
AD AU~l 719 CHARLLS STARK DRAflR LAB INC CAMBRIDGE MA
-

~~~~~~ 7k
JOVIAL STRUCTURED DESIGN DIAGRAM MER ( JSOO ) • VOLUME I. REPORT SU—ETC(U)
FEB 76 6 GODDARD. M WI4I TWO RTH • E STROVIP* F30602—76—C—fl OS

L *&C LASSIFIED R—1120 V04.—1 RA DC—T R— 78—9— VOL I Pt

~~~~~~ END
DArt

~

II
4

N

i r~ I~ ~2I 11 2.5
I.v L

I. ’ ~~~ H~H~• IIIH=L~=
• . 11~

11 .25
~~~~~~~~~~~~ ~

MICROCOPY RESOLUTION TEST CHARI
NAflONAL BUREAU OE ~IAN( ~AU() ~



~~~~

— ~1’

_
_ _

_

I

_ _ _ _ I (Of
_ _ _ _

_ _ ~~~~Report
_ _

~~~ - 
___ 

V

___ 
*IG~ DM*R~~ER (JSOO) , V ~~~~~~~~~~

-
~~~
- 2:.

-

V

•r~~ • -

g
~- I. stt~
The _______ Stark Draper Laboratory , Inc.

- :~~‘ - .~~~

.
‘ ____

I •
~~

• ~ .~~~.i - ‘ V ______ •• -‘

- - V.- -
~~~~~

: -
~

-
. ~~~~~~~~~~~~~- - -

-

-

p UM?
~~~~~~~~~~~~~~ 

-

~~~~~~~~~~~~~~~~~ 
~~~~~: . 

- .
—

-~~ ~- ‘ ‘ ‘ ‘, ; , _ _ _ _ _ _ _.•l ,.~ -. ,, ‘•,~C

-

/
-
~ ~

~~ _ ‘~ :~
_ _ _ _

4 ~~~~~~~~~~~~~~~~~

- ~~~~~~

~~ ‘~~~;•[~~~- Mti~s chg.f, P1~~. Of f i c e

11* ~ be rmii~s1 fr~~ ~~ iling
by yo~~ o t 1 ~~, p1... .

• This VU1 ssst.t — te ~~tat~b1a~

- _,-.,._._.. _ -,.7_ - _,c’S ..,. ”’ rr~”
.—,----r..-r.,r ’~~,

-
~~~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

- UNCLASSIFIED
$ECU~~ITY CLASSIFICATION OF THIS PAGE (*7... D.S. InS.r.d)

D~~D(1DT WI Ih ~ R~ ITAYIfl~I READ fll$TRUCTI0NS
~~ T~~J ~~~~~~~~~~~~~~~ U D~ U U~~~~ BEFORE COMPLETING FO~~~F. mCPORT NUNSIR . GOVT ACCESSION NO I. NE C IPIE N T S CATALOG NUMS EN

(~ MDc—TR—78—9, Vol I (of four) ___________________________
—— J L.._._ ...1 -$~ . .- ..,r ~~~~~~~~ ~ ~

• ~~~IAL ~~RUCTURED DESIGN .QIACRMQ4ER (~~~~~
V ~ina1fiechnical /epIl~t.

.
~~~
. j~~~0rt ~~ U arYE 

_ 
I~~ 7 6 -  Oc~~~~r 7 ~~~

_ _ _ _ _ _  

R~112f-~~~~L ..J 1
U. Ca U!A.;t ~ ~~~ .U1LE R(.)

G. I oddard I _________________

F 

~~~~~~itvo~~h \ ~~ 76-c~~~~~~~ 4u~d
NPO~~~IN G O NG AN IZ AT ION N~~~ E AND ADDNEU SO PNOGN AM £LE MCV PNO~~~CT ASK

The Charles Stark Draper Laboratory , Inc . ANEA a WONK UNI NUN Nb/

555 Technology Square -‘ P.E. 62702F
Cambridge MA 02139 3.0. 55811412

II. CON1NOLUN G OFFICE NASE AND ADDRE SS 12. REPOST
Rome Air Development Center (ISIM) (p~~~

— -f ~~~jCrLf fiss APE NY 13441 \- -~~
‘~i W UMS E R
8

14~ MONITORI N NAME a ADD dIII•t.nt f ro. Conlro llff ig OWe.) IL SE C URI T Y ~~tA15. .1 thS.

Same
(
~T~

$g
~7 UNCLASSIFIED

$5.. OECLASSIFICATION/OOWN ONAD ING

~Z~Lf / N/A
SCHE

~~~
LE

$1. DIST RISUTION STATEN (OS RI~~~ f)

Approved for public release; distribution unlimited.

$7. DI ST NISU1’ION STATEMENT (.5 lb. .b.tr.el .,ti, ~d Sn Ct•ik 20. II dSf Snr .u,t f t... ROPO S) c
same \ P $ .~~i1~~

IS. SUPPLE M ENTARY NOTES

RADC Project Engineer: Donald VanAistine (ISDI)

$ KEY WORDS (CoolS..... is,.,. . .Id. H nboo.~~~y aid S*ntSI,. by bI.ck n..b.t )
Structured progr. ing Preprocessor
Structured design diagram Flovcharter
Structured extension JOVIAL 33
Parse Invocation diagram
Parser generator

* ASSTRAC7 (C.nhlais .. ...... .ldi SI n....~~~v aid S*.lS& by bSn.k n..a.i ~

This report si~~ arises th~ i~~lementstion of the prototype JOVIAL
structured Design Diagra er (JSDD) .~~,

DO ~~~~~~~ 1473 SOITIOSI O~ $ NOV Sb IS OSSOLETE UNCLASSIFIED
SEC u RITY CLA SSI FICATI ON OP THIS PASt (U~.. Solo

- —- -~~
,-

~~~~~~~~~~~~~~~
-
~~~~~~~~~~~~~ -~~ ~~~~~~~~~~~~~~~~~~~~~

-
~~~

- V
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



— ‘U

UNCLASSIFIED
SECURITY CLA SSIFICATION OF THIS PAGC(I7.ai Do. Doiis~~

V . - -

UNCLA$SIFt~~
SECURITY CLASIIFIC ATION OP YNIS PA GE( ~~~ai 5.5. 5.Is,s~~

L -~~~~~~~~~~~~~~~~~ .~~~~~~~~~—-~~~~~- -—— ——  - -~~-~~~



EVALUATION

The objective of this effort was to implement a system to
automate the documentation of structured JOVIAL source statements .
This system, the JSDD , functions as an aid to the progranuner/
design engineer in producing software systems written in accordance
wi th structured prograninlng conventions . This development falls
within the goals of RADC TPO V , specifically in the 3.3 Tools and
Procedures area .

The Charles Stark Draper Laboratory, Inc. Implemented the JSDD
on the Honeywel l 6180 Computer System at RADC iàing the GCOS III
Encapsulator operating under the t~JLTICS remote user system. The

V JSDD is designed to be transportable to batch, as well as remote Vbatch GCOS operating environments. It was written using structured
JOVIAL syntax and contains a built-in JOVIAL pre-compiler for code translationfor the existing target JOVIAL J3 compiler currently available on the 116180.As a test case , the JSDD modules were used as source data for the systemand appeared to generate correct code when passed on to the JOVIAL J3compiler.

The JSDD provides a graphic representation of the sometimes complexlog ical sequences that constitute the structure of largescale softwaredevelopmen t efforts . It is for this reason that the Design Diagranmierfills an important place in the spectrum of software tools currentlybeing developed under the RADC advanced software program.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

DONALD L. VANALSTINE
Project Engineer

~~~ S.CtI0~ D
~

.-..—.——

~~~~~ - 
_

~~~~

—

V 1 - 
V



REPORT SUMM ARY

This document was produced to satisfy the requirements
of contract number F30602—76—C—0408 with the Rome Air
Development Center. It is one of four companion V

volumes s

* JOVIAL Structured Design Diagrammer (JSDD )
Report Summary

This document is a summary of the contents of
the JSDD Final Report.

* JOVIAL Structured Design Diagraniner (JSDD)
Final Report V

This volume presents the design techniques
for Imp lementing the JSDD and describes the
use of Structured Design Diagrams.

* JOVIAL Structured Design Diagrammer (JSDD)
Program Description

V This volume presents a detailed description
of the program implementation for purposes of
maintaini ng and/or modi fying the JSDD. —

* JOVIAL Structured Design Diagrammer CJSDD)
User’s Manu al

This volume presents the user’s v iew of the
JSDD along with user options and other
information about running the program.

2 

-V



——,- - -~~~~~~~~~~ ——--~-—- —-. —— -—— —-~—-- -V - V - V  - 
—V-V--,

Acknowledgement

This report was prepared by The Charles Stark Draper Laboratory,
Inc., under Contract F30602—76—C—0408 with the Rome Air
Development Center at Grit! is Air Force Base.

Especial credit is due Margaret Hamilton, who pioneered
principles of Structured Programming at Draper Laboratory. V

Saydean Zeldin originally suggested the symbology implemented in
the output of the JOVIAL Structured Design Diagrammer. Thanks
should go also to William Daly, who created the Structured Design
Diagrammer for the HAL language (currently being used on the NASA
Space Shuttle project). The authors are indebted to Victor
Voydock for his invaluable assistance in implementing a complete
MULTICS user interface which was used successfully for the
duration of the JSDD implementation. The authors are also
grateful to J. Barton DeWoif whose many suggestions were of great
assistance throughout this effort.

4

3



- 

~~~~~~~~~~~~~~~~~~~~~~~~ 
V C V

I. Introduction

In recent years, the digital computer software industry has
directed considerable effort toward the development of-
design and implementation methodologies to ensure the

V sufficiency, reliability, and maintainability of software-
systems. The most -widely known product of this- effort is

V

the loosely defined set of design and programming practices
ca lied ‘Structured Programming.”

Structured Programming does not constitute a complete —

software deveLopment methodology. Rather, It - is a V

collection of general guidelines for use by software
designers and imp lementors. As such, it provides no uniform
approach to system design and offers no method of evaluating
system sufficiency with respect to requirements or design. V

Despite these shortcomings, adherence to Structured V

Programming - principles can be of great assistance - in
producing software systems which are reliable and
intellectually- manageable.

The techniques of Structured Programming are sufficiently
general to a llow system developers a tremen dous amount of V

stylistic freedom. However, the ge.neral ity of the
techniques has made the development of a standard approach V

to software analysis extremely difficult. The prototype
JOVIAL Structured Design Diagrammer (JSDD) is the first
component of an integrated software analysis and
documentation system whi ch will address itself to this task.

V The JSDO processes digita l computer programs written in
either JOVIAL J3 or Extended JOVIAL J3. Extended JOVIAL J3
is standard JOVIAL J3 with the addition of strUctured
extensions.

The JSDD is implemented in JOV IAL J3 as a three program
system that is designed to run on a Honeywell Information
Systems, Inc., Series 6000 computer supporting GCOS Version
I/O. The implementation work was conducted on the Rome Air

V Develo pment Cent er’s MULTICS computing facility via the ARPA
Network. Development work was performed on the OCOS
Encapsul ator which is avai lable under the MULTICS operating V

system. The MULTICS environment provided most of the
software tools that were employed during the implementation.

The JSDD is an automated analysis and documentation system
which produces two types of diagrams $ Structured Design

V

4

-~~ - - -— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -— - — -~~~~—~~ -—- — — V— —V— V ~~~

~ -

~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~•~~~~~V~~V 

Diagrams CSDDs) and Invocation Diagrams.
V

2. Structured Design Diagram Description

Structured Design Diagrams (SODs) provide a graphic two
dimensional display of the nested logical sequences that
define the structure of a computer program.

V SDDs for JOVIAL J3 are constructed from two basic structural
elements t pentagonal and rectangular boxes. The rectangu lar

-j box is used to contain JOVIAL statements that are executed
in sequence. Pentagonal boxes are used -to contain JOVIAL V

constructs which modify other JOVIAL constri..&cts (e.g., an If
or For Clause).

3. Invocation Diagram Description

Invocation Diagrams are a display of a software system’s
V

functional (calling) structure. The Invocation Diagrammer
produces two di fferent outputs $ (I) a list of procedures

V that are members of one or more recursive invocation loops,
and (2.) the Invocation Diagram itself. V
The f irst output, if it appears on the diagram , occurs
before the actual diagram under the heading “ULTIMATELY
SELF—RECURSIVE.” Under it are listed all procedures that V

call themselves , either directly or indirectly. An example
V of a direct recursive call is a procedure which contains, as

V

part of its code, a call to Itself. Indirectly recursive
ca lls are best i llustrated, again, by an example. Suppose
procedure A can call procedure B which can call procedure C.
If, as part of its code, procedure C contains -a call to
procedure A, all three procedures (A , B, and C) can
theoretically call themselves.

4. Design of the JOVIAL Structured Design Diagrammer

V The JSDD has two conceptua l passes. “Pass I” (consisting of
the Design Diagram Database Generator) performs the tasks of
analyzing the syntax of an input program and creating a data
base for use by the second pass. “Pass 2’ (consisting of -
the Design Diagram Generator and the Invocation Diagrammer)

V uses the data base created by Pass I to construct Structured
Design Diagrams (SODs) and Invocation Diagrams. A two pass
design is motivated by two factors. First, it is desirable
to separate language dependent functions from language

V
‘ independent functions. Such a separation facilitates the

-

~~~~~ - -- - ,  -V-V
~~~~~~~~~~~

-
~~~~~~~

-V
~~~~~~~ — V-


TT _ T ~~~~~~T~ _ _ _

adaptat ion of Pass 2 to target languages other than JOVIAL.
J3. Second, the two pass design provides a great deal of
flexibility in the formatting of diagrams. Pass 2 of the
JSDD can produce diagrams having a wide variety of formats
from the data base produced by a single Pass I execution.

In pars ing input source programs, Pass I acts as a
table—driven deterministic pushdown automaton (DPDA). The
tables which drive the Pass I parse are the product of an
LALR(k) parser generator that accept- s a syntactic
description of a language as input and outputs parsing
tables for the language.

The two Pass 2 programs (the Design Diagram Generator (DOG) V

and Invocation Dia9rammer) interpret the Pass I generated V

data base , and create diagrams in accOrdance with the
formatting specifications in the DOG options comp-ool (see
User’s Manual). The DOG is implemented as a two part
program. First it .maps oUt the Structured Design Diagram
and creates a temporary data base containing the mapping

—
information. Only then does it produce the actual diagram.
This strategy allows it to calculate forward and backward V

referencing information (j~ case a diagr am over flows the
page widt-h and a Table 0-f Contents, without committing
prematurely to any hard—copy output. If adjustments need to
be made in the diagram, the temporary data base - c-an be
modified easily.

V 5. Defining the JOVIAL J3 Syntax

The parsing tables used by Pass I are generated by an
LALR(k) parser generator. The parser generator accepts the
syntactic description of a language (in BACKUS—NAUR form) V

and produces the parsing tables for the language.

— The parser generator can produce tables for any LALR (k)
grammar where k is finite.

There is no grammar processable by a left to right parser
generator (havi ng an finite upper bound on required
lookahead) which will produce tables which will parse all

V JOVIAL J3 programs and which will parse no inputs which are
not JOVIAL J3 programs.

In order to sidestep this problem, the JOVIAL J3 grammar has
been “expanded” so that all JOVIAL J3 programs can be

V parsed. However, as a result of this expansion, there are

6
V

V V ~-
- - -~~~~~~~~

- --V——----
~~~~~~ 

~~~~~

~~~~RIL 
~ ~~~~~~~~~ ~__VV•~? V ~V . _~~ V 

~~~~~ C - f l’~~~~~~~ - . w••v -__ --_ _;_,___ ~ _,___ .—,;.,_•,-_-— - 
V

‘~~ ,_ •
_

—- ~~~~~~~~~~~~~~~ - ~ ,. . - — ~~ ‘rV _~ V~~V V~~ V -
V -

V sentences which the -grammar can generate which are not valid
JOVIAL J3 programs .

The syntax of JOVIAL J3 is relatively complex for a
programming language. This complexity requires that JOVIAL’s
BNF description contain a very large rfumber of productions.
In attempting to generat€ parsing tables, it was found that
the size of JOVIAL’s BNF description exceeded an internal
limit imposed upon the parser generator’s input grammars. In

-: order to avoid a costly investigation of the parser
generator’s l imits, work on the JSDD was based on an early,
slightly inaccurate version of the JOVI AL grammar. The
Design Diagrammer Data Base Generator has been adjusted to
enable it to successfully parse the full set of valid JOVIAL
programs.

6. The Structured Extensions to JOVIAL J3

Since JOVIAL J3 lacks certain structured programming V

mechanisms which elimi nate the need for Goto statements,
these mechanisms have been added as allowable programming
features in programs submitted to the JSDD. It is assumed
that such programs would have to be subjected to a
preprocessor before submission to a JOVIAL J3 compiler.
Such a preprocessor has been supplied as a deliverable item
with the JSDD.

The current JOVIAL J3 struc tured extens ions are s
I) The DO WHILE LOOP
2) The DO UNTIL lOOP
3) The CASE STATEMENT

Programs incorporating structured extensions are translated
into Standard JOVIAL J3 programs by the JOVIAL Exten ded

V Structures Translator (JEST preprocessor). JEST is a PL/ I
program implemented on the RADC MULTICS system.

V

~- 7. Conclusions and Recommendations

From the implementor’s point of view the JOVIAL J3 language
V was not a good choice of a programming language in which to

implement the JSDD. For instance, the JOVIAL J3 compiler
supplied for use on this contract was incapabl e of
optimizing the JSDD programs. Even if this were not the

- 1 case, the JSDD would still run more slowly than necessary,
because much computer time is consumed performing operations
for which the JOVIAL J3 compiler is not very efficient. For

7

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
—



~~~~~~
-- -

~~~~ --~~ —~~~~~~
- - - 

—V —- — .—
~
—-- .- -_--- - -

example, a major shortcoming of the compiler is that it does
not support random access output operations on disk files. V

This induces the JSDD to consume great amounts of computer
time doing double buffered I/O, and requires the inclusion
of addit ional software modules in the JSDD computer
programs.

Two additioi al aspects of the JOVIAL J3 language render it
less than desirable for the JSDD application or for
impl ementing compiler—like tools in general. First, the

V static nature of JOVIAL’s data handling makes it difficult
to do dynamic memory management. Second, JOVIAL does not
contain string handling constructs that are naturally suited
to compiler—like programming . The outstanding difficulty
with the JOVIAL character string manipulation capability is
that the current string length and the “declared” maximum
string length for a string variabl e are not available at

V execution time. 1n order to circumvent the string handl~ngdi fficulties , the character string handling package is
incorporated into each JSDD program. This package off ers
string operations such as substring and concatenation.

V Despite the difficulties attendant to the implementation ,
the JSDD produces Structured Design Diagrams of high

V quality. The JOVIAL programmer should find these diagra1ns
to be of great assistance during program design and
implementation as well as being useful for documentation
purposes. The Invocation Diagrammer produce-s an output that
is extremely useful and probably should long have been a
standard feature of commercial compilers . The prototype
J500 has been designed such that It can also serve as the
nuc leus of a comprehens ive au tomated docum entation system
f or JOVIAL programs , should the construction of such a
system be desired at a later time.

8 

_ _ _

- - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



-~~~~~ ~~ ----- —- ---- -
_

~~~~
—-- - --- - - ------ -- - - -

—

-

MISSION
of~~

Rome Air Development Center

lAX p lans and conducts research, exploratory and advanced
d.v.lo ~~~it pxugrw in ~~~~aad, control, and coi.unications
(C3) activities, and in the C3 areas of inf ormation aci~ aces
and Jntelligeace. Th. pr incipal technical mission areas
are C~~~unicatians,, electromagnetic guidance and ~~~trol,
surveillanc, of growid and aàrc.p ac. objects, intalligesce
data collection and handling, inf ormation sgat technology, V

ionosph eric prop agat ion, solid state sciences, aicromav.
p hysics and electronic reliability, aaint alra.h ilitg arid
compatib ility.

c~~~~~~~~~~~~
)

_

V

_
~w

_
~~~ 

- 

.. ~~~~~~~~~~~~~~~~~~~


