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ABSTRACT

Of particular importance in an interactive curve and surface design
system is the interface to the user. The mathematical model employed in
the system must be sufficiently flexible for interaction between designer
and machine to converge to a satisfactory result. The mathematical theory
of Total Positivity Is combined wi th the interactive techniques of Bezier
and Riesenfeld in developing new methods of shape representation which
retain the valuable variation -diminishing and convex hull properties of
Bernstein and B-spline approximation , while providing improvements in
the interactive interface to the user. Specifically, extending the
Bézier notion of using a polygon to describe a smooth curve , methods of
assigning a weight to each vertex which will control the amount of local
fit to the polygon or polygonal net are provided . Thus, the designer can
cause ~~usps’ and - flats’~—~asi1y by manipulating the ‘?fension~~at eachvertex . Further, the general i zation from curves to surfaces can be done
with rectilinear data or triangular data . Illustrations are provided
from an experimental implementation of the newly constructed model s as
a demonstration of their feasibility and utility in computer aided curve
and surface design .

*ThjS research was supported in part by the National Science
Foundation (MCs-74-l3o1 7-Aol ) and the Office of Naval Research
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I. INTRODUCTION

Computer Aided Geometric Design is principally concerned wi th

the modelling of physical objects within a digital computer for

automated design and manufacture . Potentially, the computer can free

the designer from the limitations of traditional drafting techniques

while enhancing and accelerating the production process. Working

interactively at a graphics terminal or a numerically -controlled

drafting machine , a designer can modify or manipulate an existing

model or he can design an object ab initio , using trial and error

techniques to produce an acceptable dr~sign . The computer system

can then generate the necessary information for numerically controlled

manufac ture andproduction [1].

Statement of Problem

The two central problems this paper addresses are:

(1) The development of a unifying theory for the construction
and analysis of methods of modelling free-form curves and
surfaces in a digital computer , and

(2) The application of thie theory toward the construction
of new techniques for ab initio design .

These probl ems are part of a study termed Computer Aided Geometric

Design (CAGD).
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Computer Based Modell ing for Geometric Design

The real ization of such a system for curve and surface descrip-

tion imposes certain constraints on the computer-based model. The

model must accura tely represent a variety of shapes , be amenabl e to

analysis and manipulation , and must take into account the capabilities

and limitations of both the designer and the computer., Although it

is clear a mathematical model is required , the properties of shape

cannot be characterized entirely by the properties of analytic func-

tions and , therefore, new mathematical techniques for synthesizing,

storing and retrieving shape information are needed .

The shapes we are concerne d w ith in CAGD have , in general , no

specific functional form and what is required is an acceptably close

P fit which maintains the character of the object being designed . Since

all real three—dimensional objects are of finite size , the mathemati-

cal representation of these objects should reflect this boundedness in

a convenient and efficient manner. Shape is non-analytic in nature ,

in that it is not generally possible to predict the entire shape of

an object from its shape in any one localized area . Further, shape

is an orientation independent phenomenon , thus intrinsically a proper-

ty of the object itself and not of the space (coordinate system) in

which it is embedded.

To meet these shape cri teria we restrict our attention to vector—

valued bounded piecewise analytic functions from a finite dimensional

linear space. ‘ That is, we have for curves
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P(t) E 4) (t)P1, (1.1)
id I

and for surfaces

P(u ,v) = E 4)~
(u,v)P 1, (1.2)

id

where I i s some linear ordered , finite set of integers , P.~ c R
3, t and

(u ,v) are elements of some bounded subse t of R and R2, respectively,

and the {4)1(t)} and {4)1 (u,v)) are linearly independent sets of bounded

piecewise analytic functions.

The set of points P.~ clearly constitutes the controlling parame-

ters wi th respect to the basis {4)~, it!). It remains , then , to find

bases which appropriately model the constraints of a CAGD system. Not
P

only must the control parameters be suitable for interactive communica-

tion between designer and computer , but the basis functions must be

appropriate for digital representation and computation. At this point

we make the distinction between the fi tting of a mathematical represen-

tation to a predesigned object and the design of an object ab init io,

for our choice of basis may depend on which type of design process we

w ish to model.

In fitting we are concerned wi th finding a mathematical description

of an existing shape or physical object, and in ab initi ,o design the

problem Is to create a ma themat ical represen tation whi ch meets des ign

constraints which may be entirely subjective , esthetic considerations.

Because we know the exact shape a priori , fitting can be done by digi-
0 tlzing points off the object and interpolating the data with an
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appropriate approximation method . What constitutes a “good° approxi-

mation is ultimately up to the designer and interaction with the

model may be necessary. Thus there are hard and soft constraints to

be met. The hard constraints are the discrete data which must be

interpolated , while the soft constraints are manipulated by the de-

signer in determining an acceptable fit. In general , there are few

hard constraints in ab initio design and the designer manipulates

this increased flexibility to achieve his final design.

While interpolation techniques appear necessary for the fitting

problem , this requirement is not present in ab initio design . Of

fundamental importance in ab initlo design is the interface to the

p designer. If an interactive design session is to be successful , the

designer must be able to manipulate the control points P1 in an itera-

tive process which converges when a satisfactory shape is achieved.

Thus the shape of the curve or surface must respond predictably to

the interactive manipulation of the control points. Experience with

interpolation techniques indicates that unwanted kinks and oscillations

can occur dur ing the des ign process , making it difficult to predict

the response of the curve to manipulation of the data .

An ab initio system for the design of automobiles which avoids

these difficulties is B~z ier ’s Systeme Unisurf at Renault [1). In Système

Unisurf the control points are associated with the vertices of a poly-

gon for curves and the vertices of a rectilinear net for surfaces.

0 The resul ting curve or surface repli ca tes the gross fea tures of the
polygon or rectilinear net. More importantly, the design responds
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predictably to the maniuplation of the control points.

In B&zier ’s method curves are piecewise polynomials where the

curve is given on each piece by

m
P( t) = 

~ 4)1 (t)P 1 , (1.3)
1=0

where

4)1 (t) 
= (

~
) t’ (l- t)~~

for tc (O,l),m is the degree of the polynomial , and fhe P1 are the

appropriate vertices for that piece . Figure 1.1 shows a typical

Bezier curve and the associated Bernstein basis functions.

p

Figure 1.1 (a) Cubic B~zier curve and associated polygon .

0
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1.0

0 1.0

Figure 1.1 (b) The cubic Bernstein basis.

Surfaces are generated by taking the tensor product of the basis func-

p tions wi th respect to two orthogonal directions , i.e.,

P(u ,v) = 

i~O ~~ ui( l_ u) m_i 

~ 
(
~

) v3(1_v)’~3) ~~ 
(1.4)

where (u,v)c(0,l)x(O,l), m,n are the degrees of the polynomial w i th

respect to the u and v directions and the P~ are the vertices of the

associated rectilinear network. Figure 1.2 shows a B~zier network and

the corresponding surface.

0
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Figure 1.2 Bicubic Bézier surface and associated recti-

linear network of points .

P Gordon and Riesenfel d {l4] have associated the remarkable repro-

ducing power of the Bernstein-B~zier methods with:

(1) the fact, that Bernstein approximation is variation —
diminishing, and

(2) the fact that the Bernstein basis functions are posi-
tive and sum identically to 1 , i.e.,

m

~ 4)1(x) 1
i =0

and -

0

for all x , such that

xc(0,1) and I = 0,1, ... , m . (1.5)
0

* - —------‘ ,—-- ‘ u__f , .—
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If we let V(f) denote the number of sign changes of some function

f and V [x 1,x2, Xm] denotes the number of sign changes of the in-

dicated sequence , then property (1) is equivalent to

V(P) < V [PQ,PJ , 
~~~~

• ‘  
~~ 

(1.6)

Property (2) is commonly referred to as the convex hull property,

since the conditions stated are necessary and sufficient for any

curve of the form (1.1) to lie within the convex hull of the coeffi-

cients

Note that, in general , the piecewise Bernstein approximation is

only C° continuous. Al though it is not difficult to “fix up ” C 1 con-

tinuity , many applications in the automobile and aircraft industries

p require at least C2 continuity . Riesenfeld [5] has recently proposed

vector-valued 8-spline approximation as a generalization of Bernstein

approximation which retains the variation-diminishing and convex hull

properties while improving the continuity class of the curves and sur-

faces to arbitrary smoothness.

The vector-valued B-spline approximation of degree M-1 to the

associated polygon [P1,P2, • •
~~~~ ~~ 

for integra l knot spacing is given

by

P( t ) 
.~~~ •91( t) P~ (1. 7)

where P1cR3, tc ( -co,co) , n > M and

0

- - V. -“ ‘V~
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4)iM (t) 
= 
(~~1)! j~O 

(-l)~ (
~

) (s-j-i)~~ (1.8)

where

(s_j_ i)M for ~ > (i+j)
(s — ( j

’+j))~ 
= , (1.9)

0 otherwise

As with B~z i er ’s method , the surface equation is given as the tensor

product

n / m  \ 2P(u ,v) .= 

~ 
4 ).~ (u) ( E 4).M(v) P. .J ,  (U ,V)CR

j=l ~ \i=l 1 1~),

p n > N, m > M and 4)M represents the ith B-sp line basis function of

degree (M—l), as in (1.8). An important property of the B-spline

basis of degree (M-l) is that each basis function is already a piece-

wise polynomial of continuity cM.2, thus the designer does not, in

general , have to explicitly join segments to form the compound curve

(surface), al though the pi ecew i se nature of the curve (surface) i s

implicit in the basis. Figures 1.3 and 1.4 show typical B-spline

curves , while Figure 1.5 shows a B-spl ine surface and the associated

rectilinear network.

0
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Figure 1.3 Closed quadratic B—sp line curve and associated polygon.

p

Figure 1.4 Open quadratic B-spline curve and associated polygon.

0
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~~~~~~~~~~~~~~~

Figure 1.5 Bicubic B-spline surface and associated rectilinear

network of points.

0
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We noted earlier that interpolation methods seem ill-suited ’for

ab initio design in that it may be difficul t to control interactively

the occurrence of kinks and oscillations in the design, while it ap-

pears the variation-diminishing methods of B~zier and Riesenfeld per-

form well. The mathematical statement of these observations is cap-

tured in .the following exclusion theorem due to Schoenberg [8].

Theorem 1.1 . Let 1(f) be a linear transformation defined for all con-

tinuous functions 1(x) on [0,1 ], L(f) 
~ f for some f. Then if

L(a + bx + cx 2) = a + bx + cx2, for all a, b , c c R (reals), then L

cannot be variation-diminishing.

From the point of view of ab initio design then , techniques of approx-

imation which have a high degree of “reproducti ve power ” cannot be
variation-diminishing, and ’thus there is no guarantee that you can

“control ” osc i lla ti ons dur ing manipulation of the ver ti ces of the

defining polygonal network. Since most polynomial and polynomial

spline techniques of interpolation are precise for more than linear

polynomials , i.e. , they reproduce polynomials of degree two and higher ,

they cannot be variation-diminishing. Thus Schoenberg ’s theorem estab~
l ishes a fi rm foundation for approach to CAGD. If the probl em is to

fit hard constraints , then interpola tions methods would seem super ior

to variation-diminishing methods , while variation —diminishing methods

appear superior for ab initio design.

Al though vector-valued B-spline approximation offers an attractive

general i za tion of B~z ier ’s methods for curve and surface design , both

techniques possess Inherent weaknesses. The extension from curves to

surfaces requires a rectilinear network of points. Thus a designer is

_____________________________ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  a.—
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restricted to rectilinear data as control points. There is no simple

way of adding and deleting points within this restrictive topology .

In general , the designer must delete or add a whole row and column

of points to maintain the rectilinear topology of the data . This is

clearly unacceptable for it woul d generate global changes to the

surface. Further , Bernstein and high degree (continuity) B-spline

approximation techniques have low “reproductive ” power in the sense

that the curves are poor approximations to the shape of the defining

polygon [5]. The ability to control interactively the amount of

l ocal fit to the polygon while maintaining a high continuity class

would be an important feature of an ab initio design system,.

This paper is an investigation into the development of

mathematical model s which retain the valuable variation-diminishing

and convex hul l properties of Bernstein and B-spline approximation ,

while providing improvements in the interface to the user for ab init lo

design. A family of prototypes which includes the Bernstein and

B~zier method is presented . Specifically, methods of assigning a

weight to each vertex which will control the amount of local fit to

the polygon or polygonal net are prov id ed . Thus the desi gner can

eas ily cause “pseudo-cusps” and “pseudo-flats ” by manipulating the

“tension ” at each vertex. Further , the generali zation from curves to

surfaces can be done with rectilinear data or triangular data . There-

fore , the difficulty involved with the addition and deletion of points

in a rectilinear network can be avoided . The feasibility and utility

0 of the newly constructed models for interactive design are demonstrated

on an experimental system for curve and system design .



14

A unifying theory, based on total positivity [3], is developed

here for the construction of such models. Total positivity is a con-

cept that has played an important role in various mathematical

sciences. The application of the theory of total positivity to CAGD

has resulted not only in new techniques for synthesizing shape opera-

tors for.CAGD but al so has provided general methods for analyzing the

Bernstein-B~zier and B-spline methods previously discussed. Section

II provides a general discussion of the representative and inanipul a-

tion rules for totally positive functions and their interrelationships.

In Section III. we apply the theory of total positivity to the analysis

of some existing methods of ab initio design and then proceed to the

construc tion of new shape operators for curve and surface des ign. In
Section IV we discuss the utility of these methods , as demonstrated on

the curve and surface design system.

I



II. TOTAL POSITIVITY--A REVIEW

Total Positivity and the Variation-Diminishing Property

In Section 1 we established the usefulness of variation-diminish-

ing methods for ab initio design . Due to the importance of Schoenberg ’s

exclus ion theorem (1.1) in this connection , we restate and prove it

here.

Theorem 2.1 [8]. Let 1(f) be a linear transformation defined for

all f(x) conti nuous on an interval [a,b], where g(x) = T(f) is itself

a continuous function in [a,b), wi th the following properties :

1. T(c + dx) = c + dx , for all c, d c reals.

2. V(T( f ) )  < V(f).

3. There exists t such that 1(t) / f , i.e., I is not the iden-
tity transformation.

Then there exist real numbers a, $, y such that

T(cx + Bx + yx2 ) / a + Bx + yx2,

for xc[a,b].

Proof: Assume the converse, that g(x) = 1(f) does preserve quadratic

polynomials , i.e., 1(x2) = x 2. Let a < x0 < b . We wi ll show that

g(x0) = f(x0), which impl ies I must be the identity transformation , in

contradiction of (3) above .

Indeed , assume , for instance , that

j  

0 

.

- —

~~~~~

____ -

. 

.

. 

~~~.
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g(x 0 ) > f (x 1~)

since

T( f (x )  - a - b x - cx 2 ) = g(x) - a - b x - cx 2

by the variation-diminishing property we have

V(g(x) - a - bx - cx 2 ) < V ( f ( x )  - a - bx - cx 2 ). (2.1)

That is, the graph of g(x) crosses the graph of any quadratic poly-

nomial no more often that the graph of f(x) does. But for a such that

f(x 0) < a < g(x 0)

the parabola y = a + g(x - x0)
2 enjoys, for sufficiently large posi-

tive 6, the followi ng properties :

(i) It is crossed by y = g (x )  at l e a s t  t w i c e .

(i i) It is not crossed by y = f(x).

(Consider the zeros of g(x) - (a + B(x - x0)
2 and f(x) - (a +

8(x - x0)
2.) These conclus ions contradict the variation-diminishing

property (2. 1) and the theorem is established.

We have already alluded to the strong interrelationship between

variation-diminishing methods and totally positive functions. This

relationship is established in the fol lowing theorem due to Karlin [3] .

Theorem 2.2 [3]. Let K(x,y) be a function of two variables x c X

and y t Y, where X and V are linearly ordered subsets of the real line

and consider the transformation

g(x) T( f ) ( x)  = K(x ,y) f(y) dy, (2.2)

- 4 -  —- . . ——--_ 
— . . .,r i  - .  -.
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where f and K are bounded and Riemann integrable on V. When V con-

sists of a discrete set, we interpret the integral as a sum.

If K Is totally positive of order r, then

V(g) < V (f) provided that V(f) < r-1. (2.~)

Note that equation (1.1) is a vector—valued form of (2.2) where V i s

a di scre te set. The proof of Theorem 2 .2 follows as a corollary to

the statement that , for a totally positive matrix A and any vector ~
(of compatibl e length), A~ has no more sign changes than does R. Be-

fore we can prove either of these assertions a general discussion of

the representation and manipulation rules for totally positive func-

tions is necessary.

Total Positivity

Definition 2.1. A real function K(x,y) of two variables ranging

over linearly ordered se ts X and V , respectively is said to be totally

positive of order r (abbr. TPr) if for a ll sequences x 1 < x2 <

< X m~ Yl < < 
~
‘m ’ x1cX , y1

cY , 1 < m < r we have the inequali-

ties

I ~~ x2~ X m \ K(x 1,y1 ), ... , K(x1, 
~
‘m~ >0.

y , y , ..., y / K(x ~y ), ..., K(x , y )

If strict Inequality holds in 2.4, we say K(x,y) is strictly totally -

positive of order r (abbreviated STPr)~ 
The subscr ipt i s normally

omitted when a function is (strictly) totally positive of all orders.
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Note that total posit ivity impl ies posit ivity . As examples of totally

positive functions , we have:

(a) eXY, X X Y ~~ R2 iS STP

(b) K~(x~i) = (!~)x
l (l_x)

m_
~ is SIP of order m+1 on i t I =

{0,l , ..., rn } and x c (0,1).

(c ) .  The square n x n matrix A = [a(i,j) = o~~] is TP.

The verification if (c) istrivial ,whi le (b)will be shown to fol low

immediately from(a). Note that the functlon K(x,i) in (b) represents the

Bernstein basis of degree rn-i , and the proof of (b) in conjunction

with Theorem 2.2 would be sufficient to show that Bernstein—B~zier

methods are variation -diminishing. We provide the proofs for (a) and

(b) below.

Theorem 2.3. e~
’ i s SIP on X x V = R2.

Proof: We first show that

/ X 1, ..., Xn\  ex1~
j . eXl~n

e ( = : : / 0
y J 

. 
ex~~I . ~ X f~/fl

for x1, x2, X
n 

distinct in X and y1, y2, ..., y~ distinct in V.

This fact follows immediately if we can show that any exponential

polynomial of the form

~ aie
Yix (2.5)

i=l

where
~ 2
~~a >0

has at most n-l zeros.
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Denoting the number of distinct zeros of a function by Z(f), we prove

(2.5) as a lemma .

Lenina 2.1. Let y1, i=l , ..., n , be a set of distinct real numbers .

Then

In
Z I E a.e~

’i~~ < n-i
\i=l 1

where
n 2
~ a. > 0 .

i=l 1

Proof: (by mathemati cal induction) Let n = 1. Then clearly aie~ix

has no zeros.

Now assume the hypothesis holds for n = k-i , i.e. ,
p

z (k~ aje
)’i>) < k-2

for all a1cR such that

k—i
E a.2 > 0 . (2.6)

1=1 1

We must show that

z (
~ 

a
i
eYix) k-i

for all a1cR such that

k
E a1

2 > 0. (2.7)
1=1

-j
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Assume without loss of generality a1 / 0. Since &~ I~ has no zeros ,

we have

z (e~~i
x 

~ 
aie3’ix )  = 

z (~~ aie
3fix) (2.8)

Differentiating e~
’i’~ E a.eYiX with respect to x, we get

1=1 1

~ a !e-~
’i

i=2 1

where

y
~
’ =

and

a1
’ = a1(y1—y1 ) (2.9)

which , by our induction assumption, has at most k-2 zeros. It follows

from Rol’l e’s theorem that a function can have at most one more dis-

tinct zero than its derivative, therefore,

- 

z (
~ 

aje~ix) < k-i (2.10)

Now we show that for x1 < x2 < ... < x,., x
~

cX a nd y1 < y2 < ...
y
~
, y1cV , the determinant

J .
\y 1, ...,y,,~

cannot achieve both negative and positive values.

Lemma 2.2. Gi ven x1 < x2 < ... < x~, x1tX and y1 < y2 < ... < y~

..i —.-.. -_--— -:-~
----- ‘V.— -‘ — 

-,--
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~~~~ where X x V = R2, we have

fx 1~ ..., x,~\ ~x1y1 - .
e( j  = : (2.11)

..., y
~/ ~x~y1

is of one strict sign.

Proof: This will be proved by contradiction . Fixing y1 < y2 < ...
y
~
, y1cY, let x 1 < x2 < ... < x1~, and z1 < z

2 
< ... < z~~, ~~~~~ in X

be such that

/ x1, ..., x~ \ / z1, ..., z~ \
e ( ~ 

> O > e ~ J (2.12)

\ ~“l’ ..., y,.~ / yn /

Since ex is a con ti nuous rea l funct ion , we have for some A c(O,l) the

determinant

I Yl ,y~ \
D(A ) = e (

Ax 1 + (1-A) 21, ..., ~~ + (1—A) z~~/

By (2.5) this is impossible for distinct x ,~ and z~. Therefore, there

exist i ,j, i/i , such that 
-

Ax 1 + (1-A) z1 
= Ax~ + (1-A) z~

which implies

r 

0— — 
ZfZ1

0~ 

- 

— 

1— A 
— 

xj_x j 
‘

contradicting the strictly increasing nature of the x1 and z1.
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Now all that remains to complete the proof of Theorem 2.3 is to

exhibit a set of increasing x
~ 

and increasing z1 , for which the deter-

minant in (2.11) is positive. If we let x 1 i , i = 0, 1, ..., n,

and y1 
= lnz 1 where z1 is a strictly increasing sequence of positive

reals numbers , then (2.11) specializes to

exo~0 exO~
mn 

~ . . .

e’~
n)’o eXnYn 1 z~

= Ti (z1
_z
~) > 0, (2.13)

i>j

since the determinant on . the right hand side is the well-known

Vandemonde determinant [15].

In order to prove the total positivity of the Bernstein basis ,

we need the following two composition rules for totally positive func-

tions.

Theorem 2.4 [3]. Let K(x,y) be TPr(STPr) on X and V and let 4)(x) and

4,(y) be nonnegative (positive) on X and Y, respectively. Then

L(x,y) = 4)(x) ~p(y) K(x,y) (2.14)

is TPr(STPr)• .

Proof: The conclusion (2.14) follows immediately from the fact that

the determinant Is a multi l inear functi on of its rows or columns.

Theorem 2.5 [3]. Let K(x,y) be TPr(STPr) on X and V and let •(u) and

g,(v), ucU, VCV be strictly increasing functions inapping U and V into
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X and Y , respectively. Then

- 
L(u ,v) = K[q(u), ip(v)] (2.15)

is TPr(STPr )i ucU , vcV.

Proof: The result (2.15) follows immediately from the obvious fact

that ~f and 4 map increasing sequences into increasing sequences.

Theorem 2.6. The Bernstein basis Km(i~
x) = (~~

) Xl (l_X)m l

i— 0 ,l , ..., m , xc(0,1) is TP~~1 on {0,l , ..., m} and (0,1).

Proof: Rewriting Km (i~
x) = (~~

) x 1 (1-x)~~ as

~~(i ,x) = (~~) (1-~~~ e
H

~~~ , (2.16)

the conclusion follows directly from Theorems 2.3 , 2.4 and 2.5.

We will find the following composition formula for totally posi-
V

tive functions of fundamental importance in the uevelopment of shape

operators for CAGD .

Theorem 2.7 [3]. Let K(x ,z) and L(z,y) xcX , ycY and zcZ be Riemann

integrable functions of z, where X , Y and Z are linearly ordered sets

of the real line, and define

M(x,y) = f K(x,z) L(z,y) dz,

where again we interpret the Integral as a sum when Z Is d i sc re te.

Then, if K(x,z) is T
~r 

on X x Z and L(z,y) is TP5 on Z x V , then

M(x,y) is TP~ on X x Y , where t = min(r ,s).

Proof: The conclus ion foll ows easil y from the general i zed Cauchy -

Binet formula for the composition of determinants given by
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Xm
- 

=

\y1,y2, 
~~~~~

‘

/ x1, ..., xm\ /z1~ ...,

I ~~
.. I K ( J L ( J dz1,...,dz

a < z  < ... < z  < b \Z l~~~ . . ., Z /  \Yi~~~”’Ym /

(2.17)

where M , K and L are defined as above and we assume Z = [a,b] for simpl i-

city . Formula (2.17) is .a direct extension of the Cauchy-Binet formula

[17] for matrices , which we restate below .

Theorem 2.8 [17]. Let A , B and C denote matrices of real numbers
V

or orders n x m , n x k , and k x m , respectively. If A = BC , then

= ... ~ B 
~~~~~~~~~~~~~~~~~ 

~(~~~.
2” p

~~~~~~~~~~~ ct1< ... <~ 
\ct1~~ct2~~.. .~~ct~~/ ~~~~~~~~~~~

(2.18)

where the lefthand term stands for the minor of A involving rows i 1,i 2,

,i~ and j1,j2,.. .,j~,, respectively.

Proof: The co,iclusion will follow if we can establish the correspond-

ing result for any square matrix which is the product of two rectangu-

lar matrices . So , suppose that a square matrix C = ~Ic 1~ J~ ~ is the

product of two rectangular matrices A = h a ik u and B = hI b kj hI ~f

dimension m x n and n x m , respectively. That is,
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= 

~ 

a~~b~ (i ,j = 1 ,2, ..., m). (2.19)

By (2.19) the determinant of C can be represented in the form

c11 ;.. Clm a
1 =l 

aia ba i  a~=i 
aia barn

n n
cml ... cmm Z am b 1 E ama b ma1 l a1 a1 a 1  m m

a ia ba 1  ... aia ba m

=

a b ... a bma~~c~i mc
~~~

m

n / 1 2 . . . m
= 

A ( “) b 1b 2 ... ba r n1 2 m

(2.20)

If m > n , then among the numbers a1, a2, ..., am there are al-

ways at least two that are equal , so that every summand on the right-

hand side of (2.20) is zero. Hence in this case C = 0.

Now let m ~ n. Then In the sum on the right-hand side of (2.20)

all those summands will be zero in which at least two of the subscripts

a1, a2, ..., am are equal. All the remaining summands of (2.20) can

- —~
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be split into groups of m ! terms each by combining into one group

those surmiands that differ from each other only in the order of the

subscripts a1~ -ci 2’ ...~~ 
a m (so that within each such group the sub-

scripts a1, ~~ :.., a have one and the same set of values). Now

wi thin one such group the sum of the corresponding terms is

E c(a1 , a2, ..., a~ ) A ( :2 
b
~~

ba 2 b~~ =

= A ( :2 m
) ~ 

c(a1, ~~~, ... , a~ ) b
~~1br~2 ...

2 ... m 
~ ,

k1 k2 ... k \
= A f  I B (

V 

“k1 k2 .. .k!  “1 2 . . . m ’

where k1 < k2 < ... < km is the normal order of the subscripts a1,

and 
~~~~~~ ~~ ~~~~~ ~j~) 

= (..1)N , where N is the number of

transpositions of the indices needed to put the permutation a 1, a2,

am into normal -order .

Hence (2.19) implies (2.18) .

Variation -Diminishin o Transformations -

We are now in a position to prove Theorem 2.2. As noted earlier ,

Theorem 2.2 is a direct consequence of the corresponding theorem for

matrices , which we establish as Theorem 2.9 below. The proof given

here is essentially that given by Schoenberg [16,21]. In the follow-
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ing definitions and theorems , sequences and matrices will often be

represented with the functional notation x ( i) ,  a(i ,j), emphasizing

the fact that we are deali ng wi th functions over di screte sets.

Definition 2.2. Given a function f(t) defined in I , an ordered ,set

of the real line. We define the variation of f over I as

- V(f) = sup V[f(t1 ), f(t2
), ... f( t

m
)]

where the supremum is extended over al l sets t1 < t2 . .• < t~(t~~I),

m arbitrary but finite and V[x(l), x(2), ..., x(m)] is the number of

-s ign changes of the indicated sequence, zero terms discarded . By

convention V[O,O, ..., 0] = -I.

Definition 2.3. Given a sequence X = [x( l) ,  x(2) ,  ..., x(n)]  of real

V 
numbers , we define N[x(l), x(2), . .- ,  x(n)] as the number of x ( i ) ’ s

whi ch are nonzero.
- 

- 
Definition 2.4. A real rn x n matrix A = {a(i,j)] is said to be

variation-diminishi ng if

n
y(i) = ~ a(i ,j) x( j ) ,  x(i 1,2 , ... , m)

j=l

implies that

V[y(1), y(2) , ... , y(m)J < V[x(l), ..., x (n)]

Lemma 2.1. Consider the following matrix operations:

(I) Multiplication of a row or column by a non-negative constant;

(ii) Addition of a row or column to an adjacent row or column ;

(iii ) Omission of a row or column .
0

These operations when appl ied to a TP matrix yield a TP matrix.
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Proof: (iii) is trivial , while (i) follows from Theorem 2.4. (ii) is

evident since any minor in the new matrix would be the sum of minors

in the old. 
-

Lemma 2.2. Let X [x(i), I = 1 ,2,... ,m) be a sequence of real num-

bers. If for all

- 

1
0 

< < ... < i~ , p <

we have

x(i~ )] 
~~. 

p — 1 , (2.21)

then

V[x(1), . . . ,  x(m)] < p - 1

Proof: Assume the converse , that there exists

10 < < . ..  ( ip+1

such that

. .. ,  x(i~,~1)] > p - 1

then

... , x(i~,÷1)] = p’ (2.22)

since all other cases imediately contradict (2.21). But to preserve

- 
(2.21) for all subsequences of [x(10), ..., x (i~~1 )] the sequence must

- . al ternate in sign . However, we than have V[x(10), ..., x(i~41 )1J p+l

$ a contradiction to (2.22). From here a simple induction argument

yields the desired result.
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Lemma 2.3. Let A be a TP, real m x n matrix of rank p and define

n
y( i)  = ~ a(i ,j) x( j ) ,  i = 1,2 , ..., m

j=l

where X = [x(j), j = 1 ,2, ..., n) is some real sequence. Let A ’

be the submatrix of A consisting of the rows i~ , l~ , ..., ~ and

define

f ‘o~ ~~~~~
•‘  1k— 1’ 1k+l’

a(K) = A t
ip

for some selection of columns j1,j2, . . .,  j,. Then

k
~ (-1) a(k) 

~~~~ 
= 0

k=O

Proof: Since
- 

y(1k) = a(i k ,j) x(j)j=1

we have p
~ (- 1)~ a(k) 

~~
1k )

k=O

p L. fl
= E (-1)’~ a(k) E a(ik,j) x(J)

k=0 j 1

n I p  , J  - ‘

E (_ 1)J  x(i) ( E ( 1)K+ J ct(k ) a( i~,j )) . (2.23)
j=1 \ k=O /

0

But for j not a member of [j1,j2, . ..,  j~J the inner sum is the
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expansion of some minor of A of order p41 and thus is zero . Similar-

ly, for j a member of [j1,j2, • . .,  j~,], the i nner sum corresponds to

the expansion of the determinant of some matr ix which possesses two

identical columns and again the sum is zero . Therefore , (2.23) must

be identically zero.

Theorem 2.9 [21]. If a real m x n matrix A = [a(i ,j)]

is TP , then it is variat ion-diminishing.

Proof: We first assert that it is sufficient to demonstrate this

under the assumption that

V{x(1),. .. ,x(n)] = N{x(1),.. .,x(n)] — 1.

V 
For if any x ( k )  = 0 we compress X and A by

- 

x( j )  < k (j = l~ ..., n-i )x (~~~) 
— x( j +i) j > k

— 

(2.24)

(a( i ,j) j < k
a ’(i,j) 

~a(i ,j+1)-. j > k (j = 1 ) • . . ,  n—i )

We then have y( i )  defined by

n-i
y(i) = E a ’(i ,j ) x ’(j )

j=l

The matrix [a’(i,j)] is TP by Lemma 2.1 and if we can show

V[y(1), ..., y(m)) < V [x’(l), ...,

- --I-— —..-- —— — . — — - -- -~~ -.
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then since

x ’ (n— l) ]  = V [x(1), . . . ,  x(n) ]

it will follow that

V[y(1), . . . ,  y(m)] < V[x(i), . . .,  x(n)]

So we can assume no X k is zero .

Next , we can a s sume  x(k) and x(k+1) are of opposite sign. If this is

not tr ue, then there ex is ts  A > 0 such that x(k+l) = Ax(k). if we

compress X and A by

x ’ ( j )  = 

x(j )  i < k  (j = i~ ..., n-i)

V 

x(j+l ) j > k

a(i ,j) j < k (2.25)

a ’(i,j) = a(i ,k) + Aa(i,k+l ) j = k (j = i~ ..., n— i)

a(i ,j+1) j > k

then we have
n-i

- y(i) = a ’(i,j) x’(j)
j=l 

-

The matrix {a’(i,j)] is TP by Lemma 2.1 and if we can show that

V[y(l), ... , y(m) ]  < V[x’(l), ..., x ’(n—l)],

then since

V[x’(l), •.., x ’(n-l)] = V [x(l), ... , x(n)], -

it will follow that

-V .--
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V[y(l), . . .  , y(m)] < V[x(i), . . . ,  x(n) ]

We have shown- that we may assume (2.21). We complete the proof then

with the following l emma.

Lema 2.4. [21]. If a real matrix A = [a( i , j )] ,  (1=1 , ...,

ji , . . . ,  n) is TP, then

V[y(i), . . . ,  y(m)] < N[x(l), . .. ,  x(n)] — 1

From above we may assume no X k is zero . That is , we may assume

N{x(l), ..., x ( n )]  = n. Since r(A) (rank of A) < n , we would be done

if we can show tha t

V[y(l), ..., y(m)] < r(A) — 1 ,

We prove this result , in turn , by the following lemma .

Lemma 2.5. [211. If a real m x n matrix A

is TP, then

V[y(l), . . . ,  y(m)] < r(A) - 1

Proof: We proceed by i nduction on r(A). The resul t i s cl early true

if r(A) = 0 or 1. Suppose that it has been established for r(A) = 0,

1 , ..., p-i. We must show that it is true for p.

We may suppose tha t m > p, since if m = p, then

V[y(1),.. .,y(m)] p-i trivially. By Lemma 2.2

it is enough to show that, if 1 < 

~0
< ~~~~ ... < i~, < m , then

V[y(i0), ..., y(i~)) < p-i . If A ’ is the submatrix of A , consisting

of the rows 
~~~~ 

i.~, ... ,  ii,, then A’ is TP. There are two cases:

-V
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r (A ’ )  < p and r(A’) = p. If r(A’) < p, then

< r(A’) - 1 < p — 1

by our induction assumption .

So .we assume rCA ’) p. Let j1 ,... ,j~, be a selection of columns

of A’ and set 
-

/ 10,.. i i j~_~ ‘ 1 k+l ~ 
• .

c*(k) = A

Jl,...,J P

for 0 < k < p. Since A ’ is TP, no two a(k)’s are of opposite sign

and because r(A’) = p, we can so choose 
~~~~~~~ such that not all

c*(k)’s are zero. We have from Lemma 2.3

a(0) y(i0) 
- a(l) y(i1 ) 

= • . .  + (.j)P c*(p) y(i~) = 0

(2.26)

It is easily seen that V [y(i0), y(11 ),. .. ,y(i1~)] = p is not compat-

ible with (2.26) so that V[y(i0),... ,y(i~)] < p.]. Thus we have

proved Lemma 2.5, thereby proving Lemma 2.4, thereby proving the

theorem.

Theorem 2.2 is established in the following three corollaries

of Theorem 2.9.

Corollary 2.9.1. let [y(l),... ,y(mn)], [x(l),. .. ,x(n)] and A be

given as in (2.20) where now we assume
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V[x( i) , . . . ,x(n)] < r-1 , r < n-i ,

and A i s TPr~ 
Then

V[y(1),. ..,y(mn)J <v[x(1),.. .,x(n)].

Proof: - Using the techniques given in (2.24) and (2.25) we can

compress A and [x(1),. .. ,x(n)] such that

N
y(i) = E a ’(i,j) x’(j)

j=1

where V{x ’(l),...,x ’ (N)] = N— i = V[x(l),...,x(n)] and A ’ = [a ’(i ,j ) ]

i s a TP mxr matrix. The conclus i on now fol lows from Theorem 2.9.
n

Corollary 2.9.2. . Let f(x) = E 4(i,x) a 1. If {4(i,x), i i,...,n}
i=l -

Is TP on x = [a,b] and I = {i,2,...,n}, then {4(i,x), i=l ,...,n}

is variation —diminishing.

Proof: We must show

V(f(x)) < V[al,...,an]

That is , for any finite sequence of points x
3
, j 1 ,...,m we must

show

V[f(x i )~~~
s f(Xm)] < V ia 1,.;. ~a~]

where

V n
f(x~) = ~ •(l 1xj) a1

0 
1=1
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for j=1 ,...,m . But this is exactly the result of the above theorem

and we ’ re done.

Coro1la~y 2.9.3. Let p(x ,y) and g(y) be bounded and continuous

functions on [a ,b] x [c,d] and [c,d], respectively. Let

d

- 
f ( x )  = f q ( x ,y) g(y) dy

c

Then , if 4~(x,y) is TP, we have V[f(x)] < V[g(y)].

Proof: We must show V[f(x1 ),. .. ,f(x~)] < V [g(y1 ),...

Y x1 c[a,b], y~ 
c[c,d], m and n fixed but arbitrary .

We approxima te f(x~ ) arbitrarily closely by the Riemann sum

f1 (x 1 ) = h 
j=l ~

(x1~~~) g(y~),

such that sgn(f 1 (x 1 ) )  = sgn(f(x 1)) for i=1 ,...,m. The conclusion

now fol lows from Coroila~y 2.9.1.

Corollary 2.9.3 [3]. If in Theorem 2.9 we have , in fact

V [y(1),...,y(m)] = V [x(l),.. .,x(n)],

for A SIP, then (y(i), 1 1 , i=l ,...,m} and {x(j), j-l ,...,n} exhibit

the same arrangement of signs.

Proof: From the above arguments we know it is enough to assume

V[x(l),... ,x(n)] = n-i. Under this assumption we need only show

that the first component of {x(i),...,x(n)] has the same sign as the

first nonzero component of [y(l),... ,y(m)]. Choose < 1 2 < . . .

such that y1 y. ~ 0~ Since y. = 
~ a~ . x. (v = 1 ,2,... ,n),

v 1 v+1 lv j 1  v 3 ~ 

— — 
~~~~~~~-— — — — - -w -.
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we have

y. a. . .a. n11 112 11
y1 a1 2  a n2 2

- y1 a~ 2...a 1n n n
= 

A 
(i i~~

i
2~~

...i~

l , 2, . ..n

n / 11 ~~~~ 
• . ‘1 v— 1 ‘~v+1 ‘~

(1 ) V+1 A

— 

v=l \2,3 
— 

A

1,2,... ,n

Uow the minors of A are strictly positive and the values (_1) v4l

y~ (v = 1 ,2,. ..,rii) maintain the same sign. Thus sgn(x 1 ) 
= sgn(y1 ).

v
Theorem 2.2 combined with Theorem 2.6 provide enough power to

conclude that scalar-valued Bernstein approximation is variation-

diminishing. - However, as we established in Section I , we are

interested in vector-valued approximation and transformation methods ,

thus we must provide some extension of the scaiar-valued theory to

vector-valued mathematics. This is provided in the following defini-

tion and theorem due to W . W. Meyer [5].
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Definit ion_2.5 [5]. A vector—v alued approximation or transformation

method is var iat ion-dim inish ing~ if it is variation —d iminishing as a

scalar-va lued method.

Theorem 2.10 [5]. If a vector -valued transformation is invariant

under euclidean transformation , then no (hyper) plane is pierced more

often by a vector —valued transformation than by the primitive curve

itself.

Proof: Surely the theorem is true for any pr incipal (hyper) plane

x(i) = 0 because it is variation — diminishing in the particular coordin-

ate function x
~
(t). But any (hyper) plane can be designated as a prin-

cipal one by a euclidean transformation. Hence the result is true for

all (hyper) planes.

It is riot difficult to show that transformations of the form (1.1)

are invariant under euclidean transformation if and only i f

E~(i ,x) = 1 . (2.27)

This fact does not form a formidable obstacle to us , since , given a TP

basis q(i ,x), by Theorem 2.4 we can construct another TP basis

~‘(i ,x) = ~(i ,x)/~ ~(j,x) (2.28)

such that

~ ~‘(i ,x) = 1 (2.29)
-I

We have established the useful fact tha t the B~zier method is

variation -diminishing. In Section III we continue with the analysi s

__________________ 

I
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of other mathematical schemes in use or proposed for use in ab initio

design. We then apply the theory of total positivity to the construc-

tion of a whole family of new models for CAGD.

- - 

~~~~~~~~~~~~~~~~~~



I I I .  APPLICATION OF TOTAL POSITIV I TY TO CAGD

Through the application of the theory of tota l positivity we have

shown in Section II that Bernstein-B~zier methods are variation-dimin-

ishing. From Section I we know that widely used techni ques , such as

polynomial and spline interpolation , are not variation-diminishing. In

this chapter we continue this type of analysis by applying the tech-

niques developed in Section II to other methods in use , or proposed

for use , in ab initlo design.

Piecewise Bernstein-B &zier Methods

In general , i t  is vector-valued piecewise Bernstein approximation ,

not Bernstein approximation , which is used in CAGD. As noted in

Section I , shape is essentially non-analytic in nature , therefore , it

is not surprising that we often find , when working interactively, that

a curve segment is not sufficiently flexible to adopt a desired shape.

We may then either increase the order of approximat~~ (and thus that

of the polygon) or the segment may be split into two or more segments.

(see Figure 3.1). Curve sp litting is simple mathematically and has the

advantage computationally of retaining a reasonable (polynomial) order

of approximation. Since the resulting curve is a piecewise Bernstein

approximation , the question arises whether this basis is variation-

diminishing as well. We establish this fact in Theorem 3.1 , but first

-—  _
~~

. -~- -._~~ v — - V .  — -_ - -.



we generalize the de finition of the Bernstein operator to the range

[a ,b].

Definition 3.1 [15]. The Bernstein approximation of degree n to the

polygon P [P0,.. ~P~] on the interval [a,b] is given by

Bn[P;a ,b] = 
1 

~ P.(~) (x~a)
k (b~X)

n-k (3.1)
(b_ a)n k=0

Theorem 3.1. Let B~{P; 0,1] and B~1[Q;l~2] be Bernstein approximations

of degrees n and m to the polygons P = [P
0
,.. ~~~~ on the (0,1) and

Q = [Pa,... ~
1)
n+m ] on (1 ,2), respectively (see Figure 3.1). Then

B[B~[P] + Bm[QJ J < V[PQ,. . . ,P~~1] . (3.2)

Proof: (3.2) is easily seen to be true if the sign of ~ equals the

sign of 
~~~~~~~~ 

or 
~n+l’ 

since then V[P] + V[Q] = V [P0,... ‘~n+m~ 
Assume

this is not the case , i.e., = 0 and and are of opposite

sign. Again (3.2) is true if either

V[Bn[P;
’ O ,l]] < V[P] (3.3)

or

V[Bm[Q; 0,]]] < V[Q] , (3.4)

si nce nmax(V[P] + V[Q]) = V[P0,... ‘~~+m~ 
+ 1. 

- 

So assume this is not

the case, i.e., V[B~[P; 0,1]] = V[P] and V[B [Q; 1 ,2]] = V[Q). But

then by Corollary 2.9.3 B~[P; 0,1) and Bm[Q ; 1 ,2] must have the same

arrangemen t of sign changes as P and Q, respectively. Thus (3.2)

must hold in this case as well.

- -  - -V
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P4

P
3J~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

/ P6

P
0

P2

P
1

Figure 3.1. B3[PQ,.. . ,P3] and B3[P3,.. . ,P6].

-V
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A simple induction argumen t leads to the general statement that

piecewise Bernstein approximation is variation -diminishing for arbi-

trarily many segments. A noteworthy consequence of Theorem 3.1 is

Corollary 3 .1.1. Piecewise constant and piecewise linear interpola-

tion are variation-diminishing.

Indeed , piecewise constant and piecewise linear interpolation corres-

pond directly to B-spline approximation of order 1 and 2, respectively,

and the 8-spline basis is known to be totally positive of all orders

[3,18].

Al though B~zier ’ s System Unisurf has been highly successful in

the design of automobiles , there are some problems with vector-valued

piecewise Bernstein techniques:

(I) The actual euclidean distance between the vertices

i=0 , l ,...,m , plays no role in the definition of the curve segment,

and

(ii) In general , piecewise Bernstein approximation is only C°

continuous. Sometimes design constraints may require continuity of

order 3 or even 4.

Gordon and Riesenfeld [19] proposed the following scheme to cor-

rect for (j) Let ct~, ~~ 
be defined to be the fractional

distance of the 1 th vertex along the polygonal curve [P0, . .., Pm]: $
‘0  j=O

= 

(j
~~ 

~ i+i 
- lP~~1 

- for j 1 ,2,...,m-1.

(3.5)
1 j m

— ~~ - ---- - - , . -~~ -V
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and define

B*{P0, P1,... ,P11~] = B [P~, Pt,... ,P1~], (3.6)

where P~ = f(j/m) and

f (s )  = 

~ j+l - )1 
~~j+l - s) + (s - a~

) P~+1] (3.7)

for ~ ~
t4ote that (3.?) is just a piecewise linear interpo lant to the

polygonal curve [P0
,P1,.. 

~~~~~~~ 
and , therefore, from Theorem 3.1 and

Theorem 2.7 it follows

V[B~ [P0,.. . ,P~11]] < V[P0,. ~P~] (3.8)

Gordon and Riesenfeld observed that, when the euclidean distances

- P~.j are all approximately equal , there will be little differ-

ence between B11~[PQ, P1,... ~P~) and 
~~~~~~~~~~~~ 

In extreme

cases , however , the difference can be substantial , as shown in

Figure 3.2.

PQ

~~~~~~~~~~~~~

5

~~~~~~~~~~~~~~
- 

Figure 3~2 (a)

- —V V — - — . - , — -- -~~~ — - ~ - -r
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p
2 P

4 
p
9

/

Figure 3.2 (b) B~0[P0,
p1,... ,p9]

As pointed out in Section I , B-sp lin e approximation has been pro-

posed by Riesenfe ld [5] as another alternative to Bernstein approxi-

mation. Specifically, the 8-spline approximat ion is variation -dimin-

ishing, has the convex hull property and is a piecewise defined curve ,

where the pieces are joined wi th arbitrarily high continuity at the

discretion of the user. Thus the B-spline basis has all the desirabl e

properties of the piecewise Bernstein basis, yet without the inherent

difficiency at the break points of the latter basis. In Theorem 3.2

we shall prove that uniform B— spline approximation is variation—diminishing.

We first give a more general definition of the uniform B-spline basis

than that given in Section I and prove some elementary properties of

B-spline approximation .

Definition 3.1, ihe ith B-sp line basis functidn .~ 1 n(h ,x) of degree m-l

with uniform knot spacing and mesh size Il is defined by

~i m th
~~ 

= (l/(m-1)! hm~~)) ~ (1 ) k 
(~~~

) ((mh/2) + x - kh - i )~~
k=0

(3.9)

~Ti ~~~~~~~~~~~~~~~~~~ 

—

~~

. -

~~~~~~~~
--

~~~~~

- . - — 

~~~~~~~~~

- ~~~~~~~~~~~~~~~~~~
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where
- rn-I >ni— i —

X-f  - 

0 elsewhere

Note that ~~ 111
(h ,x ) = 

~j i m (h
~
x_h ). Itiseasi lyseen [8] that form’2

x+h/2

~ ~ 1
(

~~~~~~~~~
) 

~~
- I ~~

,fh_ l( h ,x) 7T(h ,x)*c~ (h,x) (3.10)
h x-h/2

where * represents convolution, and

i/h for - Ii/2 < x < h/2 (3.11)
it(h ,x) =

0 elsewhere

and where

1 for - h/2 < x-i - h/2

~~. (h,x) = (3.12)
i ,1 0 elsewhere

In view of the representation (3.10) we readily have ~1~~1(h~x) has

positive support (i-hniJ 2, I + hn-i/2) and

N
E ~1~1(h 1x) = 1 , h(m-2)/2 < x < N-h(rn-2)/2 (3.13)

1=0

where N + 1 > in.

That is , the convolution of two pos itive functions is positive

and the finite support of h = f*g, where f has support [a,b] and g

has support [c,d], is given by [a + c, b + d]. As a corsequen ce of

the local support of a B-spline basis function , B-spline approximation

is a local approximation scheme. Thus any finite sum of the form
N

- 

~
‘i ~~~~~~~ N > m , involv es at most m nonzero terms.

- ~~~~~~~~~~~~~~~~~~~ - — - 
~~~~~~~~~~~~
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The following l emmas will be integral to trie proof of Theorem 3.2.

Lemma 3.1 [21]. Let f(t), {fk(t), k 
= 1 ,2,...) be real functions

defined for xc[a ,b]. If

V [fk(t)] < n , k = 1 ,2,... (3.14)

and -

u r n  fk(t) 
= f(t), (3.15)

k~ o -

then

V[f(t)] < n.

Proof: Let V[f(t)] = N. Then there exist points a<t0<t1 <. - .<tN
(b

such that f(t~~1 ) and f(t~) are of opposite sign , j = l ,...,N . If

k is sufficiently large , we have from (3.15) that

sgn fk(tj) 
= sgnf(t~) j = 0,1 ,... ,N.

Therefore , for k sufficiently large we have

n > V[fk(t)] > V[f(t)], (3.16)

which proves the l emma .

Lemma 3.2. Let Bm[P: 0,n] be the uniform B-sp line approximation of

order m > 2 and mesh size 1 to the polygon P = {P0,.. ,P,,] °n
[0,n], n > in. That is

B [P; 0,n] = 
~~ P. 

~~~
. (l ,x) , (3.17)in 

=
~~ 

1 1 ,~~

where 4 j m (l ,x) is given by (3.7) and xc[(rn-2)/2, n-(ni-2)/2).

~

-V

~

-V —V
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Then

2n -m+2
B [P; 0,n] = P’~ ~~~. (0.5 ,x) , (3.18)in i=0 1 i ,m

where P~ is defined recursively for in > 2 by

(P~~ + P~~~)/2 , I = 0,l ,...,2n-m+2 (3.19)

and

( P1 ., ~ I even
2 - 

~ ~~~~ i 0,... ,2n-lP1 
- 

(
~~(~~l)/2 

+ P(1+1)/2 )/2 i odd

That is , given the B-spline approxim ation of order m , with integra l

knot spacing to the polygon P, the control points for the same curve

in terms of the B-spline basis over the refined mesh [0.0, 0.5, 1.0 ,

,n) are given by (3.19).

Proof: (by induction on degree) Let in 2. We must show

n 2n-ni+2
E P1 ~ 2(x) = 

~ P~ ~~ . 2(0.5,x) . (3.20)
i=O 1=0 1 1 ,

But the degree 1 (order 2) B-spline appro xin~ tion is the piecewise

linear interpo lant to the vertices P1 . Thus (3.20) holds , since

piecewise linear interpola tion preserves linear polynomials. (See

Figure 3.3.) 
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~- 2 4

3

p2 p
2 1

- /  p
~

/ 

p
3 = p ~

=

Figure 3.3. Piecewis e linear interpo lat ion to

{P0,... ,P3) and (Pg,... ,P~}

results in the same curve.

Now assume (3.18) holds for all k , 2 < k < in. We must show it

also holds for k = m. From (3.8) we get

~~ 
P
~ ~ ~

(l ,x) = 

1=0 ~~~~ 
,x)* 

~i ,m-i 
(1 ,x))

n
= n (1,x)* E P1 ~i ,m—l~

1,
~~ 

(3.21)

for xc[(rn-2)/2,n-(m-2)/2). Now by our induction hypothesis

V --— . .
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n 2n—m+3 - -

~ P ~ i~~ ’>~ 
E q . 1 (O.5,x), (3.22)i i ,m1=0 1~~fl1 1=0

thus (3.21) reduces algebraicall y to

n 2n-m+3 -

~ P ~~~ (l ,x) = 1T(l ,x)* E p1~~l 
~i ,m~l (0.5 ,~~i=O 1 i ,m i=O 1

2n-rn+3
= (1T(O.5 ,x-0.25)/2 +iT (O.5 ,x+O.25)/2)* ~ m-l

1=0

2n-m+3
= ( i-) ~: ~r1 ¶ (0.5 ,x_ 0. 25) *~ (0.5 ,x)i ,m-l2 i-0

2n-m+3
+ (-

~
-) ~: pl~l~l Tr(0.5,x+0.25)*~ (O.5,x)

I ,m— li =0

/ 2n-m+3 2n-m+3
= (~~~) ~ E pHll • (0.5,x-0.25) + E ~m~l 

~ (0.5~x+O.25))
i=O ~ i ,m .

~~~~~ 

I i ,m

(3.23)

for xc[rn-2/2, n-(ni-2)/2]. Now both%,1~O.5~x-O.25) and ~2n-m+ 3~rn (0.5,

x+0.25) are zero on the interval [(m-2)/2 , n-(m-2)/2), and after

dropping terms concerning these basic functions and rearranging the

remaining terms in (3.23) we have

n 2n-m+2
~ 

~~~~~~~ 
((P~~ + P’~~~)/2) ~~~

. (0.5,x)1H 1=0 1=0
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2n-m+2
= E P~ ~~ 1~(O.5 x) . (3.24)

Thus , we have proved the l emm a .
n

Lemma 3.3. Let B [P; O,n] = 1 P. q .  (1 ,x ) as in (3.17) andiii 1=0 1 i ,in
define 

-

= ~~~~~~~~ ‘~~n m +2~ 
(3.25)

where P~ is given by (3.18) and

~k[p] = g [~pk_ l [pJ] = [p rn~k • ~~~~~ , (3.26)

for p(m) = 2(2n~m+2) k - m+l , k > 1

Then ,

l i m  ~~[P] B [P; O ,n] . 
- 
(3.27)

k-~o

Riesenfeld [33] has recently given a proof of Lemma 3.3 for the

case rn 3. Here we use a quite different approach for the proof for

arb i trary but finite in.

Proof: By Len~na 3.2 and induction on k we have

B
~
[i
~
[P]; O ,n] = B [P; O ,n]

Now by the minimizing the nature of piecewise linea r interpolation it

is easily seen that
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arc length (~k[p]) < arc length (~1k 1 {p]) - (3.28)

By applying the trian gle inequal ity to (3.18) we can deduce

- P~ < 1/2 (arc length

which , combined with (3.28) and induction , imply

1 1  
- ~m~k 1 1 (l/2~~~) L , (3.29)

where L is the arc length of [P0,... ~P~] and means euclidean

d istance. That is , by (3 .29)

Urn — ~rn~k j = 0 - (3.30)
k~~

But then

lin i — ~m~k 1 (3.31 )

for arbitrary ic{l ,... ,p(m)}, j=l ,...,rn.

From (3.27) and (3.13) we know Bm[P; 0,n](x0), for each

x0c((n;—2)/2,n-(rn—2)/2), lies within the conve ;K hull of ~~~ ~ni~k

for some i. But with (3.31), we can then conclude

~~ ~p~~P) = B [P; O ,n]. (3.32)m
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Theorem 3.2. Uniform 8-spline approximation is variation -diminishing.

Proof: We have from (3.32)

Urn ~k[~] = Bm[P; 0,n].

It follows from the piecewise linear nature of the construction (3.19)

and Corollary 3.1.1 that V[~~[P]] 
I V [P] for all k. The conclusion

— 
now follows from Lemma 3.1.

Bernstein-B~z i er , B-spline and other generalizations of the Bezier

curve [13,14] still appear to have inherent shortcomings for realtime

interactive design. In particular ,

I. It is often the case that a user wishes to create a local

fit to the polygon in his design , yet there are no natural

handles or control parameters in the above methods for the

designer to manipulate interactively in order to achieve

these shapes.

II . Further , the extension from curves to surfaces with the above

schemes requires a rectilinear network of control points , a

severe restriction on interactive design .

For instance , the addition (deletion of a point to a rectilinear

net requires , in general , the addition (deletion) of a whole row

and column of points in order to retain the rectilinear top~iogy

(see Figure 3.4). 
-

- -- - -- V —-V
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____ _____ ___________ ______ v (7 ,7)

—

V(l ,l)

Figure 3.4. Rectilinear topology . Note that to remove

the center vertex and still retain the

rectilinear structure one has to remove all

of Row 4 and Column 4.

The Construction of New Models

We now apply the theory of total positivity to the construction

of new models for curve and surface design , with emphasis on methods

which avoid the deficienc ies I and II discussed in the previous sec—

tion. Specifically, for curves we develo p linear operators

n
L[P;a ,b] = E P.~ .(t,ct1) for P = [P0,... ,P ] tc(a ,b)

1=0 1 1 11
(3.33)
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where the can be varied by the user of the system to control

local “closeness ” of fit to the polygonal curve P , thus giv ing the

user the ability to create “cusps ” and “flats ” in his design with

the same natural flexibility he has in moving the vertices of the

polygon. Further , we build in the desirable properties of the

Bernstein and B-sp line methods ,

V(L) I V[P] (variation -diminishing property ) (3.34)

and

> 0 ,

for all i with

z ~1 (t,a~) = 1 (convex hull property ) (3.35)

It is well known [15 ,16] that B—spline approximation to a continu-

our function f on an interval [a,b] for fixed degree converges to f

as the mesh size h goes to zero. In terms of our primitive polygon

P, we can get a closer local fit to the polygonal curve P if we

sample not only at the vertices of the polygon but also in the inter-

val in which we wish to approximate more closely. The more samples

in the region of interest the closer our approximation to the polygon

there. That is , if we let the polygon P be defined by

n
P(t) = ~ P. ~.(t) (3.36)

j=0 ~

where the are the piecewise linear cardinal functions. Rather

than form the B-spline approximation to the polygon P by sampling at
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the vertices P,~, we define

- p
G(t) = 

~ ~k 
(t)P(tk) (3.37)

k=l ‘~~

where the 
~k m  

are the B-spline bas .is functions of degree in and the

tk are the knots , which are not just located at the vertices , but in

clusters  in in te rva ls of loca l interest (see Figure 3.5).

Since

n
P(t ) = ~ P. ~.(t 

)k 
~=0 ~ ,j k

(3.37) can be rewritten as

p
G(t) = ~ ~~~t) P(tk)k= 1

p n
= ~ ~~(t) ( ~ P.

k=l j=0 ‘~ ~~

n
= ~ P.( E 

~k
(t) q

~
.(tk))j=0 ~ k=0

n
~~ 

~~ 
~~~~ m (t)j=0 3 3 ,

where

p
•~ (t) 

= q~ (t) ~.(t~)j,rn k 1  ~‘ F’ 

- -V V -V
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Iiijure 3.5 (a). Cubi c B-sp line approxima tion to the

polygon given.

It

H

Figure 3.5 (b). Cubic B— spline approximation with

increased sampling on the edges.

- -V

T
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Since the 6-spline basis is TP , we know from Theorem 2.6 and

Theorem 2.7 that the basis is TP. Thus by appropriately

choosing the knots {tk} we can generate a new basis which more

closely approximates the polygon P , yet retains the valuable convex

hull and variation -diminishing properties . More importantly, this

construction method generalizes to other TP bases:

Let G0(x) 
n
E
i ~~

0(x) P~, xc[a ,b], where ~~ 0(x) is T~n 
~~fl

XxJ , J = {l ,2,...,n} and define recursively

n(i)
G.(x) = ~ ~~~

. .(x) G. 1 (x. 
~~

) ,  i = 1 ,2,...,m (3.38)1 =1 3,1 1~~ * 3 , ,

where xc[a ,b] and c
~~~

(x) i s TP~(~) on XxJ(i), J(i) =

where n(i) > n(i -1) and the sequence Cx~~~) is the ith knot vector.

Expanding G~~1 (x~~~)~ (3.38) can be rewritten

n (i) n(i-l )
G1 (x) 

= 

j~l ~~ 1 (x) k=l ~k ,- i—l ~~j,i
1 Gi_ 2 (xk ,i..l )

n(i-l) /n(i)
= 

k=l 
Gi 2 (xk i l )~~~ ~~ 1 (x) ~k ,i-l~~j,i~~)

- n (i-1)
= E G. 9 (XU . , )  (q ,’,~ ~~1(x ) )  . (3.39)

k=l 1 ~_ F’ , 1 1

By Theorem 2.7 q~~~ 1 (x) is TP~(1 1) and , therefore , by Theorem 2.10

- - _1-n_ _ —~~~~~ -—- -V~~~-V-— - -- - ----- _ , - -V -~~.-VV .
~~r - V - - --- -V



58

V[G1 (x)] I V [G1 2 (x 1 ~~~~ 
. 
~
Gj_ 2 (xn (i_2),j_ l )] (3.40)

Repeating the above algorithm we readily deduce

- 

G~(x) = 

j~l ~~~~~~ 
(x) P~, (3.41)

where

V [G
~
(x)] I v [ P 1, . . .  , P~] . (3.42)

Now let
n

4(x) = E tj~ 0(x)j =l ~~~‘

Then

~~
‘ (x) = ~~ (x)/~(x) , j =
3,0 3, 0 (3 43)

is TPn by Theorem 2.4 and
n
~ ~~~ 0(x) = u 3.44

j=l ~

It will now be demonstrated how the techniques developed in (3.38)

and (3.43) for the construction of the variation-diminishing and

convex hull properties , respectively, can be us~’1 to generate a set

of basis functions with the “natural” handles desired. Let

G1 ( x )  = P = [P11 ... ‘~n~ 
(3.45)

V 
be the piecewise linear interpolant to the points {P1, I = 1,...,n)

over the uniform mesh {l,.. - ,n}. Define

—I- ——--- V-  - -V
V— - ———
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2(n-l)
- G2(x) 

= E ~~~
. 1 (0.5,x)P~ (3.46)

j=l ~ 3

where ~~,1 (0.51x) is TP2~~~1~ and

(l-a~) P~ + 

~ 
P~~1 

j + l ,2,...,2n-2 a~c[0~l]

(3.47)

where

= 

{

P
(i +l)12 i odd 

for j 1 ,2,... ,2n-l .
(P~ + P(j~2)/2 

j e~~n

(See Figure 3.6.)

p1 = p
-I

2 
\p 5

P =P l
2 3~

__
~
_ 

p
~

2 j ,,

6

p
l =P:
/ 

2

Figure 3.6. This figure illustrates the construction (3.47).

- --- -V .- --~~~~ -V--~~~~ -~ -~~~~ V - --
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Now setting = 1 - for  j odd , and rearrangi ng terms as in

(3.38) we nave

62(x) = a~~1 (x;a~~1 1 ay a~~1 ) P~1 (3.48)

where the ci
~ 1

(x;cL
~ 1,c~

.,c
~
.+1 ) are TP and vary in shape from trape-

zoidal ~~~~~~~~~ 0) to triangu lar ~~~~~~~~~ = 1) (see

Figure 3.7).

Now let {tp. (x), j = 1 ,... ,n~ be any set of totally po sitive functions

and define

G3(x) 
= E ~.(x) G2(x~)

~ ~~(x) .~~ ~i 1 (x; a~~1 
,u

~ “~i+l~ 
P~j l

1=1 ~~
(x;
~1 i ,a~~ 1+1 ) Pi , (3.49)

where

~~(x;u~~1 1~~~a1~1 ) = 

~~ 
(x) 

~i l  (x~;~ 1 1  1a~ ~~~ . (3.50)

For example , let i4~ (x) be the uniform B-spiine basis of degree ni -l .

Then for small , the basis functions are “bell -shaped ,” while for

ct~ large , these basis functions converge in shape to the piecewise

linear basis functions. This convergence takes markedly for the

lower degrees (see Figures 3.8 and 3.9).

V - - VV - —
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1.0

1-1.0 i i+1.0

Figure 3.7 (a). Canonical bas is function 
~~ 1 (x;O ,U ,0).

i-l.0 
- 

i i+l.0

Figure 3.7 (b). Canonical basis function c$ 1 1 (x;l ,l ,l).

I
-
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y1.0
Figure 3.8 (a). Canonical basis function ~

‘(x;0 ,0,0)
0

for the choice ~p0(x ) = B-spl ine bas is

of degree 3.

Figure 3.8 (b). ill (x;0,8,0.8 ,O.8 ).
- 0

r :
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Figure 3.9 (a). Canonical basis function ~-~(x;0 ,0,0) for

the choice ~i0(x) = B-spline basis of

degree 5.

Figure 3.9 (b). ~i~(l, 1 ,1).

- -~~~ -~~ - — -V - - - - -  - - ~~~~~~~~~~~~~~~~~~~~~~~~ - —  - V
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The previous construction give us an indication of the possibili-

ties for creating new TP bases from other TP bases. If in (3.49) we

choose

n-i
~p . ( x )  = ~ (n i ) x 1 (l-x)~ 

1 1, i.e., the Bernste in basis of degree
1=0

n-I , then our construction is very similar to that of Gordon and

Riesenfeld defined by equations (3.6) and (3.7), only here we have

allowed the number and position o the P~ to be flexible.

There are other schemes which easily can be developed from a

careful perusal of the construction prototype (3.38). For instance ,

if in (3.49) we take {~p3
(x),j= l ,...,n} to be the B-spline basis of

degree 2 and

1/2 , j l ,...,n ,

then the construction reduces to that of (3.18). From Lemma 2.5

we know that

G 3(x)  = B3[P; 0,n].

The method can be extended by generaliz ing the construction (3.19)

to create a whole family of bases such that 
-

~p ’. (x;l/2 ,l/2 ,l/2) = 
~~~

. (x), j = 1 ,...,n , (3.51)
j , rn 3,

where ~~1~(x) is the ~
th order B—spi ine basis functions.
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Thus the family of bases i = 1 ,...,n} is a proper gener-

alization of the family of B-sp line bases , where the 
~~~~ 

= • 1

ni form a substantial improvement in terms of the ‘ natural ’ hand ’es

desired. (See Figures 3.10 and 3. ll . ’I

More Curve Techn iques

In the previous constructions we used a discrete form of Theorem

2.7 to construct TP functions from other TP functions. An equally

valuab le technique for CAGD results when the variabl e of summation

in (2.16) is , in fact , continuous. For example , let

n
P(t) = E ~1(x) P

~ 
(3,52)

1=0

as defined in (1.1), and define

Q(t) = T(P)(t) = K (t ,s) P(s) ds , (3 53)

where K(t,s) is TP on R2. Then by Theorem 2.2 we have

v[o] v[P] . (3.54)

Rewriting (3.53) we have

Q(t) = K (t ,s) P(s) ds

Co n
= f K (t,s) I~1(s) P1 ds

_ _ _ _ _ _ _ _ _ _ _  - V
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p
3

- 

P1

p
4

P0~~~~~~~~~~~~~~~~~~~~~~~~~~
p
5

-- Figure 3.10 (a). B2[P; 0,5].

P2 -

P3

P1

P4

P0~~~~~~~~~~~~~~~~~~~~~~~~~~

Figure 3.10 (b). Increased tension at and P2. 

- -
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Figure 3.11 (a). B3[P; 0,6].

p
2 p

3

P1 p
4

P0 
5

p

Figure 3.11 (b). Increased tension at P0, P3, P6.

~~~~~~~ - —— -V —V--V —
- - ~~~~~~~~~~~~~~~~ 

—---.---_
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n c.~ 
(3.55)

= 
~ ( f K(t~s)4~ (s ) )  ds P1i=0 -

~~

= 

i=O 
q~ (t) P1, where ~~(t) = 

Lo 
K(t ,s)

~~
(s) ds

In view of Theorem 2.7, provided that [~~(t)] is TPn~ 
it follows

[ 4 ( t)] i s TPn~
To develop a class of kernels K(t,s) suitable for CAGD we re-

strict our attention to TP kernel s of the form K(x ,y) = f(x-y )

(translation kernels) where (x ,y ) c R2 and I f(x) = 1. Under these

constraints the transformation (3.53) becomes a convolution , i.e.,

T(P)(t) = K(t-s) P(s) ds. (3.56)

Recall from Section U that the function eXY is ip on R2 Then

by Theorems 2.4 and 2.5,

K1 (x,y) 
= ~~~~~~

= e~~
X2 e~~

2 
e2~~-~

” (3.57)

is TP for a > 0. Similarly, it can be shown that

K2(x ,y) = e~~~~ ” (3,58)

is TI’, for a > 0, (x,y) ~ R
2. Since K1 (x ,y) and K2(x ,y) are TP,

from Theorem 2.7 we know their seif-convolutes are TP. That is ,

If we define

-V - V - V
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K~(x,y) = K~~~(x,y) * K~
(x,y) I = 1 ,2; j = 1 ,2...,

(3.59)

where

K?(x ,y) = K1 (x ,y) i = 1 ,2,

then

- K~(x ,y) is TP on R2 . (3.60)

The kernels are “bell—s haped” and symmetric , the “spread” of the

curves depending on a. (See Figures 3.12 , 3.13.) Note that K~(x ,y)

is of continuity class C~ for all j, while K~(x,y) c C
3 .

rf P(t) in (3.52) is our primitive polygon , which means that

is the cardinal piecewise linear basis , then we can construct

new bases

= K~(x) * ~~(x) (3.61)

for p = 1 ,2; i = 0,1 ,... ,n; and j = 1,2,..., such that {c~j(x)} is

TP on Xx i , X = (_ao,co), I = {0,l ,.. . ,n} for all j .

There are several alternative methods of ensuring that the bases

{~~(x)} enjoy the convex hull property . We can either use the tech-

nique developed in (3.43) or we can normalize {K~(x)} such that

I K~(x) dx = 1.

_ _  - - - - V —
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Figure 3.12. K~(x), ct = 1

Figure 3.13. K~
2(x), a = 1

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- — -V —

—
--V ~~~~~~~~~~~~~~~~ J_

_ 
-V
. - -V

- -
~~~~~~~

-
~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-
~~~~ 

—



71

That is , define

- 

L~ (x) = K~(x)/C , i = 1 ,2; j = 1 ,2,

where

C f K~(x) dx .

Then from (3.61) we have for I = 1 ,2,

k~0 
~~(x) k=O ’ 

*

= L~(x) * 

k=0
(3.62)

L~( x ) * 1

Of course , in view of the recursive nature of fK~(x,y)}, various

combinations of (3.43) and (3.62) could be used as well.

Not surprisingly, in view of their simila rity in shape to the

B—s p line basis (compare Figures 3.14 and 3.15 and Figures 3.16 and

3.17), curves formed with these new bases can be remarkably close in

shape to the 6-spline approximation . This similarity is explained

mathematically by the Central Limit Theorem .

Theorem 3.3 (Central Limit Theorem) [27]. Let f~(t)1 t (
_cc,oo), I

an integer , be real positive and symmetric about t = 0, such that

f f1 (t) dt 
= 1
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Fi gure 3.14. Canonical B-spline basis , degree 7.

Figure 3.15 . (/6~//7~~) e
6/7

~~

- - - ----V
_________ -‘V --
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Figure 3.16. B— spline approxima tion , degree 7.

Figure 3.17. Same polygon , where the approximation was obtained

wi th the convolution kernel (161( J)e (6/7)X .
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for all i and define

- 

f(t) = f1 (t) 
* f2(t) 

~~. ..~~ f,1(t), (3.63)

where , aga in , * represents convolution. Then if

- 
t3 f~(t) dt < C (3.64)

where C is an arbitra ry constant , and

- n ~lim E f t2f~(-t) dt = °‘ (3.65)
n-~ i=1 -~~ 

-

Then
/ ~2 2

u r n  f(t) = 
1 e~~

t 1 /2o (3.66)
av~~

where

.-, n G~

~ ~~~~~ dt
1=1 -~~~

We construc ted the {q~ (x ) }  in (3.61 ) precisely as the iterated

convolution of j functions , and a reexamination of the B-spline basis

of degree in reveals that each is the iterated convolution of m func-

tions, as well. Without going into detail , it can be shown [3,12]

that all of these functions satisfy the hypothesis of Theorem 3.3.

There fore , in the limit, all these bases would be of Gaussian form ,

differing only in their dispersion about their point of symetry.

Thus the similarity In shape of the various approximation methods

is In actuali ty a reflection of this “tendency to Gauss i an form” in

the basis functions.

— - --V—V V— - - -  - - V  --- - W V
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Surfaces 
-

Al though the extension of vector -valued curve methods to surfaces

is straightforward , there is no satisfactory theory of total posit iv-

ity for functions of more than one variable [3]. However , when

dealing with surface equations of the form

n
~ ~~(x ,y) P1 (3.67)

1=0

we can refer to the tota l posi t iv ity of the {q 1 (x,y)} with respect to

x and I or y and i , respectively. As in our development for curves ,

we are interested in bases {~~(x~y)) which are totally positive with

respect to both continuous variables .

Le t L1 and L2 be some linear operators over the polygonal curves

P = 

~~~~~~~~ 
and Q = 

~~~~~~~~~ 
respectively, defined by

n
L1 [P] 

= E ~.(x) ~~ 
x~Ri=O 1

and
in

12[Q] 
= 

~ ~~~~~~~~~ 
Q1, yeR

1=0

where the bases [~1(x), I = 0,... ,n] and [~‘~(~). 
j = 0,... ,m]

are TI’ on their respective domains and possess the convex hull pro-

perty . Then given a rectilinear network R = [P 1~ , i = 0,... ,n ,

j  = 0,... ,m] we can define

n
L 1 {R] = ~ •1 ( x ) P1 - for j fixed , jc [0, ..., m] (3.68)

i=O

—-V — V - --V --V V.— -Y -
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and

L2[R] = E ~ .(y) Ps ., for i f ixed , ic [0, ..., n] (3.69)
j=O ‘~

L1 and L2 are called lofting operators , reflecting the fact that they

filter or vary the shape of R with respect to only one variabl e. In

view of the total positivity of [~~(x)] and ~~~~~ we have

V(L 1 [R]]( x ) < V [ R ]( i )

and

V(L 2[R]](y) < V[R](j),

where we have altered our orig thal notation for the number of sign

changes for curves to reflect which domain we are considering. If we

wish to smooth in both directions , we construct the tensor product

of the two lofting operators as

L[RJ = L1 [L2[R]] = L2[L 1 [R]], (3.70)

where we have

V[L[ R ] ](x ) < V [L 1 [R ]]( i )

V[L[R]J(y) 
I 

V[L2[R]](j)

Although these kinds of generalizations from curves to surfaces

have proven extremely successful for CAGD [121, and we are deal ing

formally with two—dim ensiona l surfaces , the approach is inherently

V 
one-dimensional. This fact is reflected in the polyhedral network -

for the lofting operators , and therefore in the tensor product oper-

ators , which manifestly require rectilinear control points.

~

l

~

_
_ _ _ _ --- — - - V - - V  -~~~~~~~~~~~ —--~~~~~~ --V 
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There is a curve to surface genera lization , modelled after the

convolutional methods for curves (3.56), which circumvents the

use of rectil inear networks. Let

n 2P = ~ q 1 (x,y)P1 (x,y)cR (3.71)
1=0

w here the are arbitrary points of R3 corresponding to knots

p1 = (x~,y1) of R
2 and where the {4~} are piecewise linear poly-

nomials of two variables which solve the interpolation problem .

(u i = i
= 0 < i , j < n

1 ~ ~ 0 el sewhere ,

Thus, for distinct P~, P is a proper triangulation of the points P~.

(See Figure 3.18.) It is evident that a given polygonally bounded

domain in the plane can have severa l triangu lations (Figure 3.19).

Figure 3.18. (a) Graph of a basis function

V
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Figure 3.18. (b) Graph of a piecewise linear polynomia L

Figure 3.19. Three distinct triangulati ons of the same pol ygon .

- -V—V -VVV
~~-V 
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For various efficient algorithms for triangulation of the plane , see

[23,241.

Now for K(x ,y) and M(x ,y) TI’ on R
2 as in (3.56), where K(x ,y)

and M(x ,y) are trans lation kernels , define the lofting operators

to

L1 [P] = I K(x,s) 
1=0 

~ .(S,y) I’1 ) ds 
, (3.72)

and

L2{P] 
= I4(x,t) 

i=0 ~~~~~ 
P~) dt . (3.73)

As in (3.68) and (3.69) we have

V [L 1 [P]]( x ) < V [P](x)

and

V[12[P]](y ) 
~ 

V[ P](y )

In view of the piecewise linear nature of the (h), we

have

~~(x,y) = K(x,s) q~(s,y) ds (3.74)

- is TP on Xx i , and

~~(x,y) = f M(y,t) ~1 (x,t) dt 
(3.75)

i s TP on Yx I , where XxY R2 and I {0,i ,. . . ,n).

Of course, we can generalize the lofting transformations to the

tensor product operation by

- 
~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~ -V —V V— V. ~_~~V_V— _
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L[P] = L1 [L2{P]] = L2[L 1 {P]]

Although we have insisted in (3.70) that the 4~ represent the

cardinal piecewise linear basis functions, the development which

fol lows (3.70) works equally well if the q~ represents the piecewise

bilinear basis functions associated with the vertices of a rectilinear

network. Thus our technique of approximating triangular networks

of points is a proper generalization of tensor product approximation

to rectilinear networks , encompassing the latter as a special case.

Note that in avoiding the biased directions of approximation inherent

in the rectilinear schemes, we must choose the directions of approxi-

mation. Above we chose to integrate with respect to the x and y

directions , but clearl y any two independent directions would have

sufficed . The following figures show various tensor product approxi-

mations to their respective triangular nets for different choices

for L and M. 

V~~~ VV - -V -V --V
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Figure 3.20. Piecewise linear polynomial , 1.
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IV. CONCLUSION

Suninary

The techniques developed and extended herein for curve and sur-

face design form a proper generaliz ation of Bernstein -B~zier and B-

spline methods, while enjoying increased flexibility for interactive

manipulation.

The application of the theory of total positivity to CAGD has

not only resulted in well structured approaches to new mathematical

modelling for ab initio design , but a new framework for analyzing

and understanding existing techniques.

Although this paper has n~t directly attacked the problems of

computability for the new bases , the stability of the methods is

inherent in the “bell-shaped” form of the basis functions , as exem-

plified in their tendency to Gaussian form . Further , the construction

(3.18) forms an efficient algorithm for calculating B-splines and can

be extended to the other bases constructed in Section iii. These

construction methods form the core for a class of geometric algorithms

for computing the deriva tive , arc length and intersections of spline

curves , as wel l as the area, volume and intersections of the corres-

ponding spline surfaces.

The feasibility and utility of the newly constructed models for

interactive design are demonstrated in the following figures , which

—-V 
V~~~ V— -- - -- - -V .— 

- -
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are “frames ” from an interactive session on an experimental system

for curve and surface design . Since the final decision on what

constitutes a “good” design is subjective and will probably vary

from user to user , it is felt that the ability developed herein to

vary the mathematical model whil e retaining the desirable variation -

diminishing and convex hu ll properties may be of increased impor-

tance in future CAGO systems.

Overview

The authors feel that this constitutes a natura l third paper

in the direction of establi shing a sound mathematical basis for the

application of the variation dim inishing approximation method to

computer aided geometric design , the first two papers being Gordon

and Riesenfeld [5,28].

~ ~~
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Figure 4.1 (a). Quadratic B— spline approximation to the polygon given.

c III~~i~~~~~~

Figure 4.1 (b). Increased tension at the indicated vertices.

Figure 4.1 (c~. Note the local fit to the polygon in this blown-

up view.
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Figure 4.2 (a). Cubic B-spline approximation to the polygon gtven ,

Figure 4.2 (b). Increased tension at the indica ted vertices.

Figure 4.2 (c). Same tension values , but with the basis constructed

- in (3.50).
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Figure 4.3 (a). Fitth degree 8-spline approximation to the

polygon given.

Figure 4.3 (b). Fifth degree spline approximati on with the

- basis constructed from (3.50).

-I__ _ ---  -

~~~~~~~~

-V - -- - - - - -- - -
~~~~~~~~
-

~~~~~~~~
V - —
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Figure 4.3 (c). Increased tensmn at the ind~ - t ~ vertices .

Figure 4.3 (d). Blown—up view , showing changes to the
- shape of the “bumper”.
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Fi~ure 4.4 (b). A bicubic B-spline approxima tion to S.
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L L L ~~ _ ~~~~~~~~~~~~~~~~~
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Figure 4.4 (c). A biquintic B-spline approximation to S.

~~{/7/ ,t[~:: 

3 2/2Figure 4.4 (d). S * (3/2-n) e X e . Note the

similarity in shape to Figure 4.4 (b).
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Figure 4.4 (e). A triangulation 1 of S. 

~~~~~~~~~~~~~~~~~~~Figure 4.4 (f). T * (3/2w ) e 3X /2 e 3h2.
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Figure 4.4 (g). T * (1/2-ri ) e

_X 
e~

’

I ~/~ \
L~~

\\
~- ~/ 4;

I
Figure 4.5 (a). The bilinear surface S where the lower

left vertex has been moved.
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~~~~-r~~VI_ i
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~~~~~~~~~~~ LJi~F 1~~~

Figure 4.5 (b). Cubic B-spline approxim ation to S. Note

thereare only local differences in shape

from Figure 4.4 (b).

;\
/ /

/ /~~~~

Figure 4.5 (c). A triangulation I of S.
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Figure 4.5 (d). 1. * (3/2ir ) e
_3X /2 e 3

~
’ /2

Note there are only local differ-

ences in shape from Figure 4.4 (f).

________________ - —  V__u— — —- - — —_
~~~~~~~~~~
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