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ABSTRAC1~

Multicomponent polymers whose structure or composition varies

as a function of position in the sample are called gradient polymers.

One way to prepare gradient polymers is to permit a guest monomer

to diffuse into a host polymer network. The resulting profile of

the diffusion gradient is fixed by polymerizing the monomer in situ.

In this work , we used 2—chloroethyl acrylate as the monomer and

poly (methyl methacrylate) as the polymer matrix. Both gradient

polymers and interpenetrating networks were prepared. It was found

that the stress-strain behavior of gradient polymers is quite differ-

ent from that of the interpenetrating networks of comparable

composition. The former shows a yield point, and considerably en-

hanced fracture strain. The latter is essentially rubber in

character. Possible mechanisms for the unique properties of

gradient polymers are discussed.
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INTRODUCTION

Gradient polymers are multicomponent polymers whose structure

or composition is not homogeneous throughout the material, but varies

as a function of position (1). In other words, these polymers have

gradients in their structures or compositions. In a previous paper (2),

we have shown that it is possible to produce such materials by

diffusing a guest monomer into a host polymer for a period of time

sufficient for the establishment of a diffusion gradient profile.

This profile is then “fixed” by polymerization of the monomer in situ.

The mechanical behavior of such gradient polymers was found to be

quite different from the interpenetrating networks (IPN ’s) of comparable

composition. Of course the latter material allows the monomer to

reach a swelling equilibrium in the host polymer, and therefore has

no gradient structure.

In our preliminary report (2), we have chosen poly(methyl

xnethacrylate) or PMMA as a host polymer and methyl acrylate as the

guest monomer. They were both crosslinked by a divinyl acrylic monomer.

However, because of the similarity in the constitutions of these two

components, it was not possible to establish the gradient profile

through chemical analysis. In this work, we have selected a halo-

genated acrylic monomer as the second component to be diffused into

PMMA . By analyzing the halogen content, it was possible to determine

the profiles of the gradient polymers. Stress-strain measurements of

the samples were then carried out on these unique materials.

EXPERIMENTAL

Monomers of methyl methacry].ate and 2-chloroethyl acrylate

(2-C1EA) were purchased from the Polysciences, Inc. They were

distilled and subsequently mixed with 1.3% by weight of the cross-

linking agent, (ethylene glycol dimethacrylate obtained from the J.T.



Baker Co.), and 1.9% by weight of the photosensitizer (benzoin

isobutyl ether supplied by the Stauffer Chemical Co.). PMMA was

first prepared by photopolymerization in front of ultraviolet light

for 48 hours. Samples were stored in a vacuum oven at 60°C until a

constant weight was achieved to remove remaining monomer. The cross-

linked PMMA samples were then immersed in the bath of 2-C1EA monomer

for various periods of time by monitoring the weight uptake. When

the desired amount of monomer has been imbibed into the host polymer,

the latter was removed, surface dried and then immediately polymerized

by uv radiation. IPN ’s were prepared in a similar manner , except

that after immersion in the monomer bath the sample was stored in a

sealed polymerization cell at 60°C for several days prior to polymeri-

zation.

The profiles of these gradient polymers were determined by

machining off the samples layer by layer. Shavings from each layer

were then analyzed for chlorine content by combustion methods (3).

The results of these analyses are shown in Figure 1, recalculated in

terms of mole percent of 2—C1EA in PMMA.

An Instron Universal Testing Machine Model TM-SM was used to

carry out the stress-strain measurements. An environmental chamber,

equipped with a Missimers PITC temperature controller , was employed

in providing constant temperatures to +0.5°C. Samples were of the

approximate dimensions of 5.0 x 0.5 x 0.1 cm3. To prevent slippage from

the Instron clamps, special aluminum tabs were glued to the ends of the

samples.

RESULTS AND DISCUSSION

Stress-strain curves for a series of gradient polymers of 2-

chloroethyl acrylate in poly (methyl methacrylate), which are designated

- _ _ 1 —_-—- -----—--— —,--—-- -—~~~~~~ —
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as PMMA/Grad PC1EA, are shown in Figure 2. Quantities in the paren-

theses indicate the mole percent of the acrylate. Also included are

the stress-strain curves of pure PMMA and an interpenetrating network

(PMMA/IPN PC1EA). All of these measurements were carried out at 80°C,

and at strain rates of 2-3%/sec. First we note that the stress-strain

curve of PMMA has a high initial slope (high elastic modulus) and

fractures at about 6% strain. Upon introduction of a 5% PC1EA gradient,

there is a slight decrease of the initial slope, but a dramatic increase

in fracture strain (‘i..65%). In addition, a pronounced yield region is

observed around 5% strain. Further increases in PC1EA contents to 12.5

and 29.7% show a continuing decrease in the elastic moduli, but even

higher fracture strains were attained (85% and 130% respectively).

Both of the latter gradient polymers, however , still exhibit the yielding

behavior and are plastic—like in mechanical properties. In contrast the

IPN at 29.8% PC1EA content is rubbery and fractures at slightly greater

than 100% strain. Apparently the presence of the gradient structure

enables the samples to retain the plastic—like properties without sacri-

ficing the enhanced ability to withstand deformation.

In our previous paper (2), we proposed a possible mechanism to

interpret the stress-strain behavior of gradient polymers. We perceived

the gradient polymer as consisting of infinite number of layers of

varying compositions. Upon deformation, the macroscopic strain is the

same for the entire sample. Because of the fact that the moduli of the

various layers are differnt due to their differences in composition,

those layers with higher moduli must sustain greater stresses (for the

same strain). According to Eyring ’s stress-biased activated rate theory

of yielding (~ J~~) ,  the barrier height for a molecular segment to jump

in the forward direction is reduced by the applied stress. As a con—
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sequence, the higher modulus layers in the gradient polymer should

show greater tendency to yield because of the greater stress biases

they have than those with lower moduli. This mechanism will be in-

operative for interpenetrating networks because of their uniform

composition.

An alternative mechanism for the observed high fracture strain

may be the reduction in surface imperfections for the gradient polymers.

The surfaces of these materials must be more resistent to fracture

because of the relatively high loading of rubbery phases. Thus, under

stress they are likely to craze or crack, which would have initiated

fracture for the sample as a whole. The validity of either mechanism,

however, must await verification.

The effect of the strain rates of PMMA/Grad PC1EA (29.7) and

PMMA/IPN PC1EA (29.8) are compared in Figure 3. Increased strain rates

are seen to increase the yield stresses as well as stress levels in

the plateau regions of the gradient polymers but decrease the fracture

strains. For the interpenetrating networks of comparable composition ,

there is no observable yielding, but the stress levels are increased

by higher strain rates. However, there appear to be also decreases

in the fracture strains. Again IPN’s behave essentially as rubbers,

while the gradient polymers exhibit plastic-like properties.

The effect of temperature on the stress—strain properties of

PMMA, its gradient polymers with various compositions and an IPN are

shown in Figure 4. These experiments were performed at strain rates of

the order of l0 2
%/sec at 60°C. Comparison with data in Figure 2,

which are for the temperature of 80°C shows that the main effects of

temperature are to increase the stress levels in the plateau regions

at lower temperatures, without significant differences in other aspects.
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In conclusion, we find that gradient polymers produced by

diffusion polymerization generally show enhanced fracture strain,

while retaining their plastic-like properties. This behavior

appears to be a consequence of the gradient structure, rather than

being due to the compositions alone. Interpenetrating networks with

comparable composition do not possess the unique mechanical behavior

of the gradient polymers.
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CAPTIONS FOR FIGURES

Figure 1: Concentration profiles of poly(2-chloroethyl carylate)

in Poly (methyl methacrylate) along the thickness (L0) dimension of

the samples. GRAD: gradient polymer; IPN: interpenetrating networks.

Figure 2: Stress-strain curves of poly(methyl methacrylate) three

gradient polymers and one interpenetrating network at comparable

strain rates (2—3%/sec) at 80°C.

Figure 3: Stress-strain curves of gradient polymer and an inter-

penetrating network with comparable content of 2-chloroethyl acrylate

in poly (methyl methacrylate) at 80°C for a series of strain states.



7.

iFigure 4; Stress—strain curves of poly(methyl inethacrylate),

three gradient polymers and one interpenetrating network at com-

parable strain rates (2-3%/sec) at 60°C.
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