various advanced
string operations such as SUBSTR and COUNCAT.

It is necessary first to define a standard maximum length
for all character strings. This length is set to 144, based
on standard line-printer page width and divisibility by 6
(word alignment) considerations. In order to wuniquely
identify them, the character "[" is placed in the first byte
of the character strings. The next five bytes contain the
length of the string. The next 144 bytes contain the string
itself - thus, each string is declared with length 150. All
text is left-adjusted in the 144 bytes of character string.
For example:

JOVIAL: W ees HELLO"
0] 149

EXTENDED STRING: " [OOOO5HELLO cee "
6] 149

4.1.3 HRoutine Descriptions

The presence of descriptor-based character strings (strings
' with a built~in length attribute) immediately suggests a
3 LENGTH function and a WNIL character string (a string
] containing nothing). The format of the strings requires an
OUT routine, which strips off the unwanted descriptors
before outputting strings. SUBSTR (sub=string) and CAT
(concatenation) routines are required by definition. A NULL
function (to return | if a string is NIL) is provided, but
is unnecessary because a character string can be initialized
to NIL, and wused for comvarisons. A CNVERT (convert)
routine 1is necessary to convert ordinary JOVIAL strings to
the descriptor form. Although the extended strings are
capable of representing varying-length blank strings, sone
thought will convince the reader that creating such strings
is a non-trivial problem. Therefore, the SPACES function is
provided, which creates descriptor-based varying-length
blank strings.

By - s ¢

The following code illustrates the use of soilie of the above
functionss

(variables AA - DD below are declared as "H 150")

BEST_AVAILABLE COPY

AA=TH(MARK 14)s
Bu=1H(sS)S
C‘\.:=()"’:(ee e v o)s

DD=CAT(CAT(CAT(SUBSTR(AA,1,2),CC)CAT(SPACES(1),BB)),
SULGSIRCAA 46 ,4,2)) 8

JUT(DD) S
The output iss

r“AHK e o0 00 o $l4~

4.1.4 String Routines Summary

The following sections describe the individual functions of
the extended string package.

4.1.4.1 CAT

CAT’s function is to return the string defined by the result
of concatenating the second character string argument to the
first.

CAl’s operation 1is straightforward, utilizing the byte
function to move characters from the second string to the
first. Errors are detected by simple addition of the
arqument string descriptors (these strings are converted by
a call to CHVERT if they were not already converted).

CAT errors cause a truncation of the result string
(rightmost characters lost).

ClIVERT’s function is to return the converted version of its
argument. If the argument string is too long (>MAXCOL
characters), it 1is truncated (characters are lost starting
at the rightmost). If the string is already converted, it
is passed as the result.

CNVERT searches the passed string from left to right until
it reaches a non-blank character. It then moves the text
from this point to the end of the passed string into a
temoorary string. oo more than MAXCOL characters are moved.

A descriptor is then placed in the leftmost six bytes of the
result string, which have providentially been left blank
during the move above.

" BEST AVAILABLE COPY

A nd

4.1.4.3 LENGTH

LENGTH converts its argument string if necessary and then
returns the value of the descriptor.

4.1.4.4 WULL

NULL simply converts its argument string (if necessary) and
then returns | if the descriptor = 0.

4.1.4.5 OUT

OUT can write strings to JOVIAL file 12 or to the terminal.
Terminal I1/0 is machine specific, as well as specific to the
MULTICS GCOS environment, and will not be described. rFile
12 output 1is written in 80-byte records. The input string
is converted if necessary, stripped of its descriptor, and
written into two consecutive file 12 records if necessary.
Fiie 12 is the error file for both phases of the Structured
Design Viagrammer.

4.1.4.6 SPACES

SPACES returns a converted string containing the number of
hlanks specified by its integer argument.

SPACES blanks its result string and 1inserts a descriptor
equal to 1its integer argument. If the argumnent was less
than O, SPACES’ result is undefined. If the Aargument was
greater than MAXCOL, the result string is truncated.

4.1.4.7 SUBSTR

SUBSTR’5 function 1is to return the substring defined by a
character string, a starting index, and a length.
Characters are numbered from left to right, staerting at i.
The lenjth is the total length of the substring, 1including
the obeginning character pointed to by the starting index.

SUBSTR’s task is straightforward, because the descriptor of
the converted character string argument (if the argument is
not converted, SUBSTR <calls CNVeERT to convert it) allows
easy error checking. The BY[E function is wused to handle
the substring operation, and the passed length is
incorporated into the result string descriptor.

SULSTE errors cause a null string restlt,

| 4

BEST AVAILABLE COPY

N LRSS .

T P ™ AT 1 1 S N P el

4.l.b

cominon abcs$
begin

item const i 36 s p 10737413240

item const2 i 36 s p 2147485364808

item err h 1508 “’not used’”’

item initst i 36 s p Is

item 1lnl 1 36 s$ ““/descriptor of

item 1n2 1 36 s$ “’descriptor of

item In3 1 36 s$ “’descriptor of

item 1In4 1 36 s$ “/descriptor of

item In6 1 36 s$ ““descriptor of

item maxcol 1 1323

strings”’’

36 " s P

item rpterr i 36 s p 0%

array sal 25 h 6$ “’breaks overlay
array sa2 25 h 6$ “’breaks overlay

array sa3 25 h 6$ ’’breaks overlay

’7if set, out opens file

overlay set

overlay
overlay
overlay

’’maximum

string Package Compool and Internal Variables

77= 6h([00000) 77

’twice const”’’

III

overlay set 277

set 347
set 477/
set 67/
of

size extended

’’flag directs error output’”

set | into words”’’
set 2 into words’’/

set 3 into words?”/

]II

BEST AVAILABLE COPY

item sfl h 1508 “’/parto of overlay set
item sf2 h 1508 “’part of overlay set 277
item sf3 h 1508 “’part of overlay set 377
item sf4 h 1508 “’’part of overlay set 477
item sf6 h 1508 “’part of overlay set 67/
item tc h 150$ “/temporary?’
e,
a— . —

item tcl h 1508 ““temporary’/
item tc6 h 6$ “’temporary’’
overlay sal=sfl=1lnls$

overlay sf4=1n4s$

overlay sa2=sf2=1n2$

overlay sa3=sf3=1n3$

overlay sf6=1n6s$

file zzzzzz h 12000 v 80 123

’?defines error output file attributes’”

end

proc out(aa,cc)s$

item aa h 150¢$ “’string whose contents is to be output

4

item bb h 1508 “/temporary variable which holds

intermediate text’’
item cc 1 36 ss 77if cc is {, output to terminali
otherwise to file 1277
item dd h 80$ ““temporary variable - used to write

80-byte filel2 records’’

proc substr(aa,first,nuai)s
item aa h 150% “/host string for substring operation’”

item first 1 36 s$ “’/index of first character
substring””

item num i 36 s$ “/length of substring”’’

item substr h 150$ “’result string’’

16

BEST AV ANUSLE COPY

of

P s

aalaaiad.

PSR R P NAETIw 5 s s

proc cat(aa,bb)s$
item aa h 150$ “’/leftmost string in concat?’’
item bb h 1508 ““rightmost string in concat?’/

item cat h 1508 “’result string?’/

proc cnvert(aa)s

item aa h 150$ “’string to be converted’’

item cnvert h 1508 “/result string’’

item done i 36 s$ “’flag for internal while loop”’”
item ii i 36 s$ “/temporary’’ ;

item jj i 36 s$ “’temporary’’

proc spaces(num)s$
item num i 36 s$ “/numnber of spaces in result string’/

item spaces h 150$ ““result string’’

proc null(aa)$
item aa h 150$ “’string to be tested for null contents”’’

item null b$ ’’boolean result -~ =1 if string is null’’

proc length(aa)s

item aa h 1508 “/want to know length of this string’”

item length i 36 s$ “/length of aa is contained here’”’

" BEST AVAILABLE COPY

P R T

4.2 Phase | Program Structure
4.2.1 Introduction

This section describes the structure and operation of the
Design Diagram Database Generator (DDDG). Instructions on
use of the Design Diagrammer are not appropriate here = they
will be found 1in the CSDL JOVIAL Structured Design
Diagrammer User’s Manual.

Sections 4.2.l.1 gives a general overview of the DDDG.
Section 4.2.2 contains a more specific description of DDDG
structure and operation. Section 4.3.2 contains very
detailed descriptions of specific DDDG functions and
functional modules, while Section 4.3.1 gives the formats of
all major internal DDDG databases.

This document is intended to provide a heirarchical
description of the DDDG. For most purposes, Sections 4.2.1
and 4.,2.2 should be sufficient for a high-level
understanding of the program. Section 4.3 1is available,
however, for the systems programmer who needs to make
additions or alterations to the DDDG.

This document should be read after the JOVIAL Structured
Design Diagrammer User’s Manual and in conjunction with the
Structured Design Diagram of the DDDG (Section 7 of this
volume).

4,.2.1.1 Program Description

The Design Diagram Database Generator takes as input JOVIAL
J3 source programs of the form specified in reference 4, and
generates as output three output files, henceforth referred
to as FILE O, FILE I, and FILE 2. FILE O contains a symbol
table used by the Invocation Diagrammer. FILE 2 consists of
formatted JOVIAL program text, separated by the DDDG into
"statement wunits," a full list of which appears in Appendix
B. FILE ! contains pointers into the FILE 2 text and
information about it. Files |1 and 2 are the primary
flowcharter databases.

The DDDG is essentially a syntax~driven JOVIAL compiler with
abbreviated semantic analysis and code-generation phases.
Its symbol table mechanism 1is also primitive, in that it
currently stores only the fact that certain procedures are
called within the scope of other procedures. The
code-generation and semantic analysis phases of the DDDG can
be thought of as that code which produces the three output
files.

BEST AVALABLE COPY

prRTe

R it AR Pt 8 b

T R P R Ty

Although the DDDG is an abbreviated compiler in some ways,
it should not be inferred that a full-scale compiler could
not be built easily using the DDDG as a base. In fact, a
few code-generation-oriented changes to the JOVIAL J3 BNF
description (with similar changes in the code-generation
routines) could create the basic structure for a full JOCIT
JOVIAL compiler.

4,2,2 Structure
4,2.2.1 Introduction

This section is intended to present the basic DDDG structure
so that an understanding of DDDG operation can take place.

Section 4.2.2.2 discusses syntax-driven compiler structure,
and Section 4.2.2.3 shows how the DDDG fits into this mold.
Section 4.2.2.4 outlines the full DDDG architecture, as well
as summarizing 1its modules. Section 4.2.2.5 gives an
example-driven description of DDDG operation based on the
data in Sections 4.2.2.2-4.2.2.4. This section relies
heavily on abstract diagrams of high-level program
structure, primarily because such diagrams 1illustrate most
clearly interactions between procedures and data. In these
diagrams, a double 1line represents a procecdure call, a
single 1line data flow, rectangular boxes procedures, and
circles databases. This convention is followed throughout
Section 4.2.2. In the text, database names occur in square
brackets ([]) whenever their meanings are not obvious.

4.2.2.2 Syntax-Driven Structure

The DDDG is, as has been described in Section 4.2.1.1, built
around a syntax-driven compiler structure. This type of
structure is common in most modern compiler designs and is
sufficiently flexible to accomodate all but the most arcane
or needlessly complex languages.

The major components of a syntax-driven compiler are parsing
tables, a parsing algorithm, and a gynthesize routine. The
tables are constructed, usually automatically, by means of
an analysis of the language description, which is written in
some form analogous to Backus-Naur form (BNF). These
tables contain information about the legal sentences in the
described language and give rules for associating certain
types of strings with certain specific types of sentences.
In this way, the tables act as a database for
"understanding" sentences written in the language, since a
correct parse will cause source strings to be "reduced" to
more meaningful constructs.

|

" BEST AVAILABLE COPY

Upon such a “reduction," the synthesize routine 1is «called
in to decide what action should be taken as a result of the
new knowledge which has been gained. In most cases,
synthesize will do very littles however, in many cases
further semantic analysis or code generation mnust take
) place. The synthesis routine is generally implemented as a
large "case" statement, with most of the cases either eipty |
or containing small amounts of code.

There 1is of <course one more function that is necessary -
that is, breaking source input text into "tokens." A token
is an irreduceable syuwbol in the chosen representation of
the language. Typical tokens are reserved words 1in the :
language (1f, proc, for) or user-supplied words]
(<identifier>, <number>). The task of analyzinyg the source
input for such tokens 1is performed in most syntax-driven
compilers by the scan routine, which itself contains enough
wired-in information to pick out reserved words and 'i1ser-—
defined variables, as well as to resolve any existing
inadequacies in the language as implemented by the parsinj
routines. For instance, there are some language constructs
not analyzable by existing automatic analysis techniguess;
but these can be dealt with by altering the description of
the language to side-step the difficulty, and then massaging i
the tokens passed from the scanner to "fit" th2 new
description. In this way, tokens that never actually exist
in the 1language can be passed to the parsing routines as
"dummy" tokens to avoid certain ambiguities.

The components described above are invoked or subsumed by a
procedure which is central to the whole compilation process.
This central procedure contains the parsing algorithm, and
uses that algorithm to <call on the other units of the
syntax-driven compiler. A typical sequence of such calls
might be READ (a parsing algorithm function), SCAN (get a
new token), LOOKAHEAD (another parsing algorithm function),
SCAN, APPLY (still another algorithm function), and
SYNTHESIZE (to process the new knowledge from APPLY).

Figure 4-2 shows a basic syntax-driven compiler structure.
COMPILATION’LDOP contains the parsing algorithm, and calls,
when necessary, SCAN (to pick up new tokens) and SYNTHESIZE
(to take action after a reduction). RECOVER is a special
procedure used to recover from syntax errors. It adjusts
the parse history (stored in [parse stackl]) in such a manner
as to allow compilation to continue in a reasonable fashion.
RECOVER <calls SCAN if it needs another token to meke its
parse history adjustment. (Takles] contains information
used by COMPILATION/LOOP (and RECOVER) to wmake parsing
decisions. [Parse stackl, as mentioned above, 15 used by
COMPILAIION’LOOP to save the parse history, and [token datal
contains inforimation passed from SCAN to COMPILATIONZLODP.

BEST AVAILABLE COPY

i‘-'“—“-‘--!--nn--ut-d--nuuu-ui--._. . RO ———

It is not our purpose here to give a complete discussion of
syntax-driven compilation; however, references 6 through 3
give a thorough coverage of the subject. Reference 6 deals
with the theory of automatic grammnar analysis, reference 8
describes the construction of a modern syntax-driven
compiler and reference 7 gives the format of the parsing
tables used by the DDDG, as well as the algorithms by which
they were derived.

PARSE

TABLES COMPILATION LOOP STACK

T

RECOVER =

TOKEN
DATA

SCAN

v

SYNTHESIZE

ey

INTERNAL
DATABASES

OUTPUT
DATABASE

Figure 4-2. LALR(1) Compiler Structure

4,2.2.3 LALR(k) Extension

Ilhe DDDG’s structure varies somewhat from the model
described in the last section - this is primarily due to the
structural complexity of the JOVIAL language.

Althougn the description of JOVIAL wused to produce the
DUDG’s parsing tables 1is written in BNF, the resulting
grammar 1is not LALR(}1) (resolvable with a lookahead of one
token), nor can it be straightforwardly reduced to LALRC(1).
This means that additional complexity nust occur in the
parsing algorithm to handle the incrzased lookahead.

&

 BEST AVAILABLE COPY

T
| —

PARSE
TABLES COMPILATION LOOP F’ s

= RECOVER

AV
‘ TOKEN
SCAN'CALL |j— DATA

SCAN

OUTPUT
DATABASE

INTERNAL

DATABASES SYNTHESIZE

Figure 4-3. LALR(k) Compiler Structure

The difference in structure required by the addition of an
LALR(k) parser is shown graphically in Figure 4-3, Notice
the addition of the SCAN’CALL procedure, which controls the
scanner. SCAN’CALL’s primary job is to provide a buffer
between the scanner and the parsing algorithia to preserve
tokens that are passed over in "lookahead" situations.
Normally, when it came time to read such tokens, they would
have already disappeared. SCAN’CALL preserves them by
stacking them in the token stack.

e

BEST AVAILABLE COPY

4.2.2.4 Modules Summary

This section describes the function and interaction of the
abstract modules and databases pictured in Figure 4-4.

~ Although Figure 4-4 presents an abstract view, the
abstract procedure names are identical to actual procedure
names in the DDDG, and some database names correspond to
actual DDDG database names. This abstract view is
important, because it defines away confusing detail which
interferes with a coherent description. All descrintion of
DDDG operation will henceforth be based on Figure 4-4.

For illustrative purposes, Figure 4-4 is divided into two
areas, as shown 1in Figure 4-5. Area I consists of
processing routiness that is, routines and databases which
are used 1in parsing and text-handling. Area II contains
output routines used to generate the DDDG databases.
Sections 4.2.,2.4.1 and 4.2.2.4.2 describe the procedures and
databases in Areas I and II, respectively.

4.2.2.4.1 Area I - Processing Routines

COMPILATION’LOOP - contains the parsing algorithm,
Operates from [current token datal, [parse stackl,
and [parsing tables] to determine whether the
parse history as reflected in [parse stackl] and
[current token datal requires a reduction to a
simpler syntactic form.

DATABASES

parsing tables - contain builtf}n information to
guide LALR(k) parse

current token data - contains all associated
information about the current token

parse stack - an internal stack-type database used
to store parse history

OPERATION

When COMPILATION/LOOP determines that a reduction
can be made to a simpler syntactic form, it makes
the reduction, adjusts the parse history, and
passes control to SYNTHESIZ:=. Otherwise, it may
simply update the parse history and call for
another token. It can call for another token in
two ways - it can ask for a lookahead or a read
token. In both cases, it calls SCAN’CALL with a

“ BEST AVAILABLE COPY

L MAIN PROGRAM J

buffer
file ¢
COMPILATION’ LOOP |-
PROC ~t
File ¢ {;
tuffer

MAIN
File ¢

SYNTHESIZE RECOVER [A4
T INITIALIZE
communi- i
" parsing
e c:t:::s tables
SYNTH
y 4 & *
; e current
token
1 data
2 i
TOG
exception
source input
fV SCAN
=
‘u SCAN databases
file 1
info
—LGETCRD =3
BUFFER" I~ format
data
FOUT format
decision
- 2
buffer

2 block
1/0
buffer

1 block
1/0
buffer

Figure 4-4. DDUG Structure -

24

' l MAIN PROGRAM J
file ¢ Jl parse
COMPILATION' LOOP - stock
PROC L
File ¢ (QB
buffer .

INITIALIZE

communi- ¢
! rsi
cations g

1 3 SYNTHESIZE I RECOVER
data i

\ & SYNTH l L_L

current
SCAN’ CALL token

data

F

E TOG
(source input ﬁ>'
- SCAN
> SCAN - databases

1 GETCRD F
{.— —re——— 5 — -
last’
token
BUFFER'IN o format
data
-FOUT delsion
BUF w{
butfer
e 2 block
1/0
l = - buffer

£1 block
1 110 L)

Figure 4-5,., Partitioned DDDG Structure

25

it et s gt

e

T Y T T a2 T

flag identifying which type of token it needs. If
a token is received that cannot fit into the parse
history, control 1is passed to RECOVER, which
modifies the parse. COMPILATION’/LOOP is terminated
by SYNTHESIZE when SYNTHESIZE performs the final
program reduction.

INITIALIZE - initializes various constants, builds
SCAN database.

DATABASES

scan database ~ contains information about JOVIAL
source text and common token indices.

parsing tables - see COMPILATION“/LOOP

OPERATION
N. A.

RECOVER

acts as a syntax error recovery routine. RECOVER
attempts to continue the parse in the case of an
illegal token.

DATABASES

parsing tables - see COMPILATION’LOOP
parse stack - see COMPILATIONZLOOP
current token data - see COMPILATION/LQOOP
OPERATION

When COMPILATION’LOOP cannot read the current
token because that token does nct fit in the
current parse history, RECOVER does one of two
thingss (1) it wraps the stack back to an earlier
history and attempts to read the token in that
environment, or (2) it discards the token as
illegal in all cases. RECOVER will continue to
re ject tokens until it finds a parse state which
can read the next token. At this point, RECOVER
returns control to COMPILATIONZLOOP, which
continues as though nothing had happened.

SYNTHESIZE - acts upon reductions made by COMPILATIONZLOOP
to set various scanner flags and basically
initiate output of the file buffers which were
packed by the output routines.

<6

e o R R i o R T

|
|

TP R

DATABASES

proc FILE O buffer - see 4.2.2.4.2, SYNTHESIZE.
main FILE O buffer - see 4.2.2.4.2, SYNTHESIZE.
current token data - see COMPILATION/LOOP

communications data - data passed from external
procedure SYNTH which is essentially a part of
SYNTHESI ZE.

MDT-MS -~ macro stack and macro definition table

FILE 1 info - information about type of next FILE
| record

FILE O - symbol table output file
exception - scanner exception flags
OPERATION

SYNTHESIZE recognizes certain types of key
reductions, reductions to forms which it calls
statement units. Each statement unit corresponds
to a class of boxes in the flowchart output.
Reduction to certain statement units causes
SYNTHESIZE to <call various file output routines.
These reductions are processed by the SYNTH
routine, which SYNTHESIZE <calls when necessary.
The most important Area I function performed by
SYNTHESIZE is the setting of certain scanner flags
and the related altering of the MDT. The scanner
flags will be discussed in Section 4.3.23 however,
the alteration of the MDT 1is an important
high-level function. Nhen a reduction is made
that signals the reading of a new DEFINE
directive, SYNTHESIZE searches the MDT for a name
to match the DEFINE name. If it finds one, it
uses that entry in the MDT as the new entry of the
new definition. If it does not find one,
SYNTHESIZE creates a new entry in the MDT and
initializes it. In this way, SYNTHESIZE enables
the the re-using of the DEFINE directive name as
allowed in the JOCIT manual.

Clearly, SYNTHESIZE cannot fill in the macro entry
in the MS. However, new space is always allocated
in the MS for a new name, regardless of whether
that name has been defined before (since the
definition could now be longer than the last
previous definition). SCAN’CALL eventually fills

2

SCAN“/CALL

in the rest of the macro derinitlion, arter an
appropriate scanner exception flag 1is set in a
different SYNTHESIZE reduction case.

- primary function is maintenance of

LALR(k) 1lookahead token stack. Serves also as
comment processor, macro definition processor,
and as output formatter, as well as causing the
output of all comments.

DATABASES
current token data - see COMPILATIONZLOOP

token stack - =stack which contains previous
lookahead tokens so that they can eventually be
read by the parsing algorithm

MDT-MS - see SYNTHESIZE
exception - see SYNTHESIZE
OPERATION

If SCAN’CALL is called for a lookahead token, it
calls SCAN for the next token only if it has
looked at all the tokens in [token stackl. If the
new token, or the token in token stack is part of
a comment, it is saved, but ignored. If it is a
macro neme, it is saved and ignored, and SCAN is
called again to expand the name. No output of
information or processing of toggle comments or
outputting of text can take place in lookahead
situations, because the action would be temporally
incorrect. The token may not actually be read
until far in the future, and it would not do to
have comments appearing where they did not occur,
or toggles changing before the comment toggle.

When SCAN’CALL 1is <called for a read token, it
checks 1its (token stack] for available read
tokens. If none exists, it calls SCAN. If the
next token is the beginning of a comment,
SCAN’CALL sets a special case flag for SCAN, and
then collects the resultant tokens into a full
comment and outputs it, with information on what
type of comment it is (inline, stand-alone, etc.),
to the output files. If the token 1is the
beginning of a macro definition, SCAN’CALL fills
in the appropriate entries in the MS with the text
associated with the new macro name. Formatting
decisions are made on whether to expand macros or
not. Most formatting decisions are made in the

2y

buffer routines, however. Pre-defined macros are
expanded as described above.

SCAN’CALL has a unique position in the structure
of the DDDG - it is the only routine which has the
power to alter scanner output or interpret it
directly. Thus, SCAN’CALL 1is assigned various
low-level tasks such as comment recognition and
macro definition fill-in because to do these tasks
elsewhere masks what is really happening - namely,
a master-slave relationship between SCAN/CALL and
SCAN.

TOG - decodes comment toggles.
DATABASES
current token data - see COMPILATION’LOOCP

toggles - database 1listing all known toggle
configurations

OPERATION

When called by SCAN’CALL, TOG checks the current
line (which must be a comment of some kind) for
occurrences of [<g><toggle>], where <toggle>
belongs to the set of recognizable toggles in
[toggles]. Some of the legal toggles include
ASIS, DEBUG, and EXPAND. The presence of or lack
of <g>, where <g> represents the character "’%",
indicates the desire to either turn off or turn on
the toggle.

SCAN - decodes current line and returns next legal token,
along with various related information.

DATABASES
current token data - see SCAN/CALL

text - the current line of text, as presented by
GETCRD

scan database - contains information about JOVIAL
source text and common token indices.

29

ey " TP

exception -~ see SYNTHESIZE
OPERATION

- The scanner operates in two modes - special, and
‘ regular. Regular mode means that the scanner uses
its databases to branch to an appropriate routine
based on the first character of the next token.
It then, in these special cases, decodes the token
further and places it and its associated
information into [current token datal. The
associated information includes the number of
blanks preceding the token, the token’s actual
character appearance, whether the token is a macro
name or part of a macro expansion (DEFINE
directive expansion), and whether a
carriage-return line-feed immediately precedes the
token. This extraneous information is needed to
enable the EXPAND and ASIS options.

3 In special mode, the scanner is doing something
unusual because of the unusual JOVIAL construction
it 1is processing. Usually, this involves
returning a string of characters (as in a commnent
or define directive) rather than dividing the line
up into real tokens. At other times special mode
can 1involve returning specially designated tokens
because of the scanner’s inability to
differentiate between structurally similar
constructs. This special mode 1is enabled by
flag-setting in the SYNTHESIZE and SYNTHESIZ:
routines, since only the parsing algorithm knows
what construct 1is currently being processed, and
it must decide that a special scanner mode is
needed.

GETCRD - places the next input card into [textl.
DATABASES
text - see SCAN
source input - input to flowcharter

MDT-MS - see SYNTHESIZE

30

T e e T o e & btz »
e 5 e il il i T

card stack - used to stack cards holding multiple
card macro definitions, or multiply nested macro
definitions

OPERATION

In most cases, GETCRD behaves as one might expect
- namely, reading in the next card from the source
file and placing it in [text]l. When a macro name ?
has just been read by SCAN, however, GETCRD pulls]
the definition of the macro from MS, and loads it
into (card stackl]l. On succeeding calls to GETCRD,

the routine reads from [card stack] until it is 1
enpty. A nested macro call thus requires no
special GETCRD mechanism - its definition, too, is
loaded on top of the already occupied I[card
stackl. Obviously, recursive macro calls will
eventually overflow the card stack, which is]
pointed out to the user with an appropriate
overflow message.
4.2.2.4.2 Area 1] - Output Routines
SYNTHESIZE - sets flags which trigger outputs performs all f
FILE O output.
DATABASES ;
proc FILE O buffer - contains names of all
procedures and functions called within scope of
current proc.
3
main FILE O buffer - contains names of all r

procedures and functions called within main
procedure proper.

(for other data items used, see 4.2.2.4.1,
SYNTHESI ZE)

OPERATION

When SYNTHESIZE detects the occurrence of a
statement unit reduction, it calls FOUT, which

outputs the appropriate data to files | and 2.
[FILE 1 1info)] tells FOUT what type of FILE 1
record to builde In the case of certain "“dummy"
FILE 1 entries (end of scope), SYNTHESIZE calls

FILE1/0UT directly.

ilhen a procedure or function call is detected in
SYNTHESIZE, the current scope is checked. 1If the

31

3 ; parse is within an internal procedure, the new
proc or function name 1is checked against the
contents of [proc FILE O buffer]. Otherwise, it
is checked against [(main FILE O bufferl.

‘ When a proc scope terminates, [proc FILE O buffer]

. is dumped out to FILE O. wWhen a new proc scope is
entered, the name of the proc is entered into
[proc FILE O buffer] and the old contents of the
buffer are flushed. [Main FILE O bufferl] is
dumped at the end of the parse.

If it overflows, [proc FILE O buffer] can be
dumped, and a new buffer is then built. An
overflow of [main FILE O buffer] causes a
non-fatal error message and another message which
eventually appears on the Invocation Diagram
produced by the DDG.

BUFFER’IN - makes formatting decisions for the next
i FILE 2 record,

DATABASES
last’token - number of last token entered into
f2’buffer
format data - decision tables for formatting of

FILE 2 output

current token data - see 4,2.2.4.1,
COMPILATION’LOOP

format decision - variables set by BUFFER/IN which
communicate formatting decisions to BUF.

OPERATION
BUFFER’IN simply queries [format datal, which

! contains enough information to enable the format
decisions for the next FILE 2 entry.

BUF - adds to [f2’buffer] the formatted character
representation of the current token.

T

DATABASES
format decision - see BUFFER’IN .

current token data - see 4.,2.2.4.1,
COMPILATIONZLOOP

3¢

S oo s = = g
_ o - AP T - a ——— AT AL A - ¥ e S - e ¢

f2/buffer - holds the character representation of
the current statement unit

OPERATION

E ~ BUF appends to [f2/buffer] a formatted version of
thg current token’s character representation. Its
primary function is addiny or deleting spaces from
before or after the token. BUF also keeps a byte
and line count of the contents of [f2’bufferl].
P For illustrative purposes, this information is
assumed to be part of [f2’buffer].

F270UT - writes out one FILE 2 record.
DATABASES
FILE 1 info - see 4.2.2.4.1, SYNTHESIZE
f2’buffer - see BUF
FILE 2

f2/block I1/0 buffer - buffer used to block FILE 2
records together

OPERATION

F270UT writes the contents of [(f2’buffer] out to
[f2’block I/0 bufferl. It also copies the byte
[count and line information from [f2/buffer] into
(FILE | infol.

If (f2’block I/0 bufferl fills up, the buffer Iis
output as a FILE 2 record. The buffer is always

output at the end of the DDDG, to account for
| partial filling followed by DDDG termination

F270UT always flushes f2’buffer.
F1/0UT - writes out one FILE | record.

DATABASES

fl’block I1/0 buffer - buffer used to block FILE 1
records together

(98]
w

T T R T AT
B e e T T R T, TR — r . aid

FILE 1
OPERATION

Erom information in (FILE | infol, FI70UT puts one
FILE | record out to [(fl’block I/0 bufferl. See
F2/0UT for a description of how this buffer is
used.

4,2.2.5 Operation

Having described the purposes of the modules and databases
pictured in Figure 4-4, it remains to be shown how the
system works as a whole. The most straightforward way of
accomplishing this 1is to trace the execution of a test
example using the descriptions in Section 4.2.2.4.

The test example chosen (see Figure 4-6) shows DDDG
formatting capability, syntax error recovery, the ASIS
option, FILE O construction, macro expansion, toggle
processing, and comment handling, as well as the usual FILE
I and FILE 2 construction. An IFEITH construct is 1included
for statement wunit variety and END/SCOPE 1illustration
purposes. Note that this program will aot compile
successfully.

Execution of the DODG begins with INITIALIZE, which builds
the scanner database and presets certain internal variables.
Then control is passed to COMPILATION/LOOP (C“/LOOP), which
will direct the DDDG for the remainder of its execution.

C/LO0OP calls SCAN’CALL for a read token in the input text.
SCAN’CALL calls SCAN, which calls GETCRD. GETCRD returns a
line of text (START $), and SCAN identifies the first token
in the line as "START". SCAN/CALL then <calls BUFFER’IN,
BUFFER’IN calls BUF with its formatting decision, and BUF
puts out "START " to [(f2’bufferl. SCAN’CALL returns, and
COMPILATION/LOOP 1interrogates [(parsing tables] and [current
token datal] to determine a proper parsing state transition.
No reduction is made, so C/LOOP calls SCAN’CALL for another
token. "s$" is returned in the same fashion as "START", and
C’L0O0OP performs a reduction of "START s" to <PROGRAM HEAD>.

C’L0O0OP then calls SYNTHESIZE, which fills [FILE | infol with
statement unit number 39, indicating the recognition of a
<program head>. SYNTHESIZE calls FOUT, which calls F2/0UT.
F2/0UT writes the byte and 1line <count of [f2’buffer] to
[FILE 1| infol, moves [f2’buffer] to [(f2’block I/0 buffer],
and clears (f2’bufferl]. F270UT returns, and FOUT calls
F170UT, which outputs an [fi’block 1/0 buffer] record based
on information in [FILE | infol. Control returns to C’/L0OOP.

34

starts
44 [expand] 77/
44 (debug]l 4
define integer “/i 36 (s

item aa integer $

’?this next stmt will cause a parse error’’/
2#[/debug 1’/

aa=ifeith bbs

aa=3$

ifeith aa eq 3% begin
bb=1%

£ [debugl’/
prints

end

’?{’debugl’/
orif 1$ begin
aa=1$
end

end ““’of ifeith’/
’’now, let’s turn on asis [asisl}’’/

prints

proc prints begin

print/it $
end
LA [2asis] *7/
term$

Fioure 4-6. Example JOVIAL J3 Program

35

C’LO0OP calls SCAN’CALL for a read token, SCAN’CALL calls
SCAN, SCAN calls GETCRD, and returns the token "//", But
SCAN’CALL knows that it 1is not processing a DEFINE
directive, so it must have a comment. It knows the comment
belongs on its own line, also, because the CRLF flag was set
by GETCRD. SCAN’CALL calls TOG to process the comment for
toggles. TOG finds "[EXPANDI", and sets the EXPAND toggle
flag. SCAN’CALL then acts as SYNTHESIZE did, on the
previous reduction - namely, writing a "38" into (FILE 1
infol, and calling FCUT. SCAN/CALL then loops for a real
token, and the same activity occurs with the new card, "
[DEBUG] .

Finally SCAN returns a real token, "DEFINE". The parse can
be picked' up at this point in Figure 4-7 (thanks to the
[DEBUG) toggle). Nothing that has not already been
described occurs until reduction 17 is performed.
SYNTHESIZE enters the DEFINE name into the [MS], and the
define and scanner exception flags are set. SCAN/CALL is
called for the next token, and <calls SCAN. SCAN returns
“<characters>", because of the exception flag.
Interrogating the define flag, SCAN/CALL places the
character representation of <characters> into the [MDT] and
updates the [MS] entry of the current macro. The next token
returned is "//", so the flags are turned off and the parse
continues.

Operation continues normally, until SCAN encounters the
string "integer" 1in the next card. SCAN correctly
identifies M"integer" as an identifier, but before passing
<identifier> to SCAN’CALL, it searches the [(MS] for
"integer". It finds it, and calls GETCRD with a flag set.
GETCRD copies the definition of "integer" froin the [MDT] to
[card stack), after stacking what remains of the current
card ("s"), GETCRD then returns the macro definition as the
current text string. Before the call to GETCRD, however, a
return was made to SCAN’CALL. During this return
processing, SCAN/CALL interrogated the EXPAND toggle flag,
decided to expand the macro, discarded the macro name, and
re-invoked SCAN. SCAN had previously signalled itself that
it needed a new card by moving its current card pointer past
the text 1limit on the card, which is why it called GETCRD.

When GETCRD returns the macro definition as the current
card, the tokens on the card are passed back to SCAN’/CALL in
the wusual fashion by SCAN, except that the tokens are
flagged as part of a macro definition. Interrogating the
EXPAND toggle, SCAN’CALL writes these tokens out to
(f2’bufferl. When GETCRD is called for another card (the
macro definition having been exhausted), it returns what is
left of the original card ("s"). The parse then continues
normally.

36

READ TOKEN RETURNEDt DEFINE

READ TOKEN RETURNED: <IDENTIFIER>

#16 <DEFINE HEAD> $3= DEFINE <IDENTIFIER>

READ TOKEN RETURNEDs 77

#l7 <II> 1= ?7

READ TOKEN RETURNED$® <CHARACTERS>

#18 <TEXT> 33= <CHARACTERS>

READ TOKEN RETURNED: /7

READ TOKEN RETURNED: s

#15 <DEFINE DIRECTIVE> $3= <DEFINE HEAD> <“’/> <TEXT>
4 s

#13 <DIRECTIVE> s33= <DEFINE DIRECTIVE>

#12 <ELEMENT> s3= <DIRECTIVE>

#8 <ELEMENT LIST> 33t= <ELEMENT>

READ TOKEN RETURNEDs ITEM

READ TOKEN RETURNED:® <IDENTIFIER>

READ TOKEN RETURNED: 1

READ TOKEN RETURNED: <NUMBER>

READ TOKEN RETURNED: S

#212 <SIGNING> 83= S

#209 <INT HEAD> 33= [<NUMBER> <SIGNING>

LOOKAHEAD TOKEN RETURNED: $

#205 <INTEGER DESCRIPTION> s3= <INT HEAD>

#199 <ITEM DESCRIPTION> s:= <INTEGER DESCRIPTION>
READ TOKEN RETURNED: s

#196 <SIMPLE ITEM DECLARATION> :t= ITEM <IDENTIFIER>
<ITEM DESCRIPTION> $:

#178 <DATA DECLARATION> 83= <SIMPLE ITEM DECLARATION>
#30 <DECLARATION> $3= <DATA DECLARATION>

#11 <ELEMENT> 3= <DECLARATION>
#9 <ELEMENT LIST> ::= <ELEMENT LIST> <ELEMENT>
——————————— e e point]l

ILLEGAL SYMBOL PAIRs = 1IFEITH
PARTIAL PARSE TO THIS POINT ISt <PROGRAM HEAD>
<ELEMENT LIST> <VARIABLE> =
SKIPPED OVER TOKEN "IFEITH"
RESUMING
———e—ememee e e—eeee——— point2
READ TOKEN RETURNED: <IDENTIFIER>
LOOKAHEAD TOKEN RETURNEDs: $
#169 <PROC NAME> $3= <IDENTIFIER>
READ TOKEN RETURNED: s
#167 <PROCEDURE CALL> ::= <PROC NAME> $
#141 <SIMPLE STATEMENT> s:= <PROCEDURE CALL>
#22 <STATEMENT> $:= <SIMPLE STATEMENT>
#10 <ELEMENT> $3= <STATEMENT>
#9 <ELEMENT LIST> s$t= <ELEMENT LIST> <ELEMENT>
READ TOKEN RETURNED$ END
#397 <END> s:= END
#77 <COMPOUND STATEMENT> s3= <BEGIN> <ELEMENT LIST>
<END>
#89 <THEN CLAUSE> 3$$= <COMPOUND STATEMENT>

Figure 4-7., Partial Parse of Example Prooram

3t i

Little of note occurs (except for the (DEBUG) toggle being
turned off at card 10) until the presence of a parse error
in card 12. The output between points | and 2 in Figure
.4-7 shows RECOVER’s response to the illegal IFEITH token.
It could not wrap the state stack back to a point where
IFEITH was a legal state transition symbol, so it rejected
the token.

Card 17 1is a procedure call - SYNTHESIZE detects this, and
enters the name "print® into [MAINP FILE O bufferl. Card 13
causes a variation from the usual output of both a FILE |
and FILE 2 record - after the ordinary call to FOUT,
SYNTHESIZE makes an additional call to F1/0UT, which causes
a dummy FILE | record to be produced, called an tEND’SCOPE
(identified in Figure 4.2-7 by a STUT/TOKEN type of "iIY),
END’SCOPEs are used by the DDG to map out the flowchart
intelligently.

Card 29 turns on the [ASIS] toggle - notice the effect on
files | and 2 (Figure 4-c). Parsing continues, but output
is totally controlled by the CRLF flag. FILE | records
which are ASIS are identified by "37", and are printed in
one contiguous box by the DDG. Leading spaces are preserved
in the FILE 2 text by wusing the BLANKS information in
[current token datal to concatenate the appropriate spaces.

Card 33 causes the initialization of [proc FILE O buffer] by
SYNTHESIZE, SYNTHESIZE having recognized a reduction to
<procedure call>. SYNTHESIZE also sets the scope to |1,
which means that proc and function calls following will be
recorded in [proc FILE O buffer] instead of I[mainp FILE O
bufferl]. Thus, card 35’s procedure name is entered into
{(proc FILE O bufferl. Card 36 causes SYNTHESIZE to
recognize a reduction to <procedure declaration>, which
resets the scope to O. Figure 4-v shows the final FIL: O
output.

At termination, all temporary I1/0 hufferc are written out.
Notice card 37, which turns off the [2SIS] toggle. It is
necessary to follow the User’s Manual rules about the
occurrence of [ASIS] and [/ASIS], since improper usage will
cause the DDG to miss vital END’SCOPE information, and will
result in no flowchart being produced.

35

o sl e o i

FILE 13 ?
INDEX TOKEN RECS LNGTH
0 39 1 8
i 38 1 15
2 38 | 15
3 9 1 43
4 25 { 17
5 38 | 44
6 38 1 13
7 18 | 17
8 18] 9
9 49 | 7
10 48 | 10
11 4] 6
12 18 | %
13 38 | 22
14 22 | 8
15 5 | 4
15 | | 4
16 38 1 13
17 46 | 9 J
18 4 | 6
19 18 1 9 ;
20 5 | 4
20 1 i 4 4
21 5 | 4
21 1 1 4
22 3 | 14 3
23 37 1 35
24 37 1 6 .
25 37 1 17
26 37 1 54 >
27 37 1 3 ;
28 38 1 18 1
29 8 | 7 g
29 1 1 7

Fioure 4-8. FILE | and FILE 2 of Example Program

3y

FILE 23

0
|
2
3
4
5
6
7
8
9
0
|
2

START s

/¢ [EXPAND]) 77

/4 [DEBUG] o

DEFINE INTEGER “71I 36 5?7 s
ITEM AA I 36 S 3

/#THIS NEXT STMT WILL CAUSE A PARSE ERROR’/
¢4E4DEBUG]2 ¢

AA = IFEITH BB $

AA = 3

IFEITH

AA EQ 3 $

BEGIN

BB =1 s

1324 (DEBUG1]““

14 PRINT $

15 eND

16 . ##(“DEBUG J£7

17 ORIF 1| s

18 BEGIN

19 AA = $

20 END

21 END

22 “70F IFEITHY”

23 77/ NOW, LET’/S TURN ON ASIS [ASIS]’/

1 24 ORINTS
[25 PROC PRINTS BEGIN
26 PRINT/IT $
27 END
28 74 [ZASIS] 7
29 TERM $

Ficure 4-8., FILE | end FILE 2 of Example Proaram (cont.)

FILE Ot
*kk
PRINT -— procedure name
PRINTZIT -- name of procedure called
*hk
MAIN -—— main program
PRINT -- name of proc called

———— —————————— - — - — ——— — ————

Ficure 4-vy, FILE O of Example Proaoram

rp—1--u-g----------------Hii-----==============n=—~——~rfv ——————

3

4.3 Phase | Modules, Variables, and Constants

This section contains data items and lower level procedure
descriptions. It is broken up as followss Section 4.3.1

covers variables and data structuress Section 4,3,2
contains procedure descriptionss and Section 4.3.3 contains
L local declarations.

4,3.1 Phase | Variables and Data Structures

Section 4.2.2.4 gives an abstract view of the functions of
various data within the DDDG. This section explicitly lists

data items by name, as they are used 1in the program. 3t
will be difficult for the reader to draw parallels between
this list and the abstractions in Section 4.2.2.4 -- this

5 list is intended only as a reference for quick lookup of
variable names. The listing of the phase | data compool is
organized 1in the same way as the abstraction in 4.2.2.4 -
thus, parallels between the two are easily drawn.

This section 1is divided as follows: Section 4.3.1.1
contains DEFINE directivesi Section 4.3.1.2 contains table
declarations$ Section 4.3.1.3 contains file declarationss
Section 4.3.1.4 contains global variable declarationss and
Section 4.3.1.5 contains declarations for the parsing
tables.

4,3.1.1 Phase) DEFINE Directives

define asis’stmt 77377’s

define asis 7707/’s$

define character “/h 15077 $

define debug “727%$

define expand “/177%$

define fl’blocksize 777877/$

define fO’blksize 27607’s

define f2’blocksize “7127’s

define false 4707’ $

define integer /i 36 s’/ s

4]

define inacro 47100077$
define max’msp “725%7%
define max’symbuf “7100077$
define maxZmtbl 275077/
define max */507’$ ’’token stack size’’
define max’f2 275075
define max’mainp “7100077s
define max/mdt “271007/$
define true ‘7177 $

define type3 7737775

define typel 47377/$

define type2 4727’5

4.3.1.2 Table Declarations (Output Record Formats)

table file2b r f2’blocksize s n$ “/fixed 1lngth, serial,
nopacking’’ “/each entry in this table is a file2 record”’’
begin

item f2’entry h 150$

end

table filelb r fl’blocksize s n$S “/each entry in this table
is a filel record’’

begin

item file2/index 1 36 s$ “/index into file27/

item stmt’token i 36 s$ “’stat type’’

item f2’recs i 36 s$ “’/no of file2 records’”’

item stmt”lngth 1 30 ss “7total no of bytes”’”

end

table fileOb r f0O’blksize s n $ begin “Zeach outgut of unis
table is a fileU record’”/
item fU’entry h 30s ent

4.3.1.3 Frile Declarations

file source h 12000 v 60 v(a) v(b) v(c) v(d) v(eof) 11 s
/7file declaration of source file’’

file yuab h 12000 v 118 12% “/used for error output file”’”
file filel o 10000 r 313 13s

file file2 b 10000 r 301 14s

file tiieO b 10000 r 301 1I5$

’/these are the declarations for the three phasel output
tiles??

4.3.1.4 Global Variables and Data Structures

item blanks 1integer p 0U$ ““contains the number of blanks
before the current token (counting from the last token, or

from the beginning of the current card)’/

item buf’lines integer p 1$ “’number of lines in current
statement unit“’”/

item bcd character s “/character representation of current
token’”

item buffer h 80 $ “Zused to input one 8O-column source
card’’

item comment i 36 s p 0O$ ““contains the type of the current
comnent - i.e., whether it 1is within the scope of the
preceding stmt, on the same line as the preceding statement,
or on its own line 7/

item coimment’flag integer p 0$ “‘used to strip spacss froum
in front of poorly constructed commuent lines?’’

item crlf integer p 0$ 77if crlf is l, a carriage-return
line-feed has occurred before the current token’?

item char/count integer p 035 “/nuuber of characters 1in
current statement unit’”/

item card’count integer $ ““nuiiber of cards read”’”’

itewn cp integer p | $ “’pocints at next available cheracter
in text”’”’

ot et s shiien, " -

sl e Vs vt

item compiling b$ “’switch to turn compilation on and off“*”

item context integer p 0% “’/identifies whether parse is
within a procedure definition or in the main program’’

item characters integer $ “/index of <characters> in VOCAB’“

array callcount 5 integer $ begin O end ““used to analyze
control flow in phase 17/

item define’flag integer p 0$ “/flags the fact that a DEFINE
directive is being processed’’

item digit integer p 8 $ ““/identifies digits in array TYPE“’/
item dollar integer $ “/index of $ in VOCAEB’”/

item dot integer $ “/index of . in VOCAB’”

item ddone b$ “/binary flag for while loops’’

item ddcount integer p 0$ ““utility variable’”’

item divide integer $ “/index of / in VOCAB”’’

item ellipsis integer $ “/index of ... in VOCAE”’/

item equal integer $ “‘index of = in VUCAB“*“/

item exchng integer $ “/index of == in VUCAB’’

item eofile integer $ “/index of end-of-file in VOCAB”?’
item exp integer $ “/indcx of *x in VOCAB’”

item exception 1integer p O $ ““contains scanner exception
case number?’

item f2’entries integer p 0$ ““number of file2 entries?”/
item f2bindex integer p U$ “’/index of last file2 entry?’
item f2bbytes integer p 0$ “/no of bytes in last f2 entry’”

item fO’blocksize integer p 60S “’size of a fileQ disk
block’”

item fl’entries integer p 0U$ “’number of filel entries?’’

item f2brecs integer p U$ ’/no of records in last 2 entry?’’

array f2’buffer max’f2 characters$ ’’buffer
statement unit text to be output to file2’/

array fixl 100 i 36 s$ ““not used’’

array fixv 100 i 36 s$ “’not used’’

contains

item ident integer $ ““/index of <identifier> in VOCAB’”

item idloop integer p 0$ ““utility variable”’’
item iddone integer p 0$ ““utility variable’’
item kluge’flag integer p 0% ““not used’’
item kk i 36 s p I$ “Zutility variable”’’

item kkk integer$ “/not used”’’

item last’ident characters$ ’/’contains the
representation of the last identifier encountered

character
by SCAN’/

item last’token integer$ “/contains the index of the last

token placed into f2’buffer by BUFFER/IN”Z7
item left’abs integer $ ““/index of (/ in VOCAB’’
item left’paren integer $ “/index of (in VOCAB’/

item letter integer p 9 $ “/identifies letters
TYPES*

item leftZexp integer $ “/index of (* in VOCAB”Z/
item left’subs integer $ “7index of ($ in VOCAbB’“

array lengths 30 integer $ ““contains lengths
terminal symbols’’

item macro’flag integer p 0$ ““/flags the fact
current token is part of a macro expansion’’

in array

of various

that the

item macro’name integer p 0$ “7/index into mnacro tables of

current macro name’’

.

item ms’flag integer p U$ ““used by GETChD to remember that

it is in the process of expanding a macro’’
item max’nospab integer p 7$ “’size of nospab’’

item max/nospaa integer p 4$ “’size of nospaa’’

44

item max’nopair integer p 18$ “’size of npairl and nopair2’/

item msp 1integer p 24$ “’points at next free location in
ms o"’

item max’macro integer p 0$ “’/points at next free location
in macro table (MS)“’

item mant’e integer $ “/index of e in VOCAB”’”
item mp i 36 s$ “’points at left edge of reduction phrase’’

item mainp’ptr integer p 2$ “’/points to next free
mainp’calls location’’

item mptr integer p O0$ “’/internal variable to save macro
entry position’’

item mantissa integer $ “/index of <mantissa> in VOCAB““
item mppi i 36 s$ “’mp+i“/

array ms max’msp character$ “/stack used for GETCRD macro
definition expansion?’’/

array mname max’mtbl character$ “/’mname, mstart, mlength are
parallel arrays which make up the macro table (MS). mname
is the name of the macro’’/

array mlength max’mtbl integer$ “/length of definition in
MDTZ

array mdt max/mdt character$ “/contains text of macro
definitions’”’

array mainp/calls max/mainp h 30$ “/fileQ0 array to save main
program procedure <calls, 1initialized to indicate mwain
program calls’’ begin 3h(**%x) 4h(malN) end

array mstart max/mtbl 1integers “/index of beginning of
definition in MDT *7

item nil character $ “/initialized in initialize to nil 7/
. ’?contains 150h([00000)))icdts

item next’mfree integer p 0U$ “’points at next free location
in MDT”*7
item number integer $ “/index of <number> in VOCAB’’

item nunber’value integer $ ““/contains value of number read
inll

array nospab 8 integer$ begin 37 40 38 39 6 55 105 9 end
’71ist of tokens which never have spaces before them’”’

array nopairl 19 1integer $ begin 103 103 103 18 32
’’nopairl(i) and nopair2(i) cannot have spaces between
them”? 30 11 106 15 11 67 40 71 73 64 63 84 60 25 end

array nospaa 5 integer$ begin 104 55 105 2 37 end “/1list of
tokens which never have spaces after them’”

array nopair2 19 integers$ begin 18 30 11 2 2 2 2 2 103 103 2
2222222 103 end

item outtok integer$ “/signals SYNTH that a filel record
should be built, with stmt unit = outtok”’/

item outscope integer$ “/signals SYNTH that a filel endscope
record should be built’’

item phony integer p 0$ ““tells GETCRD to expand the most
previous macro name, and to pass as the next source card
that expansion’/

item prime integer $ “/index of single quote in VOCAB’’

item quote integer $ “/index of two single quotes in VOCAB“/
item real’macro’flag integer p 0$ ““usually the same as
macro’flag, except 1in lookahead situations or when reading
former lookahead tokens fromn token stack’”

item reserved’/limit integer $ “/points at limit of reserved
words in VOCAB“’”/

item rightZexp integer $ “/index of *) in VOCAB“/’/
item right/abs integer $ ““/index of /) in VOCAB’’
item right’subs integer $ “/index of $) in VOCAB’’
item scale’a integer $ “/index of a in VOCAB’’/

item star integer $ “/index of * in VOCAB’’

item stacksize i 36 s p 100$ ““size of state stack’’

item save’tog integer$ “7used by synthesize to set and reset
asis”’’

item sp 1 36 s$ ’’state stack pointer - points at current
state”’”’

item symbuf’ptr integer p 0% “’points to next free synbuf
location”’”’

item state 1 36 s$ ““contains current state name?’

array state’stack 100 i 36 s$ “‘used by COMPILATION/LOOP to
save state numbers in LALR(k) parse’’

array symbuf max/symbuf h 30% “/fileQ0 array to save
procedure calls within procedures’”’

item togmax integer p 2$ “’size of toyg and togc’”’

item tsmax integer p 0$ “/points to mext free entry in
stack”’’

item tsbegin integer p 0$ “/points to next read token in
stack’’

item text <character $ “/contains current text line from
GETCRD 77

item token integer $ “/contains index of current token in
VOCAB”/

item tempmk character$ “‘“temporary’’

item temph2 character$ “/temporary’’

item tempi2 integers ““/temgorary”’’

item temph3 characters “’teinporary’’

item tbegin integer$ “/index of begin i1n VOCABZ”
item tend integer$ “/index of end in VOCAB?/
item tempcl h 150$ ““teiiporary’’

item total’f2/entries integer p 0$ “/t8tal no of file2
records”’’

item tewpid h 30$ “/temporary’’

.

item tsptr integer p 0$ “’points to next lgfkah~ad token 1in
token stack”’’

item text’/limit integer p O $ ““contains index of last
character in current text line’”’

item teaphl character$ ‘“/temporary?’’

item temnpi3 integers ““/temporary”’

item tbeginl integers$ “/index of beginl in VOCAB’’
item temph4 character$ ““temporary’’

item tempil integers$ “/temporary’”

item tempc h 1508 ““tempc and following two variables are
temporaries?’”’

item tv integer$ “/index of v in VOCAB”?’/

array togc 10 h 6% begin 6h(asis) 6h(expand) é6h(debug) end
’’contains legal toggle names”’’

array tsn max integers “/tsn,tsc,tsbl,tscrlf,tsmflag are
parallel arrays called the token stack. tsn is the number
of the token - same as token’”

array tsbl max integer$ ““/same as blanks - refers to tsn(i
), though.’’

array tsmflag max integers “’/same as macro’flag - refers to
tsnt & .77

array type 64 integer $ begin 10 end ““returns type of ascii
character, where value of character is index into type’’

array tog 10 integers begin O O O O 0000 OO end
’’contains toggle values”’’

array tsc max character$ “/same as bcd - refers to tsn(1

‘ay tscrlf max integers “/same as crlf -~ refers to tsn(i
though. 7/

4,3.1.o Declarations for Parsing Tables

array applyl 447 1 16 | $ “’matches states on state stack
for apply state transitions?’’

array apply2 44 i 16 s s “’contains transitions
corresponding to matches in applyl”’’

item asize 1 16 s p 446 S ’’size of apply arrays’’

array index]| 856 1 16 s $ “’points into readl and lookl
arrayss contains push states’’

array index2 856 1 16 s $ “/contains count corresponding
to indexl-identified state’”

array lookl 170 1 16 s $ ’’matches symbols in lookahead
states?/
array look?2 170 i 16 s s ’/contains transitions

corresponding to matches in lookl“’’
item lsize i 16 s p 169 $ “’/size of look arrays’’

item maxln i 16 s p 456 $ “’start of push states in index
arrays’/

item maxpn i 16 s p 456 $ “/start of apply states 1in index
arrays’’

item maxrn i 16 s p 395 $ “’start of lookahead states in
index arrays’/

item maxsn i 16 s p 855 $§ “/largest state number’”

array nproduce/name 400 i 6 5.5 4%used .tol . print
productions’”
array nstate’/name 400 i 16 s $ “%used to print

productions”’’

item pn i 16 s p 39Y $ ““number of productions’’/

array readl 4147 i 16 s $ “’matches symbols in read
states’’/
array read? 4147 i 16 s s “’contains transitions

corresponding to matches in readl’”
item rsize i 16 s p 4146 $ “’size of read arrays’’
item start’/state i 16 s p | $ “’state to start parse in”’”

array state’name 396 i 16 s s /’used to print
productions”’’

item terminaln i 16 s p 106 $ “’number of terminal symbols’’

array vocab 285 h 30 s “/’vocabulary of all symbols in
grammar’’

item vocabn i 16 s p 284 $ “’size of vocab’’

20

4,3.2 Procedure Descriptions
The following is a list of DDDG procedures and accompanying
descriptions of their function/operation. These procedures
are listed in the order in which they appear in the DDDG
source listing.
proc filel’out(stmt’type)s$
Performs all filel output. Stmt/type is the type
of statement unit that the next filel record will
contain.,
Filel’out checks to see if table filelb is fulls
if so, it outputs the tahle and zeroes flZentries.
It then sets the next free row of table entries to
the correct statement unit type, and loads the
correct file2 information from variables set by
file2. Fl’entries is then incremented.
proc fout(nerd) $
Calls filel’out and file2/out if the asis toggle
is off. Nerd contains the statement unit number
to be passed to filel’out.
proc file2/outs
Performs all file2 output.
Operation is same as filel’out, except that the
number of lines, the number of characters, and the
current absolute record number of file2 are saved
for use by filel”’out.
proc out(aa,cc)s$
See description of string package in Section 4.1
proc subpstr(aa,first,num)s
See description of string package in Section 4.1

proc cat(aa,hb)s
See description of string package in Section 4.1
proc cnvert(aa)s

See description of string package in Section 4.1

U

B N L I)

proc spaces(num)s$

See des&fiption of string package in Section 4.1
proc null(aa)s

See description of string package in Section 4.1
proc length(aa)s$

See description of string package in Section 4.1
proc recovers$

Performs syntax error recovery functions. See
3 Section 4,2.2.4.1 for a good high-level
description of this routine’s function.

Recover begins by looping back through state’stack
until sp = 0., If on the way one of those states
can read the <current (illegal) token (this is
determined by proc noconflict), the parse Iis
re-started 1in that state. Otherwise, the token
is rejected and scan’call 1is <called for a new
token.

proc noconflict(current’state) $

Searches current’state’s readl array to find a
match to the current token. If there 1is one,
noconflict returns i. If not, it returns O.

proc synthesize(production’/number)s

Controls the creation of the DDDG output databases
(files 0=2), Production’number 1is passed by
compilation’/loop parsing algorithm.

Synthesize 1incorporates code associated with
several important syntactic reductions made by the

parser. All other reduction code 1is 1in proc
synth, which is just an external continuation of
synthesize.

Reduction to <program>: Turns off compilation
flag "compiling." Writes out mainp’calls array,
which contains procs called by the main program.
If mainp’ptr 1is > than the file0 blocksize
(fO’blocksize), then the array is written out to
more than one filel record.

jo¥4

Reduction <*/> -> 7273 Sets exception=1 for scan.
Then uses last/ident to enter macro name into
macro table (mname). If the name 1is already
defined, the old mname, mstart, and mlength
entries are useds if not, a new entry is created.
M’length and mwmstart are initialized to O and
next’mfree (a pointer to next free mdt entry)
respectively.

Reduction to first part of an array declarations
Calls scan’call for tokens wuntil it determines
that the array declaration 1is initialized or
non-initialized., If it is initialized, the begin
tokens read are changed to beginls. This code
makes for a significant reduction in parsing table
size and complexity.

Reduction to procedure or function <calls If
context=1, the name of the proc is looked up in
synbuf array - if it is there, it is 1ignoreds if
not, it is appended to symbuf. If the context=0,
the same is done with the mainp’calls array. If
either of these arrays overflows, a message
appears on fileO and on the error file. Context
is set in synth cases marking the beginning/end of
a procedure/function.

If production’/number 1is not equal to one of the
above reductions, synth is called. On return, if
synth has set outscope, an endscope filel record]
is written. If outtok was set, filel and file2
records are written with stmt type outtok. An
examination of the synth source listing should
identify where these variables are set.

proc stack’dumps

Called during a parse error to dump the names of
the states in state’stack.

proc print’/production(prodn,left’/stackn,right’stackn)s

Called by synthesize when the debug toggle is set.
Prints the BNF production which has just been
applied 1in the parse. Prodn is the production
number, left’stackn points at the new state
number, and right’stackn points at the rightmost
state in that part of state’stack involved in the
production. :

53

- Y — . T

R T S e e T

proc err(aa,bb)s

Puts out illegal characters encountered by scan to
error file.

" proc get’nums

Inputs a nuaper from the terminal under RADC
MULTICS GLOS zncapsulator.

Not used in DDDG - exists for debugging purposes.

proc scan’call(read’call)s$

Maintains token’stacks controls scanner
invocation. head’call 1identifies the type of
u token wanted.

If read’call 1is 1, a read token is required. A
call is made to get’token, which uses the token
‘ stack mechanism to return a read token. Scan’call
: then checks to see if the token is the start of a
comment. If so, it identifies the type of the
comment by querying crlf and last’token. Scanner
exception 7 is set by the scanner itself wupon
reading a quote and noting that define’flag is O.
Scan’call pulls in <characters> tokens from scan,
one by one, until a quote token is detected. Scan
turns exception off, and control loops back to the
beginning of scan’call to get a "“real" token.
After every token, ouffer/in is called to put it
out to f2/buffer. Note that if the asis toggle is
sety, no text emanates from scan’call’s comment
outputting statements.

If the token was not the start of a comment,
define’flag is checked. If 10k is set,
<characters> tokens are read into the mdt as part
of a new macro definition, which has already been
initialized by synthesize. The text 1is also
output to f2/buffer by buffer/in.

If the token returned did not indicate a comment
start (i.e., it was not a quote), a check is mnade
to see if it is5 a macro name. Here, the expand
flag is used to decide whether to write the name
out to f2’huffer. It is always necessary to
: preserve the leadinc blanks before the macro name

if the asis toggle is set and the expand toggle is

i off. If a macro name was seen, scan’call loops
: back for a "real'" token§ if not, it returns to its
; caller.

i

} H4

T P U W NCCCPRpRL - N7 Wy

b Aloaaa s e o

If the read’call flag is 0O, scan’call 1looks in
token’stack for lookahead tokens. If there are
none, it calls scan for one, tnen stacks it. If
the token it finds, by either method, is a macro
name or part of a comment, the token 1is negated

. and re-stacked, and another is fetched. This way,
subseguent lookaheads can identify these
"non-tokens" and ignore thems but at the same time
they are preserved for eventual processing by the
read portion of scan’call. Comment of macro
processing cannot take place in a lookahead
condition - the action taken by the processing
routines stands a good chance of being temporally
incorrect.

proc toggle’proc(c’token)s$

Finds comment toggles inside comment text.
C’token is the passed comment text.

Toggle’proc finds occurrences of toggles within
comnents by searching for “([",. If found, it
extracts all text between "[(" and "]", and then
I compares this text to entries in array togc. If a
match 1is found, the toggle is turned either on or
off, as described in the User’s Manual. Toggle
values are held in parallel array tog.

proc buf(flag’last,flag’/trail)s

Formats and puts out current token text to
f2’buffer. rlag’last and flag’trail indicate
whether to place blanks before or after the
current token text.

If flag’last is |, buf deletes the last space from
the last used line of f2’buffer. If flag’/trail is
set, buf appends a space to the current token
text, bcd. Buf keeps a count of the total number
of lines and characters in f2’buffer, which
information will be used later by filel’out and
file2’out. ost of buf is concerned with correct
filling of f2/’buffer (no text chopped off, no
extra spaces). Its only anomalous behavior occurs
when the asis toggle is set. Then, buf
concatenates spaces(blanks) to bcd before writing
it out. When crlf is set in this mode, buf calls
file2/out and filel’out to put out an asis line.
It then outputs the concatenated bcd to an empty
f2’buffer.

proc

proc buffer/ins$

Formats source text and calls buf.

Buffer/in uses formatting information 1in arrays
nopairil, nopair2, nospaa, and nospab plus
last’token and token to decide whether to add or
subtract spaces from in front or after the current
token text. It calls buf with its decision. If
the asis toggle is set, buf is called with (0,0).

proc get’tokens

Performs read token function for scan’call.

Get’token searches the token stack for a readable
token. If one exists, it is read, and the stack
updated to delete 1it. If one does not exist, a
call to scan is made. Control then returns to the
caller.

stack’token(negate)s$

Performs lookahead stacking function for
scan’call. Negate indicates whether the token
should be negated bhefore stacking.

Stack’token simply stacks the current token,
negating it if negate is {.

proc numj(aa)s$

———

proc

Prints out an integer quantity on RADC MULTICS
GLOS Encapsulator.

Not used, exists for debugging purposes.

compilation’loops$

Performs LALR(k) parsing algorithm.

Uses the tables described in reference 7 to parse
the 1input source code. Compilation’loop varies
from the system described in reference 7 in some

ways - for instance, a binary search is done on
the read states, and the recovery algorithm works
differently. Further information about the

parsing algorithm is available in any good parsing
text. It is recommended that this routine be left
strictly alone by system maintenance personnel.

print/summarys$

Used to print summary of the compilation.

! Not used in the current DDDG.
1 proc main’procedures$
* Starts and controls DDDG.
Main’procedure calls compilation’loop, then
print4summary. It also outputs the remains of

: files | and 2, which may not have been output.
proc chartype (symbol) $

I Chartype is a utility routine which 1interrogates
the type array with the ASCII value of the single
character contained in the converted character
string symbol. The reasons for making chartype a
function involved improved code readability and
JOCIT compiler difficulties.

proc getcrds$

Reads 1in source cards for scani{ expands macros
from mdt.

If getcrd detects that phony=1, it knows that it
must expand the current macro. The index of the
current macro (that 1is, the 1index into mname,
i mstart, and mlength) 1is 1in macro’name. Getcrd
stacks the remains of the current card into ms,
which 1is then pushed down. The macro definition
is then read in backwards into the ms, card by
card. Until the ms is exhausted, getcrd continues
to return cards from it on successive calls.

Other getcrd funcions are setting the crlf flag
and correctly orienting the 80-byte input cards
within the converted character string called text.

Note that a recursive macro definition will cause
the ms to overflow, with an appropriate message.

* proc index (stringl,string2) $

Returns index of first occurrence of string2 in
stringl.

Most of index’s code is concerned with calculating
correct offsets for converted strings.

Index returns 0 if string2 is not in stringl.
57 |

proc initialize $

Initializes scan databases, critical DDDG
variables.

Initialize assigns values tc mnemonic variables
such a mantissa, star, etc. such that they point
at their appropriate match in array VOCAB.

It also 1initializes the lengths array (used in
scan to speed token matching), the type array
(same purpose), opens various I/0 files, and
initializes certain critical quantities.

proc not’letter/or/digit (symb) $

proc scan

Uses type array to determine whether the first
character of symb 1is a letter or a digit. (see
chartype description).

Returns true if syib is not a letter or a digit.
$

Performs scanning function of LALR parsing
algorithm.

Scan separates input source into meaningful
language entities called tokens. Tokens are
reserved words, user-defined symbols, and special
symbols (+,~-,%, etc.).

The scanner begins operation by initializing some
token data items (blanks, crlf, macro’flag, bcd).
It then updates the current text card to ignore
the last token read. If there is no more text on
the card, a new card is read using getcrd. A case
stmt is then entered, on the variable "exception".
Usually, exception is zero. In this case, another
case stmt 1is performed on the first character of
the new text (using chartype). An examination of
the scan source 1listing or the scan Structured
Design Diagram shows how this first comparison
actually traps most token possibilities. Case 6
of this internal case stmt picks up blanks, and
bumps up the variable "blanks" for each blank it
receives. Case 7, which detects "s7/n, sets
exception=7 to pick up comment text if define’flag
is 0. Case 8 picks up numbers, and case 9 deals
with user-defined symhols (identifiers). It also
detects macro calls and sets up the necessary
mechanics so that getcrd is flagged correctly and
called to expand the macro.

b8

vl

in o i oo T AN

v e ——

If exception=1, the scanner reverts to a mode
where it sends <characters> tokens which
correspond to text between sets of quotes. This
case 1is wused by scan’call to get text from macro
definitions. Exception case 2 is used to read in
Hollerith constants (using the number/value of the
number in the constant). Case 3 sends
<characters> tokens between the keywords "“direct"
and "jovial". It also sets the asis toggle, since
this assembly code cannot be flowcharted
reasonably. Case 4 picks up text between "v(" and
W)w in status constants, and cases 5, 6, 3, 9, and
10 are used to overcome certain JOVIAL constructs
which give the scanner mechanism trouble. Case 7
is used for comment text recognition.

4,3.3 Local Declarations
proc buf(flagZlast,flag/trail)s

item flag’last bs “/if set, delete last space in
f2’buffer’/

item flag’trail b$ “/add a space to this token’”’

proc buffer/ins$
item flag’/last b$ “/set this to delete last space’”’

item flag’trail b$ “’set this to add space to current
token”’”/

item tempil integer$ ““temporary?’’

proc chartype (symbol) $
item chartype integer $ “/result quantity?’’

item symbol character $ “/used as index into type array’’

proc compilation’loop$
item guess i 36 s$ ““contains latest binary search guess’’/

item ii i 36 s$ ““temporary’’

5y

M it it

mm e

item jj i 36 s$ ““temporary’’

item overflow h 150 p l4h(stack overflow)$ “Zerror”’/
item state i 36 s$ ““current state number’”

item temp i 36 s$ ““temporary?’’

item top i 36 s$ ““Zupper limit on guess loop’’

proc err(aa,bb)s$
item aa h 150$ “’message string”’”/

item bb i 36 s$ “Zunused”’’

proc filel’out(~-tmt’type)s$

item stmt’type integers “’type of stmt, put in file2’/

proc file2/outs

proc fout(nerd) $

item nerd integer$ ““/also type of stmt, put in file2’’

proc getcrds$
item done b$ “’binary flag in while loop’’
item getcrd integer$ “’/result string’’
item temphl character$ “/temporary’”’
item tempi2 integer$ “/temporary’’

item tempil integers “/temporary’’

proc get/nums

item get’num i 36 s$ “’/result string’’

60

—————

A h AN

e e b sl B | oy e

SRR

[item kk i 36 s$ ““temporary’’

item strng h 6% ““contains hollerith of number’’

proc get’tokens$

proc index (stringi,string2) $
item index integer $ “‘result string’’
item lengthl integer $ “/length of string 1774
item length2 integer $ “/length of string 277

item stringl character $ “/might contain an instance of
string2//

item string2 character $ ““might be contained in stringl’”

proc initialize $

item cur/lngth integer $ ““/length of group of current
nonterms“//

’ item cur’/term character $ ““current terminal’“/
% item digits h 10 p 10h(0123456789) $ ““numbers”’’
item index integer $ “/vocab index of current terminal“’

item letters h 26 p 26h(abcdefghi jklmnopgrstuvwxyz) $
’7]letters’”/

item new’lngth integer $ “/length of current terminal’’
7 item special’char h 8 p 8h(=($/.% 7) $ “’stand-alones’”’

item temp’term h 30 $§ ““temporary’’

proc main/procedures

i proc noconflict(current’/state) $
item current’state i 36 s$ “’current state’’

6l

item

ﬁ

item
token’

ii i 36 s$ ““temporary”’’

noconflict bs$ ““’true when state in stack can read
V4

proc not/letter/or/digit (symb) $

item not’letterZor’digit b $ “’true if symb is "weird"’/

item null b$ “’temporary’’

item symb character $ ““/passed character’’

proc numj(aal$

item

item

aa i 36 s$ “’number to be output’’

bb h 65 “2hollerith of number’’

proc print/production(prodn,left/stackn,right’stackn)s

item
item
item
item
item
item
item

item
prod?”’

item

item prodn i 36 s$ “’production number to be dumped’’

item

proc print/summarys$

aa h 1508 ““temporary’’

bb h 1508 “/temporary’”

cc h 150$ ““temporary’’

ccl h 65 “’temporary’’

jj i 36 s$ “’temporary”’’

kk i 36 s$ “’temporary’’
lenth i 36 s$ “/temporary’’

laft’stackn i 36 s$ “/index into stack of left end of

line h 1508 “/output line built”’’

right’stackn i 36 s$ “’see left’stackn’’ L

Oc¢

proc recovers$

item end’/of’file h 150 p l6h(abort on bad eof)$ “’error’/

item recover i 36 s$ “/contains recovery state’’

item
item

item

recover’modify h 150 p 14h(modified parse)$ “/error’’
tsp i 36 s$ ’’new stack pointer in intermal loop”?’

temp i 36 s$ “/teumporary’’

proc scan $

item
item
item
item
item

item

bcd’1lng integer $ “/length of current token’’
done b $ “’while loop flag’’/

key’index integer $ “/index into terminals’’/
temp’/char character $ “/temporary”’”’
temp’string character $ “/temporary’’

terminate integer s “/temporary index into text”//

proc scan’call(read’call)s$

item

item

item

item
item
item
item

iten

aa characters “/temporary’’
bb characters “/temporary’’

done b$ “’while loop flag’’

read’call integers “//if l,read calls if O,lo0k?”/
temphl character$ “/temporary’’

temph2 characters “//temporary”’

tempil integer$ “/temnporary’’

tempi? integer$ “/temporary’’

proc stack’dumps$

iten

aa h 150$ ““temporary’’

item line h 190% “Zoutput line built”’’

.. . | . ' ’ .

63

it

L
.

proc stack’token(negate)s$
item negate integers$ “/if on, stack -token’’

item temphl character$ “/temporary’“

proc synthesize(production’nuber)s

item production’number integer$ ““current production’’

proc toggle’proc(c’token)s$

item c’token characters ““/comment text string’’/

item offon integers ““/flag determines toggle on and off’”
item temphl character$ “//temporary?’’

item temph2 character$ “/temporary’’

item te .pil integers$ “/temporary’’

item tempi2 integer$ “/temporary?’’

4,4 Data Files Passed to Phase 2

Data files created by Phase | for use by Phase 2 and the
Invocation Diagrammer are referred to in all Design
Diagrammer documentation as rILE O, FILE 1, and FILE 2.

Their exact JOVIAL definitions can be found in Section.

4.3.1.3.

FILE O is wused by the Invocation Diagrammer to create
invocation diagrams. It consists of fixed-length blocks of
character strings. The blocks can be deciphered using the
following heuristics if the first entry 1in a block is
"xxxk", then the next name encountered in the block 1is the
nane of the procedure which <calls all other procedures
listed in the block. If the first entry is not "x*x", then
treat this block as though it were a continuation of the
last block.

Files | and 2 are related, in that FILE | points at
locations within FILE 2 and contains information about them.
Although both files are blocked by the DDDG, they can be
thought of as sequential and unblocked. Each FILE | record
consists of four integer fieldst an index into rFILE 2, a
statement type number, a record counter, and a character
count. The 1index 1into FILE 2 points at the first FILE 2

64

dotids

» PSSR B e 83 TN TR AR AL 5§ RIS 5 0 S0 <D B 2 2. 3 2w e e o 5T
PSPPI - " - T S i
k

record which the FILE | record describes. It contains the
absolute number of the FILE 2 record, starting from O.
Statement type contains a description of the statement type
of the FILE 2 record.s A full list of statement types, or
"statement tokens", appears in Appendix B. The record
counter indicates how many FILE 2 records are involved in
the statement token. The character count contains the total
number of characters in the statement token.

FILE 2 contains the text of statement tokens found in the
input program. Each statement token occupies one FILE 2
record, unless its total length requires more records. The
text in FILE 2 is formatted so that left-out or extra spaces
in the input text do not appear in the final flowchart. If
FILE 2 were treated as a continuous stream of characters, it
would be functionally identical to the input program text.

4.5. Design Diagram Generator (DDG) Program Structure

The DDG is responsible for creating design diagrams from
the data base created by the DDDG.

The execution of the DDG is broken into two distinct parts.
Part 1| of the DDG accepts user options which describe the
desired format of the diagram (see the JSDD Users Manual for
a complete description of user options). It builds an
intermediate data basz (see section 4.5.1) which defines the
diagram according to the user supplied specifications.

Part | is described in section 4.5.2.

Part 2 of the DDG uses the information in the intermediate
data base to extract and format text from File 2 (the
program text file created by the DDDG) and produce the
design diagram.

Part 2 is described in section 4.5.3.

Section 4.5.4 describes Phase 2 input/output.

Throughout this section, references are made to DDG
procedures which are described in Section 4.6.

4.5.1. The Intermediate Data Base

The intermediate data base consists of two disk filess FILE
3 and FILE 4, and a core resident tablet GROUP.

65

FILE 4 contains a set of records for each statement wunit
contained in FILE 2. The number of records in a set is equal
to the number of lines that the statement unit will occupy
in the design diagram. A set of FILE 4 records will contain
a pointer into FILE 2 and information .relating to the length
and line breaks of a statement unit.

Section 4.5.1.1 contains a complete description of +t(ILc 4.

FILE 3 1s a collection of binary trees which completely
describes the design diagram being created. iach FILE 3
record corresponds to a code block (or box) in the design
diagram. It contains pointers into FILE 4 indicating what
FILE 4 records pertain to the statement units which are to
be elements of the code block. Each FILE 3 record also
contains block size, type and placement information as well
as pointers to other FILE 3 records (which indicate its
position within its tree). There is a tree in FIL: 3 for
each program, procedure declaration, close declaration and
stump (see Section 4.5.2.2.3) encountered in the input file.

FILE 3 is described in section 4.5.1.2.

The GROUP table is a linked list which contains the record
numbers of the roots of FILE 3/s trees. It is described in
Section 4.5.1.3.

4,5.1.1. FILE 4 Description

FILE 4 is made up of two types of records: header records
and line break records. Etach statement unit has one (and
only one) header record associated with it.

A header record has three fields

F27PTR
A pointer into rILt 2 describing the location of the
statement unit.

LINESZOUT
The number of lines that the statement unit will occupy
in the design diagraiui.

MAX?LINEZLNGTH
The 1length of the lonjyest line of the statement unit.

Line break records describe where a line of text composing a
statement unit will be broken in order to comply with the
user supplied ST’/MAX option (ST’MAX is the maximum number of
text characters that can anpear on one line of a code block
- see JSDD User’s Manual). A statement wunit will have
LINES’0UT=-1] line break records associated with it.

66

Ll - i".. - — —o— . "

ORI o NS D BB A o Chinis L) (8 i L aels o s p st

Line break records have two fieldss

F2¢REC
A pointer into FILz 2 indicating the record in which
a line break is to be made.

F24BY IE
The byte in F2/REC at which the break is to be made.

4.5.1.2. FILE 3 Description

Each FILE 3 record contains all information necessary for
the placement of a code block in the design diagram.

A ¥FILE 3 record consists of 14 fields:

F4/BEGIN
A pointer to the FILE 4 header record which points at
the first statement unit of the code block.

F47END
A pointer to the last FILE 4 record (header or line
opreak) pertaining to the last statement unit to be
displayed in the code block.

STMTZUNIT
lThe type of code block described by the FILE 3
record. See Appendix 83 for a 1list of code ©block
(statement) types.

START”/COL
The page column on which the code block’s display
will begin.

BLOCK/WIDTH
The 1length of the 1longest 1line of text to be
displayed in the code block.

STOPZCOL
The page column on which the code block’s display
will stop.

START/LINE
[he 1line on which the code block’s display will
begin.

LINES .
The number of 1lines spanned by the code block (not
including lines for page headings which may be
embedded in the code block).

STOPZ/LINE
The 1line on which the code block’s display will end.
H’PTR

rlorizontal pointer. If H’PTR is non-zero, the FILE 3
record containing it 1is a control phrase (see
Appendix B). H’PTR points to the FILE 3 record
which begins the scope of control phrase. The code
block defined by the .FILE 3 record to which H’PIR
points will appear to the right of the code block
whose FILE 3 record contains the H’PTkR. A zero H’PIR

61

o sl G T ot

indicates that there is no horizontal scope for the
record containiny it.

VZPTR
Vertical pointer. A pointer to the FIL:z 3 record
which describes the code block that will appear under

- the code block whose FILE 3 record contains the
V’PTR.
BACK’H
The inverse of H’pPTk.
BACK’V

The inverse of V/PTR. LEach record in a frILE 3 tree
can have at most one ““/parent”’’, so BACK’H and BACK”’V
cannot both be non-zero.

MIDPT
The 1line of the code block’s display which is its
midpoint. This field is meaningful only for control
phrases.

4.,5.1.3. GROUP Table Description

GROUP contains a set of entries for each of FIL: 3/s trees.
Its entries are:

F37REC
A pointer tc the root of a FILE 3 tree.

FROM’ PAGE
If the tree indexed by F3/REC describes a stump, then
this entry will contain the number of the page of the
diagram on which the stump was referenced.

NEXT
fhe link to the next tree’s pointer in the diagram
sequence.

PAGE’ KEF
In Part 1, this entry will contain the number of
pages that the tree will occupy. Part 2 will compute
from this the page numnber on which the display of the
tree will begin.

PROC/NAME
The name of the program, procedure or close which the
tree describes. If the tree describes a stump, then
PROC/NAME is filled with blanks.

The order in which GROUP’s entries are linked together will
determine the order in which the trees to which they point
will appear on the diagram. [hat ordering is 1in accordance
with the following rules:

1) A stump subtree (see Section 4.Y.2.2.3) will appear
immediately after the tree to which it 1is logically
connected.

2) The tree describing the main program will appear first.
3) Procedure declarations and close declarations will &aopear
in the order in which their declarations appear in the input
prograim.,

o

R

——— U

4,5.,2. Part | of the DIG

Part 1 of the DDGC generates the disk resident intermediate
data base and also generates a core resident intermediate
data base (a table called GROUP). Although generation of the
three units of the intermediate data base takes place in
parallel, it 1is convenient to discuss these functions
separately. Section 4.5.2.| describes FILE 4 generation and
Section 4.5.2.2 discusses generation of FILE3 and GROUP.

4.5.2.1« FILE 4 Generation

FILE 4 contains the information needed to break up statement
units into text lines whose lengths are compatible with the
user supplied ST’#MAX option. In order to accomplish this,
FILE | must be read and its FILE 2 pointers must be followed
to perform text analysis.

Upon reading a FILE | record, a mapping is made of the FILE ;
1 STMT/TOKEN field onto one of eleven values of STMT/TYPE |
(this mapping is performed by the function BOX/MAP).

If STMI/TYPE contains a value equal to CONTROL? 1,
CONTROL’2, CONTROL’3, or CONTROL’4 then the statement unit
to which it refers 1is a control phrase (e.g., IF CONDITION
$ 1s a control phrase whose STWT/TYPE is CONTROL’2). Each
control phrase has associated with it a block of code which
is referred to as its scope. The scope of a control phrase
is that block of code whose execution is controlled by the
control phrase. Frollowing the control phrase and its scope,
a dummy statement unit having the STMT/TYPE END’SCOPE
appears. END’SCOPE signals the termination of a control
phrase’s scope. LEND’SCOPE 1is referred to as a dunmy
statement unit because it is not a part of the grammar which
defines the syntax of JOVIAL J3.

If STMTTYPE indicates that the statement unit to which the
current FILE | record refers is a printing statement unit,
then a set of FILE 4 records must be created for the
statement unit. Otherwise, no FILE 4 records are created.

A set of FILE 4 records consists of one header record
followed by any number (including zero) line break records
(see Section 4.5.1.1).

If STMT/LNGIH (from FILE 1) does not exceed ST’MAX, then the
header record is the only record in the set. The statement
unit to which it refers will appear on a single line of the
diagram. LINESZ0UT is set to i and MAX/LINE/LNGTH is set to
the length of the statement unit. y

6y

If STMT’/LNGTH exceeds ST’MAX, then the statement unit will
appear on two or more lines of the diagram. An attempt |is
made to break the statement unit at a space. However, if
this is not possible, the statement unit is broken such that
the length of the line of statement unit text 1is equal to
ST/MAX.

The statement unit is actually broken by setting the values
of the pointers (+2/REC and F2/BYTE) 1in the line break
record to the record number and byte (in rILE 2) at which
the break will occur,

Each line break record corresponds to one break of the
statement unit’s text.

LINES’OJT and MAX/LINE/LNGTH are updated after each line
break record is created.

The procedures controlling FILE 4 creation are BOX’MAP and
CREATE’FILE4“RECS.

4,5.2.2. FILE 3 and GROUP Table Generation

FILE 3 contains binary trees which define the printing
sequence of the code blocks. Each FILE 3 record contains all
the information necessary to print the code blocks on the
diagram. The table GROUP contains pointers to the root of
each of the trees in FILE 3.

FILE 3 generation can best be understood as a three part
operation where the three parts are record initialization,
record continuation and record closure. These operations
are discussed in Sections 4,5.2.2.14 4.5.2.2.2 and
4,5.,2.2.3, respectively.

4.,5.2.2.1. HRecord Initialization

A new FILE 3 record is initialized when it becomes evident
that a new code block is needed (see Section 4.5.2.2.3 for
the conditions).

Record initialization consists of entering available
information into the new record and zeroing fields that
require information which is not yet available.

Immediately upon recognizing the need for creating a new
record, the following fields may be assigned:® r4/BEGIN,
F4/END, STMT/UNIT, BLOCK’WIDTH, LINES, BACK’H and BACK’V.
Of these, F47END, BLOCK’WIDTH and LINES are subject to
revision if the record is continued.

(0

e ittt A e it i

iﬁrm4f‘

Record initialization 1is handl ed by the procedures
UPDATE’FILES, CREATE’H’PTRZREC, CREATEZV/PTRZREC and
INITIATEZRECORD.,

4,5,2.2.2. hecord Continuation

A record is said to be continued if the next set of FILE 4
records refers to a statement unit which should be included
in the current code block.

Record continuation will occur under the following two
conditions:

1) The next set of FILE 4 records refers to a “type-1“
‘'comment. (See Appendix B)

2) The FILE3 record does not describe a control phrase and
the next set of FILE 4 records refers to a statement unit of
the same type as those included in the FILE 3 record.

Record continuation consists of resetting F4/END so that the
next set of FILE 4 records is included in the FILE 3 record.
The BLOCK’WIDTH and LINES fields of the FILE3 record are
also updated accordingly.

Record continuation 1is controlled by the procedures
UPDATEZ/FILE3 and CONTINUE“/BOX.

4.,5.2.2.3. Record Closure

Record closure 1is the operation which assigns those fields
in the FILE 3 record which define the positioning of the
code block on the diagram (they are START/COL, STOP“COL,
START’LINE, STOP/LINE and MIDPT).

Also, record closure may cause a new FILE 3 record to be
initialized (as described in Section 4.5.2.2.1).

A record 1is closed when the decision is made that no more
statement units will appear in the code block defined by the
record. This decision is based on the STMT/TYPE of the
statement wunit to which the next set of FILE 4 records
refers.

A FILE 3 record will be closed upon satisfying either of the
following conditionss

1) The dummy statement unit END/SCOPE is encountered.

2) The next set of FILE 4 records doesn’t satisfy either
condition for record continuation (see Section 4.5.2.2.2).

Satisfaction of closure condition 1 indicates that the scope
of a control phrase is being terminated. The record being
closed is the last record within the scope of the most

A

recently created control phrase record. The functions
performed at this time are the positioning of the code
block on the diagram and a return to the record defining the
control phrase whose scope is being terminated.

Returning to the control phrase is accomplished by following
BACK’H and BACK’V pointers until a record that defines a
control phrase is found. There are two possibilities at this
point. Either an END’SCOPE will be encountered (in which
case more backup will be performed) or a new record will be
initialized and pointed to by the control phrase record’s
V/PTR.

Satisfaction of closure condition 2 indicates that a new
code block (and a new FILE 3 record) must be initialized. It
must be pointed to by either the H’PTR or V/PTR of the
record being closed.

The determination of whether H’PTR or V/PITR will point to
the new record 1is made by examining the value of the
STMTZUNIT field of the record being closed. If STMT/UNIT is
equal to CONTROL’2, CONTROL’3 or CONTRUL’4, then the record
being closed 1s a control phrase which must point at a
horizontal scope. If H’PITR is zero, it is set to point at
the new record. The BACK’H field of the new record is set to
point at the record being closed.

In all other cases, V’PTR will point to the new record (and
BACK“’V of the new record will point back).

Regardless of which closure condition was satisfied, the
code block defined by the record undergoing closure must be
placed in the diagram. This function 1is performed by the
procedure PLACE.

PLACE finds the father of the code block by following either
the BACK’H or BACK’V pointer (if one of them is non-zero).
If the father is pointed to by the BACK’H pointer, then
PLACE will attempt to position the code block to the right
of the code block defined by the father. If the father is
pointed to by BACK’V, then PLACE will attempt to position
the code block under the code block defined by the father.

If neither BACK’H nor BACK’V is non-zero, then the record
being placed must have a STMT/UNIT field equal to CONTROL’1.
This means that the record describes a <PROGRAM HEAD>, <PROC
DESCRIPTOR> or <CLOSE HeEAD> and that it is the root of one
of the FILE 3 trees. There will be no way to access this
tree root from any other tree in the file, so the record
number of the root must be inserted into the GROUP table.
This function is performed by INSERT.

12

Code block placement fails if an attempt is made to assign
to STOP/COL a value which exceeds PAGE’WIDTH. The code block
is referred to as a stump. A stump is defined to be a
subtree which does not fit in the available number of page
columns.

After a stump is detected the procedure RESOLVE/STUMP finds
the root of the stump. The root of a stump 1is not
necessarily the code block that caused the placement
failure. Type-2 comments and CONTROL’3 code blocks are not
legal stump roots. If the code block which caused the
placement failure is not a legal stump root, then BACK’H and
BACK”’V pointers are followed until a legal stump root is
found. Care 1is taken to assure that the position of the
father of the stump root on the diagram will allow the
display of a stump reference box.

When the stump root is found, the H’PTR or V/PTR by which
its fatner accesses it is negated in order to indicate that
the code block is a stump root. The BACK’H or BACK’V pointer
by which the stump root accesses its father is also negated.

The stump root and all of its descendents must be positioned
on the diagram. This 1is done by repeated invocations of
PLACE from within a tree traversal algorithm (see Appendix
A).

Stump roots are inserted into the GROUP table in a manner
similar to tree roots. Even though each stump root is
accessible from some record in one of the FILE 3 trees, the
stump root is treated as the root of a separate tree.

It should also be noted here that all values placed in the
START/LINE, STOP/LINE and MIDPT fields of FILE 3 records are
relative to the trees to which they belong. That is, every
record being pointed to by a GROUP table entry is treated as
if the tree of which it 1is the root 1is the only tree
described in FILE 3. Relative line numbering is necessary
because initiating a new tree does not guarantee that the
old tree has peen completed. The number of lines that will
be spanned by code blocks described by the old tree will not
be known until its processing has been completed. Relative
line numbers will be made absolute in Part 2.

When an insertion 1is made into the GROUP table, the line
information relating to the current tree 1is pushed onto
LAYOUT’STACK so that it may be retrieved when the new tree’s
processing has been completed.

73

4,5.3 Part 2 of the DDG

Part 2 of the DDG is the output processor. It traverses the
FILE 3 trees generated by Part | and outputs a code block
for each FILE 3 record.

Each FILE 3 record having a STMIT/UNIT field equal to
CONTROL’1 (i.e. each FILE 3 record which describes a
<PROGRAM HEAD>, <PROC DESCRIPTOR> or <CLOSE HEAD>) 1is the
root of a FILE 3 tree. Also, any record having a negative
BACK“’H or BACK’V pointer is the root of a FILE 3 tree (i.e.
such records are stump roots. See Section 4.5.2.2.3). Each
tree in FILE 3 has an entry in GROUP whose F3/REC item
points to 1its root. The entries in GROUP are linked
together so that they may threaded through in the order in
which the trees will appear on the design diagram.

The first major task performed by Part 2 of the DDG is the
assignment of a reference number to the PAGE/REF item in
each entry of GROUP.

If the HEADING option is on, then the reference numbers will
be page numbers. The page numbers are calculated by
following the 1links through GROUP and accumulating the
values that Part | stored in each entry’s PAGE/REF item. The
values stored there by Part | indicate the number of pages
on the diagram that will be occupied by the tree to which
the GROUP entry refers. The accumulated page totals are then
entered into each GROUP entry’s PAGEZREF item.

If the TABLE/OF/CONTENTS option is also on, then a table of
contents entry is generated (by the procedure
GENERATE/CONTENTS/ENTRY) for each module referred to by a
GROUP entry. A module is defined to be a program, procedure
declaration or close declaration. A module can be
distinguished from a stump in the GROUP table because it has
a non-blank PROC’NAME. (Stumps do not have entries in the
table of contents).

If the HEADING option is off, then there will be no page
numbers in the diagram. However, stumps will be numbered
according to the order of their appearance in the diagram.
The stump numbers will be stored in the GROUP entries’
PAGE/REF items.

Assignment of reference numbers is performed by the Part 2
procedure COMPUTEZPAGE/NUMBERS.

After reference numbers are assigned to each entry in GROUP,
the outputting of the design diagram begins.

S . T S e e e

Each of the FILE 3 trees is processed independently and in
the order determined by Part | (see Section 4.5.1.3). The
next tree to be processed is accessed by the NEXT pointer of
the current tree’s GROUP entry (NEXT(0) accesses the
first tree). When an attempt is made to follow a zero link,
then the tree processing operation is complete.

The processing of a FILE 3 tree begins with the invocation
of the procedure ADVANCE/PAGE which sets LINE/NO (the number
of the current output line) to point at the top of the next
unused page. The new value of LINE’NO becomes the
displacement ¢to which all of the relative line numbers in
the FILE 3 tree are added in order to obtain absolute 1line
numbers.

The tree is traversed by the method described in Appendix A.
Each FILE 3 record describes a code block having one of the
four box types described in Section 4.5.3.1. Five basic
operations are performed on each record of the tree. These
operations are: connecting the code block, outputtting the
code block top, extracting the input program text,
constructing the code block lines and outputting the code
block bottom.

Connecting the code block 1is the operation which draws a
connecting line between the current code block and 1its
father. This operation is described more completely in
Section 4.5.3.2.

Outputting the code block top is the operation of outputting
the top of the code block’s box on the output line
designated by the START/LINE field of the FILE 3 record.
This operation is performed by the procedure OUTPUT/BOXZTOP.

Extracting the input program text 1is performed by the
function EXTRACT/TEXT. The purpose of the function is to
extract the contents of FILE 2 according to the
specifications contained in FILE 4. This function Iis
discussed more fully in Section 4.5.3.3.

Construction of code block 1lines 1is the operation which
embeds a line of extracted input program text in the code
block’s box and outputs the resulting string on the
appropriate output line. CONSTRUCT/LINE, the procedure
controlling this operation, is also responsible for handling
double spacing (if the DOUBLE/SPACE option is on) and for
invoking the heading outputter (OUTPUT/HEADING) if the top
of a page is encountered (and if the HEADING option 1is in
effect).

Outputting the <code block bottom 1is almost identical to
outputting the code block top. It is performed by the
procedure OUTPUT/BOX/BOTTOM. However, OUTPUT/BOX/BOTIOM also
performs some buffer optimization which 1is described in
Appendix C.

If a record having a negative H’PTR or V/PTR is found while
traversing a tree, then that record is the father of a stump
root (see Section 4.5.2.2.3). All such records must have
stump reference displays indicating the number of the page
on which the stump root’s subtree will appear (if HEADING is
on) or the stump sequence number (otherwise).

Stump reference displays are constructed and output by the
procedure DISPLAY’STUMP’/REF. Basically, this procedure
draws a box to the right or under the stump root’s father
(depending upon whether H’PTR or V/’PTR 1is negative). The
contents of the PAGE/REF item of the GROUP entry (which
points at the stump) is then displayed in the box. If the
HEADING option is in effect, then the number of the page on
which the stump is referenced is stored in the FROM/PAGE
item of the GROUP entry.

4.5.,3.1 Code Block Formats
There are four code block formats in the JSDD diagrams.

Code blocks whose FILE 3 records have a STMIT/UNIT field
equal to SEQ or PGM’TAIL appear as rectangless

% %Kk Kk kkkkk
* *
*kk kkkkkkk

Code blocks defined by COMMENT’2 FILE 3 records appear as
follows when accessed by a V/PTR:

4

4 ¢7COMMENT TEXT”’”

’
When accessed by an H’PTR, COMMENT”’2 code blocks appears

-+
4 /2COMMENT TEXT”’

’

CONTROL’ 1, CONTROL’2 and CONTROL’4 code blocks appear in the
following manners

% Kk kk kk kkk
* *
% kK Kk kK kkk

BN 8 AR

sk

———

T~ R AR N O, M AR S5m0t e 3 0 s b i

CONTROL’3 code blocks have the following appearances

% Jok kk kk kkk
E - *
~ *kk kkkkkik

4.5.3.2 Connecting a Code BLock

The procedure CONNECT/BOXES 1is responsible for drawing
connecting lines between a code block and its father (if
the code block has a father).

If the current code block has no father then no action is
taken.

If the current code block has a negative BACK’H or BACK/V
pointer, then it is a stump root and it must appear under a
stump reference display box. Such a display 1is constructed
by drawing a rectangular box and placing the contents of the
current GROUP entry’s PAGE/REF in the box. If the HEADING
option is in effect, then the contents of FROM’PAGE are also
| displayed in the box.

In all other cases, the current code block has a father to
which it must be connected. CONNECT/BOXES calculates the X
and Y coordinates (in terms of column and line) of the end
; points of the connecting 1lines and passes them to the
procedure DRAW/LINE which draws them.

4.5.3.3 Extracting the Input Program Text

Each statement unit appearing in FILE 2 has a set of FILE 4
records associated with it. This set of records points to
the statement unit in FILE 2 and defines the way in which it
will appear in the diagram (see Sections 4.5.1.1 and
4,5.2.1). The function EXTRACT’TEXT operates on FILE 2 with
the information in FILE 4 .

If the Header record cf the set contains a LINES’0UT field
having a value of one, then the statement unit to which it
points will appear on one line of the diagram and the entire
FILE 2 record is returned.

If LINES’OUT 1is greater than one, then LINESZ0UT
invocations of EXTRACTYTEXT must be made. Each invocation
extracts and returns the text between the bytes indicated by
consecutive records of the set of FILE 4 records.

17

4.5.4 Phase 2 Input/Cutput

All of the files generated by Phase 2 (FILE 3, FILE 4 and
the output file, PUTOUT) are treated as direct access files.
This 1is necessary because of the frequent updating and
back-up required by the JSDD. Since no direct access
facilities exist for JOVIAL output files, Phase 2 uses a
double-buffering system to manage its files.

The double-buffering requires that Phase 2 maintain two
copies of each of its files. One of these copies is flagged
as being the most recent version. A block (or in the case of
PUTOUT, a collection) of records 1is kept as an in-core
buffer.

All Phase 2 files are accessible only by the ACCESS
functions (ACCESS3, ACCESS4 and ACCESS/0UT). The ACCESS
functions take one parameter -- the absolute record number
of the record to be accessed. Among other things, the
ACCESS functions read the block containing the desired
record into the buffer (if it exists and is not already in
core) and return the index into the buffer of the desired
record.

A write operation has the immediate effect of changing the
contents of the in-core buffer (not of the block on disk).
Any changes made to the contents of the buffers cause a
write switch associated with the file pair to be activated.
If a call to an ACCESS function requests a record not
currently in core, then before the block containing the
desired record can oe brought into core, the write switch
must be evaluated. If it is on, then the current buffer
must be written out to the file. However, in order to
accomplish this, all blocks in the most recent version (and
the contents of the buffer) must be transferred over to the
older version of the file. The old version is then flagged
as being the most recent version.

The transfer operations are performed by the procedures
TRANSFERZ/RITE?3, TRANSFER’WRITE’4 and TRANSFER/WRITEZQUT.

Appendix C describes current and possible future
optimizations of the double huffering system.

4,6 Phase 2 tiodules, Variables and Constants

This section contains a 1list of DDG variables and
procedures. kach item in the list is accompanied by a brief
description of its function and/or meaning. Following the
list of procedures are the three compools OPT and DEBUG
which were used to produce the design diagram of the 0DDG.
(SPOOL is also used by the DDG. See Section 4.1.5).

1o

The DDG global declarations are listed in Section 4.6.1.
Procedures (and their local variables) are listed in Section
4.6.2. OPT and DEBUG are listed in Section 4.6.3.

In Sections 4.6.1 and 4.6.2 the following DEFINE DIRECTIVES
are in effects

define character 7/h 15077 s
define fl4blksiz 227877 $
define f2’blksiz 771277 s
define f3’blksiz 472277 $

define f4’blksiz 2710577 s

define false 44028 S

define integer 221 36/ 544 S

define out’buf’size 22100077 s
define true L B

4.,6.1 DDG Global Declarations

This section contains a 1list of all global variables
declared in the DDG. In the descriptions following the
declarations, PTI indicates that the declared variable is
used only in Part | of the DDG and PT2 indicates that it is
used only 1in Part 2. All variables that are designated as
neither PTI1 or PT2 can be assumed to be wused in both DDG
parts.

item bottom’line integer $ “/PT12 stores STOP/LINE of CUR’ZREC

7/

item bhlock’delim integer p 5 $ 4/ a STMT’TYPE constant 7
item box“tail integer p 2$ ““length of CONTROL’3 tail */
item comment’1 integer p 2 $ 4/ a STMI’/TYPE constant”’’
item comment’2 integer p 3 $ /4 a STMIT’TYPE constant’’

#/CONTROLZ1 thru CONTRUOL’4 are STMT’TYPE constants for 77/
’’control phrases.”’”’

item control’l integer p 8 $ //PROGRAM, PRDC or CLOSE head’’
item control’2 integer p 9 $ “7IF, FOR or DO clause’’

item control’3 integer p 10 $ 7/IrEITH clause or CASE HEAD”’’
item control’4 integer p 11 $ “70RIF clause or INSTANCE 77/
item cur’group integer p O $ “/index into group of current

tree”’”’
Uy

item cur’rec integer p O $ ““current FILE 3 record “/
item delim’comment integer p 4 $ 4/ STMT/TYPE constant 7/

item disp integer $ “//PT2 displacement for relative line
numbering’’

item display’lines integer p 3 $ “/lines spanned by a stump
ref baox?’

item display’width integer p 6 $’//width of stump ref box’/
item end’scope integer p | $//STMT’TYPE constant /7
item eofile b p O $//FILE | end of file flag’’

item extra’block b p false $ ““flags extra PUTOUT file
block””

/2 FI1/BUF is the FILE | buffer see Section 4.4 77/

table fl’buf r fl’blksiz s n $
begin

item fieldl integer
item field2 integer
item field3 integer
item field4 integer
end

o nunn

7s F278UF is the FILE 2 buffer see Section 4.477

table f2’buf r f2’blksiz s n $
pegin

item f271line character $

end

item f3Z%avail integer p | $ “7the next empty FILE 3 record

x4

#7r37BUF is the FILE 3 buffer see Section 4.5.1 *7

table f3’buf r f3’blksiz s n $
begin

item f4’begin integer $
item f4’end integer $

item stmt/unit integer $
item start’col integer $
item block’width integer $
item midot intecer $

item stopZcol integer $
item start’line integer $
item lines integer $

item stop’line integer $

item h’ptr integer $
item v’ptr integer $
item back’h integer $ 1
item back’v integer $
end

72F4BUF is the FILE 4 buffer: see Section 4.5.1 27

table f4’buf r f4’blksiz s n $ |
begin
item f2’ptr integer $
item lines’out integer $
item max’line’lngth integer $:
item f2’rec integer $
item f2’byte integer $
¢ overlay the dis joint fields’”’
overlay lines’out = f2’rec $
overlay max’line’lngth = f2/byte $
end

77 GROUP is the FILE 3 tree pointer. See Section 4.5.1 77/

table group v 500 p n $
pegin
item f3%rec integer $
item from’page integer $
item next integer $
item pagye’ref integer $
item proc’name character $
end

item f2’recs 1integer $ “’no. of FILE 2 recs spanned by a
stmt unit’’

item fl’blk integer p =1 $ “/number of FILE | block in core
re

item f2’blk integer p =1 $ “/number of FILF 2 block in core

7

item f3’blk integer p =1 $ “/number of FILE 3 block in
core’’

item f4’blk integer p =1 $ “/number of FILE 4 block in core

7’
ftem f3’%empty integer p O $ 7/next empty FILE 3 block 77
o) fd4’enpty integer p O $ “’next empty FILE 4 block “¢

fa’start integer s 7/7PT2 stores F4/BEGIN of CURZREC 77

&l

item f4’stop integer $ “/PT2 stores F4/END of CUR’REC */

file filel b 10000 r 313 v(a) v(b) v(c) v(d) v(eofl) Il $
??FILE 14/

file file2 h 10000 v 1806 13 $ “#FILE 2/

file file3“1 b 10000 v 309 14 $ ““Version | FILE 37/

file file3/2 b 10000 v 309 18 s ““/Version 2 FILE 377

file file4”! b 10000 r 316 15 $ “/Version | FILE 47/

file file4/2 b 10000 r 316 19 $ #7 Version 2 FILE 47/

étsT file2/index integer $ “/PT1 index of stmt unit in FILE

##FILE3“INCLUSION is a flag indicating whether a FILE 3 rec
should be created for the current FILE | rec (PTi)’*

item file3“inclusion b $
file finalZout h 20000 v 150 17 $ /7 output file’’

item first’4 integer $ /7 PT1 index of Ist FILE 4 rec of
set ?/

item first/invoc b. p true $ “’flags first call to
EXTRACT/ TEXT?/

item group’avail integer p | $ “/index of next empty space
in group -#/

item group/max integer p 499 $ -/ the size of GROUP /7

array group’stack 100 integer $//PT2 for storage of tree
history“//

item headroom integer p 4 $ “’lines spanned by page
heading’/

item h’father integer $ 7/PT2 stores BACK’V of CURZREC 7/
fitem h’son integer $ “/PT2 stores H’PTR of CUR/REC ““/

item h’space’/|l integer p 4 $§ /7 horizontal spacing constant
44

item h’space’2 integer p 2 $§ // horizontal spacing constant
N4

82

item last’4 integer p -1 $ Z“PT| index of last FILE4 rec of
a set’/

item last’fl integer p =1 $ “/PT] index of last FILEl rec
read?’’

#/LAST’LINE is used in Part | to store the last relative
line number in the current tree. In Part 2 it is the
absolute last line which has been output. 77

item last’line integer $

item last’proc integer p -1 $§ “/PTI index in GROUP of the
last proc 7/

item last’stump integer p O $ “/PT| index in GROUP of the
last stump 47

array layout’stack 100 integer $ 4/ stores history of
LAST/LINE”Z“

item layout’stack’max integer p 99 $ ““/capacity of
LAYOUTZSTACK””

item layout’/stack/top integer p O §$ 4/ current top of
LAYOUT“STACK 7

item left’col integer $ “/PT2 START/COL of CUR’/REC’//

item line’no integer $ “/PT2 the number of the line being
output’/

item max/foutput integer p -1 $ “/PT2 index of last PUTOUT
block on disk”’”

item message character $ /4 stores error and debug
messages’’

item midpoint integer $ “’/stores MIDPT of CUR’REC’‘

/’NAME/BYTE is the byte of header at which the module name
prints’/

item name’byte integer $

item new’file3 b p O $ /’flags FILE3/1 or FILE3/2 as most
recent’’

item new’file4 b p O $ “/PTI flags FILE4“/1 or FILE4’2 as
most recent’’

item new’out b p 0 $//PT2 flags PUTOUTZ! or PUTOUT/2 as most
recent’”’

83

item new’text character $ /7/PT2 stores text extracted from
FILE2?7

item null’scope b p 0 $//PTI flags control phrase’s null
scope’”’

item out’blk integer p -1 $ “/PT2 PUTOUT block in core ¢
##0UT/LINE is PUTOUT’s buffer /7
array out”/line out/buf’size character $

item page’byte integer $//PT2 header byte at which page’no
will print7/

item page’no integer $ “/PT2 number of current page /7

item past/mid b $ /¢ PT2 flag controls printing of pointed
boxes’’

item pgm/tail integer p 6 $ //STMT/’TYPE constant“’/

item proc’flag b p O $ “/PT1 flag on if creating a proc
tree’’

item proc’root integer p O $ ““/PTI flags GROUP item as a
proc head’”’

array proc’/stack 5 integer $ “/PTl stores proc history“/

item proc’stack’max integer p 4 $ -/ PTI PROC’STACK
capacity’/

item proc/stack’top integer p 0 $ 2 PT | current top of
PROC“/STACK-##
item readsw b p false $ “/a read-only switch for FILE4’“

item proc/count integer p 0 $7/PT2 the number of procs in
the program -2/

file putout’/l h 20000 v 150 16 $ “/Version | tmp output’/
file putout’2 h 20000 v 150 20 $ “’Version 2 tmp output’/

item recs/in’blkl integer $//number of records in the FILEI
block’/

item recs/in’blk2 integer $ “/number of recs in the FILE2
block’/

84

T

e e T L L T T e e e Yoy

item recs’in’blk3 integer p O $//number of recs in FILE3
block’”

item recs’in’blk4 integer p O $ ““number of recs in FILE4
block’’

item right“col integer $ //PT2 stores STOP’COL of CUR’REC“//

item right’pos 1integer $//PT2 monitors printing of pointed
boxes’”

item seq integer p 7 $ //STMI/TYPE constant 7/
item skip b $ //PT2 controls double spacing”’”’

item single’space b $ /¢ PT2 always set to NOT
DOUBLE“SPACE’”

item son’top integer $ “/PT2 START/LINE of CUR/REC“’s V/SON’/
item stmt/token integer $// the type of a statement unit’/
item stmt’type integer $ -“/a statement unit type“’/

item stmt/lngth integer $ -“/PTl stores the length of a stmt
unit’/

item stump’found b p 0 $ “/PTl flag set if a stump has been
detected’”’

item stump’root integer p 1 $ #/PTI flags GROUP entry as
stump head”’/

item tempc character $ /7 temp used for characters’/

item tempi integer $ /¢ temp for integers’/

item top/line integer $ //PT2 START’/LINE of CUR/REC’/
item t’mess character “/temp used for debug messages /7 $

array traverse’/stack 200 integer §$ /’stack’ for tree
traversal’”/

item traverse/top integer $27 current top of
TRAVERSE /STACK”“

item v/father integer $ /4 PT2 BACK’V of CUR/REC’¢
item v’son integer $ “/PT2 V/PTR of CURZREC’’

item v’space integer p 3 $§ “/vertical spacing constant’/
85

it

item width integer $ “/PT1 stores width of current text
line or box’/

item write3 b $ /7 FILE 3’s write switch”’’

item writed4d b $ //FILE 4“/s write switch’/

4.6.2 DDG PROCEDURES

The following is the list of procedures declared in the DDG.
In addition to these procedures, the string package is also
used by the DDG (see Section 4.1).

proc accessl (rec’no) §$

’The function ACCESS| provides the interface for FILE 1.
Its parameter 1is an absolute record number. ACCESSI| reads
the appropriate block of FILE 1 records into core and
returns the index into FILE 1’s buffer of the desired
record.”’”

item accessl integer $ “/index into FI1/BUF of record’’

item block’no integer $ “/ FILE!l block in which record
resides’/

item rec’no integer $ “Zabsolute number of the record’/

proc access2 (rec’no) $

?2ACCESS2 accepts an absolute record number and makes sure
that the FILE2 block containing that record is in core.
ACCESS2 returns the index into F2/BUF of the record. /7

item access2 integer $ “/the index 1into F2/BUF of the
record’”

item block’no integer $ ‘“the FILE2 block containing the
record’/

item rec’no integer $“//the absolute number of the file2
record’/

proc access3 (rec’no) $

86

¢ The function ACCESS3 is the interface for FILE3. Its
parameter 1is the absolute record number of a FILE 3 record.
ACCESS3 determines if the block containing the record is in
core. If it is, then, the 1index into the buffer of the
record 1is returned. If the block is exists but is not in
core, then WRITE3 is examined. If WRITE3 is on (equal to 1)
then, the buffer must be written to disk (by
TRANSFER’WRITE3). ACCESS3 reads the desired block into the
buffer and returns the index into the buffer of the record.
If the block does not exist then ACCESS3 returns the index
into the buffer of the record as if the block did exist, and
sets RECSZIN’BLK3 to that value.”’’

item access3 integer $ 44 the index into F3/BUF of the
record’’

item-block’no integer $ -“7the FILE3 block containing the
record’/

item rec’no integer $ ““the absolute number of the
record’’

proc access4 (rec’no) $

/¢ The function ACCESS4 is the FILE 4 interface. It is the
same as ACCESS3 except that it doesn’t call TRANSFER/WRITE4
if READSW is on. “7

item access4 integer $ /7 the index into F4/BUF of the
record’’

item block’no integer $ /7 the FILE4 block containing the
record’’

item rec’no integer $ “/the absolute number of the record’”’

proc access’/out (rec’no) $

47 The function ACCESS’0OUT is the interface for the PUTOUT .

files. Its purpose and operation are analagous to those of
access3., /7

iem access’out integer $// index into LINES’0UT of the
record’’

item block’no integer $’7the “block’ containing the
record’’

87

-

BN o i

:
]

item rec’no integer $7/ absolute number of the record in
putout’/

proc advance’page $
s The procedure ADVANCE/PAGE sets LINE/NO to the number of
the top line of the next empty page . LINE/NO then ‘becomes

the displacement used for calculating absolute line numbers
from relative ones. */

item 1line 1integer $ 7/ displacement of LINE/’NO on current
page &4

item page integer $ “/a dummy variable used in <calling
REMQUO’”
proc box“’map (stmt/type) $

’*The function BOX’MAP accepts STMT’/TOKENs used by Phase |
and maps them onto statement types used by Phase2.?’

item box’map integer $ “/the phase2 statement type’”

item stmt’type integer $ “/the input parameter’’

proc byteZem$

’’The procedure BYTE’EM reads the diagram from either
PUTOUTI or PUTOUT2, truncates it and writes it to
FINAL/OUT. 7/

item line’count integer $//number of lines in this output
group’”’

item page integer $ “/dummy used in calling REMQUO’“

item temphl character$ “/ a temporary character variable’’
proc close’rec (term’rec) $

#2 The procedure CLOSEZREC assigns the LINES and
BLOCK’WIDTH fields of FILE 3 records. It calls PLACE, which
completes the Part | processing of the FILE 3 record. /¢

item stmt’type integer $ 47 the Part 2 stmt type of the
record’’

item term’rec integer $//record number of the record being
closed”’’

88

e o

item tempil integer $ ““temporary integer 77

item tempi2 integer $ ““temporary integer 77/

proc compute’page’numbers $

#’The procedure COMPUTE/PAGE’NUMBERS assigns reference
numbers to stumps and if HEADING and TABLE“OF/CONTENTS are
on, calls GENERATE/HEADER/ENTRY to enter a module name into
the table of contents. 47/

item abs’page’no integer $“//number of page on which modules
start’/’

item contents’pages integer $ “/pages spanned by contents
table’”

item cum’pages integer $ ““cumulative p.ge count’//

item stump’count integer p O $ ““cumulative stump count “/

proc connect’boxes $

2 The procedure CONNeECT/BOXES determines how to connect a
code block to its father (if it has one). If the code block
is a stump then CONNECT/BOXES draws the stump reference
display box for the stump. /7

item display’top integer $ /7 top line of the display box’’

item father integer $ “’record number of code block’s
father?/

item father’bottom integer $ ““/father’s bottom line”’”
item father’mid integer $ ““/father’s midpoint’/

item father’top integer s ““father’s top line’’

item father’type integer s “/“/father’s type /7

item horiz b $ 7% type of connection. horiz or vert’//

item line integer ¢ “/LINE’NO’s displacement on current
page 77

item lngth integer $ “/used to store length of strings’’

item page integer $ //dummy used to call REMQUO /7

89

item x1 integer $ “/x coord of connecting line’s start’’/

item x2 integer $ 4/ x coord of connecting line’s end”’’
item yl integer $ 4/ y coord of connecting line’s start /7

item y2 integer $ 4/ y coord of connecting line’s end’’

proc construct’line $

?? The procedure CONSTRUCT/LINE embeds the line of input
text provided by the procedure EXTRACT/TEXT in the sides of
the box in which it will appear. CONSTRUCT/LINE also is
responsible for outputting blank text 1lines 1if the
DOUBLE’SPACE option is in effect. Double spacing is handled
by 1iterating through the routine INC times where INC is set
according to the value of SKIP, the blank line flag . /7

item inc integer $ ““the uppper bound for the output loop’’

item line integer ¢ “/LINE’N0O’s displacement on current
page &4

item lngth integer $ “/used to store string lengths’’

item page integer $ “/dummy variable used for call to
REMQUO 27

item real’start integer $/’/stores the column in which text
starts’/

proc continue’box (cont’rec) $

/’The procedure CONTINUE’/BOX appends compatible statement
units to the current FILE 3 record. A compatible statement
unit is one which can appear in the same code block with
the statement units which have already been placed there. ’7

item cont’rec integer $ “/ rec no. of continued block. 7

proc create’filed4’recs $

#? The procedure CREATE’FILE4/RECS creates a set of file 4
recs for a statement unit if it is approprate to do so. The
primery function of CREATE’FILE4/RECS 1is to break up
statement units (in FILE 2) so that they may be displayed in
accordance with the value of ST’MAX. The procedure attempts
to break up statement units at the space closest to ST’MAX.

Y0

If there 1is no blank, then the break is made at S1/MAX. A
set of FILE 4 records consists of a Header record and any
number (including O) Line Break records (see JSDD Program
Structure Section 4.5.1). 77

item bytes integer $ “/ no. of bytes proccessed’”’

item cur’pos integer $ /7 current position in line *7

item done b $ 7/ termination flag 7/

item fli’rec integer $ /7 the current FILE | record’’

item last’byte integer $ /7 byte pos of last break ““

item last’rec integer $ Y/ rec of last break “/

item stmt’type integer $ 4/ Part 2 statement type of the
reC"

item temp’byte integer $ “/used to store the break byte’’

item temp’rec integer $ 4/ used to store the break record’’

proc create’h’/ptr/rec (father=son) $

’The procedure CREATE/H’PTR/REC sets up pointers which
have the effect of 1inserting an H’SON into the FILE 3
treeo",

item father integer $ /74 the father of the new record -*/

item son integer $ // the record number of the new record’/

proc create’/v’ptr/’rec (father=son) $

(s The procedure CREATE“V/PTR’REC is the same as
CREATE’H’PTR/REC except that it creates a V/SON. 7/

item father integer $ “/record number of the new rec’s
father//

item son integer $ 7/ record number of new FILE 3 rec 7/

proc dashes (col,lngth,line,outpt) $
/s The procedure DASHES outputs a string of dashes of

length LNGTH, starting on column COL of PUTOUT record LINE
or TEMPC (depending on the value of OUTPT). 4/

91

item col integer $ /7 the column on which dashes start 77

item 1line integer $ “/PUTOUT record on which dashes !
appear?’’ |

item Ingth integer $ 4/ length of dash string to be 2
output’”/ |

item dash h 132 p

132h (=== e mm e e e e e —————

————— ———— —— T ————————— —— T — —— —— —— .} T ——— — ——— ————— — — ———— —————— —— - —— ———

EEESEE RS RS]

item outpt b $ 44 output to TEMP or OUT/LINE /7

proc display’stump’ref (horiz) $

’*The procedure DISPLAY/STUMPZREF creates and outputs a
stunp reference display box either horizontally or
vertically from the current diagram code block. The box
contains the reference number of the stump which is
obtained from the PAGE/REF item of the stump’s GROUP entry.

&4

item bottom integer $ -/ the bottom 1line of the display
box’/

item display integer $ ““line on which reference appears’’
item horiz b $ “’type of display. horiz or vert.’’

item 1index integer $ 4/ the index of the stump’s GROUP
entry”’”/

item left’start integer $ “/the starting column of the
box’”

item lngth integer $ 7/ used to store string lengths’’

item line integer $ /7 displacement of lines on current
page’’

item page integer $ /7 dummy variable for call to REMQUO ‘7 ' :

item top integer $ “/the top line of box”’’

124

proc dots (col,lngth,line) $

?¢ The procedure DOTS outputs a string of LNGTH dots

starting at column COL of the

LINE th record of PUTOUT. 77

item col integer $ 4/ the starting column “/

item dot

]32h(00...000.0..-.0.....0.00

| .oo-o-oouooo-coo) $

proc draw’line (from’x,from’y

‘having x and y coordinates

item from’y integer $ “*/ sta

item two’lines b $7/0on when
points”/

proc extract’name () $

’¢ The function EXTRACT’/NAME
of a module head. 77/

item done b $ 77 termination
item extract’name character

item index integer $ “/index

t _ item line integer $ “/ the number of the putout record’”/

item lngth integer $ “// number of dots to ke output “*7

h 132 p

® 00 0 00 00 000 09 0SSO NN

yto’x,to’y) s

¢ The procedure DRAW/LINE draws a 1line from the point

(in terms of column and record)

FROM’X, FROM’Y to the point TO’X, TO’Y. “*/

item from’x integer $ ““starting x coord’/

rting y coord 47

item line integer $ 4/ used to store page displacement 4/
item page integer $ “/dummy used in call to REMQUO’”
item to’x integer $ /7 ending x coord “/

item to’y integer $ /7 ending y coord 4/

2 1lines needed to connect

extracts and returns the name

flag 7/
$ % returns the module name?’’

into text string 7/

item indexl integer $ 77/ index into text string”’’

v

item index’f2 integer $ 4/ FILE 2 record number?’’

item lIngth integer $ 4/ used to store lengths of strings”’/

item source’line character $ 4/ stores rILE 2 record text?/

proc extract’text (f4/ptr) $

2 The function EXTRACT’TEXT extracts FILE 2 text in
accordance with the line break information contained in the
set of FILE 4 records which correspond to the statement
upnit. 44

item byte’ptr integer $ “’/last byte of text to be
returned””

item extract/text character $ ““contains text to be
returned”’”/

item f4/ptr integer $ 77/ current FILE 4 record 7/

item fieldl integer $ 7/ stores F2’PTR of current FIL:c 4
rec’’

item field2 integer $ “/stores LINES’0UT or F2/REC of rec’’

item field3 integer $’/stores WMAX/LINEZLNGTH or F2/BYTLE of
ref EINE'PTR is the FILE 2 record which contains the last
byte to be returned’”’

item line’ptr integer $

item lngth integer $ ’’stores string lengths 77

item next’f2 integer $ “/number of next FILE 2 rec’’

item next’f4 integer $ “/number of next FILE 4 rec’’

item text’line character $ ““temporary string storage?’

proc generate’contents’entry s

77 The procedure GENERATE/CONTENTS/ENTRY outputs a table of
contents entry for the current module. It finds the starting
page of the module in PAGE’REF.?’

va

AD=A052 731 CHARLES STARK DRAPER LAB INC CAMBRIDGE MA ‘F/6 9/2
JOVIAL STRUCTURED DESIGN DIAGRAMMER (JSDD). VOLUME III. PROGRAM==ETC(U)
- FEB 78 & GODDARDs M WHITWORTH, E STROVINK FWD!—?H-O'IO
UNCLASSIFIED R=1120=VOL=3=PT=1 RADC=TR=78=9=VOL=3=PT=1

Dor 2
AD
ADB2 T3l

END

Il lu o

r—— a — m——w

item 1line integer $ 4/ LINE’ND’s displacement on current
page ¥4

item lngth integer $ /7 stores string lengths’’/

item page integer $ 4/ dummy used in calling REMQUO”’“

proc generate’contents’header $

’’The procedure GENERATE/CONTENTS/HEADER outputs the page
heading for the table of contents. 7

item contents’header character $ ““the table of contents
title’”

item lngth integer $ 4/ stores string lengths’/

proc get’fl’rec $
’’The procedure GET’FI1ZREC tries to read the next FILE |

records If an end of file is encountered, it sets EOFILE to
TRUE. 77

item fi’ptr integer $ 7/ the number of the FILE 1 record “/ |

proc iformat (num) $:

77 The function IFORMAT accepts an integer, and returns a
character string (in converted form) representing the
integer.”’”

item num integer $ 4/ the integer to be converted?’’
item iformat character $ /¢ the string to be returned’’

item h6 h 6 $ 7/ a temporary for ENCODE’”

- proc init/’block’constants $

’’The procedure INIT/BLOCK/CONSTANTS 1is called by Part 2
to initialize the variables which will be constant
throughout the creation of the code block. *7

item index integer $ “/index into f3’buf of the current
record’’

95

— ” ~—4-------unm—-----u--—u-!ur-!-u-u—q-l-.q!

proc initialize $

/¢ The procedure INITIALIZE sets up the initial values for
DDG execution. 47/
proc initiate’record (init’rec) $

¢ The procedure INITIATE/REC sets starting values in a
newly created FILE 3 record. /7

item 1init’rec integer $ “/ rec no. of block being
initiated. 77

proc insert (group“’type,f3“/index) $

2/ The procedure INSERT links an entry into the GROUP
table for a tree which is being inititated.’”

item f37index integer $ “/index of FILE 3 record being
inserted’/

item group’type integer $ “/type is module head or stump
head’”’

proc legal“/stump (stmt/type) $

/¢ The function LEGAL’STUMP accepts a code block type as
input and outputs a | if the code block is a legal stump
root. Otherwise, it returns a 0. 7/

item legal’stump b $ “/ holds the return value’’

item stmt’type integer $ “/the input code block type“’”

proc max (intl,int2) $

/4 The function MAX returns the larger of the two values
passed to it. 7/

I item intl integer $ “/input parameter’’

item int2 integer $ “/input parameter?’’

| item max integer $ /¢ return value’’

96

proc min (intl,int2) $

¢ The function MIN returns the lesser of the two values
passed to it. ’/

item intl integer $ ““/input parameter”’’
item int2 integer $ “/input parameter’”’

item min integer $ ““the return value’’

proc output/box’bottom $

’The procedure OUTPUT/BOX/BOTTOM outputs the bottom of
the code block. It also performs some double buffering
optimization. 7/

item quol integer $ ““the page on which the box bottom
appears’’

item quo2 1integer $/’the page on which V/SON’s box top
appears’’

item reml integer $ “/dummy used in calling REMQUO’’
item rem2 integer $ 7/ dummy used in calling REMQUO’’
item xlI integer $ “/column of connecting line’’

item yl integer $ “/start line of connector’/

item y2 integer $ // end line of connector’’

proc output’box’top $

#sThe procedure OUTPUT/BOX’/TOP outputs the top line of the
code block.’’

proc output’header (page’top) $

#7 The procedure OUTPUT/HEADER outputs the page heading
starting on the line passed to it. 7/

item lngth integer s /7 stores string lengths?’/

item page’top integer $ /7 the line on which the heading
starts’”

item temp’line character ¢ /7 a tmp for character strings’”
97

proc output/title’page $

¢ The procedure OUTPUT’TITLE/PAGE outputs the title page
of the diagram. “/

item line integer $ ““displacement on the current page’’
item lngth integer $ 4/ stores string lengths 4/
item page integer $ “//dummy used in calling REMQUO’”

item start’title integer $ “/page 1line on which title
starts’/

item temp“/line character $ 4/ a character temp’’

item title’index integer $ “/ the index into the title
array’’

item title’pages integer $ “/number of pages spanned by |
titles’’ |

proc part2 $

/¢ The procedure PART2 is the driver routine for Part 2 of
the DDG. 7/

item lngth integer $ /7 stores string lengths’’/

item tmpil integer $ /7 an integer temp’’

item tmpi2 integer $ “// an integer temp’’

proc part2/init $

7 The procedure PART27INIT performs set-up tasks for Part
2 execution. 77

item Ingth integer $ 7/ stores string lengths’’

proc ph2err (error/mess) $

72 The procedure PH2ERR 1issues error messajes and stops
execution of the DDG. ““

item error’mess character $ /7 the error message’’

98

el .

proc place (new’box) $

?? The procedure PLACE places the current code block on
the design diagram. It also performs stump detection. /7

item bottom 1integer $ “/page on which the box bottom
appears’’

item entrance integer $“/vertical or horizontal entry into
block””

item father/bottom integer $ “/bottom line of father code
block’”

item father’/left integer $ “/father’s starting column’’/
item father’right integer $ /7 father’s ending column“/
item father integer $ “/father’s FILE3 record number?”
item father’type integer $ “/father code block’s type”’’

item horiz integer p 0O $ 4/ constant indicating horiz
entry”’”/

item mid integer $ “/ page on which block?s midpoint
appears’’

item new’box integer $ “’/new f3 rec describing latest box
&4

item page’spans integer $ “/number of pages sparned by
block””

item reml integer $ /7 page displacement”’’
item rem2 integer $ “/page displacement”’’
item rem3 integer $ 7/ page displacement’’
item stmt’type integer $ “/type of current FILE3 rec’’

item stump’ref’/bottom integer §$ “/bottom of stump ref
display’’

item top integer $ “’/page on which top of block appears’’

item vert integer p | s “’constant indicating vertical
entry”?”/

vy

proc pop”/layout’/info $

4’ The procedure POP/LAYOUT/INFO pops the top element of
LAYOUT’STACK into LAST’/LINE. 47

proc pop’proc’stack (=pop’rec) $

¢ The procedure PUOP/REC pops the top element of PROC’STACK
onto POP’REC. *7/

item pop’rec integer $ “/output parameter’’
proc push’layout’info $

22 The procedure PUSH’LAYDUT/INFO pushes the value of
LAST/LINE onto the top of LAYOUT/STACK. 47/

proc push’proc’stack (push’rec) $

’’ The procedure PUSH/’PROC’STACK pushes the number of the
current FILE 3 record onto the PROC’/STACK. 77

item push’rec integer $ 4/ the number of the record’’

proc resolve’stump (stump’rec) $

2’ The procedure RESOLVE’STUMP finds the root of a stump
and 1invokes PLACE for each record currently hanging off the
stump root. 4/

item display’room b $ “/enotgh room for stump ref display
?Il

item done b $ ““completion flag’’
item father integer $ “’record number of father?4’

item horiz integer p O $ “7 constant indicating horiz
entry”’”/

item index integer $ “/used as an 1index into the GROUP
table’’

item init’stump integer $“’/record number of the rec causing
stump”’”’

item last’/index integer §$ “’stores previous index into

GROUP’”’
100

item old’index integer $ ““/previous GROUP index”’”

item stump’rec integer $ “/ current FILE3 record’’

item sub’stump integer $ “’/record number of sub stump’’/
item type integer p O $ 4/ horiz-vert flag’’

item vert integer p | $ /7 constant indicating vert entry’’

proc stars (col,lngth,line) $

¢ The procedure STARS outputs a string of LNGTH stars
starting on column COL of the LINE th PUTOUT record. */

item col integer $ 4/ the column in which stars start?/

item line integer $ ““the PUTOUT record in which stars
appear’’

item lngth integer $ “/number of stars output’’

item star h 132 p
132 (% Hesk sk desk ek dook sk deok sk Aok % ek sk dedk ook o o ook ok ok o o o ek ok ko

Fek Kk Kok sk Kok dedke dedk ek Tk ek e ok ok ok ok ok ke ok s ok ke ok ke sk ke ke ok vk ok ek ok ok ok dek ek b kb ke ek ek ok

Jk kk kk kk kk kkkkkk) $

proc transfer/write3 $

s The procedure TRANSFER’WRITE3 transfers the contents of
the most recent version of FILE 3 and the current buffer
contents into the spare version of FILE 3.7/

?’TP’UF is a temp buffer for FILE 377
table tmp’buf r f3’blksiz s n $
begin
item entl integer
item ent2 integer
item 2nt3 integer
item ent4 integer
item entb integer
item ent6 integer
item ent7 integer
item ent8 integer
item ent integer $
item ent10 integer $
item entll integer $

“ OV neunun

1ul

item entl12 integer $
item ent13 integer $
item entl4 integer $
end

item tmpi integer $ /4 temp store for RECS/IN’/BLK37/

proc transfer’write4 $
’7Same as TRANSFER’WRITE3 , only it operates on FILE 4. /7

2 TMP’BUF is the temp FILE 4 buffer’”’
table tmp/buf r f44blksiz s n $

begin

item entl integer $

item ent2 integer $

item ent3 integer $

end

item tmpi integer $ “/’temp store for RECS/IN’BLK477

proc transfer’write/out $

£/ Same as TRANSFER’WRITE3, except TRANSFER’WRITEZOUT
operates on PUTOUT. 747

proc update’file3 $

?’The procedure UPDATE/FILE3 updates FILE 3 (by adding a
new record, or continuing an old one) in accordance with the
information in the newly created set of FILE 4 recs. 77/

item la’type integer $ /7 stmt’token of the next FILE |
record’”’

item new’rec integer $ “/the record number of a new FILE3
rec’’

item stmt’type integer $ “/ the type of the current FILE3
rec’’

102

r”' — . e e »vm——ﬂ
i
!
|

4,6.3 DDG Compools

W This section contains the DDG compools OPT and DEBUG. OPT
contains the user options. OPT’s variables are described in
the JSDD USERS MANUAL. DEBUG contains debuqgging switches |
which are described in Section 7.2.2.

start $

/2 This is the options compool for instructions /7

’/ in setting options , see JSDD Users’ Manual. 77/
common options $

begin

item display’delim b p O $

item double’space b p 0 $

item margin i 36 s p 5 $

item mess’sw i 36 s p 1 $

item page’lngth i 36 s p 60 $

item page’width i 36 s p 132 $

item st’max i 36 s p 30 $

item heading b p 1| $

array header 10 h 150 $

begin

57h(c S draper laboratory jovial structured design ‘
diagrammer) ;
18h(DESIGN DIAGRAM OF)

end

item pgm’name h 150 p 2lh(the design diagrammer) $
item low’lim i 36 s p 20 $

item max/width i 36 s p 40 s

item name’index i 36 s p | §$

item head’no i 36 s p | $

item table’of’contents b p | $

item title’sw bp I §

array title 70 h 150 $ begin

Th()
1h()
1h()
41nh(this listing consists of output from)
52h(the charles stark draper laboratory’s jovial j3)
34h(structured design diagrammer.)
1h()
Th()
Ih()
9 1th()
42h(principal designers and implementors)
1h()
37h(gary wW. goddard, csdl staff)
39nh(mark h. whitworth, csdl staff)
52h(eric f. strovink, graduate student, m.i.t.)

25h(computer science division)

103

,
..l-.III-II-IIII-iI.llIIlI..IlIIl.-llllillnlﬂh-uu-ﬂn-nuﬂ it i

57h(the charles stark draper laboratory, inc., cambridge,
’ mae.)]
1h()
end
item title’no i 36 s p |7 $ end term $

start $

common debug $
begin
item debugl b p
item debug2 b
me ssages 7/
item debug3 b p ¢ access2 7/
item debug4 o) o) “’7access3 and transfer’/write37//
item debugb b p $ “7access4 and transfer’write4’”/
item debugb b p 1 $ ’7access’out and
transfer’write’out 77
item debug7 b
item debugd b
item debug?9 b
bottoni) 7’

$ “’task progress’’/
O $ “’%accessl and get’fl’rec

wvr v

1
p
0
O
0

s 4%2close?’
’’connect’’
$ Z’construct & output/box’/(top &

T T O
ccCcco
w

item debuglO b p O s “’continue and update’’
iten debugl | b p OS “%’create’filed4’recs’’
item debugl?2 b p O $ “’create’(h & v)’ptr’rec”’’
item debugl3 b p Os “’display’stump’ref”’”
item debugl4 b p O S 2’draw’line’”’
item debuglb b p O $ “’extract’n ame?’’
item debugl6 b p G$ “%extract’text”’’
item debugl 7 b p O $ “’output’/header’’
item debugl§ b p O $ “’group progress”’’
item debugl9 b p O $ ¢ record progress?’’
item clebug20 b p O s “4’place’’
item debug?2 | b p 1l $ 2% (push & pep)?proc stack 77
item debug22 b p O$ % resolve’stump?’
item debug23 b p Os$?” contents entry”’’
item debug24 b p I $ “%aviod buf span 77
item debug25 bpOS$ “2no head stmp no.’’
item debug26 b p O $//additional stump inessages”’”’
item depbug27 b p O $ ’’write blocks if error?’
end
term $

104

I

4.7 Invocation Diagrammer
4.7.1 Introduction

The Invocation Diagrammer is a documentation tool which
computes all possible procedure and function invocation
trees for a given JOVIAL program. with the aid of an
Invocation Diagram, one can examine an unfamiliar program
and quickly determine which procedures are called from
where. The experienced reader will appreciate this
capability, since the first task in understanding any
program is to gain some understanding of control flow. A
glance at the DDG Invocation Diagram will demonstrate that
this task is often non-trivial.

It is recommended that the User’/s Manual sections dealing
with the Invocation Diagrammer be read and understood before
continuing, since familiarity with the format of the
diagrams is important to an operational understanding of the
diagramaer.,

Section 4.7.2 describes the general structure and operation
of the diagrammer, Section 4.7.3 lists global variables, and
Section 4.7.4 summarizes the procedures and local variables.

~

4,7.2 Operation and Program Structure

Operation of the diagrammer is fairly straightforward.
First, procedure FIRST/PASS is called. FIRST’PASS reads in
FILE O records and creates a sorted list of all procedure
and function names it finds 1in the file. This list is
stored in PROC/ARRAY. The main program, if there is one, is
always at PROC/ARRAY(s0). Array -elements in FLAG”/ARRAY,
declared parallel to PROC’ARRAY, are set = | 1if the
corresponding PROCZ/ARRAY entry 1is an internal procedure.
This fact is computable from the FILE O format (see Section
4.4), Needless to say, FLAG’ARRAY 1is wupdated when a
PROCZARRAY update takes place, so that corresponding entries
still match.

iWhen FIRSTZPASS completes, SECONDZPASS is invoked.
SECONDZPASS fills a bit array (BIT/ARRAY) whose rows and
columns both correspond to names in PROC/ARRAY. An element
of BIT’ARRAY(Sa,bs$) 1is set 1if procedure PROC’ARRAY(S$as)
calls procedure PROCZARRAY($bS). The FLAGZARRAY element
corresponding to PROC’ZARRAY(Sb$) is multiplied by 5000.

After SECOND’PASS, procedure WARSHALL 1is called, which
coiiputes the transitive closure of BIT/AkRAY. Procedure
CHECKZEZCURSICN prints the names of any procedures which
Weall theinselves" (have a nonzero bit flag at
3IT’ARRAY(Sa,as), where a is the index into PROCZARRAY of
the procecdure name). CHECK’RECURSION sets the FLAGZARRAY

Uy

element corresponding to these procedures = 10000 (all
elements in BITZ/ARRAY set by a closure operation are set by
NARSHALL to "2", not "I", so that these "calls" will never
be interpreted as "real" calls by future procedures).

After CHECK/RECURSION, the diagram is generated. This is
done with a recursive procedure called PRINT. PRINT pushes
an initial index 1into PROCZARRAY(0), a corresponding
starting column of BIT/ARRAY(1), an initial copy of HORIZ
(which contains vertical diagram lines), and calls
WRITE/PROC/NAME. WRITE/PROC’NAME writes out the procedure
name, preserving all vertical diagram lines to the left. If
the danger exists that an attempt might be made to write
over the DDG page’width value, then a numbered "stump" is
created. The stump character representation is appended to
PROC/ARRAY, and appropriate new elements of BIT/ARRAY are
set to effect the continuation. FLAG/ARRAY is adjusted so
that this ‘"procedure" 1looks 1like a procedure that is
internal to the programn unit, but never called by any other
procedure. This ensures that it will print out at the end
of the diagram.

If this new procedure name which has been pushed by PRINT
calls another procedure, 1its index and BITZARRAY column
index (index of the next procedure it calls) are pushed by
PRINT, and the cycle continues. When PRINT pops a procedure
name (when all the procedure’s calls have been exhausted),
the number of vertical diagram lines to the left is reduced
by one. A pop at O lines means that the diagram is done.
At this point, all procedures that were not called are
printed as separate Invocation Diagrams, in the same way as
the large diagram. Note that stumps will get printed at
this point.

External procedures, detected because their names did not
appear as the first record of any FILE O block, are flagged
in the diagram with a "+", Procedures that were part of a
recursive loop are printed normally (pushed) just once.
Thereafter, they are printed as though they did not call any
other procedures, and are flagged on the diagram with a "x",
If this were not done, the diagram would print forever.

Page headings differ slightly from the convention in the
DDG, because the diagrammer heading remains the same
throughout the program (except for page numbers). It was
telt that continuations would be rare, and isolated
procedures fewi thus, the extra code required to print a
Table of Contents and vary the heading could be left out.

106

dodiots

4,7.3 Global Variables

array bitZarray 200 h 70$ /4 contains a record of all
procedure calls from all procedures “//

array column 200 integer$ ““/part of information saved when
a procedure name is pushed by print - indicates current
column of horiz.’/

item cont’flag integer p 0$ ~““to determine whether to print
continuation title line’’

file fileO 10000 r 301 wv(a) v(b) v(c) v(d) v(eof) 11$
“472fileO declaration’”/

table fileOb r 60 s n$ begin item fOZ/entry h 30 end ““used
to read in fileO record’’

array flagZarray 200 integers “#4parallel array to
proc/array. Contains information about corresponding proc
name in proc’/array’/

item gtemp70 h 708 “/“temporary’’

item horiz h 150 p Ih()$ “’contains vertical lines from
previous section of diagram’/

array host/proc 200 integers “/part of print-pushed info.
Contains pushed procedure name’’

item index integer$ “’/contains index of proc name found in
proc/array’’

item line’length integer p 118$ -““/same as page’width’/

item line’number integer p 0$ -/“current 1line number on
output//

item max’entry integer p 0s ’’maximum index into
proc’/array’’

array next/called 200 integer$ “’part of print-pushed info.
Contains next proc called’’

item page character p 5Sh(page)$ “’/static constant’/
array proc/array 200 h 30s ’?contains alphabetically
sorted list of all proc names encountered “/

item ptr integer p 0$ ““points at active set of push array
information during recursion’’

107

SOOI TCUPPNURS—————

item rec’size integers$ ’2used to 1input size of fileO
record’’

array stop’flag 200 integer$ ‘“/part of print-pushed info.
If set, we’re done with this proc’’

item stump’number integer p 0$ <““to keep track of stumps’’
item temphhl h 1$ ““temporary’’

item temphh2 character$ “/temporary?’

item temphh3 character$ “/“temporary?’

item temph30 h 30$ ““temporary’’

item tempil integer$ “4/temporary”’’

4.,7.4 Procedures and Local Variables
proc out/line(line’contents)s
puts out one line into the output buffer

item line’contents character$ “/line to be put out’/
item tempil integers$ “/temporary integer variable’’

proc put/out(new’line)s
outputs a new line, adding a heading if necessary

item temphil character$ ““/temporary’’

item temph2 character$ “/temporary’/

item temph3 characters$ “/temporary’’

item tempil integers “/temporery’’

item tempi2 integers$ “/“/temporary’’

item temphé h 6$ “Zused for converting numbers”’/

item remainder integer$ “/temporary?’’

item page’/number integer$ “/contains page number after
remquo’’

item new’line <character$ “/contains new 1line to be
output”’”

proc stump’no(=char30)s$

purpose of proc is to return a stump character string
of the form "ee=—e— < >" where < > is a nunber from
one to 999, This string is then defined as another
procedure, external and not called by any internal
procs. Thus it will appear at the end of the diagrain
as a stump.

| Ui

proc

proc

proc

proc

proc

item char30 h 30$ ““contains stump string Y—=——
<digits>"’/

item hé h 6$ “used to convert stump number to
character form’’

numj(aa)$ begin

used to output a number during debugging phase. No
longer utilized, but retained for future disaster.

item aa I 36 s$ "ﬁumber to be put out’/”
item bb h 6$ “/will contain character representation’’

initialization$

proc sets up initial quantities, sets up title, clears
bit array and flag arrays.

first’/pass$ begin

this procedurs reads in file0O and sorts proc and
function names

item temp30 h 30$% ““temporary’’
item tempil integers$ ““temporary’’
item done bs “’while loop flag’’

find(temp30)$
returns index into proc/array of passed name

item find integers ““/indicates whether temp30 has been
found in procZarray”’’

item tempil integers “/“temporary’’

item temp30 h 308 “/contains character string to be.
found in proc’array’’

item search integers ““/current guess’’

item lower integer$ “/lower bound on search’’
item upper integers ’“upper bound on search’’
item remain integers ’//temporary for REMQUO”’’

insert(temp30)$

object of this procedure 1is to insert entries into
proc’/array

item temp30 h 30$ ““temporary’’

—m——w

proc equals(search,temp30)S$

compares character strings on a bit level for sorting
purposes. Returns O if arguments are equal (if indexed
name in proc’/array (indexed by search) is equal to
argument string temp30), | if temp30 belongs after the
index, and -1 if it belongs before.

item equals integer$ “/indicates whether temp30 is

above or below search’’

item search integer$ “/index into proc’array’’

item temp30 h 30$ ““character string to compare with
proc/array(search)’’

item tempil integer$ “/temporary?’’

item counter integer$ -“/used to implement bit compare’”
item tempi2 integer$ ““temporary’”’

item temp301 h 30$ “’contains proc/array(search)-’/

proc second’passs$
sets up initial bit array for creating diagram

item done b$ “’while loop flag’’ ’
item tempil integers$ “//temporary’’ }
item cur’proc integer$ “/index into proc’array of proc |
under consideration’’ 4
item called’proc integer$ “/index into proc’array of
proc that was called by cur’proc’’/

item temp30 h 30% ““temporary?’’

proc set’bit(aa,bb,cc)s$

utility procedure to set a bit in the bit array
database

item aa integers$ “/vertical index into bitZarray’’
item bb integer$ “/horizontal index iinto bitZarray’’
item cc integer$ “/value to set bit to’/

item temp70 h 70$ ““temporary’’

proc get/bit(aa,bb)s$

utility procedure to read a bit 1in the bit array
database

item aa integers “’vertical index into bit’/array’’

item bb integer$ “/horizontal index into bit’array’’
item temp70 h 708 “’temporary’’/

item get’bit integer$ “/contains value of specified
bit’”

proc

proc

proc

proc

proc

proc

warshalls
does a transitive closure on the bit array database

item flag b$ ““/while loop flag’’

check’recursions

checks for recursive loops by examining main diagonal
of bit matrix. If any element 1is set, we have a
recursive loop.

item flag b$ “/while loop flag’’
item message h 1508 ““temporary’’

prints$ begin

this 1is a recursive proc which prints out the
invocation diagram from the databases assembled by
first’pass and second’pass

write’proc’names$

this procedure does formatting of horiz and writes out
a rightmost procedure name.

item aa h 150$ “’temporary’’

item tempil integer$ “/temporary?’’

item host’p h 30$ “’contains name of current proc (or,
current "scope")’/

write/horizs

this procedure dumps horiz based on the current column
value

item tempcl h 1508 ““temporary’’
item r1 integer$ “//temporary’’

pushs
this procedure pushes down the recursion stack of print

by examining procedures called and determining if there
are more to be dumped out beyond the current level

item tempil integer$ “/temporary’’

item done bs$ “/while loop flag’’

item new’proc integer$ “‘/new procedure name, nhext
called procedure’’

m

4.8 Compiling the JSDD

The best method of explaining the compilation of the JOVIAL
Structured Design Diagrammer is to demonstrate the control
cards which accomplish the task. The compool segments
required for a complete compilation ares

spool - contains string package declarations
data - contains phase | global declarations >
ntables - contains phasel parsing tables
utilities - contains terminal I/0 declarations
opt - contains phase 2 and invocation
diagrammer options
debug - contains phase 2 debug switches

All programs to be compiled are assumed by the control card
decks to be converted to GCOS file format. This is because
MULTICS forces tabs stops to occur at 10 character intervals
when it converts a MULTICS file for use by the GCOS
Encapsulator. In order to circumvent thi:z, files are
explicitly converted before compilation such that tab stops
occur at carriage positions 4,7,10,13, etc.

A "canned" deck is part of all the compilation decks - it is
"invoked" by the select card:

$ select >misc_libraries>jocit>compile
Expanded, this is really:

$ prmf1l *k,Ir,ry>ml>jocit>jocit.032977
$ limits 10,49k ,,20000

This arrangement of control cards always works correctly,

] except when there are no compools except "utilities". For
some unknown reason, the deck fails in this instance. The
solution 1is to concatenate the "etc" card contents to the
"jovial" card, and re-submit.

4.8.1 JSDD Compilation Control Cards

Phase 1|3

$ snumb efs

$ ident Strovink.5581cl412 ”
$ jovial name/ph|8/,xref,map,nopt,lstou,

$ etc poolin/ll,12,13,14/,ncomdk

$ prmf1l llyrys,utilities.cmp_out

$ prmfl 12,r,S,5p00l.cmp_out

$ prmfl 13,r,s,data.cmp_out

$ prmfl l14,r,s,ntables.cmp_out

(NP4

Py

$ print p*

S prmfl Ck,W,S, jovwrk>phi8.0bj

$ select >nisc_libraries> jocit>compile
$ select jovwrk>phl8.gcos =-gcos

S end job

$ snumb efs

$ ident Strovink.558I1cl1412

$ jovial name/synth/,xref,map,nopt,

$ etc poolin/i1i,12/,ncomdk

$ prinfl Ilyrys,utilities.cmp_out

$ prmf 1l 12,rys,data.cmp_out

$ print p*

$ prmfl Ck,W,S, jovWwrk>synth.obj

$ select >misc_libraries> jocit>compile
$ select jovwrk>synth.gcos =-gcos

$ end job

Phase 23

$ snumb efs

$ ident Strovink.5581cl412

$ jovial name/ph24/,xref,map,nopt,

$ etc poolin/il,12,13,14/,ncomdk

$ prmfl llyrys,utilities.cmp_out

$ prmfl 12,ry5,spool.cmp_out

$ prmfl 134rys,0pt.cmp_out

$ prmfl 14,r,s,debug.cmp_out

$ print p*

$ prmfl Ck,W,5S, jovWwrk>ph24.0bj

$ select >misc_libraries>jocit>compile]
$ select jovwrk>ph24.gcos =-gcos

$ end job

Invocation Diagrammers:

$ snumb efs

$ ident Strovink.5581cl412

$ jovial name/invoc/,xref ,map,nopt,
$ etc poolin/lil,12,13/,ncomdk

$ prmfl llyrys,utilities.cmp_out

$ prmfl 124rys,spool.cmp_out

$ prmfl 13,rys,0pt.cmp_out

$ print p*

$ prmfl c*,W,S, jovwrk>invoc.obj

$ select >misc_libraries> jocit>compile
$ select jovwrk>invoc.gcos =gcos

$ end job

—————y
|

5. Error Conditions

This section describes error conditions and associated
messages which can occur during execution of the JOVIAL
Structured Design Diagrammer. Section 5.1 discusses Phase |
errors, Section 5.2 covers Phase 2 errors, and Section 5.3
deals with string package errors, which are common to both
Phase | and Phase 2.

5.1 Error Conditions in Phase |

Phase | errors are best represented in a tabular format -
error message(s), cause(s), ramifications, and corrective '
actions.

Errors

MODIFIED PARSE

SKIPPED OVER TOKEN ® ®
RESUMI NG

€ > Itm < > <€ >

PARTIAL PARSE TO THIS POINT ISt
ILLEGAL SYMBOL PAIRs

Causes

Phase | could not parse the input program.

Ramifications:

If this program was correctly parsed by the JOVIAL compiler
without warnings, and does not contain JOVIAL J3X I/0

constructs, then there 1is an error in the DDDG. The
flowchart may or may not be affected.

Corrective actions:

Make sure that the program compiles without warnings. If
this fails, contact implementors.

* Errors

EOF AT INVALID POINT
ABORT ON BAD EOF

Cause?

Phase | has encountered an END OF FILE on the input source
deck before finding a compilable program unit.

114

Ramificationss

Can be the result of a parsing error, if certain crucial
tokens get skipped earlier on. Other messages should
precede these 1if this is the case. The flowchart will be :
incorrect.

Corrective actionss

The input file structure should be carefully examined for
abnormalities.

Errors
' MACRO TABLE OVERFLOW
' SYMTAB OVERFLOW
MACRO DEFINITION TABLE OVERFLOW
FSTACK OVERFLOW
Cause:

An internal table has overflowed.

Ramifications?

i All but SYMTAB OVERFLOW are fatal errors. SYMTAB OVERFLOW
will affect only the invocation diagram.

Corrective actionss

Recompile Phase | with larger table sizes, or:?
MACRO TABLE OVERFLOW - reduce number of program macros
MACRO DEFINITION TABLE OVERFLOW - see above

‘ FSTACK OVERFLOW - reduce nest level of function calls

i SYMTAB OVERFLOW - reduce number of proc/function calls

Error:
GETCRD MACRO BUFFER OVERFLOW
Causes

A recursive macro definition has occurred, or macro nest
level has exceeded approximately 25.

Rami ficationss
Error is fatal.
Corrective actionss

Remove recursive definition, or reduce nest level.

115

Errors
I LLEGAL CHARACTER IGNORED
» Cause:?
An illegal character was detected in the JOVIAL source input
Ramificationss
Character is ignoreds flowchart is unaffected.
Corrective actions? |

Remove character.

5.2. DDG Error Conditions and Debugging Messages

This section contains a description of errors which are
reported by the DDG and DDG debugging switches which can be
used to locate DDG malfunctions. Section 5.2.1 1lists DDG
error conditions and Section 5.2.3 describes the DEBUGC
switches.

5.2.1 DUDG Error Conditions

The DDG reports occurrences of twelve types oI errors. All
DDG errors are fatal. 7The following 1is a list of error
me ssages, their meanings and 1in some cases, possible
corrective actions.

PROC STACK ERROR
Part 2 processing has comnpleted, but all entries pushed j
onto the PROC’STACK have not been popped off. The
message is issued by the main routine at a time when
the PROC’STACK should be empty. Occurrence of this
error indicates an error in either the DDG execution or
in FILE 1.

GROUP STORE OVERFLOW
The storage capacity of the GROUP table has been
exceeded. To overcome this problem, the DDG should be
reconmpiled with a larger value for GROUP/MAX and more
entries specified in GROUP’s declaration.

BACK PTR ERRUR
A FILE 3 record which requires a non-zero BACK’H or
BACK’V field has none. An attempt to back throuch the
record (in PLACE) has aborted. Occurrence of this error
indicates a DDG failure.

116

- —— | |

PROC OR STUMP HANDLING ERRCR
An attempt has been made to pop an element off an empty
LAYOUT’STACK. Occurrence of this error indicates a DDG
failure.

CONTROL HEAD ERRQGR
The name of a control head was expected (by
EXTRACT’NAME) but not found. Occurrence of this error
é?gicates an error in either the DDG execution or in
E 2.

PROC HANDLING ERROR
An attempt has been made to pop an element off of an
empty PROC/STACK. Occurrence of this error indicates a
DDG failure.

LAYOUT STACK OVERFLOW
The capacity of the LAYOUT/’STACK has been exceeded. The
sizes of LAYOUT’STACK and LAYOUT’STACK’MAX should be
increased.

PROC STACK OVERFLOW
The capacity of PRUC’STACK has been exceeded. Increase
the sizes of PROC/STACK and PROC/STACK’MAX.

STUMP HANDLING ERROR
A stump was detected during RESOLVE/STUMP’s attempt to
find a legal stump root. This »rror indicates a DDG
failure.

STUMP HANDLING ERROR 2
A stump was found during RESOLVE/STUMP’s attempt to
find a stump root whose father’s placement could
accomodate a stump reference display. Occurrence of
this error indicates a DDG failure.

STUMP HANDLING ERROR 3 REC n
Record n (FILE 3) was detected to be an illegal stump
during RESOLVE’STUMP’s invocation of PLACE. This error
indicates DDG failure.

SUB STUMP SeEARCH FAILURE
A sub stump was detected but not found in the GROUP
table. Occurrence of this error indicates DDG failure.
(A sub stump is a previously processed stump which is
encountered again because of the hackup necessary in
finding the root of the current stump).

5.2.2 DDG DEBUG Switches

The DDG is run with a compool DEBUG (see Section 4.6.3)
which contains 26 DEBUG switches which control the messages
that can be used to monitor the progress of the DDG’s
execution.

Under normal conditions all DEBUG switches should be turned
off (i.e. preset to zero). However, should a DDG failure
occur, the DEBUG switches can be used to localize the DDG
failure.

The destination of the DEBUG messages is controlled by the
user option MESS’SW (see JSDD USER’S MANUAL). Messages can
be sent either to the user’s terminal or to the file whose 1
device number is 12.

The following is a list of the DEBUG switches accompanied by
a brief description of the messages that they control.

DEBUGI controls the emission of messages that are general
progress reports of DDG execution. The messages ares
INIT COMPLETE
Execution of the procedure INITIALIZE has been
completed.
END PART |
Part | execution has completed.
COMPUTE NUMBERS
The procedure COMPUTE/PAGE’NUMBERS has been invoked.
CONTENTS HEADER
The page heading for a table of contents page has been
output.
PART 2 DONE
Part 2 execution has completed.
LAST LINE n
The diagram will consist of n lines of output.
STAKT BYTING
The output truncating procedure BYITE’cd4 has been
invoked.

DEBUG2 controls the emission of messages concerning the FILE
I interface routines (ACCESS! and GET’F1ZREC). Output 1is
voluminous. Messages ares
ACCESSI m
The mth FILE | record is being accessed.
ACCESS1 GET n
The nth block of FILE | is being read.

e

FILE 1 EOF i
The end of FILE | has been encountered.

DEBUG3 controls the emission of messages concerning the FILE
2 1interface routine (ACCESS2). Output is voluminous. The
me ssages ares
ACCESS2 m
The mth FILE 2 record is being accessed.
ACCESS2 GET n
The nth FILE 2 block is being read.

DEBUG4 controls the emission of messages concerned with the
FILE 3 interface routines (ACCESS3 and TRANSFER/WRITE3}.
Output is voluminous. The messages ares
READ3 m
The mth record of FIlE 3 is being accessed.
TRANS-0OUT n
The nth FILE 3 block is being written out to disk.

DEBUGS controls the emission of messages concerned with the
FILE 4 interface routines (ACCESS4 and TRANSFER’WRITE4).
Output is voluminous. The messages are:?
READ4 m
The mth FILE 4 record is being accessed.
TRANSFER4-out n
The nth FILZ 4 block is being written to disk.

DEBUG6 controls the emission of messages concerned with
PUTOUT’s interface routines (ACCESS/0UT and
TRANSFER’WRITEZOUT). The messages are:
ACCESSOUT GET m
The mth block of PUTOUT is being read.
TRANS OUT n
The nth PUTOUT block is being written to disk.
MAX FOUTPUT p
PUTOUT now has a total of p blocks.

DEBUG7 is not used.

DEBUG8 controls messages emitted in the procedure
CONNECT’BOXES. Output is voluminous. The message is?
CONNECT m TO n
Boxes m and n are being connected.

DEBUGY controls the emission of messages concerned with

1y

outputting code blocks. Output is volumninous. Ine messayes
ares
CONSTRUCT
The procedure CONSTRUCT/LINE has been invoked. The line
(of the JSDD) being constructed is also output.
TOP OUT
The procedure OUTPUT/BOX/TOP has been invoked.
BOTITOM OUT n
The bottom line of the nth code block is being output.

DEBUGIO controls the emission of messages concerning FILE 3
record creation and continuation. Output is voluminous. The
messages ares
UP END SCOPE
An END’SCOPE was encountered in FILE 1.
BACK THRU m
The FIL:E 3 tree is being backed through in an attempt to
find the last control phrase. Record m 1is the current
FILE 3 record.
UP CONTROLI
A CONTROLI record is being created.
UP SCOPE START
A FILE 3 record beginning the scope of a control phrase
is being created.
UP NEw TYPE
A new FILE 3 record of a different type than the last is
being created.
CONT n
The nth FILE 3 record is being continued.

DEBUG11 controls the emission of messages concerning FILE 4
record creation. Output is voluminous. The messages are?
CREATE4 m
The mth rILE 4 record is being created.
END CREATE n
The nth FILE 4 record was the last created in the
current set.

DEBUG12 controls the emission of messages concerned with the
creation of sons of FIL: 3 records. The messages are:?
CREATE H m
The mth FILE 3 record is being created by
CREATE’H’PTR/’REC. It 1is accessed ny an H’PIR.
CREATE V n
The nth FILE 3 record is being created by
CREATEZV/PTR’REC. It is accessed by a V’PTlK.

120

— J----------n---—-!!--F--'“"'-'-II.‘

VDEBUGI3 controls the emission of a message concerned with |
the displaying of stump references. lhe message iss |
DISP STUMP m
The stump whose father is record m is having its stump
reference display output.

DEBUG14 controls the emission of messages output by the
procedure DRAW/LINE. Output is voluminous. The messages ares
STARTZDRAW
DRA#H’LINE has been invoked. The coordinates of the
endpoints of the line to be drawn are also output.
END DRRAW
The execution of DRAW/LINE has been successfully
completed.

DEBUGIS controls the emission of messages output in the
procedure EXTRACT’NAME. The message consists ofs
EXTRACT NAME
EXTRACLI’NAME has been invoked. Following this message,
the extracted name is output.

DEBUGI6 controls the emission of messages relating to the
text extraction routine (EXTRACT/TEXT) . Output is
voluminous. The message iss
EXTRACT TeXT m
EXTRACT’TEXT has been invoked and will operate on FILE
4’s mth record. The extracted text is also output.

DEBUGI7 controls the emission of a message concerned with
outputting page headings. Output is voluminous. The message %
iss
PAGEZTOP m
The heading for the page that starts on line m is being

output. 3
DEBUG18 controls the emission of a message reporting on the j
progress of threading through the GROUP table. The message
I isse
E START GROUP m
|

Part 2 processing has begun on the FILE 3 tree pointed
to by the mth entry of GROUP.

progress of Part 2’s code block generation. Output is
voluminous. The message is?

I CURZREC m

The mth code block is being output.

! DEBUG1Y controls the emission of a message reporting on the
|

lel

.

DEBUG20 controls the emission of messages concerning Part |
code block placement. Output is voluminous. lkessages ares
PLACE m
The procedure PLACE is operating on the imth code block.
SPANS
‘The mth code block spans a page heading.
NO SPAN
Mo page heading is spanned.

DEBUG21 controls the emission of messages concerning
operations performed on the PROC’/STACK. The messages ares

PUSH m
The record number m is being pushed onto the PRUCZSTACK.

POP OFF m
The record number m is being popped off of the

PROC/STACK.

DEBUG22 controls the emission of iliessages output by the
procedure RESOLVE/STUMP. The messages ares
KRESOLVING STUMP n
FILE 3 record n has been found to be the root of the
stuinp,.

DEBUG23 controls the output of entries 1in the table of
contents. The message iss
TABLE ENTRY

The procedure GENERATEZCONTENTS/ENTRY has been invoked.

The nawe of the module whose table entry is oeing output
is also printed.

DEBUG24 controls the emission of a message outpiut during the
buffer optimization operation performed by
OUTPULZ8IX730TIJL. The nmessage is:
AVOID BUF SPAN m AND n
Part of the connecting line between coce blocks m and n
is oeinyg drawn now. See Appendix C.

DeEbUG2Y controls the emission of messages concerned with
assigning sequential reference numnhers to stuiins,
Sequential reference numbers are assigned only when the
HeEADING option is not in effect. The iiessage iss
SIUMP NU m
‘The mth stump has had its reference number assigned.

DEBUG26 controls the emission of messages concerned with
stump resolution. The messzgyes ares

R e T p——

O P

STUMP CAUSE REC m
The mth Filt record caused the placement failure which
resulted in this call to RESOLVE’STUMP.

REORDER STUMP p
The FILE 3 record p has been found to be a sub stump.
Its position in GROUP 1is being changed so that it
follows the stump which is rooted by record n.

RESOLVE: TREE END g
FILE 3 record q is the leaf (i.e., it points to no FILE
3 record) of the current stump tree.

DEBUG27 <causes rILES 3 and 4 to be written to disk if a DDG

error is detected. A message 1is output indicating which
versions of the files are the most complete.

5.3 Error Conditions in String Package

Errors

**% CONCAT ERROR *¥%x

*%%x SUBSTR ERROR *%*%

**x*x SPACES ERROR **x*

Cause?

The String Package has detected an error in the use of

extended string functions. It issues a warning, and
performs a cleanup action as described in Section 4.1.4.

Ramifications:

The flowchart will not be affected, as the cleanup of these
errors is well-structured and logical.

Corrective Actions:
There is an internal error in the program calling the string
package. The most likely sources of such errors are the

DG SCAN routine and the DDG EXTRACT’TEXT routine. Contact
implementors if these errors occur freqguently.

6. Uperator Instructions

No special instructions need be directed to the computer
onerator.

l¢o

Section 7 Printout
This section consists of printout. It 1is printed

separately as Part II of this volume because of

its' bulk.

_ﬁ&-

f e p—————
| Peceding Fage BLamk

125 thru 344

. . , S rra— —

Section 8 Printout
This section consists of printout. It is printed
separately as Part IITIof this volume because of

its' bulk. |

346 thru 592

Section 9 Printout
This section consists of printout. It is printed
separately as Part IV of this volume because of

its' bulk.

593 thru 647

APPENDIX A Representing Programs as Binary lrees

The representability of comnputer programs as binary trees is
fundamental to the operation of the JSUD.

Any structured program written in JOVIAL can be represented
as a finite bhinary tree. There are ,however, non-structured
JOVIAL programs which cannot be so represented. Any JOVIAL
program (structured or not) can be represented as a finite
graph (not necessarily a tree) or as a binary tree (but not
necessarily a finite tree).

Consider a non-structured compound statement of the
following forms

BEGIN ;

CODE BLOCK A {

LABEL). IF CONDITION s |
BEGIN
CODE BLOCK B *
GOTO LABEL1 s

END

CODE BLOCK C

A finite graph representing the compound statement iss

CODEZULCCK’A s
dekkokokdok ko ko K kk
(]
(]
[}

Feke Kk Fok dok dek dek ke Ak 1

HE e —— - +
. :
%k kk kkkkkk kkkk kkk Kk Kok ke ke % hk kkkk kkk H
#IF CONDITION § #=====>%CODE/BLOCK’E § *-——+
*kk kk kk kdkkkkkk kkk Kk kkk ok ok kkdek kkk kkk

v
kAxkhkkkhrxkkkikkkkkx
*CODE’BLCCK’C s *
Jekeokok dok ek kok ko okk kkk

A diagrammer employing this representation would produce

unreaclable diajrams for programs having any degree of
complexity.

649

The JSDD’s representation of the compound statement iss

% kkkk kkokok kok ok kkokk
*CODE/BLOCK’A $ *
% ek deke ek ok ok ok ek

4

’

4

’

% e ok ook ek ek ke kok ok ok ok kkk ok e e e ke ek ok Aok ok
*LABELI . I+ CONDITION $ *=====—%CODE/BLOCK’B $ *
Fodkok dok ok ok dokkdkkkoak ok kk kok kkk *GOTO LABEL1 s =

’ Kk ok ok Kk kdeok Kok ok kok ok

’

’

’
ek dok dedek hokokdokkokkk
*CODE“BLOCK’C $ *
ek Ferkdok dok deok dok ok ek

The JSDD diagram does not clearly illustrate the fact that
evaluation of CONDITION is repeated. The JOVIAL structured
extensions were introduced for this reason. They eliminate
the need for using non=structured constructs. The code in
the example compound statement should be rewritten in the
forms

CODE BLOCK A

DO WHILE [CONDITION)
CODE BLOCK B

[END DO1

CODE BLOCK ¢

The JSDD representation of the rewritten code iss

e ko Kk ek ke dkok ook

*CODE/BLOCK’A $ =

e Jeok dedk ek keok Kk ok k ok kok
’

’
’
/’

*kdek K Kok Kk kk Kok kokkok kk Kk kkok %k de ok dek ok dek Kok ok ok ok
*D0 WHILE CONDITION s ke *CODE/BLCCK’B $ *
ek kok ok ko kk ok ok ok ok ok ek ek sk dek e dedek ke K ok kkk

’

4

’

4
% ek ke Kok kk ko kkkok kk
*CODLE7BLOCK’C s *
ke Kok Sk ok kk Kk Kk hk

Ssesat, i

The repeated evaluation of CONDITION is clearly shown in the 3
control box (i.e. the box containing CONDITION).

Consider a more complicated compound statement 3

BEGIN
CODE“A]
: IF CONDI s }
; BEGIN
k| IF COND2 $?
\ BEGIN
IF COND3 s
BEGIN
! CODE’B
; END |
CODE“C
END
END ‘
CODE 2D ;
END

The JSDD representation of this compound statement is 3

e ek Fek de ke ek dok
*CODE’A $ *
*22)27 *
% doie Jork ek dk dok
’
'4
% gk Fede dod ok kokk
*]J+ CONDI $ * Jek ek ko dedkk kokk
i * *——=%]F COND2 $ * % Je e ded o Fedede Fok K
; *27D27 * * *===%x][F COND3 $ =% *kkkhk kkkhk
i % Kk Kok ek ok ke kok *x72377 * * *=-—%xCODE’B $ *
; ’ Jek Kok dok kok Kok kk *x22427 * *225727 *
’ *hhhk dkkkk kkk Jeok ke gk dededkekok
| ’ ,
: ’ ,
i £ %* %k kdkk ko kkk
i ’ *CODE’C s *
| ’ *x22627 *
: ’ % Je % e gk dede e ek
V4
i E * ki Kk Kk ek ok
l ’ *CODE’D $ =*
*x?77777 *
[* e dedede Jek dek Sk
|
|

The quoted numbers in each box indicate the order in which
the tree nodes are always processed.

ob 1

T

The traversal of JSDD binary trees 1is accomplished by
simulated recursion. The JSDD trees are regarded as
collections of subtrees related in the following manners

%k kK Kk kk % kK kk kokk kkk

*R0O0T *=-===> *RIGHT SON*
* %k k kk * kkkk Kk kk kk

v
ek de g e dekeok ok
LEFT SONx
ek vk kokok hedok

where LEFT’SON and RIGHT’SON are roots of the LEFT and
RIGHT subtrees.

A recursive algorithm for the traversal might be written:

RECURSIVE PROC TRAVERSE (ROOT) $
BEGIN
VISIT (ROOT) $
TRAVERSE (RIGHT“SON) $
TRAVERSE (LEFT’SON) s

END

VISIT is the procedure which operates upon each node of the
tree. '

The simulation of the recursive procedure TRAVERSE is
implemented with a stack called TRAVERSEZ STACK. The
simulation is presented on the following page.

PROC TRAVERSE (ROOT) s
ITEM ROOT I 36 S s
ITEM STACK’TOP I 36 S P O $
ARRAY TRAVERSE’STACK 100 I 36 S $
BEGIN
#2INITIALIZE STACK”’”
TRAVERSE/STACK ($STACK/TOPS$) = 0 $
DO WHILE [ROOT GQ O 1
//WHEN ROOT IS ZERO , ALL NODES OF’/¢
/*THE TREE HAVE BEEN VISITED”’”

STACK/TOP = STACK’TOP + 1 $
#/STACK ROOT SO WE CAN RETRIEVE IT LATER 77
TRAVERSEZSTACK ($STACK/TOP$) = ROOT s
VISIT (ROOT) s
IFEITH RIGHT/SON NQ O $
#7 IT HAS A RIGHT SONW.“’”
/*TRAVERSE ITS SUBTREE’”
ROOT = RIGHT’SON s

652

ORIF LEFT’/SON NQ O s L

42 HAVE A LEFT/SON.*”
E: #/pPOP ITS FATHER AND TRAVERSE THE SUBTREE “7
Py BEGIN

ROOT = LEFT’/SON $ i
STACK/TOP = STACK’TOP - 1| s :
END
ORIF 1| §

*THE CURRENT ROOT IS A LEAF.’’
#/L0O0K BACK FOR A LEFT SUBTREE TO TRAVERSE -7
BEGIN
. DO WHILE [LEFT/SON EQ O AND ROOT NQ O)
ROOT = LEFT/SON S

STACK/TOP = STACK’TOP - 1 s
[END DO 1]
END
END

(END DO] 4
END :

653

APPENDIX B Statement Units, Statement Tokens and Mappings

This appendix describes the reductions made by Phase 1 of
the JSDD which generate statement tokens and/or statement

units.

STMT/TOKEN. To
that generate the STMT/1TUKEN are listed.

STMT/TOKEN

VO ~NOU s w N

10

END/SCOPE

COMMENT” 1
DELIM’COMMENT

BLOCK/BEGIN
BLOCKZ/END
END’DO
END”CASE
PGM/TAIL
DEF’DIR
MODE’DIR
COM’HEAD
SWITCH’DEC
PGM/DEC
SPEC’/PART
TST/STMT
I102STMT
DIR’STMT
ASSGi’/STMT
EXCHWNGZSTMT
RETURN/STMT
STOP/STWT
PROC’/CALL
MOD“DEC
FILEZDEC

> ITEMZDEC

ARRAY’DEC

The list is ordered

REDUCTIONS

according to the values of
the right of the STMT’/TOKEN, the reductions

<CLOSE DECLARATION>
<PROCEDURE DECLARATION>

<THEN CLAUSE>

<ALTERNATIVE STATEMENT>
<COMPLETE LOOP>
<INCOMPLETE LOOP>

<STRUCTURED EX
<CASE>
<PROGRAM TAIL>
No reduction.
same-line (or

TENSION>

This STUT’UNIT refersto a
Type-1) comment.

Same as Comment’l, except that it
modifies a BLOCK DELIMETER.

<BEGIN>

<END>

<END DO>

<END CASE>
<PROGRAM TAIL>

<DEFINE DIRECTIVE>
<MODE DIRECTIVE>

<COMMON HEAD>

<SWITCH DECLARATION>
<PROGRAM DECLARATION>

<SPECIAL PART>

<TEST STATEMENT>

<I0 STATEMENT>

<DIRECT STATEMENT>
<ASSIGNEMENT STATEMENT>
<EXCHANGE STATEMENT>
<RETURN STATEMENT>
<STOP STATEMENT>
<PROCEDUKE CALL>
<MONITOR DECLARATION>

<FILE DECLARAT

I0ON>

<SIMPLE ITEM DeCLAKATION>
<AKRRAY DECLAKATIOW>

S

STik1*4TOKEN

A 217
28
29
30
31
32
33
34
35
36
37
38

39
40
41
42
43
44
45
46
47
48
49
50

Note that the
STMTZ/TOKEN

ORDZHEAD
ENT/DEC
DEF/HEAD
DEF“/DEC
STRING/DEC
LIKE/DEC
IND/OVER
SUB“OVER
BEGIN2
END2
GOT0’STMT
COMMENT”2

PGM/HEAD
CLOSE“HEAD
PROC/DESC
IF/CLAUSE
INC/rOR
FORZCLAUSE
DO’HEAD
ORIF/CLAUSE
INSTANCE
IFEITH/COND
IFEITH’HEAD
CASEZHEAD

values

REDUCTIONS

<0ORD HEAD>

<ENTRY ITEM DEC>

<DEF HEAD>

<DEF ITEM DEC>

<STRING ITEM DEC>

<LIKE TABLE DEC>
<INDEPENDENT OVERLAY DEC>
<SUBORDINATE OVERLAY DEC>
<BEGIN2>

<END2>

<GOTO STATEMENT>

No reduction. A type-2 (or
C-type) comment,

<PROGRAM HEAD>

<CLOSE HEAD»>

<PROCEDURE DESCRIPTOR>
<IF CLAUSE>

<INCOMPLETE FOR>

<FOR CLAUSE>

<D0 HEAD>

<ORIF CLAUSE>

<INSTANCE>

<IFEITH CLAUSE>

<IFEITH>

<CASE HEAD>

reduction to <PROGRAM TAIL> causes two

to be emitted by Phase | of the JSDD.

These are PGM/TAIL (8) and END’SCOPE (1). They are emitted

in

that order

allow Phase 2 to first print out the

<PROGRAM TAIL> and then end the scope of the <PROGRAM HEAD>,.

In Phase 2 of the JSDD, the values of STMT/TUKEN are mapped
onto a set of STMI/TYPE (or STMT/UNIT) values. The mapping
is performed by the function BUX’MAP. The mapping is defined
below.

I

|
2
3

3<1<8

BOX/MAP(I)

END’ SCOPE

COMMENT~ |

DELI M/COMMENT If DELIM’DISPLAY is off.
COMMENTZ | If DELIM/DISPLAY is on.
BLOCK/DELIM If DELIM’DISPLAY is off.
SEQ If DELIM’DISPLAY is on
PGMZ TAIL

8<[<38 SEQ

38 COMMENTZ 2
38<1<42 CONTROL” 1
41<I<46 CONTROL’2
45<1 <49 CONTROL” 3
48<I<H1 CONTROL’4

Of these values, only COMMENI’1, SEQ, PGM’TAIL, COMMENT’2,
CONTROL”’1, CON[ROL’2, CONTROL’3, and CONTROL’4 are printing
STMT’TYPEs. The DISPLAY’DELIM option is handled by BOX’MAP
in that the value returned by BOX’MAP determines whether a
statement unit will appear on the design diagram.

See Section 4.5.3.1 for a description of the STMT/TOKEN code
block formats.

APPENDIX C Uptimizing the Double Buffering System

Double buffering 1is one of the most time consuming
operations which takes place in Phase 2 of the JSDD. Future
versions of the JSDD will eliminate much of the expense of
simulating direct access file facilities. The current JSDD
contains two optimizations of the output file double
buffering.

The first optimization is the elimination of invocations of
the procedure DRAN/LINE (see Section4.5.3.2) where the line
to be drawn spans a block boundary. This optimization 1is
performed in the procedure OUTPUT/BOX/BOTIOM (see Section
4.5.3). After the bottom line of a code block is output to
PUTOUT (the output file), its V/PTR is examined. If V/PTR is
greater than zero, then the current code block will have
another code block appearing beneath it (i.e., its son). If
the top 1line of the son appears in another block of PUTOUT
records, then a connecting line is drawn from the bottom of
the current code block to the last record in the block
currently in core. The STOP/LINE field of the current code
block’s FILE 3 record is then reset to the record number of
the 1last record 1in core. This operation permits the
connecting 1line between the current code block and its son
to be drawn in two sections -- neither of which spans the
block boundary.

he second optimization of the double buffering system
involves an extra pass through the output file (in the
procedure BYTE/EM). BYTEZEM loops through PUTOUT’s records
and calls the BYTE function which truncates the records at
PAGE’WIDTH characters. It 1is more efficient to defer the
truncation of PUTOUT’s records until their generation is
completed because it requires only one truncation per
record, If truncation was performed during PUTOUT’s
generation, multiple truncations of each record would be
necessary.

Future versions of the JSDD will include optimizations that
will completely eliminate the need to double buffer PUTOUT.
These optimizations will implement a queue which will store
the progress of a diagram branch’s output processing. kWhen a
branch reaches a PUTOUT block boundary its processing will
be suspended and all other bhranches which use the PUTOUT
block <currently 1in core will be processed until the end of
the buffer is reached. dhen all of the diagram branches have
been processed in this manner, the buffer will be
permanently written to disk, and the suspended branches will
resume processing in the next block of PUTOUT.

RADC plans and conducts research, exploratory and advanced
development programs in command, control, and communications
(C3) activities, and in the ¢? areas of information sciences
and intelligence. The principal technical mission areas
are communications, electromagnetic guidance and control,
surveillance of grodnd and aerospace objects, intelligence
data collection and handling, information system technology,
ionospheric propagation, solid state sciences, microwave
physics and electronic reliability, maintainability and

compatibility.

MISSION
of
Rome Awr Development Center
3

\,UWO~
Q-éo %
3 %,
g g
L4
S ES
% &

,)’6 _‘g‘[ﬁ

