-AD=A052 730 CHARLES STARK DRAPER LAB INC CAMBRIDGE MA F/6 9/2
JOVIAL STRUCTURED DESIGN DIAGRAMMER (JSDD)e. VOLUME II.(U)
FEB 78 6 GODDARD» M WHITWORTHs E STROVINK F30602-?6-C-0¢08
UNCLASSIFIED R=1120-VOL-2 RADC=TR=78=9-VOL=2

HEESEECES
EEE EEFEEEE
BHEEHEEEEEEEHE
EHA0EE0E0E88888
BEEEECESEEE8E8

END
DATE
FILMED

S5=78

obc

UNCLASSIFIED
SECURITY GLASSIFICATION OF THIS PAGE (When Cata Enteced)

1. REPORT NUMBER GOVTY E3SION NO. "
IRADC-TR-78-9, Vol II (of four)
4. TITLE (and Subtitle)

me I, ™ A1

.[Goddard,

REPORT DOCUMENTATION PAGE oy EAD INSTRUCTIONS
L] n

{nal P€chnica te

W §JRUCTURED QESTGN DIAGRAMMER RPN, | |[Centumtme 76 _ ocommw 77
olu '

BER(s)

. Mhitworth

18 . a2-76-C-gugfs

mbridge MA 02139

SNT. PROJECT, TASK

. PERFORMING ORGANIZATION NAME AND ADDRESS . PROGRAM ELEM
he Charles Stark Draper Laboratory, Inc. * AREN 8 RORK
55 Technology Square / P.E. 62702F

J.0. 55811412

1T NUMBERS

11. CONTROLLING OFFICE NAME AND ADDRESS
Lone r Development Center (ISIS)

Griffiss AFB NY 13441

rApproved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different trom Report)

18. SUPPLEMENTARY NOTES
Project Engineer: Donald VanAlstine (ISIS)

9. KEY WOR Continue on aide 1t and identify by block bder)
tructur rogramming Preprocessor
tructured Design Diagram Flowcharter
tructured Extension JOVIAL J3

arse Invocation Diagram

agser Generator

:Téinlt r?;;:,'&‘:“ é’c‘é‘i‘i‘fﬁ'{iﬂ?‘i’ip'i:‘;‘:nuu%n of the prototype JOVIAL
tructured Design Diagrammer (JSDD) presents the techniques used in the design of
e system and details the usage of Structured Design Diagrams (SDDs) and
nvocation Diagrams. The utility of the JSDD output is that it provides a graphi¢
trayal of the nested logical sequences that define the structure of a computer
rogram. The JSDD should be integrated into a comprehensive analysis and
ocumentation system in order for it to realize its full potential. The JSDD is
lemented in JOVIAL J3 as a three program system designed to run on a Ioncmu'/

jo$ 336 TR

At e .

e it et S M R B 2

DD ,'5%' 1473 =oimonw o 1 wov e8 18 osoLETE UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

¢) RARDL TR-7X‘9’ VoL 'g;_]

Bl o A et Gt ol

TR AT

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

6130 ﬁ(ﬂnm under the GCOS Opetating syotu Version 1/G. It was developed on
‘the GCOS Encapsulator under the MULTICS operating system. The first program in
: the system is a LALR(k) parsing technique formalized by DeRemer (and implemented
| by Lalonde). However, rather than outputting object code, the program creates a
- fdata blpg from which the other programs create SDDs and Invocation Diagrams.
The JSDD system processes programs written in JOVIAL J3 with or without the
structured extensions (which are described in Section 6).

o i 20 N g

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

FINAL REPORT

This document was produced to satisfy the requirements
of contract number F30602-76-C-0408 with the Rome Air
Development Center. It is one of four companion
volumess?

* JOVIAL Structured Design Diagrammer (JSDD)
Report Summary

This document is a summary of the contents of
the JSDD Final Report.

* JOVIAL Structured Design Diagrammer (JSDD)
Final Report

This volume presents ,the design techniques
for implementing the JSDD and describes the
use of Structured Design Diagrams.

* JOVIAL Structured Design Diagrammer (JSDD)
Program Description

This volume presents a detailed description
of the program implementation for purposes of
maintaining and/or modifying the JSDD.

* JOVIAL Structured Design Diagrammer (JSDD)
User’s Manual

This volume presents the user?s view of the
JSDD along with user options and other
information about running the program.

Acknowledgement

This report was prepared by The Charles Stark Draper Laboratory,
Inc., under Contract F30602-76=-C-0408 with the Rome Air
Development Center at Griffis Air Force Base.

Especial credit is due Margaret Hamilton, who pioneered
principles of Structured Programming at Draper Laboratory.
Saydean Zeldin originally suggested the symbology implemented in
the output of the JOVIAL Structured Design Diagrammer. Thanks
should go also to William Daly, who created the Structured Design
Diagrammer for the HAL language (currently being used on the NASA
Space Shuttle project). The authors are indebted to Victor
Voydock for his invaluable assistance in implementing a complete
MULTICS user interface which was used successfully for the
duration of the JSDD implementation. The authors are also
grateful to J. Barton Dewolf whose many suggestions were of great
assistance throughout this effort.

3/4

e et i

Eilaginindoowws-

TABLE OF CONTENTS

Section _Page
l. Introduction ! 6
2. Structured Design Diagram boscription 8
3. Invocation Diagram Description v 14
4. Design of the JOVIAL Structured Design Diagrammer. 17
5. Defining the JOVIAL J3 Syntax 20

! 6. The Structured Extensions to JOVIAL J3 37

; 7. Conclusions and Recommendations 42

§ 8. References 45

Appendix A. The Deliverables

e o ¢ i BAE «

IO

le Introduction

In recent years, the digital computer software industry has
directed considerable effort toward the development . of
design and 1implementation methodologies to ensure the
sufficiency, reliability, and maintainability of software
systems. The most widely known product of this effort is
the loosely defined set of design and programming practices
called "Structured Programming" (see references 1, 2, and
3).

Structured Programming does not constitute a complete
software development methodology. Rather, it is a
collection of general guidelines for use by software
designers and implementors. As such, it provides no uniform
approach to system design and offers no method of evaluating
system sufficiency with respect to requirements or design.
Despite these shortcomings, adherence to Structured
Programming principles can be of great assistance in
producing software systems which are reliable and
intellectually manageable.

The techniques of Structured Programming are sufficiently
general to allow system developers a tremendous amount of
stylistic freedom. However, the generality of the
techniques has made the development of a standard approach
to software analysis extremely difficult. The prototype
JOVIAL Structured Design Diagrammer (JSDD) 1is the first
component of an integrated software analysis and
documentation system which will address itself to this task.

The JSDD 1is an automated analysis and documentation system
which produces two types of diagramst Structured Design
Diagrams (SDDs) and Invocation Diagrams. SDDs provide a
graphic display of program control 1logic. Invocation
Diagrams are a display of a software system’s functional
(calling) structure.

The JSDD processes digital computer programs written in
either JOVIAL J3 or Extended JOVIAL J3. Extended JOVIAL J3
is standard JOVIAL J3 as specified in reference 4 with the
addition of structured extensions (see Section 6) which are
based upon reference 5.

The symbology employed in the Structured Design Diagrams
emerged as a result of research at Draper Laboratory
directed toward the development of a software system

W

e

specification methodology. This symbology is inherently
suited to portray the nested logical sequences in a modern
structured computer language. Because the symbology is
tailored to structured programs, its utility diminishes when
it 1is wused to diagram a program that makes liberal use of
Goto statements or other unstructured language constructs.
Since JOVIAL J3 lacks certain structured programiing
mechanisms which eliminate the need for Goto statements,
these mechanisms have been added as allowable programming
features in programs submitted to the JSDD. It is assumed
that such programs would have to be subjected to a
preprocessor before submission to a JOVIAL J3 compiler.
Such a preprocessor has been supplied as a deliverable item
with the JSDPD. Sections 5 and 6 discuss the JOVIAL J3
syntax, the JOVIAL J3 structured extension syntax, and the
preprocessor. .

The JSDD is implemented in JOVIAL J3 as a three program
system that 1is designed to run on a Honeywell Information
Systems, Inc., Series 6000 computer supgporting GCOS Version
1/G. The implementation work was conducted on the Rome Air
Development Center’/s MULTICS computing facility via the ARPA
Network. Development work was performed on the Geos
Encapsulator which is available under the MULTICS operating
system. The MULTICS environment provided most of the
software tools that were employed during the implementation.
Appendix A contains a list of the deliverable items produced
under this contract.

The Final Report 1is organized as follows: Section 2
discusses the use of Structured Design Diagrams (SDDs)3;
Section 3 describes the utility of Invocation Diagramss
Section 4 details the design of the JSDD: Section 5 defines
the JOVIAL J3 BNF grammars Section 6 discusses the
structured extensions and the preprocessors and Section 7
contains conclusions and recommendations for further work.

i e i e Al

2. Structured Design Diagram Description

Structured Design Diagrams (SDDs) provide a graphic two
dimensional display of the nested logical sequences that
define the structure of a computer program. SDDs for JOVIAL
J3 are constructed from the two basic structural elements
shown in figure 2-1.

SEQUENTIAL FLOW DECISION BRANCHING

Ficure ¢-l. SDU Primitives

The rectangular box is used to contain elements that are
executed 1in sequence. Control enters from the top or left
side of the rectangle. Each element in a rectangle is
executed in sequence and control flows through the bottom of
the box.

The pentagonal box 1is used to contain two types of JOVIAL
constructss module heads and decision making elements. A
module head is a <PROGRAM HEAD>, <PROC DESCRIPTOR> or <CLOSE
HEAD> (see the syntax definition of JOVIAL in Section 5).
Control passes through the bottom of a module head’s
pentagonal box to the module’s code body. Figures 2-2, 2-Z
and 2- 4 illustrate SDD representations of module heads.

START $ >

PROGRAM
CODE
BODY

ricure ¢-=z, 5H representation of <PLUGRAN bBEAL>

PROC PROC’'NAME () S)

PROCEDURE
DECLARATION
CODE

BODY

Fiaure 2-3. 5DUD representation oir <kRLL DESURIPTUR>

CLOSE CLOSE'NAME $ >

l

CLOSE DECLARATION
CODE BODY

ricure 2-4. SID representation or <CLUSE FEAD>

A decision making element is a JOVIAL construct which
directs the flow of control to one of two paths. Evaluation
of the contents of the pentagonal box determines the path to
which control 1is passed. Figures 2-b, 2-6, 2=-7 and 2-&
illustrate the SDD representaions of JOVIAL’s decision
making elements. Non-standard decision making elements have
been introduced as structured extensions to JOVIAL J3. The
structured extensions are the Do ihile Loop, the Do Until
Loop and the Case Statement. Full descriptions of these new
constructs are available in Section 6.

CODE
IF (BOOLEAN FORMULA) $ DONTROLLED
f b1 l [(BOOLEAN FORMULA)] e
l ’ ELEMENT

ricure ¢=5. Sl representacion of the [r Statement,
Do wnile Loop and Lo uniil Loop

Fioure 2-0.

ricure -7,

Fioure 2-5.

FOR 1 = (LOOP INDICES)—>———» LOOP BODY

SLD represantation of the ror Loop

il o \/ g BB

CODE FCR
CASE »

‘CODE FOR
CASE 1

CODE FOR
CASE N

[ELSE]

CODE FOR
ELSE CASE

S representation of the Do Case Statement

IFEITH >———-{LBOOLEAN FORMULA) —)——

CODE
BODY

——-{gnw GOOLEANFORMUCQ)_____

CODE
BODY

‘—-[gur (BOOLEAN FORMULA)

CODE
BODY

SDD representation of the Alternative Statement

U

:
!
¥

RN A TR ot W e VIR S

Pentagonal boxes containing decision making elements are
entered from the top or from the left. In general, they are
exited by taking the horizontal path (to the right) or by
taking the vertical path (through the bottom of the
pentagon). The horizontal path is taken if the decision
element is evaluated to be TRUE. Otherwise, the vertical
path is taken. Note that the SDD representations of the Do
Case Statement and Alternative Statement contain /DO CASE““
and “/IFEITH’’ decision making elements. These elements are
always evaluated to be TkUE.

If a decision making element is evaluated to be false and
its pentagon has no vertical path, then the SDD execution
path must be retraced until a pentagon is found which has an
unexecuted vertical path. If such a pentagon is found, then
the vertical path must be followed. If no such pentagon is
found, then the execution of the module has been completed.

It 1is important to note that Goto Statements appear in
rectangular boxes and their effect upon a program’s flow of
control 1is not 1illustrated by an SDD. Restrained usage of
the Goto statement will result in SDDs: which will better
illustrate a program’s flow of control. The structured
extensions to JOVIAL J3 (see Section 6) were introduced to
minimize the JDVIAL programmer’s reliance upon the Goto
Statement. . :

Occasionally, the level of nesting (of decision making
elements) in a program makes it impossible to display a code
block in the available number of page columns. In such
cases, it is necessary for the JSDD to create what is
referred to as a stump. A stump is a diagram continuation.
When the width of a page is such that the display of a code
block can not be accommodated, that code block’s logical
position in the SDD 1is filled with a stump reference
display. The stump reference display consists of a stump
reference number by which the diagram continuation can be
located. If the HEADING option is on (see Section 5.2 of the
JSDD User’s Manual), then the stump reference number is the
number of the page on which the continuation appears.
Otherwise, the stump reference number is the stump’s
seguence number.

The JSDD recognizes three types of comments? in-line
comments, type-l (or same 1line) comients and type-2 (or
C-type) comnents. In-line coimnents are comments which are
embedded in a JOVIAL statement. In-line comments are

B

displayed in their embedding statements in SDDs. A type-i
comment is a comment which begins on the same line as a
JOVIAL statement in the input file. In SDDs, type-1 comments
appear delow the statements to which they refer. A type=2
comment 1is a comment which appears by itself in the input
file. SSDs display type-2 comments next to the line which
connects the code blocks which precede and succeed the
comment.

Figure 2-y is a sample page from a design diagram produced
by the JSDD system.

12

P IETTSER

3ndino (jgs jJo abed ardueg °*4-z AINOT4

e 8 2.,£3714 1N4IN0 S1NKSe .

o 8 T304 INdNT AMNSe .

000000000000000000000000 .

. .

€6000000000000e0000cd0ntcntnte . .

o r0.¥) *1d1 2.£3714 104IN0 o . .

o8 MNO.H) *1edl 2.€3714 1NAIN0e . .

o 8 JN0.9NE *TdN F.03114 NdNTe seectsnsene . .

0 $ 1 = (V.£37114)80de===a 8 T 31¥00~¢ . .

. . .

. . .

oo.oo-oon-ouonono.o‘-oo-o.o-o; . . .
$ 30.834 o 0000000000000000 o S000000d0) ® .

oonl‘alnauoul 2.23714 E-:Oo.tov $ 2064 03 levt=0 WNJ34lac=ce $ T = ALONI.£JI *°T %0 = T ¥OJe .
e sseee seace .
L] Ld

. .

eon esee .

o 8 2.£3714 INIANO N3H0. .

o 8 1.€3714 IN4FT N30 .

00000000 000000000 0000000 .

. o

. .

oo 2,833 . .

01 T.£3714 NOUS UIISHVEL o0 o seseccassse .

docccs $ T 2I80e-¢ .

ecsessecsee o .

. .

. .

o8 T.63713 ANMINO LS. . .

e 8 2.£3714 ANNT 1S . .

. . .

o« . .

) esesecee . . .
. . - . .
o8 N0 .dNL *TdNL T.£3734 4NIN0. . . .
o8 2PB.dNL “TeNL 2.£3714 INdNTe ececssensen . . .
. $ 3 = (2.£2714080de===s $ T J1W0e=¢ . . .
'y ssssecee
. . - -

. L u

090000 0000000000000000 o Se0s00s0e eesesense . .

ofST e=ca 8 N84 DD le-toa NITDiJecc=e $ T = AldNI.E4 'Y ‘0 =] !. . .

seseee eeee . esee . .

. . -

. . .

sescecccsnsessssteancete . .

o8 3.83114 IN4IN0 N3I0e . .

o 8 2,833 LNGNT N3d0e . .

. .

. . .

. - .

oo T304 o . .

04 2.£3703 HOUS WIISHVEL oo o sea

boceey 8 nud-bo-'-ooc. Nil3ake

oo
CITWN.UIISHVNL SO0 NVIOVID NSO
sV 39vd YINIVEIVIO NITSI0 CINNAINVLS WIAOS AROAVIOEYY ¥IVMO S D

prE

RPN i AR S

3. Invocation Diagram Description

The Invocation Diagrammer produces two different outputss
(1) a 1list of procedures that are members of one or more
recursive invocation loops, and (2) the Invocation Diagram
itself.

The first output, if it appears on the diagram, occurs
before the actual diagram under the heading "“ULTIMATELY
SELF-RECURSIVE." Under it are listed all procedures that
call themselves, either directly or indirectly. An example
of a direct recursive call is a procedure which contains, as
part of its code, a call to itself. Indirectly recursive
calls are best illustrated, again, by an example. Suppose
procedure A can call procedure B which can call procedure C.
If, as part of 1its code, procedure C contains a call to
procedure A, all three procedures (A, B, and C) can
theoretically call themselves.

The Invocation Diagram supplies recursion information for
two reasons. First, the diagrammer has to detect recursive
procedures because its algorithm for producing the
Invocation Diagram 1is itself recursive. A recursive
procedure could thus cause the diagrammer to diagram
forever. Therefore, recursive procedures are only expanded
once in the diagram, and thereafter are simply printed and
flagged. Since this affects the readability of the diagram,
the recursion information ought to be summarized for the
user.

Secondly, it can be argued that recursion has no place in
JOVIAL programs (JOVIAL J3 does not support recursion), and
thus should be banned. The recursion information can be
thought of as a warning to the programmer that illegal
recursion is a possibility in the submitted progranm
structure. Note that the Invocation Diagrammer only reports
the possibility of recursion - it is quite possible that the
program in question avoids actually making a recursive call.

The second output is the Invocation Diagram itself. The
diagram comes in two parts: a main procedure diagram and
diagrams of continuations and independent routines. The
diagram of the main procedure, if it occurs, occurs first.
Invocation Diagrams are quite simple to read - all procedure
names which are connected horizontally to a vertical line
are called by the procedure whose name started the vertical
line. If the main program exists, it is the top 1level of

T

the diagram. For example?

4

+—PROCI

4 P4

#--pROC2+
4 V4

2—pROC3
4 ’ 4

s ¢+ +--pROC4
’ P4

s 4—PROCS*
P4

In this example, PROCI <calls PROC2, PROC3, and PROCS.
Additionally, we see that PROC3 calls PROC4, and some
invisible procedure calls PROCI. That procedure is at the
top level of this particular diagram, because PROCI hangs
off the leftmost vertical 1line possible. There is still
more information heres we know PROC2 1is an external
procedure because it 1is flagged with a "+%, PROC5 is
recursive - it is flagged with a "x",

Main diagram continuations (caused by running off the right
side of the page) and independent procedures (procedures not
called by any of the procedures which are directly or
indirectly called by the main program) occur at the end of
the diagram, under the heading "CONTINUATIONS AND
INDEPENDENT ROUTINES." Continuations consist of “stumps"
which correspond to similar "stumps" in the main diagram.
If confronted bys

4

|

in the main program, the wuser can find the continuation
below, which starts withs

——3

4
¥4

etc.

Stump continuations occur in numerical order, after
independent procedure diagrams.

The aim of the diagrammer 1is to diagram all procedures,

15

sz

regardless of whether they are called (directly or
indirectly) by the main program. However, the fact that a
procedure is not called directly or indirectly by the main
program is not a guarantee that it will appear as an
"jindependent" procedure. It is quite possible that a second

*independent® procedure whose diagram is output before that.

of the first procedure may call the first. In that case,
the first procedure’s "independent" diagram is suppressed.
Nevertheless, the first procedure’s diagram will have been
generated as part of the second procedure’s diagram. No
procedure will ever remain both uncalled and undiagrammed.

16

R

2004

S et s T

—

A e TP INIRIE. o e e g e T

4. Design of the JOVIAL Structured Design Diagrammer

Figure 4-1 depicts the (conceptual) two pass construction of
the JSDD system. "Pass 1" (consisting of the Design Diagram
Database Generator) performs the tasks of analyzing the
syntax of an input program and creating a data base for use
by the second pass. "Pass 2" (consisting of the Design
Diagram Generator and the Invocation Diagrammer) uses the
data base created by Pass | to construct Structured Design
Diagrams (SDDs) and Invocation Diagrams. A two pass design
is motivated by two factors. First, it is desirable to
separate language dependent functions from language
independent functions. Such a separation facilitates the
adaptation of Pass 2 to target languages other than JOVIAL
J3. Secondy the two pass design provides a great deal of
flexibility in the formatting of diagrams. Pass 2 of the
JSDD can produce diagrams having a wide variety of formats
from the data base produced by a single Pass | execution.

The language dependent first pass uses the powerful LALR(Kk)
parsing technique formalized by DeRemer (see Reference 6)
and implemented by Lalonde (see Reference 7). It is based
on the compiler structure introduced by McKeeman, et. al.
(see reference 3).

In parsing input source programs, Pass | acts as a
table-driven deterministic pushdown automaton (DPDA). The
tables which drive the Pass | parse are the product of an
LALR(k) parser generator that accepts a syntactic
description of a language as input and outputs parsing
tables for the language (see Section 5).

As is the <case in most modern compilers, Pass | generates
output as the result of a parser decision to recognize a
high 1level programming construct. The parser is guided in
this decision by the tables described above. However,
instead of object code, which 1is what a compiler would
ordinarily produce, Pass | outputs a diagramninjy data base
to be used by Pass 2.

The two Pass 2 programs (the Design Diagram Generator (DDG)
and Invocation Diagrammer) interpret the Pass | generated
data base, and create diagrams in accordance with the
formatting specifications in the DDG options compool (see
User’s Manual). The DDG 1is implemented as a two part
program. First it maps out the Structured Design Diagram
and creates a temporary data base containing the mapping

DESIGN DIAGRAM DATA
JOVIAL J3 SOURCE BASE GENERATOR (DDDG)

WITH OR WITHOUT SCAN AND PARSE
STRUCTURED EXTENSIONS | SOURCE CODE PARSE TABLES
Y
INVOCATION DESIGN DIAGRAM
DIAGRAMMER GENERATOR (DDG)

INVOCATION STRUCTURED
DIAGRAMS DESIGN DIAGRAMS

f rigure 4-I. 7iwo-Pass Construction of the JSDD :

information. Only then does it produce the actual diagram.
This strate?y allows it to calculate forward and backward:
referencing information (in case a diagram overflows the
page width) and a Table of Contents, without committing
prematurely to any hard-copy output. If adjustments need to
be made in the diagram, the temporary data base can be
modified easily.

The Invocation Diagrammer uses a simple recursive strategy
to create the Invocation Diagram. As the first procedure
name 1is written out, the next procedure it calls is written
beneath and to the right of it. The 1information for the
first procedure is stacked, and the new procedure is treated
as though it were the first. When no procedures are called
by the current rightmost procedure name, the stack is popped
back and the next rightmost procedure name is written out.
Nhen no more procedures are on the stack, the diagram is
complete.

The Invocation Diagrammer and DDG have been implemented as
separate programs to enhance system maintainability.

19

_

o e

5. Defining the JOVIAL J3 Syntax

The syntactic analysis of JOVIAL J3 source programs is
performed by a table driven parser in Phase | of the JSDD.

The tables are generated by an LALR(k) parser generator. The
parser generator accepts the syntactic description of a
language (in BACKUS-NAUR form) and produces the parsing
tables for the language.

The parser generator can produce tables for any LALR(Kk)
grammar where k is finite.

A (context-free) grammar can be defined 1loosely as an
alphabet and a set of productions of the forms

A 33= xy

where A, x and y are members of the alphabet (the alphabet

is the set of all symbols used to define the syntax of a
language). The phrase <“/can be replaced by’’’ can be
substituted for the symbol 3=, Members of the alphabet
which appear on the 1left hand sides of productions are
called non-terminals and those that appear on only the right
hand sides of productions are called terminals. In the set
of non-terminals, there is one designated symbol called the
goal symbol (in the case of JOVIAL J3’s grammar, the goal
symbol is <PROGRAM>).

A sentence is defined to be a string of terminal symbols
generated by the grammar. A sentence can be generated by
starting with the goal symbol and then, continually
replacing each nonterminal with its definition (i.e., its
right hand side) until no nonterminals appear in the string.
The resulting string is a sentence.

The sequence of replacements involved in generating a
sentence can be represented by a tree (called the parse
tree) which is unique for each sentence generated by an
unambiguous grammar.

There is no grammar processable by a left to right parser
generator (having an finite upper bound on required
lookahead) which generates all JOVIAL J3 programs and which
generates no sentences which are not JOVIAL J3 programs.

Consider the following JOVIAL J3 subgrammars

b

<PROCEDURE CALL> ss= <IDENTIFER> (<FORMULA>) $
<FORMULA> t3= <BOOLEAN FORMULA>
t <NUMERIC FORMULA>
¢ <ENTRY FORMULA>
<BOOLEAN FORMULA> ss= 0O
<NUMERIC FORMULA> 38= 0O
<ENTRY FORMULA> s3= 0O

The sentences
PROC/NAME (0) s
has three distinct parse trees. They are shown below.

1) <PROCEDURE CALL>

<IDENTIFIER> (<FORMULA>) s
<BOOLEAN FORMULA>

0
2) <PROCEDURE CALL>

: R 7 '

<IDENTIFIER> (<FORMULA>) s

<NUMERIC FORMULA>

0
3) <PROCED9RE CALL>
<IDENTIFIER> (<FORMULA>) $
]

<ENTRY FORMULA>

0

In order to sidestep this problem (and several other similar
problems), the JOVIAL J3 grammar has been ““expanded’’ so
that all JOVIAL J3 programs can be parsed. However, as a

21

result of this expansion, there are sentences which the
grammar can generate which are not valid JOVIAL J3 programs.

The solution which has been adopted to the problem described
above is to thread all of the formulae together. That is,
redefine the grammar in this fashions

<PROCEDURE CALL> t3= <IDENTIFIER> (<FORMULA>) $
<FORMULA> s$3= <BOOLEAN FORMULA>

<BOOLEAN FORMULA> 3:= <ENTRY FORMULA>

<ENTRY FORMULA> 33= <NUMERIC FORMULA>

<NUMERIC FORMULA> 33= 0

The obvious drawback to this redefinition 1is that every
<NUMERIC FORMULA> can be accepted as an <ENTRY FORMULA> and
as a <BOOLEAN FORMULA> (and so on). The advantage is that it
will avoid an ambiguity in the grammar and allow the parser
generator to produce parsing tables. (Many modern languages
such as XPL and ALGOL use an approach similar to this in
their syntax definitions.)

The syntax of JOVIAL J3 is relatively complex for a
programming language. This complexity requires that JOVIAL’s
BNF description contain a very large number of productions.
In attempting to generate parsing tables, it was found that
the size of JOVIAL’s BNF description exceeded an internal
limit imposed upon the parser generator’s input grammars. In
order to avoid a costly investigation of the parser
generator’/s 1limits, work on the JSDD was based on an early,
slightly inaccurate version of the JOVIAL grammar. The
Design Diagrammer Data Base Generator has been adjusted to
enable it to successfully parse the full set of valid JOVIAL
programs.

The JOVIAL J3 grammar used by the JSDD is presented below.
1 <PROGRAM> 33= <PROGRAM HEAD> <ELEMENT LIST>

| <PROGRAM TAIL> _i_

2 <PROGRAM HEAD> s3= START $

3 + CLOSE <IDENTIFIER> $ START s
4 + START PROC <IDENTIFIER> $

5 + START PROC <IDENTIFIER>

5 <FORMAL PARAMETER LIST> $

6 <PROGRAM TAIL> ss= TERM $

22

f
!

¢ TERM <IDENTIFIER> $

<ELEMENT LIST> 33= <ELEMENT>
+ <ELEMENT LIST> <ELEMENT>

<ELEMENT> t3= <STATEMENT>
+ <DECLARATION>
+ <DIRECTIVE>

<DIRECTIVE> ss8= <DEFINE DIRECTIVE>
¢ <MODE DIRECTIVE>

<DEFINE DIRECTIVE> :3= <DEFINE HEAD> <“/> <TEXT> ““ $
<DEFINE HEAD> ss$= DEFINE <IDENTIFIER>

<?’> 3= /7

<TEXT> 83= <CHARACTERS>
¢ <TEXT> <CHARACTERS>

<MODE DIRECTIVE> ss= MODE <ITEM DESCRIPTION> $
¢ MODE <ITEM DESCRIPTION> P
<CONSTANT> $

<STATEMENT> $s= <SIMPLE STATEMENT>

<LABEL> <SIMPLE STATEMENT>
<COMPLEX STATEMENT>

<LABEL> <COMPLEX STATEMENT>
<COMPOUND STATEMENT>

<LABEL> <COMPOUND STATEMENT>

<LABEL> 3s3= <IDENTIFIER> .
i <LABEL> <IDENTIFIER> .

<DECLARATION> 33= <DATA DECLARATION>
¢ <PROCESSING DECLARATION>

<PROCESSING DECLARATION> $3= <SWITCH DECLARATION>
<PROGRAM DECLARATION>
<CLOSE DECLARATION>
<PROCEDURE DECLARATION>
<COMMON DECLARATION>

<COMMON DECLARATION> s:= <COMMON HEAD>
<COMPQUND STATEMENT>

23

38
39

40
4]

42
43

44
45
45

46
47
48

49
50

51
52
53
54

55
56

-7

58
58

59

60
60

61
62
63
64

65

<COMMON HEAD> ss= COMMON <IDENTIFIER> $
+ COMMON s

<SWITCH DECLARATION> 33= <SWITCH HEAD> <ITEM TAIL>
¢ <SWNITCH HEAD> <INDEX TAIL>

<SWITCH HEAD> s3= SWITCH <IDENTIFIER>
<ITEM TAIL> ss= (<IDENTIFIER>) = (<ITEM LIST>) $
<ITEM LIST> 3s8= <CONSTANT> = <GOTO FORMULA>
t <ITEM LIST> , <CONSTANT> =
<GOTO FORMULA>

<CONSTANT> s3= <LITERAL CONSTANT>

t <STATUS CONSTANT>

+ <NUMERIC CONSTANT>

) §
<GOTO LIST>) s

<INDEX TAIL> s3= (
H (

<GOTO LIST> ss= <GOTO FORMULA>
<GOTO LIST> , <GOTO FORMULA>

<GOTO LIST> ,

<GOTO FORMULA> 3= <IDENTIFIER>
« <IDENTIFIER> ($ <INDEX LIST> $)

<PROGRAM DECLARATION> 33= PROGRAM <IDENTIFIER> $

<CLOSE DECLARATION> ss= <CLOSE HEAD>
<COMPOUND STATEMENT>

<CLOSE HEAD> 3:= CLOSE <IDENTIFIER> $

<PROCEDURE DECLARATION> 3:= <BLOCK HEAD>
<COMPOUND STATEMENT>

<BLOCK HEAD> $$= <PROC DESCRIPTOR>

<BLOCK HEAD> <DIRECTIVE>

<BLOCK HEAD> <DATA DECLARATION>
<BLOCK HEAD> <PROGRAM DECLARATIOCN>

<PROC DESCRIPTOR> ts= <PROC HEAD> $
1 <PROC HEAD»>
<FORMAL PARAMETER LIST> $

24

s i e e

<PROC HEAD> s3= PROC <IDENTIFIER>

<FORMAL PARAMETER LIST> 33= ()
+ (<PARAMETER LIST>)
+ (<PARAMETER LIST> =
<PARAMETER LIST>)
i (= <PARAMETER LIST>)

<PARAMETER LIST> ss= <IDENTIFIER>

<PARAMETER LIST> , <IDENTIFIER>
<IDENTIFIER> .

<PARAMETER LIST> , <IDENTIFIER> .

<COMPOUND STATEMENT> :3= <BEGIN> <END>
i <BEGIN> <ELEMENT LIST> <END>

<CONSTANT LIST> s3= <CONSTANT>

¢ <CONSTANT LIST> <CONSTANT>
<COMPLEX STATEMENT> ts3= <CONDITIONAL STATEMENT>
<ALTERNATIVE STATEMENT>
<LOOP STATEMENT>
<DIRECT STATEMENT>
<STRUCTURED EXTENSION>

<CONDITIONAL STATEMENT> 83= <IF CLAUSE> <THEN CLAUSE>

ceewwee= |}

<ALTERNATIVE STATEMENT> s3= <IFEITH CLAUSE>
<THEN CLAUSE> <ALT LIST>
<END>

<IF CLAUSE> s:= IF <BOOLEAN FORMULA> ¢

<THEN CLAUSE> st= <SIMPLE STATEMENT>
{ <COMPOUND STATEMENT>

<IFEITH CLAUSE> 33= <IFEITH> <BOOLEAN FORMULA> $
<IFEITH> $s= IFEITH

<ALT LIST> tt= <ORIF PART>
+ <ALT LIST> <ORIF PART>

<ORIF PART> 33= <ORIF CLAUSE> <THEN CLAUSE>
<0ORIF CLAUSE> 33= ORIF <BOOLEAN FORMULA> $

25

: T =

¢ <LABEL> ORIF <BOOLEAN FORMULA> $

<LOOP STATEMENT> 33= <COMPLETE LOOP>
¢ <INCOMPLETE LOOP>

<INCOMPLETE LOOP> t3= <INCOMPLETE FOR>
<INCOMPLETE BODY>

<INCOMPLETE FOR> 33= <1 FACTOR FOR CLAUSE>
+ <2 FACTOR FOR CLAUSE>

<2 FACTOR FOR CLAUSE> 33= FOR <LOOP COUNTER> =
<2 INDEX LIST> $

<2 INDEX LIST> s$3= <NUMERIC FORMULA> ,
<NUMERIC FORMULA>

<l FACTOR FOR CLAUSE> t3= FOR <LOOP COUNTER> =
<NUMERIC FORMULA> s

" <INCOMPLETE BODY> st= <SIMPLE STATEMENT>

<COMPOUND STATEMENT>
<SPECIAL COMPOUND STATEMENT>
<LABEL>

<SPECIAL COMPOUND STATEMENT>

<COMPLETE LODOP> 33= <FOR CLAUSE> <COMPLETE BODY>

<FOR CLAUSE> 3= <| FACTOR PART> <3 FACTOR FOR CLAUSE>

¢ <3 FACTOR FOR CLAUSE>

<3 FACTOR FOR CLAUSE> ss3= FOR <LOOP COUNTER> =
<3 INDEX LIST> $

<1l FACTOR PART> t3= <1 FACTOR FOR CLAUSE>
+ <1 FACTOR PART>
<1 FACTOR FOR CLAUSE>

<3 INDEX LIST> ss= <NUMERIC FORMULA> ,
<NUMERIC FORMULA> ,
<NUMERIC FORMULA>

<COMPLETE BODY> $$= <INCOMPLETE BODY>
{ <INCOMPLETE LOOP>

<SPECIAL COMPOUND STATEMENT> st= <BEGIN>

<SPECIAL PART> <END>

26

119
. 119
: 119

120
121

ol 122
123

i 124

125
126

127

E | 128
: 128

129

130
131

132
133

134
135

136
137
138
139
140
141
142
143

144
145

146
146
147

+ <BEGIN>
<ELEMENT LIST»>
<SPECIAL PART> <END>

<SPECIAL PART> 33= IF <BOOLEAN FORMULA> $
+ <LABEL> IF <BOOLEAN FORMULA> s

<STRUCTURED EXTENSION> 33= <DO STATEMENT>
i <CASE STATEMENT>

<DO STATEMENT> $3= <DO HEAD> <ELEMENT LIST> <END DO>

<D0 HEAD> s3= DO WHILE (<BOOLEAN FORMULA>)
: DO UNTIL (<BOOLEAN FORMULA>)

<END DO> s3= END DO

<CASE STATEMENT> 33= <CASE HEAD> <CASE LIST>
<END CASE>

<CASE HEAD> s3= DO CASE (<NUMERIC FORMULA>)

<CASE LIST> $3= <CASE>
i <CASE LIST> <CASE>

<CASE> s3= <INSTANCE> <ELEMENT L]ST>
+ <INSTANCE>

<INSTANCE> 13

(<NUMBER>)
<END CASE> 3s= END CASE

<SIMPLE STATEMENT> $$= <ASSIGNMENT STATEMENT>
<EXCHANGE STATEMENT>
<GOTO STATEMENT>
<RETURN STATEMENT>
<STOP STATEMENT>
<PROCEDURE CALL>

<10 STATEMENT>

<TEST STATEMENT>

<TEST STATEMENT> ss= TEST $
+ TEST <LOOP COUNTER> $

<10 STATEMENT> 3s= <ACTION> <MODE> <IDENTIFIER>
<DATA LIST> $
' <ACTION> <MODE> <IDENTIFIER> $

27

et i

148

149
150

151
152

153
154
155
156
157
158
159
160
161
162
163
164

165
166

167
168
168

169

170
171
172
172
173

174
175
176

¢ <MODE> <IDENTIFIER> <DATA LIST> $

<ACTION> ss= OPEN
+ SHUT

<MODE> $8= INPUT
+ OUTPUT

<DATA LIST> ss= <FORMULA>

<IDENTIFIER> <RANGE>

<DATA LIST> , <FORMULA>

<DATA LIST> , <IDENTIFIER> <RANGE>

<RANGE> 33= ($ <NUMERIC FORMULA> <RANGE CLOSE>
<RANGE CLOSE> 33= ... <NUMERIC FORMULA> $)

<DIRECT STATEMENT> $s3= <DIRECT> <TEXT> JOVIAL
<DIRECT> 33= DIRECT

<ASSIGNMENT STATEMENT> 33= <VARIABLE> = <FORMULA> $
<EXCHANGE STATEMENT> s$s= <VARIABLE> == <VARIABLE> $
<GOTO STATEMENT> $:= GOTO <GOTO FORMULA> s

<RETURN STATEMENT> 83= RETURN $

<STOP STATEMENT> ss= STOP $
« STOP <IDENTIFIER> $

<PROCEDURE CALL> ss= <PROC NAME> $
{ <PROC NAME>
<ACTUAL PARAMETER LIST> $

<PROC NAME> st= <IDENTIFIER>

<ACTUAL PARAMETER LIST> s33= ()

(<ACTUAL LIST>)

(<ACTUAL LIST> =
<ACTUAL LIST>)

(= <ACTUAL LIST>)

<ACTUAL LIST> ss= <FORMULA>
t <IDENTIFIER> .
t <ACTUAL LIST> , <FORMULA>

28

177

178
179
180
181
182
183

184

185
185

187
| 188

189
189

190
191

192
193

194
195

196
196
197
197
197

NE———————RR R A i

198
199
201
i 202
; 203

204

205

¢ <ACTUAL LIST> , <IDENTIFIER> .

<DATA DECLARATION> 3s= <SIMPLE ITEM DECLARATION>

<ARRAY

DECLARATION>

<TABLE DECLARATION>
<OVERLAY DECLARATION>
<FILE DECLARATION>
<MONITOR DECLARATION>

<MONITOR DECLARATION> 88= MONITOR <PARAMETER LIST> $

¢ MONITOR (<BOOLEAN

) <PARAMETER LIST> s

<FILE DECLARATION> 33= <FILE HEAD> <FILE TAIL> s

<FILE HEAD> 33= FILE <IDENTIFIER>

<FILE TAIL> 33= <F TYPE> <NUMBER> <REC ORG> <NUMBERr>

<NUMBER>

¢« <F TYPE> <NUMBER> <REC ORG> <NUMBER>

<STATUS LIST>
<F TYPE> s3= H
' B

<REC ORG> s33= V
I

<NUMBER>

<STATUS LIST> 33= <STATUS CONSTANT>
i <STATUS LIST> <STATUS CONSTANT>

<SIMPLE ITEM DECLARATION> s33=

ITEM <IDENTIFIER>
<ITEM DESCRIPTION> s
ITEM <IDENTIFIER>
<ITEM DESCRIPTION> P
<CONSTANT> s

ITEM <IDENTIFIER>
<CONSTANT> $

<ITEM DESCRIPTION> s3= <INTEGER DESCRIPTION>

<FIXED DESCRIPTION>
<FLOATING DESCRIPTION>
<LITERAL DESCRIPTION>
<STATUS DESCRIPTIOI>
<BOOLEAN DESCRIPTION>

<INTEGER DESCRIPTIUN> s8= <IHT HEAD>

2y

FORMULA>

206
207
208

209

210

211
212

213
214
215

216
217
217
218
219
220
221
221

222
222

223
224

225
226

227
226

229
230
230
231

232
232

233

<INT HEAD> <INT TAIL>
<FIXED HEAD>
<FIXED HEAD> <INT TAIL>

<INT HEAD> 33= 1 <NUMBER> <SIGNING>
<FIXED HEAD> 33= A <NUMBER> <SIGNING>
U

~

<SIGNING> 33

<INT TAIL> s3= R
i <INTEGER> oo <INTEGER>
i R <INTEGER> eee <INTEGER>

<FIXED DESCRIPTION> s3= <FIXED HLAD> <rRAC BITS>
t <FIXED HEAD> <rFRAC BITS>
<RIGHT PART>

<FRAC BITS> s::3= <NUMBER>
+ <ADD 0OP> <NUMBER>

<RIGHT PART> 33= R
i R <NUMERIC CONSTANT> ...
<NUMERIC CONSTANT>
¢ <NUMERIC CONSTANT> ...
<NUMERIC CONSTANT>

<FLOATING DESCRIPTION> 33= F
' ¢+ FR

<LITERAL DESCRIPTION> s$3= H <NUMBER>
i T <NUMBER>

<STATUS DeSCRIPTION> 3= S <STATUS LIST>
i S <NUMBER> <STATUS LIST>

<BOOLcAN OESCRIPTION> 33= §3

 <ARRAY DECLARATION> s$8= <ARRAY DESCRIPTION>

<INIT LIST»>
i <ARRAY DESCRIPTION>

<ARRAY DESCRIPTION> t:= <ARRAY HLAD>
: <ITEM DESCRIPTION> s

<ARRAY HEAD> t3= ARRAY <IDENTIFIER> <OI# LIST>

234
235

236
2317

238
239

240
241
242

243
243

244
245

246
247
248
249
249

250
251
252

253
253
254
254
254

255
256

257
258

259
260
261

262

<INIT LIST> s3= <BEGINI1> <CONSTANT LIST> END
¢ <BEGINI> <INIT SUB LIST> END

<INIT SUB LIST> s3= <INIT LIST>
¢ <INIT SUB LIST> <INIT LIST>

<D<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>