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ABSTRACT

The role of hydrogen in the stress corrosion attack of 7000
series aluminum alloys was investigated using sputtered film/
substrate samples to simulate the grain boundary constituents
in these alloys. Localized hydrogen measurements were made in
the f£film, interface regilon, and substrate using the Lithium
Nuclear Microprobe for Hydrogen (LNMH) technique. Hydrogen
concentrations were measured in samples of pure aluminum
film/7075 substrate, 7475 film/7075 substrate, and MgZn, £ilm/
7075 substrate for as-sputtered, corrosion oxposed, and stress

corrosion exposed conditions as well as after stress removal, A
substantial hydrogen concentration increase was observed in the

: interface region of Man2 film/ 7075 substrate samples exposed

i ‘ to stress corrosion; smaller increases were introduced in the

b | interface regilon of 7475 £ilm/7075 substrate samples; no increase
' occurred in aluminum £ilm/7075 substrate samples, The lncrease

in hydrogen concentration was found to be stress dependent. Upon

3 .'- removal of stress, hydrogen was reduced to its initial concentration
! in the 7475 £1lm/7075 substrate interface but remalned trapped

in the Mgzn, £ilm/7075 substrate interface. The relatively

strong affinity for hydrogen in the interface region of Man2

film/7075 substrate samples during stress corrosion exposure
coupled with the actual stress corrosion failure of two of these ;

samples suggest that stress corrosion attack in 7000 series i
aluminum alloys is hydrogen related.
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1. INTRODUCTION

Stress corrosion is one of the most serious problems
encountered with high-strengih aluminum alloys of the Al-Zn-Mg
type (Refs. 1 and 2). To avoid this problem, these alloys are
used in a lower strength, overaged temper (Refs. 3 and 4). 1If
the full strength capabilities of Al-Zn-Mg type alloys are to
be realized, greater understanding of the mechanism of stress
corrosion attack must be attained.

Recent evidence suggests that stress corrosion in these
alloys 18 a form of hydrogen embrittlement. Speldel has shown
that stress corrosion crack growth of 7079-T651 aluminum alloy
in an aqueous salt environment 1s temperature dependent, with
an activation energy for subcritical crack growth comparable
to that observed in the embrittlement of nickel and iron-base
alloys in distilled water (Ref., 5). Speidel suggests that
gimilar rate controlling steps for hydrogen entry are involved
in all these material environment combinations. Green, Hayden,
and Montague have found that stress corrosion cracking
susceptibility of 7075-T6 aluminum alloy is far greater under
tensile (mode I) loading than torsional (mode III) loading
(Ref. 6). They conclude that under torsion loading the component
of hydrostatic stress is insufficilent to cause a concentration
of hydrogen ahead of the crack tip whereas hydrogen damage is
a dominant mechanism leading to s*ress corrosion failure under
tensile loading.

Another Indication that hydrogen 1s an important factor in
stress corrosion attack concerns the effect of pre-exposure.
Gruhl and Brungs have found that uncracked specimeﬁs of Al-Zn-Mg
alloy exhibited a reduction from 20 to 13 percent elongation
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after stress corrosion exposure in an aqueous chloride environment
(Ref. 7). These specimens showed evidence of intergranular attack

However, 1f exposed samples were reheat~treated
The

after testing.
to their original temper, no ductility loss was observed.

lossg in ductility was interpreted as grain boundary embrittlement
by hydrogen that was eliminated in subsequent heat treatment.

In direct observations of stress corrosion attack using
transmisslon electron microscopy, Montgrain and Swann exposed an
Al-7% Zn-3%Mg alloy to a saturated water vapor environment,

They found that intergranular crack propagation takes place at
the interface between incoherent Man2 grain boundary precipltates
and one of the grains (Ref. 8). No evidence of grain boundary
precipitate dissolution was observed during crack propagation
but evolution of molecular hydrogen was measured during defor-

mation and fracture.

One of the major arguments against a hydrogen-related
mechanism of stress corrosion attack in high strength aluminum
alloys has been that cathodilc polarization acts to reduce stress
corrosion attack, Since coplous amounts of hydrogen exist at the
cathode, one would expect enhanced attack 1f hydrogen was
glgnificant to the attack mode. However, recent work of Gest
and Troiano (Ref. 9) show that hydrogen pcrmeability in 7075-T651
in a 3 percent NaCl solution goes through a mininum over the =800
to -1200 mV applied potential range (relative to Standard
Calomel Electrode)., Since the open circuit potential is
approximately =800 mV, hydrogen would be relatively immobile
until cathodic potentials in excess of -L200 wV were applied.
Indeed, Gest and Troiano found a significant increase in stress

corrosion crack growth velocity at an applied potential of

=1500 mv.
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Although the studies described above strongly suggest that
stress corrosion attack in Al-Zn-Mg type alloys is related to
hydrogen embrittlement, other mechanisms have been more generally
accepted, and the role of hydrugen is considered quite controversial
(Ref. 10). The purpose of the present work is to clarify the
role of hydrogen in the intergranular attack mode characteristic
of stress corrosion in these alloys by direct measure of the
hydrogen concentration in simulated grain boundary regilons exposed
to stress corroslon. Previous work has shown the importance
of the grain boundary precipitate in stress corrosion attack (Refs.
8, 11-15). In the present work, localized hydrogen concentration
was measured using the recently developed Lithium Nuclear
Microprobe for Hydrogen (LNMH) technique that has a depth
resolution of approximately £0,10 um in the materials studied
(Refs. 16-18). To capitalize on this depth resolution capability,
a film/substrate sample configuration was utilized for the grain
boundary simulation. 1In this configuration, the constituents
at a grain boundary are represented by the film and substrate,
with the interface that separates the film and substrate represent-
ing the grain boundary. Hydrogen concentrations were measured
in the film, iInterface, and substrate rep'ons of samples exposed
to corrosion and stress corrosion environments as well ay in

control samples.
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2., EXPERIMENTAL

! LOCALIZED HYDROGEN ANALYSTS

For this study, the LNMH technique was utilized to determine
localized hydrogen concentrations. This technique 's based on
measuring the characteristic 14,7- and 17.6-MeV gt .. a rays
) emitted during the resonant lH(7Li,'y)813e nuclear reaction, as
/ . illustrated in Fig., 1. The gamma-ray yield is proportional to
v hydrogen concentration. In practice, 7Li ions are accelerated
in a Van de Graaff accelerator and allowed to strike a target
sample., For accelerated 7Li ions at the resonance energy for
e this reaction, 3.07 MeV, only the hydrogen atoms at the very
i outer surface of the sample will be measured., As the energy
?' of the accelerated 7Li ions is increased, the resonant reaction
i occurs at deeper lying regions below the surface via slowing down
. i of the incident 7Li ions to the resonance energy. Thus, hydrogen
o | concentration depth profiles can be measured by varying the x
; . accelerator voltage. Since the resonance width 1s very narrow |
?‘. (0.08 MeV), the depth resolution of the LNMH for metals is typically

% 0,05 to £0.1l5 um, depending on sample composition. For the i?

aluminum and Man2 samples herein studled, the depth resolution is %
k approximately +0.10 um, A ]
E( “ L] . . 11
i Surface of o« te !
L Torgut Materisl . !
g )
: Lithium Nuclei - i
: 'mmum ucle ;:;.,—— . i
b . Acculerstor 1

o Hydrogen Atom
AN = Gamma Ray

Resonant Nutlear Resction

+ 011 Micron  “pagion Overlapped
By Resonance

VAR . -

:m ‘;im-;‘ :,n-+7 f . , »
& 3, L . 3
Res Width = 0.08 MaV e ~ )a‘z’}cgdz,g/g @g 742{# p
e { MR G © e e e o L enen e b

Fig. 1 LNMH Fundamentals f
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Localized hydrogen analysis with the LNMH can be done effec-
tively using the depth resolution capability of this approach.
For study of hydrogen concentration at grain boundary regions
assoclated wilth stress corrosion exposure, the film/substrate
sample configuration lllustrated in Fig., 2 was utilized. This
sample confilguration enabled simulation of the chemical
constituents typical of the grain boundary in Al-Zn-Mg type
alloys and permitted depth profiling in the film, interface,
and substrate regions. By in situ measurements in these regilons,
hydrogen concentrations associated wilth different conditions
of environment exposure were determined.

7076-T8 SUBSTRATE - 0.040 x 3/8 % 2 Inch
{(~1x10xB1mm)

SPUTTERED F LM
PURE Al, 7478, or MyZng
(w3103 mm THICK)

L1 lons - 0.10 x 0.10 Inch
(2.6%2,6mm)

Fig.2 Schematic of Film/Substrate Sample
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SAMPLE FREPARATION

Samples were prepared by sputtering specific films onto
7075-T651 aluminum alloy substrates. Films of pure aluminum,
‘ 7475 alvminum alloy, and Man2 were sputtered from appropriate
Vo targets. The pure aluminum target was zone-refined material
Eoo having a nominal purity of 99.999+%; the 7475 aluminum alloy target
{ / was prepared from 3/16-inch thick plate that contained 5.60
o f wt% Zn, 2,44% Mg, 1.43% Cu, and less than 0.0l1% of Cr, Fe, Si,
{ Mn or Ti; the Man2 target was prepared from vacuum~hot-pressed
: powder that contained no binders., These targets were assembled
i f by the Materials Research Corporation (MRC). The 7475 aluminum
. é alloy is a high purity form of 7075 that was specially supplied
L by the Metallurgical Research Division of the Reynolds Metals
ﬁ- | Company. Substrates, of 0.040-inch thickness ¥ 3/8-inch width x £
ﬂ' C 2-inch length, were sliced from 3-ineh thick 7075-T651 bar stock; ;f
) o the 2-inch substrate length was in the short transverse direction 1?
%\ o of the bar. These substrates were polished to a 0,065 & 0,015 um
s rms finish (as measured with a profilometer) using standard
metallographic techniques and a 0,05 um final grit size. Substrate
it polishing was utilized to avoid the surface roughness that was
i previously found to limit depth resolution capability in the
interface region (Ref, 19). Prior to film deposition, substrates
were sputter-etched to remove surface contaminants and promote

o i el
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adherence with the sputtered film. b

Both sputter etching and f1ilm sputtering were done in a {
MRC Model SEM=8620 RF Sputter-Etch Unit. During preliminary j
experiments, relatively high hydrogen concentrations, of the ‘é
order of 100 wppm, were measured by LNMH in pure aluminum sputtered
films. Contamination introduced by the argon gas used in sputtering :}
was suspected. Therefore, Research Grade Argon of 99.9995% purity, the j

SR

e

;
%

B i LT e 2 i e

5
sl st sk vt e e e e sk NIRRT A I AR A S 1 L ERn £ e
i X SRR o X BLLLI2E  Tur e L T o a3 B




- highest purity argon commercially avallable, was substituted for
X normally used High Purity Argon. In addition, the argon gas was
purified by a titanium-getter heater prior to entry into the
sputtering unit. These changes reduced the hydrogen concentration

in the pure aluminum sputtered films is less than 40 wppm.

Another problem encountered during preliminary sputtering
experiments concerned substrate softening caused by heating. A
reduction in the yleld strength of 7075-T651 substrates from 67 to
16 ksi was encountered. Such softening was undesirable since
L only minimal elastic loadings could be applied during stress
g E : corrosion exposure. Therefore different methods to avoid substrate

AT
TREETETT R
- b -

TR
- /.4'

L heating during sputtering were evaluated. It was found that use
o of a high vacuum silicone grease on the back surface of the sub-
o strate served to enable sufficient heat transfer during sputtering
to avold softening., In fact, no change in substrate hardness was

f experlenced when using the silicone grease, Therefore this pro= f
i ; cedure was used uniformly in preparing film/substrate samples. y
p

\
S FIIM CHARACTERIZATION ‘;;1
§

- Both gravimetric and nuclear resonance techniques were I
: utilized in measuring the thickness and thickness uniformity of (ﬁ
sputtered films. Scanning Electron Microscopy (SEM) and X-ray
diffraction were also used for film characterization. Film lg
; surface topography was examined using an Advanced Metals Research 4
% Corporation (AMR) Model 1000 Scanning Electron Microscope (SEM),. g
i Films were examined after sputtering and each condition of

:l environmental exposure. In conjunction with SEM examination, L
Energy Dispersive Analysis of X-Rays (EDAX) was used in i
ldentifying the elemental constituency in localized film regions. [;
The crystallographic character of the sputtered films was )
measured using a Plcker X-ray Diffractometer with a copper target.
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. Accurate measurement of film thickness was important in
% locating the interface reglon of each sample. Film thickness

4 was determined by welght difference before and after sputtering.
No significant substrate weight loss was measured for the sputter
etching treatment utilized. Careful attention was paid to

, remove all the silicone high vacuum grease that was used to

% transfer heat from the substrate during sputtering. Before final

- welghing, each sample was cleaned in an ultrasonic bath of

trichloxcethylene for 1 min followed by successive 1 min rinses

in separate ultrasonic baths of Freon., Thils procedure was
effective since no further weight loss was observed by additional
cleaning.

Film thickness will be expressed in units of mg/cm2 through-
out. When thickness 1s indicated in microns, a density value of
2,71 g/cm3 has been used for the pure aluminum and 7475 £ilms,
and 5.20 g/cms, based on the density of crystalline material
; : (Ref, 20), has been used for the MgZn, films. Since the samples
K St contained a hole and were not of uniform width, an accurate

?-- ' - measure of surface area was obtained for each substrate by dividing
: n the substrate weight by the product of the thickness and densicy.
Subatrates were 0.038 £ 0.002-inch thick and were measured to

the nearest 0,001 inch., Weighings were made to the nearest 0.0l

T i gt

mg. For the films prepared, welght Increases were of the order

of 46 mg. The overall error in the determination of £ilm
thickness is estimated as 3 percent and is primarily related to
the precision in substrate thickness measurement.

In addixion to the gravimetric approach, the thickness of
selected sputtered films was measured using a nuclear technique

based on stimulation of proton-induced resonances. This approach
was used to corroborate gravimetric measurements and provide a
means of evaluating the uniformity of film thickness over an
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area equivalent to that used with the LNMH. Two varjations of
the technique were necessary. For Man2 films, the resonance
reaction between fast protons and aluminum nuclel in the
substrate, 27A1(p,’y)2881 at Eres w 0,992 MeV, was utilized.

For pure aluminum and 7475 aluminum alloy films, the small
aluminum canposition difference between film and substrate made
use of this reactilon impracticable. Therecfore, a surface
"marker" consisting of a very thin layer of LiF was evaporated
onto six selected polished 7075 substrates prior to sputtering,
and the resonance reaction between fast protons and fluorine
nucleli, lgF(p,aw)léq at Eres w 0,874 MeV, was utilized. Film
thickness was calculated from the measured shift of resonance
energy. The width of the resonance energy profile, corrected
for natural line width, proton-beam energy dispersion, and
straggling, provided a measure of the variation in film thickness

within the 0,10 x 0.1l0~inch area probed.
ENVIRONMENTAL EXPOSURE

Samples of each film/substrate combination were exposed to
a corrosion or stress corroslon environment at room temperature
prior to the LNMH measurement. An aqueous chloride solution
containing 3 percent NaCl and 0.5 percent A1013.6H20 and having
a 3.5 pH was used as the corrosion medium. The solution was
constantly stirred during the 500 min exposure time. Earlier,
it had been found that a corrosion product at least 3 um thick
formed during similar environmental expoaure (Refs. 16, 18).
Formation of such a corrosion product would obscure desired LNMH
measurements. Therefore, masking was used to prevent contact
between the solution and film surface region to be probed.
Masking consisted »f a combination of an inner 0.200-inch x 1/2-
inch Teflon tape, ar outer 0.300-inch x 3/4-inch electrical
insulating tApe seal, and a perimeter seal of Collodion. The
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masks were placed over the center portion of the sample f£ilm
surface as shown in ¥Fig. 3, and were removed before LNMH

measurement.

A test device was designed and bullt for stress corrosion
exposure, The device, shown in Fig. 4, was capable of accommodating
eight samples (five are shown in Filg. 4). Stress was applied
using four-point bending and was maintained during exposure and
subsequent ILNMH measurement. The inner-two loading points were
specific to each sample and are shown at the three unoccupied
sample positlons in Fig., 4; the outer-two loading points were
continunus near the top and bottom of the device, By displace-
ment of the inner contact points, a constant elastic stress was
produced on the sample in the l/2-inch length between inner
contacts. Two devices were fabricated and used for both stress
corrosion and corrosion exposures as well as for holding samples
during the LNMH measurements, The devices were machined from
321 stainless steel plate and were coated with an epoxy fuel tank
paint to avoid galvanic interaction with the samples.

The strain-displacement characteristics of each sample position
was calibrated using an SR-4 strain gage on the outer sample
surface. Each position was found to be iIndependent of the loading
on other samples, Based on repeated strain measurements and a
10.4 x 106 psl elastic modulus, known displacements resulted in

an average deviation of + 4,5% to 60 ksi,

Samples were stress corrosion exposed under elther an
elastic or plastic strain in the substrate surface. For elastic
loading, a stress of 29 ksl was applied; for plastic lnading,
the stress was 64 ksi. The latter value 1s based on an applied
strain of 0.675 percent and the stress strain behavior of the
7075 aluminum alloy substrate. For MgZn, films at this

12
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strain, the stress was approximately 74 ksl since both aluminum
‘ and MgZn, have almost the same modulus (Ref, 21) and Mgz,
would not be expected to undergo plastic deformation,

] LNMH MEASUREMENTS

Lo : Hydrogen concentration was measured in the film, interface,
f‘: , and substrate regions of unexposed and exposed film/substrate
samples as well as in the surface of polished and sputter etched
Py substrates. LNMH measurements were made at the Nuclear Structure
L‘ Laboratory, SUNY, Stony Brook, New York using the doubly

I ionized 7L1 beam of a High Voltage Englneering Corporation

35 ; (HVEC) Model PN Tandem Van de Graaff Accelerator. To facilitate
= i measurements in the numerous samples examined, 7L1 beam energles
¢ 1 of 4,25, 4.75, and 5,25 MeV were utilized to examine the film,

: . interface and substrate regions, respectively, and samples of

; specific film thickness were premared so that the LNMH resonance
reactlon occurred in the interface region at a 4.75 MeV beam

. energy, The actual depths of the LNMN measurement are given in oy
o Table 1 and are based on accurately known stopping powers for the ?3

L elemental constituency of the sample (Ref. 22).

;o Hydrogen concentrations were measured in two samples of each "
] film/substrate type for each of the following conditions:

! As-Sputtered (S) -
Corrosion Exposed (C) i
Stress Corrosion Under Elastic Stress (SCE) 3
Above With Stress Removed (SCE-U) f
Stress Corrosion Under Plastic Stress (SCP) i
Above With Stress Removed (SCP-U)

; One as-polished and two sputter etched substrates were also
examined at the 4.25, 4.75 and 5,25 MeV energiles, LNMH measurements

14
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TABLE 1 DEPTH OF LNMH MFASUREMENT

? : Sample Depth of Measurement

S 4.25 MeV 4.75 MeV 5.25 MeV
%ﬂ’ (Film/Substrate) (Film) (In ubstrate)
’?{‘ ) ¥ 2 ¥ 2 ¥
v mg /cm wm  lmg/cm Iin mg/em” | _lm
. ;

%:'.i pure A1/7075 | 0.61 2,25 |0.9140.03|3,36:.0.11 |1.23 4. 54
&f i 7475/7075 0.61 2.25 [0.91:0.03|3.36:0.11 |1.23 | 4.54
. Mgzn, /7075 0.95 1.63 |1.25£0.05] 2.40£0.09 |1.58 3.58
! i

ey s o

: ' ' Deviations are based on LNMH reactlon resonance width and
e straggling and are approximately the same at the three
! energles investigated.

2 * Based on density of 2.71 g/cm3 for Al, 7075 and 7475 and
| 5,20 g/en® for Mgzn,.

=

Y
i

——-

i were made 19 * 1 days after environmental exposure., One of the

! §
Q _ MgZn, film/substrate samples exposed to SCP falled while under Y
it .
‘% - load less than one day after being removed from the solution R
; environment. This sample was examined in the unloaded condition .

(SCP-U), and a third MgZn, film/substrate SCE sample was substituted,
(During preliminary exposure evaluation, a similar fallure occurred
in another Man2 film/substrate sample exposed under SCP shortly
after removal from the solution environment,) These were the only
two sample fallures that were encountered during the course of

1P e

this investigation.

i A 0.10 x 0.10-inch beam collimator was used throughout. The

area examined was always wilthin the inner-two contact points of
the test device, Alignment for the different sample positions of

e s i
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L the test device relative to the 7Li beam was established prior to
LNMH measurement. A cathetometer was used to align the beam col-
limator with a reference cross-halr on the LNMH target chamber.
The test device was mounted on a X-Y positioning stage within

the target chamber and specific positions were indexed at the

3 areas to be measured. Insertion of the X-Y positioning stage

?’ into the LNMH target chamber is shown in Fig. 5. Although surface
! masking during solution exposure was generally effective in

' preventing corrosion product formatlon on the film area to be

‘i ! examined, & limited number of samples did undergo attack near

3 i their edges. For these cases, a partlal overlay mask of pure

o aluminum sheet was used to eliminate any possibility of inter-

ﬂ ; action between the corrosion product and the 7Li beam. (A

% ' sample with an overlay mask as well as four unmasked samples, ?Jé
are shown after LNMH measurement in Fig. 4. 'The area probed fﬂ
with the beam is evidenced by the darkened "beam spot'.) j

e

A total of 40 samples were examined in five separate target
chamber loadings (elght samples per loading). TFor each sample,
measuremelt was made at three depths, so that in total, 120
LNMH measurements were made. A speclally prepared NBS 354 T
H~in-T1 Standard, 215 + 6 wppm, (Ref. 16) was used for calibrating
each loading at each of the three energies examined. A vacuum ”f
annealed pure ilron standard was also examined periodically as Q
a measure of beam-dependent-background. Beam currents from '“f
70-190 na were used and were generally in the 130-150 na range.
Measurement times were of the order of 400~800 sec depending on o
the hydrogen concentration being measured and the desired count :
statistics., Measurement times were subdivided into equivalent
charge collection periods to monitor possible time dependent
concentration change during the measurement. In no case was
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i \Y
4 any time dependent concentration change observed [ou the range 5
; A
B of beam currents utilized. Each sample loading required approxi- .
A mately 9 hours of measurement time. .
i o
- . ; P
k0 In addition to LNMH measurements at 4.25, 4.75 and 5,25 MaV, %' p
eyl . \ A
“f hydrogen concentration-depth profiling was done in the surface b
i of polistied and sputter-ctched substratues over the 3.08 to 3.85 MeV . 3
3 ' L.
g energy range. Surface profiling was done at Grumman's & MV i
1 7
T Van de Graaff Accelerator facility using singly ilonized "Li.
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. 3. RESULTS AND DISCUSSION

g FIILM DESCRIPTION

Accurate measurement of film thickness was important to
establish the depth at which the film/substrate interface was
located in each sample. Film thickness was determined from the
welght difference before and after sputtering and the substrate
surface area. The accuracy of this gravimetric method was
evaluated using a nuclear technique of film thickness measure=-
ment on selected samples. Comparison of film thilckness results
for specific film/substrate samples 1s made in Table 2. As
indicated, the agreement between these two technlques is quite
good.,

TABLE 2 FILM THICKNESS MEASUREMENT COMPARLSON

Film Thickness (mg/cmz)

Nuclear Method

Cravimetric Average and Max dmum
Method |Maximum Deviation®™ | Local Variation#

Pure Aluminum | 1.36 & 0,02 1.28 & 0,09 £ 0,06
1,25 + 0.02] 1.22 + 0.09 £ 0,06
1.23 L 0002 l. 16 1 0.06 !: 0106
7475 Aluminum | 1.48 & 0,02 1,48 + 0.0L £ 0,05
Alloy 1.45 ¢ 0.02]  1.43 £ 0,00 L 0,06 |
1.50 + 0.02| 1.45 ¢ 0,01 + 0.06
MgZn, 1.13 + 0,02| 1.10 + 0,00 £ 0.06 I

Based on three to filve separate areas in same sample

Within 0.10 x 0.10 inch area =- calculated from broadening of
resonance width
g AT
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Variation in film thickness within the 0.10 x 0.10-inch
area probed was also determined from the nuclear measure-
ments. Based on the extent of broadening in the resonance
width of the 27Al(p,'y) Si reaction for the MgZn, /7075 sample
and of the 19 F(p aw) €y reaction in the pure aluminum/7075 and
7475/7075 samples, the variation was * 0,06 mg/cm , as indicated .!
in Table 2., Since this variation is approximately three times
larger than the preclsion of the average film thickness measured ,!

using the gravimetric method, an uncertainty of + 0,06 mg/cm
will be used in describing sample £ilm thickness. g

: Both X-ray diffraction and SEM were used in characterizing ;
e sputtered films. Initially, films were sputtered onto glass S |

; substrates to determine thelr crystalline nature as a function 1'
. of film thickness. As indicated in Table 3, the films were
crystalline with the exception of one Man2 film of 0.17 mg/cm2 -

thickness, Diffraction patterns could be indexed with expected
&‘ lattice parameters and crystal structures (Ref. 20). These films i
l; : generally had a preferred orientation that changed with film

i thickness.

Subsequently, films were sputtered onto 7075-T6 substrates,
h The topographies of these films are illustrated in the SEM
micrographs of Fig. 6., Films of pure aluminum and 7475 aluminum

alloy appear similar and have a cubilc crystallite morphology

with an approximate 3-6 um size; crystallites of the Man2 film
have a spherical morphology and an approximate 0.5-2 um silze,
Since the thickness of these films is of the order of 2-4 um,
it 18 likely that the films are a polycrystalline array only

; one or two crystals thick.

i Use of high vacuum silicone grease on the back surface of -

2 each substrate during sputtering resulted in cooler substrates
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TABLE 3 SPUTTERED FILM CRYSTALLOGRAPHIC CHARACTERISTICST

Film Thickness Crystallographic
(mg/cmz) (1um) ¥ Nature#
Pure Aluminum 1.17 4.32 FCC*
7475 Aluminum 0.10 0.37 FCC, Fine Grained
Alloy 0.17 0.63 FOC
0.42 1.6 FCC, (200)
0.99 3.7 FCcC, (200)
Man2 0.17 0.33 Amorphous
0.65 1.3 HCP, *(10.0)
0.92 1.8 HCP, [100)
1,83 3.52 HCP, ([00:2)
14,4 27.7 HCP, (002}

YT 6 e -

-1.
Sputtered onto glass substrate

i Based on a density of 2.7l g/cm3 for the aluminum and 7475
£ilms, and 5.20 g/em for MgzZn, film

# Planes of preferred orilentation indicated where observed

3
’ FCC - Tace Centered Cubic

HCP - Hexagonal Close Packed

e

that significantly affected the crystallographic nature of the
sputtered films., For pure aluminum, the crystallite morphology
remained comparable to that on hotter substrates, but the size

of the cubic crystallites was reduced from 4~6 um to approximately
0.8 im. The crystallite morphology of the 7475 aluminum alloy
film was difficult to discern but appeared less cubic than on
hotter substrates, and crystallite size was reduced from 3-6 Iim




to approximately 0.5 um. No discrete crystalline morphology

was apparent in the topography of sputtered Man2 films. X-ray
diffraction results substantiated the crystalline nature of the
pure aluminum and 7475 aluminum alloy films but indicated that

the Man2 films were amorphous. Diffraction patterns from the

pure aluminum and 7475 film/substrate samples differed from those
of the 7075-T6 substrate in the relative intensity of (311} planes.
To corroborate the crystalline nature of the pure aluminum and 7475

! aluminum alloy films, these films were sputtered onto cooled

1 copper substrates, In both cases, diffraction results showed

E the films to be crystalline. Diffractlon results from MgZn,

' film/substrate samples, however, exhibited none of the peaks

. observed from films sputtered onto hntter substrates. Extenslve

broadening, extending over 9-100, was apparent over ranges of 20
i where three or more diffraction peaks had been observed in
b crystalline films., Therefore, it can be concluded that only

short range ordering existed in the MgZn, films that were

T

sputtered onto the cooler substrates.
LOCALIZED HYDROGEN MEASUREMENTS

Results of LNMH measurements in as=-polished and sputter
etched substrates at depths of 0.61, 0.91 and 1.23 mg/cm2
; (4.25, 4.75, and 5.25 MeV energles, respectively) were below

T e

i the limit of detectability, 19 wppm, used for these measurements.
Longer measurement times or increased beam currents would have 5
been required to reduce the detectability limit further, and l
this was not considered necessary for the scope of the present

l work, These samples were examined in different target chamber
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loadings, and the low hydrogen concentratlons, consistent with , ﬁ
earlier work (Ref. 16), attest to the absence of background .t

problems throughout these measurements.

The hydrogen concentration results for each of the film/

s - T

’ substrate combinations are summarized in Tables 4, 5, and 6. ;
o Hydrogen concentrations in individual samples are indicated
: for the film, interface regilon, and substrate for the different s
i conditions of exposure. For pure aluminum film/substrate
;:‘j % samples, see Table 4, the hydrogen concentrations in the film |
’ and substrate are generally below the limit of detectability
used for these samples, The low concentrations measured in the '
film are indlcative of an absence of surface contamination and

of relatively little hydrogen trapping during sputtering; the i'
low concentrations in the substrate are as expected for bulk ‘

7075 aluminum alloy and confirm that no contamination problem
exlsted in any of these samples., High hydrogen concentrations

| exlist in the interface regilon for all conditions examined, but l
& : no significant Increases appear to be associlated with stress

ﬁ o corrosion exposure. In fact, the disparity in concentratlon
for a specific condition is comparable to the total range of

g concentrations observed, i.e., as-sputtered samples have inter-
face concentrations of 121 + 20 and 230 * 32 wppm, and the
total range of hydrogen concentrations measured for this group

I of samples 1s B85 to 230 wppm. L

For 7475 film/substrate samples, see Table 5, the hydrogen
concentration in the substrates ls below the limit of detect=

abllity; the alloy films have measurable concentrations that are
: higher than those observed in the pure aluminum films. These
higher concentrations are likely a result of hydrogen trapping i
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SN TABLE 4 HYDROGEN CONCENTRATION IN ALUMINUM 2
& FILM/SUBSTRATE SAMPLES ]
o
: Hydrogen Concentration (wppm) j '
n Aluminum Interface 7075
Condition Film*l Region*2 Substrate*J
As-Sputtered (8) <39 121 + 20 <37
; <39 230 £ 32 <24
é Corrosion Exposure <39 116 + 20 <31
- () <39 85 &+ 18 <24
;f Stress Corrosion 50 £ 16 189 + 25 <30
; Elastick® (SCE) <40 169 + 24 <19
3 Unloaded SCE (SCE-U) <39 155 + 23 67 + 17 |
2 _ <36 137 # 22 <37 ;
ﬁ:' - Stress Corrosion <38 229 £ 28 <26 :
;x Plastickd (SCP) pL 123 + 21 <40 :
; Unloaded SCP (SCE-U)| <32 108 * 17 <28 |
§j. 60 £ 15 102 & 19 <19 |
g ! Depth of 0,61 mg/cm2 (2.25um) below surface
? *? Depth of 0,91 mg/cm2 (3.36um) below surface
5 #3 Depth of 1,22 mg/cm2 (4.50um) below surface
" #* Blastic stress of 29 ksi
f # Plastic stress of 64 ksi
i
-
|
] :
& 25 f
ﬁ
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B TABLE 5 HYDROGEN CONCENTRATION IN 7475 FILM/ 3
‘Fi SUBSTRATE SAMPLES 4§
I ]
i 4
& \ Hydrogen Concentration (wppm) 1
ST .
%I ﬂ | 7475 Interface 7075 v % i
gﬂ %% Condition F:le*1 Region*2 Substrate*3 18
9 M L
@ T As-Sputtered (S) 54 + 15 167 % 23 <19 .

| 90 + 16 68 & 15 <25 4
%f '! Corrosion 44 = 12 199 + 29 <38 f !j
3 | Exposure (C) 84 % 16 45 + 13 <38 :
g ‘ Stress Corrosion 52 & 14 192 + 25 <19 .! '

e Elastick* (SCE) 66 + 17 105 & 19 <26 | ’;
v Unloaded SCE bl 145 & 22 <19 '“
L (SCE=U) 75 & 16 104 ¢ 19 <35
:g , Stress Corrosion 67 + 17 248 = 28 <40 :
S Plastic *° (SCP) 7t 15 82 £ 17 <19 E
S Unloaded SCP 72 % 15 162 & 23 <25 :
S (SCP=U) 64 + 15 58 & 16 <23 i:
. |
A ;
‘ wl Depth of 0.61 mg/cm2 (2.25um) below surface i
| %2 Depth of 0.91 mg/cm2 (3.36m) below surface ]

* Depth of 1.22 mg/em® (4.50um) below surface B
wH Elastic stress of 29 ksi |

% Plastic stress of 64 ksi
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% ' TABLE 6 HYDROGEN CONCENTRATION IN Manz FIIM/

e SUBSTRATE SAMPLES

J

E Hydrogen Concentration (wppm)

S MgZn, Interface 7075

g; T Condition Filml Region*2 Substratew

by -

i As-Sputtered (S) 26 3 214 * 24 <26

.| 36 t 5 203 + 24 <38

e

ﬁ, " : Corrosion 50 £ 6 140 + 20 <38

g; i Exposure (C) 39 £ 6 101 + 17 <38

EL g Stress Corrosion 31 ¢ 4 274 4 29 <40 ﬁ

5 E 4 47 £ 6 400 = 41 54 = 14 k

5oL Elastic¥” (SCE) 53 & 6 170 = 22 78 & 17 ;

oo Unloaded SCE 30 & 4 183 + 23 <39

v (SCE-U) 53 £ 6 457 £ 49 86 + 18 4
: 58 + 7 168 &£ 22 64 * 17 :

g i Stress Corrosion 52 t 6 426 * 47 70 £ 17 f

P Plastick> (SCP) --- -e -en i

i .

b ? Unloaded SCP 60 = 7 355 + 38 41 + 15 1

o (sCe~U) 48 t 6 538 & 54 71 %17

f‘ wk Depth of 0.85 mg/cm2 (1.63um) below surface i

: %2 Depth of 1.25 mg/cm2 (2.40um) below surface %

g #3 Depth of 1,56 mg/cm2 (3.54um) below surface j

§. 'i wb Elastic stress of 29 ksi j

é o Plastic stress of 64 ksi f

g

@ :

? : 27
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during sputtering and indicate that the alloy has a greater
affinity for hydropen than pure aluminum. High hydrogen concen-
tratirms exist in the intevface reglon, and there appears to be

some increase for specific exposure conditions.

For the MgZn, film/substrate samples, see Table 6, both
film and substrates have comparatively low hydrogen concentrations;
slightly higher concentrations exlst in most of the substrates
exposed to stress corrosion., In the interface region, there
is clear indication that stress corrosion exposure, especially
under plastic loading, leads to hydrogen enrichment, Only one
of three samples has a significantly higher hydrogen concentration
after exposure to stress corrosion under elastic loading, SCE,
whereas both samples exposed under plastic loading, SCP, have
exceptionally high hydrogen concentrations. For one of the
SCP samples, failure occurred in a typlcal stress corrusion
manner while stress was maintained before LNMH measurement.
This is i1llustrated by the intergranular cracking and fallure
mode shown in Fig. 7.

For each of the previously described f£ilm/substrate samples,
the hydrogen concentration in the interface reglion was much
higher than in the film or substrate. Slnce the high concen-
trations exist in as=-sputtered samples, they appear inherent
to the interface region, To determine whether these high
hydrogen concentrations could be attributed to a substrate
surface condition, hydrogen concentration depth profiling was
done in the surface of as-polished and sputter-etched substrates,
These profiles, which are shown in Fig. 8, clearly indicate
that the hydrogen concentration within the first 0.20 im
of the substrate 1s well in excess of 100 wppm. Since
the resonance width for the LNMH measurements at the interface
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e At

reglon 1s approximately 0.20 um, a significant portion of the
substrate surface volume is sampled. Therefore, the high
hydrogen concentrations measured in the interface region appear
to be directly related with the hydrogen concentration in the

surface of the substrate.

Some explanation should also be given for the large
differences in hydrogen concentration in the interface region
between samples of the same condition. For example, concentrations
of 121 t 20 and 230 t 32 wppm were measured in the interface
region of two as-sputtered pure aluminum film/substrate samples.
Throughout these measurements, a constant 7Li beam energy of
4.75 MeV was utilized for determining the hydrogen concentration
in the interface region. However, the film thickness of each
sample differed so that the LNMH resonance reaction did not occur
at the same position relatlve to the interface in all cases. As
a result, the Interface region sampled was not always comparable.
Consilderation of the effect of the relative position of the resonance
energy on the hydrogen concentration is given in Table 7
for pure aluminum film/substrate samples. There appears
to be no correlation between the relative position of the resonance
energy and the measured hydrogen concentration. For the as-
sputtered condition, a lower concentration was indicated when

the resonance occurred Iin the substrate, whereas for stress corro-
sion under plastic loading, SCP, the reverse was true. In general,
the variation in film thickness within the area probed, = 0.06
mg/cmz, coupled with the resonance width, averaged as * 0.04
mg/cmz, assured that the film, the singularity at the interface,

as well as the substrate were sampled. However, because of this
uncertainty it does not appear that the contribution of the
separate sample volumes can be sufficiently resolved to explain

the measured differences.
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TABLE 7 POSITION OF RESONANCE ENERGY RELATIVE
TO INTERFACE IN ALUMINUM FILM/SUBSTRATE
N SAMPLES*

%f: A Position Measured
s Gondition Thigi;:ss pw2 of Hydrogen
i ' 9 2 Resonance Concentration
vy (mg/cm®) (mg/cm”) Energy (wppm)
i |
b s 0.79 & 0.06 -0.12 substrate | 121 * 20
i .1 S 0,91 & 0.06 0,00 interface 230 1 32
0o c 0.95 + 0.06 +0. 04 interface 116 & 20
k. ¢ 0,92 & 0.06 -0.09 substrate 85 & 18
i | ;
£t SCE 0.92 + 0,06 +0,01 interface 189 & 25 .
W SCE 0.95 % 0.06 ~0.06 interface/ 169 1 24 _ﬂ
W L
i . Scp 0.79 = 0.06 -0,12 substrate 229 + 28 %
. SCP 0.92 & 0.06 +0. 05 interface | 123 & 21 1
oo g
y
. -R
o wt 0.91 + 0.03 mg/cm2 depth of resonance at 4.75 MeV k
§ : 2 A = average film thickness = resonance energy depth J
é ;
? f
1
] .
32 I?
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In connection with the lack of certainty in the position of
the resonance en;}gy, the method of determining the hydrogen
concentration in the MgZn, film/substrate interface region will
be described. To calculate the hydrogen concentration in wppm
from the measured y-ray count rate, the elememntal constituency of
the host material must be known, as indicated by the following

TR T

S

esas e S
AN

q v (Ref. 16): -1
ﬁf' . ' -1 g
5 : K JiJ - ¢
9 1 w, = |1+ R B
H

- T
Eo My 3
L b . -

| where w = hydrogen concentration

e i K w calibration constant

Y=ray count/unit charge

o O
B

ﬁ- ? y " atomic stopping cross=section of hydrogen at
i resonance energy

MH = atomic welght of hydrogen

5 MJ = atomic weight of specles }J

: w; = welght fraction of species j (without lnclusion
) of hydrogen)

b

§ ' EJ = atomilc stopping croas~section of species j at

) : resonance energy

Because of the difficulty in resolving the position of the
resonance energy in relation to the interxrface, the weilght
fractions of specific elements in the above equation could not
be quantitatively identified. This was not a problem for the
' pure aluminum film/substrate and 7475 film/substrate samples
because the difference introduced by using pure aluminum or the
7475 and 7075 alloys was relatively insignificant. For MgZn,
33
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film/substrate samples, a comparison is given in Table 8 between
considering 1007% Man2 and 1007 7075 aluminum alloy for the same

Iy
B measured count rate, i.e., N/Q. As indicated, the concentrations

for the 7075 aluminum alloy would be approximately 36 percent
higher than for Manz. Rather than assume that the reliability
; in the film thickness measurement was sufficilent in each case S
to be used in calculating the concentration, a constant average
concentration was utilized, In this way, the hydrogen concen- Ch
tration ls a direct reflection of the measured count rate, MN/Q,

{

J

‘{ instead of a floating value that is dependent on the uncertainty ;u:
i in film thickness, The average values indicated in Table 8

are those used in Table 6.

- % Although the hydrogen concentration results in the interface

region are limited by the number of samples examined and the o
l ; extent of verilation that exists, specific trends become apparent. 1'
These trends can be identified by considering the average

v hydrogen concentration in the interface, normalized to the
as -sputtered condition, as shown in Table 9. No significant

Ep o e

hydrogen enrichment is evident for any of the pure aluminum film/

riap]

" substrate exposures. In fact, there is a reduction in hydrogen
E concentration fullowing corrosion exposure as well as accompanying

removal of applied stress after stress corrosion exposure. No

change occurs in the 7475 film/substrate interface following

L corrosion exposure, but increases of 26 and 40 percent are

é indicated for stress corrosion exposure under elastic and plastic
% ' loading, respectively. Upon removal of stress, the hydrogen '
] concentration is reduced to the original level. For the Man2 |
film/substrate interface, a decrease in hydrogen concentration, -
equivalent to that observed in the aluminum f£ilm/substrate d

interface, accompanles corrosion exposure. However, there is an o

2]

Increase of 34 percent followiug stress corrosion exposure under

elastic loading, SCE, and a very large increase, greater than
34
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TABLE 8 HYDROGEN CONCENTRATION EVALUATION
FOR MgZn, FILM/SUBSTRATE INTERFACE

REGION

;éi Hydrogen Concentration (wppm)

: !

; Condition - Based on Based on ‘

100% Man2 | 100% 7075 Average

S 181 & 20 247 £ 28 | 214 t 24
] 171 = 20 234 t 27 203 + 24

| c 118 & 17 161 & 23 140 # 20
C 85 = 14 116 £ 20 101 + 17
SCE 231 + 24 316 + 33 274 = 29
SCE 338 £ 34 462 t 47 400 = 41
SCE 143 + 18 196 + 25 170 & 22
SCE-U 154 + 19 211 * 26 183 + 23
SCE~U 386 t 41 527 + 56 457 & 49
SCE~U 142 + 18 193 + 25 168 + 22
SCP 360 + 39 492 & 54 426 + 47
SCp-U 300 + 32 410 £ 43 355 + 38
5Cp~U 455 % 45 621 = 62 538 & 54




TABLE 9 COMPARISON OF AVERAGE HYDROGEN
CONCENTRATION IN INTERFACE REGION

Normalized Hydrogen Concentration*l
Condition Al Film/ 7475 Film/ MgZn, Film/
7075 Substrate 7075 Substrate | 7075 Substrate
As-Sputtered (S) 1.00 1.00 1.00 -
(176 wppm) (118 wppm) (209 wppm) 'ﬁ
Corrosion ?jg
Exposure (C) 0.57 1.03 0,58 “_%
Stress Corrosion j ﬁ
Elastic (SCE) 1,02 1.26 1.34 “g
-
Unloaded SCE(SCE-U) 0.83 1.06 1.29 ? £
ol
Stress Corrosion 2 |
Plastic (SCP) 1,00 1,40 2.04% ]$
s
Unloaded SCP(SCP-U) 0.60 0.93 2.14 -
AJ 1, 70%2 ilﬁ

wl Normalized to indicated as-sputtered average concentration

¥2 Based on single sample
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100%, associated with the stress corrosion exposure under plastic
loading, SCP. Upon unloading, a reductlon in hydrogen concentration
occurred in one of the three SCE csamples (see Table 6) and

in the SCP sample that did not fail (iIndicated by asterisk in

Table 9), Based on these observationa, it appears that three

levels of hydrogen enrichment accompany stress corrosion exposure:

1. No change - aluminum film/substrate (all exposures)

2. An approximate 30 = 40 percent increase =
7475 film/substrate (SCE & SCP)
MgZn, film/substrate (SCE)

3. An approximate 100 percent increase -

MgZn, film/substrate (SCP)

In addition, unloading following stress corrosion exposure
significantly reduces the existing hydrogen concentration in both
aluminum film/substrate and 7475 film/substrate interfaces.
Comparable reductions occur in the only half of the Mg2n, film/
substrate interfacer examined,

ot R TS ST

T e T

2 2R

] STRESS CORROSION MECHANISM |

? A The intent of tha present investigation was to determine ‘ﬂ
' whether the constituents at the grain boundary of high strength
aluminum alloys had a preferential affinity for hydrogen when g
exposed to an aqueous chloride stress corrosion environment.
If such an affinity exists, a hydrogen related mechanism that i

leads to the intergranular cracking characteristic of straess &
corrosion attack in these alloys can be inferred. Since direct

measurement of the hydrogen concentration in the grain boundary
reglon is not possible, a simulation was made to enable use of
the LNMH technique in measuring the extent of the hydrogen

37
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enrichment assoclated with stress corrosion exposure in grain
boundary constituents and in the 1interface region between these
constituents. Although the propertiles of the grain boundary
state were not achieved by the sputtered film/substrate samples
used in this simulation and the sputtered Man2 films were not
crystalline, control samples were utilized throughout to enable
comparison and discern enrichment. Pure aluminum fillm/substrate
samples provided comparison with a sample configuration that was
not susceptible to stress corrosion attack, and the as~sputtered
and corrosion exposure conditions served as a normalization for
the stress corrosion exposure.

The results obtained in this investigation clearly show that
hydrogen enrichment accompanies stress corrosion exposure in both
7475 film/substrate and MgZn, film/substrate interface regions.
In addition, the extent of enrichment appears related to the
magnitude of the applied stress for the Mgzn, film/substrate"
interface. There was no indication of comparable increases in
hydrogen concentration in either the film or substrate of any
of the samples examined or in the interface region of the
aluminum film/substrate samples. Moreover, the extent of en-
richment was particularly high in MgZn, film/substrate interfaces
and remained relatively high even when stress was removed., It
appears that hydrogen diffused from the aqueous chloride solution
into the interface reglon under the influence of stress and
remained trapped when the solution environment was removed;
for some of the Man2 film/substrate samples, hydrogen remained
trapped even after stress was removed,

Since stress corrosion cracking in high strength aluminum
alloys has been shown to occur at the interface between a MgZn,
grain boundary preclpitate and the adjacent grain (Ref, 8) and
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since the distribution of Mgzn, grain boundary precipitates has
been rclated with stress corrosion susceptibility (Refs. 11-15),
the extent of hydrogen enrichment and trapping observed in the
simulated Manz/matrix interface of this investigation strongly
suggests that hydrogen is of significance in the grain boundary
embrittlement associated with stress corrosion.

Finally, it should be pointed out that two actual stress
corrosion fallures were encountered during this investigation.
In both cases, fallure occurred while stress alone was being
maintained on Man2 film/substrate samples following stress
corrosion exposure. All substrates were susceptible to attack
since they were prepared from 7075-T6 bar material and were
stressed in thelr short transverse direction, However, only
the two samples indicated underwent failure. It appears that
the extend of hydrogen enrichment in the Man2 film/substrate
interface was of sufficient magnitude to cause attack in the
substrate, These fallures lend supporting evidence to the
hypothesis that the extensive hydrogen enrichment at Manz/
matrix Interfaces which accompanies stress corrosion in an aqueous
chloride environment promotes stress corrosion attack,
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! 4. CONCLUSIONS

.

1. Use of a sputtered film/substrate sample configuration
provides a suitable means for simulating the grain boundary
constituency of 7000 series aluminum alloys.

A 2, There is significant hydrogen enrichment in the inter-
face region of Mgzn, film/substrate samples exposed to
; stress corrosion in aa aqueous chlorilde solution; a lesser
L degree of enrichment: occurs in the interface of 7475
4 ! film/7075 substrate samples; and no enrichment occurs in
5

pure aluminum £1ilm/7075 substrate samples,

- ; | 3. The extent of hydrogen concentration increase during
ﬁ' i stress corrosion exposure appears related to the
5 | magnitude of the applied stress.

i ' f 4, The affinity for hydrogen in the simulated grain

S boundary interface between Mgzn, and the matrix appears
significant to the mechanism of stress corrosion attack
in 7000 series aluminum alloys.
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