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ABSTRACT

0f particular importance in an interactive curve and surface design
system is the interface to the user. The mathematical model employed in
the system must be sufficiently flexible for interaction between designer
and machine to converge to a satisfactory result. The mathematical theory
of Total Pos1t1v1ty is combined with the interactive techniques of Bezier
and Riesenfeld in developing new methods of shape representation which
retain the valuable variation-diminishing and convex hull properties of
Bernstein and B-spline approximation, while providing improvements in
the interactive interface to the user. Specifically, extending the
Bézier notion of using a polygon to describe a smooth curve, methods of
assigning a weight to each vertex which will control the amount of local
fit to the po1ygon or polygonal net are provided. Thus, the des1gner can
cause *cusps* and “flats*™ easily by manipulating the tension™at each
vertex. Further, the generalization from curves to surfaces can be done
with rectilinear data or triangular data. Illustrations are provided
from an experimental implementation of the newly constructed models as
a demonstration of their feasibility and utility in computer aided curve
and surface design,
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Computer Aided Geometric Design is principally concerned with

the modelling of physical objects within a digital computer for

automated design and manufacture.

Potentially, the computer can free

the designer from the limitations of traditional drafting techniques

while enhancing and accelerating the production process. Working

interactively at a graphics terminal or a numerically-controlled

drafting machine, a designer can modify or manipulate an existing

model or he can design an object ab initio, using trial and error

techniques to produce an acceptable design.

The computer system

can then generate the necessary information for numerically controlled

manufacture andproduction [1].

Statement of Problem

The two central problems this paper addresses are:

(1) The development of a unifying theory for the construction
and analysis of methods of modelling free-form curves and

surfaces in a digital computer, and

(2) The application of thie theory toward the construction

of new techniques for ab initio design.

These problems are part of a study termed Computer Aided Geometric

Design (CAGD).




Computer Based Modelling for Geometric Design

The realization of such a system for curve and surface descrip-
tion imposes certain constraints on the computer-based model. The
model must accurately represent a variety of shapes, be amenable to
analysis and manipulation, and must take into account the capabilities
and limitations of both the designer and the computer; Although it
is clear a mathematical model is required, the properties 6f shape
cannot be characterized entirely by the properties of analytic func-
tions and, therefore, new mathematical techniques for synthesizing,
storfng and retrieving shape information are needed. ; |

The shapes we are concerned with in CAGD have, in general, no
specific functional form and what is required is an acceptably close
fit which maintains the character of the object being designed. Since
all real three-dimensional objects are of finite size, the mathemati-
cal representation of these objects should reflect this boundedness in
a convenient and efficient manner. Shape is non-analytic in nature,
in that it is not generally possible to predict the entire shape of
an object from its shape in any one localized area. Further, shape
is an orientation independent phenomenon, thus intrinsically a proper-
ty of the object itself and not of the space (coordinate system) in
which it is embedded.

To meet these shape criteria we restrict our attention to vector-
valued bounded piecewise analytic functions from a finite dimensional

linear space. ' That is, we have for curves
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P(t) = R ¢.(t)Pi’ (1.1)
jel i
and for surfacés
Plu,v) = T ¢;(u,v)P,, (1.2}
iel

where I {s some linear ordered, finite set of integers, Pi € R3, t and
(u,v) are elements of some bounded subset of R and Rz, respectively,
and the {¢i(t)} and {¢i(u,v)} are linearly independent sets of bounded
piecewise analytic functions.

The set of points Pi clearly constitutes the controlling parame-
ters with respect to the basis {¢i’ jel}. It remains, then, to find
bases which appropriately model the constraints of a CAGD system. Not
only must the control parameters be suitable for interactive communica-
tion between designer and computer, but the basis functions must be
appropriate for digital representation and computation. At this point
we make the distinction between the fitting of a mathematical represen-
tation to a predesigned object and the design of an object ab initio,
for our choice of basis may depend on which type of design process we
wish to model.

In fitting we are concerned with finding a mathematical description
of an existing shape or physical object, and in ab initio design the
problem is to create a mathematical representation which meets design
constraints which may be entirely subjective, esthetic considerations.
Because we know the exact shape a priori, fitting can be done by digi-
tizing points off the object and interpolating the data with an




appropriate approximation method. What constitutes a "good" approxi-
mation is ultimately up to the designer and interaction with the

model may be necessary. Thus there are hard and soft constraints to

be met. The hard constraints are the discrete data which must be
interpolated, while the soft constraints are manipulated by the de-
signer in determining an acceptable fit. In general, there are few
hard constraints in ab initio design and the designer manipulates
this increased ffexibility to achieve his final design.

While interpolation techniques appear necessary for the fitting
problem, this requirement is not present in ab initio design. Of
fundamental importance in ab initio design is the interface to the
designer. If an interactive design session is to be successful, the
designer must be able to manipulate the control points Pi in an itera-
tive process which converges when a satisfactory shape is achieved.
Thus the shape of the curve or surface must respond predictably to
the interactive manipulation of the control points. Experience with
interpolation techniques indicates that unwanted kinks and oscillations
can occur during the design process, making it difficult to predict
the response of the curve to manipulation of the data.

An ab initio system for the design of automobiles which avoids
these difficulties is Bézier's Systéme Unisurf at Renault [1]. In Systéme
Unisurf the control points are associated with the vertices of a poly-
gon for curves and the vertices of a rectilinear net for surfaces.

The resulting curve or surface replicates the gross features of the

polygon or rectilinear net. More importantly, the design responds

' v —




predictably to the maniuplation of the control points. i
In Bezier's method curves are piecewise polynomials where the

curve is given on each piece by

m
pEE) = .

PN (1.3)

where

gty = e el

for te(0,1),m is the degree of the polynomial, and ‘the Pi are the
appropriate vertices for that piece. Figure 1.1 shows a typical

Bezier curve and the associated Bernstein basis functions.

Figure 1.1 (a) Cubic Bezier curve and associated polygon.

Mo
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Figure 1.1 (b) The cubic Bernstein basis.

Surfaces are generated by taking the tensor product of the basis func-

tions with respect to two orthogonal directions, i.e.,

P(U,V) - IZI:I (71')) ui(]_u)m-i (Jgo (3) vj(l-v)"'j) Pij (].4)

where (u,v)e(0,1)x(0,1), m,n are the degrees of the polynomial with
respect to the u and v directions and the Pij are the vertices of the

associated rectilinear network. Figure 1.2 shows a Bezier network and

the correspodding surface.




Figure 1.2 Bicubic Bézier surface and associated recti-

linear network of points.

Gordon and Riesenfeld [14] have associated the remarkable repro-

ducing power of the Bernstein-Bezier methods with:

(1) the fact that Bernstein approximation is variation-
diminishing, and

(2) the fact that the Bernstein basis functions are posi-
tive and sum identically to 1, i.e.,

m
I ¢i(x) =
i=0
and
¢;(x) >0
for all x, such that
xetl0,1) and § = 0,), .y W (1.

5)




If we let V(f) denote the number of sign changes of some function
f and V[x],xz, X5 xm] denotes the number of sign changes of the in-
dicated sequenée, then property (1) is equivalent to

WIRF < WiPaPos i ] (1.6)

Property (2) is commonly referred to as the convex hull property,

since the conditions stated are neceésary and sufficient for any
curve of the form (1.1) to lie within the convex hull of the coeffi-
cients Pi'

Note that, in general, the piecewise Bernstein approximation is
only CO continuous. Although it is not difficult to "fix up" C] con-
tinuity, many applications in the automobile and aircraft industries
require at least C2 continuity. Riesenfeld [5] has recently proposed
vector-valued B-spline approximation as a generalization of Bernstein
approximation which retains the variation-diminishing and convex hull
properties while improving the continuity class of the curves and sur-
faces to arbitrary smoothness.

The vector-valued B-spline approximation of degree M-1 to the
associated polygon [Pl’PZ’ PR Pn] for integral knot spacing is given
by

n
.z] ¢1.M(t) Pi (1.7)
1=

P(t)

L]

where P eR%, te(-o,@), n > M and

. —
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W H G
om(t) = T jfo (=107 (5) (s-3-1)y (1.8)
where
" (s-j-i)M for s > (i+]) v
s = st = : (1.9)
0 otherwise

As with Bézier's method, the surface equation is given as the tensor

product

n

P(u,v) = J_E] “’jN(”) (1

] ¢iM(V) Pij)’ (u,v)eR2

W~ 3

n>N, m>M and ¢iM represents the ith B-spline basis function of
degree (M-1), as in (1.8). An important property of the B-spline
basis of degree (M-1) is that each basis function is already a piece-

wise polynomial of continuity e

» thus the designer does not, in
general, have to explicitly join segments to form the compound curve
(surface), although the piecewise nature of the curve (surface) is
implicit in the basis. Figures 1.3 and 1.4 show typical B-spline
curves, while Figure 1.5 shows a B-spline surface and the associated

rectilinear network.
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Figure 1.3 Closed quadratic B-spline curve and associated polygon.

o

Figure 1.4 Open quadratic B-spline curve and associated polygon.
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Figure 1.5 Bicubic B-spline surface and associated rectilinear

network of points.
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We noted earlier that interpolation methods seem ill-suited for
ab initio design in that it may be difficult to control interactively
the occurrence of kinks and oscillations in the design, while it ap-
pears the variation-diminishing methods of Bézier and Riesenfeld per-
form well. The mathematical statement of these observations is cap-
tured in.the following exclusion theorem due to Schoenberg [8].

Theorem 1.1. Let L(f) be a linear transformation defined for all con-
tinuous functions f(x) on [0,1], L(f) # f for some f. Then if

L(a + bx + cx2) = a'+ bx + cx2, for all a, b, ¢ € R (reals), then L
cannot be variation-diminishing.

From the point of view of ab initio design then, techniques of approx-
imation which have a high degree of "reproductive power" cannot be '
varfation-diminishing, and ‘thus there is no guarantee that you caﬁ
"control" oscillations during manipulation of the vertices of the
defining polygonal network. Since most polynomial and polynomial
spline techniques of interpolation are precise for more than linear
polynomials, i.e., they reproduce polynomials of degree two and higher,
they cannot be variation-diminishing. Thus Schoenberg's theorem estab-
lishes a firm foundation for approach to CAGD. If the problem is to
fit hard constraints, then interpo]aiions methods would seem superior
to variation-diminishing methods, while variation-diminishing methods
appear superior for ab initio design.

Although vector-valued B-spline approximation offers an attractive
generalization of Bezier's methods for curve and surface design, both
techniqges possess inherent weaknesses. The extension from curves to

surfaces requires a rectilinear network of points. Thus a designer is
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restricted to rectilinear data as control points. There is no simple
way of adding and deleting points within this restrictive topology.
In general, the designer must delete or add a whole row and column
of points to maintain the rectilinear topology of the data. This is
clearly unacceptable for it would generate global changes to the
surface. Further, Bernstein and high degree (continuity) B-spline
approximation techniques have low "reproductive" power in the sense
that the curves are poor approximations to the shape of the defining
polygon [5]. The ability to control interactively the amount of
local fit to the polygon while maintaining a high continuity class
would be an important feature of an ab initio design system.

This paper 1is an investigation into the development of
mathematical models which retain the valuable variation-diminishing
and convex hull properties of Bernstein and B-spline approximation,
while providing improvements in the interface to the user for ab initio
design. A family of prototypes which includes the Bernstein and
Bezier method is presented. Specifically, methods of assigning a
weight to each vertex which will control the amount of local fit to
the polygon or polygonal net are provided. Thus the designer can
easily cause "pseudo-cusps" and "pseudo-flats" by manipulating the
"tension" at each vertex. Further, the generalization from curves to
surfaces can be done with rectilinear data or triangular data. There-
fore, the difficulty involved with the addition and deletion of points
in a rectilinear network can be avoided. The feasibility and utility
of the newly constructed models for interactive design are demonstrated

on an experimental system for curve and system design.
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A unifying theory, based on total positivity [3], is developed

here for the construction of such models. Total positivity is a con-
cept that has played an important role in various mathematical
sciences. The application of the theory of total positivity to CAGD
has resulted not only in new techniques for synthesizing shape opera-
tors for.CAGD but also has provided general methods for analyzing the
Bernstein-Bézier and B-spline methods previously discussed. Section
IT provides a general discussion of the representative and manipula-
tion rules for totally positive functions and their interrelationships.
In Section II1 we apply the theory of total positivity to the analysis
of some existing methods of ab initio design and then proceed to the
construction of new shape operators for curvé and surface design. In
Section IV we discuss the utility of these methods, as demonstrated on

the curve and surface design system.




II. TOTAL POSITIVITY--A REVIEW
Total Positivity and the Variation-Diminishing Property

In Section I we established the usefulness of variation-diminish-

ing methods for ab initio design. Due to the importance of Schoenberg's
exclusion theorem (1.1) in this connection, we restate and prove it
here.
Theorem 2.1 [8]. Let T(f) be a linear transformation defined for
all f(x) continuous on an interval [a,b], where g(x) = T(f) is itself
a continuous function in [a,b], with the following.properties:

1. T(c + dx) = ¢ + dx, for all c, d € reals.

2. V(T(f)) < V(f).

3. There exists t such that T(t) # f, i.e., T is not the iden-
tity transformation.

Then there exist real numbers a, B, Y such that

T(a + Bx + YXZ) o+ px+ sz,

for xe[a,b].
Proof: Assume the converse, that g(x) = T(f) does preserve quadratic

poiynomials, i.e., T(xz) = x2,

Let a < Xg < b. We will show that
g(xo) = f(xo), which implies T must be the identity transformation, in
contradiction of (3) above.

'Indeed, assume, for instance, that
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9(x,) > fx,)
since
T(f(x) - a - bx - cxz) = g(x) - a - bx - cx2
by the variation-diminishing property we have
V(g(x) - a - bx - cxz) < V(f(x) - a - bx - cx2). (2.1)

That is, the graph of g(x) crosses the graph of any quadratic poly-

nomial no more often that the graph of f(x) does. But for a such that

f(xy) < a< alx,) »

the parabola y = a + B(x - xo)2 enjoys, for sufficiently large posi-
tive B, the following properties:

(i) It is crossed by y = g(x) at least twice.

(ii) It is not crossed by y = f(x).

(Consider the zeros of g(x) - (a + B(x - xo)2 and f(x) -~ (a +
B(x - xo)z.) These conclusions contradict the variation-diminishing
property (2.1) and the theorem is established.

We have already alluded to the strong interrelationship between
variation-diminishing methods and totally positive functions. This
relationship is established in the following theorem due to Karlin [3].
Theorem 2.2 [3]. Let K(x,y) be a function of two variables x e X

and y € Y, where X and Y are linearly ordered subsets of the real line

and consider the transformation

g(x) = T(f)(x) = { K(x,y) f(y) dy, (2.2)
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where f and K are bounded and Riemann integrable on Y. When Y con-
sists of a discrete set, we interpret the integral as a sum.

If K is totally positive of order r, then
V(g) < V(f) provided that V(f) < r-1. (2.13)

Note that equation (1.1) is a vector-valued form of (2.2) where Y is
a discrete set. The proof of Theorem 2.2 follows as a corollary to

the statement that, for a totally positive matrix A and any vector X
(of compatible length), AX has no more sign changes than does X. Be-
fore we can prove either of these assertions a general discussion of
the representation and manipulation rules for totally positive func-

tions is necessary.

Total Positivity

Definition 2.1. A real function K(x,y) of two variables ranging
~over linearly ordered sets X and Y, respectively is said to be totally

positive of order r (abbr. TPr) if for all sequences x, < ity

} oA
<xm,y] <Y, < oo S Yo xieX, yieY, 1 <m<r we have the inequali-

ties
X]: xz’ LECRUA ) Xm K(X1,y1), ceo ey K(X], ym)
K = : . > 0.
y"’ .ng ce ey ,Ym K(Xm,y]), ceey K(Xm, ym)

(2.4)

If s;rict inequality holds in 2.4, we say K(x,y) is strictly totally

positive of order r (abbreviated STPr). The subscript is normally

omitted when a function is (strictly) totally positive of all orders.
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Note that total positivity implies positivity. As examples of totally

positive functions, we have:

2

(a) €Y, x xY = R® is STP

(b) Km(x,i) = (':.')xi(l-x)m"i is STP of order m#1 on i € I =
{01, ..., m} and % ¢ (0,1).

(c). The square n x n matrix A = [a(i,j) = éij] is TP.

The verification if (c) is trivial,while (b) will be shown to follow
immediately from (a). Note that the function K(x,i) in (b) represents the
Bernstein basis of degree m-1, and the proof of (b) in conjunction
with Theorem 2.2 would be sufficient to show that Bernstein-Bézier

methods are variation-diminishing. We provide the proofs for (a) and

(b) below.
Theorem 2.3. e*Y is STP on X x Y = RZ.
Proof: We first show that
X1Yi X1¥n
Xy » X e s e
e = : ¢ # 0
Yps vees ¥, ‘ eXn¥i | oXn¥n

for X1 Xps eee X distinct in X and Yis Yoo +oes Y, distinct in Y.
This fact follows immediately if we can show that any exponential

polynomial of the form

n

i=1 :
where

n

b ai2 >0

i=1
has at most n-1 zeros.

o S
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.
-

Denoting the number of distinct zeros of a function by Z(f), we preove
(2.5) as a lemma.
Lemma 2.1. Let Yy i=1, ..., n, be a set of distinct real numbers.

Then
where

Proof: (by mathematical induction) Let n = 1. Then clearly aieyix
has no zeros.

Now assume the hypothesis holds for n = k-1, i.e.,

k-1
A ( % aieyix> < k-2
i=1

for all aieR such that

k"] 2
X a;” > 0 (2.6)
i=1
We must show that
k
VA ( T aieyix> < k-1
i=1
for all aicR such that
5y
X P 0. (2.7)
i=]
Mg e— " —




Lemma 2.2. Given Xp € X € eun < Xy xiex and Yy <Yy < eea <y

20

.
-

Assume without loss of generality 2y # 0. Since eYi* has no Zeros,

we have
~y.X K Y:X ; YiX
| e”i z a.eli = ZI| I a.,e’i (2.8)
Sooaray : i
i=] \i=l
-y.X k Y. X
Differentiating e 7i )y a,e i” with respect to x, we get
3 i=1
k !
z a%eyi
i=2
where
g = oy
and
! = -
a, a;(y;5-¥7) (2.9)

which, by our induction assumption,has at most k-2 zeros. It follows
from Rolle's theorem that a function can have at most one more dis-

tinct zero than its derivative, therefore,

k
z( ) aieyix) < k-1 (2.10)
i=1

Now we show that for Xp € Xp < evn < X0y xieX and Yy €Yy < an <

Yps yicY, the determinant
X,...,X
e ( 1 n )
yl, DO ) yn
cannot achieve both negative and positive values.

n
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y;€Ys where X x Y = Rz, we have
XqY XqY
Xpo seen X el o v 8 17n
e =1 5 £2.17)
Fyr <=0 ¥y 1. . . X

is of one strict sign.
Proof: This will be proved by contradiction. Fixing Yy €¥p € een ¥
Yo? yieY, let Xp S Xy < e <X, and 23 €29 < vl <2y Xgzg N X

be such that
e >0>e (2.12)

Since e* is a continuous real function, we have for some X €(0,1) the

determinant

D(A) = e

"
o

)\X-l + ("A) Z], CECRCNEY )\Xn i (]-A) Zn

By (2.5)this is impossible for distinct X; and z,. Therefore, there

exist i,j, i#j, such that

Ax; + (1-2) zg = ij + (1-2) 2

which implies
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Now all that remains to complete the proof of Thebrem 2.3 is to
exhibit a set pf increasing X; and increasing Z5s for which the deter-
minant in (2.11) is positive. If we let X; 2 4§ = 0y Ve isin B
and ¥y = 1nzi where z, is a strictly increasing sequence of positive

reals numbers, then (2.11) specializes to

e¥o¥o  eXo¥n 1 zl SR zg
X 1 '] 2"
e*nYo  e*n¥n Z n
= I (zi-z.) > g, (2.13)
i>j J

since the determinant on the right hand side is the well-known
Vandemonde determinant [15].

In order to prove the total positivity of the Bernstein basis,
we need the following twb composition rules for totally positive func-
tions.
Theorem 2.4 [3]. Let K(x,y) be TPr(STPr) on X and Y and let ¢(x) and

¥(y) be nonnegative (positive) on X and Y, respectively. Then

L(x,y) = &(x) w(y) K(x,y) (2.14)

is TPr(STPr). .

Proof: The conclusion (2.14) follows immediately from the fact that
the determinant is a multilinear function of its rows or columns.
Theorem 2.5 [3]. Let K(x,y) be TPr(STPr) on X and Y and let ¢(u) and

v(v), uel, veV be strictly increasing functions mapping U and V into
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X and Y, respectively. Then
L(u,v) = K[4(u), 9(v)] (2.15)
is TP _(STP ), ueU, veV.
Proof: The result (2.15) follows immediately from the obvious fact
that ¢ and ¢ map increasing sequences into increasing sequences.
Theorem 2.6. The Bernstein basis Km(i,x) = (?) x1(1—x)m'i
10,5 ... My x€(0.1) is TPm+] on {0,1, ..., m} and (0,1).
Proof: Rewriting Km(i,x) = (?) x](l-x)"'i as
In(s2-)
bl = e eEtel E (2.16)

the conclusion follows directly from Theorems 2.3, 2.4 and 2.5.

We will find the following composition formula for totally posi-
tive functions of fundamental importance in the development of shape
operators for CAGD.

Theorem 2.7 [3]. Let K(x,z) and L(z,y) xeX, yeY and zeZ be Riemann
integrable functions of z, where X, Y and Z are linearly ordered sets
of the real line, and define

M(x,y) = é K(x,z) L(z,y) dz,
where again we interpret the integral as a sum when Z is discrete.
Then, if K(x,z) is TPr on X x Z and L(z,y) is TPS on Z x Y, then
M(x,y) is TPt on X x Y, where t = min(r,s).
Proof: The conclusion follows easily from the generalized Cauchy -

Binet formula for the composition of determinants given by
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X],XZ, sisi ity Xm
M ' =
y],yz, vees )’m
X], ’ Xm Z], ’ Zm
/ | L des s ide
agz]< <zmib Z-[s sZm .V]9 o.ym
(2.17)

where M, K and L are defined as above and we assume Z = [a,b] for simpli-
city. Formula (2.17) is.a direct extension of the Cauchy-Binet formula
[17] for matrices, which we restate below.
Theorem 2.8 [17]. Let A, B and C denote matrices of real numbers
or orders n x m, n x k, and k x m, respectively. If A = BC, then
LW sl el
g p WM< el <o 1752 NP Ty
(2.18)

where the Tefthand term stands for the minor of A involving rows i],iz,

..,ip and j],jz,...,j » respectively.

p
Proof: The conclusion will follow if we can establish the correspond-
ing result for any square matrix which is the product of two rectangu-
lar matrices. So, suppose that a square matrix C = Ilcin T is the
product of two rectangular matrices A =|Iaik” and B =||bij of

dimension m x n and n x m, respectively. That is,
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n : '
iy = L aaibaj (& 0 T (- SRR | (2.19)
o=1
By (2.19) the determinant of C can be represented in the form
n n
Cc c I a,.b T a,.b
n Tm a]=1 ToyTa, o =] leom
v m
n n
C C Y ae S - A =tb
ml mn a1 may 0ﬁ1 o =1 ma, Com
a, b a, b
1a] all lo a m
n
= D e L S AT R
a],...,omﬂ
' am b 1 an m
1% %
n 2 .oom
= L 5 A ) ba lba 2 o m
s ﬂh-l ay o, o T2
(2.20)

If m > n, then among the numbers oy, ays ..., o there are al-
ways at least two that are equal, so that every summand on the right-
hand side of (2.20) is zero. Hence in this case C = 0.

: Now let m < n. Then in the sum on the right-hand side of (2.20)

all those summands will be zero in which at least two of the subscripts

Gys Ony veey O ATE equal. A1l the remaining summands of (2.20) can
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be split into groups of m! terms each by combining into oné”group
those summands that differ from each other only in the order of the
subscripts @yrlps s ap (so that within each such group the sub-
scripts LEERPY SRR an]have one and the same set of values). Now

within one such group the sum of the corresponding terms is

=

m )
b, b b
U~2 [EE] am
1 kz e km 2 m

!

I e(al, [, SR e am) A(‘k

where k] < k2 <l km is the normal order of the subscripts @y,
2 N :
Gy vees O and e(a1, Bys vens qn) = (=1)", where N is the number of
transpositions of the indices needed to put the permutation aps Qo
“ g into normal -order.

Hence (2.19) implies (2.18),
Variation-Diminishina Transformations

We are now in a position to prove Theorem 2.2. As noted earlier,
Theorem 2.2 is a direct consequence of the corresponding theorem for
matrices, which we establish as Theorem 2.9 below. The proof given

here is essentially that given by Schoenberg [16,21]. In the follow-
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ing definitions and theorems, sequences and matrices will often be
represented with the functional notation x(i), a(i,j), emphasizing
the fact that we are dealing with functions over discrete sets.

Definition 2.2. Given a function f(t) defined in I, an ordered set

of the real line. We define the variation of f over I as
V(f) = sup V[f(t]), f(tz), s f(tm)] %

where the supremum is extended over all sets t] < t2 A tm(tigI),
m arbitrary but finite and V[x(1), x(2), ..., x(m)] is the number of
sign changes of the indicated sequence, zero terms discarded. By
convention V[0,0, ..., 0] = -1. "

Definition 2.3. Given a sequence X = [x(1), x(2), ..., x(n)] of real

numbers, we define N[x(1), x(2), ..., x(n)] as the number of x(i)'s
whiqh are nonzero.

Definition 2.4. A real m x n matrix A = [a(i,j)] is said to be

variation-diminishing if

rX‘ a(i,j) x(J), K1 = T2y s W)
Jj=1

y(i)

implies that

VIy(1), y(2)s ..oy y(m)] < VIX(1), «.vs x(n)] .

ALemma 2.1. Consider the following matrix operations:
(i) Multiplication of a row or column by a non-negative constant;
(ii) Addition of a row or column to an adjécent row or column;
(iii) Omission of a row or column.

These operations when applied to a TP matrix yield a TP matrix.
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Proof: (iii) is trivial, while (i) follows from Theorem 2.4. (ii) is

evident since any minor in the new matrix would be the sum of minors
in the old.

Lemma 2.2. Let X = [x(i), i =1,2,...,m] be a sequence of real num-
bers. If for all

p<m,

we have

VIx(ig)s -on x(i)T < p - 1, (2.21)
then

Vix{1)s oo x(m)} <p~ 1.
Proof: Assume the converse, that there exists

io < ﬁ“ e X ip+]

such that

VIx(ig)s vovs x(ipg)1 > p - 1

then
VIx(ig)s «oos x(ipy)] = b, (2.22)

since all other cases immediately contradict (2.21). But to preserve
(2.21) for al) subsequences of [x(io), ey x(ip+])] the sequence must

alternate in sign. However, we than have V[x(io), pval x(1p+])]l p+l

a contradiction to (2.22). From here a simple induction argument

yields the desired result.
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Lemma 2.3. Let A be a TP, real m x n matrix of rank p and define
n
y(i) = £ a(i,j) x(i), 1202, wive
j=1
where X = [x(j), j = 1,2, ..., n] is some real sequence. Let A'
be the submatrix of A consisting of the rows io’ i], S ip and
define i
io’ S s ik-]’ ik+1’ S ip
a(K) = A : '
\\)1’ e Jp
for some selection of columns j],jz, o jp. Then
P k .
T (-1)" a(k) y(]k) = 0.
k=0
Proof: Since
n
i) = £ ali,, g () .
Jj=1
we have
P k .
Lo(-1)" a(k) y(i,)
k=0
P k . j
= T (DM ak) Eoaliy,j) x(d)
k=0 J=1
o il & + e
JRE xm(kzo (0 0tk al3y,5) (2.23)
J: =

But foF}j not a member of [J].jz. so ok jp] the inner sum is the
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expansion of some minor of A of order p+1 and thus is zero. Similar-
1y, for j a member of [j],jz, Rt jp], the inner sum corresponds to
the expansion of the determinant of some matrix which possesses two
identical columns and again the sum is zero. Therefore, (2.23) must

be identically zero.

Theorem 2.9 [21]. If a real m x n matrix A = [a(i,j))

is TP, then it is variation-diminishing.
Proof: We first assert that it is sufficient to demonstrate this

under the assumption that

VIx(1)s..ox(n)] = N[x(1),...,x(n)]

- 1.
For if any x(k) = 0 we compress X and A by
x(J) Jj<k - oy )
X'(j) ] ¢ (J ], ...n])
x(j+1) i>k
(2.24)
e a(i,j) J<k _
a(‘vJ) a(1,J+1). J_>_k (J=]) ey n'])

We then have y(i) defined by

n-1
¥ii) = & a'{1.d) x*13) .
J=1

The matrix [a'(i,j)] is TP by Lemma 2.1 and if we can show

VIy(1), «..h y(m)] < V[x'(1), ...y x'(n-1)],




then since

VI L), ooes BE)] = V() <05 x(n)]

it will follow that
VIy(1),y ...» y(m)] < VIx(1), ..., x(n)] .

So we can assume no X, is zero.

Next, we can assume x(k) and x(k+1) are of opposite sign.

not true, then there exists A > 0 such that x(k+1) = Ax(k).

compress X and A by

x(Jd) i<k (j =
V(3 = J_],
X'G) =) x41) gk
a(i,j) d €K
a'(i,j) = {a(i,k) + xa(i,kt1) j=k (j=1,
a(i,j+l) i»k
then we have
n-1
y(i) = & a'(i,j) x'(J) .
J=1

..» n-1)

K]
If this is
If we
(2.25)
, n=1)

The matrix [a‘(i,j)] is TP by Lemma 2.1 and if we can show that

Viy(1), ...y y(m)] < VIx'(1), ..., x'(n-1

then since

)1,

T L) TR oo SRS U TR )

it will follow that

»
.




VIy(1)s «ovs y(m)] < V[x(1), ..., x(n)]

We have shown that we may assume (2.21). We complete the proof then
with the following lemma.
Lemma 2.4. [21]. If a real matrix A = [a(i,j)], (i=1, ..., m,
j=1, ..., n) 1is TP, then

VIy(1), ..., y(m)] < N[x(1), ..., x(n)] -1

From above we may assume no Xy is zero. That is, we may assume

N[x(1)s ..., x(n)] = n. Since r(A) (rank of A) < n, we would be done

if we can show that

VE¥C )y «oon ¥Im)] < w(AY .- 1,

We prove this result  in turn, by the following lemma.

Lemma 2.5. [21]. If a real m x n matrix A = (a(i,j)

is TP, then

VIy(1)s o5 y(m1 < r(A) -1

Proof: We proceed by induction on r(A). The result is clearly true
if r(A) = 0 or 1. Suppose that it has been established for r(A) = 0,
1, ..., P-1. We must show that it is true for p.

We may suppose that m > p, since if m = p, then
Vy(1),...,y(m)] < p-1 trivially. By Lemma 2.2
it is enough to show that, if 1 < io € Xy win € iP < m, then
Viy(ig)s ..., y(ip)] < p-1. If A' is the submatrix of A, consisting

of the rows io, i],_..., 1P’ then A' is TP. There are two cases:

32
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r(A') < pand r(A') = p. If r(A') < p, then
VIy(ig)s..oy(ip)T < r(A") - 1 <p -1

by our induction assumption.

So. we assume r(A') = p. Let j],...,jP be a selection of columns

of A' and set

S T T PR
a(k)

1]
>

A

for 0 < k < p. Since A' is TP, no two a(k)'s are of opposite sign
and because r(A') = p, we can so choose j],...,jp such that not all

a(k)'s are zero. We have from Lemma 2.3

a(0) y(ig) - a(1) y(i) = ...+ (1P alp) y(ip) = 0
(2.26)

It is easily seen that V[y(io), y(i]),...,y(ip)] = p is not compat-
ible with (2.26) so that V[y(io),...,y(ip)] < p-1. Thus we have
proved Lemma 2.5, thereby proving Lemma 2.4, thereby proving the
theorem.

Theorem 2.2 is established in the following three corollaries
of Theorem 2.9.
Corollary 2.9.1. Let [y(1),...,y(m)], [x(1),...,x(n)] and A be

given as in (2.20) where now we assume
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VIx(1),..0sx(n)] < r-1, r <n-1,

and A is TPr. Then

VIy(1),...,y(m)] <vx(1),...,x(n)].

Proof: "Using the techniques given in (2.24) and (2.25) we can

compress A and [x(1),...,x(n)] such that

N
y(i) = I a'(i,d) x'(d)
3=l
where V[x'(1),...,x'(N)] = N-1 = V[x(1),...,x(n)] and A" = [a'(i,j)]
is a TP mxr matrix. The conclusion now follows from Theorem 2.9.
n
Corollary 2.9.2. Let f(x) = I ¢(i,x) a;. If {¢(i,x), i=1,...,n}

i=1 :
is TP on x = [a,b] and I = {1,2,...,n}, then {¢(i,x), i=1,...,n}

is variation-diminishing.

Proof: We must show

V(f(x)) < V[a],...,an]

That is, for any finite sequence of points xj’ J=1,...,m we must

show

V[f(x]),...f(xm)] < V[a],.;..a - R

n

where

n
f(xj) = iE] ¢(i,xj) a,

—————— —r——r
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for j=1,...,m. But this is exactly the result of the above theorem
and we're done.

Corollary 2.9.3. Let ¢(x,y) and g(y) be bounded and continuous

functions on [a,b] x [c,d] and [c,d], respectively.  Let

d
f(x) = [ o(x,y) a(y) dy
C

Then, if ¢(x,y) is TP, we have V[f(x)] < V[g(y)].
Proof: We must show V[f(x]),...,f(xm)] < V[g(y]),...,g(y )]
U x, ela,b], Y5 elc,d], m and n fixed but arbitrary.

We approximate f(xj) arbitrarily closely by the Riemann sum

such that sgn(f](xi)) = sgn(f(xi)) for i=1,...,m. The conclusion

now follows from Corollary 2.9.1.

Corollary 2.9.3 [3]. If in Theorem 2.9 we have, in fact ,

VIy(1),..coy(m)] = VIx(1),...,x(n)],

for A STP, then {y(i), i=1, i=1,...,m} and {x(j), j-1,...,n} exhibit
the same arrangement of signs.

Proof: From the above arguments we know it is enough to assume
V[x(1),...,x(n)] = n-1. Under this assumption we need only show
that the first component of [x(1),...,x(n)] has the same sign as the
first nonzero component of [y(1),...,y(m)]. Choosei] < 12 S &

n

such that y, vy, < 0. Sincey, = I a, 3 X5 (v.® 1.2 o0a0)s

v v+l v =1 v

n
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we have

By |
T PYRRRR
A
e 2 n
s anifne =0 i J e
n iz AV T e ’'n
g (-1 A
¥ o I e
i e
A I n

52 et

Now the minors of A are strictly positive and the values (—1)V+]

yiv (v =1,2,...,m) maintain the same sign. Thus sgn(x]) = sgn(yi]).
Theorem 2.2 combined with Theorem 2.6 provide enough power to
conclude that scalar-valued Bernstein approximation is variation-
diminishing. - However, as we established in Section I, we are
interested in vector-valued approximation and transformation methods,
thus we must provide some extension of the scalar-valued theory to

vector-valued mathematics. This is provided in the following defini-

tion and theorem due to W. W. Meyer [5].




37

Definition 2.5 [5]. A vector-valued approximation or transformation

method is variation-diminishing if it is variation-diminishing as a

scalar-valued method.

Theorem 2.10 [5]. If a vector-valued transformation is invariant

under euclidean transformation, then no (hyper) plane is pierced more
often by-a vector-valued transformation than by the primitive curve
itself.
Proof: Surely the theorem is true for any principal (hyper) plane
x(i) = 0 because it is variation-diminishing in the particular coordin-
ate function xi(t). But any (hyper) plane can be designated as a prin-
cipal one by a euclidean transformation. Hence the result is true for
all (hyper) planes.

It is not difficult to show that transformations of the form (1.1)

are invariant under euclidean transformation if and only if

Zo(i,x) =1 : (2.27)
1

This fact does not form a formidable obstacle to us, since, given a TP

basis ¢(i,x), by Theorem 2.4 we can construct another TP basis

¢'(1,x) = o(i,x)/ 2 ¢(d,x) (2.28)
J

such that

Do (ix) = 1 (2.29)
1

We have established the useful fact that the Bézier method is

variation-diminishing. In Section III we continue with the analysis




38

of other mathematical schemes in use or proposed for use in ab initio
design. MWe then apply the theory of total positivity to the construc-

tion of a whole family of new models for CAGD.




ITI. APPLICATION OF TOTAL POSITIVITY TO CAGD

Through the application of the theory of total positivity we have
shown in.SECtion I1 that Bernstein-Bezier methods are variation-dimin-
ishing. From Section I we know that widely used techniques, such as
polynomial and spline interpolation, are not variation-diminishing. In
this chapter we continue this type of analysis by applying the tech-
niques developed in Section II to other methods in use, or proposed

for use, in ab initio design.
Piecewise Bernstein-Bézier Methods

In general, it is vector-valued piecewise Bernstein approximation,
not Bernstein approximation, which is used in CAGD. As noted in
Section I, shape is essentially non-analytic in nature, therefore, it
is not surprising that we often find, when working interactively, that
a curve segment is not sufficiently flexible to adopt a desired shape.
We may then either increase the order of approximation {and thus that
of the polygon) or the segment may be split into two or more segments.
(see Figure 3.1). Curve splitting is simple mathematically and has the
advantage computationally of retaining a reasonable (polynomial) order
of approximation. Since the resulting curve is a piecewise Bernstein
approximation, the question arises whether this basis is variation-

diminishing as well. We establish this fact in Theorem 3.1, but first

M a » TR ” . -y -y
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we generalize the definition of the Bernstein operator to the range

[a,b].

Definition 3.1 [15]. The Bernstein approximation of degree n to the

polygon P = [PO,...,Pn] on the interval [a,b] is given by

- (M) (x-a)¥ (b-x)""K (3.1)
k=0

B,[P;a,b] =
(b-a)
Theorem 3.1. Let Bn[P; 0,1] and Bm[Q;l,Z] be Bernstein approximations
of degrees n and m to the polygons P = [Po,...,Pn] on the (0,1) and
Q= [Pn""’Pn+m] on (1,2), respectively (see Figure 3.1). Then

BL8,[P1 + B,[01] < V[Pg....uP, ] - (3.2)

n+m

Proof: (3.2) is easily seen to be true if the sign of Pn equals the

sign of P or Pn+1’ since then V[P] + V[Q] = V[Po,.. P . ]. Assume

n-1 2 nt+m

this is not the case, i.e., Pn = 0 and Pn-] and Pn+] are of opposite

sign. Again (3.2) is true if either

V[Bn[P;'O,l]] < V[P] 13.3)

or

viB_[Q; 0,117 < via] , (3.4)

since max(V[P] + V[Q]) = V[PO""‘Pn+m] +1. So assume this is not
the case, i.e., V[B [P; 0,1]] = V[P] and V[B [Q; 1,2]] = V[Q]. But
then by Corollary 2.9.3 Bn[P; 0,1] and Bm[o; 1,2] must have the same
arrangement of sign changes as P and Q, respectively. Thus (3.2)

must hold in this case as well.
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A simple induction argument Teads to the general statement that

piecewise Bernétein approximation is variation-diminishing for arbi-
trarily many segments. A noteworthy consequence of Theorem 3.1 is

Corollary 3.1.1. Piecewise constant and piecewise linear interpola-

tion are variation-diminishing.
Indeed, piecewise constant and piecewise linear interpolation corres-
pond directly to B-spline approximation of order 1 and 2, respectively,
and the B-spline basis is known to be totally positive of all orders
(3,18].

Although Bézier's System Unisurf has been highly successful in
the design of automobiles, there are some problems with vector-valued
piecewise Bernstein techniques:

(i) The actual euclidean distance between the vertices Pi’
i=0, 1,...,m, plays no role in the definition of the curve segment,
and
(ii) In general, piecewise Bernstein approximation is only CO
continuous. Sometimes design constraints may require continuity of
order 3 or even 4.

Gordon and Riesenfeld [19] proposed the following scheme to cor-
rect for (i): Let o5y @q, ... a be defined to be the fractional

th

distance of the i~ vertex along the polygonal curve [PO, Yy Pm]:

2B Jj=0

(J-l | | /m-] | |
. by R % ST [ 1o o o R PN 1
? o e GRE T G E

s (3.5)
1 Jj=m

o3
n




a3
and define
B&{PO, P]""’PmJ = Bm[Pﬁ’ Pf,...,P&], (3.6)
where P3 = f(j/m) and
s) = (agy - 05)7 Dlagy - sV P+ (s - og) Pyl (3.7)

for a5 £ 8 < a5

Note that (3.7) is just a piecewise linear interpolant to the

polygonal curve [PO,P],---,P“] and, therefore, from Theorem 3.1 and

1
Theorem 2.7 it follows

viB* [Pys---»P 01 < V[Pg,...,P

] (3.8)

1

Gordon and Riesenfeld observed that, when the euclidean distances

IPJ+] - le are all approximately equal, there will be little differ-
ence between Bm[PO,P],...,Pm] and B%[PO,P],...Pm]. In extreme

cases, however, the difference can be substantial, as shown in

Figure 3.2.

Figure 3,2 (a) B]O[PO’PI""’P9]




aa

Fi :
igure 3.2 (b) BTO[PO’P]""’P

9l

As pointed out in Section I, B-spline approximation has been pro-
posed by Riesenfeld [5] as another alternative to Bernstein approxi-
mation. Specifically, the B-spline approximation is variation-dimin-
ishing, has the convex hull property and is a piecewise defined curve,
where the pieces are joined with arbitrarily high continuity at the
discretion of the user. Thus the B-spline basis has all the desirable
properties of the piecewise Bernstein basis, yet without tHe inherent
difficiency at the break points of the latter basis. In Theorem 3.2
we shall prove that uniformB-spline approximation is variation-diminishing.
We first give a more general definition of the uniform B-spline basis
than that given %n Section I and prove some elementary properties of
B-spline approximation.

Definition 3.1. The ith B-spline basis function b m(h,x) of degreem-]

with uniform knot spacing and mesh size h is defined by

05 plhox) = (1/(m-1)0 ™)) k'go X () (mh/2) + x - kn - )Y
(3.9)
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where
m-1
[ S x20
i 0 elsewhere .
Note that ¢, n\(h,x) = i m(h,x-h ). Itiseasilyseen [8] that form>2
] X+h/2
(t‘.i m(h’x) L f ¢-,m-](h,)<) = n(h,X)*dh (h,X) (3]0)
: hy-hs2 ! :

where * represents convolution, and

1/h for - h/2 < x < h/2 (3.11)
¥(hat) 0 elsewhere
and where
1 for - h/2 < %=1 ¢ h/2
g (hex) = (3.12)
b 0 elsewhere .
In view of the representation (3.10) we readily have by m(h’x) has
positive support (i-hm/2, i + hm/2) and
N
I ¢,.(hx) =1 ,  h(m-2)/2 < x < N-h(m-2)/2 (3.13)
i=0

where N + 1 > m.

That is, the convolution of two positive functions is positive
and the finite support of h = f*g, where f has support [a,b] and g
has support [c,d], is given by [a + ¢, b + d]. As a consequence of
the local support of a B-spline basis function, B-spline approximation
ia a local approximation scheme. Thus any finite sum of the form

L
i=1

5 ¢im(h,x), N > m, involves at most m nonzero terms.
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The following Temmas will be integral to the proof of Theorem 3.2.
Lemma 3.1 [21]. Let f(t), {fk(t), k =1,2,...} be real functions
defined for xefa,b]. If

VIf(8)] <, & = 12e.ns (3.14)
and
1im fk(t) = f(t), (3.15)
kv :
then
VIf(t)] < n.
Proof: Let V[f(t)] = N. Then there exist points a5t0<t]<...<tN§b

such that f(tj_]) and f(tj) are of opposite sign, j = 1,...,N. If

k is sufficiently large, we have from (3.15) that
sgn fk(tj) = sgnf(tj) Al O T

Therefore, for k sufficiently large we have

n > V[f (t)] > V[f(t)], {3.16)

which proves the lemma.
Lemma 3.2. Let Bm[P: 0,n] be the uniform B-spline approximation of
order m > 2 and mesh size 1 to the polygon P = [PO,...,Pn] on

(0,n], n > m. That is

(1ex) (3.17)

ne~M3

B [P; O,n] = P: ¢
m i=0 i | 1,M

where ¢, m(],x) is given by (3.7) and xe[(m-2)/2, n-(m-2)/2].
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Then

2n-m+2

B IP: Gl = I p7

n B ; ¢i,m(0’5'x) - (3.18)

where PT is defined recursively for m > 2 by

Pl - (PT“ + PT;})/Z L i=0,1,....20-m42 (3.19)
and
B i even
" { i i=0,...,20-)
i (P(i_])/2 + P(i+1)/2)/2 i odd

That is, given the B-spline approximation of order m, with integral

knot spacing to the polygon P, the control points for the same curve
in terms of the B-spline basis over the refined mesh {0.0, 0.5, 1.0,
..,n} are given by (3.19).

Proof: (by induction on degree) Let m = 2. We must show

2n-m+2

LS
bt = B B RGN . B

L g =

i=0
But the degree 1 (order 2) B-spline approximation is the piecewise
linear interpolant to the vertices Pi' Thus (3.20) holds, since

piecewise Tinear interpolation preserves linear polynomials. (See

Figure 3.3.)
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2
Py = Py
2
Ps
2
Ps
o
Py = P2

Figure 3.3. Piecewise linear interpolation to

2 2
{PO,...,P3} and {PO,...,P }

6

results in the same curve.

Now assume (3.18) holds for all k, 2 < k <m. We must show it

also holds for k = m. From (3.8) we get

n
L Pt

o | i,m

i

for xel(m-2)/2,n-(m-2)/2].

(1,x)

n
ifo P.i (-n(~I !x)* ¢1' ’m_]

(1,x))

M S

m(1,x)*

RALTPRIES (3.21)

0

Now by our induction hypothesis
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n ( ) 2n~-m+3 I (
S 1,x) = B ai0.5.x), (3.22)
ten ) i,m-1 j=0 | i,m-1
thus (3.21) reduces algebraically to
n : 2n-m+3 ﬁ_]
.§ Pi ¢i,m(]’x) = m(1,x)* _§ Pi ¢i,m-](0'5’x)
i=0 i=0
2n—m+3m_]
= (m(0.5,x-0.25)/2 +7(0.5,x+0.25)/2)* % Pi¢1 m_](O.S,X)
i=0 g
1 2n-m+3 el
= (5) z Pi “(O'S’X—O‘ZS)*¢i,m-1(O‘S’X)
i-0
| Bpdin ©
08 *
+ (3) 150 PITY m(0.5,%40.25) %0, | 1(0.5,x)
1. [2n-m+3 -1 en-mt3 o 4
= (—2‘)( iEO Py ¢i,m(0'5'x'0'25)+ 1‘20 P, xbi,m(O.S,x+O.25))

(3.23)

for x€[m-2/2, n-(m-2)/2]. Now bothq)lSO.S,X-O.ZS) and ¢, .3 (0.5,

x+0.25) are zero on the interval [(m-2)/2, n-(m-2)/2], and after
dropping terms concerning these basic functions and rearranging the
remaining terms in (3.23) we have

2n-m+2

= ; m=1 m-1
Pi &5 ml1sx) = - ((Py™7 + PL)/2) 04 (0.5,x)

L e

i=0

I e e T I ———
- - Al e
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2n-m+2 -
= L PYgg (0.5x) . (3.24)
1=0
Thus, we have proved the lemma.
n
Lemma 3.3. Let B [P; O,n] = & P. ¢. (1,x) as in (3.17) and
e m sg 1 iLm
define
3 m Lm m
L R R LR (3.25)
where P? is given by (3.18) and
k ) k-1 & m, K m, k
WEPT = wple CIPT) = [F*TL..Pnd s (3.26)
for p(m) = 2(2n—m+2)k - mtl, k > 1
Then,
Tim ¢*[P] = B [P; 0,n] . (3.27)
k<o

Riesenfeld [33] has recently given a proof of Lemma 3.3 for the
case m=3. Here we use a quite different approach for the proof for
arbitrary but finite m.

Proof: By Lemma 3.2 and induction on k we have

Bm[wk[P]; O,n] = 8 [P; 0,n] .

Now by the minimizing the nature of piecewise linear interpolation it

is easily seen that
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arc length (wk[P]) < arc length ( [P]) (3.28)

By applying the triangle inequality to (3.18) we can deduce

Rei = PRl = 142 (ave Tengtn TR0, 6000 1)

lPi+1 TR = «sP p(m-1)

which, combined with (3.28) and induction, imply

m,k mt+k
IPM =B () L (3.29)
where L is the arc length of [PO,...,Pn] and | | means euclidean

distance. That is, by (3.29)

. m, k Mgk~ & :
Tim 'Pi+1 - Pi = 4§ (3.30)
koo
But then
Vim [P PT’kl = 9 (3.31)
k-0

for arbitrary ie{(1,...,p(m)}, j=1,...,m

From (3.27) and (3.13) we know B [P; O,n)(x ), for each

xoc((m- )/2,n-(m-2)/2), lies within the convex hull of P'n k, PTLT,
¥ g f+; for some i. But with (3.31), we can then conclude
vim X[P] = B,[P; 0,n]. (3.32)
k<o
o - T I — e o e e a
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Theorem 3.2. Uniform B-spline approximation is variation-diminishing.

Proof: We have from (3.32)
1im wk[P] = B _[P; 0,n]
k'm m 3 b} .

It fo119ws from the piecewise linear nature of the construction (3.19)
and Corollary 3.1.1 that V[wk[P]] < V[P] for a1l k. The conclusion
now follows from Lemma 3.71.

Bernstein-Bezier, B-spline and other generalizations of the Bezier
curve [13,14] still appear to have 1nﬁérent shortcomings for realtime
interactive design. In particular,

I. It is often the case that a user wishes to create a local

fit to the polygon in his design, yet there are no 'natural’
handles or control parameters in the above methods for the
designer to manipulate interactively in order to achieve
these shapes.

IT1. Further, the extension from curves to surfaces with the above
schemes requires a rectilinear network of control points, a
severe restriction on interactive design.

For instance, the addition (deletion of a point to a rectilinear
net requires, in general, the addition (deletion) of a whole row
and column of points in order to retain the rectilinear topuiogy

(see Figure 3.4).

reer " IRy G ——; ” P
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V(7,7)

g\\QQ\J

Figure 3.4. Rectilinear topology. Note that to remove
the center vertex and still retain the
rectilinear structure one has to remove all

of Row 4 and Column 4.

The Construction of New Models

We now apply the theory of total positivity to the construction
of new models for curve and surface design, with emphasis on methods
which avoid the deficiencies I and Il discussed in the previous sec-

tion. Specifically, for curves we develop linear operators

n
L[P;a,b] = Pi¢i(t’ai) for P = [PO,...,Pn] te(a,b)
i=0
(3.33)




where the a; can be varied py the user of the system to control
local "closeness" of fit to the polygonal curve P, thus giving the
user the ability to create "cusps" and "flats" in his design with
the same natural flexibility he has in moving the vertices of the

polygon. Further, we build in the desirable properties of the

Bernstein and B-spline methods,

V(L) < V[P] (variation-diminishing property) (3.34)

and

¢-(tyu-> _>_ 0,
for all i with

X ¢i(t,ai) = 1 (convex hull property) (3.35)
i

It is well known [15,16] that B-spline approximation to a continu-
our function f on an interval [a,b] for fixed degree converges to f
as the mesh size h goes to zero. In terms of our primitive polygon
P, we can get a closer local fit to the polygonal curve P if we
sample not only at the vertices of the polygon but also in the inter-
val in which we wish to approximate more closely. The more samples
in the region of interest the closer our approximation to the polygon
there. That is, if we let the polygon P be defined by

n

P(t) = jEO Pj ¢j(t) (3.36)

where the ¢j are the piecewise linear cardinal functions. Rather

than form the B-spline approximation to the polygon P by sampling at
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the vertices Pj’ we define
p
G(t) = L9 nltIP(t ) (3.37)
k= 2

. where the ¢k,m are the B-spline basdis functions of degree m and the
tk are the knots, which are not just located at the vertices, but in
clusters in intervals of local interest (see Figure 3.5).
Since
n

Pligh o= 8 B dgltd s

(3.37) can be rewritten as

6(t) = & ¢.(t) P(t,)

where




Figure 3.5 (a).

Cubic B-spline approximation to the

polygon given.

Figure 3.5 (b).

¥
¥

Cubic B-spline approximation with

increased sampling on the edges.
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Since the B-spline basis is TP, we know from Theorem 2.6 and
Theorem 2.7 that the basis {¢3,m} is TP. Thus by appropriately
choosing the knots {tk} we can generate a new basis {¢j} which more
closely approximates the polygon P, yet retains the valuable convex
hull and variation-diminishing properties. More importantly, this
construction method generalizes to other TP bases:

Let Gg(x) = g ¢j,0(x) Pj’ xe[a,b], where ¢j’0(x) is TPn on

n=1
XxJd, J = {1,2,...,n} and define recursively

G d Sl Ee . Sl (3.38)
where xe[a,b] and ¢j,i(x) is Tpn(i) on XxJ(i), J(i) = {1,2,...,n(i)}

where n(i) > n(i-1) and the sequence {xj 1-} is the ith knot vector.

Expanding Gi-l(xj 1.), (3.38) can be rewritten

n(i) n(i-1)
SR T e )
n(i-1) n(i)
= kE] Gi'Z(Xk,‘i-])<j§] ¢j,i(x) ¢k,’i-](xj,1‘)>
- n(i-1)
ok Breatm g W e (3.39)

~

By Theorem 2. ¢i i_](x) is TPg(i_]) and, therefore, by Theorem 2.10




VG, (x)] < VIG,

Repeating the above algorithm we readily deduce

n
G(X) = I ¢} (X) P.,
! j=1 30 :
where
VEG;(x)] £ VIPy, ...s Byl
Now let
(x) 5
%) = T ¢4 (%)
g
Then
8% ox) = ¢>5’O(X)/¢(X) , gl 1

is TPn by Theorem 2.4 and

n
P dlhsix) = 1
g1 j,0 :

12154 1) 185 o 00 5.0,49)]

.o N

o
(ee)

(3.40)

(3.41)

(3.42)

(3.43)

(3.44)

It will now bé demonstrated how the techniques developed in (3.38)

and (3.43) for the construction of the variation-diminishing and

convex hull properties, respectively, can be uscd to generate a set

of basis functions with the "natural" handles desired. Let

Gi(x) = P = [Pr,...iP]

n

be the piecewise linear interpolant to the points {Pi’ : . (MRS

over the uniform mesh {1,...,n}. Define

(3.45)

,nl




e e
G, (X = L
2 -

where ¢j’](0.5,x) is TPZ(n-]) and

e ]
3 (1-a5) P+ a; Py
where
, {P(j+1)/z
pLo=
J
(Py * Prse2)/2

(See Figure 3.6.)

1)

B S R L ajc[O,l]

J odd

¢J ](O.S,X)PJ

k]

J even

2

forj = 1.2,...

59

(3.46)

(3.47)

Figure 3.6. This figure illustrates the construction (3.47).
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Now setting aj =1 - aj_], for j odd, and rearranging terms as in

(3.38) we have

n

Gz(x) = jf] aj,](x;aj_], qj, aj+]) Pj’ (3.48)

where the aj,1(X;aj-1’aj’aj+]) are TP and vary in shape from trape-

zoidal (“j-l’“j’“j+1 = 0) to triangular (“j-l’uj’“j+1 = 1) (see
Figure 3.7).

Now let {wj(x), j =1,...,n} be any set of totally positive functions

and define
n
G3(X) i § U'J(X) GZ(XJ)
J=1
n n ( 8
= I owdx) g Xz @ ,(t.,a.ﬂ i
=t 4 i=1 i,1 =140
n
= Lo(xsog_peagsag,) Po, (3.49)
i=]
where
n
QI%(x;ui-]’ui’ai"']) = j-}j] ‘l'j(x) ¢i,1(xj;ai"]’ui ,ai+]) . (3-50)

For example, let wj(x) be the uniform B-spline basis of degree m-1.
Then for oy small, the basis functions are "bell-shaped," while for
oy large, these basis functions converge in shape to the piecewise
linear basis functions. This convergence takes markedly for the

lTower degrees (see Figures 3.8 and 3.9).
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4 1.0
i-1.0 i i+1.0
Figure 3.7 (a). Canonical basis function ¢ ](x;O,U,O).
y
L 1.0
1-1.0 s i+1.0

Figure 3.7 (b). Canonical basis function ¢, ](x;1,1,1).
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Figure 3.8 (a). Canonical basis function w'(x;0,0,0)
0
for the choice wo(x) = B-spline basis

of degree 3.

Figure 3.8 (b). ¥ (x;0.8,0.8,0.8).
i




Figure 3.9 (a). Canonical basis function &g(x;0,0,0) for

the choice wo(x) = B-spline basis of

degree 5.

e

Figure 3.9 (b). ¢6(1,1-1)-

63
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The previous construction give us an indication of the possibili-
ties for creating new TP bases from other TP bases. If in (3.49) we

choose

n-1 : .
(n;]) x1(]-x)n‘]'1, i.e., the Bernstein basis of degree
0

L e

p.(x) =
J i
n-1, then our construction is very similar to that of Gordon and

Riesenfeld defined by equations (3.6) and (3.7), only here we have

allowed the number and position o the P; to be flexible.

There are other schemes which easily can be developed from a
careful perusal of the construction prototype (3.38). For instance,
if in (3.49) we take {wj(x),j=1,...,n} to be the B-spline basis of

degree 2 and

s e ozt sy
ay il j=1 n

then the construction reduces to that of (3.18). From Lemma 2.5

we know that

The method can be extended by generalizing the construction (3.19)

to create a whole family of bases{wi m} such that

vi o (x31/2,1/2,1/2) = 4, (), J=1,...5n, (3.51)

jsm Jsm

th

where ¢ m(x) is the m"" order B-spline basis functions.
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Thus the family of bases {w%’m, i=1,...,n} is a proper gener-
alization of the family of B-spline bases, where the{w% n? e,
n} form a substantial improvement in terms of the 'natural' handles

desired. (See Figures 3.10 and 3.11.)
More Curve Techniques

In the previous constructions we used a discrete form of Theorem
2.7 to construct TP functions from other TP functions. An equally
valuable technique for CAGD results when the variable of summation

in (2.16) is, in fact, continuous. For example, let

¢;(x) P, (3.52)

(=]

Q(t) = T(P)(t) = [ K(t,s) P(s) ds, (3.53)

where K(t,s) is TP on RZ. Then by Theorem 2.2 we have
v{ol < v[P]. (3.54)

Rewriting (3.53) we have

Q(t) = fm K(t,s) P(s) ds

-0

"W e~M3

- [ K(ts) Tayls) Py o

1

i=0




Figure 3.10 (a). BZ[P; 0,5].

Figure 3.10 (b). Increased tension at P

0

and P2.

66




Figure 3.11 (a).

Figure 3.11 (b).

i

P6

Increased tension at P

0’ P3, P6'
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n o {3.55)
= 2 {4 K(t,s)¢i(s)) ds P,
i=0 -
n =)
S ¢%(t) Pi’ where ¢%(t) = | K(t,s)¢i(s) ds
i=0 -00

In view of Theorem 2.7, provided that [¢i(t)] is TP , it follows
[¢i(t)] is TP .

To develop a class of kernels K(t,s) suitable for CAGD we re-
strict our attention to TP kernels of the form K(x,y) = f(x-y)
(translation kernels) where (x,y) € R and [ f(x) = 1. Under these

-00

constraints the transformation (3.53) becomes a convolution, i.e.,

o]

TP)(t) = [ Kltes} P(s}) ds. (3.56)

-C0

Recall from Section II that the function ¢*¥ is TP on R%. Then

by Theorems 2.4 and 2.5,

2
Kiny) = ebxy)

2 2
s grORT 0y e2axy (3.57)

is TP for a > 0. Similarly, it can be shown that

iy Sxey|

Ko (%5y) (3,58)

15 1P, for o > @, {x,¥] & R2. Since K1(x,y) and Kz(x,y) are TP,
from Theorem 2.7 we know their self-convolutes are TP. That is,

if we define
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i et . S
K3 (x5y) Ki™ (%) * Ki(xoy) 2 L2id 2 Velinis
(3.59)
where
0 3 s
K](X,)’) & K](XJ) 1 = 1)2,
then
j : 2 : :
Ki(x,y) is TP on R". (3.60)

The kernels Kg are "bell-shaped" and symmetric, the "spread" of the
curves depending on a. (See Figures 3.12, 3.13.) Note that K%(x,y)

is of continuity class ¢” for all j, while K%(x,y) e CJ.
If P(t) in (3.52) is our primitive polygon, which means that
{¢i(x)} is the cardinal piecewise linear basis, then we can construct

new bases

03(x) = KIx) * 0;(x) (3.61)
for p= 1,2 3 =0yl ueeans 800 3= 12,0006 Buch that {¢g(x)} is

TP on XxI, X = (-=,»), I ={0,1,...,n} for all j.

There are several alternative methods of ensuring that the bases
{¢g(x)} enjoy the convex hull property. We can either use the tech-

nique developed in (3.43) or we can normalize {K%(x)} such that

/ Kg(x) dx = 1.




Figure 3.12.

K8

o(x), @

1

Figure 3.13.

70




71
That is, define
L3(x) = KI(x)/C , i =1,2;5=1,2,
where
¢ = § kix)
Then from (3.61) we have for i = 1,2,
noo e
Eoobx) = 1 (L(x) % fx))
k=0 k=0
’ n
= L:(z} * I ¢plx]
' k=0
(3.62)
= Li(x) = 3

iy

Of course, in view of the recursive nature of {Kg(x,y)}, various
combinations of (3.43) and (3.62) could be used as well.

Not surprisingly, in view cf their similarity in shape to the
B-spline basis (compare Figures 3.14 and 3.15 and Figures 3.16 and
3.17), curves formed with these new bases can be remarkably close in
shape to the B-spline approximation. This similarity is explained
mathematical]y by the Central Limit Theorem. .

Theorem 3.3  (Central Limit Theorem) [27]. Let fi(t), t (-o,), i

an integer, be real positive and symmetric about t = 0, such that

i £5(t) dt =

~00




Figure 3.14. Canonical B-spline basis, degree 7,

b A

1 Figure 3,15, (/6//7) e 6/7)x 1
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Figure 3.16. B-spline approximation, degree 7.

Figure 3.17. Same polygon, where the approximation was obtained

-(6/7)x2
with the convolution kernel (/&6/(V7n))e -
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for all i and define
f(t) = R} % Tl £ i, (3.63)
where, again, * represents convolution. Then if
ST,
R fi{t) dt <¢C (3.64)
where C is an arbitrary constant, and
n s
Yim & £f(t)dt= > (3.65)
nao j=] -0 .
Then
2
lim f(t) = —1 - ¢ (t)/2 (3.66)
no< oven
where
n
6 = % ] tf(t
i=] -

We constructed the {¢?(x)} in (3.61) precisely as the iterated
convolution of j functions, and a reexamination of the B-spline basis
of degree m reveals that each is the iterated convolution of m func-
tions, as well. Without going into detail, it can be shown [3,12]
that all of these functions satisfy the hypothesis of Theorem 3.3.
Therefore, in the 1imit, all these bases would be of Gaussian form,
differing only in their dispersion about their point of symmetry.
Thus the similarity in shape of the various approximation methods
is in actuality a reflection of this "tendency to Gaussian form" in

the basis functions.
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Surfaces

Although the extension of vector-valued curve methods to surfaces
is straightforward, there is no satisfactory theory of total positiv-
ity for functions of more than one variable [3]. However, when

dea]ing.with surface equations of the form

¢;(x,y) P, (3.67)

I o1 3

i=0
we can refer to the total positivity of the {¢i(x,y)} with respect to
x and i or y and i, respectively. As in our development for curves,
we are interested in bases {¢i(x,y)} which are totally positive with

respect to both continuous variables.

Let L] and L2 be some linear operators over the polygonal curves

o [Q ,...,Qn], respectively, defined by

P=[P ,...,Pn] §nd Q s

]
U o =

L][P] (b]()() p.i, xeR

i=0

and

2

L L0l

i
Hn o™

o 'P.i(Y) Q'i’ yeR

i
where the bases [¢ (x), i = 0,...,n] and [wj(y), i=0,....m}

i
are TP on their respective domains and possess the convex hull pro-

perty. Then given a rectilinear network R = [Pi:, = 0....,0,
v

J =0,...,m] we can define

LR -

gt

b;(x) Pij for j fixed, je [0, ..., m] (3.68)

i=0
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and
]

n
LZ[R] = jEO wj(y) Pij’ for 4 fixed, e [0y ..., 0} + = (3.69)
L] and L2 are called lofting operators, reflecting the fact that they
filter or vary the shape of R with respect to only one variable. In

view of the total positivity of [¢i(x)] and [wj(y)], we have

V(L [RIJ(x) < V[RI(i)

and

V(LIRINY) < VIRIG),

where we have altered our original notation for the number of sign
changes for curves to reflect which domain we are considering. If we

wish to smooth in both directions, we construct the tensor product

of the two Tofting operators as

LIRT = L [L,[RI] = L,[L, (R, (3.70)

where we have
VIL[RII(x) < VIL,[RI1(4)

VILIRII(y) < VIL,IRII(4)

Although these kinds of generalizations from curves to surfaces
have proven extremely successful for CAGD [12], and we are dealing
formally with two-dimensional surfaces, the approach is inherently
one-dimensional. This fact is reflected in the polyhedral network
for the lofting operators, and therefore in the tensor product oper-

ators, which manifestly require rectilinear control points.
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e

There is a curve to surface generalization, modelled after the
convolutional methods for curves (3.56), which circumvents the
use of rectilinear networks. Let
" 2
e L ¢i(x’y)Pi (x,y)eR (3.71)
i=0
where the Pi are arbitrary points of R3 corresponding to knots

0.

E (Xi’yi) of R2 and where the {¢i} are piecewise linear poly-

nomials of two variables which solve the interpolation problem.

O e
‘bi(xj’yj) = Of_],Jf_n g
0 elsewhere,

Thus, for distinct Pi’ P is a proper triangulation of the points Pi'

(See Figure 3.18.) It is evident that a given polygonally bounded

domain in the plane can have several triangulations (Figure 3.19).

Figure 3.18. (a) Graph of a basis function ¢i(x,y).




Figure 3.18. (b) Graph of a piecewise linear polynomial.

NS

Figure 3.19. Three distinct triangulations of the same polygon.
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For various efficient algorithms for triangulation of the plane, see

[23,24].
Now for K(x,y) and M(x,y) TP on R? as in (3.56), where K(x,y)

and M(x,y) are translation kerne]s; define the Tofting operators

LEPL = esh 5 e dsad pds . (3.72)

and

"

£ MBI L B aaen) Bod ds . (3.73)

o i

L,(P)
As in (3.68) and (3.69) we have

VIL, [PII(X) < VIPI(x)
and

VIL,[PIIy) < VIPI(Y) .

In view of the piecewise linear nature of the {¢i}’ we

‘ have
0i(x:y) = [, K(X,s) ¢,(s,y) ds (3.74)
is TP on XxI, and
o5(x:y) = [ Mly,t) ¢5(x,t) dt (3.75)
2

is TP on YxI, where XxY = R" and I = {0,1,...,n}.

Of course, we can generalize the lofting transformations to the

tensor product operation by
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LIPT = L[LIP1] = L,[L,[P]]

Although we have insisted in (3.70) that the b represent the
cardinal piecewise linear basis functions, the development which
follows (3.70) works equally well if the ¢i represents the piecewise
bi]ineaf basis functions associated with the vertices of a rectilinear
network.  Thus our technique of approximating triangular networks
of points is a proper generalization of tensor product approximation
to rectilinear networks, encompassing the latter as a special case.
Note that in avoiding the biased directions of approximation inherent
in the rectilinear schemes, we must choose the directions of approxi-
mation. Above we chose to integrate with respect to the x and y
directions, but clearly any two independent directions would have
sufficed. The following figures show various tensor product approxi-
mations to their respective triangular nets for different choices

for L and M.

O ———— —
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Piecewise linear polynomial, T.

Figure 3.20.
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Figure 3.23.

L e v e —————— = et o =




IV. CONCLUSION

Summary

The techniques developed and extended herein for curve and sur-
face design form a proper generalization of Bernstein-Bézier and B-
spline methods, while enjoying increased flexibility for interactive
manipulation.

The application of the theory of total positivity to CAGD has
not only resulted in well structured approaches to new mathematical
modelling for ab initio design, but a new framework for analyzing
and understanding existing techniques.

Although this paper has not directly attacked the problems of
computability for the new bases, the stability of the methods is
inherent in the "bell-shaped" form of the basis functions, as exem-
plified in their tendency to Gaussian form. Further, the construction
(3.18) forms an efficient algorithm for calculating B-splines and can
be extended to the other bases constructed in Section III. These
construction methods form the core for a class of geometric algorithms
fof computing the derivative, arc length and intersections of spline
curves, as well as the area, volume and intersections of the corres-
ponding spline surfaces.

The feasibility and utility of the newly constructed models for

interactive design are demonstrated in the following figures, which
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are "frames" from an interactive session on an experimental system
for curve and surface design. Since the final decision on what
constitutes a."good" design is subjective and will probably vary
from user to user, it is felt that the ability developed herein to
vary the mathematical model while retaining the desirable variation-
diminishing and convex hull properties may be of increased impor-

tance in future CAGD systems.
Overview

The authors feel that this constitutes a natural third paper
in the direction of establishing a sound mathematical basis for the
application of the variation diminishing approximation method to
computer aided geometric design, the first two papers being Gordon

and Riesenfeld [5,28].




Figure 4.1 (a). Quadratic B-spline approximation to the polygongiven.

Figure 4.1 (b). Increased tension at the indicated vertices.

PR i

Figure 4.1 (c). Note the local fit to the polygon in this blown-

up view.
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Lk

Figure 4.2 (a). Cubic B-spline approximation to the polygon given,

Figure 4.2 (b). Increased tension at the indicated vertices.

b

Figure 4.2 (c). Same tension values, but with the basis constructed

in (3.50).
—————— IR
L e c—————————
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Figure 4.3 (a). Fitth degree B-spline approximation to the

polygon given.

N

Figure 4.3 (b). Fifth degree spline approximation with the

basis constructed from (3.50).
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Figure 4.3 (c). Increased tension at the indicated vertices.

Figure 4.3 (d). Blown-up view, showing changes to the

shape of the "bumper".
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A bicubic B-spline approximation to S.

Figure 4.4 (b).
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Ll

A biquintic B-spline approximation to S.

Figure 4.4 (c).

I N e
L L L)

R 2
Figure 4.4 (d). S * (3/2n) e 372 =3V /2 wote the

similarity in shape to Figure 4.4 (b).
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A triangulation T of S.

Figure 4.4 (e).

T

2
Figure 4.4 (F). T % (3/2n) e-3X/2 ¢=3¥72,

P —
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N

5

2

2

T % (1/28) 2% oY .

Figure 4.4 (g).

The bilinear surface S where the lower

Figure 4.5 (a).

left vertex has been moved.
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Note

Cubic B-spline approximation to S.

Figure 4.5 (b).

thereare only local differences in shape

from Figure 4.4 (b).
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Figure 4.5 (c).

A triangulation T of S.




At

2 2
Figure 4.5 (d). T * (3/2n) e 3% /2 73y /2
Note there are only local differ-

ences in shape from Figure 4.4 (f).
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