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The basic differential equations in this paper are taken from the linear ,

~ 
but fully coupled set developed by Houbolt and Brooks in 195&. These equations

/ are further reduced to a simplest possible case and yet still contain the
J • coupling of flap and root torsion modes. An unconstrained , adjoint variational
I statement has been established wbich Is both the necessary and sufficient con-

dition for the coupled differential equations and some general , but physical
t meaningful boundary conditions. The finite element matrix equations are then
I derived from this variational statement illustrating the way that coupling terms

could be handled in general .

—
~~~~~~ The numer ical resul ts from some demons trative examp l es show that ins tabi l ity

• of f lu tter can occur in the range of opera tiona l rotor speed due to the coup le d
motion of flapping and root torsion without any aerodynamic force, if the tor-
sional spring (or the pitch control link) is not sufficiently stiff. This in-
stability does not appear to have been reported previously.
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• 1~ 
_ _ _ _ _ _ _• 1. INTRODUCT I ON. An analytical investigation on vibrations and

dynamic stability of helicopter rotor blades usually consists of two phases
(1) the derivation of the governing differential equations to include para-

• meters and variables considered physically important, and (2) the formulation
of solutions for the equations derived and data interpretations. This paper
deals with the second phase of such an investigation.

Due to the slenderness of a helicopter rotor blades, its aerodynamic
cross-section and the requirements on the craft’s maneuverability, there
are a large number of interacting parameters and the resulting differential

• 
• equations are, as.a rule, nonlinear, coupled in terms of field variables.

In addition, the aerodynamic forces, coriolis forces due to rotation of the
blade are nonconservative in nature and the effects due to structural damp-

• ing and various boundary conditions must be evaluated.

Considerable attention has been given recently to the derivation of a
• consistent set of nonlinear differential equations together with aero-

dynamic forces. This fact is amply demonstrated by the work of Friedman
• and Tong [1] and that of Hodges and Ormiston [2). In both references [1]

and [2], brief reviews on earlier work on helicopter blade equations can
• be found. As for obtaining solutions to these equation s, there does not

appear to exist a general and efficient method to deal with the difficulties
associated with nonhinearities, nonconservative forces, coupling terms,
various boundary conditions, damping effects and periodic excitations. For
example, Miller and Ellis [3], Ham [4], and Friedman and Tong [1] have

• obtained approximate solution by including in their solution formulation
only the lowest modes of vibrations , Hodges ’ and Ormiston [2,5] employed the
Galerkin technique in their numerical examples. One of the disadvantages
of this approach is its inability to handle general boundary conditions.

Using the combined concept of adjoint variable and Lagrange multipliers,
variational statements can be established for a wide range of linear prob-

• hems with nonconservative forces and very versatile boundary conditions [6].
Thus a generalized Rayleigh-Ritz approximation scheme can he established
for the obtaining of solutions of these otherwise difficult-to-solve prob-
lems. In conjunction with finite element discretization , this approach
has been amply demonstrated in such applications as nonconservative stabil-
ity, damping effects and very general boundary conditions [7,8,9]. • In the
present study, the solution formulation is limited to the blade vibration
considering only the coupling of flapping and root torsion. Although the

• present method can conceivably be extended for solutions of nonlinear prob-
lems, it is desirable first to have a thorough understanding to solutions
of linear problems. For this purpose, one can go back two decades and use
the equations consistently derived by Houbolt and Brooks in 1956 [10]. The
original set of equations was derived for elastic distributed torsion. It
can be adapted to model root torsion if proper boundary conditions are

• introduced. This is shown in Sections 1 and 2. The physical justification
for emphasizing root torsion over the distributed torsion was due to the
pitch control link at the inboard end of the blade and was used by Miller
and Ellis [3] and again by Ham [4]. It should be clear that, in the
present formulation, to include distributed torsion is simply a matter of

• increasing the number of degrees-of-freedom of the discrete system. The
basis of the solut ion formulation and the technique of handl ing the coupling

• 1
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terms are given in Sections 2 and 3. Finally, the numerical results
obtained indicate that “flutter instability” can occur simply due to the
coupling effect considered without any aerodynamic loads.

2. STATEMENT OF THE PROBLEM - DIFFERENTIAL EQUATIUNS. As a first
step to demonstrate the application of the unconstrained variational -

finite element formulation to helicopter rotors, the vibration of a rotor
blade considering the coupling of flap and root torsion modes of motion
is analyzed (Figure 1). For this purpose, the linear set of equations,
derived by Houbolt and Brooks [10], including the coupling flap and distri-
buted torsion is rewritten here:

(EIw ’~ — TeA$)” — (Tw’) ’  - (~2
2mxe4)’ + m (~ + e~~) = L~ , (1)

- [ (GJ + TkA
2 ) 4 ’ ] ’ - TeAw” + ~

2mxeW ’

+ S12m(k22 
- k 2

1 + ee0)4  + mk~ • 4— me~ = M (2)

where W = W (x,t) and • = $(x,t) denote the flapping deflection and distri-
buted torsion of the rotor blade respectively. A prime (‘) denotes differ-
entiation with respect to x, the coordinate along the blade elastic axis
and a dot (S), differentiation with respect to the time t. Other symbols
are defined in the following and are consistent with the notation in
reference [10].

El = flexural rigidity of the cross section.

GJ = torsional rigidity of the cross section.

2. = length of the blade.

e chordwise distance between elastic axis (E.A.) and centre
of gravity. (C.G.) of a cross-section, positive if C.G. is
ahead of E.A.

eA = chordwise distance between E.A. and centre of tensile area
(C.T.) of a cross section, positive if C.T. is ahead of E.A.

= chordwise distance at the roOt between E.A. and the axis
about whjch the blade is rotating, positive if E.A. is ahead.

• kA = polar radius of a gyration of the tensile area of a cross-
section w.r.t. E.A. in a cross-Section.

kmi = radius of gyration of the total area of a cross-section about
the major neutral axis (axis 1-1 in Figure 2).

radius of gyration of the total area of a cross-section about
• 

• 
an axis perpendicular to the major neutral axis and through

• E.A. (axis m2-m2 in Figure 2).
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• . 1
km = polar radius of gyration of the total area of cross-section

about E.A. (k~ = k1~1 
+ k~2 ) .

= blade angular velocity.
2.

T = T(x) = f inQ2xdx, which is the tensile force at location x.
x

• 
• 

= aerodynamic lift per unit length of the blade.

H = aerodynamic torque per unit length of the blade.

In reference [10] , a nore general set of l inear equations with fu l ly
coupled flap, lag and distributed torsion modes of motion were derived .
The coupling terms have been shown to be due to the noncoincidence of the
elastic centre, centre of gravity and tension centre, the centrifugal force
and the built-in angle of twist. For a rotor blade without the built-in
twist angle, the lag mode of motion is uncoupJed from the general set of
equations and the remaining coupled equations are Eqs. (1) an4i (2)
considered here.

Since only the “free vibration” of the rotor blade with a coupling
between flexural and root torsion is considered in this paper, the terms
due to aerodynamic forces are set to zero and the torsional displacement
is only a function of time and not a function of x. Thus

M = L ~~= O , 4 ) = 4 ) ( t) (3)

and Eqs. (1) and (2) reduce to the following:

EIw” - (1w ’) ’ + — ~2~me4) + me~ = 0 (4)

122m(k 2 - k 2
1 

+ ee0)4) + m k 2 4) - TeAw

+ m~2
2exw ’ + me~ = 0 (5)

In Eqs. (4) and (5) , it is also assumed’that the blade has constant
E, I and m throughout its length. To simplfy so]ution formu)ations as
mu ch as possible, Eqs. (4) and (5) will be transformed into diniensionless
forms and appropriate dimension l ess parameters will be introduced . This
process will also facilitate parametric studies.

Let

• ; ; =~~ I

(6)
2 . ’  c

~here the constant c has a real time dimension and will be defined later in
Eqs. (12). Eqs. (4) and (5) become

3
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m a w t~~~~ (T aw) + n L a m~2 e~~+ m e a 4) O (7 )
£~ ai” t~ ~~ c2 ~~ 2 c2 ~~ 2

a r, d

m~
2 k 2

~ + ~~~~~~~~
— ~~ - ~-!~~ !~~ + ~~

2 eL 2 
~ + ~~~ ~~~ = 0 (8)

c2 
~~~ £ 2 ~~~2 2. ax c 2 3t 2

where

k 2 
= 1Sn2 - k~1 + cc0 (9)

Mul t iplying Eq. (7) by , one has

I !~~. ~~~! 1 2 2

ai~ 
- a~ ~EI ~j ) + El c 2 

~~~ 
- El ~ . ~~2 c Q 4)

+ 
1 
~ = 0 ~I0El c2 t ai2 ‘.

Multiplying Eq. (8) by ~~-~- , one has

2

c 2 122 
~~~~~~~~~~ 0 (11)

Now let

=
El

- 
eA - _ eoe _ i , eA

_ -j_ ,’e o _ - -
~- -

- ~. - k
k ~- , km = (12)

2. 2.

To = 
T (A ) L 2 

= 1ñ2 (l j2 ) -

Eqs. (10) and (11) then become

A. ~~~~!w) + ! _  ~~~~~ + ~ !~~~= o (13)
ax~ 3x ax at 2

-• -~ -~~
-- -

~~~~~
——  —-

~~~~
—

~~~~~
----— - - - —

~~~
-- — —  -— - ——
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and -

— — — a2
~ - — a 2 - - -  —

fl2 k 2 $ + k~ —~~~ - T(x ) eA —~~~ + Q2 ex —
~~~ + e = 0 (14)at - 

~x 2 3x a 2 t 2 
- - •

With all quantities in Eqs. (13) and (14) in dimensionless forms,
- one can omit the bars altogether and write:

w” - (Tw’)’ + - 122e4) + e4) = 0 (15) -

•

and

Q2k24) + k 2 4) - TeA
Wt + fl2exw’ + e~ = 0 (16)

Furthermore, it is assumed that

w(x,t) = w(x)e Xt (17)

4)(t) = 4)eAt

Thus the final set of equations upon which the present solution formula-
tions are based, is the following:

- (Tw ’)’ + A 2w - 122e4) + A 2e4) = 0 (18)

and

~
2k24) + A 2k~ 4) - TeAw + ~

2exw’ + A 2ew =- 0 (19)

3. AN UNCONSTRAINED VARIAT IONAL STATEMENT AND BOUNDARY CONDITIONS.
Some of the unique features of the unconventional variational formulation
are that all the boundary conditions are natural boundary conditions and
that the set of the differential equations, together with all the boundary
cond it ions , is the direct consequence of a variational statement and vice
versa. The construction of such a variational statement is simply a process
of integration-by-parts from a bilinear functional of the original differ-
ential equations multiplied by the variation of the adjoint field variable ,
into some other bilinear functional with lowest possible derivations of

• both the original field variable and the variations of the adjoint variable.
• With a proper choice of the generalized Lagrange multipliers, any physical

meaningful boundary conditions consistent with the physical meaning of the
given differential equations themselves can be resulted from the variational
statement as natural boundary conditions. This general process was treated
elsewhere [7] and will not be reported here. Presently, an unconstrained

• variational statement will be given which ]eads to the original differential
equations and a cet of a very general boundary conditions.

5
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Let us consider the variational statement

6 1= 0  (20a)

wi th -

1 1 l + 1 2 (2Gb)

I i = f.[w1,w*tt 
+ Tw t w*~ + A 2 ww* + e(A2 - ~~2 ) 4) w

*]dx

+ klw(0) w* (O) + k2 W’ (O)W*~ (0) (20c)

and

12 = f
1
[c22k2 + + eAT’ w’$ + e(c�2xw I4)* + A 2w4

*)]dx + k3~4
*

0 - (20d)

where a star(*) denotes the adjoint variables and the variations are totally
unconstrained . The Lagrange multipliers k1, k2 and k3 are the spring con-
stants, in dimensionless form , for deflection, bending and torsion at the
hub (x = 0) respectively. To show that the unconstrained variational state-
ment of Eqs. (20) leads to the original differential equations and the
necessary boundary condi tions, one cons iders

(61) = 0 (21a)

• where 
~~~~~ 

means taking the var iat ion of I with w ,4) not varied . Thus

= 
~~~~~~~ 

+ (612) , 
= 0 (21b) —

• with

= f
l
[w~ISw

*1
~ + Tw ’6w~

’ + A 2 w6w* 
+ e(A 2 

- c2 2 )4~6w*]dx

+ kiw(O)sSw
*(O) + k2w”(0)’5w~

’(O) (21c)

and

= j~~~~~
2k2 + X2k~),6,

* 
+ eA

TI w ?64)*

+ e(cl2xw’ + x 2w)o,*)ax + k 3~ 64)* (21d)
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Performing integrat ion-by-par ts , one arrives at

(6I~ ) = f
1

[w” — (Tw ’)’ + + e(A2 — c2~)q]6w
*dx

0

+ w I~( l)6w **( 1) - [w ”~ l) - T(l)w~ (l)]6w*(1)

— [w”(O) — k
2
w~ (0)]6w*t (0)

+ [w” (0) - T(0)w’ (0) + k1w(0))ôw
*(0) (22a)

and

= f
l

[(ç~2 k 2 + A 2k2)4~ - eA
Tw . + e(~

2 xw ’ •+ A 2w)]64)*dx

4. [eAT( l )w t (l) - eAT(O)w’(O) + k34)]6,
* (22b)

Thus Eqs . (21) is the necessary and sufficient condition for the following
different ial  equations and boundary conditions :

D.E.:
w” - (Tw ’)’ + A 2w + e(A2 - = 0 (23a)

(~2
2k2 + A 2k~)4) - eATw” 

-

+ e(Q 2 xw ’ + A 2w) = 0 (23b)

• B.C.:

w”( l) = 0, w” (1) = 0 (24a ,24b)

W” (0) - k2
w’ (0) = 0 (24c)

w” (0) - w’ (0) + k1w(0) = 0 (24d)

and -

- 
A 

~~~~~ (0) + k 34) = 0 (24e)

Note that in Eqs. (24) the fact that

T(l)= 0

and
T( 0) = c~

2 (25)

has been used .

-
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It is observed that the boundary conditions of Eqs. (24c) and (24d)
represent very general support conditions at the hub. The special case
k 1 = and k2 = 0 corresponds to a hinged blade , while  the case k 1 =

k2 = corresponds to a hingeless blade. These two special cases are the
only ones considered in the literature. The boundary condition (24e)
indicates a coupling between the flexural motion w and root torsion at
the hub due to the centrifugal forces and the noncoincidence of the elastic
axis and the tension axis.

4. MATRIX EQUATIONS FROM FINITE ELEMENT DISCRETIZATION. In this
section , we shall briefly des cribe the formu l ation of the ma trix equation
of the approximate solution from the variational statement given in the
previous section. From Eqs. (21), one can wri te

= 0

or,
= f 1(~ 6 ~~“ + Tw~6w*t - ec~2 qx5 w*)dx
0

+ lC1~~(O)ôw (O) + k2w’ (0)6w
*I (0) + A 2 

f 

l
(wôw* + ~~~~~~~

+ f
l

[~2 2k 2,6,
* + eAT’ w ’ cS4) + ec~2 xw~ tS4)*]dx + k34x54)

*

+ A 2 
f
l (k~,6,* + ew6~~*)dx (26)
0

It should be noted that Eq. (26) is a quite general equation. Various
types of approximate solutions can be obtained depending on the choice of
the coordinate functions. The motivation of using the finite elemen~
discretizations , which corresponds to the choice of a set of piecewise
analytic functions, is twofold: for the ease of extending this formul ation
to problems of irregular geometry and for the adaptations to general finite
element computer systems.

In the pr esent formula tion , however , only blades of uniform cross-
sect ions will  be consid ered and the el ements are assumed to be of . the same
length. Thus, one ir:troduces a local (element) coordinat e ~ which re]a es
to the global (~nti7e blade) coordinate x such that

= ~ (i) 
= L(x ~

) (27)

where L is the number o~ elements and i denotes the i-th element . Using
the notation

= w ( x (~~’~ )] ,  etc. (28)

for simplicity and not~Lng that

d~~= L dx

- 
w ’ (x) = Lw ’~ ’ ( F ) ,  etc. (29)

8
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one then has, from Eq. (26):

(61)- = 0

L 1 
-
.

= ) {f L 3w (1), ,(E ) 6w *(1),,
(€ )d ~

1=1 0

+ f ’L T(1)(~ )w t (~ )6w*t (~)d~ - 
e~~4)

+ k lw (l) (0)ów *(l) (O) + k2L
2w(~)1 (O)6w*Wt (0)

+ A 2~~~ {~ . f
lw (i) (~ )6w *(1) (~ )d~ + ~~~ f

l
6w *(~ ) (~ )d~ }

{~~
2k 2 ,6,

* 
~~fd ~ c~

) 
+ eA L

+ !~~~ f
l

[~ + (i - l)]w ’(~)d~ 6~~ ) + k34)6,
*

+ A 2 { ! 4x54)* f
’d~~
’
~ 
~i~l

•
~

• f l
w

(
~~~~)a ~) 64) * 

(30)

where

= - b [E 2 
+ 2(i - l)~ + (i — 1) 2 

- L2 ] (31)

and

b = — ~-— (32)- 2L2 
-

At this point, it is appropri ate to introduce the shape function and
• generalized coordinates. Let

~~~~~ = 
T
(~)w

(i)

= aT(~ )W*(j) (33)

wher e the superscript I denotes the transpose of a matr ix

~9
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w(j)T = { W
1

) W2~~~ w3~~ W4
(
~

-) )

*(i) I 
= { w~

(i) w~~
) 
~~~ w W ) (34) -

•

and

aT(~) = -U - 3~~2 
~~ ~~~ ~ - 2~~ + ~~3 , 3~ 2 - ~~~ - + 

~~) (35)

Using Eqs. (31), (32) and in terms of ~~~~ W~~~
), Eq. (30) becomes

(6I)~~, = 0

i-l~~~~~~~~~~~ 

- bL [f ~
2ae a~

Td~ + 2(1 - l)f~~at a t Td~

+ {L2 - (i - 1)2)

L *(PT 1
+ 

~~ 6W ‘ (- 2ebL) f ad~ 4)
i=l

* ~~~ T - (1~ *‘ ‘ T (1)
+ OW ~ 

) k1 a(0)a (0) W ‘ + OW ‘- -‘ k2L
2a’ (0)a ’ (0) P1

+ A 2 { X 6W*(i) I 
~~
. f~~~T~~ W~’~ + ~ f ade 4))

+ O4)~ ~
2k24) + cS4) k

3 4)

+ 64)* X 2(e~~ eA)bL I a~
T
(~ )d~ + (i - l)f a 4Td~ ~~~~~

+ A 2 64)
*
[k24) + ~ f

’aTd~ ~~~~~ 

- 

(36)
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Or,

(61) = 0

~~~ *(1)T {.3C bL [E + 2(i - l)D CL2 - (i - ~ ) 2) B])W~~

+ ~ OW 
C’) (- 2 ebL)p 4) + OW ~~~ [k 1F + k 2 L G] W ~i=l .- .- — —
* A 2

[~~~~ 6tv*(1)I [ A W(~) + p 4)1

T T (i)
+ 64) ~~ 2(e - eA)bL (s + (1 - 1) r ) W

i=1 — — —
L

+ (c~ k~ + k3)4) + A 2 ~~~ e ~T 
~
C’
~ + k24)) (37)

where the element matrices are defined as follows,

A = f
l
aaTd~, B f

l
at aITd~, c = f

l
a1~a~

Td~— 0_ _ — 0
_ 

- - 
0
_ 

-

D = f ’~a~a t Tci~ = f~~ 2 a 4 a~
Id~

F = a (0) aT (O) , C = a~(0)a4T(0)

i 1 1
p = f  a d ~ , r = f  a ’ d ~ , s J ~~~a ’ d ~ (38)
— 

0 0~~~~

The numerical values of these matrices are given in the Appendix.

In terms of the global coordinates defined in the following

-

. 

W =  ~ , W~~ = 
~~

4) - 4)

and

w~
’ 

— w (1) (1) (1) (2) , (2 ) (L) (L){w 2 w w P. . . . . w w }

w~
T = {w*(~ w*(fl w*(fl w*~

l)  w*(2) w*(2) w*U~ w~~hj
— 1 2 3 4 3 4 • • • • 3 4 ()
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• One has from Eq. (37) :

~
6
~~w ,$ = 0

= 6~*I (k + A 2M)i1

= {6~*b64,*} 1;i + X2~.i~ K 12 + x 2M12 w

• 

[~
2l + A2~ 21 K22 + 4, 

(41)

The global matrices ~~~ 14~~, i, j  - 1,2 ar e assembled from the element
matrices defined in Eqs. (3~) in the following manner.

6~ *Tg~~~ = ~~ow *(j ) T (L 3 (C + bB) + bL( 2D - B - E)

+ 2ibL(B — D) — j
2

b L B)w
(i) 

+ ow *(1) T
{k 1F + k2L

2G) W(~~ (42a)

L - T
= ~~6w*(1)  (- 2ebL p)4, (42b)

= 64,~~~ 2(e - eA)bL [s - 
I 

+ irTi~~
(1) 

(42c)

= 64,*(~2k2 + k 3)4) (42d)

ow~~fl w = ~~~~*(i) T 
~ A (42e)

OW M 124, = ~ OW 1 -~~~ p 4, (42f)
1=1

= O4,* 
i~ l ~ 

~ (42g)

= ~~~ k~ 4) (42h)
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Since 6w*T = {OW*T 6,*} in Eq. (41) is unconstrained , Eq. (41) leads
directly to —

(K -+ A 2ti)i~ = 0 (43)

which is the final matrix eigenvalue equation to be solved.

5. RESULTS AND DISCUSSION. Prior to the presentation of the demon-
strative numerical results, it will be worthwhile to make some observations
on the nondimensionalized differential equations (15) and (16) and the
boundary conditions (24).

a. For e = 0, the flapping motion w(x,t) and the root torsion 4,(t)
are essentially uncoupled. The eigenvalue solutions of w reduce to that of

— a rotating beam and agree well with the available data of Boyce, DiPrima
and Handelman [11]. The torsional vibration frequency has only one eigen-
value solution and, if CA = 0 also, it varies linearly with the rotor speed

~ as expected.

b. For e j~ 0 and eA = 0, the motions are generally coupled. It is
observed that if e and 4, both change sign, the equation remains unaltered.
Thus, as far as eigenvalues are concerned , they depend only on the absolute
values of e. The solution of 4, for a negative e, however, is 1800 Out of
phase compared with the one for a positive e of the same magnitude.

c. For e ~ 0 and CA ~ 0 the motions are generally coupled. It is
observed that if e, e~ and 4, all three change signs, the governing equa-
tions remain unaltered. -

Some demonstrative calculations will now be given*. The eigenvalue
A is generally a complex number.

A = A R + i A I (44)

Prom equations (17) and (44), it is clear that the system is unstable of
divergence when AR is nonzero positive and A 1 = 0. When AR = 0, on the
other hand , A1 (LAMBDA) ** represents the nondimensional frequency of
vibration and it can then be plotted against the nondimensional blade
rotating speed 12 (OMEGA) , as shown in Figures 3 through 7. When X is
complex, one of the square roots of A 2 must have nonzero positive real
part. The system is then unstable since A appears in the equations only
as A 2 . The value of A generally become complex as the two branches of
the frequency curve coalesce. The “crit ical” speeds can be located in
these figures by noting these points of coalescence.

~~ extensive parametric study of a rotor blade instability in vacuum due
to the coupled flap- (root)torsion motion will be presented in a
forthcoming paper.

**The symbols enclosed in parentheses are those used in Figures 3
through 7.
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For the following sample calculations, the parameters used are typ ical
for a medium size rotor blade of 20 ft. in length , for example. It is
further assumed that (the nondimensionalized quantities)

e(E) = 0.003, e0(E0) = 0

kmi (KM1) 0.0025, km2 (KM2) = 0.0100

The boundary conditions at the hub are those of a hingeless blade. The
values of k1(K-l) and k2(K-2) are set to 10

8 as approximations to infinity.
The torsional spring constant k3(K-3) has been set to zero.

In Figure 3, eA (EA) is taken to be 0.003. Thus
eA -eAy (GAMMA ) = -
~~- = —i- = 1.00

Here the lowest branch of A 1 is essentially for the torsional motion . The
second and third lowest branches are essentially the first and the second
for f lapping motion . For the range of rotor speed shown*, 0 < 12 < 25, the
coupling is not sufficient to have instability. In the subsequent figures
as eA = 0.0015, 0, -0.0015 and -0.003 (and y = 0.5, 0, -0.5 and -1.0),
the effect of coupling becomes more and more severe. In Figure 4, the
two lowest branches of eigenvalues appear to draw closer compared with
those in Figure 3. They actually coalesce in Figure S at a cri t ical
speed about ~2 = 16.5. As eA continue to decrease (increase) in algebraic
sense while holding e a positive (negative) constant the critical speed
of flutter instability tends to decrease and thus the structure becomes
more critical. This is observed in Figures 6 and 7.

To obtain some idea on the effect due to the torsional spring k , the
calculations are repeated for the same set of data as in Figure 5 ëx~ept
that the value of k3 is changed from zero to 0.01. The new frequency curvesare shown in Figure 8. It appears in this figure that the essentially
torsional branch has moved upward while the other branches remain largely
unaltered. The new critical speed prior to flutter instability, how ever,
has changed from 16.46 (Figure 5) to 17.08.

A rather quick review of the existing literature suggests that the
flutter instability due to the coupling fl app ing and root tors ion mot ions
may have not been repo rted previously. The practical signif icanc e of such
instability within the range of real desi gn parameters is obvious. An
extensive parametric study on this instability is being carried out. The
results will be reported shortly.

ACKNOWLEDGEMENT. The authors wish to express their appreciation to
Mr. Richard F. Haggerty for his assistance in obtaining the numerical
resul ts. They also wish to thank Miss Ellen Fogarty for her patience
and skill in typing the manuscript.

*At ci (O~1EGA) = 25, which is nondimensio nal ,_ the real rotor speed is roughly
1000 rpm for a typical value of c = = 0.0040mm .
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APPENDIX

The numerical value of some of the matrices used in Section 4 are
given here. -

13 11 9 _ l3

25 210 ~ 0 42 0

• 11 1 13 1
210 105 420 140

A = 
I 

‘aaTd~ = (A-i) —

70 420 35 210

13 1 11 1
420 140 210 105

5 10 5 10

1 2 1 1
1 T 10 15 10 30

B = f a ’a ’ d~ = - (A-2)
- 0~~~ -~~~~~~ ~ L ~5 10 5 10

- 1 1 1 2
10 30 10 15

12 6 -12 6

6 4 - 6  2
c = f

la~ta1~
Td~ = - 

- (A-3)
— O * -12 -6 12 -6

6 2 - 6  4

16 

- - - 

—h— -‘-~~~~~~~~~~ -~~~



- -— ~.. r  - -

-

-

0
- 

S 10 5

= 
~~~~~~~~~~~~~~~~~~~~~~ 

- (A-4)

35 14 35 35

— 14 105 14 70

* f~~2 a~a t Td~ 12 1 12 1 (A-5)
0 - -; _

;. ; ;
1 1 1 3

35 70 35 35

1- 0 0 0

T 0 0 0 0
P z a(0)a (0) — (A-6)

— 0 0 0 0

0 0 0 0

0 0 0 0

0 1 0 0
— C ‘ aI (O)a~

T(0) a (A-7). . — 0 0 0 0

-: 

- 
0 0 0 0
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- 2

12 -~I -

p = f a d ~~= 1 (A- 8)
0 •

~~
- 

•

1
12

—1

1 0
r = f a ’dF = (A- 9)

~~~~ 0~
’
~ 1

-i..
1 - -

12

s = a’d~ = 1 (A-b )
0 2

-i

12

I
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__

E.A.~ C.G J.T.

T.A. = Axis of Tors ion

E.A. = Elastic Axis

C.G. = Centre of Gravi ty

C.T. = Centroid of Tensile Area of a Cross Sect ion

Fi gure 2. Parameters related to off-sets of various axes.
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K-2 100000000.
+

j
i
’ 

/ K-3 0.0000
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“ - E 0.0030

/
/
/ ::::

~ ._-“ KM1 0.0025/ KM2 0.0100

/~ 
GA~~A 1.0000

0.00 4.00 8.00 12.00 18.00 20.00 2 1L00
OMEGA

Figure 3. Vibration frequency vs speed of rotation (eA—0.OO3O , e~0.0030) .
No instability in the range of speed shown .
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/ / K-i 100000000.

+ K-2 100000000.
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/“ ,~/ EA 0.0015

.~“ ,
/ E0 0.0000

~~~~ .~ ..“ 
,
/

‘ 

KM1 0. 0025

KM2 0.0100

• 

GAMMA 0.5000

0.00 ~LOO 8.00 12.00 16.00 20.00 24.00
OMEG A -

Figure 4. Vibration frequency vs speed of rotation (eA O.OO1S, e 0.0030).
No instability in the range of speed shown.
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c3
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K 1  100000000.

a 

•:-“/“ K-2 100000000.

- K-3 0.000

,/ / ‘ E 0.0030
C!.  

~ 
E~ 0.0000

- + ~ E~ 0.0000
/

/

1 XMl 0.0025

~ KM2 0.0100
4- ‘ U• 
/ ‘ ‘

~~~ GA?.Q4A 0.0000
/

~ O.OO q’.oo 8
1
.00 1’2 .O0 16 .00 20 . 0 0  2 14 .0 0OMEGA

Figure 5. Vibration frequency vs speed of rotation (cA-O, esO.0030).
Flutter instability at (~—i6.46.
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K-i 100000000.
0

K—2 100000000.

- K-3 0.0000

E 0.0030

EA -0.0015 
-

~~,
.r ÷ La 0.0000

~~~~ 

~~~~~~~~~~~~ ~/
“ 

: ~ XMl 0.0025

7 KM2 0.0100

/ 
, - GAMMA -0.5000

/

/
0.00 tl.0O 8.00 12.00 16.00 20.00 214.00

OMEGA

Figure 6. Vibration frequency vs speed of rotation (eA=-O .OOlS , e=0 .0030) .
Flutter instability at ~l.5.80.
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C - - K-2 100000000 .
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0

EA - -0.0030
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~ - E0 0.0000

O ~~~~~~~~~ I :  ~ XMl 0.0025
0

/ 

, KM2 0.0100
+ l

~~~~~~~~ .
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GAJ44A —1.0000

• 

‘~~~~~~~~~ 

-

~‘O.00 4 .00  8 . 0 0  12 . 0 0  16 . 0 0  2 0 . 0 0  2 11 .0 0

OMEGR

Figure 7. Vibration frequency vs speed of rotation (eArn —OS0030 , e.0.0030) .
Flutter instability at fl=4 .59 .
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0 - -
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LA 0.0000 

-

~ E~ 0.0000
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GAt+IA 0.0000

I ~~~~~~~~~~~~~~~~~~~~~~~~~~~ 1 ~_! -~- --~ —
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Figure 8. Vibration frequency vs speed of rotation. (Same data as in
Figure 5, except k 3 has been changed from zero to 0.01).
Flutter instability at ~=l7.O8.
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