A	D-A052 62	26 MAS PRE MAT	SSACHUS SSURE 76 A	ETTS IN DROP AN R SHEA	IST OF T	TECH C E FRACT	AMBRIDE	DE DEPT	OF MEC TER-AIR	HANI	TC F/ CAL PIP	G 20/4 EETC(103	/
	2 oF2 AD A052626				A supervised of the second sec					ĹŹ				
Augusta (Constanting of the Constanting of the Cons		A second se												
						activities .	END DATE FILMED 5 = 78							
1			-	ΞX.										Δ

APPENDIX C: Flow Regime Visual Observations.

Figure Cl shows a typical friction pressure loss curve disected into four main flow regime areas. The variation of this curve is keyed to Govier's flow regime map (Fig. 14) and can be explained as follows:

A. $0 < F_0 \le a$: In this region the water predominates the fluid flow and can be characterized as a typical slug flow. Figure C2 shows a typical view of the tube. In region A the fluid is in counter flow around the air slugs while in region B the fluid flows at a rate commensurate with that of the air slugs. The oil is distributed throughout the water in small bubbles. At higher velocities the negative shear around the air slugs is small compared to that in the liquid slugs. As does Singh and Griffith the negative shear can be assumed to be neglected in most cases. When the oil in liquid volume fraction is increased from 0, the size of the liquid slugs decreases and the counterflow area thickens. This causes a decrease in the friction pressure loss. This decrease continues until the regime change at a.

B. $a < F_{o} < b$: At the transition a, the liquid flow changes to a froth. The water still predominates the flow (Fig. C3) next to the wall, but the oil bubbles in the water slug area begin to coalesce into oil slugs. The area A is still in counterflow, however in area B the water flow around the oil slugs in cocurrent. Hence the effective length of the water slugs begins to increase and the friction loss increases. As the water in the fluid slug is completely replaced by oil, the layer of

Figure C1. Typical Friction Pressure Loss Curve.

Figure C2 & C3. Flow Regime Diagram.

water on the tube wall becomes thinner and thinner until at the transition b the layer is too thin to contain any oil bubbles, and the bubbles are sheared between the wall and the air slugs. When this occurs the friction loss makes a sharp upward jump until the oil bubbles are forced out of the water layer. The pressure jump is point b on Figure Cl.

C. b<Fo<c: At b the flow changes from water dominated froth to oil froth and the water is considered to be bubbles of water in oil. The exception is that a thin layer of water still persists on the wall of the tube. However, this layer is too thin to contain any oil bubbles. The laminar nature of the oil flow dampens the turbulence of the water and air and transition to pure slug flow is quickly achieved. At point c, full slug flow is achieved and the water is finally replaced by oil on the wall. When this occurs the counterflow friction loss dominated now by the viscosity of the oil, decreases. This dip can be seen at point c in Figure C1.

D. $c < Fo \le 1.0$: In this region the flow transitions from pure slug flow to a quasi annular flow. As Fo increases, the counterflow velocity region (A in Fig. C5) reverses to co-current and increases in thickness while that of the slug region (B) decreases in size. After this reversal the combination of the oil viscosity and the increased upward velocity cause a sharp rise in the pressure losses. Again, this is apparent in Figure C1.

 \odot

APPENDIX D: Derivation of Annular Flow Pressure Drop Method.

Annular flow is characterized by a continuous column of gas and a continuous annulus of fluid in co-current flow (A in Fig. D1) while slug flow is characterized by counter fluid flow over the gas slugs and co-current flow in the fluid slugs A (B in Fig. D1). However, in the transition both co-current annulus and slug fluid flows B occur simultaneously. Therefore the basis of this method is the assumption that transition flow can be modeled as a basic annular flow with a decreased annular fluid velocity. The decrease accounts for the remaining fluid slugs. In addition, in calculating the friction pressure loss the modified annular velocity of the fluid in the annulus

FIG. DI

is assumed to be the velocity of the fluid flowing alone in the entire tube.

From annular flow the fluid velocity is as follows:

$$\tilde{\mathbf{v}}_{\mathbf{f}} = \frac{\mathbf{Q}_{\mathbf{f}}}{\mathbf{A}\alpha_{\mathbf{f}}} \tag{D 1}$$

This can then be modified for the Quasi-annular flow by a constant K, which is less than one.

$$\tilde{\mathbf{v}}_{\mathbf{f}} = \frac{\mathbf{KQ}_{\mathbf{f}}}{\mathbf{A\alpha}_{\mathbf{f}}} \tag{D 2}$$

Based on this the following pressure loss analysis is derived:

$$Re_{f} = \frac{KQ_{f}D\rho_{f}}{A\alpha_{f}\mu_{f}g_{o}}$$
(D 3)

Due to the high viscosity of the Nujol, the oil flow was laminar throughout the experiment. Hence the laminar friction factor equation is used.

$$f = \frac{16}{Re}_{f} = \frac{16A\alpha_{f}\mu_{f}g_{o}}{KQ_{f}D\rho_{f}}$$
(D 4)

The shear stress is then:

$$\tau = \frac{f\rho v_f^2}{2g_o} = \frac{8\mu_f KQ_f}{A\alpha_f D}$$
(D 5)

and the friction pressure loss is:

$$\Delta P_{f} = \frac{4\tau}{D} = \frac{32K \ \mu_{f} Q_{f}}{AD^{2} \alpha_{e}}$$
(D 6)

which is a constant (K) times the loss associated with a complete annular flow.

In calculating the total friction pressure loss of the flow, we must recognize the transitional nature of the flow. That is, both annular and slug flows contribute to the loss. Therefore, we can assume that the total loss due to friction will be a portion of a full annular flow superimposed over the slug losses. We may then say that the total friction pressure loss is as follows:

$$\Delta p_{f} = K \Delta p_{f_{annular}} + (1-K)\Delta p_{f_{slug}}$$
 (D 7)

The annular flow portion is calculated as in equation D 6 while the slug flow portion can be assumed to be that at Fo equal to zero where slug flow predominates.

Finally, the weighting factor K must be determined. In the flow investigated the quasi annular flow appeared only above the froth critical oil in liquid volume fraction. In this case approximately .85. Also, the flow was nearly annular at Fo equal to one. If, based on this, we assign a value of .9 to K at Fo equal to one, we may linearly interpolate the values of K as shown in Fig. D 2.

The values for the total friction pressure loss derived from the above analysis are shown in Table 3 of the main text and show very close results.

APPENDIX E. Physical Data.

OIL(NUJOL)

0

0

$$\mu$$
 = .0015 lb sec/ ft² at 100°F
 ρ = 55.5 lbm/ ft³

WATER

$$\mu$$
 = .000015 lb sec/ft² at 100°F
 ρ = 62.4 lbm/ ft³

AIR

$$\mu = 3.9 \times 10^{-7}$$
 lb sec/ ft² at 100°F
 $\rho = .075$ lbm/ ft³

APPENDIX F. Sample Calculations.

- A. Example of Slug Flows
- 1. Data: Q. = .282 CFM, Q. = .094 CFM, Q. = 1.82 CFM,

D= .75 inches, & L=74.25 inches.

2. Void Fraction:

$$P_0 = \frac{Q_0}{Q_w + Q_0} = .282 + .094 = .25$$

Eq. 5.10
$$X_{a} = \frac{Q_{a}}{1.28 Q_{t}} = \frac{1.82}{1.28(1.82+.282+.094)} \cdot .65$$

Eq. 5.12
$$\propto_0 = 1.037 \propto_f F_0^{1.536} = 1.037(1-.65)(.25)^{1.536}$$

= .04

Eq. 5.14
$$\alpha_w = 1 - (\alpha_a + \alpha_o) = 1 - (.65 + .04) = .31$$

3. Pressure Loss:

$$\Delta P_{\rho} = \frac{gL}{g_0} (\rho_w \propto_w + \rho_0 \propto_0 + \rho_a \propto_a)$$

$$= \frac{32.2x74.25}{32.2x12x144} (55.5(.04)+62.4(.31)+.65(.075))$$

=.93 psi/ length

From Fig.14 for $F_0 = .25$ and $V_w = \frac{Q_w}{\alpha_f A} = 4.38$ ft/sec

the flow regime is slug. Therefore we use the Singh-Griffith method for the friction loss.

$$Re=\frac{\widetilde{v}_m \rho_f D}{\mu_f} = 58.544.$$

 $\Delta P_{f} = \frac{2 \text{ L f } \rho_{f} \widetilde{V}_{m} \propto_{W}}{g_{o} D} = .58 \text{ psi/ length}$

Total Pressure Loss = 1.51 psi/length

- B. Example of Froth Flows
- 1. Data: Qw= .076 CFM, Qo= .30 CFM,& Q = 1.82 CFM.
- 2. Void Fraction:

Same as method in A-2.

3. Pressure Loss:

Same as method in A-3.

$$\Delta P_{\rho} = .91 \text{ psi/length}$$

$$F_0 = \frac{Q_0}{Q_0 + Q_{w}} = .80$$

$$V_{w} = \frac{Q_{w}}{\alpha_{f} A} = 1.11 \text{ ft/sec}$$

From fig. 14 the flow regime is froth. Therefore we use the homogeneous method.

Velocity of the fluid flowing in the tube alone:

$$f_0 = \frac{Q_f}{A} = 2.04 \text{ ft/sec}$$

$$Re = 9387$$

f= .008

Quality(X):

$$X = \frac{\rho_a q_a}{\rho_a q_a + \rho_f q_f} = .006$$

$$\Delta P_{f} = \frac{2f \rho_{f} \widetilde{V}_{fo}}{D\varepsilon_{o}} \left[1 + \chi - \frac{\rho_{fa}}{\rho_{a}} \right] \left[1 + \chi - \frac{\mu_{fa}}{\mu_{a}} \right]^{-1/4}$$

 ΔP_{e} .41 psi/ length

C. Example of Quasi-Annular Flow:
1. Data: Q_w= .019, Q_o= .36 CFM, & Q_a= 1.82 CFM.
2. Void: Same Method as A2 except eq. 5.11 was used instead of eq. 5.10.

a .46 C. . . 02

3. Pressure Loss:

Same method as A-3.

 $\Delta P_{\rho} = 1.30 \text{ psi/length}$ $F_{o} = .95$ $V_{w} = 5.16 \text{ ft/sec}$

From fig.14 the flow regime is the water drop in oil regime. Therefore the quasi-annular flow method is used.

From eq. D 6: ΔP_f annular A $D^2 \propto f$ = 2.0 psi/L

From the Singh-Griffith Method AP_f .712 psi/L

From fig. D 2 K= .6

From eq. D 7:

0

 $\triangle P_{f \text{ tot}} = K \triangle P_{f \text{ ann}} + (1-K) \triangle P_{f \text{ slug}}$

109

△Pf tot .6(2.0) +.4(.712)= 1.48 psi/length

The total pressure loss is:

 $\Delta P_t = 1.30 + 1.48 = 2.78 \text{ psi/length}$

APPENDIX G: Data Listing

The following code was used to designate the various runs:

a. Test Disignation.

A. Three Phase Void Fraction Test

B. Two Phase Oil-Water Pressure Void Test

C. Three Phase Pressure and Void Test

D. Contact Angle Test

b. Introduced oil in liquid volume fraction (Fo)

c. Percent of maximum input air flow for test

A and the mixture velocity for test B and C.

d. Identification number of individual run.

A. THREE PHASE VOID FRACTION DATA.

	I	Flow(CI	EM)					Ŋ	elocity	(ft/sec)	
kun	°*	0°	0°a	F	8 ³	8°	а В	×۵ ۲	۰ مرز	\$> 69	۶»
A80-10-1	.134	.519	.333	92	.23	.50	.27	3.23	5.62	6.56	5.34
2	.134	.519	.333	94	.23	.52	.25	3.16	5.41	7.22	5.34
e	.134	.519	.333	94	.23	.51	.26	3.23	5.51	6.81	5.34
4	.134	.519	.309	98	.22	.52	.26	3.3	5.41	6.44	5.23
5	.134	.519	.309	98	.20	.55	.25	3.63	5.11	6.7	5.23
9	.134	.519	.309	98	.21	.53	.26	3.54	5.31	6.32	5.2
1		.389	.348	87	.21	.45	.34	2.7	4.7	5.45	4.5
A80-20-1	.134	.519	.654	95	.18	.45	.38	4.15	6.39	9.28	7.1
2	.134	.519	.654	96	.18	.45	.37	4.03	6.25	9.65	7.13
3	.134	.519	.654	96	.18	.45	.37	4.03	6.25	9.65	7.11
4	.134	.519	.62	66	.16	.44	.40	4.54	6.39	8.4	6.9
5	.134	.519	.62	66	.18	.50	.32	4.13	5.62	10.34	6.9
9	.134	.589	.62	66	.18	.48	.34	4.03	5.86	9.88	6.9
1	г.	.389	•669	86	.14	.36	.50	3.8	5.9	7.5	6.4
A80-30-1	.134	.519	.983	97	.14	.45	.50	5.01	6.25	13.15	8.8
2	.134	.519	.983	86	.13	.38	.49	5.59	7.40	10.87	8.8
3	.134	.519	.983	98	.13	.32	.55	5.59	8.79	9.67	8.8
4	.134	.519	.929	100	.12	.48	.48	6.05	7.03	10.49	8.51
5	.134	.519	.929	101	.12	.38	.50	6.05	7.40	10.07	8.5
9	.134	.519	.929	101	.12	.43	.45	6.05	6.54	11.19	8.5
7	.1	.389	1.049	86	.13	.37	.50	4.3	5.7	11.3	8.3

				Α.	THREE PHASE	CION 2	FRACTION	V DATA.	(Contin	(pən	
Run	°3	°	Qast Cast Cast Cast Cast Cast Cast Cast C	H	8 ³	°5	8 8	۶¢،	°<;	×2 ₽	*> Ħ
A80-40-1	.134	.519	1.312	66	60.	.35	.56	8.07	8.04	12.7	10.65
2	.134	.519	1.312	66	.10	.34	.56	7.26	8.27	12.7	10.65
3	.134	.519	1.312	66	60.	.37	.54	8.07	7.60	13.17	10.65
4	.1	.389	1.399	86	.10	.36	.54	5.5	5.8	14.1	10.23
A80-50-1	.134	.519	1.64	100	.10	.41	.49	6.92	6.94	18.14	12.43
2	.134	.519	1.64	100	.07	.34	.59	10.37	8.27	15.06	12.43
3	.134	.519	1.64	100	.07	.41	.52	10.37	6.86	17.09	12.43
4	.1	.389	1.748	85	.07	.20	.73	8.0	10.8	12.9	12.13
A80-60-1	.1	.389	2.098	84	.07	.25	.68	8.0	8.4	16.7	14.02
A80-70-1	г.	.389	2.448	84	.07	.33	.60	8.0	6.4	21.9	15.92
A80-80-1	.1	.389	2.797	83	.07	.27	.66	8°0	7.8	22.9	17.81
A80-90-1	.1	.389	3.147	82	.05	•20	.75	11.7	10.4	22.7	19.7
A80-100-1	.1	.389	3.497	81	90.	.19	.75	9.8	11.1	25.10	21.6

0 ^{re}	H	8 ³	a°	8 8	×>3	°<،	۶۶ ⁴⁸	*>
. 0 0	16	• 38	.62	•	1.91	3.50	0	2.89
0	16	.39	.61	0	1.86	3.55	0	2.89
0	16	.39	.61	0	1.86	3.55	0	2.89
.353	93	.24	°45	.31	3.03	4.82	.617	4.81
.353	94	.25	°44	.31	2.90	4.93	.617	4.81
• 353	96	.23	.46	.31	3.16	4.71	.617	4.81
.707	7	.17	.37	.46	4.27	5.86	8.33	6.72
.707	1	.17	°45	.38	4.27	4.82	10.08	6.72
.707	80	.16	.38	.46	4°24	5.70	8.33	6.72
1.060 10		.13	•39	.48	5.59	5.56	11.97	8.64
1.060 10	0	.15	.39	.46	4.84	5.56	12.49	8.64
1.049 10	-	.10	.35	.55	7.26	6.19	10.34	8.64
1.049 10	1	.10	.31	.59	7.26	66.99	9.63	8.64
1.399 10	12	60.	.34	.56	8.07	6.38	13.54	10.4
1.399 10	02	.08	.29	.63	9.08	7.47	12.03	10.47
1.399 10	3	60.	.29	.62	8.07	7.47	12.23	10.47
1.749 104		.08	.38	.54	9°08	5.70	17.55	12.37
1.749 10	13	60.	.33	.58	8.07	6.57	16.34	12.37
1.749 10		.08	.38	.54	9.08	5.70	17.55	12.37

Run	~	o°	0 a	н	8 ⁸ 0	a0	8 ⁶⁰	×۵ ه	۰×۵	Ša a	*> ^E
A75-60-1			2.099	103	.08	.38	.54	9.08	5.70	21.06	14.27
2			2.099	103	.07	.36	.57	10.37	6.02	19.96	14.27
9			2.099	103	90.	.34	•60	12.10	6.38	18.96	14.27
A75-70-1			2.449	104	.05	.29	.66	14.52	7.47	20.11	16.16
2			2.449	104	•00	.31	°63	12.10	6.99	21.07	16.16
9			2.449	104	.05	.31	.64	14.52	66.99	20.74	16.16
A75-80-1			2.798	104	.05	°32	.63	14.52	6.77	24.07	18.06
2			2.798	104	°04	.25	°71	18.15	8.67	21.36	18.06
3	.134	.40	2.798	105	.04	.30	99°	18.15	7.23	22.97	18.06

Continued

Run	03	oo	Qa a	т	8 ³	°5	а в	°×3	vo vo	°×ª	×s ∎
A70-0-1	.179	.405	0	06	.43	.57	0	2.26	3.85	,	3.16
2			0	91	.43	.57	0	2.26	3.85	•	3.16
3			0	16	.43	.57	0	2.26	3.85	,	3.16
A70-10-1			.353	16	.29	.46	.25	3.34	4.77	7.65	5.08
2			.353	92	.28	.44	.28	3.46	4.99	6.83	5.08
3			.353	93	.31	.46	.23	3.13	4.77	8.32	5.08
A70-20-1			.698	94	.21	.34	.45	4.62	6.45	8.41	6.95
2			.703	94	.22	.39	. 39	4.41	5.63	9.77	6.97
3			.703	64	.22	.33	.45	4.41	6.65	8.47	6.97
A70-30-1			1.055	95	.22	.33	.45	4.41	6.65	8.47	6.97
2			1.049	95	.15	.27	.58	6.47	8.13	9.79	8.84
3			1.048	96	.19	.30	.51	5.11	7.32	11.14	9.84
A70-40-1			1.406	96	.16	.30	.55	6.06	7.32	13.85	10.78
2			1.406	96	.18	.34	.48	5.39	6.45	15.87	10.78
3			1.397	96	.15	.32	.53	6.47	6.86	14.28	10.78
A70-50-1			1.746	96	.13	.27	.60	7.46	8.13	15.77	12.63
2			1.746	97	.14	.31	.55	6.93	7.08	17.20	12.63
9			1.746	67	.13	.32	.55	7.46	6.86	17.20	12.63
A70-60-1			2.095	97	.11	.29	.60	8.82	7.57	18.92	14.52
2			2.095	97	.12	.32	.56	8.08	6.86	20.27	14.52
e			2.095	16	60.	.23	.68	10.78	9.54	16.70	14.52
A70-70-1			2.444	98	.13	.27	.60	7.46	8.13	22.07	16.41
2			2.444	98	.11	.35	.55	8.82	6.27	24.08	16.41
3			2.444	98	.10	.31	.59	9.70	7.08	22.45	16.41
A70-80-1	.179	.405	2.794	98	.08	.23	69.	12.3	9.54	21.94	18.31
2			2.794	98	.08	.21	.70	12.3	10.45	21.63	18.31
9	.179	.405	2.794	66	60.	.38	.53	10.78	5.78	28.57	18.31

Run	~	°°	Qa a	н	8 ³	vo	8 ⁰ 0	2×3	°,	ša	^{،>ط}
A64-0-1	.224	.389	0	95	.43	.57	1	2.82	3.70	1	3.32
2			0	95	.45	.55	•	2.70	3.83	•	3.32
e			0	95	.47	.53	•	2.58	3.98	1	3.32
A64-10-1			.353	57	.32	.43	.25	3.79	4.90	7.65	5.23
2			.353	97	.30	.43	.27	4.05	4.90	7.08	5.23
3			.349	67	.30	.43	.27	4.05	4.90	7.00	5.21
A64-20-1			.698	98	.26	.38	.36	4.67	5.55	10.51	7.10
7			.698	98	.24	.36	.40	5.06	5.86	9.46	7.10
3			.703	98	.23	.37	.40	5.28	5.70	9.52	7.13
A64-30-1			1.055	98	.23	.33	44.	5.28	6.39	12.99	9.04
2			1.048	98	.23	.31	.46	5.28	6.8	12.35	00.6
3			1.048	66	.23	.31	.46	5.28	6.8	12.35	00.6
A64-40-1			1.397	100	.19	.27	.54	6.39	7.81	14.02	10.89
2			1.406	100	.18	.29	.53	6.74	7.27	14.38	10.94
9			1.397	100	.21	.32	.47	5.78	6.59	16.11	10.89
A64-50-1			1.746	100	.17	.27	.56	7.14	7.81	16.9	12.78
2			1.746	100	.20	.33	.47	6.07	6.39	20.13	12.78
3			1.746	100	.21	.32	.47	5.78	6.59	20.13	12.78
A64-60-1			2.095	100	.14	.26	.60	8.67	8.11	18.92	14.67
2			2.084	101	.18	.36	97.	6.74	5.86	24.55	14.62
3			2.084	101	.14	.26	.60	8.67	8.11	18.82	14.62
A64-70-1			2.432	102	.13	.26	.61	9.34	8.11	21.6	16.5
2			2.432	102	.14	.33	.53	8.67	6.39	24.87	16.5
3			2.432	102	.13	.24	.63	9.34	8.78	20.92	16.5
A64-80-1			2.779	103	11.	.24	.65	11.04	8.78	23.17	18.38
2			2.779	103	.16	.32	.52	7.59	6.59	28.96	18.38
3	.224	.389	2.779	103	11.	.31	.58	11.04	6.80	25.96	18.38

Run	03	0 ⁰	0,es	н	8 ³	ø°	3 ^{ee}	×۵	°×0	ša a	^{کو} ا
A50-10-1	2	.194	.349	79	.48	.16	.36	2.24	67.9	5.32	4.03
2	.2	.194	.349	62	.46	.19	.35	2.38	5.48	5.37	4.03
e	.2	.194	.349	81	.47	.17	.36	2.29	6.26	5.28	4.03
4	.267	.259	.35	83	.44	.23	.33	.33	6.1	5.8	4.75
5	.267	.259	.35	86	.42	.26	.32	3.4	5.4	5.9	4.75
A50-15-1	.267	.259	.52	86	.37	.24	.39	3.9	5.9	7.2	5.67
A50-20-1	.2	.194	669.	82	.34	.13	.53	3.16	8.21	7.15	5.92
2	.2	.194	669.	83	.36	.15	.49	3.03	7.20	7.65	5.92
e	.2	.194	669.	83	.33	.13	.54	3.31	7.85	7.03	5.92
4	.267	.259	.70	83	.33	.18	67.	4.3	7.6	7.8	6.64
5	.267	.259	.70	86	.31	.20	.49	4.7	6.9	1.7	6.64
A50-30-1	.2	.194	1.049	84	.31	.14	.55	3.52	7.51	10.34	7.82
2	.2	.194	1.044	85	.30	.13	.57	3.61	8.21	9.87	7.82
e	.2	.194	1.044	85	.29	.13	.58	3.78	8.41	9.65	7.82
4	.267	.259	1.05	82	.33	.18	.49	4.4	7.9	11.6	8.54
5	.267	.258	1.05	86	.27	.17	.56	5.3	8.2	10.3	8.54
A50-40-1	.2	.194	1.392	86	.27	.13	.60	4.01	7.85	12.68	9.68
2	.2	.194	1.392	87	.22	.11	.67	4.83	9.39	11.36	9.68
e	.2	.194	1.392	88	.26	.13	.61	4.14	8.41	12.29	9.68
4	.267	.259	1.40	82	.27	.14	.59	5.4	10.2	12.8	10.44
5	.267	.259	1.40	86	.29	.18	.52	5.0	7.8	14.2	10.44
A50-50-1	.2	.194	1.74	88	.26	.14	.60	4.18	7.51	15.69	11.56
2	.2	.194	1.74	89	.29	.16	.55	3.78	6.49	17.17	11.56
e	.2	.194	1.74	06	.26	.14	.60	4.25	7.51	15.61	11.56
4	.267	.259	1.75	81	.22	.12	.66	6.7	11.9	14.2	12.33
5	.267	.259	1.75	85	.28	.18	.54	5.2	7.8	17.6	12.33
A50-60-1	.2	.194	2.077	16	.22	.12	.66	5.04	9.14	16.80	13.39
2	.2	.194	2.077	92	.27	.15	.58	4.09	7.20	11.01	13.39
e	.2	.194	2.077	92	.21	.13	.66	5.26	8.03	16.95	13.39

Run	~3	0°	0a	н	8 ³	ъ°	в В	č, ³	°,	še a	,> ≅
A50-60-4 5	.267	.259	2.11	80 85	.24	.14	.62 .64	5.95 6.2	10.0	18.5 17.7	14.3 14.3
A50-20-1	<i></i>	.194	2.423	42 42	.19	01.60	.71	5.62	10.51 11.68	18.57 17.21	15.27
n 4 r∪	.267	.259	2.46	79 85	61. 61.	96 I	.72	7.5	15.6	18.6	16.2
A50-80-1 2	.267	.259	2.81 2.81	79 84	.24	.12	.76	6.1 9.1	11.6	23.7 20.0	18.1 18.1
A50-90-1 2	.267	.259	3.16 3.16	78 84	.19	.09 .08	.72	7.5 9.6	5.1 18.7	24.0	20.0
A50-100-1 2	.267	.259	3.51	75 84	.21	.13	.61	5.5 6.7	10.7	31.3 28.3	21.9

					TUN LUADE	LLUW DE	AIA				
	Mad						ft/	sec	Ps:	+	
Run	w Cen	°	H	×> [₽]	8 ³	°5	>3	×°	ΔP_{T}	ΔPf	-
B0-3-1	.556	0	80	e	1.0	0	3.0	1	2.84	.16	
2	.556	0	80	e	1.0	0	3.0	•	2.85	.17	
9	.556	0	80	e	1.0	0	3.0	•	2.84	.16	
B0-2-1	.368	0	80	2	1.0	0	2.0	,	2.77	60.	
2	.368	0	80	2	1.0	0	2.0	1	2.77	60.	
e	.368	0	80	2	1.0	0	2.0	•	2.77	60.	
B25-3-1	.412	.130	84	3	.91	60.	2.46	7.85	2.78	.12	
2	.412	.130	82	3	.93	.07	2.41	10.09	2.75	60.	
e	.412	.130	84	e	.93	.07	2.3	10.09	2.77	.10	
B25-2-1	.278	.092	88	2	.90	.10	1.68	5.0	2.69	.04	
2	.278	.092	80	2	.92	.07	1.62	7.14	2.70	.04	
S	.278	.092	80	2	.93	.07	1.62	7.14	2.70	.04	
B50-3-1	.278	.276	85	e	.66	.34	2.29	4.41	2.69	п.	
2	.278	.276	85	3	.66	.34	2.29	4.41	2.69	п.	
e	.278	.276	85	2	.65	.35	2.32	4.28	2.69	.11	
B50-2-1	.184	.184	87	2	.71	.29	1.41	3.45	2.62	.03	
2	.184	.184	83	2	.72	.28	1.39	2.57	2.62	.03	
e	.184	.184	88	2	.72	.28	1.39	3.57	2.64	.03	
B75-2-1	.134	.415	85	3	.38	.62	1.92	3.68	2.61	.11	
2	.134	.415	82	3	.37	.62	1.97	2.58	2.60	.10	
e	.134	.415	86	e	.37	.63	1.97	2.58	2.62	.12	
B75-2-1	.092	.276	87	2	.45	.55	1.11	2.73	2.53	10.	
2	.092	.276	84	2	.48	.52	1.04	2.88	2.53	100.	
e	.092	.276	86	7	.43	.57	1.16	2.63	2.53	.02	
B80-3-1	.11	.44	80	3	.32	.68	1.87	3.53	2.55	90.	
2	.11	.44	80	e	.31	.69	1.93	3.48	2.63	.15	

ad o

B. TWO PHASE FLOW DATA (Continued)

							ft/	sec	Ps	Ŧ
Run	Q CF	M Qo	н	> ^E	88	°5	>3	>°	ΔPT	ΔPf
B80-2-1	.07	.29	84	2	.35	.65	1.14	2.46	2.48	07
2	.07	.29	85	2	.35	.64	1.11	2.50	2.49	01
B80-1-1	.04	.15	82	1	.34	.66	.59	1.22	2.52	.03
2	.04	.15	85	1	.47	.53	.43	1.52	2.50	02
B85-3-1	.08	14.	16	3	.06	.94	7.05	2.71	4.07	1.67
2	.08	.47	90	e	.05	.95	0.6	2.68	4.13	1.72
B85-2-1	90.	.31	88	2	.20	.80	1.51	2.12	2.50	.06
2	90.	.31	90	2	.27	.73	1.21	2.33	2.47	100
B85-1-1	.03	.16	87	1	.32	.68	.47	1.25	2.59	.11
2	.03	.16	90	1	.43	.57	.35	1.50	2.48	03
B90-3-1	.06	.50	93	ъ	.05	.95	6.0	2.84	3.91	1.51
2	90.	.50	92	3	.04	.96	7.5	2.81	3.93	1.53
B90-2-1	.04	.33	16	2	.05	.95	3.31	1.91	3.30	.90
2	.04	.33	90	2	.06	.94	3.99	1.89	3.35	.95
B90-1-1	.02	.17	92	1	.11	.89	.90	1.01	2.56	.34
2	.02	.17	90	1	.10	.90	66.	1.0	2.56	.33
B95-3-1	.03	.52	83	3	.03	.97	5.03	2.93	4.18	1.79
2	.03	.52	93	e	.03	.97	5.03	2.93	3.98	1.59
B95-2-1	.02	.35	83	7	.04	.96	2.55	1.98	3.50	1.1
2	.02	.35	93	2	.06	.94	1.70	2.02	3.40	1.0
B95-1-1	.01	.18	82	1	60.	.91	.57	1.04	2.77	.36
2	.01	.18	93	1	.05	.95	1.02	1.00	2.81	.41
B100-3-1	0	.552	80	e	0	1.0	0	3.0	4.34	1.95
2	0	.552	80	e	0	1.0	0	3.0	4.31	1.92

(Continued)
DATA
FLOW
PHASE
OMI
в.

								ft	/sec	Psi		
Run	0,3	CFM	o°	ч	s ^ع د،	∂ ³	8°	č,	°,	APT	ΔPf	1
B100-3-3	0		.552	80	3	0	1.0	0	3.0	4.34	1.96	
1-0-0014			368	80	2	0	1.0	0	2.0	3.55	1.16	
C			368	80	. 0	0	1.0	0	2.0	3.55	1.16	
1 m	00		.368	80	5	0	1.0	0	2.0	3.57	1.18	

				THREE PI	HASE PRES	SURE LO	ISS AND	T QIOV	EST			
Run	~*	o,°	°a,	$\Delta P_{\rm T}$	ΔPf	н	8 ³	з°	5 ⁰⁰	×۵	۰×۰	\$>a
C0-4-1	.376	0	.364	1.825	04	70	.66	0	.34	3.07		5.92
2	.376	0		1.678	.008	11	.62	0	.38	3.28	•	5.24
e	.376	0		1.678	.008	11	.62	0	.38	3.28	•	5.24
4	.376	0		1.794	.156	64	.61	0	.39	3.34	•	5.08
C25-4-1	.282	.094		1.57	14	69	.51	.08	.36	2.69	6.81	5.57
2	.282	· 094		1.57	1	86	.50	.10	.40	3.09	4.96	4.92
3	.282	·094		1.40	19	93	.50	.11	.39	3.08	4.82	4.99
4	.282	660.		1.609	.068	64	.53	.05	.42	2.87	10.86	4.71
C50-4-1	.188	.188		1.51	05	70	44.	.17	. 39	2.34	6.19	4.96
2	.188	.188		1.60	.08	84	.37	.22	.41	2.78	4.56	4.85
e	.188	.188		1.40	18	16	.38	.23	.38	2.67	4.36	5.16
4	.188	.188		1.516	.015	99	.41	.17	.42	2.52	5.87	4.70
C75-4-1	*00	.282		.54	-1.04	72	.28	.35	.37	1.82	4.43	5.29
2	.094	.282		1.51	•	80	.22	.41	.37	2.31	3.75	5.33
3	*00	.282		1.45	18	88	.22	.43	.35	2.28	3.56	5.71
4	*00	.282		1.424	118	99	.24	.38	.38	2.15	4.03	5.16
C80-4-1	.076	.300		.45	94	74	.17	.39	44.	2.37	4.22	4.49
2	.076	.300		1.53	.13	78	.16	.41	.43	2.65	3.96	4.57
3	.076	.300		1.55	п.	87	.15	.44	.41	2.75	3.74	4.78
4	.076	.300		1.365	.025	67	.16	.38	.46	2.55	4.29	4.32
C85-4-1	.056	.32		.52	86	76	.13	.44	.43	2.43	3.99	4.50
7	.056	.32		1.36	60.	76	.11	.39	.50	2.87	4.47	3.92
e	.056	.32		1.36	14	86	.11	.50	.4	2.72	3.46	5.12
4	.056	.32		1.351	04	68	.13	.44	.43	2.32	3.99	4.57
C90-4-1	.038	.34		.39	92	78	60.	.45	.46	2.37	4.09	4.29
2	.038	.34		1.16	1	75	.07	.45	.48	2.99	4.09	4.13
e	.038	. 34		1.213	04	86	.08	.55	.37	2.75	3.35	5.29
4	.038	.34		1.213	04	20	.08	.44	.48	2.75	4.18	4.09

C. THREE PHASE PRESSURE LOSS AND VOID TEST (Continued)

Run	~*	°°	o,e	Δ ^P _T	ΔPf	н	8 ³	3°	в <mark>я</mark>	>3	>°	⊳¢
C95-4-1	.019	.36		1.43	35	66	.03	.72	.25	4.13	2.73	7.66
2	.019	.36		1.93	.31	75	.04	.63	.33	2.35	3.11	6.05
9	.019	.36		2.11	.45	86	.03	.67	.30	4.13	2.92	6.48
4	610.	.36		1.529	.175	71	.04	.53	.43	2.79	3.72	4.52
C100-4-1	0	.376		2.622	.48	70	0	.75	.25	,	2.71	8.04
2	0	.376		2.475	69.	70	0	.75	.25	•	2.73	7.85
e	0	.376		2.475	69.	11	0	.75	.25	•	2.73	7.85
4	0	.376	.364	2.626	.83	11	0	.75	.25		2.71	8.04

Run	~	°	Qa a	$\Delta \mathbf{P}_{\mathbf{T}}$	ΔPf	H	8 ³	a0	ag	A	°°	å
C0-8-1	.376	0	1.092	1.509	.389	64	.42	0	.58	4.90	•	10.17
2	.376	0		1.455	.235	73	.46	0	.54	4.49	•	10.88
e	.376	0		1.476	.416	80	.40	0	.60	5.17	•	9.80
C25-8-1	.282	.094		.785	32	64	.41	.04	.55	3.78	13.8	10.63
2	.282	*00		1.176	.026	73	.37	.06	.56	4.10	8.24	10.52
e	.282	.094		1.194	.254	80	.31	.05	.64	5.02	9.63	9.24
C50-8-1	.188	.188		.025	665	99	.25	60.	.66	4.60	10.98	9.01
2	.188	.188		1.244	.114	74	.29	.15	.56	3.52	16.99	10.52
3	.188	.188		1.353	.173	80	.29	.17	.54	3.52	5.97	11.07
C75-8-1	.094	.282		.107	813	68	.17	.20	.63	3.04	7.70	9.37
2	· 094	.282		1.261	.111	75	.18	.28	.54	2.82	5.47	11.01
3	• 067	.282		1.426	,196	80	.17	.32	.51	2.93	4.77	11.75
C80-8-1	.076	.300		*00	-1.086	20	.16	.31	.53	2.55	5.22	11.28
2	.076	.300		1.257	.197	11	.13	.30	.57	3.23	5.40	10.41
e	.076	.300		1.273	.413	82	60.	.26	.65	4.75	5.43	9.11
C85-8-1	.056	.32		18	-1.24	70	.10	.33	.57	3.04	5.27	10.41
2	.056	.32		.915	.085	78	.06	.28	.66	4.91	6.21	9.01
3	.056	.32		1.108	.068	83	.05	.38	.57	5.74	4.61	10.41
C90-8-1	.038	.34		195	-1.135	11	90.	.33	.61	3.69	5.60	9.68
2	.038	.34		1.115	145	78	.04	.48	.48	4.69	3.87	12.38
3	.038	.34		1.274	.144	83	.04	.42	.53	4.69	4.36	11.15
C95-8-1	.019	.36		1.121	049	72	.1	.48	.51	8.60	4.10	11.61
2	.019	.36		2.663	1.423	61	.1	.51	.48	8.60	3.87	12.28
9	.019	.36		2.535	1.215	83	.1	.54	.45	8.60	3.61	13.30
100-8-1	0	.376		1.962	.502	72	0	.61	.39	•	3.35	15.21
2	0	.376		3.187	1.657	61	0	.64	.36	•	3.18	16.57
9	0	.376	1.092	2.983	1.543	84	0	.60	.40	•	3.38	14.98

			(Conti	(penu)								
Run	~	°00	Qa a	$\Delta P_{\rm T}$	ΔP_{f}	T	a n	°a	ag	°>3	°,	ă
c0-16-1 2 3	.376 .376 .376	000	2.548	1.544 1.534 1.536	.968 .850 .794	85 88 .76	.22 .26 .28	000	.78 .74 .72	9.50 8.01 7.37	000	17.63 18.58 19.14
C25-16-1 2 3	.282 .282 .882	.094 .094 .094		1.405 1.440 1.313	.738 .802 .825	85 88 76	.22	.03 .03	.75	6.84 7.70 7.70	18.24 11.60 20.4	18.50 18.28 17.84
C50-16-1 2	.188 .188	.188 .188 .188		1.404 1.494 1.28	.597 .727 .709	85 88 76	.19 .18	<u> 1</u> 1 1	.70 .72	5.29 5.64 5.97	8.37 8.65 9.63	20.21 19.74 19.14
C75-16-1 2 3	.094 .094 .094	.282 .282 .282		1.747 1.794 1.5	.774 .775 .892	85 88 77	1.1.1	.29	.60 .58	5.11 4.08 5.11	5.18 7.44 7.44	22.92 19.94 19.94
C80-16-1 2 3	.076 .076 .076	8. 8. 8. 8. 8. 8.		1.281 1.391 1.61	1544 .482 1.01	87 90 78	.08 .05	.22	.70 .70	5.10 7.79 5.73	7.48 5.08 6.96	19.74 22.11 19.94
C85-16-1 2 3	.056 .056	32.32		1.356 1.518 1.316	.421 .824 .71	88 0 08 80 08	40.	.25	.62 .71 .69	6.91 7.60 8.22	5.07 7.07 6.34	22.58 19.38 20.09
C90-16-1 2 3	.038 .038 .038	34.34		1.647 2.035 1.72	.658 1.274 1.12	88 80 80 80	.03 .03	.39	.58 .68	8.26 8.26 8.26	4.78 4.70 6.44	23.50 23.78 20.12
C95-16-1 2 3	.019 .019 .019	.36		2.828 3.047 2.783	1.769 1.809 1.636	88 9 88 80 8	<u>1</u> 22	.43 .51	.56 .48	8.60 8.60 8.60	4.54 3.87 3.34	24.80 28.66 34.43
2200-16-1 2 3	000	.376 .376 .376	2.548	3.031 3.201 3.306	1.223 2.062 2.231	88 6 08 88 0 08		.55 .48	.45		3.73 4.28 3.64	30.62 26.46 31.53

		9	Continued	()								
Run	~*	°00	Qa a	$\Delta \mathbf{P_T}$	ΔPf	т	8 ³	8°	8 ⁶⁰	×۲3	ۆر م	۶×. ه
C0-12-1 2 3	.376 .376 .376	000	1.82	1.470 1.379 1.430	.768 .677 .428	73 74 84	.26	000	.74	7.8 7.8 5.46		13.4 13.4 15.79
C25-12-1 2 3	.282 .282 .282	.094 .094		1.352 1.411 1.403	.395 .543 .588	74 75 84	.32 .32 .25	.03	.65 .65	4.73 4.73 6.15	13.8 16.47 8.24	15.47 15.33 14.35
C50-12-1 2 3	.188 .188 .188	.188 .188 .188		1.449 1.499 1.465	.455 .451 .409	75 76 84	.27 .27	11.13	.62 .60 .58	3.73 3.73 4.00	9.37 7.80 6.55	16.02 16.62 16.78
C75-12-1 2 3	.094 .094	.282 .282 .282		1.522 1.208 1.618	.471 .598 .522	78 76 85	.19 .19 .14	.23	.58 .56	2.73 2.73 3.65	6.63 6.01 5.87	16.99 17.72 17.72
C80-12-1 2 3	.076 .076 .076	8.8.8		1.484 1.630 1.276	.718 .609 .335	80 78 85	.08 .08	.23 .37 .26	.69 .55 .62	5.10 5.10 3.50	7.05 4.39 6.22	14.37 18.38 15.95
C85-12-1 2 3	.056 .056	.32		1.137 1.200 1.302	.502 .441 .281	81 80 86	222	.22 .27 .39	.57	8.22 8.22 8.22	7.76 6.34 4.50	13.38 14.35 17.13
C90-12-1 2 3	.038 .038 .038	34		1.392 1.332 1.639	.722 .539 .607	82 80 86		.22 .28 .38	.75	8.26 8.26 8.26	8.25 6.67 4.86	13.62 14.67 17.28
C95-12-1 2 3	010. 010.	.36		2.572 2.645 2.745	1.238 1.254 1.466	82 81 86	10.10.	.54	.45 .43	8.60 8.60 8.60	3.61 3.49 3.74	22.17 23.15 21.26
100-12-1 2 3	000	.376 .376	1.82	3.040 3.161 3.089	1.820 1.869 1.810	82 81 86	000	.51 .54 .54	.49 .46		4.00 3.77 3.81	20.22 21.59 21.30

Sales Company

		U	Continue	(pa								
Run	~	°0	Qa	ΔP _T	ΔP _f	н	8 ³	ъ°	aa	ž, 3	°vo vo	`>®
C0-20-1	.376	0	3.276	1.654	1.000	74	.23	0	11.	8.73	1	23.23
2	.376	0		1.166	.590	72	.22	0	.78	9.50	•	22.67
e	.376	0		1.682	1.149	78	.20	0	.80	10.26	•	22.22
C25-20-1	.282	*00		1.437	.577	74	.29	.03	.88	5.23	16.47	26.32
2	.282	•094		1.514	.731	73	.26	.03	.71	5.85	15.02	25.28
9	.282	.094		1.408	.682	78	.24	.03	.73	6.30	16.47	24.51
C50-20-1	.188	.188		1.365	.601	75	.20	.10	.70	5.13	10.53	25.28
2	.188	.188		1.488	.638	74	.21	.12	.67	4.82	8.65	26.56
3	.188	.188		1.546	1.050	78	.12	.07	.81	8.44	13.99	22.05
C75-20-1	• 00*	.282		1.494	.843	76	60.	.17	.74	5.49	9.12	24.08
2	*00	.282		1.663	1.020	76	.11	.15	.74	4.82	10.21	23.92
a	*00	.282		1.763	1.063	80	60.	.20	.71	5.87	7.82	24.82
C80-20-1	.076	.30		1.437	.585	76	60.	.26	.65	4.75	6.29	27.21
2	.076	.30		1.454	.583	11	.08	.27	.65	5.10	5.95	27.59
'n	.076	.30		1.543	.763	80	.08	.24	.68	5.50	6.71	26.09
C80-20-1	.076	.30		1.437	.585	76	60.	.26	.65	4.75	6.29	27.21
2	.076	.30		1.454	.583	11	.08	.27	.65	5.10	5.95	27.59
ß	.076	.30		1.543	.763	80	.08	.24	.68	5.50	6.71	26.09
C85-20-1	.056	.32		1.189	.642	78	.04	.18	.78	7.60	9.45	22.93
2	.056	.32		1.412	.204	78	.05	.24	.71	5.74	7.33	25.06
Э	.056	.32		1.510	006.	82	.04	.23	.73	6.91	7.52	24.55
C90-20-1	.038	.34		1.691	169.	78	.03	.39	.58	8.26	4.75	30.37
2	.038	.34		2.058	1.171	78	.04	.33	.63	5.58	5.60	28.11
e	.038	.34		2.134	1.279	82	.03	.33	.64	8.26	5.60	27.59
C95-20-1	.019	.36		3.108	2.095	79	.01	.41	.58	8.60	4.76	30.84
2	.019	.36		3.430	2.237	78	.01	67.	.50	8.60	4.02	35.45
3	.019	.36		3.283	1.885	82	10.	.51	.42	8.60	3.41	42.88

P
d)
3
d
-
÷
d
0
Ü
-

0>

. ()

1	о н о
> e0	35.7 37.3 35.4
^ک ۵	4.07 3.91 4.10
23 ³	000
8 ⁶⁰	.50 .50
°5	.50
J 3	000
н	79 79 82
Δ₽f	2.126 2.281 2.408
$\Delta P_{\mathbf{T}}$	3.324 3.527 3.595
Qa a	3.276 3.276
°°	.376 .376 .376
03	000
1 Run	C100-20-1 2 3