e

7 AD=A052 671

UNCLASSIFIED
| oF Cz

YALE UNIV NEW HAVEN CT DEPT OF PSYCHOLOGY F/6 5/10
A THEORY OF THE ACQUISITION OF COGNITIVE SKILLS.(V)
FEB 78 J R ANDERSON ¢ P J KLINE: C M BEASLEY NO0014=77=C=0242

I) £ 6T S B

LM

i

ADAQDSZ671

»
3
-
¢ A Theory of the Acquisition of Cognitive Skills1

(i\\‘-m

John R. Anderson
Paul J. Kline
Charles M. Beasley, Jr.
Department of Psychology
Yale University
New Haven, Connecticut 06520

[4

sAD N _‘
B0C FiLE copy

Approved for public release; distribution unlimited. Reproduction

in whole or in part is permitted for any purpose of the United States
government.

This research was sponsered by| the Personnel and
» Training Research programs, Ps}chological Services

Division, Office of Naval Research, under Contract

No.: NO0014-77-C-0242, Contract Authority Identifi-
L b cai.ion Number, NR No. 154-399.

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE ayAn BTN
[T REPORT NUMBER 2. GOVT ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER
Technical report 77-1 —
- 4 TIT d Subtitie) 5. TYPE OF REPORT & PERIOD COVERED
{/ 2 At theory of the acquisition of;ognitive 7

Technical report 1/77-12/77
6. PERFORMING ORG. REPORT NUMBER

;skills X]" o

rmnd

; AUYNOR(.) ONTRACT OR GRANT NUMBER(e)
(’75) “John R./Anderson, Paul J./Kline and Charles / @?r]
\ E 4 ; l‘

M/Beasley, Jr/f" Npp?14-77-c-f2 2

. PERPORMING ORGANIZATION NAME AND ADDRESS 10. rnocnﬁi—ﬁ"' uouc'r TASK
AREA & WORK UNIT NUMBER
Department of Psychology - Yale University
Box lla Yale Station - New Haven, CT 0652(@ | _66153N .
i 17

RRO42. ~p4 P1) NR 154-399

11. CONTROLLING OFFICE NAME AND ADDRESS 12. RIFOR“I’ DATE

Personnel and Training Research Programs & Feb"m?
Office of Naval Research l 13. NUMBER OF PAGES

lington, VA 22217
. MONITORING ENCY NAME & ADDRESS(iIf different from Controlling Office) 18. SECURITY CLASS. (of this
o - ‘ unclassified j 2('7 7
7) it il
GOMRRI#204] 15cp4

Sa. 2c!CI. ASSI FICATION/ DO'NGRADI“

[76. DISTRIBUTION STATEMENT (of this Report)

/\ Approved for public release, distribution unlimited.

/ ? \k'ﬁ/éﬂ'/ ca /*’ < / ;?' . — N e 7J

________..TA——-~->-._ ,'.’.- e ,_....__.__..._/
17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse eide if necessary and Identify by block number)

Artificial intelligence Learning Strengthening
Associative networks Memory Generalization
Cognitive Psychology Production system Discrimination
Computer simulation Designation Composition

20. ABSTRACT (Continue on reverse side If 'y and identify by block number)

DD ,"5%"s 1473 eoimion oF 1 nov 68 13 OBsSOLETE
1 JAN 73 e iphp bl sy unclassified

SECURITY CLASSIFICATION OF THIS -/'Au (When Date Bntered)

yl);L (7 7

—unclassified

LLLURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

;::> The paper describes the ACT theory of learning. The theory is embod-
ied as a computer simulation program that makes predictions about human
learning of various cognitive skills such as language fluency, study skills
for social science texts, problem-solving skills in mathematics, and com-
puter programming skills. The learning takes place within the ACT theory
of the performance of such skills. This theory involves a propositional
network representation of general factual knowledge and a production sys-
tem representation of procedural knowledge. Skill learning mainly involves
addition and modification of the productions. There are five mechanisms

by which this takes place: designation, strengthening, generalization,
discrimination, and composition. Each of these five learning mechanisms

is discussed in detail and related to available data in procedural learning.
Designation is the process by which one production can designate another.
The power of the designating production is postulated to vary with soph-
istication of the learner in the domain to be learned. Strengthening

is the process by which successful productions gradually acquite more
control over the processing resources. This mechanism is related to the
available data about how a skill gradually becomes automatic. Generaliza-
tion is the process by which productions extend their range of application
beyond the domain for which they were originally designated. This mech-
anism nicely accounts for phenomena in language acquisition and concept
development. Discrimination is a coercive mechanism by which the range of
overgeneral productions is restricted. This mechanism is used to explain
phenomena in language acquisition and how problem-solving skills, such as
in mathematics, evolve specialized submethods. Composition is the process
by which multiple productions can combine into a single production. It
explains the Einstellung effects in problem-solving. Finally, we discuss
the difficulties we have encountered working with the current ACT learning
systems and the projected changes in ACT to deal with these problems.

ACCESSION o L, : §
me e (] e

-“ -
:::uuounca o NREIIER
L L ——

APR 18 1978

i wr

{ " DISTRIBUTION/AVAILABILITY COSES

g

a

oL AVAIL and/er SPECIAL D
B
) —___unclassified

2 P o g SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

e = s 3

s W

Anderson Kline Beasley January 1978

Table of Contents

Section
Subsection
List of Figures R 7 Sy . e R Tt b AR S
Lic What is Learning? o oo e o
1.1 Definition O o o T Tt o T e

1.2 Accretion Restructuring and Tuning

1.3 Instruction vs. Induction R T S L

1.4 Declarative vs. Procedural Learning . . .

2. Goals of the Project and this Paper

2.1 ProjectiGoals: ‘o .o No. G

2.2 ACT VaS=esSvig BAS T ame in TUsAN DO il L

2.3 Overview of Paper . . .

2.4 Status of this Paper

3. ACT as a Computer Simulation Program

3.1 A Programming Language and a Theory of Cognition .

3.2 Theories vs. Models o S

3.3 Comparisons to Older Learning Theories

3.4 Optimality and Efficieney

3.5 Good Cognitive Psychology is Good Artificial
Intelligence R T R N i R

Section

Page

. 13

. 15

« 15
. 16

. 18
.19

s 21

s

R STSIgS

Anderson Kline Beasley January 1978

ACT as a Performance Model N e e B S s e 18
4.1 ACT s Data Base . o atatianiee el
4.2 Productions AOBET o a w W e

4.3 Example Production System® =+ =+ =+ =+ -+ -

Production Designation« « . .

5.1 The Notation of Designation

5.2 Encoding of Procedural Instructions . . .

5.3 The Preprocessor .

5.4 The Initial Preprocessor and First Language

T REGHSEELON. - "t g e
55 Designation with Substitution

Production Strengthening

6.1 Strength Computation

6.2 Designation has Precedence over Strength

6.3 Interaction Between Strength and Specificity

Production Generalization .

Tt Designated Generalizations

T2 Automatic Generalizétion s Lot sty 3

e Definition of Generalization T e

7.4 Two Examples of Generalization . . .

7.5 The Problem of Efficiency

7.6 Focusing of the Generalization Process .

7.7 Overgeneralization« « &

Discrimination e e Rl

ii

Section

.‘ . 26

. 50

« 55

« 57

« 59
. 61

. 67

|
_
|
|

Anderson Kline Beasley dJanuary 1978

- 8.1 Discrimination by restriction versus
k- 3 discrimination by exception

&
2 8.2 An Example Requiring Discrimination and
Geverallzatlion v . < 5 . s % & s

8.3 Example Continued: Discrimination by Variant

~ Spawning) ERME RIS e R Rl T ARy
8.4 Effect of Punishment on Learring

9. Production Composition

9.1 Definition of Composition T R e

9.2 Einstellugg | e e R S e <

9.3 Conditions for Evoking Composition . . .

10. Significant Problems and Future Directions . .

10.1 Difficulties with Matching

10.2 Data-Flow Matching

10.3 Knowledge Representation

10.4 Final Remarks about Projected Changes . .

References

Section

. 86

. 87

. 92

. 98
. 98
100

105

106
107
110
115
121

125

A i £ e R A DA <335 A5 535 b 3 N Y U B0l iy i e =

S

Anderson Kline Beasley January 1978 Section

List of Figures

o SN LA Sl

3

»0

. 1. Venn Diagrams illustrating possible relationships between cognitive
E, psychology and artificial intelligence. ot e S R G S O]
b 2. A fragment of ACT's propositional network surrounding the concept

3 ".' eCANDY 27

3. The flow of control among the productions in Table 2. 39

4., Increase with practice in ACT's correct application of the articles
a and the. R e A S s T R P i S

5. The three examples of chairs presented to the program--adapted from
Hayes-Roth & McDermott-1976. oI T oot Sl U N T |

6. A data-flow network combining overlapping conditions in five
productions.

SR . e s T

Table Captions

1. Linearization of the information ir Figure 2.

2. A set of productions for adding two numbers.
. 3. A set of productions for encoding informatior about LISP
structures.
4. Two initial preprocessing productions.
5. Give example.
6. Productions designated and generalized' in the induction of

the concept of a chair.

/e A production set for 1learning main clause structure plus
number inflection.
8. A production set for water jug problems.

9. The productions implemented 1in the data flow mwetwork of

Figure 6.

Anderson Kline Beasley January 1978 Section

Abstract

The paper describes the ACT theory of learning. The theory is
embodied as a computer simulation program that makes predictions about
human 1learning of various cognitive skills such as 1language fluency,
study skills for social science texts, problem-solving skills in
mathematics, and computer programming skills. The learning takes place
within the ACT theéry of the performance of such skills. This theory
involves a propositional network representation of general factual
knowledge and a production system representation of procedural knowledge.
Skill 1learning mainly involves addition and modification of the
productions. There are five mechanisms by which this takes place:
designation, strengthening, generalization, discriminatior, ard
composition. Each of these five learning mechanisms is discussed in
detail and related to available data in procedural learning.” Designation
is the process by which one production can designate another. The power
of the designating production 1is postulated to vary with sophistication
of the learner in the domain to be learned. Strengthening is the process
by which successful productions gradually acquire more control over the
processing resources. This mechanism is related to the available data
about how a skill gradually becomes automatic. Generalization is the
process by which productions extend their range of application beyond the
domain for which they were originally designated. This mechanism nicely
accounts for phenomena in language acquisition and concept development.

Discrimination is a corrective mechanism by which the range of

e

Anderson Kline Beasley January 1978 Section

overgeneral productions is restricted. This mechanism is used to explain
phenomena in language acquisition and how problem-solving skills, such as
in mathematics, evolve specialized submethods. Composition is the
process by which multiple productions can combine into a single
production. It explains the Einstellung effects in problem-solving.
Finally, we discuss the difficulties we have encountered working with the

current ACT learning systems and the projected changes in ACT to deal

with these problems.

Anderson Kline Beasley January 1978 Section

This paper describes the theory of learning that we have been
developing within the framework of the broader ACT theory. The paper is
divided into ten sections. The first three provide the background to the
current work and its philosophy. The fourth section gives an overview of
the ACT theory. The next five sections describe various aspects of the
learning theory. The last section describes the future prospects of this
model. Depending on your dispositiors as a reader, you may want to start

at Section 4 or Section 5.

1 What is Learning?

We are interested in understanding learning. This is a much
neglected area of research in recent cognitive psychology. Our
methodology has been to develop a computer simulation model, called ACT,
which is capable of learning the same cognitive skills as é human. This
model leads to predictions which can be tested against both existing data
and data that we collect. The results of this empirical testing lead to
improvements in the model. The function of this paper is to set forth
the initial structure of our learning model and indicate the beginning
contact that we have made between the model arnd empirical data. But
before doing this we would like to provide a brief review of past and
current perceptions of learning in order to provide some perspective from
which to view our research. We will consider a number of concepts and
distinctions that have been used in discussions of 1learning. Although

these concepts and distinctions poirt in the direction of interesting

_H_NW._._-—-iiiiE===|!

Anderson Kline Beasley January 1978 Section

questions, we will find that they are not sufficiently sharp to guide our

own research.

1.1 Definiticn
Learning is a notoriously difficult term to define. The classic

behavioral definition in psychology is like the one in Hilgard & Bower

(1966):

Learning 1is the process by which an activity
originates or 1is changed through reacting to an
encountered situation, provided that the
characteristics of the change in activity cannot be
k explaired on the basis of native response tendencies,
maturation, or temporary states of the organism
(e.g., fatigue, drugs, etc.). (p.2)

This definition has many inadequacies as is acknowledged in such textbook
discussions. The basic problem is to rigorously apply such a definition
to diagrosing whether various behavioral changes are learning or non-
learning. For instance, by the above definition, forgetting due to
interference would be classified as learning--and this does not seem

right.

The problem is that our judgments about what behavioral changes
; constitute 1learning rely on our intuitions abou£ the theoretical
mechanisms underlying the behavioral changes. Thus it does not seem
possible to have a purely behavioral, non-theoretical definition of
learning. The problem of definition is somewhat more tractable in the

context of a theory of the mechanisms that underlie the behavioral

Anderson Kline Beasley Jaruary 1978 Section 1.1

changes. Certain processes in the theory can be legislated as learning
processes while others can be legislated as non-learning. The output of
the learning processes is, naturally enough, learning and the output of
the non-learning process is not learning. However, there are still a
number of potential problems with such a definition of learning. First,
of course, it is only as good as the theory and will become obsolete when
the theory does. Second, it may not be possible to diagnose a particular
behavior as learning or non-learning. It is typical of current cogritive
theories that there are many mechanisms that could be underlying a single
phenomenon. This richness of mechanism is demarnded by the richness of
human cognition, but it makes it hard to decide what processes are
operating at any point. A third problem with a theoretical definition is
that it may not correspond well with our pre-theoretical intuitions about
what is learning. For instance, we may have the strong intuition that
sometimes the action of a theoretical mechanism is to produce learning
and sometimes it does not. That is, the theory's division of behavior
into basic mechanisms may not line up with our intuitive division of

behavior into learning and non-learning.

1.2 Accretion Restructuring and Tuning

The <irficulties with both the behavioral and theoretical
definitions of learning suggest the futility of trying to develop a
theory of learning that treats learning as a unified concept. This is

reinforced by the growing realization in cognitive psychology that there

Anderson Kline Beasley January 1978 Section 1.2

are some important distinctions to be made among phenomena that are
somet imes luriped together under the category of learning. Rumelhart &
Norman (1976) have made distinctions between three modes of learning that
they call accretion, tuning, and restructuring. Accretion they equate
with learning of facts. It is most like the kind of 1learning studied
intensively during the past two decades under the rubrics of "verbal
learning" and "human memory." It can be thought of as writing data into a
memory without implying any structural changes in the memory system.
Relative to the other two kinds of learning, accretion is a rapid
process. One can acquire permanently a new fact after less than a
minute's study.

The processes of restructuring and tuning occur over lorger
periods of time than does accretion. They affect the creation and
transformation of schemata. Schemata are the structures postulated by
Rumelhart and Norman to be responsible for interpreting . new information
and storing these interpretations in memory. That is, schemata are the
structures responsible for accretion. So, in part, restructuring and
tuning are concerned with phenomena that would have been called "learning
to learn" in an earlier era in psychology.

Restructuring refers to the creation of new schemata to deal with
new phenomena. Presumably, larguage acquisition would be an example, par
excellence, of restructuring in that it involves the acquisition of the
ability to interpret previously uninterpretable word strings. Tuning is

the process by wnich a schema is changed to make it perform better. Aan

Anderson Kline Beasley January 1978 Section 1.2

instance of tuning would be the process by which a child adjusts his rule
for 's pluralization so that it will only apply to regular nouns.
Rumelhart and Norman take a somewhat polemical stance and refer to tuning

and restructuring as "real learning" in contrast to accretion.

1.3 Instruction vs. Induction

A distinctiorn that has been important to us is the distinctior
between learning by discovery versus learning through instruction. This
is similer to, but not idertical with, the distinction drawn by Rumelhart
& Norman between restructuring and tuning on one hand versus accretion on
the other hand. Learning by discovery refers to those situations where a
concept or procedure must be induced from examples whereas learning by
instruction refers to those situations where what is to be learned is
described. The best illustration of this contrast is between a child
learning his first language by observing others use their language versus
an adult learning a language in a classroom situation.

The problem of 1learning by induction or discovery has been
subjected to formal analysis and has been shown to be very difficult. A
review of the formal analyses of this problem is given in Anderson (1976,
Ch.12). We will just state the significant conclusions here. It is not
possible in practical time limits to solve many induction problems which
popular opinion asserts humans solve. For instance, it is popular (e.g.,
Chomsky & Miller, 1963) to think that the class of natural 1languages is

equivalent to the formal class of context-sensitive languages or even

|
!
|

Anderson Kline Beasley January 1978 Section 1.3

some other larger, less-restrictive formal class. However, no algorithm
exists which can acquire in practicai time limits an arbitrary language
out of such a 1large class given an arbitrary (for example, random)
sequence of examples of the language. There are overwhelming obstacles
to language learning. These obstacles include (1) the size of these
formal classes of languages; (2) the apparent lack of adequate negative
information about what is not permitted in the language; and (3) the
ambiguity and synonymy of natural language which potentially complicate
enormously the meaning-to-sentence structure of the language. Of the ‘

various humar behaviors, language is the best understood formally;

therefore, it is unclear whether other aspects of cognitive development
pose similar "impossible" demands on an induction system. However, the
existence of one instance should be disturbing enough.

There are two ways to get out of the paradox of proposing that
} children induce impossible-to-induce things. One 1is to reassess one's
interpretation of what it is they have to induce. We think it is the
case that the class of languages humans are capable of learning is much
smaller than all context-sensitive languages. This class 1is strongly
constrained by their induction methods. We also believe in a second
explanation of the induction paradox which is that the learring situation

: is not as unstructured as one might think, that the information a child

receives is anything but a random selectior from the language. The -
language a child hears is considerably simplified, very responsive to his

needs, and does contain some very direct instruction as to linguistic 4

Anderson Kline Beasley January 1978 Section 1.3

rules. Basically, the child's predicament is not a pure induction
situation but a mixed instruction-induction situation. 1Indeed, while
pure instruction and pure induction situations exist as abstract ideals,
almost every interesting real-world learning situation turns out to be 2

mixture of the two.

1.4 Declarative vs. Procedural Learniqg

Another distinctiorn that has been important to us is that between
learning declarative knowledge and learning procedural knowledge.
Declarative knowledge refers to facts 1like those in a history text
whereas procedural knowledge refers to knowledge about how to do things
like speaking a language or solving algebra problems. This distinction
is also similar to that between the products of accretion versus the
products of restructuring and tuning. We have been quite polemical abcut
the difficulty of 1learning procedures and claimed "it has no real
parallel in the acquisition of declarative knowledge." (Andersor, 1976,
p.490). However, it is becoming clear that any interesting learning task
involves both procedural and declarative components and that the
declarative component can pose as difficult a learning task as the

procedural.

B i T

Anderson Kline Beasley January 1978 Sectior 1.4

2 Goals of the Project and this Paper

2.1 Project Goals

We would like to understand how humans improve their cogritive
capabilities with experience. We think a particularly important
component of this improvement is learning, the Kkind of learning that
involves restructuring and tuning rather than accretion, the kind of
learning that involves learning by discovery rather than the direct
encoding of instruction, and the kind of learning concerned with
procedures rather than facts. The preceding discussion was concerned

witH acknowledging the vagueness of the concept of learning and the

et dhe o e L nn B o

vagueness of these distinctions within the 1learning concept.
Nonetheless, we remain firmly convinced that these concepts, cven if
vague, do point in the direction of some of the most interesting
questions about the nature of human intelligence. This paper is
concerned with providing a report of the progress made towards
] understanding these questions within the ACT framework and the impact
that attempting to answer these questions has had on the ACT framework.
We feel that first language acquisition by children constitutes
the empirical phenomenon that provides the closest instance of what we

want to study. However, child language acquisition is a particularly

difficult phenomenon to study. It is not possible to do careful ‘3
experiments on child language development because of ethical constraints

and children's uncooperativeness as subjects. Child language acquisition

10

Anderson Kline Beasley January 1978 Section 2.1

is intertwined inextricably with many other aspects of cogritive
development. Thus, it would not seem to be reasonable to try to model
language acquisition i~ isolation--one would have to model all of child
cognitive development. Therefore, while we think about the child
language problem, our research is concerned with a number of interesting
learning problems faced by both adults and adolescents. With this
subject population, we do not have the same problem of extracting the
development of a particular skill from massive overall cognitive
transformations. It is also the case that we have a commitment to make
some practical contributions to this area. Therefore, we have been
considering the 1learning of second languages, the acquisition of
mathematics skills like algebra and geometry, acquisition of programming
skills in a computer language 1like LISP, and the acquisition of study
skills relevant to reading social science texts. While these particular
phenomena do not turn out to provide us pure cases of the kind of
learning that we are most interested in, they nonetheless pose extremely
interesting and demanding questions that do intersect with our core

interests.

2.2 ACT vis-a-vis LAS

The ACT system embodies an extremely powerful thesis. That is,
one set of learning principles underlies the whole gamut of human
learning--from a child's first language to a graduate student's study of

a text in abstract algebra. The four topics listed above, second

1"

Anderson Kline Beasley January 1978 Section 2.2

language learning, mathematics, programming, text study skills, are a
fairly diverse sample of learning phenomena. If we can establish the
adequacy of ACT for these domains we think we will have provided this
bold thesis with some credibility. We do not see any a priori reasons to
be predisposed to accept or reject this thesis. However, the
consequences of this thesis, if true, are so enormous and important that
it demands that someone explore it. Of course, this is just the thesis
that underlies the older learning theories. However, it deserves another
look in the framework of the current theoretical sophistication of
cognitive science.

This thesis is diametrically opposed to that advocated by Chomsky
(1965) and others to the effect that there are special mechanisms for
language learning. This 1is a thesis that underlies some of my earlier
work on the LAS model of language acquisition (Andersor, 1974, 1975,
1977, 1978). LAS had some special mechanisms to facilitate the
acquisition of natural languages. We now think that these special
mechanisms were really manifestations of more general learning abilities.

There were a number of inadequacies in the LAS program that
underlies that earlier work. (These inadequacies are reviewed in
Anderson, 1978.) These included inabilities to make discriminaticns, to
correct errors, to deal with non-hierarchical aspects of language, to
deal with inflections, to properly handle the non-declarative aspects of
language, to properly model human limitations in language learning and

performance, and to account for the gradualness of human 1learning. One

12

- ' e < —— v oo TR e s e
)3

Anderson Kline Beasley January 1978 Section 2.2

way or another each of these problems could have been handled by
additions to the LAS theory--but at great cost to the overall parsimony
and elegance of that theory. It seemed that a more elegant resolution
was possible only by stepping back to a more general 1learning approach.
We expect that ACT will reproduce many of LAS's learning feats and in
ways similar to LAS; however, it will do so in a way that will raturally
extend to the many problems LAS could not handle. Thus, LAS established
what could be done by a set of learning mechanisms. ACT is an attempt to

generalize upon what we have learred from LAS.

2.3 Overview of Paper

The . remaining portion of the paper has the following
organization. In Section 3, we will discuss the role computer
simulation plays in the development of the ACT theory. In Section 4, we
will describe that portion of the ACT system which is concerned with
: perfcrming learned skills. This will be a brief update on the ACT system
1 as described in Anderson (1976). There will not be attempts to document
these features empirically as this has been done elsewhere (Anderson,
1976; Anderson & Kline, 1977). This part of the system closely

corresponds to ACTE which served as the basis for the book, Language,

Memory, and Thought. The current system, ACTF, differs from ACTE
principly in its facilities for dealing with acquisition of productions.
The remaining sections, but one, will be concerned with reviewing the

[principal new developments in the ACT theory that are concerned with

13

Anderson Kline Beasley January 1978 Section 2.3

learning. Section 5 will discuss how new productions are entered into
the system; Section 6, will discuss how productions are strengthened;
Section 7, how productions become more general in their range of
application; Section 8, how productions can be made more discriminative;
and Section 9, how multiple productions get combined into a single
production. Then Section 10, the last section, will contain evaluations,
conclusions, and goals for the future. In particular this section will
announce some of the new architectural developments we have in mind for

the next ACT system--ACTG.

2.4 Status of this Paper

This paper 1is intended to serve three functions. First, it
fulfills the yearly report requirement of the Office of Naval Research.
Second, it will be used to inform interested colleagues of our work.
Third, it serves as a preliminary draft for a number of published

reports. Parts of this paper will appear ir Aptitude, Learning, and

Instruction: Cognitive Processes Analyses edited by Snow, Federico and

Montague and in the 1979 volume 13 of Bower's Learning and Motivation.

Because the paper is serving as a draft, we will describe work that is
not yet completed but that we anticipate completing in time for the final
drafts. In particular, some of the mini-simulations have not been
implemented or are only partially implemented. We intend to complete
these implementations before the due dates for the published reports. We

identify any aspect of the paper which is describing incomplete or

projected developments.

™

Anderson Kline Beasley January 1978 Section 2.4

3 ACT as a Computer Simulation Program

3.1 A Programming Language and a Theory of Cognition

In this section, we will be partially building on points
developed in Anderson & Kline (1977). The ACT system is a somewhat novel
entity in psychology and it is necessary to carefully explain its
rationale.

ACT is a2t the same time a high-level programming language and a
theory of the mechanisms of human cogrition. A high-level programming
language is a formalism that facilitates programming certain kinds of
algorithms. However, a high level language can make it difficult to
program algorithms other than the class for which it was intended. For
instance, it is difficult to do matrix multiplication in LISP. It is for
this reason that high-level programming languages are often "special-
purpose." ACT 1is a special-purpose programming language in this sense.
The fact that certain procedures can be coded in ACT more efficiently and
easily than other procedures is the means by which ACT provides a theory
of cognitive mechanisms. Humans are also more successful at certain
cognitive processes thar others. The hope is that ACT limitations
correspond to humar limitations. For instance, humans find it harder to
perform mental multiplication than mertal addition and ACT does the same-
-in ACT's case because of the difficulty of keeping active the
intermediate products needed in mental multiplication.

There is a classic distinction between learning and performance.

15

- ‘-‘.._.L::._"

Anderson Kline Beasley January 1978 Section 3.1

The ACT theory as developed in the 1976 book was an attempt to specify

.

the performance limitations on previously acquired behaviors. The theory

was concerned with characterizing the speed of basic operations and the

probability of error in these operations. These limitations were built

into the programming language. In developing the learning theory we are

again concerred with the limitations--but this time the 1limitations on
the acquisition process.

It might seem wrong-headed to focus on the limitations of human
behavior, given that what is so remarkable about human behavior is its
intelligence. However, it is our argument that it is these constraints
that make intelligence possible. These constraints cut down on the
systems options and force it to develop in certain directions rather than
others. Thus, these constraints simplify the evolution of intelligent
behavior. The highest 1level claim of the ACT theory is that the
constraints which ACT, as a programming language, imposes on programming
correspond to the constraints human cognitive mechanisms impose on the

evolution of cogritive procedures.

3.2 Theories vs. Models

A distinction that one sometimes encounters is that between a
theory and a model. This distinction has a clear analogue within the ACT
programming framework. The ACT theory corresponds to the general rules
for interpreting an ACT program and applying it to an ACT data base.

Each program that can be created in the ACT language constitutes another

16

Anderson Kline Beasley January 1978 Section 3.2

model for how a task can be performed. It is possible to create multigle

programs within ACT for doing a particular task, say mental addition.

Each of these programs constitutes a different model for how the task !
might be done. The ACT theory provides gereral principles about how such
programs execute, where they are likely to break down, how long they take
to apply, etc. It is a claim of ACT, as a theory, that any oprogram that
can be written in the language constitutes a valid nsychological model
for the task. The fact that there are many ways to program ACT to do a
task corresponds to the fact that there are many ways people can and do
perform tasks like mental addition. To disconfirm a particular ACT model
o% a particular subject doing a task it would be necessary to show that
the model mispredicted the behavior of the subject. To show that ACT was

wrong as a theory for a particular task it would be necessary to show]
that no model, programmable within ACT, predicted the behavior of some

subject or that there was some model programmable in ACT which we could

not get a subject to emulate.

These considerations create a certain buffer between ACT and its
potential disconfirmation by data. What we usually propose and test are
specific ACT models that seem plausible for a task. To disconfirm the
model does not disconfirm the theory. It 1is always possible that some
other model would account for the data. However, ACT as a theory would
be rather useless if we did rot have a way of deriving from the theory
the models that are likely to account for behavior in a particular task.

In fact, we do have a way of arriving at likely models for a task. This

17

Anderson Kline Beasley January 1978 Section 3.2

is to use our knowledge as programmers as to what will be optimal, given
the constraints of the ACT programming language. This is the principle
of optimality suggested by Newell (1973). The basic assumption is that
the human system tends to program itself in optimal ways. The
consequence of these considerations is a means for discrediting the ACT
theory: It is enough to show that no optimal ACT program can account for
the data in a task. It is not necessary to consider the myriads of non-

optimal programs (models).

3.3 Comparisons to Older Learning Theories

In some ways, ACT is really not that foreign to psychology. It
is an attempt to provide a systematic theory of the potential of an
organism like a classical learning theory such as that of Clark Hull. It
is true that the assumptions of the theory are somewhat different,
showing the influence of twenty-five years of advance in computer
science, linguistics, and cogritive psychology. It shows a concern for
what has been called "sufficiency conditions." That is, the concern is
that the theory be capable of displaying behavior as complex and
intelligent as we now know human behavior to be. We, however, do not
think the assertions of the ACT theory are that different from what Hull
might propose were he alive today and willing to try to take into account
the past twenty-five years of advance in knowledge.

The big difference between ACT and past theories is its computer

implementation--its realization as a programming language. It would be

Anderson Kline Beasley January 1978 Section 3.3

possible to claim that this difference is purely technical, that the
camputer implementation provides a way of formalizing the thqpry,

establishing its internal consistency, and testing its predictions. This

] was not properly done for the Hullian theory, which evolved before the
computer, and certainly could not be done for a theory like ACT without a

computer implementation.

3.4 Optimality and Efficiency

While the computer implementation does serve this critical,

technical functior for the ACT theory, it is also the case that our use
of the computer implementation has subjected our theory construction to
constraints of a type not previously used in psychology. These are the
constraints of optimality and efficiency of performance. These two
considerations are related. Efficiency refers to the constraint that one
should not propose mechanisms which are operating in obviously
inefficient manners. Optimality refers to the constraint that one does

not propose mechanisms that will cause the system to behave in a nor-

adaptive way. Thus efficiency is more concerned with performance while

optimality is more concerned with learning.

The constraints of efficiency and optimality are quite potent.
Consider the constraint of efficiency as applied to the serial,
exhaustive scanning explanation of the Sternberg paradigm (1969) that
does a good job of accounting for the data. That model proposes that a

subject, in searching for a target item in a short-term memory set, will

Anderson Kline Beasley January 1978 Section 3.4

serially compare the target against each memory set item. These
comparisons continue until the set is exhausted, even past the point
where the target item has matched a memory set item. It seems
inefficient to propose that short-term memory wastes times making
comparisons after the point that the desired match has been obtained.
The assumption of a serial exhaustive search has been justified by the
fact that subjects' decision time increases at the same linear rate with
memory set size for positive and negative targets. In defending the
exhaustive assumption Sternberg has argued that it may be more expensive
to check a signal to see if a match occurred than to make another match
of characters. While no doubt such a system could be built that found it
more expensive to check a signal than to make a match it does seem 2
rather perverse design. As Huessman & Woocher (1976) have argued, it

should be much easier to detect a 0-1 signal than to detect the presence

of complex characters. The criterion of efficiency would weigh heavily

against an exhaustive, serial match for the memory scanning. However,
there are a number of parallel processing models which could predict the
same linear functions for positive and negative items without violating
the criterion of efficiency (Anderson, 1976; Townsend, 1971, 1974).
Thus, the principle of efficiency points to a parallel model for the
Sternberg paradigm.

For an illustration of the potency of the principle of
optimality, consider the literature on child language acquisition. There

have been frequent observations about the relative ineffectiveness of

Anderson Kline Beasley January 1978 Section 3.4

negative informatior (e.g., Braine, 1963; Brown, 1973; Cazden, 1965). It
has been observed that children derive little benefit from information
about what are incorrect syntactic structures. Consider, for instance, a
child who has overgeneralized the pluralization rule and is generating
"foots." Since some terms do permit variable pluralization (e.g., two
fish or two fishes) how is the child to know he is wrong unless he gets
negative feedback and can take advantage of it? Therefore, the principle
of optimality would deny the conclusion that children do not use negative
information. We will discuss later (page 97) how and when negative
information can be effective in the ACT system.

It has been argued (Anderson, 1976) that psychological theory is
seriously underdetermined by behavioral data--that there are mary ways to
account for such phenomena as the equal effects of memory set on positive
or negative probes or the apparent ineffectiveress of correction on child
language development. The criteria of efficiency and optimality offer
means to further constrain theorizing to help produce a more unique

psychological explanation of the phenomena.

3.5 Good Cognitive Psychology is Good Artificial Intelligence

While it is possible to discuss the criteria of efficiency and
optimality in the abstract, to be able to rigorously and thoroughly apply
these criteria we need a model of the physical system to which they
apply. Unfortunately, we know hardly any relevant information about the

human nervous system. In the ACT project we have proposed what might

21

Anderson Kline Beasley January 1978 Section 3.5

seem like a preposterous suggestion: to 1let our knowledge of modern
computer technology serve as a surrogate for knowledge of human hardware.
Specifically, we propose to relate psychological efficiency and
optimality constraints to what is efficient and optimal for our computer
implementation. The claim (Anderson & Kline, 1977) is that an accurate
psychological model would not become unacceptably inefficient or non-
optimal when implemented on a modern computer. This claim is part of a
larger conjecture about the relationship between artificial intelligence
and cognitive psychology which was stated as:

(1) Good cognitive psychology is good artificial

intelligence
by which it was meant that good cognitive psychology mechanisms can be
simulated in a way that would constitute good artificial intelligence
programs. This means that a side benefit of cognitive psychology could
be the development of good artificial intelligence theory.

Our conception of the relationship between artificial
intelligence and cognitive psychology is illustrated by the Venn diagram
in Part a of Figure 1. There is the space of all possible mechanisms; a
subset of these are good artificial intelligence mechanisms; and a subset
of these are good models for cognritive psychology. This is to be
contrasted with Part b of Figure 1 which represents an alternative that
might seem, at least a priori, more plausible. In this figure, good AI
mechanisms and good psychology mechanisms only overlap. There are good

psychological mechanisms which do not constitute good artificial

intelligence.

Anderson Kline Beasley January 1978 Section 3.5

a)

ALL POSSIBLE
MECHANISMS

GOOD
ARTIFICIAL
INTELLIGENCE

GOOD
COGNITIVE
PSYCHOLOGY

b)

ALL POSSIBLE
MECHANISMS

GOOD
COGNITIVE
PSYCHOLOGY

600D
ARTIFICIAL
INTELLIGENCE

Figure 1. Venn Diagrams illustrating possible relationships
between cognitive psychology and artificial intelligence.

There are a number of reasons why Part b of Figure 1 might seem

more plausible than Part a. There are a number of features of the human

Anderson Kline Beasley January 1978 Section 3.5

brain which do not correspond to the serial digital computer. Among
these are the fact that it processes information in a highly parallel
manner, it processes in terms of continuously varying quantities, and its
behavior appears to be fundamentally probabilistic. Some people feel
that the existence of these gross differences make it very unlikely that
the brain and the computer can achieve intelligerce in the same way.
However, none of these differences necessarily imply that intelligence
cannot be achieved in one system in the same manrer that it is achieved
in the other. Parallel processes can become serial processes as a
special case and serial processes can mimic parallel processes. Again it
is not difficult to have discrete processes mimic continuous or vice
versa. It might seem that no amount of discrete information could
exactly mimic continuous information. However, this is not so because of
limitations of any real system's ability to detect small differences in
continuous quantities. Again, computers can display probablistic
behavior and probabilistic processes can be made effectively
deterministic by redundancy.

We know of no compelling reason to accept the hypothesis in
Figure 1b over the stronger conjecture in 1a. We knhow of no established
psychological or physiological mechanisms that cannot be modelled with
satisfactory efficiency in a computer. (Admittedly, this is 1largely a
statement about current ignorance as to psychological and physiological
mechanisms.) Therefore, we have chosen to subscribe to the conjecture

represented in Part a of Figure 1 as a useful heuristic in constraining

Anderson Kline Beasley January 1978 Section 3.5

our theorizing. The implication 1is that implementation corsiderations

should play a critical role in decisions about the future development of

the ACT theory.

There is another motivation for this heuristic, in addition to
enabling a rigorous and thorough application of efficiency and optimality
constraints. Recall that the computer simulation is the only technical
means currently available of formalizing the ACT theory, of establishing

its completeness, and of providing a rigorous basis for deriving

predictions. If we allowed it to perform in grossly inefficient or non-
optimal ways, the simulation would become intractable and fail to fulfill
its technical purpose. Thus, another justification for enabling
implementation to determine theory is a standard one in science--we
cannot let our theory go inr directions that would make it unmanageable.
In past generations this constraint was manifested by ©pleas for
"mathematical tractability." Today, the plea is for "computational
tractability." The computer has enabled us to think about things we could
not think about before. We submit that the contrast between ACT ard
Hullian theory is ore example of that. However, ever today there are

technical limits on what we can think about.

4 ACT as a Per formance Model

A central design feature of the current ACT system is the
distinction between procedural knowledge and declarative knowledge.

Procedural knowledge is knowledge about how to do various things like

Anderson Kline Beasley January 1978 Section

solving mathematical problems, writing a computer program, or
understanding a spoken sentence. Declarative knowledge provides the data
for various cognitive procedures. It includes knowledge about the
general world such as: "George Washington was the first president of
the United States." The declarative knowledge is represented in a
propositional network data base while the procedural knowledge is
described as a set of productions. We will describe ACT's propositional

network and then its production system.

4.1 ACT's Data Base

Figure 2 illustrates a fragment of ACT's longterm memory network.

It encodes the fact that Mommy gave a candy to Daddy and illustrates some

of the structure connected to the concepts involved in that fact.
Anderson (1976, Ch. 5) gives a complete specification of the features
contained in this network representation. We will just highlight some of
the important features. Knowledge 1is represented as a large network of
nodes, which represent ideas, that are interconnected by 1labelled links,
which represent various types of associations between the ideas.
Information is organized into propositional units where each proposition
is a tree interassociating a number of nodes. There is a distinction
made between words and the concepts they reference. There are links
labelled W interconnecting words and their concepts. The standard
convention is to represent a concept for a word by that word prefixed by
"@." There is a distinction made between nodes representing a general

class like @CANDY and nodes representing specific instances like CANDY1.

Anderson Kline Beasley January 1978 Section 4.1

Nodes representing a specific instance, such as CANDY1, are
referred to as tokens. Every input to the data base is a distinct event

and, therefore, is represented by a new token.

i 20 W8 e

@ MOMMY ®@ GIVE @ DADDY CANDY1 @ CANDY @ FOOD @ SWEET

o |

MOMMY GIVE DADDY CANDY
S P s Rp s P
A NAN R A
BEGINS-WITH M1 M ACT @ LIKE @ LICORICE

Figure 2. A fragment of ACT's propositional network surrounding
the concept @CANDY.

Anderson Kline Beasley January 1978 Sectior 4.1

While these nodes have been giver mnemoric 1labels to help
communicate their meaning to the reader, their labels are irrelevant to
their treatment in the theory or in the simulation program. The mearning
of a node is given by the network structure in which it is embedded and
the procedures which operate o» that network structure. Each of the word

nodes and concept nodes involved in Mommy gave acandy to Daddy is

involved in a large number of other associations which were in memory
before the encoding of this assertion. We have shown some of the
propositions that might be cornected to candy. These include the facts
that candy is a food, candy is sweet, licorice is a candy, and ACT likes
candy. We have alsc indicated one of the facts that might be connected
to the word node for Mommy. This is the assertion that it begins with
the letter M.

This underlying nretwork representation is critical to
understanding the process of spreading activation. Only a subset of the
nodes in a network are active at any time and activation can spread from
active nodes to inactive nodes. Productions can orly inspect the active
portion of memory and they will inspect first that structure which is
most active. Thus activation serves a working memory role and serves to
enable the system to focus its computational resources.

Spreading activation will rot be critical to the 1learning
discussion in this paper. While helpful to an understanding of spreading
activation, for other purposes, the ACT network notation can be quite

cumbersome. Therefore, we will use a linearized representationr of the

28

Anderson Kline Beasley January 1978 Section 4.1

propositional structure which is easier to work with. These
linearizations will represent each assertion in the retwork as a list
consisting of, first, the relation or predicate and, then, a list of its
arguments. A linearized representation of Figure 2 is given in Table 1.
Note the special structure set up to represent the links between words
and their concepts. We will use such 1linearizations throughout the
remainder of the paper, but the reader should bear in mind that what is
really assumed, both in theory and implementatior, is a network
representation like Figure 2.

Table 1
Linearization of the information in Figure 2

€GIVE €MOMMY @DADDY CANDY1)
(@CANDY CANDY1)
(WORD-FOR @MOMMY MOMMY)
(WORD-FOR @GIVE GIVE)
(WORD-FOR @DADDY DADDY)
(WORD-FOR @CANDY CANDY)
(@FOOD @CANDY)

(@SWEET @CANDY)

(@CANDY €LICORICE)
(6LIKE ACT €CANDY)
(BEGINS-WITH MOMMY M1)
(M M1)

4.2 Productions in ACT

ACT's procedural knowledge is encoded as a set of productiors.
The ACT production system can be seen as a considerable extension and
modification of the production systems developed at Carnegie-Mellon
(Newell, 1972, 1973; Rychener & Newell, 1977). Each productior is a

condition-action pair. The condition is a pattern describing a piece of

29

Anderson Kline Beasley January 1978 Section 4.2

the data base (declarative component). If the conditiorn of a production
matches the data base, the action of the production will be executed.
Actions can both add to the contents of the data base and cause the
system to emit resporses. Each production is like an independent demon
that is inspecting the data base to see if its condition 1is satisfied.
It is possible for more than one production to apply at a time, giving
the system an important parallel processing capacity.

In the condition of a bproductior the description of network
structure can be specific, naming the particular nodes and connections
which are required, or variables may be used to designrate nodes whose
exact identity is unimportant or unknown in advance. A variable can
stand for any node in memory, as long as it is cornected to the specific
nodes named in the condition in the way laid out in the description. To
make this work, every description must cortain at least ore specific
node--it cannot have only variables. Consider the following condition:

(GEAT €MOMMY LVar1)

It specifies that there be a structure in the data base of the form
"Mommy eat something." The variable LVar1 in the corndition stards for the
something. All elements beginning with the initials LV are local
variables. Local variables can match anything when they occur in a
condition. This structure could match any number of structures in the
data base such as:

(@EAT €MOMMY €SOUP)
(GEAT @MOMMY EYOGURT)

Consider the following complete production:

(EAT @MOMMY LVar1)

30

Andersor Kline Beasley January 1978 Section 4.2

ABS (@EDIBLE Lvar1)

?;EDIBLE Lvar1)

(GVar = LVar1)
The conventiorn for representing productions 1is to give the condition
above the arrow and the action below. This production illustrates a
number of additional features of ACT productions. The condition includes
an absence test--indicated by the ABS element. This specifies the
constraint that the element which matches LVarl must not have the
predicate @EDIBLE stored with it. Thus, this production will apply if
there is something in the data base marked as being eaten by Mommy but
which is not marked as edible. If there is such a thing, the actior of
the productior marks it as being in the class @EDIBLE. Thus this
production makes the inference that something Mommy eats is edible. The
action also illustrates one operation that might be performed on global
variables. A global variable is an element beginning with the iritials
GV. 1In this case, the global variable GVar is set to the value of the
local variable LVarl. Global variables differ from local variables in
that they keep their values beyond a single production and can be used to
communicate among productions. Global variables thus serve as a special
sort of short-term memory. There is a limitation on the number that can
be simultaneously bound. Currently that limit is 10. In contrast, local
variables only retain their values within a single production. Local
variables can be bound in matching the condition and serve to communicate

to an absence test or to the action.

3

Anderson Kline Beasley Jaruary 1978 Section 4.3

4.3 Example Production System?

It would be useful to present a small set of productiors for
performing a particular task. The set of productions we have chosen is
concerned with performing addition of two numbers. Table 2 contains this
set of productions. That productior set assumes that the addition
problem is posed as an instruction to add two numbers--e.g., (ADD NUMB1
NUMB2)--where the two numbers are represented by arbitrarily denoted
nodes. Additional propositions encode the sequence of digits defining
the to-be-added numbers. So the problem 832 + 418 would be represented:

(ADD NUMB1 NUMB2)

(BEGINS NUMB1 TOK11)

(2 TOK11)

(AFTER TOK11 TCK12)

(3 TOK12)

(AFTER TOK12 TOK13)

(8 TOK13)

(ENDS NUMB1 TOK13)

(BEGINS NUMB2 TOK21)

(8 TOK21)

(AFTER TOK21 TOK22)

(1 TOK22)

(AFTER TOK22 TOK23)

(4 TOK23)

(ENDS NUMB2 TOK23)

Consider the encoding of the first number, NUMB1 (832): The
number is encoded from right to left. It is stated that NUMB1 begins on
the right with a token TOK11. TOK11 is a toker of the digit 2. TOK12 is
after TOK11 and TOK12 1is a token of the digit 3. TOK13 is after TOK12
and TOK13 is a token of the digit 8. NUMB1 ends or the left with TOK13.

Figure 3 illustrates the flow of control among the productions in

Anderson Kline Beasley January 1978 Section 4.3

Table 2. The productions are represented as arrows connecting states
represented by circles. Each arrow is labelled by the productior which
it represents. The state circle at the head of an arrow shows the action
of the production. The arrows for other productions which need these
actions performed in order to apply are shown origirating from this state
circle. Other, static information from the data base must be examined in
order to decide which production should apply when two or more
productions originate from a state circle. Such additional conditions
are represented 1in diamonds adjacent to production numbers. The state
circle at the tail of a production arrow along with the adjacent diamond

represent the condition of that productionr.

33

Andersor Kline Beasley January 1978 Section 4.3

TABLE 2
Productions to Perform Addition of Two Numbers

P1: (Lvgoal = (ADD LVfirst LVsecord))
(BEGINS LVfirst LVtok1)
(BEGINS LVsecond LVtok?2)

=
(ADD LVtok1 LVtok?2)
(Gvgoal = LVgoal)
n (GVtok1 = LVtok1)
3 (GVtok2 = LVtok2)
P2: (ADD GVtok1 GVtok?2)

(Lvdigit1 GVtok1)

(Lvdigit2 Gvdigit2)

(PLUS LVdigit1 LVdigit2 LVsum)
=>

(PUT-OUT LVtok3)

(LVsum LVtok3)

P3s (ADD GVtok1 GVtok?2)
(Lvdigit1 GVtok1)
(Lvdigit2 GVtok2)
(PLUS LVdigic1 LVdigit2 LVsum)
(CARRY GVtok1)
=>
(PUT-OUT LVtok3 CARRIED)
(LVsum LVtok3)

PYy: (PUT-OUT LVtok3)
(LVsum LVtok3)
(PUT-OUT LVtok3 CARRIED)
ABS (GREATER LVsum 9)
=>
(WRITE LVsum)
(DO-NEXT GVtok1 GVtok2 NOCARRY)

Ph: (PUT-OUT LVtok3 CARRIED)
(LVsum LVtok3)
(PLUS 1 LVsum LVsum1)
ABS (GREATER LVsum1 9)
=3
(WRITE LVsum1)
(DO-NEXT GVtok1 GVtok2 NOCARRY)

Anderson Kline Beasley January 1978

P6: (PUT-OUT LVtok3)
(LVsum LVtok3)
(GREATER LVsum 9)
(PLUS LVdigit3 10 LVsum)
ABS (PUT-OUT LVtok3 CARRIED)
=2
(WRITE Lvdigit3)
(DO-NEXT GVtok1 GVtok2 CARRY)

PT: (PUT-OUT LVtok3 CARRIED)
(LVsum LVtok3)
(GREATER LVsum 8)
(PLUS Lvdigit3 9 LVsum)
=D
(WRITE Lvdigit3)
(DO-NEXT GVtok1 GVtok2 CARRY)

P8: (DO-NEXT GVtok1 GVtok2 NOCARRY)
(AFTER GVtok1 LVtok3)
(AFTER GVtok2 LVtok4)
=)
(ADD LVtok3 LVtokd)
(GVtok1 = LVtok3)
(GVtok2 = LVtokd)

P9: (DO-NEXT GVtok1 GVtok2 NOCARRY)
(AFTER GVtok1 LVtok3)
(Lvdigit3 LVtok3)
(ENDS LVsecond GVtok?2)
=>
(WRITE LVdigit3)
(DO-NEXT LVtok3 GVtok2 NOCARRY)
(GVtok1 = LVtok3)

P10: (DO-NEXT GVtok1 GVtok2 NOCARRY)
(AFTER GVtok2 LVtokd)
(Lvdigity LVtokd)
(ENDS LVfirst GVtok1)
=>
(WRITE LVdigitd)
(DO-NEXT GVtok1 LVtok4 NOCARRY)
(GVtok2 = LVtok4)

Section 4.3

g

Anderson Kline Beasley January 1978

P11:

P12:

P13:

P14:

(Gvgoal = (ADD LVfirst LVsecond))
(DO-NEXT GVtok1 GVtok2 NOCARRY)
(ENDS LVfirst GVtok?2)

(ENDS LVsecond GVtok2)

=>

(DONE GVgoal)

(UNBIND GVgoal GVtok1 GVtok2)

(DO-NEXT GVtok1 GVtok2 CARRY)
(AFTER GVtok1 LVtok3)

(AFTER GVtok2 LVtokd)

=>

(ADD LVtok3 LVtokd)

(CARRY LVtok3)

(GVtok1 = LVtok3)

(GVtok2 = LVtok4)

(DO-NEXT GVtok1 GVtok2 CARRY)
(AFTER GVtok1 LVtok3)

(Lvdigit3 LVtok3)

(PLUS 1 LVdigit3 LVsum)

(ENDS LVsecond LVtok?2)

ABS (EQUAL 10 LVsum)

=>

(WRITE LVsum)

(DO-NEXT LVtok3 GVtok2 NOCARRY)
(GVtok1 = LVtok3)

(DO-NEXT GVtok1 GVtok2 CARRY)
(AFTER GVtok2 LVtokd)

(Lvdigitl LVtokl)

(PLUS 1 Vdigit4 LVsum)

(ENDS LVfirst GVtok1)

ABS (EQUAL 10 LVsum)

=>

(WRITE LVsum)

(DO-NEXT GVtok1 LVtokd4 NOCARRY)
(GVtok2 = LVtok#)

Section 4.3

Andersor Kline Beasley January 1978 Section 4.3

K P15: (DO-NEXT GVtok1 GVtok2 CARRY) |
2 (AFTER GVtok1 LVtok3)
f ¢ (Lvdigit3 LVtok3)
§ (9 LVtok3) ‘
3 (ENDS LVsecond GVtok2) 1
=> |
(WRITE 0) 1
(DO-NEXT LVtok3 GVtok2 CARRY) f
(GVtok1 = LVtok3) i
|

f o P16: (DO-NEXT GVtok1 GVtok2 CARRY) ;
% (AFTER LVtok2 LVtoki) |
(LVdigit4 LVtok4) |
(9 LVtokd)
(ENDS LVfirst GVtok1) '
=> |
(WRITE 0)
(DO-NEXT GVtok1 LVtok4 CARRY)
(GVtok2 = LVtok#)

P17: (GVgoal = (ADD LVfirst LVsecond))
(DO-NEXT GVtok1 GVtok2 CARRY) |
(ENDS LVfirst GVtok1) |
(ENDS LVsecond GVtok?2) |
=>
(WRITE 1)
(DONE GVgoal)
(UNBIND GVgoal GVtok1 GVtok?2)

ekl s Sl st bt s i

37

Andersonr Kline Beasley January 1978 Section 4.3

Production P1 is responsible for starting the processing of the
informatior. The first element in the conditior of P1 is (LVgoal = (ADD
LVfirst LVsecond)). This matches the first element in the problem
description and sets LVgoal to the structure. We will indicate this
assignment of memory structure to pattern as follows:

(LVgoal = (ADD LVfirst LVsecond)) = (ADD NUMB1 NUMB2)

The other two segments in the cordition of P1 match elements i» the
problem description:

(BEGINS LVfirst LVtok1)
(BEGINS LVsecond LVtok?2)

(BEGINS NUMB1 TOK11)
(BEGINS NUMB2 TOK21)

P1 adds to memory a self-instruction to add the first two digits: (ADD
TOK11 TOK12). It also sets the global variable, GVgoal, to LVgoal which
is bound to the problem. This serves to focus ACT's attention on the
problem at hand. Finally, GVtok1 is set to LVtokl and GVtok2 is set to
LVtok2. This maintains ACT's attention on the tokers of the individual

digits which it is about to add.

38

e At bt i ;o ki

Anderson Kline Beasley January 1978 Section 4.3

P8

NEXT
TOP DIGIT
NEXT BOTTOM

NO
NEXT TOP

“DIGIT=9 NO

TOP DIGIT

Figure 3. The flow of control among the productions in Table 2.

After the execution of production P1 and the introduction of (ADD

TOK11 TOK21) into the data base, production P2 is the only production
whose condition matches. The first three elements in the condition of P2

match elements of the problem encoding as indicated below:

39

owe

T S RO G TS . S

Andersorn Kline Beasley January 1978 Section 4.3

(ADD GVtok1 GVtok?)
(Lvdigit1 GVtok1)
(Lvdigit2 GVtok2)

(ADD TOK11 TOK21)
(2 TOK11)
(8 TOK21)

The next test in P2 matches an encodirg of an element of the additior
table in memory:

(PLUS Lvdigit1 LVdigit2 LVsum) = (PLUS 2 & 10)

The action of P2 asserts that the sum of the two digits, 2 a=d 8, is 10
and is matched as follows:

(PUT-OUT LVtok3)
(LVsum LVtok2)

(PUT-OUT TOK2)
(10 TOK3)

wnere TOK3 is a new token created as the instantiation of LVtok2. 1In
effect, the action of P2 holds the sum of the digits i» memory for
consideration by the next production.

P6 is the next productior to apply. The first two elements ir
the condition match the action of P2. The next element of the condition
determines that a CARRY should occur into the next colum» of digits and
is matched as follows:

(GREATER LVsum 9) = (GREATER 10 9)

The data base cortainrs the fact that 10 1is greater tha» 9: (GREATER 10
). The condition then determires the digit to be writter out as part of
the solutiorn through the match:

(PLUS Lvdigit3 10 LVsum) = (PLUS O 10 10)

The absence condition, ABS (PUT-OUT LVtok3 CARRIED), insures that P6 will

40

R s gisls

Anderson Kline Beasley January 1978 Section 4.3

not misapply when P7 should apply. P6 will apply only when CARRIED has
not beer indicated.

The action of P6 writes the digit 0 and sets up an advance of
attention to the next column of digits with the information that a CARRY
occurs into that next column. With replacement of variables by their
values these actiors become:

(WRITE LVdigit3)
(DO-NEXT GVtok1 GVtok2 CARRY)

(WRITE 0)
(DO-NEXT 2 8 CARRY)

It is worthwhile considering why only P6 applies and rot some of
the other productions. P4 does not abply because of the absence test,
ABS (GREATER LVsum 9), 10 1is greater than 9. P5 and P7 do not apply
because CARRIED does not occur in the proposition (PUT-OUT LVtok3). One
might wonder why P1 does not apply agairn. Its condition was satisfied
once and nothing has happened to change the data elements which satisfied
it. This illustrates an importamt principle of productior
interpretation: It is not possible to match a production conditiom twice
to exactly the same data base elements.

The next production to apply is P12. It matches further elements
of the problem description and retrieves the tokens of the next colum» of
digits to be added. Attention is maintained on these digits by assigring
them to global variables. That a CARRY should be added into this column

is agair flagged. P12 adds the following structures to the data base:

(ADD TOK12 TOK22)
(CARRY TOK12)

Anderson Kline Beasley January 1978 Section 4.3

With these elements added into the data base production P3 will
apply adding the second column digits (3 an~d 1) plus the CARRY to achieve
a sum of 5. This production adds to the data base the elements:

(PUT-OUT 10OK3)
(5 TOK3)

Production P5 then applies writing out the digit 5 and setting up
an advance to the third column of digits without a CARRY. Production P8
accomplishes this shift of attention to the third column.

Production P2 next applies adding 8 and 4 and holding the sum of
12 for consideration. Production P6 writes the digit 2 and flags a
CARRY. Production P17 completes the problem by writing a 1 into a new
column irn the problem solution.

This example illustrates a number of important features of
production system execution:

(1) Individual productions act on the informatior in lorg-term
memory. They communicate with one another by entering information into
memory .

(2) Productions tend to apply in sequences where one production
applies after another has entered some element into the data base. Thus
the action of ore production can help evoke other productiors.

(3) Productions respond to patterrs of events. The more clauses
specified in the condition of the production the more restric:ed the set
of patterns that will evoke it. The more local variables and the fewer

nodes, the more unrestricted the set of evoking patterns.

42

Anderson Kline Beasley January 1978 Section 4.3

This concludes our discussiorn of the basic oroperties of the ACT
performance system. A fuller description of the sigrificart properties
of this system can be found in Andersor (1976), Anderson, Klire, & Lewis
(1977), and Anderson & Kline (1977). Before turring to a discussion of
learning, we would like to make some remarks about the implementation
status of this system: The original system described in Anderson (1976)
is called ACTE, and is being maintaired as a courtesy system for other
users. It is described in Kline & Andersor (1976). The system will be
superceded by an upward compatible system called ACTF which contains most
of the learning properties described in the subsequent sectiors. It also
contains some improvements to the performance system. A user's manual
for this system is in preparation. There is yet another system, ACTG, in
the planning stages. This is projected to contain some of the

improvements proposed at the end of the paper.

5 Production Desigratior

ACT needs to have the capacity tov add rew productions.
Productions can desigrate the construction of other productions in their
actions just as they car desigrate the corstructior of memory structure.
Productionr designration 1is an important means by which ACT learnrs
procedural skills. However, just as the building of memory structure
serves functions other thar declarative learning, so it is the case that
production designation serves functions other than procedursl learning.

Creating new memory structure may serve the function of communicating to

Andersor Kline Beasley January 1978 Section

other productions. Similarly, creating new productiors car serve as a
means of getting a specific behavior accomplished. Because a production
is so much more complex than a proposition, the factors governirg
oroduction designation are correspondingly more complex than the factors
governing designatior of memory structure. This section will discuss and
illustrate both the complexities of productior desigration and the

function of designation.

5.1 The Notation of Designation

To introduce the standard notation for designation, we will
consider a simple example of how the capacity for designatio» can be used

to comply with requests of the form: Point EE.EEQ letter (e.g., Point to

the H.) This statement is a request to retrieve the pattern definitior
of the letter from the data base, match it to the presented letters, and
point to the aporopriate item. Suppose, the definition of H is stored in

the data base as:

S1: (PATTERN H ((CONSISTS OBJ L1 L2 L2)
(VERTICAL L1)
(VERTICAL L2)
(HORIZONTAL L3)
(BISECT L3 L1)
(BISECT L3 L2)))

This encodes a list of features that an object OBJ must possess to be an
instance of the letter H. The following nrroduction responds to the

appearance of a pointing request, retrieves such a pattern descriptior,

and desigrates a production which will perform the desired pointing:

Ly

e — e p——

Anrderson Kline Beasley January 1978 Section 5.1

P1: (POINT-TO-THE-LVl1etter)

(PATTERN LVletter LVpat)

(LVoat = ((CONSISTS LVobj...)...))

=)

(CONDITION (ON LVobj SCREEN) LVpat)

(ACTION (POINT ACT LVobj))
The first structure in the conditio» respords to the appearance of the
request. The second retrieves the desired pattern ard the third
sufficiently unpacks the pattern so as to bind the object described to
LVobj. To an H request this would match with the following binding of
variables: LVletter = H, LVpat = H description, LVobj = OBJ. The actionr
of this productior designates a new production by specifying condition
and action. The condition of this designated production asserts that
LVobj be on the screern and also includes all the description of LVobj in
the pattern LVpat. The action is for ACT to point to LVobj. With these
bindings for the variables in the designating production P1 the following
designated productior would be produced:
P2: (ON LVobj1 SCREEN)

(CONSISTS LVobj1 LVline1l LV1line2 LVline3d)

(VERTICAL LVline1)

(VERTICAL LVline2)

(HORIZONTAL LVline3)

(BISECT LVline3 LVline1l)

(BISECT LVlire3 LVlire2)

>

(POINT ACT LVobj1)
If there were an object on the screer matching this description ACT would
point to it. Note that the nodes OBJ, L1, L2, L3 i~ the structure S1 are
replaced by variables LVobj1, LVlinel, LVline2, and LVline3 in the

designated production. This is because these nodes zre flagged in memory

u5

T L —

T

Andersor Kline Beasley Jaruary 1978 Sectior 5.1

as indefinite. When an indefinite node 1is wused in desigrating a
production it is replaced in the desigrated production by a new variable.

This example illustrates the basic technique of production
desigration. The desigrating production indicates the structures that
are to go into the condition and action. It does this either by vointing
to existing structures in memory--as with the defirition of H or it does
it by placing in CONDITION or ACTION the appropriate structure, as with
(ON LVobj SCREEN) in CONDITION and (POINT ACT LVobj) in ACTION.

This example, however, does not really involve any learning. The
productior created will not be used again. It was simply created to
cause a particular pattern to be matched in ore situatio» and have a
behavior generated. That 1is, production desigration allows ACT to
mobilize all of its pattern matchirg capabilities to accomplish a
particular task. The remainder of Sectiorn 5 1is corcerned with how

production designation can be used for learring.

5.2 Encoding of Procedural Instructiors

As a first example of how production designation can be used in
learning, let wus corsider how this device is used to create permanent
productions to encode the lessons of direct instruction. As an example,
consider how ACT might encocde the following instructiorns defining various
types of expressiors in LISP (adapted from the first chapter of Weissman

(1967)):

1. If an expression is a rumber it is an atom.

u6

Anderson Kline Beasley January 1978 Section 5.2
2. If an expression 1is a literal {(a string of
characters) it is an atom.

e If an expression is a» atom it is an S-
expression.

4, If an expression is a dotted pair, it 1is an
S-expression.

5 If an expression begins with a left
parenthesis, followed by an S-expressior, followed by
a dot, followed by ar S-expression, followed by a
right parenthesis, it is a dotted pair.

Table 3 illustrates the four ACT productiors required to process
these sentences.3 Production L1 handles the if phrase i~ sentences like
(1) - (4). (In this production and the others in Table 3, we have
omitted, for simplicity's sake, representing the distirction between
words and their tokens which is critical to successful operations of the
implemented system.) Corsider how this production would apply to the
first definition. The first clause of the cordition matches the if

phrase in the defirition:

(IF-AN-EXPRESSION-IS-A-LVword) = (IF-AN-EXPRESSION-IS-A-NUMBER)

In making this match LVword is bound to NUMBER. The second clause of the
conditiorn matches a memory encoding of the connection between the word
NUMBER and its correspording idea:

(WORD-FOR LVword LVcategory) = (WORD-FOR NUMBER @NUMBER)

¢
B

The variable LVcategory is bound to @NUMBER. The action creates a

structure predicating @NUMBER of ar object:

(LVcategory LVobj) = (NUMBER OBJ)

Anderson Kline Beasley January 1978 Section 5.2

where a newly created node, OBJ, is assigned to the variable LVobj.
(Unbound variables in the action of productions are given rew nodes as
values.) A global variable GVhold is set to this structure. This
structure will be made the condition of a designated production. The
global variable GVword is set to the last word processed in the if phrase
and GVobj is set to OBJ.

Production L2 applies after L1. It matches the result phrase of
the definition:
(GVword-IT-IS-A-LVword) = (NUMBER-IT-IS-A-ATOM)
The second clause ir the condition of L2 matches the word-meaning
connection:

(WORD-FOR LVword LVcategory) = (WORD-FOR ATOM GATOM)

The actior of L2 designates a production whose condition 1is patterned
after the structure held by GVhold and whose action is patterned after
the structure:

(LVcategory GVobj) = (@ATOM OBJ)

The actual production created is:
(NUMBER LVx)

)y
(ATOM LVx)

where LVx is a variable introduced to replace the indefinite node, OBJ,

referred to by GVobj in the designating oproduction.

Anderson Kline Beasley January 1978

EL:

L2:

L3:

L4:

complex composite condition 1like (5). L3 processes the first begirs
phrase and L4 each subsequent followed-by phrase.

propositiornal form a description of the structure described

Table 3

A set of Productions for Encoding Information
about LISP Structures

(IF-AN-EXPRESSION-IS-A-LVword)
(WORD-FOR LVword LVcategory)
=>

(GVhold (LVcategory LVobj))
(GVword = LVword)

(GVobj = LVobj)

(GVword-IT-IS-A-LVword)
(WORD-FOR LVword LVcategory)
=>

(CONDITION GVhold)

(ACTION (LVcategory GVobj))

(IF-AN-EXPRESSION-BEGINS-WITH-A-LVword)

(WORD-FOR LVword LVcategory)

=P

(GVhold (BEGINS LVobj LVobj1)
(LVcategory LVobj1))

(GVword = LVword)

(GVobj = LVobj)

(GVobj1 = LVobj1)

(GVword-FOLLOWED-BY-A-LVword)

(WORD-FOR LVword LVcategory)

=>

(GVnold (BEFORE GVobj1 LVobj1))
(LVcategory LVobj1))

(GVobj1 = LVobj1)

(GVtok = LVtok)

Productions L3 and L4 are responsible for processing the more

Section 5.2

They build wup ir

and attach

G b

Anderson Kline Beasley January 1978 Section 5.2

that description to GVhold. Thus, GVhold ©poirts to a set of
descriptions. After the condition is complete, production L2 will apply
to process the result clause and designate the production. The
production desigrated after processing (5) is:

p2: (BEGINS LVy LVa)
(@LEFT-PARENTHESIS LVa)
(BEFORE LVa LVb)
(@S-EXPRESSION LVDb)
(BEFORE LVb LVe)
(@DOT LVe)
(BEFORE LVec LVd)
(@S-EXPRESSION LVd)
(BEFORE LVd LVe)
(@RIGHT-PARENTHESIS LVe)
=>
(8DOTTED-PAIR LVy)

The productior system in Table 3 represents a relatively pure
instructioral system. The output of these procductions are other
productions which serve the functior of actually recogrizing the various

LISP expressions.

5a3 The Preprocessor

A set of desigrating productions 1like those in Table 2 are
clearly a hightiy structured and sophisticated system. They represert the
outcome of considerable learning about the nature of language ard
instruction. It turns out that it 1is not Jjust in instructional
situations that there exist sophisticated initial systems. In many
learning situations properly called "inductive" there is an important
contribution of sophisticated desigrating oproductions to learning. 1In

all learning situatiors, instructional or inductive, we propose that

Anderson Kline Beasley January 1978

productions in Table 3 constitute a opreprocessor for

contributing to learning but it does contain a good bit.

5.4 The Initial Preprocessor and First Language

Section 5.3

there exists a set of designating productiors that serve to structure the
learning situation. Depending o their sophistication they structure the
situation to a greater or lesser extent. In all cases we refer to the
set of relevant designating productions and productionrs which influence

the desigrating productions as the preprocessor. Thus, the set of four

encoding LISP

3 definitions. The preprocessor does not contain all the intelligence

Acquisition

apply to first language learning. Curiously enough, these

initially structuring learnirg. Table 4 contains what
productions might look like. Production INNATE1 encodes a
reinforcement. It asserts that if event LVevent occ
LVtimel, if ACT performs LVrespornse at time LVtime2 a
reinforced at time LVtime3 and if these three events

temporal succession, then ACT will construct a productior

required action in the prescribed situation.

We are begimming to formulate a set of hypotheses about how

children structure their initial 1learrnirg situations and how this would

proposals are

not that different from classical 1learning theory proposals.

Specifically, we are proposing a rather primitive set of productions for

two of these
principle of
urred at time
nd if ACT is
are 1in close

generating the

Anderson Kline Beasley January 1978

Table 4
Two Initial Preprocessing Productiors

INNATE1: (AT-TIME LVevent LVtime1)

(LVresponse = (LVactior ACT LVobj))

(AT-TIME LVresponse LVtime2
(LVresult = (REINFORCED ACT
(AT-TIME LVresult LVtime3)

(JUST-BEFORE LVtime1l LVtime

)
))

2)

(JUST-BEFORE LVtime2 LVtime3)

=2
(CONDITION LVevent)
(ACTION LVresponse)

INNATEZ2: (AT-TIME LVevent1 LVtime1l)
(AT-TIME LVevent2 LVtime2)

(JUST BEFORE LVtimel LVtime2)

(INTERSECTING LVevent1 LVevent?2)

.
(CONDITION LVevent1)

(ACTION (PREDICT ACT LVevent2))

To 1illustrate this production

pointing at a ball, represented :

(POINT MOMMY X)
(éBALL X)

Section 5.4

suppose the event was mother

and by one means or another ACT was induced to say "ball," represented:

(SAY ACT BALL)

Then, if ACT was reirforced the production that would be desigrated would

be:

(POINT MOMMY X)
(@BALL X)

=>

(SAY ACT BALL)

Anderson Kline Beasley January 1978 Section 5.4

This sort of production is a modest but necessary step towards the

lexicalization of natural larnguage. That is, it introduces a connection
between the word BALL and the concept @BALL. H

In the ACT framework, the traditional contiguity corstraints on 1
the effectiveness of reinforcement become particularly meaningful. There
are any number of events, actions, and reinforcements in ore's 1life. If

productions were being generated from all combinations there would be

hopelessly many productiors to deal with. The corstraints of contiguity |

between event and response and between response and reinforcement serve

to focus the system in on those combinations which are most likely to be
relevant.

This focusing function is also seen strongly in production
INNATE2 which builds into ACT a principle of association by cortiguity
and similarity. It will apply whernever two events, LVevent1 and LVevent?2

occur in close temporal contiguity and whenever there is a retwork

connection between them as tested by the INTERSECTING conrdition. The
INTERSECTING condition successfully applies whenever the two events have
a network intersection in memory (looking up to specified depth--
currently 10 links). The intersecting test serves basically to weed out
many of the accidental contiguities of events and serves to focus ACT or
} events which do have a relation.

As an example of how this production system would apply to
language learning consider how it might serve to start ACT on the way to
the sequencing of words ir language. Suppose, ACT hears Mommy utter the

phrase "Spot barks." This would be represented as the two events:

Anderson Kline Beasley January 1978 Section 5.4

(@sAY eMOMMY SPOT)
(@SAY €MOMMY BARKS)
which do occur in close temporal succession. There are nrumerous
intersections between these two events ingluding the terms @SAY and
MOMMY. Also there would be the conmmection that both SPOT and BARKS are
words. Another important connection might be the event of Spot barking.
All this is enough to allow productio» INNATE2 to execute. The
production it would designate would be:
(@SAY eMOMMY SPOT)
?;REDICT ACT (SAY @MOMMY BARKS))
This is a production which predicts that @MOMMY will say barks after
saying Spot. As such the production is both wrong and not particularly
useful. We would want the productior to be constrained to those
situations where Spot is barking. We would like a gereral production for
subject-verb sequences--not ore that just applies to Mommy, Spot, and
barking. We would 'ike a productior that can be used for guidirg ACT's
behavior as well as predicting others. As we will see this production
can evolve in the desired direction through the mecharisms of
generalization and discrimination. However, this productior is the first
step in the direction of the final, desired production.

The productions in Table 4 are not unique to producing lirnguistic
behavior. We speculate that they and others like them can serve as the
basis of much of a child's cogritive development. Of course, learning by

contiguity and similarity are gererally considered to be inadequate to

Andersor Kline Beasley January 1978 Sectior 5.4

account for the child's rapid development in language a~d other areas.
There are in ACT additional 1learnring mechanisms of generalization,
discrimination, and composition which serve to further direct the course

of learning.

5.5 Designation with Substitution

Designatiorn in ACT occurs through its data base. That 1is, ACT
designates certain propositions in memory to serve as patterns for
conditions and other propositions i» memory to serve as patterns for
actiors. In some cases, the propositions after which the designrated
production will be patterned must be built amew. Other times, however,
these propositions already exist i» memory. So, for instance, the
production on p. 52 for describing a ball originated from the actual
events of Mommy pointing to a ball and ACT saying "ball." It is often
critical to use incoming information from the enviromment to form
production patterns.

However, sometimes the envirommental patterns are not exactly
what 1is needed. It 1is necessary to replace certain nodes in the
envirommental event by other nodes. One good example of the need for
this comes from learring by modelling. Consider the following production

which might be useful in learrning-by-modellinrg:

(LOOK-AT GVmodel LVevent)

(LVprop = (SAY GVmodel LVphrase))
=>

(CONDITION LVevent)

(ACTION LVprop)

(REPLACE GVmodel ACT)

|

, — — - - g e T e il —1

Anderson Kline Beasley January 1978 Section 5.5

This production encodes that, if the model says a phrase in response to

é perception of an event, then ACT should build a productior in which it
Ei does the same. So, suppose the model (GVmodel = Mommy) says "Hi" when
she sees a friend wave to her. Thus we have:

(LOOK-AT MOMMY (ALICE WAVE))
1 and
A (SAY MOMMY HI)
which matchs the condition of the modelling productior. Then the new
production designated will be of the form:
(LOOK-AT ACT (ALICE WAVE))
: ?gAY ACT HI) 3

ir which ACT has replaced MOMMY wherever it occurred in the original

production.
? Another place where replacement is useful 1is in introducing
variables into a desigrnated production. Consider, for instance, a

student faced with the following definition of CONS in the language LISP:
(CONS AB) = (A. B

which he represents to himself as:
% (EVALUATE (CONS A B) (LP A DOT B RP))

where LP stands for left parerthesis and RP stands for right parenthesis.
i The task is to translate this information into a production for

processing CONS in such a way that the production is not specific to the
i terms A and B. The following desigrating production will corvert the

i above defirition of CONS into the appropriate production.

P1: (EVALUATE (LVoperation = (LVfunctior LVargl LVarg2)) LVstruct)
=>

T ORI T

Anderson Klire Beasley Jaruary 1978 Section 5.5

(CONDITION LVoperation)

(ACTION LVstruct)

(REPLACE LVarg1 LVx)

(INDEFINITE LVx)

(REPLACE LVarg2 LVy)

(INDEFINITE LVy)
This designating production, applied to the above structure, results in
the following production:
P2: (CONS LVterm1 LVterm2)

=)

(LP-LVterm1-DOT-LVterm2-RP)
In matching P1, LVargl 1is bound to A and LVarg2 to B. However, the
structure designated hes LVargl and LVarg2 replaced by nodes LVx and LVy.
The INDEFINITE predicates in P1 cause mew 1local variables LVterml and
LVterm2 to be placed in the desigrated productior rather than any
definite nodes. So the substitution mechanism in ACT allows a way for

designating productions which are more generzl than the data they are

designated from because additional local variables have been introduced.

6 Production Strengthening

In the ACT system there can be a number of productions which are
capable of applying at one time. Some of these productions can be in
direct conflict. For instance, the system may have multiple productions
encoding alternate rules for pluralizing s noun. Selection among
competing productions is partially determired by their strength where the
strength of a production is a measure of its past history of success in

application.

o7

.

Anderson Kline Beasley January 1978 Section 6.1

6.1 Strength Computation

Every time a production is executed and every time another
consistent production is desigrated or executed, the strength of the
production is incremented by ome unit. Note that the strength of a
production increases, not only when it executes, but when a consistent
production executes. By "consistent" is meant a production which applies
in the same situatior and performs the same actior. This means that the
condition of the executed production must be a special case of the
condition of the to-be-strengthened production or identical with it. The
actiors must be identical (after instantiation of variables). Thus, it
is possible to determine whether one production is corsistent with
another simply by doing a syntactic comparison of the two productiors.
This principle of corsistency places into the ACT system a means by which
a more general production will accrue strength more rapidly thar its
specific veriants. This will prove important to understanding ACT's
generalization powers.

We have develcoped @ set of rules for calculating production
strength which produce behavior on ACT's part which has human-like
qualities but does appear to be more rapid. Productions are initially
designated with strength .1. Each subsequent strengthering of a
production results in an increment of .025. We set the origiral total
strength of the production system at 20. These values undoubtedly ture
the system to display learning more rapid tha~» that of humans. However,
since the cost of a trial is very expensive computationally in ACT, we

are motivated to speed up the rate of learning.

58

Anderson Kline Beasley January 1978 Section 6.1

The time to apply a production 1is an inverse furction of its
strength relative to the strength of all competing productions selected
for possible application on that trial. Thus, if s is the strength of a
production and S is the sum of its stremgth and the strermgth of all of
its competitors, the mean time for that production to apply is ¢S/s where
¢ is a time scale factor. This predicts that time should decrease with
frequency of a production but increase with the number and strength of a
production's competitors. Both predictions were confirmed in Anderson

(1976, Sectior 6.3).

6.2 Desigratiorn has Precedence over Strength

There needs to be a means of overriding the effects of production
strength, Adults can temporarily override very strong rules in resporse
to simple instruction. So, for instance, despite the fact that the "add
s" pluralizatior rule 1is quite strorng, we have little difficulty in
instituting & substitute "add er" pluralization rule (e.g., I saw three
doger). This simply indicates that top-down rules elicited by deliberate
intention take precedence over bottom-up rules elicited in response to
data. To put it in ACT terms: If a productior is desigrnated it will be
given & temporary precedence over any bproduction elicited by the data.
To put it in another way: Production strength is only relevant to data-
selected productions. ACT always executes desigrated oproductions first
and then applies data-selected productions according to their strength.

The well-known experiments by LaBerge (1974) provide nice support

Anderson Kline Beasley January 1978 Section 6.2

for these operating principles in ACT. LaBerge used a mixture of a
successive and a simultaneous matching paradigm: The subject always saw a
single letter first. Then usually he saw a second letter which he had to
identify as same or different from the first. This is the successive
case. Sometimes, however, the second thing he saw was a pair of
different letters and he had to judge whether these were the same--
without regard to the first letter. This is the simultaneous case. In
the successive case the subject could designate ahead of time a procedure
for recognizing the specific letter tested. In the simultaneous case,
however, the correct recogrition procedure had to be selected by the
data. So, in the first, successive designation case we would rot expect
strength of a procedure to have an effect. However, in the second
simultaneous data-driven case, strength should have an effect. LaBerge
manipulated strength of the procedure by manipulating the amount of
experience with the to-be-recogrized letters. 1In one case these letters
were familiar roman alphabet and in the other case they were unfamiliar,
experimenter-created, letter-like symbols. LaBerge found slower
recogrition times for the weaker, unfamiliar letters only ir the
simultaneous, data-driven case--as ACT would predict.

We have seen how ACT is able to compensate for the weakness of a
production by direct desigration. There might seem to be a symmetric
possibility--that is, directly desigrating that strong oroductions should
not apply. However, we think the evidence is that people are very poor

at inhibiting well-practiced mental procedures under conditiors in which

Anderson Kline Beasley January 1978 Sectior 6.2

they normally apply--alth. ugh people are fairly good at inhibiting overt
behavioral indicatiors of a procedure. As an exercise try not
comprehending a sentence spoken to you. The only means that seems at all
effective (short of plugging your ears) seems to be to set up some
competing mental procedure (mental multiplicatior) to keep oneself from
processing the sentence. So we seem mot to have the same facility to
inhibit a procedure as we have to designate one. Similarly, ACT does not

have a symmetric ability to block application of a procedure.

6.3 Interaction Between Strength and Specificity

To fully understand how the strength principle works one must
consider its interaction with the principle of specificity. On any cycle
of the productior system, ACT will attempt to apply a set of productions
called the APPLYLIST. The productions can be placed in the APPLYLIST by
desigration or by data-selection. There are two factors that determire
whether a production is data-selected. First, the nodes named ir its
condition must be active (see page 28). If this factor is satisfied, the
strength of a production determines its probability of being placed on
the APPLYLIST. However, once on the APPLYLIST, another principle is used
to determine wnhich productions will be executed--this is specificity. If
there are two productions, one whose condition 1is more specific than
another (i.e., requires additional structure to be in memory) and if all
the conditions of the more specific production are met, then the more

specific production will apply and will block the execution of its more

general counterpart.

Anderson Kline Beasley January 1978 Section 6.3

To see these two principles at operation, consider the behavior
of a mini-simulatior of the ACT system learning to refer to objects. We
will assume that it initially refers by nouns without determiners. The
following production generates this behavior.

P1: (REFER ACT LVobj)

(CONCEPT-FOR LVobj LVidea)

(WORD-FOR LVword LVidea)

?;AY ACT LVword)

However, we assume that at sometime the program notes that determirers
are used in model speech, and the use of the determiner is related to
whether the 1listener knows 3about the object. The program has the

followirg production to monitor what the model says and what the listerer

krows about the object the model is speaking of:

D1: (LVprop = (REFER GVmodel LVobj))
(LVprop1 = (CONCEPT-FOR LVobj LVidea))
(LVprop2 = (WORD-FOR LVword LVidea))
(LVprop3 = (LVrelation LISTENER LVobj))
(LVprop4 = (SAY MODEL (LVword1 LVword)))
=>

(CONDITION LVprop LVproo1 LVprop2 LVorop3)
(ACTION LVpropi)

(REPLACE GVmodel ACT)

(REPLACE LVobj LVobj1)

(INDEFINITE LVobj1)

(REPLACE LVidea LVideal)

(INDEFINITE LVideal)

(REPLACE LVword -LVwordx)

(INDEFINITE LVwordx)

The REPLACE and INDEFINITE commands cause new local variables to be
introduced for the nodes bound to variables LVobj, LVword, and LVidea--

see earlier discussion on page 57. (Variables could also be introduced

62

Anderson Kline Beasley January 1978 Section 6.3

by a slower process of generalizing from a number of examples--see the
discussion in the next section.) This productio~, upon seeing a defirite
noun phrase, would desigrate a production of the form:

P2: (REFER ACT LVobjx)

(CONCEPT-FOR LVobjx LVideax)

(WORD-FOR LVwordx LVideax)

(AWARE LISTENER LVobjx)

=D

(SAY ACT (THE LVwordx))

Upon seeing an indefinite noun phrase, it would desigrate the production:
P3: (REFER ACT LVobjy)

(CONCEPT-FOR LVobjy LVideay)

(WORD-FOR LVwordy LVideay)

(UNAWARE LISTENER LVobjy)

=>

(SAY ACT (A LVwordy))

These two productions, P2 and P3, have more specific conditions than the
original production P1. Therefore, if on the APPLYLIST, they would apply
and block the 1less correct productio» P1. However, they are iritially
much weaker and so have initially a smaller probability of being in the
APPLYLIST.

We ran a simulation of the behavior of a production system with
productions P1 and D1. Production P1 was given strength 20 but D1 was
given a strength of only .1 to reflect its newly created status. We then
ran a simulation irn which we alternated between model trials and test
trials. On model trials we gave the system an example of the model using

definite and indefinite articles, alternating between these. On test

trials we required the system to generate noun phrases, alterratively to

Anderson Kline Beasley January 1978 Section 6.2

express definite and indefinite objects. So a series of four trials
would be to model defirite, test definite, model indefinite, test
indefinite. Initially production D1 was unreliably applied, reflecting
its weak strength. Similarly, when it did desigrate productions these
productions were weak and applied unreliably. However, gradually D1
built up strength through use and came to behave more reliably.

Similarly, the production it designated became more frequent.

Anderson Kline Beasley January 1978 Section 6.3

100 —
80 —
60 —

40 |-

Percent correct

20 —

Figure 4. Increase with practice in ACT's correct application
of the articles a and the.

We ran ten simulations over forty trials (10 sets of four

alternating trials). Figure U4 presents the results of these simulations

Anderson Kline Beasley Jaruary 1978 Section 6.3

in terms of the percentage of correct article usage in each block of 4
trials. There 1is a gradual increase in the frequency with which the
correct forms are used. Data from individual runs displayed much the
same behavior. We have reproduced in Figure 4 the best and worst
individual learning courses, (In these individual curves we have
averaged together two blocks of four.) They also reflect relatively
rapid, but not all-or-rone, changes in level of performance. There is
this relatively quick change because success tends to feed on itself in
ACT. A successful execution of a productior results in a» increment in
its strength and consequently greater opportunity for further executior
and strengthening. Roger Brown (1973) reports that children show just
these sharp, but not all-or-none, changes in the percentage of correct

usage of morpheme-like articles.

T Production Generalization

Generalization is an absolutely critical element to any theory of
procedural 1learning. The hallmark of human learring in areas like
language acquisition 1is its ability to generalize to yet-unencountered
examples. It 1is because of generalization that we are not forced to
learn separately how to behave in each possible situatiom but rather can
go from a relatively limited training experiernce to a competence that is
applicable toc an unlimited number of situations. It is also failure to
produce the appropriate kinds of generalization that served as ore of the

focal points for the attack of the new psycholinguistics on traditional

learning theory.

Anderson Kline Beasley January 1978 Section 7.1

71 Designated Generalizations

Generalization in the ACT framework occurs in orne of two ways.
First, the initial productions that are designated are somewhat general--
as our previous mini-systems clearly illustrate. Suppose the system is
learring by modelling its behavior according to examples provided by a
model. In failing to encode all the circumstances it 1is implicitly
abstracting and selecting. In failing to specify certain features it is
implicitly generalizing. There is also the more explicit form of
generalization when a variable is specified in the desigrating
oroduction. This is nicely illustrated ir the example involvirg encoding
of the LISP CONS function on page 56. Here ACT is deliberately replacing
specific constants 1like "A" and "B" with variables like LVargl and

LVarg2.

7.2 Automatic Gereralization

The second major type of gereralization is a process that occurs
automatically without designation. It is the process by qhich ACT
compares a pair of preductions, extracts what they have in common, and
proposes new productions which will apply i» all the circumstances of the
original productions. More importantly, this generalized production will
apply in situations where neither original production applied. We
speculate that this generalization process is particularly important in
relatively unstructured situations where there is little direct guidance

from instruction. For instance, this learning process would be important

Andersorn Kline Beasley January 1978 Section 7.2

in inducing the principles of program writing from examples or in
modelling first language acquisition. This section is mainly corcerred
with analyzing the automatic generalization process. First, we will
define the process by which two productions are generalized. Then, we
will consider the factors that determine whether there will be an attempt
to generalize two productions and the factors that determine what the

fate will pe of the generalized production.

T3 Definition of Generalization

Our definition of generalization car be seen as an adaption of

Vere (1977): A productior C; =5 p; is considered a generalization of Cp

=> A, if Cq => Ay applies in every circumstances that C; => A» does (and
possibly others); and in these circumstances C2 => A, causes just the
same changes to the data base as Cy => Ay. We can specify the conditiors
under which ore production will be a generalization of another: Consider

any consistent scheme for renaming 1local variables and nodes in C2 by

local variables in C;, We will refer to this as a substitution 8. Let
902 denote C, after these substitutions have been made. Similarly, let
BA5 denote the action after the same substitutions. Then Cq => A is a
generalization of C, => A5 if and only if there is some 8 such that C; <
8C5 and Ay = 8A5. Let us apply this definition to an example productior
for making an inference about geography.

P1: (IN LVplace LVcontinent)
(WET LVplace)
(HOT LVolace)
(FLAT LVplace)
=)
(CAN-GROW LVplace RICE)

68

Anderson Kline Beasley January 1978 Section 7.2

P2: (IN LVlocation ASIA)
(WET LVlocation)
(HOT LVlocation)
(FLAT LVlocation)
(HAS LVlocation ORIENTALS)
=2
(CAN-GROW LVlocation RICE)
Consider the following substitution O for productior P2: replace ASIA by
LVcontinent and replace LVlocatio» by LVplace. The condition of P2 after
this substitutior becomes GC2 =
(IN LVPlace LVcontinent)
(WET LVplace)
(HOT LVplace)

(FLAT LVplace)
(HAS LVplace ORIENTALS)

This is a proper superset of C; in that it has the additioral clause (HAS

LVplace ORIENTALS). Thus, we satisfy the criterior C1 c C,. The

action of P, after substitution becomes A, = (CAN-GROW LVPlace RICE)
which is identical to the action of A1, Thus, we satisfy the constraint
Ay = 8A,. So, by definition Py is a generalization of P,. P, differs
from P1 in that it will only apply to Asian countries with Oriental
inhabitants. We will denote the fact that P1 is a generalization of P,
oY By < Fa.

Note that production P, achieves its more general status by two
means--both replacement of nodes by variables (in this case ASIA by
LVcontinent) and by deletion of clauses. The extremes of these means of
generalization are rather bizarre possibilities. One way to have

production P1 be more general than P2 is to have P1 corsist totally of

TR o

TeT——

Anderson Kline Beasley January 1978 Section 7.3

variables. However, such a P1 could not be matched. A even more
extreme case would be if the condition of P1 had no clauses. This would
also be impossible to use. So, when we speak of a production Py being
more general than another production P2, we exclude the possibilities

that P, may consist of all variables or that P; has no clauses in its

condition.
The automatic generalizatior routine tries to find common
generalizatiors for a pair of productiors P1 and Pp. A production p.3 is

a common gereralization of Py and P> if P3 < Py and P3 < Pp. More

specifically, ACT tries to form maximal commor generalizations. P, jg a

maximal common generalization of Py and Py if P3 <Py and P3 < P2 and
there exists no other P such that P3 <P and P <Pyand P< Py, A
maximal common generalization P3 is one which deletes the minimal number
of clauses i» Py and P, and replaces the minimal number of nodes in Py

and P, py variables. It is possible (although it has not often been the

case in our applications) that a pair of productions can have more than
one maximal common generalization. In such cases ACT selects one of
these arbitrarily.

Before considering further the circumstances under which ACT
chooses to form generalizations and how it computes such generalizations,

it would be useful to have an example of the program performing

generalizations.

Anderson Kline Beasley January 1978 Section 7.4

7.4 Two Examples of Generalization

Here we would 1like to work through two examples of the
generalization mechanism. The first example that we want to consider is
an attempt to learn the sentence frames that define a word 1like give.
The situation modelled in this simulation is one in which ACT is
observing a teacher who is uttering sentences and indicating the meaning
of these sentences by pointing to events in the world. Table 5 contains
the designating oproduction for this example plus the productions
designated. Production D is the only designating production needed. The
first input to the production was:

(SAYS TEACHER (JOHN-GAVE-THE-BALL-TO-JANE))
(POINTS TEACHER (CAUSE-CHANGE JOHN

(POSSESSION JOHN BALL TIME1)

(POSSESSION JANE BALL TIME2)))
Production D designrates thé sentence as the condition of a production and
the meaning as the action. Thus, it is desigrating a comprehension
production--to map from sentence to meaning. The productiom» so
designated is given in Table 5 as G1. Note that the meaning desigrated
does not involve the concept GIVE directly but decomposes it into more
primitive corcepts of CAUSE CHANGE and POSSESSION. We hardly mean to
endorse semantic decomposition (see Andersor, 1976, 73-74 and page 116 of
this report for a discussion). However, this example does show ACT has

the potential for semantic decompositionr.

Anderson Kline Beasley January 1978

G1:

G2:

G3:

Gy:

GS:

G6:

Table 5
The Desigrating Productions and Gereralizations
in the Example Involving Learning the Syntactic
Structure of GIVE

(SAY TEACHER (LVsentence =

(LVword 1-LVword2-LVword3-LVword4-LVword5-~LVword6)))
(POINTS GVteacher LVprop)
=>

(CONDITION LVsentence)
(ACTION LVProp)

(JOHN-GAVE-THE-BALL-TO-JANE)

=>

(CAUSE-CHANGE JOHN
(POSSESSION JOHN BALL TIME1)
(POSSESSION JANE BALL TIME2))

(BILL-GAVE-THE~DOLLY-TO-MARY)

=2

(CAUSE-CHANGE BILL
(POSSESSION BILL DOLLY TIME1)
(POSSESSION MARRY DOLLY TIME?2))

(LVagent-GAVE-THE-LVobject~TO-LVrecipient)
=>
(CAUSE-CHANGE LVagent
(POSSESSION LVagent LVobject LVtime1l)
(POSSESSION LVrecipient LVobject LVtime2))
(MARY~GAVE-TO-JOHN-THE-BALL)
=>
(CAUSE-CHANGE MARY
(POSSESSION MARY BALL TIMES)
(POSSESSION JOHN BALL TIME6))

(BILL-GAVE-TO~JANE-THE-DOLLY)

>

(CAUSE-CHANGE BILL
(POSSESSION BILL DOLLY TIME7)
(POSSESSION JANE DOLLY TIMES8))

(LVagent 1-GAVE-TO~LVrecipient 1-THE-LVobject1)

=>

(CAUSE-CHANGE LVagent1
(POSSESSION LVagent1 LVobject1 LVtime5)
(POSSESSION LVrecipient] LVobject1 LVtime6))

T2

Section 7.4

Anderson Kline Beasley January 1978 Section 7.4

There are admittedly a number of unrealistic simplifications in
the example. For instarnce, the production D matches the whole 6 word
string. It would be more realistic to have a number of productions
matching a word or two at a time. Also it is a little strange to suppose
we have a teacher pointing at an event which spans times in the past.
These problems could be remedied but at the cost of cornsiderable
complication in the expositior.

The second induced production, G2, results from input of the

sentence Bill gave the dolly to Mary. On the basis of these two

sentences a generalized production, G3, is prcduced by replacing with
variables those nodes that differ in the two productiors. This general
production will comprehend any statement of the form Persor ggxglgég
object to persor. Productions Gi4-G6 reflect a training and
generalization history to produce G6 which will handle general statemenrts

of the form Person gave to person the object. These two training

histories were performed to show that ACT would not corfuse the two
sentence structures and try to form generalizaticns of the two. There is
no way to substitute variables from the condition of G3 into G6 such that
the two actions are the same and this is a necessary condition for
generalization. In G3 the fourth word denotes the object in the action,

while in G6 it denotes the recipient.

73

L

Anderson Kline Beasley January 1978

Example 1
bi
01/ 04
b4 b3
SSt ~
p3 -
safor s
n 3
Example 2
b5 b6
a3 m/
b8 b7
p6
s8 s7 18
16 eb

Figure 5. The three examples of chairs presented to the
program--adapted from Hayes-Roth & McDermott-1976.

b9

le3
Exomp b

Section 7.4

The second example to be discussed concerns the inductiorn of the

concept of a chair. (This example has not yet been implemented.) It is

Anderson Kline Beasley January 1978 Section 7.4

5 an adaptation of a problem posed and solved in Hayes-Roth and McDermott
Fs (1976). Figure 5 illustrates three chairs that will be presented to the
éi system as examples. It is assumed that these examples are encoded by the
E system as productions, where the condition of the production encodes the

description of the object and the action encodes the assertion that the

object is a chair.

75

Anderson Kline Beasley January 1978 Section 7.4

E1:

E2:

Table 6
Productions Desigrated and Generalized i~ the
Inductior of the Concept of Chair

(ARM A1 01 P1 SU)
(ARM A2 01 P2 S3)
(LEG LY 01 B3 B3a)
(LEG L3 01 S3 S3a)
(LEG L2 01 P3 P3a) -
(LEG .1 01 Sk Sia)]
(QUADRILATERAL BB1 01 B1 B2 B3 BY4)
(QUADRILATERAL SS1 01 B4 B3 S3 S4)
(ONPOINT BB1 P1)]
(ONPOINT BB1 P2) »
(ONPOINT SS1 P3) ?
(BROWN BB1)
(BROWN SS1) ;
=> i
(CHAIR 01)

(ARM A3 02 P4 S8)
(ARM A4 02 PS5 ST)
(LEG L8 02 B7 P8)
(LEG L7 02 S7 P9)
(LEG L6 02 P6 PT)
(LEG L5 02 S8 P10)
(ROCKER R1 02 P7 P10)

(ROCKER R2 02 P8 P9) |
(QUADRILATERAL BB2 BS5 B6 B7 BR)]
(QUADRILATERAL SS2 B8 B7 S7 S8) 5

(ONPOINT BB2 PY4)
(ONPOINT BB2 P5)
(ONPOINT SS2 Pr)
(BROWN BB2)
(ORANGE SS2)

=>

(CHAIR 02)

76

Anderson Kline Beasley Jaruary 1978

E1*E2:

E3:

(ARM Lval LVo LVp1 LVs#)

(ARM LVa2 LVo LVp2 LVs3)

(LEG LV14 LVo LVb3 LVb3a)

(LEG LV13 LVo LVs3 LVs3a)

(LEG LV12 LVo LVp3 LVp3a)

(LEG LV11 LVo LVsd4 LVsla)

(QUADRILATERAL LVbb LVo LVb1 LVb2 LVb3 LVbd)
(QUADRILATERAL LVss LVo LVb4 LVb3 LVs3 LVsd)
(ONPCTNT LVbb LVp1)

(ONPOINT LVbb LVp2)

(ONPOINT LVss LVp3)

(BROWN LVbb)

=

(CHAIR LVo)

(LEG L9 03 B12 B12a)

(LEG L12 03 S11 S11a)

(LEG L11 03 P11 P11a)

(LEG L10 03 S12 S12a)

(QUADRILATERAL BB3 03 B9 B10 B11 B12)
(QUADRILATERAL SS3 03 B12 B11 S11 S12)
(ONPOINT SS3 P11)

(BROWN SS3)

(ORANGE BB3)

=>

(CHAIR 03)

(ET1*EZ)®E3:

(LEG LV14 LVo LVb4 LVblda)

(LEG LV13 LVo LVs3 LVs3a)

(LEG LV12 LVo LVp3 LVp3a)

(LEG LV11 LVo LVsl4 LVsla)

(QUADRILATERAL LVbb LVo LVb1 LVb2 LVb3 LVbx)
(QUADRILATERAL LVss LVo LVbx LVb3 LVs3 LVsl)
(ONPOINT LVss LVp3)

=>

(CHAIR LVo)

(£

Section 7.4

Anderson Kline Beasley January 1978 Section 7.4

Consider production E1 in Table 6 which encodes the first
example. It describes the object 01. Interpreting the clauses in the

condition it asserts:

1. 01 has arm A1 with termini P1 and S4.

2. 01 has arm A2 with termini P2 and S3.

3. 01 has leg L4 with termini B3 and B3a. (I
have taken the liberty of 1labelling the bottoms of
the legs in the Hayes-Roth & McDermott figures.)

4, 01 has leg L3 with termini S3 and S3a.

5. 01 has leg L2 with termini P3 and P3a.

6. 01 has leg L1 with termini S4 and Sda.

7. 01 has a quadrilateral-shaped area, BBI1,
defined (clockwise from upper left quadrant) by B1 B2
B3 and BA.

8. 01 has a quadrilateral-shaped area, SS1,
defired by BH'B3 S3 Ski.

9. Point P1 is on BBI1.
10. Point P2 is on BB1.
11. Point P3 is on SS1.
12. BB1 is brown.

13. SS1 is brown.

Note that this is a» encding of the 1lire drawing without the
benefit of three-dimersional information--the seat and back are defined
as quadrilaterals not 25 rectangles, it is not encoded that leg L2 joins

at B4 but only that it is stops at P3 where it is occluded by the seat

SS1.

Anderson Kline Beasley January 1978 Section 7.4

Table 6 also contains productior encodings of the other two
examples. It is assumed that these productions represent the output of a
perceptual analysis of the picture. We do not actually have such
perceptual analyzers. Like Hayes-Roth and McDermott we directly give the
program these productions.

Table 6 contains E1*¥E2, the generalization that was formed after
presentatior of the first two examples. In producing this
generalization, ACT has replaced all the "constants" that differ between
E1 and E2 by variables. Since the two examples disagree as to whether
the seat 1is brown, that particular feature has been deleted from the
concept . Finally, the two rocker descriptions from E2 are not
represented. E3 is an example which identifies that the arms are not
necessary to the chair concept. Also the chair is presented at a
different angle and so the right back leg is occluded. Finally, this
example establishes that the seat need not be brown. Productior
(E1*E2)*E3 displays the results of generalizing E1*¥E2 with E3. It
specifies the following conditionrs of a» object (LVo) to be considered a
chair.

1. LVo has leg LV14 with termini LVb4 and
LVbla.

2. LVo has 1leg LV13 with termini LVs3 and
LVs3a.

3. LVo has leg LV12 with termini LVp3 and point
LVp3a.

4, LVo has 1leg LV11 with termini LVs4 and
LVsda.

Anderson Kline Beasley January 1978 Section 7.4
5. LVo has a quadrilateral-shaped‘ area, LVbb,
defined by pcints LVb1 LVb2 LVb3 LVbx.

6. LVo has a quadrilateral-shaped area, LVss,
defined by points LVbx LVb3 LVs3 LVsd4.

7. The occlusior poirt LVp3 is on LVss.

The above almost perfectly defines the standard perspective view of a
standard chair. The one thing missirg is that the back leg LV14 (the onre
not occluded) is attached at point LVbY to either LVb3 or LVbx at the
back of the seat. This is something that cannot be encoded easily i» a
single production but would require a pair of productiors--one for each
possibility.

ACT, fed a long series of chair examples, would develop a family
of such productions--some more general and some more specific--recall
that ACT does not replace a specific production by a generalized version.
Both the specific and the general production coexist. It has been argued
for such concepts (Rosch & Mervis, 1975; Wittgenstein, 1953) that there
does not exist a single set of features to define chair but a family of
feature sets. This family of productions produced by ACT would ricely

correspond to this notion of a family of concepts.

75 The Problem of Efficiency

It turns out that a number of other researchers (e.g., Hayes-Roth
& McDermott, 1977 a~d Vere, 1977) have been working on generalization
routines that operate in similar cortexts. While our own work evolved

independently, it is also the case that this other work does have claim

80

Anderson Kline Beasley January 1978 Section 7.5

to historical precedence. These enterprises do differ in the
computational techniques by which they attempt to discover the
generalizations. Our program uses a rather brute force techrique of
trying to put clauses intpo correspondence by substitution of variables.
Clauses which cannot be put into correspordence are deleted. We achieve
efficiency by heuristics for ordering how clauses are set into
correspondence. If there are n clauses in the cordition of P1 and m
clauses in P, (n> m) there are potentially =»! / (n-m)! possible
correspondences to consider. It is therefore wise to try to make these
correspondences in a way that maximizes how quickly a2 good correspondence
is considered and quickly iderntifies a bad generalization. We also gain
certain efficiencies because of restrictions, shortly to be discussed, in
the generalization process.

It has been observed by Hayes-Roth (1977) that this
generalization problem in its most general form is an NP-complete
problem, and therefore probably has no wuniformly computationally
satisfactory solution. It is widely believed that the time to solve Np-
complete problems will be an exponential functio» of problem complexity.
Therefore, it was necessary to restrict our gereralization routine to
computing only so long before giving up in trying to find =&
generalization. The reason that tractable solutions can occur in applied
problems is that these applied problems are not random selections from
the general generalization problem, but tend to have certain features

which can be capitalized upon by heuristics. Our heuristics for ordering

Anderson Kline Beasley January 1978 Section 7.5

matching of clauses are ar attempt to capture these constraints. Since
ACT is a psychological simulation these corstraints amount to
psychological claims about the kind of gereralizations humans will make.
However, we have not yet seen a way to make empirical tests of these
claims. We omit specification of them in the interest of avoiding
excessive techmical detail and because of an inability to provide

empirical interpretation.

16 Focusing of the Generalization Process

There is a major aspect of the generalization problem which is
addressed in the ACT program which is not addressed in other efforts.
This is the problem of focus: ACT as a realistic system would contain
hundreds of thousands of productions. How does ACT decide upon which
ones it should try to generalize? It would be disastrous to attempt to
generalize all possible pairs of productions. Not orly would this be
astronomically costly, it also would produce many spurious
generalizations.

ACT restricts its gereralizatiors to those initiated by newly
desigrated productions. That is, when a production is desigrated ACT
attempts to generalize it with other productions that it has. It can be
shown that this restriction to newly formed productions does not miss any
potential generalizations. Unfortunately, this restrictior by itself
does not produce sufficient computational savings. However, ACT onrly

tries to generalize designated productions with productions that are on

FJ
|
|
|

Andersor Kline Beasley January 1978 Section 7.6

the APPLYLIST. Given that their conditions are active, productions are
placed on the APPLYLIST with a probability deperdent on their strength.
This activation-plus-strength criterion means that generalization will be !
restricted to productions that are relevant to the current context and ;

which have had a fair history of past success.
Ever with these restrictiors there is the danger of spurious

generalizations. Consider the folloﬁing pair of productions, one of

P

which might be on the APPLYLIST and the other newly created

P1: (IN LVlocation ASIA)
(WET LVlocation) :
(HOT LVlocation) ;
(FLAT LVlocation) i
=>
(CAN-GROW RICE LVlocation)

P2: (HAVE LVlocation roads) 1
(IN LVlocation Vietnam) :
(NEAR LVlocatior RIVER) i
ABS (IN LVlccation mountains)
=>
(CAN-GROW RICE LVlocation)

e

Production P1 is a rule about conditions that favor rice-growing in Asia
E while P2 is a rule that predicts rice-growing areas in Vietrnam. We would
not want the followirg generalization to form:
P3e (IN LVlocation LVplace)

?EAN-GROW RICE LVlocation) !

which is the maximal common generalization of P1 and P2. To avoid such

obviously spurious generalizations we restrict gereralizatior so that it

is only able to delete so many clauses. If n is the number of clauses in

Anderson Kline Beasley January 1978 Section 7.6

the smaller of the two to-be-generalized conditions, then ACT must keep
at least .75r clauses in the generalization. The only restriction on

replacement of nodes by variables is that all nodes cannot be replaced.

7.7 Overgeneralization

Of course, it is 9ot possible to avoid all spurious
generalizations. Given that humans overgeneralize, it is desirable that
the ACT program overgeneralize in similar circumstances. For irstarnce,
children 1learning their first language (and it also appears adults
learning a second language--see PBailey, Madden, & Krashen, 1974)
overgeneralize morphemic rules. Thus, a child will generate mans, gived,
etc. We are happy to report ACT does the same. (see Section 8.2)

Overgeneralizations require correction. If the generalization is
Jjust piain wrong, then it will be taken care of by ACT's strength
mechanisms. It is initially designated with little strength and will rot
come to apply unless it reliably desigrates correct behavior. However,
it can be the case, as it is with morphemic overgeneralization, that the
general rule is close to correct but needs some tuning. This tuning is
the responsibility of the discrimination processes which are our rext

topic of discussion.

8 Discrimination

Whether by direct desigration or by automatic generalization, ACT

can generate too-general productions. Correction of these productions

oy

Anderson Kline Beasley January 1978 Section !

depends on a discrimination process. Productions can be directly
designated which are more discriminate than existing ones. This is like
the ability to directly designate very general productions. However,
there is also an automatic facility for discriminatiorn. As was the case
with generalizatior, designated discrimination is postulated to be more
important in highly structured learning situations where ACT can
intelligently go about debugging its errors. Automatic discrimination is
more important in less structured situations. The direct designation»
option does not involve any possibilities that we have not already
considered. Therefore, this section will focus on the automatic
discrimination process.

The current automatic discrimination mechanism requires that
there be the potential for regative feedback to the system about its
behavior. ACT keeps track of which productiorns have created which memory
structures. If it is decided that a memory structure is bad, then the

productior which created that structure is punished. The decision that a

structure is bad can come from direct feedback from a teacher, comparison
with a model, computations that note a contradiction, and presumably
other sources as well. If a productio» 1is punished its strength is

reduced by a factor of 1/4 in the current implementation. It is also the

case that punishment evokes the automatic discrimination process -- as we

will discuss shortly.

Anderson Kline Beasley January 1978 Section 8.1

8.1 Discrimination by restriction versus discrimination by
exception

It ,is useful to separate conceptually two ways in which
discrimination can cure problems of overgeneralization. There can be
overgeneral rules which fail to specify a feature of the problem to which
they apply. For instance, we might have the following production for
deciding about rice growing:

(WET LVlocation)

(HOT LVlocation)

?EAN-GROW RICE LVlocation)

This rule requires an additional cordition clause to restrict the
inference to flat areas. The other possible way a production may be
overgeneral is that there may be exceptions to production rules. To cure
this overgeneralization it it necessary to characterize the features of
the situations which are exceptions, rather thar the features of the
situations where the rule holds.

ACT's automatic solution to both of these discrimination problems
is a process called variant-spawnirg. A variant of a production is
spawned by generating a new production which has some further informatio=»
specified in its condition. There are two types of variants that can be
created. First, a production can be designated which calls for the same
behavior, but which has a more specific set of conditions. This is the
way that productions are created to correct under-restricted rules such

as that used in the rice growing example. Suppose this discriminant

86

Anderson Kline Beasley January 1978 Section 8.1

production more accurately characterizes the correct situation than its
more general source. Then it will apply in all the situations where the
more general production would have applied correctly. Therefore, it will
be strengthened in all the situations that the source is strengthened,
but will avoid the punishment that the source gets for misapplication.
The second type of discrimination 1is to desigrnate a productio» with a
different response and more discriminant condition. This is the way to
encode exceptions to a rule. If this discriminated oproductior is
sufficiently strengthened it will take precedence, when applicable, over
the more general rule because of ACT's specificity ordering. It will be
useful to have terms for these two types of discrimination. The first we

will refer to as discrimination-by-restriction and the 1latter as

discrimination-by-exception.

Note that in encoding exceptions the discriminant production orly
takes precedence ovfr the general. The general production continues to
operate when the discriminant version is not applicable. .This is because
except in the circumstance caught by the discriminant production, the
general production works just fine and is strengthened. In contrast, in
discrimination-by-restriction the discriminant productior comes to

replace the overgeneral production.

8.2 An Example Requiring Discrimination and Gereralization

To help firm up these various concepts it will be useful to have

an example at hand. We chose a mini-simulation concerrned with the

Anderson Kline Beasley January 1978 Section 8.2

acquisition of verb inflections for tense and subject noun irflection for
number. Table 7 shows the four designating productions that we used for
this example. Production N1 responds to the appearance of a string of
morphemes spoken by a model. It sets attention (GVtok) to the beginning
of the string. Productions N2 and N3 are responsible for scanning
through the string. Production N2 deals with words or morphemes that
have connections to concepts--(WORD-FOR LVidea LVword)--while N3 deals
with morphemes that lack such a cornectior (i.e., inflectiors).
Production N2 attaches a global variable GVholdc to the propositions that
encode the word-idea connection. As we will see, these propositions will
be made part of the condition of the designated production. Production
N4 is elicited after N2 and N3 have completed their scan of the string.
This 1is signalled by setting GVtok to the last morpheme token which
allows the condition (SAY MODEL (...-GVtok)) to match. The embedded
structure (...-GVtok) is shorthand for a strinrg whose last element is
GVtok. The condition of N4 also requires a match to the meaning intended
by the model--a relation (LVrelation) between two objects (LVagert and
LVobject) at a specific time (LVtime). The other two propositions in the
condition encode the conmection between the two objects and class names
for these objects (e.g., betweer a boy and the class of boys). The
production desigrated i» the action includes the model's meaning
(LVprop2), the connections between objects and their class concepts
(LVorop3 and LVpropd), and the word-idea connections associated with

GVholdc. The action of the designated production is the sentence spoken

-

" AD=A052 671 YALE UNIV NEW HAVEN CT DEPT OF PSYCHOLOGY F/6 5/10
A THEORY OF THE ACQUISITION OF COGNITIVE SKILLS.(U)
FEB 78 J R ANDERSON ¢ P J KLINE:» C M BEASLEY NOOO14=77=C-0242

UNCLASSIFIED
Sk

AL
ADB28T7|

i A Bkl it = 90—

Anderson Kline Beasley January 1978 Section 8.2

AL R T S e

2
el

by the model. In this designation ACT replaces reference to the model by

S

reference to itself.

St

89

L |
L |
2
|
1

Anderson Kline Beasley January 1978

N1:

N2:

N3:

N4:

says the sentence The boy likes the girl and we assume ACT understands

what the model means by reference to the situation in which the sentence

Table 7

A Production Set for Learning
Main Clause Structure Plus Number Inflection

(SAY MODEL (LVtok))
=>
(GVtok = LVtok)

(GVtok-LVtok)

(LVmerph LVtok)

(LVprop = (WORD-FOR LVidea LVmorph))
=>

(GVtok = LVtok)

(GVholdc LVprop)

(GVtok-LVtok)

(LVmorph LVtok)

ABS (WORD-FOR LVidea LVmorph)
=2

(GVtok = LVtok)

(LVprop1 = (SAY MODEL (...-GVtok)))

(LVorop2 = (MEANS MODEL (LVrelation LVagent LVobject LVtime)))
(LVprop3 = (CLASS-FOR LVagent LVidea1l))

(LVpropl = (CLASS-FOR LVobject LVidea?))

=>

(CONDITION LVprop2 LVprop3 LVprop4d GVholdc)
(ACTION LVprop1)

(REPLACE MODEL ACT)

(UNBIND GVholdc GVtok)

As an example of the productions desigrated suppose the model

is uttered. The input to these productions will be:

(MEANS MODEL (@LIKE PER1 PER2 TIME1))
(CLASS-FOR PER1 €BOY)
(CLASS-FOR PER2 @GIRL)
(SAY MODEL (THE-BOY-LIKE-S-THE-GIRL))

Section 8.2

Anderson Kline Beasley January 1978 Section 8.2

The designated production would be:

(MEANS ACT (6LIKE PER1 PER2 TIME1))
(CLASS-FOR PER1 €BOY)
(CLASS-FOR PER2 @GIRL)
(WORD-FOR @BOY BOY)
(WORD-FOR @GIRL GIRL)
$ (WORD-FOR @LIKE LIKE)
=2
i (SAY ACT (THE-BOY-LIKE-S-THE-GIRL))

which, for further discussion, we will abbreviate as

Pl (MEANING LIKE BOY GIRL TIME1)
=>
(THE-BOY-LIKE-S-THE GIRL)

Other similar productions would be desigrated such as:
P2: (MEANING KICK GIRL DOG TIME2)

=>

(THE-GIRL-KICK-S-THE-DOG)

From such pairs the following generalization would
be made:

P3: (MEANING LVverb LVsubj LVobj LVtime)
=>
(THE-LVsub j-LVverb-S-THE-LVobj)
Based on sentences such as:
The dogs chase the cat
The dog chased the cat
The dogs chased the cat

the following generalizations would result:

P4 : (MEANING LVverb LVsubj LVobj LVtime)
=D
(THE-LVsub j-S-LVverb-THE-LVob 3)

P5: (MEANING LVverb LVsubj LVobj LVtime) ’
=>

(THE-LVsubj-LVverb-ED-THE-LVobj)

P6: (MEANING LVverb LVsubj LVobj LVtime)
=
(THE-LVsubj-S-LVverb-ED-THE-LVobj)

9N

Anderson Kline Beasley January 1978 Section 8.2

Productions P3-P6 deal with the cases of singular and plural subject,
present and past tense verb. These four productions all have the same
condition, implying that the choice of inflection is arbitrary. Of
course, this 1is incorrect--the productions are too general. The
conditions do not include tests for number of subject or for time: This
is because the original designating productions in Table 7 did not
consider this information relevant.

The following are the four discriminant versions of these
productions that we would like ACT to have:

P7: (MEANING LVverb LVsubj LVobj LVtime)
(PRESENT LVtime)
(SINGULAR LVsubj)
=>
(THE-LVsubj-LVverb-S-THE-LVobj)

P3: (MEANING LVverb LVsubj LVobj LVtime)
(PRESENT LVtime)
(PLURAL LVsubj)
=>
(THE-LVsub j-S-LVverb-THE-LVobj)

Pg: (MEANING LVverb LVsubj LVobj LVtime)
(PAST LVtime)
(SINGULAR LVsubj)
>
(THE-LVsub j-LVverb-ED-THE-LVobj)

P10: (MEANING LVverb LVsubj LVobj LVtime)
(PAST LVtime)
(PLURAL LVsubj)
=D
(THE-LVsub j-S-LVverb-ED-THE-LVobj)

8.3 Example Continued: Discrimination by Variant Spawning

ACT tries to discover the more discriminant variants required to

.......... A TN~ L

Anderson Kline Beasley January 1978 Section 8.2

AL N e

correct P3-P6 by inspecting the contexts in which the overgeneral

Ly LS A A'.?l,.

productions P3-P6 apply successfully. It trier to find constraints on
the bindings of the local variables at these points of successful

application. Constraints are any additional propositions in which the

local variable bindings occur. So, for instance, it finds that when P3

Cae

applied LVtime was present and LVsubj was singular. These constraints
need to be added to P3 to create the production P7. When it finds the
correct constraints, the discriminate production will gradually take over
for its parent, being reinforced in the same situations as the parent
production, but avoiding the punishment that the parent gets.

An early version of the discrimination process spawned such
variants every time a production successfully applied. A proposition was
selected at randam from among the propositions, if any, and was attached
to the bindings of the 1local variables. If - there were no such
propositions, beyond those already specified as the production conditior,
no variant was spawned. This process tended to spawn a great many
harmless but useless oproduction variants. They were harmless because
they were as at least as correct as their parents since they applied in
no new contexts, they were useless when there was no problem with the
behavior of their parents. When there was a problem with the parent
behavior, chances were that the discriminations were the wrong ones and
some other variant should have been spawned. It is true that with enough
time this process should work to solve ACT's discriminatio» problems.

However, the method seemed unacceptably inefficient. In line with the

93

.
.

TR

L

Anderson Kline Beasley January 1978 Section 8.3

conjecture discussed earlier about the relationship between AI
considerations and psychological considerations, we decided to jettison
this particular mode of discrimination. It was very inefficient as Al
and, therefore, seemed unacceptable as a psychological theory.

The current discrimination mechanism is much more selective. It
will only be evoked if the output of a production is punished. The
following production monitors for negative feedback from the model:

(SAY MODEL (BAD LVsentence))

?EAD LVsentence)

If the model greets the output of the sentence The boy hits the girl with

disapproval because the tense should have been past, the condition of
this production will be matched and the sentence flagged as bad. This
will cause the production, P7, which generated the sentence to be
punished. The variable bindings are stored for the application of P7
which led to this punished result. When the production applies next and
is not punished , the variable bindings of this application are compared
to the bindings of the misapplication. This identifies which variables
were differently bound in the two circumstances. A search is made for
some proposition which 1is true of the current bindings but not the
misapplication bindings. One such proposition is selected at random for
spawning a variant. (The fact that just one is desigrated means a pair
of discriminative refirements is necessary to add two propositions as in
P7). In the current app’ication, no such constraining proposition is
found, and one of the local variables is replaced by ore of the bindings

that differs from the bindings in the misapplication.

94

Andersor Kline Beasley January 1978 Section 8.3

Note that for P7 to have been punished it must have been
selected--indicating that it is probably fairly strong. This means that
discrimination is limited to fairly strong productions which have already
had some history of success. It would be wasteful to discriminate weak
oroductions which might be so wrong that all effort at correction would
be wasteful.

This discriminant production no more replaces its parent than
does a generalized production replace the productions that gave rise to
it. Rather, the new production 1is spawned in addition to the parent.
Whether it will come to replace the parent because of accrual of strength
depends on its track record of success and failure.

So, discrimination proceeds by intelligently trying to constrainr
the variables in an overgeneral production. As a direct complement to
generalization, discrimination can proceed by adding additional clauses
to a condition or by replacing variables with nodes.

Productions P7-P10 are not quite adequate in themselves. They do
not deal with irregular past tenses. For instance, to deal with hit we
need the following production:

P11: (MEANING HIT LVsubj LVobj LVtime)

(PAST LVtime)

(SINGULAR LVobj)

Z;HE-LVsubj-HIT-THE-LVobj)

This production would be generated, with the condition clause (PAST
LVtime), at an intermediate stage of generalization from examples. If

selected, P11 will apply rather than the general P9 because P11 is more

e

B i ML

> v Y
S Lo e e

Anderson Kline Beasley January 1978 Section 8.3

specific. By the same means we would get intermediate states of
generalization involving regular verbs like kicked:
P12: (MEANING KICK LVsubj LVobj LVtime)

(PAST LVtime)

(SINGULAR LVobj)

?;HE-LVsubj-KICK-ED-THE-LVobj)

As P12 1is correct there is no problem with having it as well as the
redundant P9 which generalizes over the verb. Thus, in ACT there may be
a number of regular verbs with their own productions to handle them as
well as for irregular verbs. For a special encoding of a verb to be
effective it would be necessary that it occur with sufficient frequercy
to build up adequate strergth. This accounts for the observation that
orly high frequency words can maintain irregular forms. Low frequency
words cannot have a strong special form and must depend on the general
production.

The fact that there can be redundant special coding of regular
words accounts for the fact that subjects can more rapidly produce
regular forms of words than irregular when the words are of equal
frequency (McKay, 1976). This is because there are two productions--the
general and the specific that can produce the regular irnflection but only

one production for the irregular inflection.

8.4 Effect of Punishment on Learning

It is worthwhile to consider what this discrimination mechamism

says about the effectiveness of punishment or negative information. I»

96

e e

L

By .. ;

Anderson Kline Beasley January 1978 Section 8.4

the ACT model it is mot possible to simply punish and "stamp out" a
negative behavior. It seems a fair generalization from the learning
literature (e.g., Estes, 1970; Hilgard & Bower, 1974) that it is not
possible to do this with 1living organisms either. An undesired
production in ACT can be gotten rid of in basically one way--by
strengthening a production which will compete with it. For instance, we
saw punishment work with an overgeneral production--but punishment worked
by forcing the desigration of new, discriminative productiors that
attempted to characterize what separated the circumstances of successful
application of the production from the circumstances of non-successful
application. Punishment is only effective i» that it is a stimulus for
discrimination. It remains for successful applications and consistent
desigrations (or reinforcement, if you will) to build up the strength of
the correctly discriminated productior.

It is a widely held premise in the first 1language learming
literature that negative information is not at all effective. ACT is not
in total agreement with this point of view. It would certainly be the
case that telling a child a sentence is wrong would be useless. A great
many productions go into a sentence's generation and a child would face
an impossible task trying to guess which ore or ones were to blame.
However, more focused negative feedbsck should be helpful. For instance,
if a child utters: two foots and is corrected: two feet he might be able
to recognize that the inflection of foot is at fault. If so, he could

punish the production responsible for insertion of the 's plural for foot

T T TR TN 7T ey

Anderson Kline Beasley January 1978 Section 8.4

and desigrate a new production for feet. However, Cazden (1964) reports
no advantage of providing a child with such correction over providing him
with an opportunity for general interaction in the 1language. However,
this result is somewhat in dispute (McNeil, 1970). 1In any case, ACT is
on record to the effect that sufficiently focused correction on

generating errors should produce improvement.

9 Production Composition

9.1 Definition of Composition

Production composition is the newest learning mechanism that we
have projected for ACT (it is not implemented yet). Our interest in
production composition was stirred by the work of Claytor Lewis and our
ideas about it largely come from him. The basic idea behind production
composition is quite simple. Suppose we have productions P1: C1 = Ay
and P2: C2 => A2 and it is observed that these productions tend to cccur
in sequence. Then we can form the composite:

P3: S; & (C5; - Ag)

Ay & ay

where (C2 - Aq) denotes all the corditions in C, that were not created in
the action of A1. Thus, P3 applies in just the circumstance where P1 and
P2 would apply and it adds to memory the effects of both P1 and P2--i.e.,

the actions A1 and A2. However, what once took two steps now takes one

step.

T SR T

e S ey S

P e » il VL o s iR R MR

Anderson Kline Beasley January 1978 Section 9.1

Consider this composite-forming possibility as it might be
applied to a language processing example. Suppose irnitially the system
had the productions:

L1: (THE GVtok)

(BEFORE GVtok LVtok)

=

(DEFINITE GVtop)

(GVtok = LVtok)

L2: (LVword GVtok)

(ADJECTIVE LVword)

(WORD-FOR LVword LVidea)

(BEFORE GVtok LVtok)

=

(LVidea GVtop)

(GVtok = LVtok)

L3: (LVword GVtok)

(NOUN LVword)

(WORD-FOR LVword LVidea)

=)

(CLASS-OF GVtop GVidea)

This is a three production sequence for analyzing determiner-adjective-
noun phrases. In this example it 1is necessary to make a distinction
between words and tokens of these words as they appear in sentences. The
construction (THE GVtok) indicates GVtok is an instance of THE, and the
construction (LVword GVtok) indicates GVtok is an irstance of LVword.
The production L1 processes the definite article the; L2 processes
adjectives and predicates their meaning of the noun phrase topic, GVtop;
and L3 parses nouns and builds a structure to indicate that the topic is
an instance of that noun. By a process of composing L1 with L2 and that

composite with L3 (or by composing L2 with L3 and that composite with L1)

we would get:

L4: (THE GVtok)

T R R A TP e A e T——

Anderson Kline Beasley January 1978 Section 9.1

(BEFORE GVtok LVtok)
(BEFORE LVtok LVtok*)
(LVword LVtok)

(LVword* LVtok#*)
(WORD-FOR LVword LVidea)
(WORD-FOR LVword¥* LVidea*)
=>

(DEFINITE GVtop)

(LVIDEA GVtop)

(CLASS-OF GVtop LVidea¥*)
(GVtok = LVtok*)

which processes the determiner-adjective-noun sequence.
There are a number of important functions that are served by
composition. First, it serves to reduce the number of steps involved in

performing a computation. Second, it reduces the total rumber of

condition elements that need to be matched and so speeds up the match.

9.2 Einstellung Effect

The composition of productions can lead to the Einstellung

effect. The Einstellung effect refers to the fact that practice on ore

method of problem solutio”n will produce a blindress to another method of
solutior.

Consider the following example of Einstellung as studied by
Luchins (1942). Subjects are given three water jugs of specified size
and are instructed to fill jugs, empty jugs, and transfer water from one
Jjug to another to achieve a desired quartity of water. The following are
examples of problems given by Luchins to his subjects. They are given in

the form of the capacities of three jugs A, B, and C and the goal amount:

100

Anderson Kline Beasley January 1978 Section 9.2

A B C GOAL
1 21 127 3 100
2 14 163 25 99
3 18 43 10 5
4 9 42 6 21
5 23 49 3 20
6 15 29 3 18

Note that the first four problems are all susceptible to the solution B-
A-2C. After working on a number of problems with this same solution
subjects tended to become fixated on it. They used this solutior or
problem 5 although it had the easier solution A-C, which subjects terd tc
find when they have not had the prior experience. Also many subjects
failed to solve problem 6 although it has the simple solution A + C.
Table 8 contains a set of productions for solving waterjug
problems. Table 8 contains many details not necessary for understarding
the following discussion of composition. Productior P1 will try filling
empty jars. Its first condition (GOAL LVquantity) is a test for a goal
flag; the second condition (LVprop = (CONTAINS LVjar 0)) tests for an
empty jar; the third condition (CAPACITY LVJar LVamount) serves to bind
the jar's capacity to the variable LVamount; the fourth absence conditio»
prevents the move of dumping a jar just after filling it and thus avoids
a foolish lcop. The first action of P1 (FILL ACT LVjar LVrext) calls for
the fill action; the second action flags the contents of LVjar as no
longer empty, the third action encodes the new amount in the jar, and the
final action sets the global variable GVlast to an indicant of this fill

action which is now the last action of the system.

101

it

PANIES LS s 3

At e

Anderson Kline Beasley January 1978

Pl:

P2:

P3:

Table 8
A Production Set for Water Jug Problems

(GOAL Lvquantity)

(LVprop = (CONTAINS LVjar 0))
(CAPACITY LVjar LVamount)

ABS (DUMP ACT LVjar GVlast)

=2

(FILL ACT LVjar LVnext)

(FALSE LVProp)

(CONTAINS LVJar LVamount)
(GVlast = LVnext)

(GOAL LVquantity)

(LVorop = (CONTAINS LVjar LVamount))
ABS (FILL ACT LVjar GVlast)

=

(DUMP ACT LVjar LVnext)

(FALSE LVProp)

(CONTAINS LVjar 0)

(GVlast = LVnext)

(GOAL LVquartity)

(LVpropi = (CONTAINS LVjar1 LVamourt1))
(LVprop2 = (CONTAINS LVjar2 LVamount2))
(CAPACITY LVjar2 LVamount3)

(GREATER LVamount2 LVamount3)

(PLUS LVamount1 LVamount2 LVamount5)
ABS (LVamount1 = 0)

=>

(POUR ACT LVjar1 LVjar2 LVnext)
(CONTAINS LVjar1 0)

(CONTAINS LVjar2 LVamount5)

(FALSE LVprop1)

(FALSE LVprop2)

(GVlast = LVnext)

102

Section 9.2

&
i
3
ki
|
2
.
&
&

Anderson Kline Beasley January 1978

P4:

P5:

PX:

(LVprop1 = (CONTAINS LVjar1 LVamount1))
(LVprop2 = (CONTAINS LVjar2 LVamount2))
(CAPACITY LVjar2 LVamount3)

(PLUS LVamount2 LVamountl LVamount3)
(PLUS LVamountl4 LVamount5 LVamount1)
ABS (LVamount2 = LVamount3)

=D

(POUR ACT LVjar1 LVjar2 LVnext)
(CONTAINS LVjar1 LVamount5)

(CONTAINS LVjar2 LVamount3)

(FALSE LVprop1)

(FALSE LVProp?2)

(GVlast = LVnext)

(LVprop = (GOAL LVquantity))
(CONTAINS LVJar LVquantity)
=2

(DONE LVprop)

(LVprop = (GOAL LVquantity))

(LVorop1 = (CONTAINS LVjaril 0))
(LVprop2 = (CONTAINS LVjar2 0))
(LVorop3 = (CONTAINS LVjar3 0))

(CAPACITY LVjar1 LVamount1)
(CAPACITY LVjar2 LVamount?)
(CAPACITY LVjar3 LVamount3)

(PLUS LVamount1 LVamountl4 LVamount?)
(PLUS LVamount3 LVamountS5 LVamountd)
(PLUS LVamount3 LVquantity LVamount6)
=>

(FILL ACT LVjar2 LVnext1)

(POUR ACT LVjar2 LVjaril LVnext?2)
(POUR ACT LVjar2 LVjar3 LVnext3)
(DUMP ACT LVjar3 LVnexth)

(POUR ACT LVjar2 LVjar3 LVnext5)
(CONTAINS LVjar2 LVquantity)
(CONTAINS LVjar1 LVamount1)
(CONTAINS LVjar3 LVamount3)

(DONE LVprop)

(FALSE LVProp1)

(FALSE LVprop?2)

(FALSE LVProp3)

103

Section 9.2

bt

Andersonr Kline Beasley January 1978 Section 9.2

Production P2 will dump the contents of a jar. Production PR
encodes the action of emptying one jar into another. Production P4
encodes the operation of emptying as much of one jar into another as
there is room. Production P5 recognizes when the goal has been achieved.
This set of five productions is adequate to solve the waterjug problems
at hand and to make the desired point about the relationship between
production composition and the Einstellung effect.

This production set randomly tries various movements until it
finds the correct sequence. In the case of problems like 1 through U4 the
correct sequence would be, starting with empty jugs: Apply P1 to B, P4 to
A and B, P4 to Cand B, P2 to C, and P4 to C and B. Repetition of this
series leads to composition of this series of productions into larger
units. Production Px represents the outcome of the compositio» of P1,
P4, P4, P2, P4, and P5 to solve the first four problems. It would spell
out the steps in the solution to problems 1-5 in one action. Applied to
problem 5 it would block (because of the specificity principle) the
simpler sequence of productions possible: P1 to A and ther P4 to A and
C. Strengthening this sequence would interfere with the perception of a
solution to problem 6: P1 tc A, P2 to A and B, P1 to C, and P3 to B and
C. There are two reasons for this: First, the correct sequerce would be
interfered with by practice of the incorrect sequence because of the role
of relative strengths in production selection (see the equation o= p.
59). Second, subsequences of the one coded in Px would match this
problem description, be more specific than any of the productions P1-P5,

and so be applied rather than the correct production.

104

Anderson Kline Beasley January 1978 Section 9.3

9.3 Conditions for Evoking Composition

It remains to specify the circumstances under which composition
will occur in ACT. With each priming problem that ACT is given, the
productions in Table 8 will be applied. At first their order of
application will be haphazard but they will always conclude with the
sequence P1, P4, P4, P2, P4, P5. ACT will keep track of which pairs of
productions follow which others in close successiom and will form
composites of such pairs. Thus it will compose P1 and P4 into a
production which we will call P6, P4 and P2 into P7, and P4 and P5 into
P8. Once P6, P7, P8 are formed and strengthened they will tend to apply
as a sequence. Then P6 and P7 can be composed into P9 and P9 and P8 into
PX given in Table 8. We have restricted composition to operate o= pairs
of productions for simplicity sake.

This composition works to create a production 1like PX which
encodes the correct sequence of steps for problems like 1-5. However,
composition would also work on other regularities i» the haphazard
applications of P1-P4 before the correct sequence. Thus, ACT may attempt
to pour A and then C into B. If it tries this move frequently it will be
embodied by a composite. The difference between such composites and PX
is that they do not encode a problem solution. In contrast, PX does
encode a problem solution because it includes PS5 which sigrals a
solution. It is a deficit of the current ACT system that after forming
the composite PX, it cannot give priority to this production in 1light of

the fact its action includes a final solution to the problem. We will

105

Anderson Kline Beasley January 1978 Section 9.3

discuss a remedy for this system defect i» the last section. Thus, we
are only capable of partially oproducing Einstellung in ACTF by mears of
composition. We can form the composite but we are not able to assign it

the priority that it demands.

10 Sigrificant Problems and Future Directiors

We feel quite optimistic about the potential of the learning
theory that has been outlined. The mechanisms proposed seem both
psychologically valid and computationally powerful. We are currently
performing empirical tests of the implications of the 1learning theory.
What pleases us most is the apparent gererality of these mechanisms-~that
they seem applicable to such a wide range of cogritive procedures. The
obvious test of the computational power is to try the ACT system out on
some large scale learning example. It would be worthwhile to review the
major obstacles to doing this and the methods we have in mind for
overcoming these obstacles. Discussion of these issues of course also
identifies the future direction for research in the ACT project.

However , before doing so we would 1like to acknowledge that the
basic learning mechanisms we have been proposing--desigration,
strengthening, generalization, discrimination, and composition are not
very different from the ideas that have been offered in traditional
learning theory. One might wonder why the now-classic criticisms of
learning theory (e.g., Anderson, 1976; Anderson & Bower, 1973; Bever,

Fodor & Garrett, 1968; Chomsky, 1959 1965; Katz & Postal, 1964) do not

_

Anderson Kline Beasley January 1978 Sectior

apply. They do not apply because the basic production system mechanism
is much more powerful as a performance model than the basic mechanisms
(e.g., the S-R bond) of the traditional theories. Criticisms of
traditional theories really rested on the computational inadequacy of the

performance mechanisms.

10.1 Difficulties with Matching

The current matching scheme is one in which a subset of
productions are selected by the activation process and then the
conditions of each of those are independently matched against memory.
There are at least three serious difficulties with this scheme:

i. Redundant Matching Many selected productions will share large

portions of their condition pattern, but these common patterns must be
rematched independently for each production. It would be opreferable to
have a scheme for matching these common» subparts once and for all.

ii. Complex Conditions on Instantiations The nature of ACT

matching is to retrieve a single instantiation for a production's
condition and not to retrieve all possible instantiations. This makes it
difficult to express certain complex conditions. Consider the following
case: One of the simple things we want our LISP learner to do is to apply
the syntactic definition of LISP to the recognition of certain LISP
structures. So, suppese ACT is trying to determine whether a certain
expression--call it EXP, is an S-expression. It has two relevant rules:

Rule a If an expressio» is an atom it is an S-
expression, represented (IMPLIES ATOM S-EXPRESSION)

107

Anderson Kline Beasley January 1978 Section 10.1

Rule b If an expression is a dotted-pair it is
an S-expression, represented (IMPLIES DOTTED-PAIR S-
EXPRESSION)
It represents its goal as: GOAL1 = (GOAL (S-EXPRESSION EXP)). The node
GOAL1 stands for this high level goal. Suppose ACT has tried out both
definitions for S-expression and they have failed. This is represented:
(TRIED-OUT GOAL1 RULEa)
(TRIED-OUT GOAL1 RULED)
We want to write a production conditio» that would recogrize that all the
rules relevant to proving S-expression have been exhausted and that ACT
should flag this goal as a failure:
(Lvgoal = (GOAL (LVorop LVexp)))
ABS ((LVrule = (IMPLIES LVprop1 LVprop))
ABS (TRIED-OUT LVgecal LVrule))
?;AILURE LVgoal)
This production asserts that if one's goal is to show property LVprop and
there are no rules for establishing LVprop which have rot been already
tried out, then flag that subgoal as a failure. This condition cannot be
matched in ACT because of the double embedding of absemce tests required
to reflect the double negation. This would require one to retrieve and
inspect all instantiations of (IMPLIES LVpropl LVprop)--something which

the current match scheme does not do.

iii. Partial Matching The third difficulty with the current

matching algorithm is that it does not permit partial matches to be

detected. There are a number of circumstances where partial matching is

o pee g

Anderson Kline Beasley January 1978 Section» 10.1

essential. Ome of these is in generalization--where a partial match must

be detected between the conditions of two productiors. This is currently

performed in ACTF by mechanisms other than the general matcher. However,
it 1is probably the case that one match procedure should both detect
overlap between two conditions and detect overlap between a condition and
. data. It is also the case that we want to detect partial overlap between
two sets of data to be able to model how subjects detect the similarities
between two concepts. We also want to be able to detect differences.
This is particularly true in a problem-solving situation where one wants
; to adopt difference-reduction techniques. For instamce, our definition
of a dotted pair is: a left parenthesis followed by an S-expression
followed by a dot followed by an S-expression followed by a right
parenthesis. We might have as a goal to show that STRUCTURE A is &

dotted pair and our description of STRUCTURE A is Left parenthesis

followed by Structure B followed by adot followed by Structure C

followed by a right parenthesis. Comparing this to our gereral

definition of a dotted pair and noting the differences we would set up
the subgoals of showing that Structure B was arn S-expression and
Structure C was an S-expression.

Partial matching seems pervasive in learning and other aspects of
human cognition. The correspondence made between a production condition
and data in the current ACT is a complete match--if anything fails to
correspond the entire match fails. We have yet to convince ourselves

that in this testing of production conditions matching should ever be

POV NSRRI

T e T T T T T T T g—n e T
-

Anderson Klire Beasley January 1978 Section 10.1

partial. There 1is too much potential for ACT to 1lose control of the
processing and produce bizarre results. However, it seems that ACT
should be able to match conditions to conditions and data to data and in

these circumstances there should be the potential for partial matching.

10.2 Data-Flow Matching

There seems to be a single solution to these three problems with
matching. This is to use the idea of data flow matching such as
described by Forgy (1977) for the Carnegie-Mellon production system.

The basic idea behind data-flow matching 1is fairly simple,
although the implementation deiails seem quite complex. As we have not
passed the implementation hurdle, we will just describe the basic idea.
Figure 6 shows an example of the matching net that might be used. The
terminal nodes of this ret can be assumed to refer to simple one-
proposition patterns. In Figure 6 there are six such patterns. Each
pattern can appear in the condition of a number of productions. Figure 6

shows how they might underlie the five productions in Table 9.

110

Anderson Kline Beasley January 1978 Section 10.2

PI P2 P3 P PB

(SUBGOAL bvgants, o GRLRETET (TRIED-OUT
(LVprop (SATISFIED | | | ygoal (GOAL (IMPLIES gl
DOTTED-PAIR) LVgoal 1) LVgoal 1) (LVprop LVexp))| |LVprop ! LVprop)) 9

Ci C2 C3 Ca Cs Ce

Figure 6. A data-flow network combiring overlapping conditions
in five productions.

1M

Anderson Kline Beasley January 1978 Sectio» 10.2

S . SR s

Table 9
¥ The Productions Represented in the Data Flow Network of Fig. 6

P1: (LVgoal = (GOAL (LVorop LVexp)))
(LVorop DOTTED-PAIR)
(SUBGOAL LVgoal LVgoal1l)
(SATISFIED LVgoal1l)

¥ =>

(S-EXPRESSION LVexp)

§ pe: (SUBGOAL LVgoal LVgoall)
H (SATISFIED LVgoall)

=>

(SATISFIED LVgoal)

P3: (IMPLIES LVprop1 LVprop)
(LVprop DOTTED-PAIR)
=
(IMPLIES LVPropl S-EXPRESSION)

PY4: (LVgoal = (GOAL (LVprop LVexp)))
(LVrule = (IMPLIES LVorop1 LVprop))
ABS (TRIED-OUT LVgoal LVrule)
=>
(LVgoall = (GOAL (LVexp LVprop1))
(SUBGOAL LVgoal LVgoall)

P5: (Lvgoal = (GOAL (LVpred LVexp)))
ABS (LVrule = (IMPLIES LVprop1 LVprop))
(ABS (TRIED-OUT LVgoal LVrule)
=D
(FAILURE LVgoal)

12

Anderson Kline Beasley January 1978 Section 10.2

These productions are purely to illustrate the matching retwork.
They are somewhat artificial and somewhat simplistic productions for
reasoning about LISP expressiors. P1 asserts that if the goal is to show
LVexp has some property LVprop that is equivalent to being a dotted pair,
and its subgoal is satisfied (forgetting that there may be more than one
subgoal) then LVexp is an S-expression. P2 asserts that if a subgeazl is
satisfied the goal 1is satisfied. PR asserts that if LVpropl implies a
oroperty, LVprop, equivalent to being & dotted-pair, then LVpropl also
implies the property of being an S-expression. P4 asserts that if the
goal is to show LVexp is LVorop, and there is a rule that LVorop1 implies
LVorop and this rule has not been tried out, then set as a subgecal to
show LVexp is LVprop1. Finally, P5 asserts that if the goal is to show
LVexp is LVorcp and there are »o mcre unrused relevart rules, the» this
goal has failed. This last production has the oproblematic condition
considered earlier (p. 108).

The patterns are matched just once at the terminal reodes. All
possible instantiations can, in prirciple, be retrieved. At the higher
rodes the instantiations from a number of subrodes are combined under the
constraint that they be compatible. So, for instance, consider node 2
which combines C2--(SATISFIED LVgoall)--with C3--(SUBGOAL LVgcal
LVgoal1l). C2 matches any two element structure whose first elemert is
SATISFIED. C3 matches any three-element structure whose first element is
SUBGOAL. However, their combiratior at node 2 i» the net enforces the

constraint that the second element of C2 be iderticel with the third

TS

Anderson Kline Beasley January 1978 Section 10.2

element of C3. This serves to filter out many vossible instantiations.
For this reason, the higher nodes in the matching retwork are called
filters. It 1is referred to as a data flow matching procedure because
data flows upward through the network filters.

Lower elements can flow either positively or negatively into a
filter. Wher a positive and a negative element meet at a filter, the

filter orly accepts instartiatiors of the positive elements which are not

compatible with any irnstantiations of the negative eclements. Consider
the problematical production P5. The 1lower filter, 7, finds all
instantiations of (LVrule = (IMPLIES LVpropl LVprop)) that are rot
compatible with (TRIED-OUT LVgoal LVrule). That is to say, the value
assigred by C5 to LVrule does not agree with any value assigned to LVrule
by C6. Then the higher filter, 6, finds all instantiations of Cl=
(LVgoal = (GOAL LVprop LVexp)) that are incompatible with what is passed
up by filter 7. That is, no instantiation of LVprop passed up from 7
agrees with the instantiatior passed wup from C4. If there are &zny such
instartiations that pass filter 6, P5 will apply.

So, the data flow matcher allows us to compute more complex
conditions. It also has the obvious virtue of avoiding redundant
matching of condition propositions. Since each element of a production
is separately matched, there 1is a potential for partial matching. We
could simply pass up a count of the number of condition propositions
matched and the number mismatched. The data-flow scheme also has the

potential for implementing top-down selection as to which productiors

Anderson Kline Beasley January 1978 Section 10.2

will be matched. It is possible to focus processing on certzin
productions by sending signals down the matching network from these
productions erabling data to flow up from the corditio» nodes that
support these productions while data canmot flow from other corditior
nodes. This ability for top-down fccusing promises additioral efficiency
and power.

This matching proposal has a host of experimental predictiors.
It makes predictions about what should be the optimal way to structure
condition tests in the matching tree and what sort of experience should
create these structures. It makes a number cf predictions about effects
of availability of data (as influenced by frequency, recercy, and
availability of information) that are in contrast to predictiors cof the
earlier ACT model (see Anderson, 1976; Ch. 8). It makes interestirg
oredictions about interactions betweer top-down and bettom-up primirg
influences. It also makes some interesping predictions about partial

matching results. We are settirg out to test these various predictions.

10.3 Knowledge Representation

Knowledge representation is another point at which the weaknesses
of ACTF are becoming apparent. The reader familiar with earlier
descriptiors of ACT will notice a switch 1in this paper frem a HAM-like
structure to a relation-plus-argument structure. In actual fact, ACTF is
implemented with the HAM knowledge syntax, but we have chosen the_new

syntax for this paper in part because we judge it to be more conducive to

Anderson Kline Beasley January 1978 Sectior 10.3

exposition. It is also the case that this is the type of network syrtax

being projected for the new version of ACT. We are plarming a

representational switch not just to facilitate communication but also

because it appears to be more efficient for matching than ACT's former

subject predicate structures. ACT's current representation uses a number
of levels of network structures within a sirngle proposition. This means
that it is expensive to search a propositior to reject it as false. It
is also the case that after seven years of research we know of no date
that strongly supports these within-proposition distirctions made by the
HAM representation.

Another feature needed to make ACT's representatio» more
efficient for search is to use a less homogeneous set of structures and
rodes. The fewer structural distinctions there are, the fewer distirct
nodes, the more one structure looks like the next and the harder it is to
find the structure searched for. As noted by Hayes-Roth (1977) and
Hayes-Roth and Hayes-Roth (1977) this fact is arn argument agairst
attempts to decompose meaning representation into homogeneous structures
of a few semantic primitives (e.g., Norman & Rumelhart, 1975; Schank,
1975). Rather tharn representing terms 1like give, take, beg, borrow,
trade, lend, etc. at a low level where they are very similar and herce
very confusable, we want to represent these terms at a high level where
the confusability does not exist.

In fact, it seems that an important dimension of learning is for

ACT to discover and use high-level labels for frequently reappearing

Anderson Klire Beasley January 1978 Sectior 10.2

subconfigurations of patterns. So for instarce, ACT should, and we
suppose a child does, create a concept like throw after encourterirg 2
repeating sequence of someone holding am object, putting his hand behind
his back, moving it rapidly forward, releasirg the object, and the object
moving rapidly as a projectile. Then, ACT could reascn about such events
simply as a throw and nrot as the more complex sequence which is
confusable with grasp, lift, move, wave, and many other actio=s.

The extraction and labellirg of commor subpatterrns is hardly a
behavior restricted to children. The great deal of recent work or
prototype extraction (Bransford & Franks, 1971; Posner & Keele, 1970;
Reed, 1972; Neuman, 1974; Rosch & Mervis, 1975; Hayes-Roth & Hayes-Roth,
1977a) gives ample testimony to the pervasiveness of this phenomenon in
adult learning. We =2also feel that it 1is an important comporent of
learning in the domains of language acquisition and mathematical
reasoning. In language learning such pattern extraction is critical to
identifying syntactic categories, particularly in 1languages (e.g.,
Finnish, Latin) where there are numbers of declensions and corjugations
which obey different syntactic rules. In mathematical reasorirg, it is
critical to develop 1large subconcepts (e.g., proof by irduction-,
recursion, integration by parts) of what are relatively complex
operations. Once these mathematics patterns are formed, it is possible
to reason about them as single objects. Indeed, the reasons for patterr
extraction or chunking include all the advantages which were identified
by Miller in 1956 and documented many times subsequently (Mandler, 1967,
Bower & Springston, 1970; Bower, 1975).

T

e e e

Anderson Kline Beasley January 1978 Sectior 10.3

The operations by which patterns are extracted are quite similar
to the operations by which production conditions evolve--i.e.,
generalization, discrimination, composition, and strermgthening. This
points to the conclusion that the distinction between ACT's declarative
component (network) and its procedural component (productions) should be
weakened or eliminated. That is to say, the operations defined just or
the procedural component in ACTF seem also appropriate for the
declarative comporent.

It also seems that processes limited in the current ACT to the
declarative component are appropriate for the procedural. We have dore a
number of experiments now displaying short-term memory priming effects
for procedures. It also seems that ore of the prircipal features of
productions in ACTF, their non-inspectability, will have to be charged.
We are running into many situations where we cannot model human reasoning
or human learning without having the contents of one production open to
inspection by arother productior. That 1is, we need to allow one
production to specify in 1its condition aspects of another productior.
The need to do this has become particularly apparent in the LISP learning
simulation. Here, in order to be able to plan solutions to problems, ore
has to reason about what his available procedures can do. Again, the
example we have worked om concerns the recognition of LISP expressiors.
Corsider a top-down recognition strategy which subjects can implement.
There exists the following production which will recogrize a dotted pair:
{LVobj = (LP-LVtok1-DOT-LVtok2~RP))

(S-EXPRESSION LVtok1)
Ef—EXPRESSION LVtok?2)
ZDOTTED-PAIR LVobj)
118

T

Anderson Kline Beasley Jaruary 1978 Section 10.2

If there exists an object which entirely satisfies this defiritior, it
can be recogrized immediately as a dotted pair. However, it is
frequently going to be the case that the nodes matching LVtok1 and LVtok2
are not flagged as S-expressions. What nreeds to be dore is to set up
subgoals of proving these to be S-expressions. To do this, ACT must be
able to inspect this production, recogrize that the action is relevant to
the goal of proving something to be a dotted-pair, recogrize the
condition is partially matched, and set up the appropriate subgoals. The
only way we can do this in the currert implementation is to encode the
information redundantly i» productions and network form. However, it
would seem better if the production could simply be treated as data.

We noted a similar problem in our simulatio» of the water jug
problem. Here we wanted to give special priority tc productions which
contained a complete solution. This requires inspecting the action of
the production and noting that the action cortaired the solutior. It
also requires some way to schedule the priority assigned to a productionr
which we think we can do by the top-down influences permitted in a data-
flow matcher.

Another reason for having procedural knowledge available for
inspection is so as to be able to model the debuggirg process. The idea
that procedures can be delikterately inspected for "bugs" and corrected
has been popularized by a number of AI researchers (Brown, Burton,

Hausmann, Goldstein, Huggins, & Miller 1977; Goldstein, 1974; Sussmar,

Anderson Kline Beasley January 1978 Section 10.3

1975). We do not think debugging is tyoical of most human learring
because it requires a considerable expertise in the area to be debugged.
We would assign most of human error correctior to the discriminatior
process. However, it does seem undeniable that experts are able to
inspect their procedures, find bugs, and correct them. A»n example ir
hand 1is learning to program in the language C where all indexing is
initiated at O rather than 1 as is typical of a programming language.
JRA car remember very systematically reworking procedures for searching
arrays, looping, etc. to take account of this fact. This clearly
requires that procedures for programming be inspectable. As an aside, it
is worth noting that JRA still occasionally slips into the wrong habits
even after this conscious correction. This is a rice exemple that
stronger, gereral procedures can cverwhelm the weaker, specific, debugged
procedures.

The ACT book (Anderson, 1976) considered eliminating the
difference between productions and data, but rejected the possibility.
One reason for rejecting that possibility was simply ar inability to see
in detail how to make the equation between productions and the
propositioral network. At that time we were focused on a suggestion by
Newell to treat each link ir the declarative network as an independent
productior. Now, however, the proposal is to treat a productior as a
data structure on the same status as a proposition. It does not seem
that there will be the same difficulties of coherence with this proposal.

Another basis for objectiom» was the observation that certain

120

Anderson Kline Beasley January 1978 Section 10.3

highly overlearned procedures (e.g., knowledge >f how to speak a
language) do not seem to be inspectable as data. We still do not know
what to make of this fact. It still may serve as a basis for a differert
qualitative treatment of highly overlearned productiors. However, the
qualitative distinction may not be between declarative and oprocedural but
between intermediate degrees of overlearning versus very high degrees of

overlearning.

10.4 Final Remarks about Projected Changes

It is noteworthy that these projected changes in the ACT system
will change its performance characteristics at 1least as much as its
learning characteristics. This is despite the fact that the need for
such changes became apparent in modelling learning. This reinforces our
earlier remarks (see p. 15) about the relationship between a theory of
learning and a theory of performance. It is generally acknowledged that
the design of a performance system will have strong influences o the
learning system. That is, our learring principles will be strongly
influenced by our conception of what the end product of the learnirg
process is like. On the other hand, it is also the case, as just
illustrated, that work with a learning theory will affect the performarce
theory. There is a complex and intimate relationship between the two.
It is preferable, and fortunately it is possible for us, ﬁo pursue both

endeavors in parallel.

Anderson Klirne Beasley January 1978 Section 10.4

Footnotes

1. This research is supported by grants NOOO14-77-C-0242 from
the Office of Naval Research and NIE-G-77-0005 from the National
Institute of Education.

2. Throughout this section and subsequent sections we will be
using a knowledge representation somewhat different tha» the HAM-bzsed
representation used in earlier publications on ACT. The linearization of
this notation also avoids many of the infix operators previously
developed. The actual implementation of ACTF is still HAM-based with
infix linearizations. The current notation, which is more relatioral and
predicate based, is being used because we feel it eases difficulties of
exposition. As we discuss in the last section (p. 115) for various
reasons this new notation is targeted for later versions of the ACT
system. In many other ways we have taken liberties in simplifying, for
exposition purposes, the structure of ACT network and productions. For
instance, nodes and variables in structures built by ACT productions are
often shown with mnemonic labels rather than the nonsense labels actually
assigned. Also technical details often essential to actual successful
implementation have been omitted. It is our judgment that the
simplifications help ease the communication problem without 1losirg
anything essential about the important conceptual points. However, for
any readers interested in such details, we have available actual listings

of the exact mini-systems implemented and of their performance.

Pl e Tk ke

Anderson Kline Beasley January 1978 Section 10.4

3. The language analysis reflected in this production system and
some of the other production systems in this paper is quite rudimentary.
It would greatly complicate the production system tc provide a more
accurate model of language analysis. Since the purpose of this system is
to illustrate the effect of instruction and not to provide a complete
language analysis model, we regard these simplifications as justified.

4, There are certain constraints on this INTERSECTING conditio»

as that it cannot pass through nodes like AT-TIME.

T T sy p————e—

R T R T Y P

Anderson Kline Beasley Jaruary 1978 Section 10.4

11 References

Anderson, J.R. Language acquisition by computer a~d
child. Technical Report No. 55, Human
Per formance Center, Urniversity of Michigan, 1974.

Anderson, J.R. Computer simulation of a language
acquisition system: A first report. In
R.L. Solso (Ed.), Informatio» Processing

and Cognition: The Loyola Symposium,

Hillsdale, N.J.-:'_ErIgaun ssoc., 1975.
Anderson, J.R. Language, memory, and thought.

Hillsdale, N.J.: Erlbaum Assoc., 1976.

Anderson, J.R. Inductio» of augmented transition
networks. Cogritive Science, 1977, 1, 125-158.

Andersor, J.R. Computer simulation of a
language acquisition system: A second report.
In D. LaBerge & S.J. Samuels (Eds.),
Perceptic» and comprehension, Hillsdale, N.J:
Erlbaum Assoc., 1978.

Anderson, J.R. & Bower, G.H. Human associative memory,
Washington, D.C.: Hemisphere Press, 1973.

Anderson, J.R. & Kline, P. Desigr of a production system.
Paper presented at the Workshop on Pattern-Directed
Inference Systems. Ir Sigart Newsletter, June, 1977.

Anderson, J.R., Kline, P. and Lewis, C. A production system
model for language processing. In P. Carpenter &
M. Just (Eds.), Cogritive Processes in Comprehension.
Hillsdale, N.J.: Lawrence Erlbaum Assoc.

Bailey, N., Madden, C., & Krashen, S.D. Is there a
"natural sequence" in adult second language
learning. English Language Institute ard
Linguistics Department, Queens College and
the Graduate Center, City University of
New York, 1974.

Bever, T.G., Fodor, J.A., % Garrett, M. A formal
limitation of associatio»ism. In T.R. Dixon &
D.L. Horton (Eds.), Verbal Behavior and General
Behavior Theory. Englewood Cliffs, N.J.:
Prentice-Hall, 1963.

124

Anderson Kline Beasley January 1978

Bower, G.H. Cognitive psychology: An introduction.
In w.K. Estes (Ed.), Handbook of learnirg
and cognitive processes, Vol. 1, Hillsdale,
N.J.7 Erlbaum Assoc., 1975.

Bower, G.H. & Springston, F. Pauses as recoding points
in letter series. Journal of Experimental
Psychology, 1970, §§, G27-4730.

Braire, M.D.S. Or learning grammatical order of words.
Psychological Review, 1963, 70, 323-348.

Bransford, J.D. & Franks, J.J. The abstraction of
linguistic ideas. Cognitive Psychology,
1971, 2, 331-350.

Brown, J.S., Burton, B.R., Hausmanr, C., Goldstein, I., Huggirs,
B. Miller, M. Aspects of a theory for automated
student modelling. BBN Report Noc. 3549, 1977.

Brown, R. A first language. Cambridge, Mass.: Harvard
Uriversity Press, 1973.

Cazden, C.G. Envirommental assistance to the child's
acquisition of grammar. Urnpublished Ph.D.
dissertion, Harvard Urniversity, 1965.

Chomsky, N. Verbal behavior (a review of Skinrer's
book). Language, 1959, 35, 26-58.

Chomsky, N. Aspects of the theory of syntax.
Cambridge, Mass.: MIT Press, 1965.

Chomsky, N. & Miller, G.V. Introduction to the formal
analysis cf natural languages. In R.D. Luce,
R.R. Bush, & E. Galarter (Eds.), Handbook of
mathematical psychology II. New York: Wiley, 1963.

Estes, W.K. Learrning theory and mental development.
New York: Academic Press, 1970.

Forgy, C.L. A production system monitor for parallel
computers. Technical Report, Computer Science
Department, Carnegie-Mellon University, 1977.

Goldstein, I.P. Understanding simple picture programs.
AI-TR-294. MIT A.I. Laboratory, 1974.

Hayes-Roth, B. & Hayes~Roth, F. The prominence of lexical
information in memory representations of mearing.

125

Bt ou s v

Section

“_,”*-—-,-7.
» - .

Anderson Kline Beasley January 1978

Journal of Verbal Learning and Verbal Behavior,

1977, 16, 179-136. (a)

Hayes-Roth, B. & Hayes-Roth, F. Concept learning and the
recognitior and classification of exemplars.
Journal of Verbal Learnirg and Verbal Behavior,
1977, 16 321-338. (b)

Hayes-Roth, F. The role of partial and best matches in
knowledge systems, Rand Corporatior, P-5802, 1977.

Hayes-Roth, F. & McDermott, J. Learrirg structured
patterns from examples. Proceedings of the
Third International Joint Conference on
Pattern Recogritior, 1976, 419-423.

Hilgard, E.R. & Bower, G.H. Theories of learning,
New York: Appleton-Century-Crofts, 1966.

Huessmann, L.R. & Woocher, F.D. Probe similarity and
recognition of set membership: A parallel-
processing serial-feature-matching model.
Cogritive Psychology, 1976, 8, 12u4-162.

Katz, J.J. & Postal, P.N. An integrated theory of

linguistic descriptions. Cambridge: MIT Press, 1964.

Kline, P. & Anderson, J.R. The ACTE user's manual.
Department of Psychology, Yale Uriversity, 1976.

LaBerge, D. Atterntion and the measurement of perceptual
learning. Memory and Cogrition, 1973, 1,
268-276.

Luchins, A.S. Mecharization in problem solving.
Psychological Monographs, 1942, 54, No. 248.

MacKay, D.G. On the retrieval and lexical structure
of verbs. Journal of Verbal Learrinrg and Verbal

Behavior, 1976, 15, 169-182.

McNeil, D. The acquisition of language. New York:
Harper & Row, 1970.

Mandler, G. Organizatio» and memory. In K. W. Sperce
and J.A. Spence (Eds.), The Psychology of
Learning end Motivation.” Vol. 1, New
York: Academic Press, 1967, 328-372.

Neumann, P.G. An attribute frequency model for the

126

Sectior

Anderson Kline Beasley January 1978 Secticr

abstraction of prototypes. Memory and

& Cognition, 1974, 2, 2U1-248.

i Newell, A. A theoretical exploratio» of mechanisms i
; for coding the stimulus. In A. W. Melton &
3 E. Martin (Eds.), Coding processes in human

memory, Washingtor, D.C.: Winston, 1972.

Newell, A. Production systems: Models of control
structures. In W.G. Chase (Ed.), Visual
Information Processing. New York:
Academic Press,

Normen, D.A., Rumelhart, D.E. & the LNR Research Group.
Explorations in Cogrition. San Francisco:]
: Freeman, 1975. E

Posner, M.I. & Keele, S.W. Retention of abstract
ideas. Journal of Experimental Psychology,
1970, 83, 308-308.

Reed, S.K. Patterm recogrition and categorization.
Cogritive Psycholegy, 1972, 2, 382-407.

=?

Rosch, E. & Mervis, C.B. Family resemblances: Studies

; on the internal structure of categories. 1
Cogritive Psychology, 1975, 7,
573-605.

4 Rumelhart, D.E. & Norman, D.A. Accretion, tunirg,

| and restructuring: Three mcdes of learning.
: CHIP Technical Report 63, University of

i California, San Diego, LadJolla.

Rychener, M.D. & Newell, A. An instructible production 4
system: Basic desigr issues. I» D.A. ;
Waterman & F. Hayes-Roth (Eds.), Patter»
directed irnfererce systems, New York:
Academic Press, in press. 1

Schank, R.C. Corceptual informatior processing.
Amsterdam: North-Holland, 1975.

Sterrberg, S. Memory scanning: Mertal processes
revealed by reaction time experiments.
American Scientist, 1969, 57, 421-U457.

Sussman, G.J. A computer model of skill acquisition.
New York: American Elsevier Publishing Co., 1975.

127

Anderson Kline Beasley January 1978 Sectior

Townsend, J.T. A note on the identifiability of parallel
and serial processes. Perception and Psychophysics,
1971, 10, 161-163.

Townsend, J.T. Issues and models corcerning the processing
of a finite number of inputs. In B.H. Kantowitz
(Ed.), Human information processing: Tutorials
in performance and cognition. Hillsdale, N.J.:
Erlbaum Assoc., 197%.

Vere, S.A. Inductior of concepts in the predicate calculus.
Proceedings of the Fourth Interrational Joint
Conference on Artificial Intelligence, Tbilisi, USSR,
1975, 281-287.

Vere, S.A. Inductive learning of relational productions.
Proceedings of the Workshop on Pattern-Directed
Inference Systems, Hawaii, 1977(a).

Vere, S.A. Inductior of relational productions in the
presence of background information. Proceedings
of the Fifth International Joint Conference or
Artificial Intelligence, Boston, 1977,

349-355 (b).

Weissman,C. LISP 1.5 primer, Belmont, Ca.: Dickensor,
1967.

Winston, P.H. Learning structural descriptions from
examples. MIT Artificial Intellligence Laboratory
Project AI-TR-231, 1970.

Wittgenstein, L. Philosophical irnvestigations. New

York: MacMillan, 1953.

Navy

JR. JATK ADAMS

OQFFICE OF UAVAL RESEARCH 3RANCH
22 JLD MARYLEZJNE ROAD

LONDOON, Hai, 15T EHGLAMND

Dr. Juck R. Borsting

Pravost x Azadenic D2an

U.S. Naval Postgraduatzs School
Moniterey, CA 93942

DR. JOHW F. BRICK
HNAVY PERSCIOIIEL R% D CENTER
SAN DIEG), CA 92152

D2pt. of tna ilavy
CHUAVMAT ({MAT O34D)
Wasaington, DT 203350

Calef of Maval Education and
Training Suooort)-(J14)
Pensazolya, FL . 32529

CAPT. H. J. CONNMERY

NAVY MEDICAL RxD COMMAND
HHMC

BETHESDA, D 20014

Dr. Caarles E. Davis
JUR Branca Office
535 S. Clark Stre2t
Caicago, IL 606025

Mr. Jan2s 3. Duva

Chief, Human Factors Laboratory
Naval Training Equipment Canter
(Codz 11-215)

Orlando, Fiorida 32313

Dr. Marsasll J. Farr, Director

Parsonviel % Training Rasszarch Programs

Office of iaval Res2arch (Code 453)
Arlington, VA 22217

DR. PAT FEDERICO
HAVY PER3ONNEL RXD CENTER
SAN DIEGO, CA 92152

Navy

CDR John Ferguson, MSC, USN

llaval Medical R%D Command (Code 4h)
National Naval Medical Center
Bethesda, YD 20014

Dr. Dexter Fletcher

Navy Persovinel Research and Developmnent

San Diego CA 92152

Dr. John Ford
Havy Parsovnel R%D Center
San Diego, CA 92152

Dr. Eugene E. Gloya
ONR Branch Offica

1030 East Greewn Street
Pasadena, CA 91101

CAPT. D.M. GRAGG, MC, USHN

HEAD, SECTIOH DN MEDICAL EDUCATION

UNIFORMED SERVICES UWIV. OF THE
HEALTH SCIENCES

6917 ARLINGTON ROAD

BETHESDA, MD 20014

Dr. Norman J. Kerr

Chief of Naval Technical Training
Naval Air Station Memphis (75)
Millington, TN 33254

Dr. Leonari Kroeker
Navy Personnel R&D Canter
San Diego, CA 92152

Dr. James Lester

ONR Brancznh Offize
495 Suanmer Straat
Boston, A 0222190

Dr. Willian L. Maloy

Privncipal Civilian Advisor for
Education and Training

Naval Training Command, Code 37A

Pamsazola, FL 32503

Dr. Sylvia R. Maysr (MCIT)
HQ Electrovic Systems Div.
Hanscom AFB

Bedford, MA 01731

o

Havy

Dr. Jama2s HcBride

Codz N

Navy Pz2rsommzl RiD Camteor
San Dieso, CA)21352

Jr. Juaa2s !LGrata

Navy P2rsonni2l RiD Canter
Code 329

3anm Di2zo, CA 92152

DR. WILLIAY AONTAGUE
NAVY PERGOHIEL RY D CENTER
SAN DIEGD, CA 92152

Comnaniing Offizar

daval ilzalth Reszarca
Caniter

Atiw: Library

3aw Diezo, CA 92152

CDR PAUL H=ZLSON

NAVAL MEDICAL R% D CO4MAND
COoDZ 41

NATIOUAL NAVAL MEDICAL CENTER
BETHESDA, MD 20214

Librury
lavy Pa2rsomnz! RXD Caiter
3an Dizzo, CA 92152

Connanding Officer

Naval Reszarch Laboratory
Code 2527

Adasaivigton, DC 22339

JOHN JL3EH

- CHIEF OF NAVAL EDUCATION &%

TRATHING SUPPORT
PENSACOLA, FL 3252)

Iffic: of lHavil Rasearch
Cod2 230
Arlington, VA 22217/

Sciantific Direator
Offiz2» of Maval Rasearch

Scientific Liuison Grouo/Tokyo

Anerican Enbassy
APD Sa= Francisco, CA 95503

Navy

SCIENTIFIC ADVISOR TO THE CHIEF

OF NAVAL PERSOHNEL
NAVAL BUREAU OF PERSMMEL (PERS OR)
RM. U419, ARLINGTON AHNEX
WA)!IWPT7I DC 29370

DR. RICHARD A. POLLAX
ACADEMIC CO"PUTING CEMNTER
U.S. HAVAL ACADEMY
ANNAPOLIS, MD 21492

Mr. Armold T. Rubinstzin

Human Resourzaces Prozran Manager
Naval Material Command (J344)
Room 1044, Crystal Plaza %5
Washington, DC 20369

Dr. Worth Scanland

Chief of !llaval Education 2nd Training

Code N-5
NAS, P2wnsacola, FL 32503

A. A. SJOHOLM

TECH. SUPPJRT, CODE 201
NAVY PERSOMNEL R% D CENTER
SAN DIEGO, CA 92152

Mr.. Robert Smith

Offica of Chief of Naval Operatiors
OP-937E

Washington, DC 20359

CDR Charles J. Theis2n, JR. MSC, USN

Head Human Factors Enginzering Div.
Naval Air Desvelopment Center
Warminustar, PA 13374

W. Gary Thonsow
Naval Ocean Systems Cawtor
Code 7132

San Diegzo, CA 92152

Aray

DR. JAMES BAKER

U.S. ARMY RESEARCH (HSTITUTE
5391 EISENHOAZR AVENUE
ALEXANDRIA, VA 22335

DR. RALPI DUSEX

J.5. ARMY RESEARCH INSTITUTE
5201 ELSEWIDJER AVEIUZ
ALZXANDRIA, VA 22333

DR. FRAUX J. UARRIS

U.3. ARMY RESEARCH THSTITUTE
5001 EISCI40JER AVENUE
ALZXANDRIA, VA 22333

Dr. diltom 3. Kave
individustl Training % 3xill
Evalustion Tachnical Area
U.3. Arny Reszar:ci Inscivute
51 Eisznanuer Avanu2
Alexandria, VA 223335

Dr. J. E. Ualarar

Caiaf Psycimlozisct, US Army
Aray Ra2sz2arzia Imstituts
5333 dactor Roald

McLean, VA 22101

Dr. Joasepa Ward

U.3. Aray Rasearcn Instivaca
5091 Eisanidwer Avenuz
Al2gandria, YA 22333

Harines

Direator, Offize of Mampowe~ Utilization

HQ, Mari=: Coros (ifPU)
BCB, Bldgz. 2009
aniico, VA 22134 -

DR. A.L. SLAFKISI

SCIENTIFIC ADVISIR (CIDE RD-1)

HQ, U.3. MARTINE CORPS
WASHINGTOH, DC 20330

—

Air For;e

Air Forca Human Rasourcas Lab
AFHRL/PED
Brooks AFB, TX 73235

Air University Library
AUL/LSE 757443
Yaxwell AFB, AL 25112

DR. G. A. ECXSTRAND
AFHRL/AS
ARIGAT-PATTERSON AFB, OH u5u33

Dr. Alfrad R. Fregly
AFO3R/!L, Bldz. 410
3olling AF3, DC 23332

CDR. MERCER

CHET LIAI3DW OJFFICER
AFHRL/FLYING TRATNING DIV.
WILLTIAMS AFB, AZ 35224

Dr. Ross L. Morzan (AFHRL/ASR)
Wrizht -Pattersow AFB
Ohio 45433

Research Branch
AFMPC/DPAYP
Randolph AFB, TX 73143

Dr. Marty Rockway (AFHRL/TT)
loury AF3
Colorads 93239

Brian K. Waters, Maj., USAF
Chief, Instructional Tach. Branch
AFHRL

Lowry AFB, CO 30230

CoastGuard

4R. JOSEPH J. COWAN, CHIEF
PSYCHOLOGICAL RESEARCH (G-P-1/52)
J.3. COAST GUARD HQ

WASHTNGTON, DC 20530

Juazr DoD

Dafanise Docunanvation Cmiter
Cineron Suation, Bldz. 5
Al=xandria, VA 22314

Attn: TC

M-‘*'g y Assistant for Hunam Rasduraas
fhice af bl‘ Dir=2tor of De f‘ﬂs»

Res2arca E"lgl'l“rl'l"
Roon 30129, thy Pentazon
ANasaington, DO 223501

Dr. Harold F. O'i2il, Jr.

Advanead Res2urch Projazts Agency

Cydernatizs Tochmololy, Ra. 523
149D diison Blvd.
Arlinigoon, Vi 22299

Jirectar, Ras2uarsh % Duata
ABD/HRALL (Ra. 33719)

Tac Pa=tazon

Aasaington, D2 20301

DR. ROBERT YOUNG

ADVAHCED RESEARCI PROJECTS AGENC

1422 JILSOH 3LVD.
ARLINSTOH, VA 22203

Nom Gove

PROF. EARL A. ALLYUISI
DEPT. OF P5YCHOLOGY
CODE 237

OLD DIAINION UNIVERSITY
NORFOLK, VA 23523

Dr. Joan R. Anderson
Dept. of Psyzhology
Yal2 Universivy

2w Haven, CT 95520

DR. MICHAEL ATAO0D

SCIENCE APPLICATIONS INSTITUTE

4J DEZWVER TECH. CENTER WEST
7935 E. PREWIICE AVENUE
EUGLE4J3D, CO 32119

MR. SAMUEL BALL
EDUCATIOHAL TESTING SERVICE
PRINCETON, NJ 00542

Dr. Gerald V. Barrett
Deot. of Psyciwlogy
Univoersivy of Akron

niepmse vl LULUERED [

Civil Goyt

Dr. William Gorhan, Diractor
Parsoral RXD Center

U.S. Civil Service Commission
1900 E Strect N9

Washington, DC 20415

Dr. Andrau R. “olnar
Science Education Dav.

anl Rasearch
National Sciewce Foundation
Wwasaington, DC 20559

Dr. Taonas 3. Sticht
Basic Skills Program
National Institute of Education
1200 19th Strest NW
dasainzton, DC 20223

Dr. Verns W, Urry

Persorm2l R%D Center

U.S. Civil Service Commission
1920 E Street WW

Washington, DC 20415

Dr. Jos=2ph L. Younz, Dirsctor
Memory % Coinitive Procassas
National Scisvice Foundation
Washington, DC 2055)

Nov Govt

Dr. Kenneth E. Clark
Collez2 of Arts % Sziences
University of Rochestar
River Camous Statio=n
Rochestar, NY 14527

Dr. Norma= Cliff

Dapc. of Psycnolozgy
Univ. of 3o. Califarnia
University Park

Los aAnzgeles, CA 92097

Dr. Allan M. Colli=s

Bolt Beranek % Newman, Inc.
53 Moulton Street
Cambridie, M3 92133

Dr. John J. Collins
Essex Corooration

201 N. Fairfax Strest
Alexandria, VA 22314

Dr. Meraiith Crauford
3575 Yt iomsry Strooas

Casryg, Tasayt MY 23N

Or. MNicholas A\, Bond
Davs. of Psycanloly
Sucranntd Scave Collage
52 Jay 3uroet
Sacrasentd, CA 95319

Dr. Joan 32:2loy Browm
Bolt Beranale & Hawaam, Inc.
50 “doulvon Straet

Canbridize, MA 02133

DR. C. VICTOR BUIDER3IM
AICAT I'IC.

UHLVERSITY PLAZA, SUITE 12
116) 3. 3TATE ST.

OREM, YT 34257

Dr. Jaimi Careoll
Psycudaztric Lad
Univ. of Ho. Carolina
Davie leli 213A
Shugel Hill, lC 27514

Wom Gove

Dr. Richard L. Ferguson

Tne Aazrican Collage Testing Progran

P.0. Boax 153
[owa Cicy, It 52243

Dr. Victor Fields
D2pt. of Psycaolosy
Honvgoaery Colleze
Rockville, 4D 2335)

dr. Edwin A. Fleishna
Advanca2d Rescarca Resources Organ.

- oy

Silver Coring, 4D 207190

Dr. Joan R. Frederilisen
Bolt Baranazk % il2wman
50 Hoalton Strazc
Canprilge, MA 02133

DR. RO3ERT GLASER

LRDC

UNIVERSITY OF PITTSBURGH
3939)".JARA STREST
PITTS3URGH, PA 15213

DR. JAMES G. GREENO

LRDC

UNIVERSITY OF PITTSBURGH
3939 J9':ARA STREET
PITTSBURG, PA 15213

Dr. Barbara Haya2s-Rota
The Rind Corporation
1709 Mai~n Suraet

3anta Momiza, CA 9)4))

Or. Do=1ald Davmsarzau
Dept. of Psycholozy

Texas Caristia~ University
Fort Worth, TX 75129

DR. RENZ V. DAWIS

DEPT. OF PSYCHOLJGY
UNIV. OF MINNESOTA

75 E. RIVER RD.
HTHNEAPOLIS, MN 55455

Dr. Ruth Day

Cenitar far Advanced Study
in Behavioral Sciences

202 Jumiparo Sarra Blvd.

Stanfori, CA 9uU305

MAJOR I. N. EVOUIC

CANADIAN FORCES PERS. APPLIED RESEARCH

1107 AVZNUE ROAD
TOROAWTO, ONTARIO, CANADA

Non Gove

DR. LANWRENCE 3. JOHUSON
LAWREMCE JOHNSOd % AS30C., THC.
3UITE 332

2001 S STREET N4

WASHINGTON, DC 23209

Dr. Arvinld F. Kanarick
Honeyw2il, Inc.

2690 Ridzaoway Piwy
Minmeaodlis, M 55413

Dr. Roger A. Xaufman
203 Dodd Hall

Flor .da State Univ.
Tallahass2e, FL 323975

Dr. Steven W. Keele
Dapt. of Psychology
University of Jrezon
Euzene, OR JTUI3

LCOL. C.R.J. LAFLEUR
PERSONNEL APPLIED RESEARCI
NATIONAL DEFEN3E Q3

101 COLINEL BY DRIVE
OTTAWA, CANADA X1A 0X2

Dr. Robart R. Mackie

tunan Factors Ras2arch, Inc.
673) Cortona Drive

Santa Barbara Resz2arch PX.
Goleta, CA 93017

Dr. Willian C. Mann
USC-Tnfornacion 3ciencas Inst.
4575 Adniralty Way

Mariza fel Rev 8 2aM

Librury

HuwnRRI/ W2302r% Division
27357 Baruicic Drive
Carazl, CA)3021

Dr. Earl Hunc

Dept. of Psycivlogy
University of Wasainguon
Seattle, #A 33125

Nom Govi

Jr. Jo332 Jriansky
Inscituta far Dafonse Analysis
4 Aray Jdavy Drive
Arlivzton, VA 22202

“R. LUIGI PETRULL)
2431 1. EDGEvO0D 3TREET
ARLIUGTOH, VA 22207

DR. PEZTER PIL5OA

DEPT. OF P3YCIILISY
UALIVERSITY JF COLORADD
BOULDER, CO 32322

DR. DIANE 4. RAMSEY-KLZE

R-{ RESEARCH % SYSTEM DESIGN
3947 RIDGEMONT DRIVE

HMALI3U, CA 92255

Dr. Mark D. Racikase

Eduzational Psyznology Deot.
University of Missouri-Colunbia
12 Hill Hall

Colunbia, M) §5201

Dr. Josz2pn W. Rignzy
Univ. of So. California
Bshavioral T2camnalogy Labs
3717 South ip2 Sureat

Los Angeles, CA 992207

Dr. Andreu M. Rose

Amzrican Institusos for Rasearch
1055 Thaxnas J2ffarson St. Na
Aasaingron, DC 22)07

Or. L2onard L. Rasambaua, Chairman
Deparvnont of Psycholozy
Moritzonary Colloge

Rockville, HMD 20339

DR. WALTER SCINZIDER
DEPT. OF PSYCHOLIGY
UNIVERSITY JF ILLTHOIS
CHAMBAIGN, IL 51320

Dr. Richard 8. HMillward
Dept. of Psychiolozy
Humter Lad.

Brown University
Providenz2, RI 82912

Dr. Donald A Normaw

2pt. of Psycholozy C-20)
Univ. of California, San Diezo
La Jolla, CA 92093

Non Govt

DR. ROBERT J. SEIDEL

INSTRUCTIONAL TECHWOLOGY GROUP
HUMRRO

300 N. WASHINGTON 3T.

ALEXAUDRIA, VA 22314

Dr. Richard Snow

School of Education
Stanford University
Stanford, CA 94325

Dr. Robart 3tervbery
Dept. of Psychology
Yale University

Box 11A, Yale 3tation
New Haven, CT 05529

DR. ALBERT STEVENS

BOLT 3ERANEX % HEWMAN, INC.
59 MOULTON STREET
CAMBRIDGE, 44 02133

Mr. D. J. Sullivan

c/o Canyor Ras2arch Group, Inc.
741 Lakafield Roai

Wastlake Village, CA 91351

DR. PATRICK SUPPES

INSTITUTE FOR ATHEMATICAL STUDIES IN
THE 3SOCIAL SCIENCES

STANFORD UNIVERSITY

STANFORD, CA 94325

Dr. Kikuni Tatsuoka

Conputer Bas2] Eduzation R2s2arch
Laboratory

252 Engineering Rasearch Laboratory

University of Illivwois

Urbana, IL 51371

DR. PERRY THORIIDYKE
THE RAND CORPIRATION
1730 HATI! STREET

SANTA MONICA, CA 90406

Dr. Bavton J. Underwood
Dapt. of Psycholozy
Nortawfstars University
Evimstorm ’ IL 592N

Wom Goavt

DR. THIMAS JALLSTEN
PGYCIIDMETRIC LADORATORY
DAVIE ALL 92137

UNIVERSITY JF :ORTH CAROLINA
CUAPEL ILL, HC 27514

Or. Claire E. Weinstein
Eduzacionasl Psycaology Deot.
Univ. of Texzs zt Austin
Auscin, TX 73712

Jr. David J. Wd2iss
55D Eliiott Hall
Univarsity of Minmasota
75 €. River Roal
dimm2:300lis, M 55455

OX. KEITH JESCIURT

L4STITUTE FOR MATHEMATICAL 3TUDIES IH

THE 32CTAL SSIENCES
STANFORD UITVERSITY
STANFORD, CA 4375

DR. SUSAH E. 4HITEL
PSYCHOLIGY DEPARTHUENT
UNTVERSITY JF (AN3AS
LAAREIACE, KAU343 455744

