—

AD=A052 613 ARIZONA UNIV TUCSON DEPT OF ELECTRICAL ENGINEERING F/6é 9/2
SIMULATION OF DIGITAL CIRCUITS. (V)

1976 D M MOEN
UNCLASSIFIED

. NL
i OF 2
AD
[]

N

@ g

IMULATION OF DIGITAL CIRCUITS «

S
—
/’

/ =7
Déhnls Mllton/Moen

(L pacters the

ADAOS2613

i) No.

;s

A Thesis Submitted to the Faculty of the

00C FiLe copyé

/E;éARTMENT OF ELECTRICAL ENGINEERING &

In Partial Fulfillment of the Requirements
For the Degree of

MASTER OF SCIENCE

In the Graduate College

i THE@UNIVERSITY OF ARIZOﬁé:B
“l R

\ m——

IlJ)1976 ,
i e o

l Approved for publis release;
Distribution Unlimited

Y03 676

ACCESSION for

BY DRI, .
DISTRIBUTION/AVAILABILITY CODES

NTIS White Section
0DC Buff Section [J

Dist. AVAIL and_“or SPECIAL

STATEMENT BY AUTHOR A

This thesis has been submitted in partial fulfill-
ment of requirements fcr an advanced degree at The
University of Arizona and is deposited in the University
Library to be made available to borrowers under rules of
the Library,

Brief quotations from this thesis are allowable
without special permission, provided that accurate acknowl~
edgment of source is made. Requests for permission for
extended quotation from or reproduction of this manuscript
in whole or in part may be granted by the head of the major
department or the Dean of the Graduate College when in his
judgment the proposed use of the material is in the inter-
ests of scholarship. In all other instances, however,
permission must be obtained from the author,

o2 PN, Py
SIGNED: el i QLN

~ APPROVAL BY THESIS DIRECTOR

Y 25pe s

FREDRICK J. HILL , Date
Professor of Electrical Engineering

"

e Tyt S i 8 b

bl it o e e

ACKNOWLEDGMENT

The author would like to express his sincere
gratitude to Dr. Fred J. Hill for his suggestion of the
topic, for his aid, and for his guidance in the preparation

of this thesis.

iii

TABLE OF CONTENTS

LIST OF ILLUSTRATIONS + « &+ 4 4 o o
EEST OF FTABLES S il iy sl e
ABSTPRACTE ¢ ¢ @ e o e e e e s
CHAPTER
l. INTRODUCTION . « « « « o s = s
2, DIGITAL SYSTEMS SIMULATION . ,

History of Simulation . .
Mode ling Digital Logic . .

Implementation of Simulators

Design Concepts of EVESIM
3. DRIVING MECHANISM OF EVESIM .,
4, EVESIM PROGRAM DESCRIPTION , .

Preprocessing Subroutines
Subroutine READIN , .
Subroutine INCOND , .
Subroutine INTIAL . .

Simulation Control

Postprocessing Subroutines

Supporting Functions , ,
Subroutine SCHED . ,

Subroutine UNSCHE
Subroutine ERROR ,
Subroutine IODEST . .

5. EVESIM ELEMENT MODELS ., . . .
Element Delay Time . , . .

Subroutine COMLOG , . . .
Subroutine JKM1 , , . . .

iv

e @ ¢ o ®» ®w ® & e o

Page {
vi
viii

ix

TABLE OF CONTENTS--Continued

6. DEMONSTRATION OF THE USE OF EVESIM ,

Denonstration of the JK Master-Slave

I"lip"Flop s s e . e 8 . .

Demonstration of an Odd-Even Detector

(‘ircuit . . - L] L] . .
Demonstration of an Up-Down Gray
Counter CRRIE S R R RN TR (Rt T

7. USER'S GUIDE TO EVESIM ., , ¢« « ¢ &

General Input Data ., . .
Circuit Preparation
Card Input Format .

Error Messages . . o+ «

Fatal Errors . . .

Non-Fatal Errors .
Bebug e n T i o .
Adding Element Model .

8. CONCLUSIONS AND RECOMMENDATIONS |, .

Conclusions) i s v % W W e W s
Recommendations . « « « « « o« o

REFERENCES L) L] .

Page

56

100

100
102

105

LIST OF ILLUSTRATIONS

g Figure Page
Lo Prograit EVESTM e e o g it e e s e e . 22
. 2. Sebroutine READENS o 0f o s Gy o s s e e e 24
3., Subroutine INCOND ., ¢ « v % 5 & « & 5 » & 3 % 28
4, Subroutine INTIAL & o ¢ ¢ o 4 @ 5 s s & s s & a 30
5. Subroutine PUNSIM . & & « s & & 8 5 « & 2 » s & 32
6. Subroutinet OUTBUT B o i G il aie ol 6 0w ow a0 s 36
A i Subroutiin e PO T s e e e el e s e 37
8¢ SubroulEiner SEHEDI G vt i i e 0 s e e ey w4 38
g, Subroutine UNSCHE LTI i iyl sl s el s W s s 40
KOl stubroutineNERRORE LN e e el v o e s s 41
L. Subroutine GOMEOG | ¢ i sl @ te sl e e et e T 46
12, Subrdutine JRML « v & = & v 0 % % % & % % ¥ ¥ % 50
13, JK master-slave flip<flop circuit number 3 . , , 57
kdy NChECHIE S IEUR I SR R O e e e e e e e 60
15, Cirewdt 3 1Ol 2 .« & « « &« o 5 & ¢ & & m s % b 61
16, Circudt 3 LUR 3 4 4 % & ¢« » o o & & % % & & s % 63 ;
1. Cireuit 3 Tum 4 & o6 o 5% 5 % & & & & & % w @ 64
18, -Clrcuit 3 FUD .5 W ow v o W % B8R & w e b 66
; i 19, Circult 3 TUR 6 W s o « 5 & & « & « v & @w s e 67 :
20, Odd-even detector circuit no. 5+ « . & 69 j
21, Circuit S 2Un 1l 4+ s s + s & s & 4 v 5 % % .8 3 & 71
22 CALXCRAE S TURN £ o 5 + 4 & & « & & & & & « & % s 73
vi

b=t

vii

LIST OF ILLUSTRATIONS-~-Continued
Figure Page
23. Up-down self-correcting gray code counter , . . 74
24, Clrenit 4 TR) o 0w e 8 oa # N R E BE e R 76
25 S @iEcurtt ArEuni 25 e e e e 85

26, Debug OUtPUE "y 4 o s s 4 4 e b a A s e om0 95

P B

AT I —— T T

LIST OF TABLES

Definition of J for IDESCR{L,J) . o« o w &
Definition of JO for IDESOU (IOD,JO) o e
JK master-slave flip-flop data . , + « + «
Odd-even detector circuit parameters , , . ,
Up-down gray code counter circuit parameters
Pefinition of LECOUNTIT)Y u '« ¢ & « & o s s &

Common bleccks required by subroutine models

viii

Page
25
26
58
70
75
96
98

\\\ ABSTRACT
|

Simulation is a problem solving procedure for
defining and analyzing a model of a system. Computer-aided
design of digital logic has provided the design engineer
with an aid to reduce the tedious and time consuming task
of design verification. This paper describes a simulation
technique for the simulation of digital logic circuits.

This paper presents a level mode logic simulator
that has improved economy in execution time and ease of
model generation. The passage of time is simulated in a
precise fashion and element models are executed only when
activity occurs in the circuit. A behavior model descrip-
tion is accomplished on an element level rather than a gate
level. The use of three-valued logic and the use of precise
timing delays for both rising and falling signal levels
present a very accurate and informative circuit output
timing diagram. This is demonstrated by simulation of an

even-odd detection circuit and an up-down gray code counter.

ix

S e —

CHAPTER 1

INTRODUCTION

Simulation is a problem solving procedure for de-

fining and analyzing a model of a system; in particular, a
digital computer simulation is the establishment of a
mathematical or logical model of a system and the manipula-
tion of that model on a digital computer. Designers of
digital logic circuitry have long recognized the need for
computer—-aided design and have placed much emphasis on

digital computer simulation of digital logic circuits.

Menial and time consuming tasks such as logic verification
are now routinely carried out by computer programs. Several
types of logic simulators ranging from simple one-of-a-kind
circuit simulations to very complex programs are found
throughout government, industry, and education (Hill and
Peterson, 1974). These simulations permit inferences to be
drawn about systems; without building them, if they are only
proposed systems; without disturbing them, if they are
operating systems; and without destroying them, if the
object of an experiment is to determine their limits of
stress.

Without the assistance of computer simulation,
verification of the design of any large digital circuit is

1

st gy s ki

S RN RN A 5 SNy v

a manually tedious and time consuming task. The design
engineer requires no creative skills to accomplish this
routine task. Computer simulation relieves the designer of
this task, therefore reducing the time and expense involved
in testing designs before fabrication (Williams, 1975a,
1975b). Once the basic circuit operation has been verified,
the designer can optimize his design and quickly re-verify
the circuit operation. The design engineer thus has a very
powerful tool in a simulator to assist him in obtaining a
more nearly optimal design in less time.

The purpose of this study was to develop a computer
program that would perform a simulation of large digital
logic circuits. The constraints placed on the program were:

1. The input format for element descriptions was to be
compatible with existing programs.

2. The simulator would be a level mode simulator where
level mode means that a delay time is associated
with each logic element. It should be noted that
this constraint assures that the program will not be
restricted to a particular family of logic elements
nor a particular type of logic (synchronous,
asynchronous, combinational, sequential).

3. Equivalent models for devices will not be used. For
example, AND and OR logic will not be used to

describe systems of NAND or NOR logic, or flip-flops

TR T Y PR Y

will not have to be expanded to their gate level

equivalence.

4. The output will be of the form of a timing diagram.

The program, called Event Simulator (EVESIM), is primarily
intended for use by the students and faculty of the
Department of Electrical Engineering, The University of
Arizona.

The study began with a thorough review of available
literature on digital logic simulation. Chapter 2 briefly
summarizes previous work and techniques while presenting the
basic concepts of EVESIM.

Structured programming techniques have been applied
and basic functions performed by the program have been
implemented with separate routines. Using these separate
routines is supported in three advantages:

1. Debugging of the program is simplified since all
subroutines could be checked out separately before
being added to the main program.

2. With minimal effort, someone unfamiliar with the
program can gain familiarity.

3. Maintenance and improvements to the programs can be
done easily by changing or adding individual
routines.

The use of separate routines for separate functions is
readily recognizable in the detailed description of EVESIM

as presented in Chapter 4.

TP,

Since it is beyond the scope of this study to
develop element models for all the available logic compo-
nents, Chapters 5, 6, and 7 are dedicated to providing
sufficient information to enable a user tc write and
implement additional element models. EVESIM, as it exists,
forms a basic system that is designed to allow easy expan-
sion. Future work to enhance the capabilities of EVESIM
might include: optional data inputs/outputs and a random
delay time generator. Further recommendations are included

in Chapter 8.

i,

CHAPTER 2

DIGITA” SYSTEMS SIMULATION

The usefulness and purpose of digital logic simula-
tors has been well established in Chapter 1. It is now
appropriate to review the many approaches to logic simula-
tion. Hill and Peterson (1974) discuss the relation of cost
to useful information output for several approaches to logic
simulation. The cost of operation of simulators for large
circuits is great, thus providing the incentive to develop

efficiency in simulation techniques.

History of Simulation

Logic simulators continue, as in the past, to be
developed based on how much information is required about a
logic circuit. They are certainly influenced by the size of
the circuit and type of circuit. Some simulators are part
of sophisticated computer-aided logic design packages as
developed by Hayes (1969), and others are logic verifiers as
written by Williams (1975a, 1975b). Simulators, however,
normally appear at least once in the automated design
process prior to the design being committed to hardware.

In the case of Chappell, Elmendorf, and Schmidt (1974),
several different simulators are used for different purposes
in the design process. For example, using a level mode

5

O, - S i SR—

S LN S

e R e L e el e

2 s o N LA AL T

6

simulator will not necessarily insure that a design is valid
over the allowed range of element delay parameters. The
level mode simulator can, however, be used to predict worst
case timing conditions and to provide some verification to
clock mode design that strict adherence to the clock mode
design rules has been accomplished. The use of a clock mode
simulator as presented by Williams (1975a, 1975b) for
verification of the combinational logic would certainly
enhance a level mode simulator, thus providing the incentive
for developing different simulators for different purposes
in the design process.

Simulation programs differ greatly in nature and
complexity as a result of the variety of applications.
Simulators such as electronic network analysis as presented
by Anwaruddin (1969) are very complex and costly to operate,
however they provide the most accurate simulation. Simu-
lators also differ in regard to the type of network specifi-
cations accepted as input. For example, Stockwell (1962)
uses Boolean equations for circuit descriptions while others
use the actual circuit elements and their interconnections,
as does Williams (1975a, 1975b). Larson and Mano (1965)
have presented a simulation technique which uses appropriate
digital network models anrd FORTRAN IV to economically
simulate logic networks where the high cost of a general-

purpose simulator is not justified. Stang (1968) and

| —

v
Weingarten (1965) have taken similar approaches by using the
logical and arithmetic features of FORTRAN.

Probably the area of greatest interest in simulators
is level mode simulators. Hill and Peterson (1974) discuss
E these in great detail. Again, the amount of information
required versus cost determine the approach taken in a level
mode simulation. In order to make detailed analysis of
A races and hazards in circuits, an analog output level mode
simulator may be required. This type of simulation is
accomplished by usng quantized voltage levels between the
logic values of zero and one. Neglecting rise time and
only delay results in a 2-level level mode simulation. Such
a simulator using an up-down counter to model delay
presently exists and is accessible on the DEC 10 computer
system at The University of Arizona. The most basic
approach to simulation is a clock mode simulation. One
iteration through the simulation is equivalent to one clock
pulse.

Great effort has been placed in development of
advanced techniques for improving the calculation and effi-
ciency of the basic simulation models to be discussed.

B - Event-directed techniques (Breuer, 1970) and exclusive

simulation of activity techniques (Ulrich, 1969) are in-
tended to reduce the amount of calculations required in one

iteration of a simulation.

Modeling Digital Logic

As stated previously, simulation is a problem
solving procedure for defining and analyzing a model of a
system. The value of simulations, of course, is that large
amounts of data about a system can be collected in a short
period of time under controlled conditions. How accurately
the behavior of the real system is depicted by the data is
reflective of the accuracy of the simulation model and the
model characteristics (Szygenda and Thompson, 1975). The
simulator designer must first decide whether the system is
to be used for logic verification or design verification.
He needs to ascertain whether to use two, three, or multiple
gate output values. There is also the question of whether
to use zero, unit, assignable, or precise delays; and
closely related, whether to use differing signal rise and
fall times. Certainly, the type of internal device model
must be considered, whether it be gate or element.

Logic verification would be similar to the operation
of a combinational logic circuit in that it is purely a
computation of all possible outputs for all possible input
combinations. It is also equivalent to a clock mode simula-
tion. Since the implementation of such a simulator is very
simple and if no other information is required, then the
simulator designer should consider only logic verification.
If more information is desired, such as timing considera-

tions, then a more complex approach is appropriate, noting

A it i e i

ore . ”
et aesar b it e ———. - v

that logic verification can be a special case of a more
complex simulator.

It is obvious that a logic simulator requires at
least two logic levels, 0 and 1. Using only two values,
however, has two major drawbacks. The first disadvantage is
that establishing initial values on all elements is very
difficult, except for clock mode simulation. For large
circuits, establishing initial element output values fhen
becomes costly. The second disadvantage is that unknown
conditions due to spikes or other sources can not be repre-
sented. The third value normally added is X or unknown
which allows simulators to overcome the disadvantages of
two-valued logic. Chappell et al. (1974) define a non-
propagating unknown condition that is used during the
process of establishing initial values. This non-
propagating feature prevents an unknown condition from over
writing an already established known value. They use a
fourth value called a propagating unknown for the remainder
of their simulation. It is feasible to expand further; for
example 0, 1, 2 (non-propagating unknown), 3 (propagating
unknown), 4 (signal rising), and 5 (signal falling).
Certainly, the addition of 4 and 5 would be useful in
simulating rise and fall times if that information was
required.

It is important that the difference between gates

and elements be established. A gate is defined as a device

W P —

S

o

rF—F-—---"mmgﬁgﬁEE&E B ———————

10
that has multiple inputs and a single output. An element is
defined as a device that has multiple inputs and multiple
outputs; in addition, the ordering of the inputs and outputs
is significant. A good example of an element is a flip-
flop; certainly the inputs and outputs are ordered. These
differences result in major differences of implementation.
The complexity of implementing element models is the reason
that most simulators use only gate models. There are some
serious drawbacks, however, in using only gate models. The
first of these is that a large number of gates are required
to implement some elements, for example, a JK flip-flop may
require eight to ten gates to implement. Another major
drawback is that the interaction of gates in implementing an
element may not present the same operating characteristics
as the element itself, thus presenting a poor model of the
element. Therefore, careful consideration must be given to
the type of internal device models.

To achieve greater accuracy in the model, an
assignable or precise timing capability is required. Zero
and unit delay (clock mode) simulators are only useful for
logic verification. Timing is inherent in design verifica-
tion. Assignable delay simulators allow assignment of a
single average delay to each element or gate type. For
example, one AND gate in a circuit may be assigned 5 units
of delay and another AND gate in the same circuit may be

assigned 4 units of delay. The up-down timing technique

T eS———

e T4

|

11

mentioned earlier is a good example. This model is made
somewhat more precise if delay assignments are made on an
individual element based on such parameters as fanout. This
technique also allows circuits consisting of different
families of logic to be accurately simulated. This can be
further expanded to assignment of different delays dependent
upon whether the signal is rising from logical 0 to logical
1, or falling from 1 to 0. Though this technique is not a
true rise and fall time simulator, as needed in electronic
analysis, it does present a more accurate picture of the

real world situation.

Implementation of Simulators

Having looked at modeling techniques in great
detail, it is now appropriate to answer some questions about
implementation prior to discussing EVESIM. At a minimum,
areas of interest in implementation should include the ease
of use, independence of data processing equipment, selective
tracing and time flow mechanisms, and element descriptions.

Engineers who make extensive use of computer pro-
grams, invariably avoid programs that are difficult to use.
Good programs minimize user required tasks. This requires
complex pre~ and post-processing, but must be done in order
to gain wide usage of the prcgram.

Machine independence of the program is very impor-

tant, particularly if the program is large and was costly to

12
develop. A program is not very useful if the author of the
program is the only one that can use it because his machine
is unique. Though low-level languages normally provide a
savings in run time, they are not very transportable.

Higher level languages such as ANSI standard FORTRAN have
proven to be much more transportable and therefore, a better
language to use.

Gate and element have previously been defined; how-
ever, as far as implementation is concerned, a gate is a
special case of an element. Defining the operation of an
element in terms of a subroutine or in-line code is rela-
tively straightforward assuming the programmer has a through
understanding of the element's operation. Defining an
element in a subroutine has obvious advantages such as ease
of debugging, ease of being replaced or overwritten by
future users, and ease of calling for use throughout the
program. A detailed discussion of how to write element sub-
routines is contained in Chapter 5.

Breuer (1970) has suggested a partitioning of a
circuit into subsets of elements Uj(i) such that if after
simulating element i, it is found that i changes state, then
simulate the elements of Uj(i) where the elements of Uj(i)
are those elements that have i as an input. This is
selective tracing; in other words, if an element output does
not change when new inputs have been evaluated, then the

element output is not followed. Since partitioning

13
algorithms are very complex, Ulrich (1969) has suggested
that this partitioning be limited to the fanout of a single
element. Breuer's (1970) technique has been named event-
directed simulation, where event means that an element
output has changed. The simulator jumps from event to event
as opposed to being time driven. Ulrich's (1969) technique
can be labeled time-driven event simulator. The time-driven
simulator operates by incrementing a fixed time unit and
checking for activity at that time where activity is defined
as elements scheduled to be evaluated. It should be obvious
that these techniques are required for large circuits since
any system relying on evaluating each element on each
increment of time quickly becomes too time consuming and in

turn costly.

Design Concepts of EVESIM

Having established a background of basic simulation
concepts, it is now time to begin a more detailed analysis
of EVESIM. Chapter 1 well established that EVESIM should be
a design verification simulator and that it should use an
element approach to modeling; therefore, these two subjects
warrant no further discussion at this time. EVESIM uses
three~valued logic, it applies precise delay techniques that
reflect different rise and fall times, and it uses a hybrid
of event-directed and time-driven event-directed control

techniques.

.

14

EVESIM uses three-valued logic and in particular,
the unknown condition X, for two primary purposes. The
first use is similar to that of the non-propagating unknown
used by Chappell et al. (1974). During the process of
establishing initial values for the elements of the circuit
to be simulated, all element outputs are first set to X,
unknown, except for memory type elements which are user
specified. Memory element outputs are not allowed to change
during the process of updating the other elements. In a
circular process, new outputs for the remaining elements are
calculated until no more unknown conditions exist in the
circuit. A default mode and an override capability are
built into the system in case all unknown conditions cannot
be cleared. (This will be discussed further in Chapter 4.)
The second use of the unknown is in a propagating mode to
reflect illegal conditions such as timing problems generated
in the circuit being simulated.

Though the use of precise delays for modeling
normally means more complex programs, precise delays were
used in EVESIM. Based on the use of the hybrid driving
technique, to be discussed, this complexity has been offset.
EVESIM allows individual element assignment of differing
rising signal delay time and falling signal delay time,
thus presenting a more accurate model.

The heart of EVESIM is the driving mechanism, as it

is with anv simnulation program. Ulrich (1969) has reported

15
that only one per cent of all elements in a typical simu-
lated digital network are simultaneously active. Assuming i
this to be true, then any driving technique that takes
advantage of this is an improvement over conventional tech-
niques of simulating each element in every increment of
time. This suggests a discrete event type of simulation.
In other words, it is desirable to simulate an element only
when it is active. Define a set C, the elements of C being

the elements, including external inputs, of a circuit C.

Then, at any instant of time a subset Al of C, consisting of
currently active elements, is the only source of future net-
work activity, signals originating in Al are transmitted to

associated destination elements, forming a destination set

Dl’ also a subset of C. Not all elements of D1 respond to
the stimulation, thus a new subset, A2' of active elements
is formed where A2 is a subset of Dl‘ EVESIM takes full

advantage of this concept.

CHAPTER 3

DRIVING MECHANISM OF EVESIM

Until now, simulator driving mechanisms have been
discussed in a general sense. This chapter carries the
discussion of driving mechanisms to that used in EVESIM.
The information required for the modeling of elements in
the driving mechanism is also identified.

The driving mechanism used by EVESIM is best
identified as being a time-driven event-directed mechanism
where an event is defined as an element output taking on a
new value. The technique is a hybrid of a time-driven and
and event-driven mechanism. Basically, a time-driven
circuit model is incremented by a fixed time unit and a new
set of element output values is calculated per time incre-
mented. An event-directed approach is driven by jumping
from event to event irrespective of time. It should be
obvious that considerable calculations are required for the
time driven approach, and that a considerable amount of data
must be maintained for each event in the event-directed
approach. The technique used by EVESIM is a combination of
these two approaches.

EVESIM is time driven in the sense that events can
occur only at points in time that are an integral multiple

16

17
of the fixed increment of simulation time. In other words,
simulation time is merely represented by a counter, ’I‘IMEn+l

= TIMEn+l, beginning at time 0, and events can occur only
at these integer values of TIME. Element models are used
to determine new output values as element inputs change.
The model must also determine when the element output is to
change in terms of simulation time. This timing information
is calculated by the model from user input element delay
times. This time of change or time of occurrence for an
event 1is used to properly insert the event into an event
list. This event list is the only source of future activity
in the circuit being simulated. In other terms, these
events or known element output changes are the only
occurrences in the circuit that can cause future changes of
other elements. The event is executed by following the
element output to all fanout elements conneéted and checking
the fanout elements for future activity. Therefore, simu-
lating only the effects of these changes has reduced the
simulation to an event directed simulation. Allowing these
events to occur only at fixed increments of time results in
a time driven event directed simulator.

To accomplish the tasks of driving the simulation,
EVESIM uses two arrays. The first is ICLI(N,2) where N is
equal to the maximum delay time assigned to an element of
the circuit being simulated plus one. Each row of ICL(I,J)

represents a discrete point in time. The second column of

18
ICL(I,J) contains a pointer to the second array, the event
list array LIST(K). The first column of ICL(I,J) gives the
total number of events in the event list for time I. The
remaining time I events follow in the next ICL(I,1l)-1
elements in LIST(K). Time is incremented as discussed above
and a modulo function is used to determine the value for I
from TIME. Thus, the simulation time at which an event is
to occur is described implicitly by the location of the
pointer in the ICL(I,J) array. The use of these two arrays
in this fashion allows a very long simulation over many
increments of simulation time without requiring a large
storage array to maintain timing information.

With this background, a general flow through the
program can be outlined. The first step is to incremeht
TIME. The clocking array, ICL(I,J), is then accessed. If
there are events scheduled for this time, they are executed
as listed in the events list array. Each fanout element of
each element in the event list is in turn simulated with the
appropriate element model. An element status and descrip-
tion array, IDESOU(I,J), is used to maintain a cell of
information about each element in the circuit. The informa-
tion included in this array is a list of fanout elements for
each element of the circuit, the simulation time when the
last output change occurred, the old value of the element
output, the present value of the element output, the simula-

tion scheduled, and the future value of the element output.

FIR .

A e B b

19

With this information the element model determines a new
element output and calculates the simulation time of a
future element output change. If the event will cause a
future state change to occur in the fanout element, the
future event is properly scheduled into the event list.

When all events have been processed, time is again incre-
mented and the process continues.

It is interesting to note that if the cyclic clock
discussed above is based on maximum element delay time, old
information in the event list will automatically be replaced
with new information. This reduces the required length of
the event list. For example, assume that the maximum delay
of any element in a circuit is 10 units of time. Define s
LIST(I) to have I = 1000. With a clock length of 10 units,

then each clock unit of time could point to, on an average

e i bbb o

of 100 locations in LIST(10090) or 100 events could be
scheduled per increment of time. Based on the work by |
Ulrich (1969), one per cent of the circuit elements is equal
to the 100 events or a circuvit comprising of 10,000 elements
could be simulated by this example without increasing the
length of LIST(I).

It has already been pointed out that an element
model must be writtin in order to not only determine the
new value of an element, but also to determine when the
change is to occur. The information required to make these

calculations must include the simulation time when the last

20
output change occurred and the old value of the output. The
model must also know if the element has already been
scheduled. This can be done either by checking the event
list or by adding this information to the above and storing
it with the element description cell as is the other in-
formation. Using a cell of information, of course, is much
more desirable than searching lists.

Also included in the cell of information is the
fanout elements of the element concerned. This information
is used to determine a new set of active elements. In order
to get all parameters into the scheme, internally the
program generates fictitious elements to represent each of
the external circuit inputs. The program also expands
multiple output elements to look as though they were single
output elements. Thus, the timing scheme does not need a
separate mode to handle multiple output elements. All
elements and the external circuit inputs are all handled in
the same fashion, and therefore minimize the simulation

control effort.

CHAPTER 4

EVESIM PROGRAM DESCRIPTION

EVESIM has been written in FORTRAN IV for use on the
CDC 6400 computer system. EVESIM is best described as being
a time-driven event simulator of digital logic circuits.
It is a fundamental mode simulator in that elements are
modeled in terms of rising and falling delay times. The
program has been divided into five major subroutines as
indicated in Fig. 1. There are several subroutines that
perform functions in support of these five and will be dis-
cussed individually as their time of use is identified. As
can be seen in Fig. 1, the first three subroutines are pre-
processing routines. Subroutine FUNSIM controls the actual
simulation of the logic circuit and subroutine OUTPUT
controls, as the name implies, data output for the program.
The program has debugging aids programmed into it to assist
the user in running the program and for use in future up-

dating of the program.

Preprocessing Subroutines

The preprocessing requirements of EVESIM have been
broken into three subroutines: READIN, INCOND, and INTIAL.
Subroutine READIN reads from cards the circuit description
array of the circuit. Subroutine INCOND reads from cards

21

KEADIN

INCOND

- —— ——— —

INTIAL

lead Circuit
Hevcription and
establish fanout
for element

FUNSIM

OuUTHUT

Program EVESIM.

values of all
nemory elements

End external inputs

———

Initialize the
e s S T I

23
initial circuit values and initial external input values,
and subroutine INTIAL initializes the circuit in preparation

for beginning the simulation.

Subroutine READIN

Figure 2 describes the flow of functions performed
by subroutine READIN. The date of run, the circuit number
(LCKT), the total number of simulation times to be executed
(LAST), and the mode of debug (LBU) are read from the first
card. Since error messages can be generated early in the
program, the error message heading is printed next. The
total number of elements in the circuit is read in as NGATE,
and the total of external inputs is read in as NEXIN.

The element descriptions are read in using the same
format as SCIRTSS. The circuit elements are numbered 1
through NGATE and are assigned a 4-letter type designator
such as JKM1l for a J-K master slave flip-flop. The input
connections to the element are then listed in order. The
connection is indicated by the number of the element whose
output is connected to the input of the present element.
The element delay information follows in terms of simulation
times both for rising and falling logic values. All of this
information is stored in an array called IDESCR(I,J). Index
I will be equal to NGATE, the number of elements, and Index
J can have values 1 through 19 as indicated in Table 1. The

element type designator is compared against the available

)

s = Read bDate,
. circuit Lo
LAST, 181

message
headings

Kead NGATE,
NEXIN

kead element
descriptions
IDESCR(1,J)

Identify
elcment type
for all elem

Form fanout
description
array
1DESOU(T,.])

¢ < Return ’

Fig. 2. Subroutine READIN.

25

Table 1. Definition of J for IDESCR(I,J).

J Information stored

1 Element type

2 Element type number used for internal control
3 Pointer to IDESOU(IOD,JO)

4 First value of delay time low to high

5 First value of delay time high to low

6 Second value of delay time low to high

7 Second value of delay time high to low

8 Circuit output indicator

9-18 Number of element connected to input

Status of element

26
element models listed in LTYAL(J) and the appropriate type
number assigned. A fanout description of the circuit is
then formed. This fanout description, based on the fanout
of each element, is in effect the destination set discussed
in Chapter 2. The fanout description array is called
IDESOU (I0OD,JO). IOD is a function of the number of elements
in the circuit and the number of outputs of each element.

An element that has more than one output is represented in
IDESOU (IOD,JO) once for each output. For example, each
flip-flop will appear twice, once for the Q output and once
for the Q output. The JO index for each element output is

defined in Table 2.

Table 2. Definition of JO for IDESOU(IOD,JO).

JO Information stored

1 Pointer to IDESCR(I,J)

2 Element type number used for internal control

3 Simulation time when last cutput change occurred
4 01ld value of the output

5 Present value of the output

6 Simulation time of future change

7 Value of output at future change

8-17 Element numbers connected to the output

27
Subroutine INCOND

Though normally all required data for a program
would be read into the computer by a single subroutine, this
task has been split in EVESIM. This allows greater flexi-
bility in input data formats. Subroutine READIN is oriented
around the SCRITSS input format and may not be suitable to
another user's needs; therefore, doing preprocessing in
smaller pieces allows easier replacement of sections to meet
a particular user's needs.

Subroutine INCOND (Fig. 3) reads from cards the
total number of flip-flops (LFF), the total number of other
memory type devices (LOM), two minimum values of clock
pulse widths (NCLWID, NCLW2), and two minimum values of
preset or clear pulse widths (NPCWID, NPCW2). It reads the
output value of all memory devices and stores that informa-
tion in IDESOU(IOD,J05). The final data read by INCOND is

the initial values of all external inputs.

Subroutine INTIAL

The most important part of the preprocessing is
establishment of the initial values for all elements of the
circuit. It is assumed that the external inputs to the
circuit have remained stable for a long period of time, in
fact, long enough for any previous activity to have
propagated through the circuit. This situation certainly

cannot be achieved if an unstable condition can result from

Subroutine INCOND

Read LFF,LOM
NCIWID,NPCWID
NCLW2, NPCW2

Read initial
values of all
flip~flops

Read inijtial

values of all

other memory
devices

Read initial
values of all
extlernal inputs

i

Return

Fig. 3. Subroutine INCOND.

29
network feedback internal to the circuit. Such an unstable
condition may or may not be designed into the circuit. Any
unstable condition is recognized by the program and the user
provided with sufficient data to diagnose the situation.

Subroutine INTIAL (Fig. 4) begins by reading the
maximum number of iterations (LIMIT) or passes through the
circuit that can be made in order to clear all unknowns and
establish a stable condition in the circuit. Failure to
establish stability will result in error messages being
printed and program execution stopped, unless of course, the
initialization override parameter, LOVER, is set to one.

New outputs for each element are calculated. The unknown
condition X is not allowed to propagate through the circuit,
and therefore provides a means of identifying indeterminate
situations that exist in the circuit. These situations may
or may not be desired. If they are not desired, then they
have been identified to the user. Iterations of new output
calculations are continued until no more changes occur or
the limit of attempts is reached as outlined in the flow

chart in Fig. 4.

Simulation Control

Efficiency requirements in the preprocessing phase
of simulation is easily put aside when considering that the
preprocessing is done only one time. Even the program

efficiency of an element model does not have to be great if

EE

=z

‘ Subrout fne INTIAL ’

Bead
LIMIT, LOVER

S E

Tnitialize
L=)

Calculate ne
outputs for
each elemeny

Any
outputs
Jange

LERROK = 203

(keturn ’

Yrocess Error
(Call EXIT) I
i

IR, |

Fig. 4. Subroutine INTIAL.

3
maximum effort is exerted to call the model only when
necessary. Certainly any simulator that calculates new
element outputs for each element during each increment of
time requires a very efficient element model. The process
of searching long lists as proposed by pure event directed
simulations is also not very efficient. EVESIM does not
require major list searching routines or efficient element
modeling. Great flexibility and efficiency have been gained
in EVESIM by not involving the element model in the control
and driving mechanism of the simulator.

Subroutine FUNSIM (Fig. 5) is the control and
driving mechanism for EVESIM. The event list, discussed in
Chapter 3, is defined for EVESIM to be LIST(K). K was
chosen to be equal to 1024 for purposes of easier manipula-
tion of the events list; however, K is by no means limited
to this number. The internal clock array for EVESIM is
defined as ICL(I,J) and simulation time is defined to be
equal to NOW.

The first step in subroutine FUNSIM is to determine
the length of the internal clock, LENCL, which is equivalent
to the longest delay time that has been assigned to any one
element plus one. Then, the initial value of the elements'
outputs is written to file IOU, and the first event card is
read. An event card contains the event time for a change in
value of external circuit inputs, the external input number,

and the new value. A card can have only one time value but

=

Determine the
length of
internal ¢lock
= LENCL

NFILE =

LEXT
LCHAN =

noe
coro

1

kead an Event
Card

LFILE = 1

LTIME = MOUL CIOW, LENCL)

NU = ICL(LTIME, 1)
LCHAN =]

J> <f//z::nt
4» g&-— NOj
0

Change all
elements
scheduled

| ENE

Fig.

S

Change external
inputs
LEXT = 1

S)

Schedule
effects of
changes

Ho

YES

Subroutine FUNSIM.

@

e otk NS S Sy A

33

YES
N

N < 0

Schedule effects of
internal changes

@

Write
odtputs
for time

= NOY

Wal
v

ICL(LTIME,1) = <ABS (ICL(LTIME, 1)) .
NOW = NOW + 1
LCHAN = O

Fig. 5--Continued

34
may contain several changes for that time. Additional cards
for the same time may be used if necessary. The present
time (LTIME) of the clock is determined by a modulo
function, LTIME = MOD1 (NOW,LENCL), where MODl is defined
as a function:

FUNCTION MODl (M,N)

LT = M- (M:N)xN

IF(LT.EQ.O)LT = N

MOD1l = LT
The number of events scheduled for a particular time is
defined as NU. NU being negative in value indicates that
the events have been processed for that time; otherwise, the
scheduled events are allowed to occur. External circuit
input changes are processed and then internal element
changes are processed. During the process of scheduling the
effects of element changes, each fanout element of the
element that changed is processed by the appropriate element
model and future events scheduled as needed. Time is incre-

mented and the process continues until the time limit is

reached.

Postprocessing Subroutines

Postprocessing of the simulation merely provides a
usable output. The process has been divided into two sub-
routines, subroutine OUTPUT and subroutine PLOTl. Sub-~
routine OUTPUT is used for control purposes while subroutine

PLOT1 does the actual printing.

T

35

The external circuit inputs and the element outputs
to be plotted are read from a card. Up to 12 outputs can
be requested per card. As indicated in Fig. 6, the output
requests are first sorted and subroutine PLOT1 is called to
do the printing.

Subroutine PLOT1 (Fig. 7) reads a record from the
output file IOU. It then fills an output buffer with the
appropriate output value and prints the contents of the
buffer. Another record is read from IOU and the process
continues until the file is empty. It should be obvious
that the printing routine PLOT]1 has been separated from the
control in order that changes to the actual output format
can be easily accomplished with minor change only to PLOT1

and not the whole output process.

Supporting Functions

Discussion to this point has only referred to such
things as modeling routines, scheduling and unscheduling
events, and error messages. Though subroutines SCHED,
UNSCHE, ERROR, and IODEST are normally referenced only by
the element model routines, they are discussed prior to the
modeling routines (Chapter 4) since they are general in

nature and apply to all the models.

Subroutine SCHED
The purpose of subrcutine SCHED (Fig. 8) is to

schedule an event to occur a. the time (NSCTI) specified by

36

Subrout fne
ouTruT

<
Read clements
to be output
LIST(12,2) N
Pal
W
T =%
oS
LIST(Y,1): >
L16T(1+1,1) l
LTEM:(1,1) = L1ST(1,1)
S LTEMP(),2) = LIST(I,2)
LIST(1,1) = LIST(I+1,1)
L1sT(1,2) = LIST(I+l,2)
LIST(I+1,1) = LTEMP(1,1)
LIST(T+1,2) = LTEMP(1,2)
T =21+
E PLOTI

<

Fig. 6. Subroutine OUTPUT.

Fig.

Subrout fne
o)

Rewind
100
Read
100 h

Establish
Fointer to
location of

desired clunent

Write
Headings

Iy o YES
0
Fill
Puffer

Write
Buffer,
Time

Subroutine PLOTI1.

7.

NTIME & MODL (NSCTY,LENCL)
KOUH = 1CL(NTIME, 1)

I LPCINT « 1CL(NTIME,?2) J

Remove oldes
block

Remove block
from stack

Remove oldost
Hlock

Move everything in list

above 1nsertion point up

one and change affected
pointers

ICL(NTIME, 1} = 1
ICL(NTIME,2) = LSP

LST (LSP) = 10Dl

L1ST (1CL(NTTHE, 2)) = 1001

CL(NTIME,1) = ICL(NTIME,1)+1

r L.SP = LSP-l l
‘ Feturn ’

Fig. 8. Subroutine SCHED.

38

39
an element model. It is a very simple process and involves
determining whether or not a block has been reserved in
LIST(I) for time NSCTI. If a block exists, it is opened and
the event inserted. If a block does not exist, one is

created.

Subroutine UNSCHE

There are certain instances where an event that had
been previously scheduled needs to be unscheduled. To
accomplish this, subroutine UNSCHE (Fig. 9) is used. The
event to be removed 1is identified by the element model, the
pointer (LPOIN) to the beginning of the block in LIST(I) is
then established. The block is searched for the event and
it is removed. IDESOU(IOD,JO0O6) is updated to reflect that
no event is to occur and control is returned to the element

model subroutine.

Subroutine ERROR

Subroutine ERROR (Fig. 10) is used throughout the
program to process error messages and to stop program execu-
tion in the case of fatal errors. Errors are processed by
assignment of a number. It is noted by Fig. 10 that error
messages greater than 199 are fatal and cause execution to
cease by using the library function CALL EXIT. After
processing of non-fatal errors, control is returned to the
calling location. A list of error messages that can occur

is contained in Chapter 7.

e e ————

40

Subroutinc
UNSCHE

| NT = IDESOU (10D),J006)
NTIM = MODL (NT, LENCL)

KOUN = ICL(NT™M, 1)

LPOIN = ICL(NTIM,)

| Search block
| for elemcut
and remove

ICL(NTIM, 1) = ICL(NTIN,1)-1
LSy = LSP + 1

i

ICL(NTIM, Y1)

e e e

r ICL(NTIME,2) = 0 j

|
|

B -
v

l IDESOU (TOD1,J06) = O l

(Return)

Fig. 9. Subroutine UNSCHE.

41

Subroutine
ERROR

LERROR YES
> 199

Write error number,
"this is a fatal
error”

Call EXIT

Write error number,
time, and element
number

(Return)

Fig. 10. Subroutine ERROR.

42

Subroutine IODEST

Subroutine IODEST establishes the index IOD of
IDESOU (I0D,J0) for the current element being processed
during the simulation. It establishes IODl1 as the element
being proeessed, IOD2 as the first input to the element,
I0OD3 as the second input, and on to as many indices as there
are inputs to the element. It is merely a "look-up" routine
intended to minimize cross-referencing efforts between

IDESOU and IDESCR arrays.

i s i

CHAPTER 5

EVESIM ELEMENT MODELS

Many approaches exist to model logic elements.
Chapter 2 established that an element level approach was the
most appropriate since modeling elements with gates may not
present the same operating characteristic as the element
itself. It was also established that an assignable or
precise timing capability was most desirable in order to
achieve great accuracy. In fact, being able to assign
delays in terms of both rising signal levels and falling
levels provides the most accurate model. EVESIM has been
designed such that delays can be assigned in terms of rising
and falling signal levels. The problem of modeling for
EVESIM is a matter of assigning the correct delay times to
the element and being able to calculate from these delays
when an element's outputs are to change. The models have
been split into two distinct types. The first type is for
single output non-memory type devices normally called
combinational logic gates. The second type is for all other

devices which were defined earlier as elements.

Element Delay Time

EVESIM uses precise delay time calculations.
Obviously, either efficiency or accuracy would quickly be

43

i

44
lost if element delay times were randomly picked or an
attempt was made to run the simulation in real time. It is
therefore necessary to establish certain ground rules for
determining the element delay times.

It is important that the delay times for the
elements have some common parameter; otherwise, the accuracy
of the simulation is lost. If all element delays were made

to be of the form: D = nAt, where D is delay time in real

time, n is a positive integer, and At is a positive constant,

then all delays can be represented by a positive integer n.
This has forced all element delays in a given circuit to be
relative to each other; and therefore, the accuracy of the
simulation has been preserved while not losing efficiency.
An EVESIM user would refer to a manufacturer's logic data

book and determine approximate values for tP and tP for

LH HL

all the elements in the circuit to be simulated. It should
be noted here that the choice of delay times is not totally
random and requires the user to have some intuitive knowl-
edge of the expected operation of the circuit being simu-
lated. Then, from this information, the user should deter-
mine a value for At which by definition is nothing more than
the greatest common divisor of the element delays. All
element delay times (n) can then be determined by: ng =

D+ At.
e

As an example, consider a small circuit containing

two types of elements with delays of t 10 nsec,

PLHL

oy

B

45

) = 12 nsec, and t = 8 nsec. The

tPLHZ PHL2

greatest common divisor of these times is 2 nsecs which is

PHL1 = 6 nsec,

Ed

equal to At. The values for n are then computed:

=10 + 2 =5 n =6 * 2 =3

M iH 1HL

Il

12 © 2 =6 n =8

2HL 4.

Il

Bour

One simulation time is now equivalent to 2 nsec. The
maximum length of the internal control clock has been
determined and is equal to the maximum ng which in this case

is 6. It should be noted that another set of delays will

determine a different At. Thus, it is desirable to maximize
At such that the maximum element delay time ng, is kept as
g small as possible in order to economize the execution of a

simulation.

Subroutine COMLOG

When an event has occurred, an element output has
changed. The elements connected to that changed output are
each, in turn, processed through an element model. Sub-
routine COMLOG (Fig. 11) serves as the model for all com-
bintational logic gates. The first action taken is a calcu-
lation of the output. Then, a comparison is made to the old
output. If a change has occurred, the new output is
appropriately scheduled as an event to occur in the future.

i There are many techniques available that can be used

to determine the logic values. Boolean algebra can be used.

Subroat fue
COMLON,

Calculate
new output

1s
change
scheduled

NO

YES

Unschedule

Schedule
change to
new output

H 4

11.

14 &

‘ Return ’

Subroutine COMLOG.

46

47

The available logic functions of an operating system provide
a means of calculation. Table look-up techniques can be
used or arithmetic expressions can be used for the calcula-
tions. The technique used for the calculation is not really
relative to the modeling of the element as far as modeling
the delay is concerned. Therefore, whatever is easiest for
the programmer's system is appropriate. EVESIM uses both
table look-up techniques and the available logic functions.

The important part of the modeling scheme is that an
event that is to occur is properly scheduled in the future.
This scheduling is based on the delay times as calculated
above. It is important that noise spikes are passed or
rejected as required. Whether a gate will pass or reject a
spike is a function of the gate propagation delay times,
tPLH and tPHL' The modeling of this is easily accomplished
with an event type of simulation program. For example, let
a NAND gate have values tPLH = 11 and tPHL = 7. Obviously,
immunity to 1 - to - 0 transitions is greater than 0 - to -

Let the

1 transitions since t is greater than ty

PLH HL"®
output of the NAND gate at time 0 be equal to 0. Assume

that at time 0, an input to the gate has changed such that
the output should change to 1. An event should be scheduled

for time 0 + tPLH which is equal to time 11. Following the

scheme of the flow chart in Fig. 11, any attempt to schedule

a tPHL transition prior to time 11 would negate the event

scheduled at time 11. The earliest that a valid tPHL

Benndians ittt S e b

48
transition would register would be at time = 11 + tPHL = 18.
Therefore, the narrowest pulse that could be passed through
the NAND gate would be 18 - 11 = 7, which is what is
expected. A similar analysis can be done for the 1 - to - 0
noise immunity. The result is a minimum pulse of 11, again
which is what is expected. Making use of the rising and
falling delay times in conjunction with proper scheduling
and unscheduling of events has effectively modeled the
combinational logic. The modeling of multiple output
devices is accomplished in a similar fashion. The differ-
ence, as seen in the next section, is in the complexity of

determining when an event should be scheduled.

Subroutine JKM1

The complexity of determining when an event should
occur for elements such as a JK master-slave flip-flop
results from the fact that the flip-flop has several inputs,
it has memory capability, and has more than one output.
There are also other parameters for consideration such as
minimum pulse width requirements to the clock input and the
preset and clear inputs, and the J and K inputs remaining
stable while the clock is high. Since the data depicting
these parameters is available in the data book, they are
also applied against the greatest common divisor and an
integer value assigned to represent the parameters for

modeling purposes.

49

The JK flip-flop model, subroutine KJIJM1l (Fig. 12),
is broken into four paths dependent on the three inputs that
can possibly change the outputs. Since preset and clear
override the clock, they first are tested for an unknown
condition. An unknown on preset or clear will automatically
force an unknown condition on the output. If neither are
unknown, further checks are made and the appropriate
branching takes place as indicated in Fig. 12. If the J or
K input to the flip-flop was the input change that caused
the model to be called, control is returned to the calling
subroutine without any further action. It should also be
noted that a leading edge clock change requires no action
for a master-slave flip-flop and control is returned to the
calling routine.

Assuming that a trailing edge clock caused the call
of subroutine JKM1l, the clock pulse is first checked to
insure that it meets minimum width requirements. If not,
an error message (error 1) is processed and the outputs
scheduled as unknowns. If the clock is valid and preset and
clear are both high, new outputs are calculated and
scheduled to occur as events in the future.

A single preset change or a clear change are similar
in nature and relatively simple to program. The processing
of these changes are self explanatory and are indicated on
the flow chart on pages 52 and 54. The complexity is

greatly increased if both preset and clear change at the

50

Subrout
JEMIL

N

LC1
LC2
LPl
LP2
LLI
1.L2

= clock(t) Establish the
= clock(t-1) value of the
clock, preset,

= presct(t) -
r“ ol e el and clear iuputs

= preset (o-1]
= clear(t} for present

= clear(t-1) and past time
-——

LP) or NO

u,ly

YE.

- —{ Preset changed

@ =X ¥reset and
Sl clear changed

01
"
=

P I X S e Clear changed

SRR e e i R s S e _'! £lock changed

‘ Return ,

Fig. 12. Subroutine JKMI.

LERROK = 1

Preset
or Clear
= 0

J input

K i
stable

LERROR = 2

<D
2

Calculate new
output and
schedule
change

Fig. 12.--Continued Subroutine JKM1.

51

i
)
|
|
|

-

Fig.

e

|

Schedule
change
Q=1
0«1

Schedule
change
Q=1
g=0

12.-~Continued Subroutine JKMl.

52

——— NN

i

53

LEKROR = 3 Schedule

Clear

Unechedule change low change
any changes | Q=1 schedule
scheduled J Q=1
Preset
low chango
schedule
L
LERRCK + €
Q=X
T=x
LEKROK = €
g@ex
0 =x
Schedule
charge
v Q=1
G=0
Schedale
change
Q=0 N4
gal

Fig. 12.--Continued Subroutine JKM1.

T

Schedule
change
Q=0
D=1

Schedule
change
Q=1
=1

el

<

12.~-Continued Subroutine JKMl.

55
same time. If they were both low, the outputs are both
high. If both preset and clear go high at the same time,
it can not be determined what the outputs will be; thus, the
outputs are changed to the unknown condition. If preset and
clear are opposite in value and they both change, a spike
can be generated on the output of the flip-flop. This is |
designated by error message 6 and the outputs are tempo-
rarily changed to an unknown condition until the new values
of preset and clear cause the outputs to stabilize.

Oon the surface, modeling of the JK master-slave
flip-flop appears to be a lengthy process. However, by

having full understanding of how the element functions, the

model can be broken into small processing sections each
representing an element reaction to a particular stimulus,
thus providing an easily understood and logical approach to
solving the modeling problem for a JK flip-flop or any

multiple input-multiple output element.

CHAPTER 6

DEMONSTRATION OF THE USE OF EVESIM

A description of EVESIM would not be complete with-
out a demonstration of some circuits being simulated. The
first example is strictly a JK master-slave flip-flop run
against the simulator all by itself. This was chosen in
order to demonstrate the functioning of the flip-flop model
discussed in Chapter 4. The remaining two circuits were

chosen to demonstrate the interaction of the models. It

should be noted that both have critical feedback paths that
restrict the frequency of the clock, thus surely demon-
strating the need for a level mode simulation. Data used
for the simulations were taken from the Texas Instruments

TTL Data Book (Components Group, Engineering Staff, 1973).

Demonstration of the JK Master-Slave

Flip-Flop

The flip~flop operation has been demonstrated by six

different runs of the simulator. The six runs were designed
in order that all possible paths through the flip-flop model
would be exercised. Figure 13 identifies the input names to

the flip-flop and Table 3 contains the data used for the six

runs. It should be noted that the output of the flip-flop
is given by the Q output being equal to element number 1 and

56

St e

T S T

57

1005
PRESET
1002 ——) S
1001— CLOCK
1003 K] e
CLEAR
1004

Fig. 13. JK master-slave flip-flop circuit number 3.

Table 3. JK master-slave flip~-flop data.

58

Greatest common divisor = At = 5 nanoseconds

Clocked Input Data

t = 15 nanoseconds n a5

PLH

tPHL = 25 nanoseconds n =25 =5

Minimum allowed clock pulse width =

Il

3 Simulation

]

5 Simulation

20 nanoseconds

NPCWID = 20 + 5 = 4 Simulation Times

Preset and Clear Input Data

tPLH = 20 nanoseconds n = 208 ="5

tPHL = 30 nanoseconds n=30 %5

4 Simulation

Il

6 Simulation

Minimum allowed preset or clear input pulse width

25 nanoseconds

NPPWID = 25 + 5 = 5 Simulation Times

times

times

times

times

59
the Q output by element number 2001. The 2000 indicates the
second output of element number 1 or 2001.

Figure 14 contains the first run. The J input high
and the K input low at time 2 causes no change at the
outputs as is expected. Similarly, with both J and K low,
the clock pulse at time 14 causes no change at the output.
The clock pulse at time 26 causes the output to change since
the K input is high. It should also be pointed out that the
model at this time is demonstrating the fact that a JK
master-slave flip-flop requires a set up time equal to zero
and a hold time equal to zero. In other words, the J and K
inputs must be stable while the clock is high in order to
guarantee proper operation of the master-slave flip-flop.
With both J and K inputs high, the clock pulse at time 38
causes the output to toggle.

Figure 15 is the output of the flip-flop for run
number 2. Run 2 is intended to demonstrate the operation of
the clear and preset inputs. Notice that at time 1 the
clear input goes low, overriding the clock puise and causing
an output change. The preset is similarly demonstrated at
time 11. Notice that at time 18 both preset and clear are
low causing both outputs to be high. At time 23 the clear
input returns to the one level and the outputs align them-
selves according to clear remaining low.

The remaining four runs made of the JK flip-flop

demonstrate the possible error conditions that can cause an

60

O-~MNMTOVO~NDOO OM~DOCO~N™
- — NN ~N

TIME
37

R B B B R B e I B B e e B B I I B I B B B e B B B B I B e B B e B A e I)

A A AT A A A A A A A A A A A A A At A A A A A A A A

1004

OCO0OO0OO0O0OOCO0OO0OOUCOO0OO0OO0COO0OCOOODOODOOVO

1003

(=l=Ne el o Ne e e Neo e No N Ne No e e Nl Ne oo N oo e N o)

1002

ELEMENT NUMLER

[=RellcleleRo e o] [=l-ReloleNo oo OO 000000

A A~ A A AN A AN A A A A A A S

CIRCUIT NUMBER

2001

CO0OO0O0VO0O0OUCDOOCOO0OO0OO0O0O DO TIOODDODVLOO0DO0ODODOT DOO

OrFrNMITEOHON~DO

TIME

o et e e

e e e A B e e B I B]

e e R B B I R I i |

L R I B B I B B B N]

—~— o~

[eNeoleleNoleReole o)

et -

[eNeRoReleoia)

el e e R B B)

oooo
FOmMATIDNONWO O
MIT I ITITrss o

Circuit 3 run 1.

14.

19

)

™

61

CIRCUIT NUMBER =

TIME

ELEMENT NUMBER

TIME

2001

OO0 O0o0

O ~NMT

o B B B B B e B B I R B I B R B B I B e B R I I R]

00000 [l Reis e

L N e e N e e e I B I B B

o COOCOO0OCOOOOOO

N A A A AA A A A A A A A A A

A A A A A A A A A AA A A A A A A A AN A A AA A A A M A A A A Al A A A A A

At A At A A A At A A A A A A A A A A T A A A A A A A A A A e e A

— - — -~ - —

[oNeNalleRolleNeNel OO0o0oO0O0O0OOCO [eReReReoleNoNo) OO0 0OO0OC O

— D B e B R I e I B B I A] i I B B

[eRelleNo el [=NeleNeoReNeNele oo oo oo Ro o R o)

o e o e e i B T B O e I B I I e I I R e e R I I]
[SRe e NN O Vo

DOV IPOANMITITOIOINMNDITFOANNTIFODNDOCOOANTITOLIOINDITOANMYT OH O~ OO
A A A A A A A NN N NN NN MO OO MNMNO S IY TN

Circuit 3 run 2.

155

K @8

F

i
!
f
{
!
|
|
{
i

62
unknown condition to appear on the output. The error
messages are clearly printed with the error number, time of
occurrence, and the element involved. Figure 16 demonstrates
two detected errors. The first is error 1, which is a clock
pulse being too narrow. This error occurred at time 2.
Error 7, though not necessarily an error in the true sense
of the word error, points out that the outputs are unknown,
and since the J and K inputs are of the same value, a new
set of outputs cannot be determined. Notice that at time
23, the J and K inputs have different values, and therefore
a new output set can be determined. The worst case is
assumed; that is, that for the Q output the unknown was
equal to 1 and had to change to 0, and that the opposite
case exists for Q. The remaining point of interest on Fig.
16 is that at time 35, a clock pulse occurs with the Q out-
put low and the K input low, and because of this time
situation, the K input changing midway through the clock
pulse has no effect on the output as should be expected.

At time 5 on Figure 17, error message'is generated.
This error results from the fact that the K input to the
flip-flop does not meet the hold time required, or the K
input is unstable while the clock is high. This results in
the unknown condition being generated on the outputs. The
next interesting point is the spike generated on the Q out-
put at time 20. This is a result of the clear input having

a low value and the preset input going low temporarily and

g T

O G IR P g

63

TIME

1

3
=

ELEMENT
ELCMENT =
ELEMENT NUMBER

3
15

=
CIRCULT NUMBER

CIRCUIT NUMBER =

TIME
11IME

1
7

FRABEEREAR B OERROR MESSAGEShwssbdsvibihin
=

ERROR
ERROF
TIwMt

OARANMINOMNTCD~ANNMTITrNAONDTOANMIED OO D
N A A A A A NN NN NN NN M

[T T R S e e R el el e e e R e I R e I e B R B B B B e B B B B B o B B B B B o B B e B o |

o
o
—
R S N e e I e e e e e e e R e R R I R R e R R e e e R R R e R R R e e i R i
o
o
= .
™
P I T R S S e . e e e R e e e B R e R R R R R e R B I i m
o ~
o SOV OoOCOoCcOO0O0
-
™
+
o
o 000000000V DTCOOOOOODIOCODO0O0O0OOCOODODO O
=1 t
~
-
O
-~ — - — - - — -
o
[=Ne] [=jeNelolele e Ne] DOO0OOCOO00 OO0ODVDOLOOOO OSO0DO0ODOCOO .
= e]
—
.
Ll B e B) o
P R A R B T I S T I S T i
DOCNDOCNO0O0ODO0000 N

- P e e el e e e B R R e]

o Mom K DK D M I K K M K I X K XK X)
OO0 O
o~

J AT N T WY O S

O UM O ™~Oo T O J
— NM MO M AWM

40
41
42

&2
U]
4%

64

CIRCUIT NUMBER =

*EU OB U e R R RLEUERROR MESSAGESH*hd kb vhtobnks

ELEMENT =

5

TIME

2

ERROR

32 ELEMENT » 1

TIME =

4

ERROR =

40 EBLEMENT =

4 TIME

ERROR

3

CIRCUIT NUMBER

TIME

ELEMENT NUMBER

TIME

1001 1002 1003 1004 1005

1

2001

O NMIEFONO™~wLWOo

e e e Rl e K B B I e e I

L e B I B I I B)

[oR& No)

OCc ooV

e e Rae B B B e B

[=NelloleleeRaeNe e o e oo eoie oo e e e N ie)

~ o~

—— -

e R e R]

(o Neo e N e]

— -~

QOO0 O0OO0COVOOOCO0OO0VDO0O0DO0O0OVOVIUVVDOLOCVDCIDOLOODCOOOOO0ODVLOO

Lo e B B e B R B B B B B B A e Bt B B B R B B e e B B e e B B B B B T B B B B B]

-

o oO0ooocooo0

— -

—

M X I X I W X M >

o> XK XK X XX

QOO COO

O~ NmMIDOMNDR

(el Neo e NoNeRole]

SO0 o000

-

—t et~

~ o~

ODoo0o90000

~o e

oCc oOoDOo

L B B B R B B e B B B B e e B B

B It

~

M X X M X

-

>

%0
-

36
40
41
43

q4
45

—

oo

44
45

Circuit 3 run 4.

17.

Fig.

65
then returning to the high value. Certainly, this operation
can be expected. Error message 4, clear input pulse is too
narrow, occurs at time 32 because the clear input was not
low a sufficient amount of time after the preset input re-
turned to one. Error 4 occurs again at time 40.

Figure i8 is the output for run 5. There are 3
errors demonstrated by this run. Error 3 occurs when both
preset and clear inputs change to a high value at the same
time. Error 5 appears when a spike occurs on the preset
input, in other words, preset was low an insufficient amount
of time to cause a predicted change on the output. Error 7
occurs again for the same reason as stated earlier.

Error number 6 is demonstrated in Fig. 19, which is
run number 6 of the flip-flop. Error 6 is generated because
preset and clear are changing at the same time before either
preset or clear was able tc cause a change to the output of
the flip~-flop. Notice that this situation is self-
correcting if either clear or preset remains low for a
sufficient amount of time.

In the following sections, the JK master-slave flip-
flop model is used in conjunction with the combinational
logic model to simulate realizable circuits. Having fully
established the operation of a single element, it is now

time to demonstrate the simulation of a complete circuit.

66

1
CIRCUIT NUMBEF = 3 4
. kbbbt axEkb e SERROR MESSAGES** %t sshtn btk :
ERROR = 3 TIME = 9 ELEMENT = 1
ERROR = 5 TIME = 24 ELEMENT = 1
ERRCR = 7 TIME = 29 ELEMENT = 1
E-
- EI
CIRCUIT NUMBER = 3 !
TIME ELEMENT NUMREF TIME
2001) | 1001 1002 1003 1004 1065
0 0 1 0 1 1 1) 0
1 0) 1 1 1 0 1 1
2 (¢} 1 1 1 1 0 1 2
3 (6] 1 1 1 L 0 0 3
4 0 1 3 I 4 ¢ 0 4
5 0 1 0 ¥ 1 0 0 5
& 0 1 0 ¥ &] c 6
T 1l X 0 1 1 (¢} 0 7
8 1 1 0 il 1 0 0 8
9 1) 0 1 1 1 1 9
1C X X 0 1 1 X 1 10
11 X X 0) 1 1 1 13
12 X X 0 X 3 0 ! 12
13 ¥ X 1 1 1 0 i 13
14 X X 1 1 1 0 i 14
19 X X & 1 1 0 1 15
lo 1 X 1 1 1 (0] 1 15
17 1 X 0 1 1 1 1 17
lb 1 0 0 1 1 1 b 18
19 1 v} 0 1 1 I 1 19
20 1 0 0 31 X i 1 20
21l 1 v} 0] it 0) 21
22 1) 0 1 1 0 1 22
23 1 0 0 1 1 1 0 23
24 1 0 0 1)| 3 1 24
5 X X 1 1 i 1 1 25
26 X X 1 1 1 1 1 2b
27 X X 1 1 1 a! 1 27
28 X X) § 1 1 1 i 28
z5 X X 0 p 1 | 1 A
30 » X 0 1 1 0 1 30
31 » X 0 1 1 0 1 31
e X X 0 1] 0 1] 32
33 Y X 0 1 1 ¢ 1 33
36 1 X (0] 1 1 (4] & 34
2 1 X 0 1 ; 0 ! 39
jo] 0 0 1 1 0 1 36
it 1 0 1 1 1 1 1 37
3¢ 1 0 1 1 1 1 1 38
39 1 J 1 1 1 1 1 39
40) | 0 1 1 | 1 1 40
4) 1 9 0 1 1 1 1 4]
42] 0 0 1 1 1 1 42
64 ! v} 0 1 1 1 1 43
44] 1 0 1 1 | 1 44
4% 1 1 o 1] 1 1 45

Fig, 18, <Circuit 3 run 5.

-

67

a

CIRCULIT NUMBER

SERBRR SR RERRRERRUR MESSAGES#adtbus s snsnsn

ELEMENT =

13

6 TIME =

ERROR

a

CIRCUIT NUMBER

TIME

ELEMENT NUMEEKR

TIME

01‘23461678.401?34:167890\4./53‘.».167590123:1!)676901?— T N
L B i B B B e B TP I AN | N oy oo RO MOMOmMOoOMmT 3T 5

43

L B R e e I I I] L i R B A e B e R B B B R R B T I B R e e |

o o

105

Ll B B B R B I I B I L B B B I R B e B e B B B B B B e e B I I I)

1004

OCO0OO0OTCOTO

L e e B e B B e B I B e B B B B B B B B T B B B o B B B B TP T S L e L S P gy

1003

L B e B o e e B o R B B R e B B B B R B R B R e P o I [P0 (S (U [

1002

L s K] [R N] - — e

—

o

oo QO O0OO0O0OQOO [elleNelleloNe o o) QOO0 O0O0O DO oo ooo
-

R i B e e B e I I I} L e Rl i e e A e B e i e B]
D I 3 2 M W
[eNeRe) CODODODHDONOOO O

ey e I I B B R R B B I T e I PRy -
XX X >
Ooo0ooocooo

(o

OO0 Lo OO

2001

O~ NMIVIONNTITO~CLM
- — -

31
¥
33
34
3y
3¢
Al
3¢
10
Q]
41
4 ¢
43
44
45

Ty

Circuit 3 run 6.

19,

Fig.

e e o i led——

68

bDemonstration of an Odd-Even
Detector Circuit

Figure 20 is a diagram of an odd-even detector. It
1s a sequential circuit with two pulse inputs, A and B, and
a single level output z. Following a pulse on line B, the
output z is to be 1 provided there has been an even number
of pulses on line A since the previous pulse on line B.
Otherwise, a B pulse will reset the output to 0. The output
will not change except on the arrival of a B pulse. The
intent of the example is to determine whether the circuit
presented is or is not the best design, and in turn to
demonstrate the usefulness of a level mode simulator like
EVESIM.

The element delay parameters used for the first run
are in Table 4. The circuit diagram is contained in Fig.
20. Under the conditions of Table 4, the circuit functions
as it should and the output of the simulator, Fig. 21,
verifies that it does function correctly. However, the
circuit does not function correctly if the pulse on line B
is made wider and gate number 4 is made faster. This situa-
tion causes flip-flop 2 to change value very fast; thus,
the inputs to flip-flop 1 will be unstable while the clock
pulse to flip-flop 1 is still high. The parameters for
gate 4 are changed to t = 10 nanoseconds and tPHL =5

PLH

nanoseconds and pulse B is widened to 45 nanoseconds. With

ing s

R —

B 1002 i

v

3 1001

Fiqg.

RESET 3
CLock 2
K 'ﬁr——w

) — 3
cLock 1

i

20. Odd-even detector circuit no.

5.

70

Table 4. 0Odd-even detector circuit parameters.

3.

5 nanoseconds

Greatest Common Divisor = At

Flip-Flop Data
a. Clocked input data

tPLH = 25 nanoseconds n = 25 * 5 = 5 Simulation
Times

t = 40 nanoseconds n = 40 : 5 = 8 Simulation

PHL s
Times

Minimum allowed clock pulse width = 20 nanoseconds
NPCWID = 20 + 5 = 4 Simulation Times

b. Reset Input Data

t = 15 nanoseconds n = 15 + 5 = 3 Simulation
PLH .
Times
t = 25 nanoseconds n = 25 * 5 = 5 Simulation
PHL 7
Times

Minimum allowed reset pulse width = 25 nanoseconds
NPPWID = 25 + 5 = 5 Simulation Times

Inverter Data

tPLH = 15 nanoseconds n = 15 ¢+ 5 = 3 Simulation
Times
& = 10 nanoseconds n = 10 * 5 = 2 Simulation

el Times

7).

5

CIRCUIT NUMBER

TIME

ELEMENT NUMBER

TIME

1002

1001

O NMIFOnON~o®oO
—

QOO0 O00O0OVOOO0OO0O0O0OO0O0OVOOOVADO0OVTLCODLOLOO

— e

- Nm
—t

TN O~ O
— e e N

— o~

o OO0O00DO0OO0OO0O0OCOQOO

e I B e e e B B R B I B]

CO0O0O0O0O0OO0OQO0OO0ODDODOO

L e B B B e B e B R e B

-t

—om
o~

T NHOND
oo

CO-mNMT
ammm ™

C Moo o o
™ ™ LN 4 =

45

- ™
-~ ¥ T

38

D
™™

L B B
OCO0OO0OO0O0O0ODOO0OO

00000000 DO0OO0OO0O0OO0OVDO0OO0OO0OLOOOO

TrtAAAAAAAAAA A AA A A A A A AN A A A A A A A A A

e I B I I e |

[«XeNeNo)

it

(= NeRaNeRe oo ol Nollelo]

e B R R I R e e B I]

OO0 O0ODOO0OO0O0OO

[eleR oo Re e Re)

e e B B B

(= NeNeNeNoNeNeNoNoNsNeNalleReNe Neo N lo Yo o NN Ne e N e e oo e e Né e e ol e Jo e Lo

OCHNMIEIH O~ DVDTO
-

TN O~ BTO <
Laa B AN B W RN 4

- ™M o~
M Mmoo g

a4

—
-

Cireuit 5 run 1,

21-

Fig.

72
these changes, which are not unreasonable, the circuit no
longer functions correctly as indicated in Fig. 22.

Demonstration of an Up-Down
Gray Code Counter

The final circuit to be demonstrated is an up-down
self-correcting gray code counter. The circuit has three
input signals, a control signal X, a control signal K, and
a clock input. When X = 1, the counter counts up, and when
X = 0, the counter counts down. The K input controls when
the counter shall be allowed to count. K = 0 does not allow
counting, and K = 1 allows counting to occur. A circuit
diagram of the counter is presented in Fig. 23. Typical
values for delays were assigned as indicated in Table 5.

Two runs were made. The first indicates proper functioning
and the second demonstrates a fatal user error.

Figure 24 contains the results of the simulation of
the counter as it performs all its required functions. The
circuit was driven with a clock pulse equal to approximately
8 mHz with a pulse duration of 36 nsec. Attempts to drive
the circuit with a faster clock failed, thus indicating that
this circuit's maximum cournting frequency would be about
8.0 mHz. Assuming worst case delays and adding along the
longest propagation paths, Gate 10 (22 nsecs) + Gate 11
(40 nsecs) + Gate 7 (22 nsecs) + Gate 8 (22 nsecs) + Gate 12

(25 nsecs)= 131 nsecs. This would result in a predicted

73

s O N DO DO ~NM TN PO PO A AN UMD AN T ONTOTO~NMy D
= At A A A NN AN N ANNNNANM@O OO OMM M e T T T T
-
b
|
N e Rl I N I e R] ,
o g
[l Re e oo NeoNe e e lo oo Nole e follolle e NoNoNe oo oo Nele e Nole] ODO0OO0OO0O0O0 |
-
.
o
- — - -
o o
»* - Loo) ~
-
=+
* wn
»*
» o » M [fa) FArA A A A A A A A A A A A A A A A A A A e —)
» <
* — L) O0O0OODO0OO0OOCCO -~
* Z @ =
- w x @]
» » = " 2 o
* W z
o #] o -
w #+ w - M ™ e i e B B B R e R I — e c
@ o e
i I = w QOO0 O0DODO0O0OQO0ODO0OO0OODOO OO0 D00 O0OO0COOO
3 O 9 2 =
zZ <« < z H .
n
- n - W o
—t w — N
= = M = Lo A B B I e B B I B B R B SR B L e i B B B B e I e]
(8] (e}
wM. o w it < O00O00O0OOTCODO0OO0OO coQ0O0Oo0C0VOO 2
et o = — N q
') @ — 4 -
o« 8
w
-
- o~ o=
* X X o W
+ ODO0ONDO0OVOOOVOCOOVITIDOODO0OO0OUCIOOIDLOLLODOOOCODOOODOVLODOODOLO DO
-
=
- "
-
“ m %) OANMINn O™~ DO AN TAOLCN: DT OANMITAILUNDIOOANMI NSNS VDO0OC ~VvmMm I
» P x A A A A A A AN NNNN NN AN MMO MmO MMM MMy T TS ST
- x b d
») b=

74

*I193Uunod 2pod Aeab burjzoeaaod-jIos umop-dn

NS
T zT z00T

)
Py O <
.
®
|
3

‘gz *bta

75

Table 5. Up~-down gray code counter circuit parameters,

Gate n(tPLH) n(tPHL)
JK Flip-flop 3 (18 NSEC) 5 (36 NSEC)
NAND 2 (12 NSEC) 1 (6 NSEC)
XOR 3 (18 NSEC) 2 (12 NSEC)
Greatest Common Divisor = 6.

FU—

76

|
O NMINONMNDITO~NNMNMITO O~ [+ M) N M O NOCO~NNM nwnohMhomoo o M n o~ o 3
e e I I I I I N o~ o NMm ™ e ™ LI BN R S - T

TIME
49

— e e~ e e e e

-
o
oo OO0 O0CO0OO0COoOOODOOODO0OD OO QOO0 ITDO0OO0OVDOLUOCOUOOU <
-

10

—

COO0COTCQOQUOO0CO00VOD0UVULO0OO0O0VOCUOOOOULLOVVOVDO0OVLVTLOOOOOC

w - ot — e

[« NeRe) OO0V O0O0O00DO0OQOO0OCVLOOO [eReReols e Roee ol Relle e e Nl

E 2 L e e B B B B e B B B e B B B e B B e B B B B I I R I e B B R e I)

OO0 O0OO0ODDODO0OO OO

Circuit 4 run L,

™ Ll R e R R R B N e R R I e B R B R R I R I R R e R R I I I]
QOO0 O0ODVOO0O0O0O0O

ELEMENT NUMBER

24,

o~

Fig,

Q0000 VDODOO0OOO0OODOD0O0O0DO0DO00O000O0OD0NDNOVO0O0DO0O0O0ONDOOO0ODOODOOD

CIRCUIT NUMBER =

- D e i B B B B R I B e e B I B N

QOO0 O0O0O0OO0O0O0O0V0OODO0VDVDDLVLOO0ODOVDDODODODOODOIO

QAHANMINIOINDTOANMIONONMNODT O
L B R e I T B B B IV

OO O ~ >
[N

M+ DNON~DO
PN MmO mo,

G

aNM o f~
T T S g

49

e

- N o - o
NN NN N - <

4

w
=
-
-

77

e e B I — e

QOO DDO0O0O0OQOODODOUO QOO0 LLOOLVLOODOCOCO COOVUOO0OO0ODO0OO0OOO

— —

20000V OOODODOOVLODVDOO OO0V LOIDODVOVLOOOIVOOOODOOOCOQOC

— - A

[s¥eNeNalle oo No el Ne e oo Ro o) CO00O0OO00VODD0O0VOOO0OO coO0O000O0O00

11111111111111111111111111111‘Lll.ll‘,.lllllllllllll!ll

11‘1111111111111111111111111lllllﬂkllllllllllllll

[=ReleR=]

1111111\5111111111111111lllll\l"ll1-111111111111111

oo oo

e R e e e e R R e e R e e e B e B B B B B

ODOO0OVOOOOODULOOULOOOODOO0OOODOO

=~ . - 3 ” —— . e
ﬂ) i — . .

24,--Continued Circuit 4 run 1,

Fig.

78

AN NI DPO AN TNDONDCOANMIODONDOCO VMY NOMNTPO NN TITONONDOO ~
COCO0OO000DO0O A A A A AANNNNNNNANNNMNEMMOEEOMMI T IS IITIIIsan
L e B B e e B e I B e B I I e B B R e R B T R I B B R B B B B B I B R B B e B B N i I e]
e -~ — N - e
[=ReeRNoRe) [«¥NeloNe ol NolNalloNeels e M) CLOUOVOLCODODDOOOOQCOO

OO0 O0O0O0O0OO0O0VOVOILTCOO0CLOOV0O0ODO0ODOVVO0OO0OO0OV0DUO0VDVOULOLUOVOODOULYDDTLCLVOO

e~ —t et et -t -

OO O0OO0OO OO0 OCOO0OO0OO0OO0OO0O0QLOTCOO0OQOO DO0OO0OQ0O0OO0OOO0O0DO0LOO WO

L R e B B B B B B B B B B e B B B

00000000000V OCDOCOVDOOTLCDODDODOVDCOOOOLODOO

Dl i R A e I e B e I e I B B}

O00O00VO0O00O000DO0VDO0OO0O0 20000000000 DODO0OO0O0OO OO

e B B B e R B B B I I B B B B I e B B I B e B B B R e I B e e B I e I e B e B B B e B Bl B]

NDNOO0OO0O0O0DO0O0O0CONO0OO00COO0O0DODO0DO0CO0OO00O0ODODOULODOOCGTHTODVODOOLODOLDO D

13¢

139
140
14
142
142
144
14¢
l46
147
14E€
149
1250
15]

t 4 run 1,

ircui

24,--Continued C

Fig.

152
133
154
155
156
157

1 &
B

159
160
l6l
162
163
164
169
loé
167
166
169
170
171
172
173
174
175
176
rTe
17¢
179
180
181
182
183
laé
189
186
197
188
189
190
191
192
193
194
145
196
197
198
199
200
201
202

cooococC

Ll e e e e e e N S e e e e e e e N o ol el e)

Fig.

1 1 (0] 2 0
1 1 0 1 0
1 1 0 1 0
X 1 0 0 0
1 2 0 0 (o]
1 i 0 0 C
1 1 7} 0 0
1 1 Q (¥} 0
1 1 0 0 (0]
1 1 0 0 L
L 1 0 0 0
1 1 0 0 0
1 1l 0 0 (0]
3! 3] 0 0 G
1) 0 0 0
1 1 0 Q (¢
1 1 0 0 0
1 1 (o} (0] c
1 1 0 0 (4
1 1 0 1 0
1 1 0 1 0
1 1 0 1
1 X 0 1
1 1] 1
1 1 0 0
1 1 (0] 0 0
1 N g 0 0
1 1 0 0 6]
1 1 0 0 6]
1 1 0 0 o]
0 1 0 0 0
0 1 0 0 (0]
(¢] 1 0 0 0
0 1 0 0 ¢}
(o] 1 0 0 [¢]
] 1 o 0 (o]
0 1 0 0 0
0 1 0 0 0
] 1 0 0 0
0 1 o] 0 0
0 1 Y] 1 0
0 1 Y] 1 0
0 1 0 1
0 1 0 1
] 1 0 1
o] 1 0 0
o 1 0 0 0
0 1 (/] 0 0
0 & 0 0 (|
0 1 0 0 (¢
0 1 0 4] 0

24 ,--Continued Circuit 4

OCODO0OO0CO0COOODOOO0OD

(U -

QOO0OO0O0CO0O0OOCOCOO0OO0ODOOCO

o

o000 OO0O

run 1.

Y g b s et P

— . et s e

152
153
194
155
156
197
158
159
160
l61
162
163
164
165

lo7
168
169
170
17}
172
173
174
175
176
127
178
176
160
161
182
183
164

191
192
193
19¢
1995
196
197
198
199
200
201
202

80

NIV ODCOANANNTVNONVPOANMNMIANDNDTONANMINON DD ™M IO INDOPO~m
CQOOO0O0VOHMTMA AN A ANNNNNNMNNNLG MO MA™MmE Wy 28 33 33T gD D
NN NN N N DN N DU N N O N NN Ty e e L e ey NG N NP N I N TGy
— . ~—

QOO0 O0O COOVUOoOCOoOO0OVIVUOC O Sovooacoovoocococooo0o =

—

c

e |

QOO0QUVUO00VO0O0VVDVO0LVOOOLQUODLVOUOUOODwOLD UL CCO2XCOO00000CO00C0OO0 H

Lt

+

e R R e T “...-u.

Qoooococoo CoocoCoOovooOLoOO0COOLDO COoOO0COoOO0OCoODCLCOUDYOO0OOQ (6]

M

~rd

O

OO0 0O0OO00O0O0O00O0O0O0COOOOCOLOOOO0OODOLDODOOOCOCI0NDONUCOODOODOO ko]

0

3

=

i R R e e e R R e e e B B B B I e e I B e B I I B I I e B B i T T T e B I H“

c

O

O

]

A ot ot oy oA d et et —o

0000000000000 000O0O0DO0VODIVCOONTOOOIODOODDC D “

-

o

e B R R T B B B T B Bt I e d

£

OO00O0O0VOODOO0OODODOLOOLO

O PTOONNDCOATNNTNILINLTOAMANN TN LT DI O MNMIONDIN LT O™ PO O LD ym
OCOOQO00O0QO MM A A At~ NNNNNNUNNNN IO O M MO NE™ S Py Iy rrssanadan
NN N NN NN N OO N NN NN 0N NN By A T BN R N L T Ly T e e N e O N N

i P

s Gl il e S e e

81
~
254 1 1 1 - 1 v ! .
: l x l b3 s
96 1 \ i %6
%7 1) 1 ' y
58 1 1 i 29
299 1 1 1 9
60U 1 i i ‘
del 1 i 1 0 ni
iel i i
2% \ \
(b i o8
ht i
! 1 a?
¢4 i
1l
p 14
's
7
' |
e .
a“n 3 .
‘Al | ar
cHR) L /e
FL L J) o J
‘) v
|
291) (4
l ‘r": v
291) i) “
T 0) o 5 1 L
499 i { 9
296 v 1) 1 : 296
97 { i) 1 (97
JY8 { 1) 2un
299 1 l ! "
10 0] 0) ¢ C 100
101 0 i 0 0 0 C 301
3V« 1 0 0 0 ((302
103) 1 0)) { 103
104 0 | 0 1 0 0 { 104

Fig, 24,--Continued Circuit 4 run 1,

[= R ==

SO0Ooo0ooO0oQ0OOCOoOO

— -

oO0oocoo0cO0OO0OCOQOoOO0O

—— - -

cocooo

- -

coooo

30%

306
o7
308

309

e e e e i

o000 0CoOoO0OO0COQOO

e e

(-2 R+ R ER s RS R

v
ET R
31
3l
s
3ls
Jle
sl
3is
e

Lt

=

-

o

.

oSoooo

—

325

»

CcCoocuooo

L =

<

L L%

(R])

0

D00

200 o090

O

roo0oougoooco

Yoo oooco

“900CO

- ——

- - —

.- - - ., -,
- - . -
- o -ty " & e
S & e " NAS
L T

24 ,-=Continued Circuit 4 run 1,

Fig.

A

83

356
357
358
359
360
3pl
262
3613
364
365
36
107
EYL.
169
370
371
ane
373
274

o QOOCOUOLODOCOC I

~ e

QOO0 OU (= RR T RSN N IS)

—~ A et

(ellaje) OO0ODCUCOO0O0OO0OVCOO

e i R B B B B R B B R I B R I

Ll B e R I I B e i B B AR)

B i R e e B e R e I

Cocooo

i e e B e B e T B e I

EN DDA NP NUOUSNTLPOmNMS
A ADDNOOC OO0 LoD
MO M@ AN AT T A

e e

QUooocoow covovoooooo

R I

OOo0o0oo0oO CO0O0O0O0OO0ODOCOOC

R e T I B I I R R

D e T T T T T B B S |

o000 OCOoOOOO0OCODOCODODOONOONNO O

e e i T i T e

oO0ooQO000O

DNONN DO O PO O DOOCOmmEND
AR ANNND OO DO TONDOE T
i R Rl e e R L L L

CUDDOOVOLILODOOLDOO

— ot ek

oo

vYooococoocooo

— ot ed d ey

SCooo o

e et ot ol A

i I I]

CoOO0O00D0O0CO0O00

Sooooo0o0Q0O0O0O

AT PO VMmN D
o200 0O0000
SR I A R O

24 ,--Continued Circuit 4 run 1,

Fig.

= PP SO S

84

NOOCOANMINVNONDOCD AN TN OO
OO0 MMM rHr AN NNN N NN N O N
T T T T I T T IITITIITIITITITIIITIITSTSITST

~N

0000000000000 [ReleRe]

0000000000000 OLOODOOLO

R I N

0000000000000 O [=N= =]

— - ™

0000000000000 ODOODOO0

L e B e B e B e B e R I I R B B B B R I B B

0000000000000V OOCO0ODODDOOO

OO0V O0000O0D0DO0OVDO0ODO0OVDO0OIDD

OO NMNMITNO~N DD~ MIETNHNO~S DO
QO O ittt v ol AL N DL
TIIT TIIIT IITIITITIT I I I IS T 35392

Qe M TN OMNDOCO~ANDMTIANINDOD
MO OMOMEMOOMONMIIIIIIITITN
T T I T T T T T I I T I T T I I3 939

OO0O00O00OVOTCOVO0OVOOOOOCOO

DVO0OO0O0OOLO0O0OOODOO0OOVODOOLOCUO

D000 O000OO0O0OOOCOOOO O

CO0O0O0O0OO0O00CO0OO0OOLOOOOOOO

e e e i B B R B e e I I I B i B B]

000000000000 O0OODDO0DOOOCOO

P e e e T T T B e I I I
O UMITFANLHTDOO= MmN ILN~ BT O
MEOAMOOMEOMNMET NS IITIITIITI TN
T I ITI T I I T T I I T ITI 2T 33 32

24,~-Continued Circuit 4 run 1,

Fig.

e

clock frequency of 7.6 mHz. Certainly, the simulation is

valid.

Figure 25 is provided in order to point out what

- happens when the user makes an input control error. Notice
that the user has requested output for element number 35.
Referring back to Fig. 23, it can be seen that no such

element existed.

CIRCUIT NUMBER = 4

FREk kbR Rk bR RERROR MESSAGESk#kddkhdkkkhkkxk

ERROR = 2CH5 THIS IS A FATAL ERROR
LIST OF REQUESTED ELEMENT OUTPUTS
1 2 3 4 5 35 1001 -0 -0 -0 -0)

Fig, 25, Circuit 4 run 2.

T TR Ty ———

CHAPTER 7

USER'S GUIDE TO EVESIM

This chapter describes the use of EVESIM as it
exists at The University of Arizona. It outlines the
control cards required and the input data format. Also
included is a detailed list of the existing error messages
and their interpretation. The last two sections of the
chapter are dedicated to explaining the debug capabilities
of the program and explaining how a user would write his

two element models.

General Input Data

There are two phases to the process of using
EVESIM. The circuit to be simulated must be prepared for
the simulation and the required data must be punched on
cards. Though the circuit preparation requirements have
been discussed throughout the previous chapters, it is

repeated for user clarity.

Circuit Preparation
EVESIM must be provided with a description of the
actual circuit to be simulated. The information is taken

from the circuit diagram. This requires that each element

86

s,

87
have a unique number for identification. The numbering is
begun at 1 and continues sequentially through n elements.

An EVESIM user must then refer to a manufacturer's
logic data book and determine the values for tPLH and tPHL
for all the elements in the circuit. From this information
the user should determine a value for At which by definition
is the greatest common divisor of the element delays. All
element delay times are then determined by B = De 2AE

where De is the element delays tPLH or tPHL as appropriate.

As an example, consider two types of elements with delays

10 nsec, t = 6 nsec, t = 12 nsec, and

tpLH1 PHL1 PLH2

tPHL2

8 nsec. The greatest common divisor (At) is 2 nsec.

The values for n are then computed:

i

10 + 2 =5 n =6 + 2 =3

= 1HL

1LH

12 + 2 = & n =8+ 2 =4

= 2HL

2LH

One simulation time is now equivalent to 2 nsec and all
delay parameters have been defined in terms of simulation
times. It should be noted that all timing information now
required as input data shall be in this same format,

adjusted by At.

Card Input Format
The data cards are presented and discussed in the

sequence that they should appear for a proper program

execution. The normal system control cards required are:

—

“AD=A052 613 ARIZONA UNIV TUCSON DEPT OF ELECTRICAL ENGINEERING F/6 9/2
3 SIMULATION OF DIGITAL CIRCUITS.(U)
1976 D M MOEN

UNCLASSIFIED

AD
ADB2613

NL

END
DATE
FILMED

—/8

T,

wn

88
JOB CARD, CM70000

ATTACH (SIM, ID = MOEN)

SIM

7/8/9
The circuit data cards follow the system control

cards. Unless otherwise noted, all numbers are right
justified integers in 5 column fields.

Card 1: Title Card. The first 10 columns are used for
the month, day, and year; for example, Marl0,1975.
The circuit number is right justified to column 20.
The total number of simulation times to be executed
is right justified to column 25 and the debug mode
indicator is right justified to column 30. The use
of debug is discussed later.

Card 2: Circuit Parameters. NGATE is the total number
of elements in the circuit (col. 1-5). NEXIN is the
total number of external inputs to the circuit (col.
6-10) .

Card 3: Element Description. Each circuit element
description is contained on a single card. That is,
each element in the circuit will have a card with
the following format:

Element circuit number (col. 1-5).
Element type (col. 7-10). The element type must be
one of the following: JKM1l, NAN2, NAN3, NAN4,

NAN8, NOR2, INVE, XOR2, OR2, or AND. All

Bt el L o o e L o

89
flip-flops are to be listed first. Then all
other memory devices followed by the combina-
tional logic elements.

Element input connections to this element. They are
listed in 5-column fields beginning with columns
16-20 up to column 45 and then beginning with
columns 56-60 up to column 75. The maximum

number of inputs is 10. External input X is

designated by 1000 + X. A constant logical 1 is
indicated by 1000. A constant logical 0 is
indicated by -1000. The second output of an
element Y, for example Q0 of a flip-flop, is
indicated by 2000 + Y. The third output would
be indicated by 3000 + Y, etc.

Element delay information appears as indicated below
(right justified):

clocked or normal t (col. 47-48)

PLH

clocked or normal tPHL (col. 49-50)

preset, clear or second t (col. 51-52) 3

PLH
(col. 53-54)

:

[preset, clear or second tPHL
i Card 4: Memory Element Information.
} LFF is the total number of flip-flops (col. 1-5)
LOM is the total number of other memory type

E

elements (col. 6-10)

| NCLWID is the €firest =minimum clock pulse width

(col. 11~-15)

; u-nu—n-—-nu---m----—--—-nunnu-n-nrwn1!

90
NPCWID is the first minimum preset or clear pulse
width (col. 16-20)
NCLW2 is the second clock pulse width (col. 21-25)
NPCW2 is the second minimum preset or clear pulse
width (col. 25-30)

Card 5: Initial value of the Q output of all flip-flops,
listed in order as they appear above, beginning with
column one. Every column is used. A 0 represents
logical 0. A 1 represents logical 1. A 2 repre-
sents an unknown condition.

Card 6: Same as card 5 except for all other memory
devices, if any, otherwise skip this card. 3

Card 7: Initial value of external inputs listed in 1
order, beginning with the clock (100l1). Again,
each column should have a 0, 1, or 2.

Card 8: 1Initialization parameters LIMIT is the limit of
the number of attempts that will be made to

initialize. LOVER is set to 1 if the user desires

to override LIMIT, otherwise LOVER is left blank.

Card 9: External Input Changes.
IETIME is the simulation time that the indicated

external inputs are to change value (col. 1-5)

INUV(15,2) is the number (1000 + K) of the external

input that is to change and the value (0, 1, or

2) to which it is to change. The number appears

in 5-column fields beginning in columns 7-11,

91
{ the first four (7-10) columns contain the
external input number and the fifth column (11)

contains the new value of the output. This can

be repeated fifteen times per card; however,
only events for the time indicated in the first

five columns can be on a card.

Following the circuit data cards, a 7/8/9 card is
used to separate the output requirements card, card number
l0.

Card 10: Element Outputs to be Plotted. The numbers of
the elements to be plotted appear in 5-column fields
beginning in columns 6-10. Twelve numbers are

allowed per card.

The final card is a system control card. It is a

6/7/8/9 card.

Error Messages

The error messages can occur as either fatal or non-
fatal. Fatal errors are indicated by numbers greater than

199. Non-fatal errors are less than 199.

Fatal Errors

I Fatal errors cause execution to stop in all cases
except error 203 which has an override condition. Normally,
the fatal errors are programming errors. The present fatal

error messages are as follows:

92

Error 200: The user has asked for an element model that
does not exist.

Error 201: The user has specified an element that has a
fanout greater than 10.

Error 202: A memory type element is out of sequence as
required by data card 3.

Error 203: EVESIM was unable to initialize the circuit.
Increase LIMIT and/or set LOVER equal to 1 on data
card 8.

Error 204: Array LIST(I) is full and an attempt was
made to schedule another event. The user has
reached the limit of EVESIM. The array LIST(I) must
be increased in size.

Error 205: The user requested the output of an element

that could not be found in the output file.

Non-Fatal Errors

Non-fatal errors are errors that occur during the

course of a simulation of a circuit caused by generation of
illegal conditions within the circuit. These error messages
are intended to aid the user in identifying flaws in the

circuit design or implementation of a design. The existing

error messages are as follows:

Error 1: The input pulse to the clock input of a flip-

flop is too narrow.

N T P i R Py v

93
Error 2: The J and/or K inputs to the JK master-slave
flip-flop are not stable while the clock is high.

Error 3: The preset and clear inputs to a JK master-

slave flip-flop are changing to a high value at the

same time.

W e e———

Error 4: The input pulse to the clear input of a flip-
flop is too narrow.
Error 5: The input pulse to the preset input of a flip-

flop is too narrow.

Error 6: The preset and clear inputs to a flip-flop are
changing at the same time before either a preset or
clear input was able to cause a change on the output
of the flip-flop. a

Error 7: The J and K inputs to a JK flip-flop have the
same value. The present state of the flip-flop is
unknown; therefore, a new output cannot be deter-

mined.

Debug
During the course of the development of EVESIM, a

debug ability was integrated into the program. Originally,

the intent for its use was only for development purposes and

was later to be removed from the program. However, it has

been left ir the progream 2 &n 2id to continued maintenance

of the program.

94

Debug basically consists of three options. The
first is to leave column 30 blank on data card 1. This
effectively provides no debug information. A 1 in column 30
will execute all portions of debug. If DEBUG is set equal
to 2, array IDESOU(I,J) is not printed. All other debug
information is printed. If DEBUG equals 3, array LCOUNT (I)
is printed.

Figure 26 is an example output for DEBUG equal to 1.
The first four lines is the array IDESCR(I,J) as defined in
Chapter 3. The next 10 lines is the array IDESOU(I,J) also
defined in Chapter 3. The clock fanout is listed next. The
remaining information is self-explanatory.

Array LCOUNT(I) is used as a bookkeeper. It is used
to count the number of times a particular subroutine is
called during a simulation execution. Table 6 defines.

LCOUNT (I).

Adding Element Models

Table 6 indicates that there are more element models
available for use than were previously mentioned. These
include a D flip-flop (DETl), a 4-bit counter (COUN), a 4-
bit parallel-in-parallel-out shift register (SHRE), a 4-bit
adder (ADD4), and a BCD-to-decimal decoder (DECO). In
addition, an unused name for a combinational logic gate has
been provided called UNS. At this time, these models have

not been included in EVESIM. However, the overhead required

95

Ad0) TIEVIVAY 1538

*andano bngsg ‘9z °*b1dg

L L] o 0 o ° ° [} o o ° ° €201 1 0 0= ° o= s201 % 1M1
2201 = 1SI7 31 40 4OL < e AN 3INIL
Y e T00! = NO O2¥¥0% ON138 IN2K313
[} ® ¥3073 TYNEILINT 40 HLIONIIET * NOTL¥3ISNI 40 3WIL vy L] e MCIL¥ISNI 40 2WIL %3072 TNx3INI
€ o [} o o Q] ¢ e o [} ° 0 o= 0 0= 0 - s201 1 !
€201 = 1SI7 3ML 40 ¢C1 s . PON 3WIL
€ e 1001 = NO C3Y¥OA On138 IN3W3T3
(] e %2072 TYNEIINI 40 N19N3TOT e NOILWISNI 40 3IWIL vy 1 e NOIL®ISNI 40 3INIL NIQTI IvAE3INT
MOIN W108 3¥Y ¥¥31) ONY 13S3¥d ONY AQ1 CL WOIN WO¥4 GIINVHI SYH ¥J01) 3WL 1 e QIONYHI ¥301) 3IWIL LSV (1 = 3411
1 =M 1 =M 1 = 241 ¥ = 1Y
1 - 2N [= 10 3 1V C3NIY3 S7m lewf
(] w IWIL SIML ¥C4 CIINCIHIS SINIKITI 40 E2ENN
. s PON 3WIL
o e IWI1 STHL 303 G310GIHIS SIN3NITY 2C ¥3%a0N
3 e RIN 3TL
(] e JWIL SIML ¥C4 Q31NC.MIS SIN3W3TY 4C wiTHON
4 = RON ERIL
(] = IWIL SIHL ¥4 G31703K1S SINIW3TI 4C E2S&0N
1 s PIN JWIL
*0= o0~ - - - €0- 0= ¢0- e0- 01001
* QEY) NC SY INTVA ONY ¥3EWNN LACNT $ « 3K C¥V) AN3AD
1 = 2M 1 = M T = 241 1 = 11
[} - N 1 - I 1 1y G311v) Svs TwNF
0 a JWIL SIML ¥G2 037NQ3%IS SINIW3T3 3T ¥ISKAN
0= 0= o0~ 0= .0~ . e0- ¢0- 0= 11001
= CUY) NC SV INTVYA ONY ¥3IEWNN LNdNI t = 3WT1 Jev) IN3AZ
0 0 0 0 0 0 [°] e
0 0 [[6 [(] [} (4 0
0 0 0 0 0 0 0 °) ¢
o o] 0 0 [} o 0 (J e
(] 0 o 0 0 0 0 [} o z 1N0 NY4 %201)
o o 0] (] 0 [} [} L] 1] [}] 0 4 L] 2cot et
o 0 0 (] [} L} 0 [} (] (] 0 0 (] [[} 0 19t &
o (] o [} o -] o -} 0] o] T T e c 0001 L]
0 0 [} o 0 0 o 0 0 0o o o o ° ° o 0001~ L
[} o o 0] 0 0 0 0 4) o 1 T o v L] 9
0 0o 0 o o o (] (] 2 1 Q o 0] 0 L] 13 <
[} o) [} o o) € 2 T 0 o 1 1 0 1t 2 L]
0 0 (] [} 0 (] L] 0 0] 0 o] 0 c 181 2 £
)] (] 0] o 0])] o ¢ 1 1 e 1 1 b4
o o o o o] o o] o o o] L] 0 1t 1 T
[0= 0= o= o= o- 0= 0~ 0= 0= 2001 O- o= 0- 2 1 4 9 ./ IAND Y
0 0~ 0= 0= o= 0= 0- o~ 0- 0=~ 2002 0~ 0= 0- 2 € s L] IAND €
o 0= 0- 0= 0~ 0= > Q00T 1001 € 2002 O~ $, 1 e < € 184 Tyt 2
o 0= 0- 0= 0= 0= 0201 0001 2001 € 2002 0= 0= 0-] s 1 n wyr 1

sevescensee$3IIVSSIN WCEYY

§ = YIEWON LINDNID

1
|
96 3
Table 6. Definition of LCOUNT (I).
v‘ e o
| I Subroutine
1 Output
2 FUNSIM
3 JKM1
4 DET1
5 COUN a
6 SHRE
7 MOD1
8 SCHED]
9 UNSCHE
10 COMLOG
1) NAN2
12 NAN3
13 NAN4
14 NANS
115 NOR2 :
16 INVE]
17 XOR2
18 OR2
19 AND
20 UNS
21 ADD4
22 DECO
23 IODEST
24 ERROR
25 READIN
26 INCOND
27 INITIAL

28 PLOT1

97
has been programmed into EVESIM to include these models.
This has been done in order to facilitate the addition of
these models.

The user of the program is reminded that the model
is required to calculate when an event shall occur. The
actual scheduling of the event is accomplished through the
use of subroutine SCHED. Certain information must be
available to the model. This information is passed via
common Blocks. The required common Blocks are listed in
Table 7.

The values of IOD1-IOD12 have been established by
subroutine IODEST. IODl is the pointer to IDESOU(I,J) of
the element being processed. IOD2-I0OD12 are the pointers to
IDESOU(I,J), which are the input elements to IODl, listed in
order. The value of the input is found by IDESOU(IODn, Jo05).
The new outputs are calculated and the times of change are
calculated. The times of change are placed in IDESOU(IODln,
J06) and the new values are placed in IDESOUT(IODln, J07)
and NOUT(N). Subroutine SCHED is called to schedule the
events in the future.

In order to add more models than are listed in Table
6, additional changes must be made. The size of LTYAL(16)
and LTNOU(16) must be increased to reflect the total number
of models. In conjunction with this Block Data subroutine
DES must be changed. LTYAL(n) must contain the new element

name and LTNOU(n) must cort=in the number of outputs of the

PPVCRRE S

98

Table 7. Common blocks required by subroutine models.

COMMON/ELEM/LECH, IETIME

COMMON /INCL/ICL(100,2), LIST(1024), LSP, LENCL, INUV(15,2)
COMMON/MACH/IND, INI

COMMON /DESCRP/IDESCR (100,19), IDESOU(350,17), JI1, JI2, JI3,
314, 315, JT6; J0F. JI8.. gro. Frie. Frii,. Jri2, JT13, J1l4,
J¥15, JIl6, JIl7, JTIB, JE¥l9, JOl, J62, 303, JO4, JOS5, J06,
J07, J08, a9, Jale, JO11, J0R2, J013, 014, JO1S5, J01s,
J017, LISTCL(50)

COMMON/WORK/IOD1, IOD2, IOD3, IOD4, IOD5, IOD6, IOD7, IODS,
10D9, IOD10, IOD1l, IOD12, II, NOUT(10), NGATE, IEX, LFF,
LOM, LTYAL(16), LTNOU(16), NAVL, IODL, NOW, NSCTI, LERROR,
NEXIN, LFATAL

COMMON/VALE/LOW, LHIGH, LUNK, IFAN, LIMIT, LOVER
COMMON/DEBUG/ LBU, LCOUNT (40)

COMMON/WID/NCLWID, NPLWID, NCLW2, NPCW2

99
new element. NAVL must also be adjusted to reflect the

E Y total number of models available. With these changes,

additional models can be added as explained above.

B

CHAPTER 8

CONCLUSIONS AND RECOMMENDATIONS

EVESIM has been found to be an effective program for
analyzing a digital logic circuit. EVESIM provides a means
for the designer to quickly verify his logic circuit designs.
EVESIM also gives the designer a tool with which his design
can be optimized and quickly re-verified. The time con-~
suming task and manually tedious operation of design verifi-
cation of logic circuits has been reduced to a computer

program.

Conclusions

The original objectives as stated in Chapter 1 have
been accomplished. EVESIM is a level mode simulator that
uses element level models. The efficiency gained in using
a time-driven event simulator have allowed the original
objectives to be expanded to include the use of three valued
logic and the individual assignment of delays depicting
whether an element output is rising or falling. In addi-
tion, the use of an iterative process during initialization
has allowed a limited capability for circuit stability
analysis.

The three valued logic is used to identify illegal
conditions or unknown conditions generated in a circuit.

100

101
This information is used by the designer to improve his
design or identify flaws to be corrected in his design. The
three valued logic is also used during the initialization
process. The initialization of the circuit can then be
accomplished within the program without any requirements for
ordering of the elements of the circuit.

The assignment of delays relative to whether a
signal is rising or falling presents a much improved model
over other techniques. The modeling accuracy gained is in
keeping with the growing need for more accurate timing in-
formation as the speed of logic increases. This technique
also insures that EVESIM will not grow old and useless as
logic families change.

\ Iterations are made through the circuit during
initialization until all unknown conditions are cleared and
no éﬁement outputs are still toggling, or until the preset
leve) of attempts to initialize is reached. If increasing
the number of iterations does not result in the elimination
of eléments toggling, then those elements toggling are
flagg;d as being part of an unstable condition. Certainly,
this may be part of the design, and therefore EVESIM has an
overriqe capability. However, at a minimum, the user is
made aware of the situation such that he can make a decision

|

\EVESIM has aisc proviced the user with an improved

ability ‘to identify errore ‘n his circuit through the use of
\

102
error messages. In conjunction with this, debugging in-
formation is available when it is needed.

It is hoped that most programming errors have been
eliminated from EVESIM. However, it is a rule of program-
ming that the elimination of one error is going to cause
another error some other place in the program. It is time
that EVESIM move from a development phase to a phase of wide
usage. It is during this phase of wide usage that those
hidden programming errors will be identified. It is hoped
that EVESIM will continue to grow and be expanded to include

the recommendations of the next section.

Recommendations

The process of developing a program is never ending.
If time were not a factor, the author could continue forever
adding to and improving the program. Areas of recommended
improvement for EVESIM are discussed here in hope that
someone may be able to include them in a future version.

Assignment of delay values can be partially auto-
mated. Certainly, it would be more realistic to assign
delays automatically by a random number generator process.
The limits of the random number generator could easily be
the minimum and maximum values of delays as depicted in a
data book. This would relieve the burden to the user of
assignment of "typical" delay values. In conjunction with

this process, the delay value assignment could also be

103
weighted by the fanout of the element. This would not be a
major extension since EVESIM alreedy generates a fanout
description for other purposes.

A further extension of the delay information would
be to add a fourth logic valuve. The intended use of this
fourth value would be to indicgte that an element output is
changing in value. This could possibly be defined as a
non-propagating unknown condition. It would represent the
element output during the time from when an input change has
occurred until the output was stable at its new value.

The timing mechanism for EVESIM is no longer very
efficient if the length of the internal clock is forced to
become very long as the result of a single long delay. For
example, a circuit containing a single one-shot element
would require the clock to be of the length of the one-shot.
This problem can be overcome by establishing an events queue
for events that are beyond the length of the clocking
mechanism. If these events are placed in a stack and
ordered by time, then after each pass through the clocking
mechanism, the event at the top of the stack is checked to
see whether the event will it into the next pass through
the clocking mechanism. If it will fit in the time frame
of the next pass, it is then inserted appropriately into the
normal timing mechanism for processing. This technique
would be much more efficient than extending the length of

the clock to accommodate a single element.

R

104

The final recommendations is probably a much longer
range goal than the previous recommendations. The above
recommendations require minimal changes to EVESIM. How-
ever, it is considered that an extension to include an
ability to perform critical race analysis would be an
ultimate and final addition to EVESIM. The inclusion of
this ability along with the existing SCRITSS test sequence

generator and the completion of the MACRO AHPL compiler

would provide maximum automation to logic circuit design.

REFERENCES

Anwaruddin. "Efficient Simulation of Logic Networks.'
Thesis, Department of Electrical Engineering,
University of Arizona, 1969.

Breuer, M. A. "Functional Partitioning and Simulation of
Digital Circuits," IEEE Transactions on Computers,
C-19:1038-1048 (November, 1970).

Chappell, S. G., C. H. Elmendorf, and L. D. Schmidt.
"LAMP: Logic-Circuit Simulators," The Bell System
Technical Journal, Vol. 53, No. 8 (October 8, 1974).

Components Group, Engineering Staff. The TTL Data Book for
Design Engineers., First Edition. Texas Instruments
Incorporated, 1973.

Hayes, Gwendolyn G. "Computer-Aided Design: Simulation
of Digital Design Lcgic," IEEE Transactions on
Computers, C-18:1-1C (January, 1969).

Hill, F. J., and G. R. Peterson. Introduction to Switching
Theory and Logical Design. 2nd ed. New York: John
Wiley and Son, 1974,

Larson, R. P., and M. M. Mano, "Modeling and Simulation of
Digital Networks," Communications of the ACM, 8:
302-312 (May, 1965).

Stang, D, R, "Simulation of a Small Logic System with a
FORTRAN Program," Computer Design, 7:56-60 (January,
1968).

Stockwell, G. N, "“Computer Logic Testing by Simulation,"
IRE Transactions on Military Electronics, Mil-5:275-
282 (July, 1962).

Szygenda, S. A., and E. W, Thompson. "Digital Logic Simula-
tion in a Time-Based, Table-Driven Environment,
Part 1, Design Verification," Computer, Vol, 8,
No. 3, 24-36 (March, 1975).

Ulrich, E. G, "Exclusive Simulation of Activity in Digital
Networks," Communications of the ACM, 12:102-110
(February, 1969).

10%

106

"Simulation of Computer Logic by FORTRAN
ARITHMETIC," Communications of the ACM, 8:516-517
(August, 1965),

Weingarten, F, W,

Williams, T. L. "Logic Design, Part 1," Digital Design,
5:118-121 (April, 1975a).

Williams, T. L. "Logic Design, Part 2," Digital Design,

5:58-65 (May, 1975b).

