
F ‘

AO AOSZ 6t3 AREZCNA I*41V TUC SON DEPT OF ELECTRICAL ENSINEEPI NS F/S 9/2
SI*LATICN OF DISITAI. CIRCUITS.(U)
1976 0 $4 MOEN

LMCLASSIFI~ D ML

D~fl
_ _ _

__
_ _E’ILIO_____
I

1 SIMULATION OF DIGITA L CIRCUITS~~

/~~~~ -
—

H

C~
9 ~~~~~~~~

w
U

C-,
A Thesis Submitted to the Faculty of the

,~~
PARTMENT OF ELECTRICAL ENG INEE R IN~j

In Partial Fulfillment of the Requirements
For the Degree of

MASTER OF SCIENCE D D C
In the Graduate College

THE)~~~~VERSITY OF ARIZON33 U APR 4 1978

(~~~11 ~ B

/
~f .J 1 9 7 6

I Dzs’rRmUTION ~YATD~~NT £
I £pprov.d for pnblIs r
L ~ atthiitto~ Unlimit.d /~

. / /‘
/

_
~~~~ z— _~

._ 
~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ______________________________________________

ACCESSION fo~
NTIS White SeCtI00~~~DOC B~1U S C*I N 0
UNANNOU NCED

~~~~~~~TION ~~~~~~~~~~~~~~ •

8Y _ _ _

D~~ UT~N/W ~~Dist. AVAIL and/or SPECIAL

4 STATEMENT BY AUTHOR

This thesis has been submitted in partial fulfill-
ment of requirements fcr an advanced degree at The
University of Arizona and is deposited in the University
Library to be made available to borrowers under rules of
the Library .

Brief quotations from this thesis are allowable
without special permission , provided that accurate acknowl-
edgment of source is made . Requests for permission for
extended quotation from or reproduction of this manuscript
in whole or in part may be granted by the head of the major
department or the Dean of the Graduate College when in his
judgment the proposed use of the material is in the inter-
ests of scholarship. In all other instances , however ,
permission must be obtained from the author .

SIGNED :__________________________

APPROVA L BY THESIS DIRECTOR

FRED ICE’ J. HIL Date
Profesàor of El~

’ctrical Engineering



ACKNOWLEDGMENT

The author would like to express his sincere

gratitude to Dr. Fred J. Hill for his suggestion of the

topic, for his aid , and for his guidance in the preparation

of this thesis.

iii



_______ L. -~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

TABLE OF CONTENTS

Page

LIST OF ILLUSTRATIONS .. .  . . . . ,  . • , .  . .  vi

LIST OF TABLES  . .  . , . . . . . . . . , , . . viii

ABSTRACT    . . . . . . , . . . ix

CHAPTER

1. INTRODUCTION .  . . . , . . . . . . 1

2 , DIGITAL SYSTEMS SIMULATION  . . . . . . . . . 5

Hist )ry of Simulation . . .     .   5
Modeling Digital Logic . . .     .   8
Implementation of Simulators .  , . .  11
Design Concepts of EVESIM 13

3. DRIVING MECHANISM O~ EVESThI 16

4. EVESIM PROGRAM DESCRIPTION . . . .  21

Prepiocessing Subroutines   ,       21
Subroutine READIN 23
Subroutine IN COND 27
Subroutine INTIAL  ,    27

Simulation Control  29
Postprocessing Subroutines   a •     34
Supporting Functions . a   a    35

Subroutine SCHED   , , , a ,  ,   35
Subroutine UN SCHE  39
Subroutine ERR OR 39
~;ubrout ine IODEST   42

5. EVESIM ELEMENT MODELS a a a a . . . a 43

Element 1)elay Time . . . • a a a , a a • a . 43
Subroutirie COMLOG a • a a . a a a a a a 45
Subrout ine JKM 1 . , a • a a a . a a a a . a 48

lv



V

TABLE OF CONTENTS--Continued

Page

6. DEMONSTRAT ION OF THE USE OF EVESIM a a a a . a 56

Demonstra t ion of the JK Master-Slave
Fl ip—Flop  a a 56

Demonstrat ion of an Odd-Even Detector
C i rcui t  a • a a a a a a a . a a .  a a . a 68

Demonstration of an Up—Down Gray Code
Counter • a a p a a a a a a a a p a a a a 72

7. U SER~ S GUIDE TO EVESIM . a a a a a a • a a a a a 86

General Input Data . a a a . a a a • a a a 86
Circuit Preparation  . a a • a . a 86
Card Input Format 87

Error Messages a • . . a 91
Fatal Errors 91
Non—Fatal Errors .  92

Debug a 93
Adding Element Models . a a 94

8. CONCLW ;IONS AND RECOMMENDATIONS . . a . • . 100

Conclusions a a a a a • a a a 100
Re ’omxnendations . . a p a a a • a a a p a 102

REFERENCES a a a a a a a p a a a p p p a • a • p a a 105

~



_________ 
- - - - - - - - - 

-~~~ —

LIST OF ILLUSTRATIONS

Figure Page

1. Program EVESIM a a a a a a a a a 22

2. Subrou - ine READIN  •  . a 24

3. Subroutine INCOND • . a a a a a a a a a p a p 28

4.  Subroul ine INT IAL a p a a a a p a a a a . a • a 30

5. Subroutine FUNSIM p a a a a a a p a p a p a a 32

6. Subroutine OUTPUT a a a a a a a a p a a p a a a 36

7. Subroutine PLOT1 a p a . a a a p a a a a a a a 37

8. Subrouiine SCHED a a a a a p a a a a a a a a • 38

9 a Subrout ine UNSCHE p a . a a a a p a p p a a a p 40

10. Subroutine ERROR a a p p a a a a a a a p a p a 41

11. Subroutine COMLOG a a p a . p a a a p a p a a a 46

12. Subroutine JKM1 a a a a p . a a a a a a a a • a 50

13. JK jnaster—s1~ ve flipt-flop circuit number 3  , 57

14. Circuit 3 run 1 60

15. Circuit 3 run 2  61

16. Circuit 3 run 3 a a a a a a p 63

17. Circuit 3 run 4 a a . . • • a a  • p  64

18. Circuit 3 run 5  a p a a a • a a a a p a p a a 66

19. Circuit 3 run 6  a a a  67

20 a Odd—even detector c i rcui t  no. 5  . a a • • a p 69

21. Circuit 5 run 1  p . a a a p a a a a a a a p 71

22. Circuit 5 run 2 ,  . . a  • • 73

vi

_ _ _ _ _ _  
_ _  - -



-— — — — —a——.———- — — - , !

vii

LIST OF ILLUSTRATIONS--Continued

F i y ur e  Page

23. Up—down s~ 1f—correcting gray code counter a a a 74

24. Circuit 4 run 1 a p a a a a a a a 76

25. Circuit4run 2 a .  a . a  a a p a . .  a .  a .  a 85

26. Debug output a a a a a a a a a a a a a a a a a a 95



— ----

LIST OF TABLES

Table Page

1. D e f i n i t i o n  of J for IDESCR (I , J)  . a . . . . 25
a 2. Definiti~ n of JO for IDESO U (I OD ,JO) . . ~ . . . 26

3. JK master—slave flip—flop data . a p a . a a 58

4 . Odd—even detector circuit parameters . . a 70

5. Up-down gray code counter circuit parameters . a 75

6. Definition of LCOUNT (I) . . . a p 96

7 a Common blocks required by subroutine models . . 98

yi i i



ABSTRACT

Simulation is a problem solving procedure for

defining and analyzing a model of a system. Computer-aided

desiqn of d ig i t a l  logic has provided the design engineer

with an aid to reduce the tedious and time consuming task

of design ver i f ica t ion. This paper describes a simulation

technique for the simulation of digital logic circuits.

This paper presents a level mode logic simulator

that has improved economy in execution time and ease of

model generationa The passage of time is simulated in a

precise fashion and element models are executed only when

activity occurs in the circuit. A behavior model descrip-

tion is accomplished on an element level rather than a gate

level. The use of three—valued logic and the use of precise

timing delays for both rising and falling signal levels

present a very accurate and informative circuit output

timing diagram. T1’ s is demonstrated by simulation of an

even-odd detection circuit and an up—down gray code counter.

ix 

H

—

~

- -~~ -~ -~~ -- --—~~



____ — ________ — —

a

CHAPTER 1

INTRODUCTION H
Simulation is a problem solving procedure for de-

fining and analyzing a model of a system ; in particular , a

digital computer simulation is the establishment of a

mathematical or logical model of a system and the manipula-

tion of that model on a digital computer. Designers of

d ig i ta l  logic c i rcui t ry  have long recognized the need for

computer-aided design and have placed much emphasis on

digital computer simulation of digital logic circuits .

Menial and time consuming tasks such as logic verification

are now routinely carried out by computer programs. Several

types of logic simulators ranging from simple one-of-a-kind

circuit simulations to very complex programs are found

throughout government , industry , and education (Hill and

Peterson , 1974). These simulations permit inferences to be

drawn about systems ; without building them, if they are only

proposed systems; without disturbing them , if they are

operating systems ; and without destroying them , if the

object of an experiment is to determine their limits of

stress.

Without the assistance of computer simulation ,

verification of the design of any large digital circuit is

1

-. -

~

-

~ 

-- - - - ----—-— --S-  - - - “-5- - -  —



- .  ~~~~~~~~~~~ 

~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~ :~~~
- ‘

~~~~~r ~~~~~~~~~~~~~~~~~~~~~

2

a manually tedious and time consuming task. The design

a enqineer requires no creative skills to accomplish this

routine task. Computer simulation relieves the designer of

this task , therefore reducing the time and expense involved

in testing designs before fabrication (Williams , l975a ,

1975b). Once the basic circuit operation has been verified ,

the designer can optimize his design and quickly re-verify

the circuit operation . The desi gn engineer thus has a very

powerful tool in a simulator to assist him in obtaining a

more nearly optimal design in less time.

The purpose of this study was to develop a computer

program that would perform a simulation of large digital

logic circuits . The constraints placed on the program were :

1. The input format for element descriptions was to be

compatible with existing programs.

2. The simulator would be a level mode simulator where

level mode means that a delay time is associated

with each logic element. It should be noted that

this constraint assures that the program will not be

restricted to a particular family of logic elements

nor a par t icular  type of logic (synchronous ,

asynchronous , combinational , sequential).

3. Equivalent models for devices will not be used. For

example , AND and OR log ic will not be used to

describe systems of NAND or NOR logic , or f l ip-flops

i.



— — -._—_—- _-—_-.--
_
~~~~ _~~~~~~ 

- - .- - ~
_ — ...~X ~~~~~~~~~~~~~~~~ ~~~~~~~~~~~ -5 - - :-~ .~v s .~~ - _________________

3

will not have to be expanded to their gate level

equivalence .

4. The output will be of the form of a timing diagram.

The program , called Event Simulator (EVESIM), is pr imar i ly

intended for use by the students and faculty of the

Department of Elect r ica l Engineer ing, The Univers i ty of

Arizona.

The study began with a thorough review of available

l i t e r a tu re on d igi t a l logic s imulat ion. Chapter 2 br ief ly

summarizes previous work and techniques while presenting the

basic concepts of EVESIM.

Structured programming techniques have been applied

and basic functions performed by the program have been

implemented with separate routines. Using these separate

routines is supported in three advantages :

1. Debugging of the program is simplified since all

subroutines could be checked out separately before

being added to the main program.

2. With minimal e f fo r t , someone unfamiliar with the

program can gain familiarity .

3. Maintenance and improvements to the programs can be

done easily by changing or adding individual

routines .

The use of separate routines for separate functions is

read i ly recognizable in the detailed descr iption of EVESIM

as presented in Chapter 4.

--5— ,p.h__ -

- _ _ _ _ _ — _ _ _ _

- - -
~~~~~

- 

4

Since it is beyond the scope of th is  s tudy to

develop element models for all the available logic compo-

nents , Chapters 5, 6, and 7 are dedicated to providing

- 
- s u f f i c i e n t  informat ion to enable a user tc write and

implement additional element models . EVESIM, as it exists ,

- forms a basic system that is designed to allow easy expan—

- sion. Future work to enhance the capabilities of EVESIM

• might include : optional data inputs/outputs and a random
- 

delay time generator . Further recommendations are included

• in Chapter 8. 

“-5---—- -



-- rn.~ —s--. . .__.~~~_ . - ~~_ - _
•~~~~~~~~~~~~~~~~~~~~~~~ -

‘a

CHAPTER 2

DIGITAT SYSTEMS SIMULATION

The usefulness and purpose of digital logic simula-

tors has been well established in Chapter 1. It is now

appropriate to review the many approaches to logic simula-

tion . Hill and Peterson (1974) discuss the relation of cost

to useful information output for several approaches to logic

simulation . The cost of operation of simulators for large

circuits is great, thus providing the incentive to develop

efficiency in simulation techniques .

History of Simulation

Logic simulators continue , as in the pas t , to be

developed based on how much information is required about a

logic circuit. They are certainly influenced by the size of

the circuit and type of circuit. Some simulators are part

of sophisticated computer—aided logic desi gn packages as

developed by Hayes (1969), and others are logic verifiers as

written by Williams (l975a , 1975b). Simulators , however ,

normally appear at least once in the automated design

process prior to the design being committed to hardware.

In the case of Chappel]., Elmendorf , and Schmidt (1974),

several different simulators are used for different purposes

in the design process. For example , using a level mode

5



,~ — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~—— —---——--~-—- - — ~~~~~~~~~~~~

6

simulator will not necessarily insure that a design is valid
a

over the allowed range of element delay parameters . The

level mode simulator can , however, be used to predict worst

case timing conditions and to provide some verification to

clock mode design that strict adherence to the clock mode

design rules has been accomplished . The use of a clock mode

simulator as presented by Williams (l975a, l975b) for

verification of the combinational logic would certainly

enhance a level mode simulator , thus providing the incentive

for developing different simulators for different purposes

in the design process .

Simulation programs differ greatly in nature and

complexity as a result of the variety of applications .

Simulators such as electronic network analysis as presented

by Anwaruddin (1969) are very complex and costly to operate ,

however they provide the most accurate simulation . Simu-

lators also differ in regard to the type of network specifi-

cations accepted as input. For example , Stockwell (1962)

uses Boolean equations for circuit descriptions while others

use the actual circuit elements and their interconnections ,

as does Williams (1975a, l975b). Larson and Mano (1965)

have presented a simulation technique which uses appropriate

digital network models and FORTRAN IV to economically

simulate logic networks where the high cost of a general-

purpose simulator is not justified . Stang (1968) and

I

—
— r--— .. r~~

:s-
~~~:.

-
~
—----- .~

-__ ._ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

7

Weingarten (1965) have taken similar approaches by using the
a 

logical and arithmetic features of FORTRAN.

Probably the area of greatest interest in simulators

is level mode simulators . Hill and Peterson (1974) discuss

these in great detail. Again , the amount of information

required versus cost determine the approach taken in a level

mode simulation . In order to make detailed analysis of

races and hazards in circuits , an analog output level mode

simulator may be required. This type of simulation is

accomplished by usng quantized voltage levels between the

logic values of zero and one. Neglecting rise time and

only delay results in a 2—level level mode simulation . Such

a simulator using an up—down counter to model delay

presently exists and is accessible on the DEC 10 computer

system at The University of Arizona. The most basic

approach to simulation is a clock mode simulation . One

iteration through the simulation is equivalent to one clock

pulse.

Great effort has been placed in development of

advanced techniques for improving the calculation and effi-

ciericy of the basic simulation models to be discussed .

Event-directed techniques (Breuer, 1970) and exclusive

simulation of activity techniques (Ulrich , 1969) are in-

tended to reduce the amount of calculations required in one

iteration of a simulation.



-~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - .
~~ ~~ ;•~~~ S .-- . - .

8

Modeling Di gital Logic
a As stated previously , s imula t ion is a problem

solving procedure for defining and analyzing a model of a

system . The value of simulations , of course , is that large

amounts of data about a system can be collected in a short

period of time under controlled conditions . How accurately

the behavior of the real system is depicted by the data is

reflective of the accuracy of the simulation model and the

model characteristics (Szygenda and Thompson , 1975). The

simulator designer must first decide whether the system is

to be used for logic verification or design verification .

He needs to ascertain whether to use two , three, or multiple

gate output values. There is also the question of whether

to use zero, unit, assignable, or precise delays; and

closely related , whether to use differing signal rise and

fall times. Certainly , the type of internal device model

must be considered , whether it be gate or element.

Logic verification would be similar to the operation

of a combinational logic circuit in that it is purely a

computation of all possible outputs for all possible input

combinations. It. is also equivalent to a clock mode simula—

• tion . Since the implementation of such a simulator is very

simple and if no other information is required , then the

simulator designer should consider only logic verification .

If more information is desired , such as timing considera-

tions , then a more complex approach is appropriate , noting

I’



s - _ :. . . - 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

5=-. . - - —- ---.. ~

9

t h at ~o(1 .1c verification can be a spec ia l case of a more
‘a complex s i m u l a t o r .

It is obvious that a logic simulator requires at

least two logic levels , 0 and 1. Using only two values ,

however , has two major drawbacks. The first disadvantage is

that establishing initial values on all elements is very

difficult , except for clock mode simulation. For large

circuits , establishing initial element output values then

becomes costly . The second disadvantage is that unknown

conditions due to spikes or other sources can not be repre-

sented . The third value normally added is X or unknown

which allows simulators to overcome the disadvantages of

two-valued logic. Chappell et al. (1974) define a non—

propagating unknown condition that is used during the

process of establishing initial values. This non-

propagating feature prevents an unknown condition from over

writinq an already established known value. They use a
•
: -

four th value called a propagating unknown for the remainder

of their simulation . It is feasible to expand further; for

example 0, 1, 2 (non-propagating unknown) , 3 (propagating

u n k n o w n) , 4 (signal rising) , and 5 (signal falling) .

C e r t a i n l y , the addi t ion of 4 and 5 would be useful in

simulat ing rise and fall times if that information was

required.

It is import ant that the d i f f e r ence between gates

and elements be es tabl ished. A gate is defined as a device

5- .. . ~~~~~~~~~ . — — - - - . .- -

—.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~

. . . 
- 

.~:. ~~~~~~~~~~~~~~~~~~~~~~~~~~ — 
________ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~

• 10

that has multiple inputs and a single output. An element is

a defined as a device that has multiple inputs and multiple

outputs; in addition , the ordering of the inputs and outputs

is significant. A good example of an element is a f lip—

flop ; certainly the inputs and outputs are ordered . These

differences result in major differences of implementation .

The complexity of implementing element models is the reason

• that most simulators use only gate models . There are some

serious drawbacks , however , in using only gate models . The

first of these is that a large number of gates are required

to implement some elements , for example , a .3K flip-flop may

require eight to ten gates to implement. Another major

drawback is that the interaction of gates in implementing an

element may not present the same operating characteristics

as the element itself , thus presenting a poor model of the

element. Therefore , careful consideration must be given to

the type of internal device models.

To achieve greater accuracy in the model , an

assignable or precise timing capability is required . Zero

and uni t  delay (clock mode ) s imulators are only use fu l  for

logic verification . Timing is inherent in design verifica-

tion. Assignable delay simulators allow assignment of a

single average delay to each element or gate type . For

example , one AND gate in a circuit may be assigned 5 units

of delay and another AND gate in the same circuit may be

assigned 4 units of delay . The up-down timing technique

__ — - .-~-•. - .- ..



u- -.---~-.-- - . ..—~~~~- -- . 
-~~~ ___________

11

mentioned earlier is a good example . This model is made
a 

somewhat more precise if delay assignments are made on an

individual element based on such parameters as fanout. This

technique also allows circuits consisting of different

- 

S 
families of logic to be accurately simulated. This can be

further expanded to assignment of different delays dependent

upon whether the signal is rising from logical 0 to logical

1, or falling from 1 to 0. Though this technique is not a

true rise and fall time simulator , as needed in electronic

analysis , it does present a more accurate picture of the

real world situation.

Implementation of Simulators

Having looked at modeling techniques in great

detail , it is now appropriate to answer some questions about

implementation prior to discussing EVESIM. At a minimum ,

areas of interest in implementation should include the ease

of use, independence of data processing equipment , selective

tracing and time flow mechanisms , and element descriptions .

Engineers who make extensive use of computer pro-

grams , invariably avoid programs that are difficult to use.

Good programs minimize user required tasks. This requires

• - complex pre- and post-processing , but must be done in order

to gain wide usage of the program .

Machine independence of the program is very impor-

tant , p a r t i cu l a r l y  if the program is large and was costly to

“1 
—- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~~~~ 

— —--5- --



12

develop. A program is not very useful if the author of the

‘a proqram is the only one that can use it because his machine

is unique. Though low—level languages normally provide a

savings in run time , they are not very transportable.

Higher level languages such as ANSI standard FORTRAN have

proven to be much more transportable and therefore, a better

language to use.

Gate and element have previously been defined ; how-

ever , as far as implementation is concerned , a gate is a

special case of an element. Defining the operation of an

element in terms of a subroutine or in-line code is rela-

tively straightforward assuming the programmer has a through

understanding of the element’s operation . Defining an

element in a subroutine has obvious advantages such as ease

of debugging, ease of being replaced or overwritten by

future users , and ease of calling for use throughout the

program. A detailed discussion of how to write element sub-

routines is contained in Chapter 5.

Breuer (1970) has suggested a partitioning of a

circuit into subsets of elements U. (i) such that if after

simulating element i , it is found that i changes state , then

simulate the elements of U~ (i) where the elements of U~ (i)

are those elements that have i as an input. This is

selective tracing; in other words , if an element output does

not change when new inputs have been evaluated , then the

element output is not followed. Since partitioning

• ---- ----------5- . 5- - -



- - 
• . - . _. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - 

______

13

algor i thms are very complex , Ul r ich  (1969 )  has suggested

a that this partitioning be limited to the fanout of a single

element. Breuer ’s (1970) technique has been named event—

directed simulation , where event means that an element

output has changed . The simulator jumps from event to event

as opposed to being time driven . Ulrich ’s (1969) technique

can be labeled time-driven event simulator . The time-driven

simulator operates by incrementing a fixed time unit and

checking for activity at that time where activity is defined

as elements scheduled to be evaluated . It should be obvious

that these techniques are required for large circuits since

any system relying on evaluating each element on each

increment of time quickly becomes too time consuming and in

turn costly .

Design Concepts of EVESIM

Having established a background of basic simulation

concepts , it is now time to begin a more detailed analysis S -

of EVESIM. Chapter 1 well established that EVESIM should be —

a design verification simulator and that it should use an

element approach to modeling ; therefore , these two subjects

warrant no further discussion at this time. EVESIM uses

three-valued logic , it applies precise delay techniques that

reflect different rise and fall times, and it uses a hybrid

of event-directed and time-driven event—directed control

techniques. 

.-~--- -



__________________  - 

14

EVESIM uses three—valued logic and in particular ,

‘a the unknown condition X , for two primary purposes . The

first use is similar to that of the non-propagating unknown

used by Chappell et al. (1974). During the process of

establishing initial values for the elements of the circuit

to be simulated , all element outputs are first set to X,

unknown , except for memory type elements which are user

spec i f i ed .  Memory e lement outputs are not allowed to change

during the process of updating the other elements . In a

circular  process , new outputs for the remaining elements are

calculated until no more unknown conditions exist in the

ci rcui t .  A de fau l t  mode and an override capability are

built into the system in case all unknown conditions cannot

be cleared. (This will be discussed further in Chapter 4.)

The second use of the unknown is in a propagating mode to

ref lect illegal conditions such as timing problems generated

in the circuit being simulated .

Though the use of precise delays for modeling

normally means more complex programs, precise delays were

used in EVESIM. Based on the use of the hybrid driving

techn ique , to be discussed , this complexity has been offset.

EVESIM allows individual element assignment of differing

rising signal delay time and falling signal delay time,

thus presenting a more accurate model.

The hear t  of EVESIM is the driving mechanism , as it

is with .~n’; si’-nulation program . Ulrich (1969) has reported 



- -~~~~~-_S  - - - -

15

that only one per cent of all elements in a typical simu—

lated digital network are simultaneously active . Assuming

thi s to be t rue , then any driving technique that takes

advantage of this is an improvement over conventional tech—

niques of simulating each element in every increment of

time . This suggests a discrete event type of simulation .

In other words , it is desirable to simulate an element only

when it is active. Define a set C, the elements of C being

the elements , including external  inputs , of a c ircui t  C.

Then , at any instant of time a subset A1 of C , consisting of

currently active elements , is the only source of future net-

work activity , signals originating in A
1 

are transmitted to

associated destination elements , forming a destination set

also a subset of C. Not all elements of D
1 

respond to

the stimulation , thus a new subset , A2, of active elements

is formed where A2 is a subset of D1. EVESIM takes full

advantage of this concept.



~~~~~~~~~ 
•~~~ — ~~~~~~~~~~~ —

‘a

CHAPTER 3

DRIVING MECHANISM OF EVESIM

Until now, simulator driving mechanisms have been

discussed in a general sense. This chapter carries the

discussion of driving mechanisms to that used in EVESIM.

The information required for the modeling of elements in

the driving mechanism is also identified.

The driving mechanism used by EVESIM is bes t

identified as being a time-driven event—directed mechanism

where an event is defined as an element output taking on a

new value . The technique is a hybrid of a time—driven and

and event—driven mechanism. Basically , a time—driven

circuit model is incremented by a fixed time unit and a new

set of element output values is calculated per time incre-

mented . An event-directed approach is driven by jumping

from event to event irrespective of time. It should be

obvious that considerable calculations are required for the

time dr iven approach , and that a considerable amount of data -
•

must be maintained for each event in the event—directed

approach . The technique used by EVESIM is a combination of

these two approaches .

EVESIM is time driven in the sense that events can j

occur only at points in time that are an integral multiple

16

- —~~~ -T ~~~~ ~~~~~~~~~~~~~ - -. ~~~ -~~~~~~~~

17

of the fixed increment of simulation time . In other words ,

‘a simu la ti on time is merely represented by a counter , TIME
+i

= TIME~~~1~ beqinruinq at time 0, and events can occur only

• at these integer values of TIME. Element models are used

to determine new output values as element inputs change .

The model must also determine when the element output is to

change in terms of simulation time. This timing information

is calculated by the model from user input element delay

times. This time of change or time of occurrence for an

event is used to properly 1 nsert the event into an event

list. This event list is the only source of future activity

in the circuit being simulated. In other terms , these

events or known element output changes are the only

occurrences in the circuit that can cause future changes of

other elements. The event is executed by following the

element output to all fanout elements connected and checking

the fanout elements for future activity . Therefore , simu—

lating only the effects of these changes has reduced the

simulation to an event directed simulation . Allowing these

events to occur only at fixed increments of time results in

• a time driven event directed simulator .

To accomplish the tasks of drivina the simulation ,

EVESIM uses two arrays . The first is ICL(N , 2) where N is

equal to the maximum delay time assigned to an element of

the circuit being simulated plus one. Each row of ICL(I,J)

represents a discrete point in time . The second column of

L - .~~~~~~~~~~~ _ _
_ _ _ _ -

V.— —-=~~~~
- -

~~~~~~~~~~~~~~~ — 
5- --—-~~~~ ——~~~~~~~~~~~~ — - -5 -  _______________________

18

ICL(I ,J) contains a pointer to the second array , the event
a 

list array LIS T ( K ) . The f ir s t column of ICL ( I ,J) gives the

total number of events in the event list for time I. The

remaining time I events follow in the next ICL(I ,l)-l

elements in LIST(K). Time is incremented as discussed above

and a inodulo function is used to determine the value for I

from TIME. Thus , the simulation time at which an event is

to occur is described implicitly by the location of the

pointer in the ICL (I ,J) array . The use of these two arrays

S 
in this fashion allows a very long simulation over many

increments of simulation time without requiring a large

storage array to maintain timing informat ion.

• W -~th this background , a general flow through the

program. can be outlined. The first step is to increment

TIME. The clocking array , I C L ( I ,J ) ,  is then accessed . If

there are events scheduled for this time , they are executed

as listed in the events list array . Each fanout element of S

each element in the event list is in turn simulated with the

appropriate element model. An element status and descrip-

tion array , IDESOU ( I ,J) , is used to main tain a cell of

information about each element in the circuit. The informa-

t ion included in this  array is a list of fanout  elements for

each element of the circuit , the simulation time when the

last output change occurred , the old value of the element

out put , the present value of the element output , the simula-

tion scheduled , and the future value of the element output.

-- ~~~~~~~~~~~~~~~~ “-.-- -. ~~~ -- S -
~~~~~~ • . - -  - -


-

‘.5—’

19

With this information the element model determines a new

‘a element output and calculates the simulation time of a

future element output change. If the event will cause a

future state change to occur in the fanout element , the

future event is properly scheduled into the event list.

When all events have been processed , time is again incre-

mented and the process continues .

It is interesting to note that if the cyclic clock

discussed above is based on maximum element delay time , old

information in the event list will automatically be replaced

with new information . This reduces the required length of

the event list. For example , assume that the maximum delay

of any element in a circuit is 10 units of time . Define

LIST(I) to have I = 1000. With a clock length of 10 units ,

then each clock unit of time could point to, on an average

of 100 locations in LIST(l0 00) or 100 events could be

scheduled per increment of time . Based on the work by

Ulr ich (196 9) , one per cent of the circuit elements is equal

to the 100 events or a circuit comprising of 10,000 elements

could be simulated by this example without increasing the

length of L I S T (I) -

It has already been pointed out that an element

model must be writtin in order to not only determine the

new value of an element , but also to determine when the

change is to occur. The information required to make these

calculations must include the simulation time when the last

- A

________________ _____

20

output change occurred and the old value of t1•.’ output. The

‘a model must also know if the element has already been

scheduled. This can be done either by checking the event

list or by adding this information to the above and storing

it with the element description cell as is the other in-

formation . Using a cell of information , of course , is much

more desirable than searching lists.

Also included in the cell of information is the

fanout elements of the element concerned. This information

is used to determine a new set of active elements . In order

to get all parameters into the scheme, internally the

program generates fictitious elements to represent each of

the external circuit inputs. The program also expands

multiple output elements to look as though they were single

output elements . Thus, the timing scheme does not need a

separate mode to handle multiple output elements. All

elements and the external circuit inputs are all handled in

the same fashion , and therefore minimize the simulation

control effort.

— — --5--— -,-- .5 -s --S . -— —— -~~~~~~~~L~~~~~~
s- - ..-~~~~~k...• • - - -

- — —

‘a

CHAPTER 4

EVESIM P ROG RAM DESCRIPTION

EVESIM has been written in FORTRAN IV for use on the

CDC 6400 computer system. EVESIM is best described as being

a time-driven event simulator of digital logic circuits .

It is a fundamental mode simulator in that elements are

modeled in terms of rising and falling delay times. The

program has been divided into five major subroutines as

indicated in Fig. 1. There are several subroutines that

perform functions in support of these five and will be dis-

cussed individually as their time of use is identified . As

can be seen in Fig. 1, the first three subroutines are pre-

processing routines. Subroutine FUNSIM controls the actual

simulation of the logic circuit and subroutine OUTPUT

controls , as the name implies , data output for the program .

The program has debugging aids programmed into it to assist

the user in running the program and for use in future up-

dating of the program.

Preprocessing Subroutines

The preprocessing requirements of EVESIM have been

broken into three subroutines : READIN , INCOND , and INTIAL .

Subroutine READIN reads from cards the circuit description

array of the circuit. Subroutine INCOND reads from cards

21

- --

:5
_~

r~~~~
-
~--~~a . ~~~~~~~~~~~~ ~:

-
~~~~~~~~

‘-
~~~~~~~~~~~~~~~~~~~~~~~~ 

— - --

22

‘a

(~~~...
I:vi I ; I M

1~1 1!! ad C i r eu l t .

Ia:A i a l t l

__jj

_

~~~
~~~aal in i t ia l

i~~ ’ON!) __Jv.. luen Of 11

emory elements
ted externa l inpu t s

l~a , t i ~~l lj e t i eIHT IN .L _

St~

i Y i u i t

NO Debat ~
I.H!) • 0

YE - .

I~r m t
C. , Y a aj t

J a - S r a i l jog

NO tachug
IJIU • 2

ES

I~r ir. t
Fanout of

Fl ext ents

41~~~~
ItJ

c~!D
Fig. 1. Program EVESIM.

— —“-5- —-.-.
- - --- .- --- -

~~~~~
--

~~~~~
--—

~~~~~
- . -



_  
-.

23

in it ial circu it values and in it ial external  input  values ,

and subrout ine INT IAL i n i t i a lizes the circuit  in preparation

for  beginn ing the s imula t ion .

Subroutine READIN

Figure 2 describes the f low of func t ions  performed

by subroutine READIN. The date of run , the circuit  number

( LCKT) , the total number of simulat ion times to be executed

( LAST) , and the mode of debug (LBU) are read from the first

card. Since error messages can be generated early in the

program , the error message heading is printed next. The

total number of elements in the circuit is read in as NGATE ,

and the total of external inputs is read in as NEXIN.

The element descriptions are read in using the same

format as SCIRT SS . The circuit elements are numbered 1

through NGATE and are assigned a 4—letter type designator

such as JKM1 for a J—K master slave flip-flop . The input

connections to the element are then listed in order. The

connection is indicated by the number of the element whose

output is connected to the input of the present element.

The element delay information follows in terms of simulation

times both for rising and falling logic values. All of this

S information is stored in an array called IDESCR(I ,J). Index

I wil l  be equal to NGATE , the number of elements , and Index

J can have values 1 through 19 as indicated in Table 1. The

element type designator is compared against the available

• • . .  ~~~~~~~ . _ _ _ _ _



- . - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~ - -~~~~ -.- — . - ~ - -—

24

c~J

L 

_

1~~~ad N~~ATE . S
NEXIN

e l e m e nt

I d e s e r c i t
S’ Ta ( I .

T d o , c t ,f y  1
elean era t t y p e
f a r  a l l  e l - c r c

r~ ~~i~~5 tg j j t  i c c,
a t  ray

i l _ i )

CRetuff~D

Fig. 2. Subroutine READIN.

__ S.- -- .



-.

25

Table 1. Definition of J for IDESCR(I ,J).

‘a

J In fo rma t ion stored

1 Element type

2 Element type number used for internal control

3 Pointer to IDESOU(IOD ,JO)

4 First value of delay time low to high

5 First value of delay time high to low

6 Second value of delay time low to high

7 Second value of delay time high to low

8 Circuit output indicator

9-18 Number of element connected to input

19 Status of element

_- — - 5-- .—~~5---- - . - - - . - -



5-

26

element models listed in LTYAL(J) and the appropriate type

‘a number ass iq ned . A fanout  descr iption of the c i rcu i t  is

then formed. This fanout description , based on the fariout

of each elemen t , is in e f f e ct the des tina t ion set discussed

in Chapter 2. The fanout description array is called

IDESOiJ (IOD ,JO). IOD is a function of the number of elements

in the circuit and the number of outputs of each element.

An element that has more than one output is represented in

IDES OU ( I O D ,JO) once for each output. For example , each

flip-flop will appear twice , once for the Q output and once

for the ~ output . The JO index for each element output is

defined in Table 2.

Table 2. Definition of JO for IDESOU(IOD ,JO).

JO Informat ion stored

1 Po inter to IDESCR (I ,J)

2 Element type number used for internal control

3 Simulation time when last output change occurred

4 Old value of the output

5 Present value of the output

6 Simulation time of future change

7 Val ue of output at fu tu re  change

8-17 Element numbers connected to the output 

- 5 - - -



p_-S--Sw- -~ ~-_____________________________

27

Subroutine INCOND

‘a Though normally all required data for a program

would be read into the computer by a single subroutine , this

task has been split in EVESIM. This allows greater flexi-

bility in input data formats. Subroutine READIN is oriented

around the SCRITSS input format and may not be suitable to

another user ’s needs ; therefore , doing preprocessing in

smaller pieces allows easier replacement of sections to meet

a par ticular  user ’s needs.

Subroutine INCOND (Fig . 3) reads from cards the

total number of flip-flops (LFF), the total number of other

memory type devices (LOM) , two minimum values of clock

pulse widths (NCLWID , N C L W 2 ) ,  and two minimum values of

preset or clear pulse widths (NPCWID, NPCW2). It reads the

output value of all memory devices and stores that informa—

tion in IDES OT J(I OD,J05). The final data read by INCOND is

the initial values of all external inputs . 
S -

Subrout ine INT IAL

The most important part of the preprocessing is

establishment of the initial values for all elements of the

circuit. It is assumed that the external inputs to the

circuit have remained stable for a long period of time , in

fact , long enough for any previous activity to have

propagated through the circuit. This situation certainly

cannot be achieved if an unstable condition can result from 

--- - -- .---- - -a---- -



F - r 5_ S 
~~~~~~~~~~~~~~~~ 5 ç 5 . 55- ~~~~~~~~~~~~ - -rrn ~~r.5-~~. . _..

28

‘a

~~~~~~~~~ut inr 10 -

Read a n m e m a l
v i l u e s  o f a l l
sa t her mEt ory

~~~~~~~ d i ~it t :a1~~~~

.-

l

.

Fiq. 3. Subroutine INCOND.

_ _ _ 5-- —--- - .—- --~~~~~~ -5-- - - A

-5 -. --—--——5-— — ----- 5--- - -

29

network feedback internal to the circuit. Such an unstable

‘a condition may or may not be designed into the circuit. Any

unstable condit ion is recogn ized by the program and the user

provided with sufficient data to diagnose the situation.

Subrout ine INTIAL (Fig. 4) begins by read ing the —

max imum number of iterations (LIMIT) or passes through the

circuit that can be made in order to clear all unknowns and

establish a stable condition in the circuit. Failure to

esta bl ish stabili ty wil l result in error messages being

printed and program execution stopped , unless of course , the

in i t i a l i zat ion overr ide parameter , LOVER , is set to one.

New outputs for each element are calculated . The unknown

cond it ion X is not allowed to propagate through the circuit ,

and therefore provides a means of identifying indeterminate

situations that exist in the circuit. These situations may

or may not be desired . If they are not desired , then they

have been identified to the user. Iterations of new output

calculations are continued until no more changes occur or

the limit of attempts is reached as outlined in the flow

chart in Fi g . 4.

Simulation Control

Eff iciency requirements in the preprocessing phase

of simulation is easily put aside when considering that the

preprocessing is done only one time. Even the program

e f f iciency of an element model does not have to be great if

Sc
’

~~~~~~~~~~~~~~~~~~~~~~~~~~~ — -- -5 —. .— -~~~~~~~~~~~~ ‘~



_ _  
— --.5- -—— — -5-- _S- -S -~~- - 

-
~~~~~~~~~

30

C

c I h
~~~~~~~~~

l tJD

~~~~~~~~~~~~~ic

cc
~~

’c
~~~~~~~~~~~~~~~~~~~~~ 1

TY ES I
1~~~~~~~~~~~~~~~~~~~~~~~

s

i)

YES

L
~~±~~ h

~~~~~~~~~~~~~~~~~~~~~~~~

WVI R

~>L.~~ ~~~~~~~
,

,

.
~~~~~~~~

R e t s e n

I I 1 ( 1 1 )

Fig. 4. Subroutine INTIAL. 

_ _
_ _ _ _ _ _  —-5- -—5 —5 -.- ~~-----_ - .__ t_ _.___ .. _ _



— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ . . . . ss:  . :: ~ :: 1 ~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -—5 --—-—-
- _______

31

max imum e f f o r t is exerted to call the model only when

necessary .  Cer tainly any s imula tor  that calculates new

element outpu ts for each element during each increment of

time requires a very efficient element model. The process

of sea rch ing long lists as proposed by pure even t directed

simulations is also not very efficient. EVESIM does not

requ ire major  l ist search ing routines or e f f icien t element

modeling. Great flexibility and efficiency have been gained

in EVESIM by not involving the element model in the control

and d r iv ing  mechan ism of the simulator .

Subrout ine FUN SIM ( Fig . 5) is the control and

driving mechanism for EVESIN. The event list , discussed in

Chap ter 3 , is defined for EVESIM to be LIST(K). K was

chosen to be equal to 1024 for purposes of easier manipula-

tion of the events list; however, K is by no means limited

to this number. The internal clock array for EVESIM is

defined as ICL(I ,J) and simulation time is defined to be

equal to NOW .

The first step in subroutine FUNSIM is to determine

the length of the internal clock , LENCL , which is equivalent

to the longest delay time that has been assigned to any one

element plus one. Then , the initial value of the elements ’

outputs is written to file IOU, and the first event card is

read . An event card contains the event time for a change in

value of external circuit inputs , the external  input number,

and the new value . A card can have only one time value but

J



- - - - _ _-5-- . -_

32

9
P s - t o  * 1 : 1 1 1 0  t i c -

s ,  t i  ~P
t i a t e r c . c 1  a

— 1

is_ s i t t -

t~~sssa. O

TEVI L C • 0
h OW is

Li’XT — 0
LC EtAN I)

I a ir  E n s - i t t

Card

[
~~~ I

~~~~~~~~ 

YFt  

~~~~~~~~ 
?F:~

: ~~~~~~~~~~~~~~~~~~~~~ > ~~~~~~~~~~ •
,
>jta ~

’

14 11J10 . 1 0 Change external

Sc 1-

;-X~

i

• I

Fig. 5. Subroutine FUNSIM.

- -s-S —— ----S—~~~ -——----—..-.-

r_t .._ _
.~~~~~~ -S

5_--5_
_

--j ---
~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~

—:
~ .~~~~~~-- -

33

‘a

tilt ~ 0

N))

LEST ,~ 1

*0

Sehedu l s -  r f t : t n  pf
I n terna l  c ha n g e s

LEST • 0

( O J t p u t n \
5i~Ior t i n c t - J

- hUh

Fig. 5--Continued

- - - - - 5  5-- -5- -5--- - - -



5-- . 5 . - - --- S--——-~~~~~~~ 5- - _ .  - .._ - . . -.

34

may contain several changes for that time. Additional cards

- ‘a for the same time may be used if necessary . The present

• time (LTIME) of the clock is determined by a modulo

func t ion , LTIME = MOD1 (NOW,LENCL ), where MOD1 is def ined

as a function :

FUNCTION MOD1 (M,N)
LT M- (M~N)xN
IF(LT.EQ.O)LT = N
MOD 1=LT

The number of events scheduled for a particular time is

defined as NU. NU being negative in value indicates that

the events have been processed for that time s otherwise , the

scheduled events are allowed to occur. External circuit

input changes are processed and then internal element

changes are processed . During the process of scheduling the

e f f e cts of element changes , each fanout element of the

element that changed is processed by the appropriate element

model and future events scheduled as needed . Time is incre-

mented and the process continues until the time limit is

reached .

Postprocessing Subroutines

Postprocessing of the simulation merely provides a

usable output . The process has been divided into two sub-

rout ines , subroutine OUTPUT and subroutine PLOT1. Sub-

routine OUTPUT is used for control purposes while subroutine

PLOT1 does the actual printing.

1



_ _

35

‘l’he external circuit inputs and the element outputs

to be plotted are read from a card . Up to 12 outputs can

be requested per card . As ~rid icated in Fig. 6, the output

r (’ (Iu (51); .m r (5 f ir ~;t sorted and subroutine PI,OTl is called to

do t he p rint jnq -

Subrou tine PLOT 1 (Fi g . 7) reads a record from the

output file IOU. It then fills an output buffer with the

appropr iate output value and pr ints  the contents of the

buffer. Another record is read from IOU and the process

continues until the file is empty . It should be obvious

that the printing routine PLOT1 has been separated from the

control in order that  changes to the actual output format

can be easily accomplished wi th minor change only to PLOT 1

and not the whole output process.

Supporting Functions

Discussion to this point has only referred to such

things as modeling routines , scheduling and unscheduling

events , and error messages. Though subroutines SCHED,

UNSCHE , ERROR , and IODEST are normally re ferenced only by

the element  model routines , they are discussed prior to the

model ing routines (Chapter 4) since they are general in

natu re and apply to all the models.

Subroutine SCHED

The purpose of subrcutirie SCHED (Fig. 8) is to

schedule an event to occur a-~ the time (NSCTI) specified by

L . -~~~~~~~ - - - -~~ - - A



36

‘a

Sc I

Ra~~J s l i t - s I ’ . 

~~~~~~~~~~~~~~~~r n

1 - be o u t 1 , s i t
I.! - I (i . J , N

I i) 1 11 l) c ‘
I . l c ~ (I t 1 , 1)

1 . 1) • L l : T 1 1 . 1 i
(1 . 2)

. 1~~ c (l , l) • LlY1~~ 1~~ 1 1 i
1 1 . 1 H .) —

l ’ 1 l) • L TFi1l ’(l , l b
— 1.T h) Mt l1 ,.1)

5 . 5 + l

Fiq. 6. Subroutine OUTPUT.

r ~~~~~~~~~~~~~~~~ - --5---- - --- .-— - --—--- ~~

37

I c - a l c - i
I c cii

t It sd
it ’Ll

Est ubi ink
£ * s l i l i s t t t o
1c,~~, s s m e,,, ~r

s i t - s i i t ’d ci use Ta t

Wi - I t s
h e a d tuci ; S

E (c F

Ceets
~~~D

F i l l
} :aa f 1,

Rn I , ’
h c f  h e r ,

T u r n ,

Its -a d

F’iq. 7. Subroutine PLOT1.

L - - - ~~~~~~~ 



38

‘a

1)11 11 — n- . ) d l  - . 1 ,

~~~~~~~~ 
~~~~~ ~~~~~

•
~

5-
~1r ~~~ 

I .  i c l . ( N T I M F . ,

Cl. (P I T I M I ~
< 0

NO

t u,-J,sove bl a ck
fr ij u .  s a

c i  ( S l I M E , I 5* 1.

-. 

NO

R eces s I d s e  

H I t  

~Re~~~ve o ) - i s  ct]

1 ( 1  { - a i - s v c s  y t i l t a l  i c
a t _ . v e  I : - , , -  S c  :~~ r , ~ . c c  c l - i

a nsi c buaes j e  .u!H--

÷ 
~~~ .(E ~~ TMr , i b l d W H M ! , l i nJ

F

— L i s p — b II]
1~Itoh

Fi g. 8. Subroutine SCHED.

39

an element model. It is a very simple process and involves
‘a

determining whether or not a block has been reserved in

LIsT(r) for time NSCTI. If a block exists , it is opened and

the event inserted. If a block does not exist , one is

created.

Subroutine UNSCHE

There are certain instances where an event that had

been previously scheduled needs to be unscheduled . To

accomp lish this , subroutine ~JNSCHE (Fig. 9) is used . The

event to be removed is identified by the element model , the a

pointer (LPOIN) to the beginning of the block in LIST(I) is

then established. The block is searched for the event and

it is removed. IDE SO U (I O D,J06) is updated to reflect that

no event is to occur and control is returned to the element

model subroutine .

Subroutine ERRO R

Subroutine ERROR (Fig. 10) is used throughout the

program to process error messages and to stop program execu-

tion in the case of fatal errors . Errors are processed by

assi gnment of a number. It is noted by Fig. 10 that error

messages greater than 199 are fatal and cause execution to

cease by using the library function CALL EXIT. After

processing of non-fatal errors , control is returned to the

call ing location. A list of error messages that can occur

is conta ined in Chapter 7.

- - - ~~

40

‘a

~~~~~~ l -~~~~ t a ~~~- d t c - c J ” )~~~~~~~~
M t l b ‘1 I d  P I i  -

Y c c c c c  — 1 1 !  c S I - ’ - ’ - I
1 l . 1 j ~~t ’ . _ - c

iCI  IN1 1 1 . Il • I . )_ c ( ~) IC , l b — I
LSI’ PSI • 1

lId 5)~~ (TH a I 3 C c )  • 0

(
~~~~ t . r c

3

Fig. 9. Subroutine UNSCHE .

- -

- .5 — .5-5- ~~~~~~~~~~~~~~~~~~ 5--.--

~~~

--5.5-

41

‘a

Subrsts t t - iu i s t
tRIt ON

t .I :RR c(i eE :’a
~ i i-;

NO 

/ ~:t~:~~~J 
—

11 ~~~~~~~~~~~

/ W r i t e  e r ro r  s uunc be r~~~ /
t i m e ,  ana l eleTc ent

Fig. 10. Subroutine ERROR.

_________________ 

j

~ .5 5 -~~~~ — -



5-

42

Subroutine TODEST

‘a Subroutine IODEST establishes the index IOD of

IDESOU(IOD ,JO) for the current element being processed

dur ing the simulation . It establishes IOD1 as the element

being proeessed , IOD2 as the first input to the element ,

10D3 as the second input , and on to as many indices as there

are inputs to the element. It is merely a “look-up ” routine

intended to minimize cross—referencing efforts between

IDESOU and IDESCR arrays.



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —
~
----—-

‘a

CHAPTE R 5

EVESIM ELEMENT MODELS

Many approaches exist to model logic elements .

Chapter 2 established that an element level approach was the

most appropriate since modeling elements with gates may not

present the same operating characteristic as the element

itself. It was also established that an assignable or

precise timing capability was most desirable in order to

achieve great accuracy . In fact, being able to assign

delays in terms of both rising signal levels and falling

levels provides the most accurate model. EVESIN has been

designed such that delays can be assigned in terms of rising

and falling signal levels . The problem of modeling for

EVESIM is a matter of assigning the correct delay times to

the element and being able to calculate from these delays

when an element ’s outputs are to change. The models have

been split into two distinct types. The first type is for

single output non-memory type devices normally called

combinational logic gates. The second type is for all other

devices which were defined earlier as elements.

Element Delay Time

EVESIM uses precise delay time calculations .

Obviously , either efficiency or accuracy would quickly be

43

~~~~~~~~~~
. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


- . _-S~~~-.•t- -— - . .

44

lost i f e lement delay times were randomly picked or an

‘a attempt was made to run the simulation in real time . It is

therefore necessary to establish certain ground rules for

determining the element delay times .

It is important that the delay times for the

elements have some common parameter; otherwise , the accuracy

of the simulation is lost. If all element delays were made

to be of the form : D = nAt , where D is delay time in real

time , n is a pos itive integer , and At is a positive constant,

then all delays can be represented by a positive integer n.

Th is has forced all element delays in a given circui t to be

relative to each other ; and therefore , the accuracy of the

simulation has been preserved while not losing efficiency .

An EVESIM user would refer to a manufacturer ’ s log ic data

book and determine approximate values for tPLH and tPHL for

all the elements in the circuit to be simulated . It should
—

be noted here that the choice of delay times is not totally

random and requires the user to have some intuitive knowl-

edge of the expected operation of the circuit being simu-

lated . Then , from this information , the user should deter-

mine a value for Lit which by definition is nothing more than

the greatest common divisor of the element delays. All

element delay times (n) can then be determined by: n
e

=

D : A t.e

As an example , consider a small circuit containing

two types of elements with delays of tPLHl = 10 nsec ,

-- b~~~~~~ -s -

.~~— , _______ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~

45

tPHL] = 6 nsec , tpLH2
= 12 nsec , and t

PHL2 = 8 nsec. The

greatest common d ivisor of these t imes is 2 nsecs which is

equal to At. The values for n are then computed :

~ lL1I 10 2 = 5 °1HL
= 6 2 = 3

n2HL
= 12 2 = 6

~2HL
= 8 2 = 4 .

One simulation time is now equivalent to 2 nsec. The

maximum length of the internal control clock has been

determined and is equal to the maximum n which in this case
e

is 6. It should be noted that another set of delays will

determine a d i f f e r en t Lit . Thus , it is desirable to maximize

A t such that the maximum element delay time n
e

i_s kept as

small as possible in order to economize the execution of a

simulation.

Subroutine COMLOG

When an event has occurred , an element output has

changed. The elements connected to that changed output are

each , in turn , processed through an element model. Sub-

routine COMLOG (Fig. 11) serves as the model for all com—

binta t ional log ic gates . The first action taken is a calcu-

lation of the output. Then , a comparison is made to the old

output . If a change has occurred , the new output is

appropriately scheduled as an event to occur in the future.

There are many techniques available that can be used

to determine the logic values. Boolean algebra can be used .

5-

—_ -5- .— ._.. ~~. ,_~~~~ _. . 1 — —~~~, z~~~~~.afl-~’-’~~----- —. ~-‘——,..~~ w— —r

46

‘a

) . U i c s , s c i (I i i ,
i cit-ji a c, ,

Ca Is -a i l s, ti
sco w tac i t p u t

YEt)
Now OI l

NC

c l - i - c c YES
dac l c . i

YES ~u ac .gs
NO

scicc’dulc- -

NO iJnmc hct-dual e

Y E S

_

_ _ _ _ _ _ _ _ __ _

C~~D

Fig. 11. Subroutine COMLOG .

47

The available logic functions of an operating system provide
‘a

a means of calculation . Table look— up techniques can be

used or arithmetic expressions can be used for the calcula-

tions . The technique used for the calculation is not really

relative to the modeling of the element as far as modeling

the delay is concerned. Therefore , whatever is easiest for

the programmer’s system is appropriate. EVESIM uses both

table look-up techniques and the available logic functions .

The important part of the modeling scheme is that an

event that is to occur is properly scheduled in the future.

This scheduling is based on the delay times as calculated

above. It is important that noise spikes are passed or

rejected as required . Whether a gate will pass or reject a

spike is a function of the gate propagation delay times,

tpLH and tPHL • The modeling of this is easily accomplished

with an event type of simulation program. For example , let

a NAND gate have values tPLH = 11 and tPHL
= 7. Obviously,

immunity to 1 - to — 0 transitions is greater than 0 — to -
1 transitions since tpLH is greater than tpHL~

Let the

output of the NAND gate at time 0 be equal to 0. Assume

that at time 0, an input to the gate has changed such that

• the output should change to 1. An event should be scheduled

for time 0 + tPLH which is equal to time 11. Following the

scheme of the flow chart in Fig. 11, any attempt to schedule

a tPHL transition prior to time 11 would negate the event

scheduled at time 11. The earliest that a valid tPHL

—5--- - ~~

,—
~~~~~~~~~~~~~~~~~~~~~~~~ - 

—.5—---— -S.—

48

trans itio n would register would be at time 11 + tPHL 
= 18.

‘a Therefore , the narrowest pulse that could be passed through

the NAN D gate would be 18 - 11 = 7 , which is what is

expected. A similar analys is  can be done for the 1 — to — 0

noise immunity . The result is a minimum pulse of 11 , again

which is what is expected . Making use of the rising and

falling delay times in conjunction with proper scheduling

and unscheduling of events has effectively modeled the

combinational logic. The modeling of multiple output

devices is accomplished in a similar fashion . The differ-

ence , as seen in the next section , is in the complexity of

determining when an event should be scheduled .

Subroutine JKM1

The complexity of determining when an event should

occur for elements such as a JK master—slave flip-flop

results from the fact that the flip—flop has several inputs ,

it has memory capability , and has more than one output.

There are also other parameters for consideration such as

minimum pulse width requirements to the clock input and the

preset and clear inputs , and the J and K inputs remaining

stable while the clock is high . Since the data depicting

these parameters is available in the data book, they are

also applied against the greatest common divisor and an - 

-

integer value assigned to represent the parameters for

modeling purposes.

-— 

‘

-5- -S -- .5 .5- _ _ _  ~~
, . - -



49

The JK f l i p-flop model , subroutine KJM1 (Fig . 12),

‘a is broken into four paths dependent on the three inputs that

can possibly change the outputs. Since preset and clear

override the clock , they first are tested for an unknown

condition. An unknown on preset or clear will automatically

force an unknown condition on the output. If neither are

unknown , further checks are made and the appropriate

branch ing takes place as indicated in Fig. 12. If the J or

K input to the flip-flop was the input change that caused

the model to be called , control is returned to the calling

subroutine without any further action . It should also be

noted that a leading edge clock change requires no action

for a master—slave flip—flop and control is returned to the

calling routine .

Assuming that a trailing edge clock caused the call

of subroutine JKM1, the clock pulse is first checked to

insure that it meets minimum width requirements. If not ,

an error message (error 1) is processed and the outputs

scheduled as unknowns . If the clock is valid and preset and

clear are both high , new outputs are calculated and

scheduled to occur as events in the future.

A single preset change or a clear change are similar

in nature and relatively simple to program . The processing

of these changes are self explanatory and are indicated on

the flow chart on pages 52 and 54. The complexity is

grea t ly increased if both preset and clear change at the 

.55---—-S—— -- ——~~~~.5--S- —- .5- - ---_ ---.5 -



~1~

50

‘a

i c ,-

LCI ‘ c Ic .  d i l i  ha ilta l a l i s l c  t i c ,

LC? .- c -  a c t - - l i  u t i c a . ’ c a L  t i c .

l..Pl • i s - - -  - t i l l  — 
t - b 5 5 ~Ic 5 i r s  ‘- s - s

LI’ S — ( a — l i  a c )  be., r t c ~~- u t s

— a l e . u r b l b  L o s 1 - s c i n e n T-

f.L2 • d a T  i t — l b  assad ) a t  t At . ,

Lel Icr 1K)
L I I  • 31

SF: 1.Pl-L P, a,

SO

I- .. L L I — L L 2  - i)

lEO
I , l — L L ?  —

C a  S
it L C ( • X  1’)

NO

4 — ~~~~~~~~~~~~~ chasng.’d

• x 1I ’ r e e et  an d

Q 31 
“‘) c~ t 3 1 t  c hasnqocl 

_[~~i i a r  Ch ~ idled

NO 
C2—I,Cl  • 1

SF-S

YES 1.1,1 Or
LPI • 0

NO

1 ~~~~~~ ocTa cJ ca,c9s- sI

Pa - t U FT,

Fig. 12. Subroutine ~JKMl. .



_ _ _  - 
—•=--S- - —

51

‘a

Cl ,cCk  NO
va l id

YE S
LLIi.lt)Old • I

i’ reset  yiS
or Cl ea r 5

. 0

NO
It

YF .S NO

lEO
9 •  0

YES

ams ~a 1us’

N )  
ri*~~~

Y l.S
LERR OR • 2

I,l ii ls l i . 2

• 

~~~~~~~~~~~~~~~~~~

Fig. l2.--Continued Subroutine JKM1.

La --

~~~

-

~~~~~~~~

. - — - -~~~~~- - -.5—_~~~ -. - -

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - -

52

~~~~~~~~~~
.
•-

Cl c- ST  YES

Schedci l~~
O lcalagi

NO

LERRON - 4

p

H 
S,

Fig. l2.—--Continued Subroutine JKM1.

II. - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
—



n

53

‘a

Y E S  u i  • 1 
NO

Y E C 
— NO 

ILl — YES

0

-~~ 
C -  1

i ’r e ’s t  
~~~~~~~~~ JNO

~~~~~~~~

.

lvTh

I.L l’EiOk t.

~~~~~~~~~~d a l e
shaccj e
Q • - 0
~l . 1

(a

Fi g. l2.--Continued Subroutine JKN1.

c~ . --- -5

- - -~~~~~

54

‘a

4

YES LLI • I

Its NO

LYl — 1 Ii’ S — I

HO YES

Sched a i l e Sch edi a l e [Ych edsi l e

cl~~ caq e c icange c it asa qe

Q l Q . 0 Q — l

L_ i. ~~
___J

P re se t YE S

NO

tERROR • S

L~)

Fig. 12. --Continued Subroutine JKM1.

-5 -- --

— -~~ . ,. .,_. - 5—- -

55

same t ime. If they were both low, the outputs are both

high. If both preset and clear go high at the same time ,

it can not be determined what the outputs will be; thus , the

outputs are changed to the unknown condition . If preset and

clear are opposite in value and they both change , a spi~~e

can be generated on the output of the flip-flop . This is

designated by error message 6 and the outputs are tempo-

rarily changed to an unknown condition until the new values

of preset and clear cause the outputs to stabilize.

On the surface , modeling of the JK master-slave

flip-flop appears to be a lengthy process . However , by

having full understanding of how the element functions , the

model can be broken into small processing sections each

representing an element reaction to a particular stimulus ,

thus providing an easily understood and logical approach to

solving the modeling problem for a JK flip-flop or any

multiple input-multiple output element.

_ _ --S . - - -- --
-~~~~~~-

-_s-s -.5 - -— -
~~~~ C~••-5 ~~~irT~~~~~~~~~~ ,

‘a

CHAPTER 6

DEMONSTRAT ION OF THE USE OF EVESIM

A description of EVESIM would not be complete with-

out a demonstration of some circuits being simulated. The

first example is strictly a JK master-slave flip-flop run

against the simulator all by itself. This was chosen in

order to demonstrate the functioning of the flip-flop model

discussed in Chapter 4. The remaining two circuits were

chosen to demonstrate the interaction of the models . It

should be noted that both have critical feedback paths that

restrict the frequency of the clock , thus surely demon—

strating the need for a level mode simulation . Data used

for the simulations were taken from the Texas Instruments

TTL Data Book (Components Group , Engineering Staff , 1973).

Demonstration of the JK Master—Slave
Flip-Flop -

The f l i p-flop operation has been demonstrated by six

different runs of the simulator. The six runs were designed

in order that all possible paths through the flip-flop model

would be exercised . Figure 13 identifies the input names to

the flip-flop and Table 3 contains the data used for the six

runs . It should be noted that the output of the f l i p — f l o p

is given by the Q output being equal to element number 1 and

56



57

‘a

1005

PRESET
1002 — J 0 —

1001—- CLOC K

1003 — K CI

CLEAR

1004 -

Fig. 13. JK master—slave flip—flop circuit number 3.



~~
.—. .—•-—-—

~~
,—.

~~~~~~~~~~~~~~ —.—••—•-—. .5- -5’~~1 “ ~~~ ..

r

58

Table 3 . JK master—slave flip—flop data .

‘a

1. Greatest common divisor = At = 5 nanoseconds

2. Clocked Input Data

tPLH
= 15 nanosecond s n = 15 5 = 3 Simulation times

tPHL = 25 nanoseconds n = 25 5 = 5 Simulation times

Minimum allowed clock pulse width = 20 nanoseconds
NPCWI D = 20 ~

- 5 = 4 Simulation Times
-

3. Preset and Clear Input Data

tPLH = 20 nanoseconds n = 20 -
~ 5 = 4 Simulation times

tPHL
30 nanosecond s n = 30 ~

- 5 = 6 Simulation times

Minimum allowed preset or clear input pulse width =

25 nanosecond s
NPPWI D = 25 ? 5 = 5 Simulation Time s

_
- -

j

~

59

the ~ output by element number 2001. The 2000 indicates the

‘a second output of element number 1 or 2001.

Figure 14 contains the first run . The J input high

F and the K input low at time 2 causes no change at the

outputs as is expected. Similarly , with both J and K low,

the clock pulse at time 14 causes no change at the output.

The clock pulse at time 26 causes the output to change since

the K input is high . It should also be pointed out that the

model at this time is demonstrating the fact that a JK

master—slave flip—flop requires a set up time equal to zero

and a hold time equal to zero. In other words , the J and K

inputs must be stable while the clock is high in order to

guarantee proper operation of the master-slave flip-flop .

With both J and K inputs hi gh , the clock pulse at time 38

causes the output to toggle.

Figure 15 is the output of the f l ip—flop for run

number 2. Run 2 is intended to demonstrate the operation of

the clear and preset inputs . Notice that at time 1 the

clear input goes low, overriding the clock pulse and causing

an output change. The preset is similarly demonstrated at

time 11. Notice that at time 18 both preset and clear are

•
. low causing both outputs to be high. At time 23 the clear

input returns to the one level and the outputs align them-

selves according to clear remaining low.

The remaining four runs made of the JK flip-flop

demonstrate the possible error conditions that can cause an

-S - - . - -.

_ _ _ _ _ _ _ _ _ _ _ _-
_________________________ —- -—

60

‘a
C IRCU I T NUM8 LR u 3

TIME [L [M I . 141 NU M L E F’ TitlE

2001 1 1001 1002 1003 1004 1005
O 0 1 0 0 0 1 1. 0
1 0 1 0 1 0 1 1 1
2 0 1 1 1 0 1 1 2
3 0 1 1 1 0 1 1 3
4 0 1 1 1 0 1 1 4
5 0 1 1 1 0 1 1 5
o 0 1 0 0 0 1 1 6
7 0 1 0 0 0 1 1 7
8 0 1 0 0 0 1 1 6
9 0 1 0 0 0 1 1 9

lo 0 1 0 0 0 1 1 10
11 0 1 0 0 0 1 1 11
1? 0 1 0 0 0 1 1 1?
13 0 1 0 0 0 1 1 13
14 0 1 1 0 0 1 1 14
1~c 0 1 1 0 0 1 1 15
i t 0 1 1 0 0 1 1 10
17 0 1 1 0 0 1 1 17
lb 0 1 0 0 0 1 1 lb
1” 0 1 0 0 0 1 1 19

0 1 0 0 0 1 2C
21 0 1 0 0 0 1 1 21
22 0 1 0 0 0 1 1 22
2 3 C’ 1 0 0 0 1 3 23
2” 0 1 0 0 0 1 1 24
2~ 0 1 0 0 Ct 1 1 25

0 1 1 0 1 1 1 26
21 0 1 1 0 1 1 1

0 1 1 0 1 1 1 28
0 1 1 0 1 1 1 29

30 1 0 0 0 1 1 30
31 0 1 0 0 0 1 1 31
32 0 1 0 0 0 1 1 32
33 1 1 0 0 0 1 1 33
34 1 1 0 1 1 1 1 34
35 1 0 0 1 1 1 1 35
36 1 0 0 1 1 1 1 36
37 1 0 0 1 1 1 1 37
38 1 0 1 1 1 1 1 38
3c1 1 0 1 1 1 1 1 39
4C) 1 0 1 1 1 1 1 ‘.0
41 1 0 1 1 1 1 1 41
N? 1 0 0 1 1 1 1 4?
‘.3 1 0 0 1 1 1 1 43
44 1 0 0 1 1 1 1 44
4~~ 1 1 0 1 1 1. 1 ‘.5
46 1 1 0 1 1 1 1 ‘.6
47 C 1 0 1 1 1 1 47

0 1 0 1 1 1 1 46
‘.9 0- 1 0 1 1 1 1 ‘.9

0 1 0 1 1 1 1 50

Fig. 14. Circuit 3 run 1.

___________ - ~~~ .a ~~-

61

C iRCUIT NUMBER 3

TI M E E L E M E N T NU M BE R TIME

2001 1 1001 1002 1003 1004 1005
0 0 1 0 1 1 1 1 0
1 0 1 0 1 1 0 1 1
2 0 1 0 1 1 0 1 2
3 0 1 1 1 1 0 1 3
4 0 1 1 1 1 0 I 4
5 1 1 1 1 1 0 1 5
6 1 1 1 1 1 1 1 6
7 1 0 0 1 1 1 1 7
8 1 0 0 1 1 1 1 8
9 1 0 0 1 1 1 1 9

10 1 0 0 1 1 1 1 10
11 1 0 0 1 1 1 0 11
12 1 0 0 1 1 1 Cl 12
13 1 0 0 1 1 1 0 13
1’. 1 0 0 1 1 1 0 14
15 1 1 1 1 1 1 0 15
16 1 1 1 1 1 1 1 16
17 0 1 1 1 1 1 1 17
18 0 1 1 1 1 0 0 18
19 0 1 0 1 1 0 0 19
20 0 1 0 1 1 0 0 20
21 0 1 0 1 1 0 0 21
22 1 1 0 1 1 0 0 22
23 1 1 0 1 1 Ci 1 23
2’. 1 1 0 1 1 0 1 24
25 1 1 0 1 1 0 1 25
20 1 1 0 1 1 0 1 26
27 1 1 1 1 1 0 1 27
28 1 1 1 1 1 0 1 28
29 1 0 1. 1 1 1 1 29
30 1 0 1 3 1 1 1 30
31 1 0 0 1 1 1 1 31
32 1 0 0 1 1 1 1 32
33 1 0 0 1 1 1 1 33
3 1. 1 0 0 1 1 1 1 34
35 1 0 0 1 1 1 1 35

1 0 0 1 1 1 1 30
37 1 0 0 1 1 1 1 37
lb 1 0 0 1 1 1 1 3à

1 0 1 1 1 1 1 39
NO 1 0 1 3 1 1 1 40
1 1 0 1 1 1 1 1 41

‘.2 1 0 1 1 1 1 1 42
‘.3 1 0 0 1 1 1 3 43
44 2 0 0 1 1 1 1 ‘.4

0 0 1 1 1 3 45
1 0 1 1 1 1 a

47 1 1 0 1 1 1 1 47
0 1 0 1 1 1 1 ‘.8
C 1 (2 1 1 1 1 49

50 C 1 0 1 1 1 1 50

Fig , 15 , Circuit 3 run 2.

- - .5 —-~~~~~~~~~~~~~~~~~~ —--~~~~~~~~~~~~~~~~~ ---s - s

62

unknown condition to appear on the output . The error

‘a
messaqes are clearly printed with the error number , time of

occurrence , and the element involved . Figure 16 demonstrates

.

5
two detected errors . The first is error 1, which is a clock

pulse being too narrow . This error occurred at time 2.

Error 7 , though not necessarily an error in the true sense

of the word error , points out that the outputs are unknown ,

and since the J and K inputs are of the same value , a new

set of outputs cannot be determined . Notice that at time

23 , the J and K inputs have different values , and therefore

a new output set can be determined. The worst case is

assumed; that is , that for the Q output the unknown was

equal to 1 and had to change to 0, and that the opposite

case exists for 5. The remaining point of interest on Fig.

16 is that at time 35, a clock pulse occurs with the Q out-

put low and the J(input low , and because of this time

si tuat ion , the K input changing midway through the clock

pulse has no effect on the output as should be expected .

At time 5 on Figure 17 , error message is generated .

This error results from ~he fact that the K input to the

f lip-flop does not meet the hold time required , or the K

input is unstable while the clock is high. This results in

the unknown condition being generated on the outputs. The

next interesting point is the spike generated on the 0 out-

put at time 20. This is a result of the clear input having

a low value and the preset input going low temporarily and

~

- .5 --
--- ---~~~~~

S

63

a C I R C U I T N U M B E R 3

‘a
-

* * * * * * * +* * 4 * * ~ F’~UJR M E S S A G E S * * I * * +s * * * .* s s

ERROR • 1 T I M E • 3 E L E M E N T • 1

EkR0 ~ 7 2 Z M E s j 5 E L E M E N T • I

-S CIRCUIT NUM b ER • 3

EL EMENT NUM B ER T IME

2001 1 1001 1002 1003 1004 1005
0 1 0 1 1 1 1 0

I 2 1 1 1 1 1 1 1
2 0 1 1 1 1 1 1 2
3 0 1 0 1 1 1 1 3
‘4 X 0 1 1 1 1 4

x X 0 1 1 1 3 5
L X X 0 1 1 1 1 6
7 x A 0 1 1 1 1 7
8 A x 0 1 1 1 1 8
N X A 0 1 1 1 3 9

i t ~ A A 0 1 1 1 1 3 0
i i x x 1 1 1 3 I l
12 X A 1 1 1 1 1 12
13 A A 1 1 1 1 1 13
1’. K X 1 1 1 1 1 14

K x 0 1 1 1 1 35
1i~ A x 0 0 1 1 1 16
11 0 0 1 I 1 37
l b x x 0 0 1 1 1 18

A Ci Ct 1 7 1 19
21 K A 0 0 1 1 1 20
2 1 A x 0 0 1 1 1 21
2 ? A 0 0 1 1 1 22

A 1 0 1 3 1 23
A A 1 0 1 1 1 24

2 ’. A 1 0 1 1 1 2 5
2’- A 3 0 1 1 1 26
r a t A 0 0 1 1 1 2 7
a-s ’s A 0 Ci 1 1 1 28

A 0 0 1 1 1 29
2 : I 1 0 0 1 1 1 It)

3 1 1 0 3 1 1 1 31
3 ? 1 1 0 0 1 1 1 3 .
31 1 0 0 0 1 1 1 33
14 1 2 0 0 1 1 1 34

3’ . 1 0 1 0 1 1 3 35
1 0 1 0 1 1 3 36

:- 0 1 0 (5 1 1 37
4 1 1 0 0 1 1 38

1 2 1 0 C 1 1 39
1 0 2 0 0 1 1 ‘.0

4 1 1 .~ 0 0 2 1 41
1 .2 7 3 1) 0 0 1 1 42

1 0 3 0 0 1 1 ‘.3
1 .’. 1 0 0 3 0 1 1 ‘.1.

‘.5 1 0 0 0 0 1 1 45

Fig. 16. Circuit 3 run 3.

- --S - - - - —~~~~ .5.5 - - -—-~~~~~~~~~ -

64

CIRCUIT NU MBER • 3

*4 4 * 4 4 * 4 * * ~*~~ER ROR M E S S A G E S * 4 * ** * * * 4 * 4 * 4 4
‘a

E R RO R • 2 T I M E • 5 E L E M E N T • 1

E R R O R • 4 TiME • 32 ELEMENT • 1

E R R O R • 4 TIME • 40 EL EM E~~T • 1

CIRCUIT NUM BER • 3

TI ME ELE M EN T N UMB E R TIME

200i 1 1001 1002 1003 1004 1005
0 0 1 0 1 1 1 1 0
1 0 1 1 1 1 1 1 1
2 0 1 1 1 1 1 1 2
3 0 1 1 1 0 1 1 3
‘s 0 1 1 1 0 1 1 4
5 C’ 1 0 1 0 1 1 5
6 X A 0 1 C 1 1 0
7 A 1 0 1 0 1 1 7
B A 1 0 1 0 1 I B
9 X 1 0 1 0 0 1 9

10 1 A 0 1 C 0 1 10
11 A X 0 1 0 0 1 11
ii A A 0 1 0 0 1 12
13 1 X 1 1 0 0 1 13
1’, 1 x 1 1 0 0 3 14
2 5 1 3 1 1 0 0 1 15
lb 1 3 1 1 0 0 1 lb
17 1 0 0 1 0 0 0 17

1 C 0 1 0 0 C 18
19 1 0 0 1 0 0 0 19
20 1 1 0 1 0 0 1 20
21 1 0 0 1 0 0 1 21
22 1 0 0 1 0 0 Cl 22
23 1 0 0 1 0 0 0 23
24 1 0 0 1 0 0 0 24
2’ . 1 0 1 1 0 0 0 2’.

1 1 1 1 1 0 0 26
27 1 1 1 1 0 0 1 27
26 1 2 1 1 C 0 1 2 8
20 1 0 1 Ci 0 1 29
A U L 1 0 1 0 0 1 30

1 1 0 1 0 0 1 31
3 1 0 1 0 3 1 32

33 A 1 0 1 0 3 1 33
34 1 1 0 1 C 1 1 31.
3 5 A 1 0 1 0 1 1 35

1 1 0 1 0 0 1 36
37 1 1 1 1 0 0 2 37
3~ A A 1 1 0 0 1 38

A A 1 1 0 0 1

s-S
1.;-; 1 A 1 1 0 1 1 40

‘.3 1 0 1 0 1 1 41
A A 0 1 0 1 1 42
x 1 0 1 0 1 1 43

4’. 3 1 0 1 C’ 1 1 ‘.4
45 1 1 0 1 0 I 1 ‘.5

Fig. 17. Circuit 3 run 4.

-S

— -~~~~~~~~
-
~~~ - - . 5- --s ---~~~~~~~~~~~~~~~~~~~-- s—- --

~~~~~~~~~~
-- -

~~~~~~~~~~ 
- -- S .-- ~~~~~~~~~~~~ -- -



_ _ _  - --  — - - 
—

65

then returning to the high value . Certainly , this operation

‘a can be expected . Error messaqe 4, clear input pulse is too

narrow , occurs at time 32 because the clear input was not

low a sufficient amount of time after the preset input re-

turned to one. Error 4 occurs again at time 40.

Figure 18 is the output for run 5. There are 3

errors demonstrated by this run . Error 3 occurs when both

— 

preset and clear inputs change to a high value at the same

time. Error 5 appears when a spike occurs on the preset

input , in other words , preset was low an insufficient amount

of time to cause a predicted change on the output . Error 7

occurs again for the same reason as stated earlier.

Error number 6 is demonstrated in Fig. 19, which is

run number 6 of the flip-flop . Error 6 is generated because

preset and clear are changing at the same time before either

preset or clear was able to cause a change to the output of

the flip-flop . Notice that this situation is self—

correcting if either clear or preset remains low for a

suff icient amount of time.

In the following sections , the JK master-slave flip-

flop model is used in conjunction with the combinational

log ic model to simulate realizable circuits . Having fully

established the operation of a single element , it is now

time to demonstrate the simulation of a complete circuit.

L~~~. S 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


66

C I R C U I T NUM BE P • 3

* * * * * *4 * * * 4 * * ERROR ME SSAC E S*****I 4 * 4 * 4 4* 4

ERRO R • 3 TIME • 9 ELEM EN1 • 1

ERROR • S T I M E • 2’. ELE MENT • 1

E R R C P • 7 TIME 29 ELEMENT • 1

CIRCUIT N UMBE R • 3

l IME ELEMENT E~uM8EF- T IME

2001 1 1001 1002 1003 1004 1005 H

0 0 1 0 1 I 1 1 0
1 0 1 1 1 1 C. 1 1
2 0 3 1 1 0 1 2
3 Ci 1 1 1 1 7 0 3
4 0 I 1 1 1 0 0 4
5 0 1 0 1 1 0 C 5

0 1 0 1 1 0 C 6
7 1 1 0 1 1 0 0 7
8 1 1 0 1 1 0 0 8

1 1 0 1 1 1 1 9
11 A 1 0 1 1 1 1 10
11 1 A 0 3 1 1 1 11
7? K 1 0 1 1 0 3 12
13 1 1 1 1 1 3’ 1 13
1’. 1 1 1 1 1 0 1 1’.
L . a A A 1 1 1 0 1 15
16 1 X 1 1 1 0 1 3 6
17 1 x 0 1 1 1 1 17
1” 1 0 0 1 1 1 7 18
j O 1 Ca 0 1 1 1 1 19
20 1 0 0 1 1 1 1 20
21 1 0 0 1 1 0 1 21
2 2 1 3 0 1 1 0 1 22
23 1 0 0 1 3 1 0 23
2’. 0 0 1 1 1 1 24
2’. 1 A 1 1 1 1 1 25

A A 1 3 1 1 1 26
27 A 1 1 1 1 1 1 27
21 1 A 1 1 I 1 1 28
20 1 0 1 1 1 1 29
31- 1 0 1 1 0 1 30
31 1 0 1 1 1 3.1
3? / 1 0 1 1 2 1 32
:4 - 1 0] 1 c 1 33

1 1 0 1 (a 1. 34
I A C’ 0 1 35
1 0 0 1 . 0 1 36

37 0 1 2 1 1 1 37
3r~- 1 0 1 3 1 1 1 38

a

1 -) 1 1 1 1 39
‘, Cs 1 . 1 1 1 1 7 ‘a)
‘ a) 1 3 0 1 1 1 “1
-.2 1 0 0 1 1 1 1 42

1 0 0 1 3 1 1 43
1 1 0 1 1 1 1 ‘.4

‘.5 1 1 1) 1 I 1 ‘.5

Fig. 18. ‘~~-cuit 3 run 5.

- - . 5 . --s-~~~~~~ - 5 - ~~~~~- -
j

- - : . - -~~~- -~~~~~~~~~~~~ - -~~~~ -‘ -.5~~—--~~~~~~~~~~~~~~

1

67

CI RCUIT NUMBER • 3
‘a

•4 * # * * * * * *4 * * ~~RRUR ME S S A G E S * * * * * ~~4 * *~~****
E R R O R • 6 11Mb • 13 ELEMENT • 1

CIRCUIT NUMBER • 3

T I M E E LE MENT N U M B E R TI M E

2001 1 1001 1002 1003 1004 l(C’ S
0 0 1. 0 1 1 1 1 0
1 0 1 1 1 1 1 1 1
2 0 1 1 1 1 1 1 2
3 0 1 1 1 1 1 1 3
‘4 0 1 1 1 1 1 1 4

5 0 1 0 1 1 1 1
6 0 1 0 1 1 1 3 6
7 0 1 0 1 1 1 1 7
8 1 1 0 1 1 1 1 8
9 1 1 0 1 1 1 1

10 1 0 0 1 1 1 1 10
11 1 0 0 1 1 1 0 U
1? 1 0 0 3 1 3 0 12
13 1 A 1 1 1 0 3. 13
14 A 1 2 1 1 0 1 14
15 1 1 1 1 1 0 1 1’.
l b A 1 1 1 2. 0 1 16
17 1 I 0 1 1 0 1 17
1€ I 1 0 1 0 7 28
19 1 0 0 1 1 0 1 19
20 1 3 0 1 1 1 1 20
21 1 3 0 1 1 1 1 2 1
2? 1 0 0 1 1 1 1
23 1 0 0 1 1 1 1 23
24 1 0 0 1 1 1 1 2’.
25 1 1 1 1 1 1 2’.
2ts 1 0 1 2 1 1 1 26
27 1 3 1 1 1 1 1 27
2t1 1 0 1 1 1 1 1 23
29 1 0 0 1 1 1 1 29
30 1 0 0 1 1 1 1 30

1 0 0 1 1 1 1 33
32 1 1 0 1 1 1 1

1 1 0 1 1 1 1 33
34 0 1 0 1 1 1 1 34
31.’ 0 1 0 1 1 3 1 35
11 2 1 0 1 3 1 3 35
37 C 1 1 1 1 1 7 37
3t 0 1. 1 1 1 1 1 3.8

i. 1 1 1 1 1 1 39
0 1 1 1 1 1 1 ‘.0

‘.1 0 1 0 1 1 1 1 ‘.1
‘.1 0 1 0 3 1 1 1 42
‘.3 0 1 0 1 1 1 1 ‘.3 —

4 ’. 1 1 0 1 1 1 1 ‘.4
1 1 0 1 1 1 1 ‘iS

a

Fig. 19. Circuit 3 run 6.

68

b~~nonstration of an Odd-EvenDetector Circui t
‘a

F’iqure 20 is a diagram of an odd—even detector . It

is ~~t sequential circuit with two pulse inputs , A and B , and

a single level output z. Following a pulse on line B, the

output z is to be 1 provided there has been an even number

of pulses on line A since the previous pulse on line B.

Otherwise , a B pulse will reset the output to 0. The output

will not change except on the arrival of a B pulse. The

in ten t of the example is to determine whether the circuit

presented is or is not the best design , and in turn to

demonstrate the usefulness of a level mode simulator like

EVESIM.

The element delay parameters used for the first run

are in Table 4. The circuit diagram is contained in Fig.

20. Under the conditions of Table 4, the circuit functions a

as it should and the output of the simulator , Fig. 21,

verifies that it does function correctly . However , the

circui t does not function correctly if the pulse on line B

is made wider and gate number 4 is made faster. This situa—

tion causes flip-flop 2 to change value very fast; thus,

the inputs to flip—flop 1 will be unstable while the clock

pulse to flip—flop 1 is s t i l l high. The parameters for

gate 4 are changed to tpLH = 10 nanoseconds and tPHL

nano seconds and pulse B is w idened to 45 nanoseconds . With

- 5 - -S -~~~~~~~~~~- s --- -s-~~~~~~~~ j

-

~~~~~~~~~~~~~~~~~~~~~~~~ 
f- -s----~~~ 

69

A 1001 CLOC K 2

B 1002 ,~~.. I

__________________ a~

• Fig. 20. Odd—even rietector circuit no. 5.

-S —~~~ - -



S -.5- - -~~~ - -- ~~~~~~~~~~ ------ - - - - - ---

I

70

Table 4 . Odd—even detector circuit parameters.

‘a

1. Greatest Common Divisor = At = 5 nanoseconds

2. Flip-Flop Data
a. Clocked input data

tPLH 
= 25 nanoseconds n = 25 5 = 5 Simulation - 

-

Times

tPHL = 40 nanoseconds n = 40 5 = 8 Simulation
Times

Minimum allowed clock pulse width = 20 nanoseconds
NPCWID = 2 0 5 = 4 Simulation Times

b. Reset Input Data
tPLH = 15 nanoseconds n = 15 -

~ S = 3 Simulation
Times

tpHL = 25 nanoseconds n = 25 5 = 5 Simulation
Times

Minimum allowed reset pulse width = 25 nanoseconds
NPPWID = 25 5 = 5 Simulation Times

3. Inverter Data
tPLH = 15 nanoseconds n = 15 -i 5 = 3 Simulation

Times

t = 10 nanoseconds n = 10 5 = 2 SimulationPHL Times

_ _ _ _  --—-- - -5- — - -  ~~~~~~~~~~~~~~~~~~~~~~~~~ 



71

‘a

CIRCUIT NUMBER • 5

TIME ELEME NT NUMBER TIME

S 1 2002 3 4 1001 1002
0 0 1 0 1 0 0 0
1 0 1 0 1 1 0 1
2 0 1 0 1 1 0 2
3 0 1 0 1 1 0 3
4 0 1 0 1 1 0 4
‘- 0 1 0 1 0 0 5
o 0 1 0 1 0 0 6
7 0 1 0 1 0 0 7
8 0 1 0 1 0 0 8
9 0 1 0 1 0 0 9

10 0 1 0 1 0 0 10
11 0 1 0 1 0 0 11
12 0 1 0 1 0 0 12
13 0 0 0 1 0 0 13
14 0 0 0 1 C 0 34
15 0 3 0 1 0 0 15
16 0 0 1 1 0 0 16
17 0 0 1 1 0 0 17
18 0 0 1 1 1 0 18
19 0 0 1 1 2. C’ 19
20 0 0 1 1 1 0 20
21 0 0 1 1 1 0 21
22 0 0 1 1 0 C 22
23 0 0 1 1 0 0 23
24 0 0 1 1 0 0 24
25 0 0 1 1 0 0 2’.
26 0 0 1 1 0 0 26
27 0 1 1 1 0 C 27
2 1 0 1 1 1 0 0 29
29 0 1 0 1 0 0 29
30 0 1 0 1 0 0 30
31 C 1 0 1 0 1 31
32 0 1 0 1 0 1 32
33 0 1 0 0 0 1 33
34 C 1 0 0 0 1 34
35 0 1 0 0 0 0 31.’
35 0 1 0 0 0 0 36
37 0 1 0 0 0 0 37
38 0 0 0 1 0 0 39
39 0 0 0 1 0 0 39
40 1 0 0 1 0 0 40
41 1 1) 1 1 0 0 41

— 4 ?  1 0 1 1 0 0 4 2
4 - i 1 0 1. 1 0 0 ‘.3
a,4 1 0 1. 1 0 C 4 4
4 ’ . 1 -2 1 1 0 0 4 5

Fig. 21. Circuit 5 run 1.

~~~~~~~~~~~~~~~~~~~~~~ - - - ~~~~ - - - —~~~~~~~ -5- - -~~~~~~~~~--5. - -


-~~~~~ —-

72

these changes , which are not unreasonable , the circuit no

‘a longer functions correctly as indicated in Fig. 22.

Demonstration of an Up-Down
Gray Code Counter

The final circuit to be demonstrated is an up-down

self-correcting gray code counter. The circuit has three

input signals , a control signal X , a control signal K , and

a clock input. When X = 1, the counter counts up, and when

X = 0, the counter counts down. The K input controls when

the counter shall be allowed to count. K = 0 does not allow

counting, and K = 1 allows counting to occur . A circuit

diagram of the counter is presented in Fig. 23. Typical

values for delays were assigned as indicated in Table 5.

Two runs were made. The first indicates proper functioning

and the second demonstrates a fatal user error.

Figure 24 contains the results of the simulation of

the counter as it performs all its required functions . The

circuit was driven with a clock pulse equal to approximately

8 mHz with a pulse duration of 36 nsec. Attempts to drive

the circuit with a faster clock failed , thus indicating that

this ci rcuit’s maximum counting frequency would be about

8.0 mHz. Assuming worst case delays and adding along the

longest propagation paths , Gate 10 (22 nsecs) + Gate 11

(4 0 nsecs) + Gate 7 (22 nsecs) + Gate 8 (22 nsecs) + Gate 12

(25 risecs)= 131 nsecs. This would result in a predicted

73

CIRCUIT NUM BER ~ 5

***** . , * * * * * * E R R O R M E S S A C E 5 * * ~~4S! .**.****

E R R O R 2 T ZME • 40 ELEMENT • 1

S - CIRCUIT NUMBLR 5

TI ME E LEt ~ENT NUMBER TIME

1 2002 3 ‘. 1001 1002
0 0 1 0 1 0 0 0
1 0 1 0 1 1 0 1
2 0 1 0 1 2 0 2
3 0 1 0 1 1 C 3
4 0 1 0 1 1 0
5 0 1 0 1 0 0 5
6 0 1 0 1 0 0 6
7 0 1 0 1 0 0 7

C 1 0 1 0 0 B
9 0 1 0 1 0 0 9

10 0 3 0 1 0 C 10
11 0 1 0 1 0 0 11
12 0 1 0 1 0 0 3 2
13 0 0 0 1 0 0 13

0 0 0 1 0 0 14
11. 0 0 0 1 0 0 15
16 0 0 1 1 0 0 16
17 0 0 1 1 0 0 17

0 0 1 1 1 0 19
1~a 0 0 1 1 1 0 19
21 0 0 1 3 1 0 20
21 0 0 1 1 1 0 21.

0 0 1 1 0 0 22
23 C 0 1 1 0 0 23
24 0 0 1 1 0 0 24
2 5 0 -3 1 1 0 C 25

0 0 1 1 0 0 26
2 7 0 1 1 1 0 0 27

0 1 1 1 0 0 28
29 0 1 0 1 0 0 29
30 0 1 0 1 0 C 30
31 0 1 0 1 1 1 31
32 0 1 0 0 0 3 32
3 3 0 1 0 0 0 1 33
34 C 1 0 0 0 1 34
iS 0 1 0 0 0 1 3 5
3f , 0 1 0 0 0 1 36

~ 7 C 0 0 0 0 I 37
iii C 0 0 0 C 1 39
30 2 0 0 0 0 1 39
4 0 0 0 1 0 0 0 40
.1 X 0 1 0 C’ 0 41

0 3 1 £ 0 4?
43 • C 1 1 C 0 ‘.3
4’. ‘ 0 1 1 0 0 ‘44
41. /- 0 1 1 C 0 4 5

Fi g. 22. Circuit S run 2.

— -
~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -a - - - -a -~~ _— 

-

74

‘a

T~.
~~~~~ ~~ - r ’  ‘~~ ,~, 

1.4

0

~~~~

‘-Ia)
0
CN

0

- - - -~~~~~~~ ~~~~~~~~~~ 5 --
~~~~~~~


75

Table 5. Up-down gray code counter circuit parameters.

‘a

Gate n (t PLH) n (t puL)

JK Flip—flop 3 (18 NSEC) 5 (36 NSEC)

WAN D 2 (12 NSEC) 1 (6 NSEC)

XOR 3 (18 NSEC) 2 (12 NSEC)

Greatest Common Divisor = 6.

—-------- - -

76

‘a

C IRCUI T NUM BE R • 4

TI M E E L E M E N T N0~ B E R T I M E

1 7 3 4 5 10 1001
0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 1 1
2 0 0 0 0 0 0 1 2
3 0 0 0 0 1 0 1 3
4 0 0 0 0 1 0 1 4
5 0 0 0 0 2. 0 1 5
6 0 0 0 0 1 0 1 6
7 0 0 0 0 1 0 0 7
8 0 0 0 0 C 0 0 8
9 0 0 0 0 0 0 0 9
10 0 0 0 0 0 0 0 10
11 0 0 1 1 C C 0 11
11~ 0 0 1 1 0 0 0 12
13 0 0 1 1 0 C 0 13
14 0 0 1 1 0 0 0 1’.
1’. 0 0 1 1 0 0 0 15
16 0 0 1 1 0 0 0 16
17 0 0 1 1 0 0 0 17
18 0 0 1 3 0 0 0 13
1’-’ C 0 1 1 0 0 0 19
20 0 0 1 1 C 0 0 20
21 0 0 1 1 0 0 0 21
22 0 0 1 1 0 0 1 22
23 0 0 1 1 0 0 1 23
24 0 0 1 1 1 0 1 24
25 0 0 1 1 1 0 1 25
26 0 0 1 1 1 0 1 26
27 0 0 1 1 1 0 1 27
21 C 0 1 1 1 0 0 23
2~ C 3 1 1 0 0 0 29

0 0 1 1 0 0 0 30
3 1 0 0 2. 1 0 C C’ 32.
3 ’ 1 0 1 1 C 0 0 32
33 1 0 2. 1 0 C 0 33
34 3 0 1 1 0 0 0 34
3 5 1 0 1 1 0 0 1 35
1’. 1 0 1 1 0 0 7’ 3o
37 1 0 1 1 0 0 C. 37
36 1 0 1 1 0 0 C 38
39 1 0 1 1 0 0 C- 39
‘.0 1 0 1 1 0 0 C 40
41 1 0 1 1 0 0 0 ‘.1
4 ? 1 0 1 1 0 0 C. 42
43 1 0 1 1 C’ 0 1 43
44 1 0 2 1 0 C 2 44
‘.5 1 0 1 3 1 0 1

1 2 1 1 1 0 1 ‘.o
‘.7 1 0 1 1 1 1 1 4 7

1 0 1 1 1 1 1 45
I 0 1 1 1 1 0 ‘.9

Fig. 24. Circuit 4 run 1.

- -
~~~~~

-
~~ 

- A



-- - -~~~~~~-S~~~~-a~~ 
.
~~~ 

- -

77

‘a

50 1 0 1 1 0 1 C 50
51 1 0 1 1 0 C 81
52 1 0 1 1 0 C 0
53 1 0 1 1 0 0 2 53

1 1 1 1 0 1 0 54
a 1 1 1 1 0 0 0 55

56 1 1. 1 1 C 0 0 56
1 1 1 1 0 0 0 57

58 1 1 1 1 0 0 0 53
59 1 1 1 1 0 0 0 59
60 1 1 1 1 0 0 C oC
61 1 1 1 1 0 C 0 6 ’.
62 1 1 1 1 0 0 7’

1 1 1 1 0 C C- £ 3

64 1 1 1 1 0 0 1 64
65 1 1 1 1 0 C 1 65

66 1 1 1. 1 1 0 1 65
67 1 1 1 1 3 0 1 t7
58 1 1 1 1 1 1 1 68
59 1 1 1 1 1 1 1 69

70 1 1 1 1 1 2 0 70
71 1 1 1 1 0 1 C - 71
72 1 1 1 1 0 C 0 72

73 1 1 1 1 0 0 0 73
74 1 1 1 1 0 0 C 74
75 1 1 1 1 0 0 - 1. 75
76 0 1 1 1 0 0 C 76
77 Ca 1 1 1 0 C 0 77

0 1 1 1 0 0 C 78

0 1 1 1 0 0 0 79
30 C 1 1 1 0 0 0 80
81 0 1 1 1 0 0 0 81

0 1 0 C C 82
23 0 1 1 1 0 0 0 83

0 1 1 0 0 0

35 0 1 1 3. 0 0 1 05
C 3 1 1. 0 0 1 66
0 1 1 3 1 0 ‘37
0 1 1 3. 1 0 1 438

3 4 7’ 1 1. 1 1 0 1 89
0 1 1 1 2. 0 1 90

91 0 1 1 1 1. 0 0 91
0 1 1 3. 0 0 0

.2 C 1 1 1 0 0 C 91

56 0 1 1 1 0 0 0 94
0 L 1 1 0 0 0 96

‘7’ 0 1 1 1 0 0 0 96
0 1 0 1 0 0 0 97

0 1 0 I 0 0 0 98
4.9 0 1 0 1 0 0 0 99

2.00 0 1 0 1 0 0 0 100

Fig. 24.——Continued Circuit 4 run 1.

L - -
_ _ _ _

P.- -- - -~~ —

78

‘a

101 0 1 0 1 0 0 0 101
102 0 1 0 1 0 0 0 102
103 0 1 0 1 0 0 0 103
104 0 1 0 1 0 0 C 104
10’. 0 1 0 1 0 0 C— 109

0 1 0 1 0 0 1 106
107 0 1 0 1 0 0 1 107
100 0 1 0 1 1 0 1 100

0 1 0 1 1 0 1 109
110 0 1 0 1 1 0 3 110
111 0 1 0 1 1 0 1 111
1L2 0 1 0 1 1 0 C 112
1 1 3 0 2. 0 1 C 0 0 113

0 1 0 1 0 0 0 114.
112 0 1 0 1 0 0 C 115
115 0 1 0 1 0 0 0 115
117 0 1 0 1 0 C 0 117
31 43 0 1 0 0 0 0 0 2 1 8
114. 0 1 0 0 0 0 C) 319
120 0 1 0 0 0 0 ‘3 120
121 0 1 0 0 0 0 0 121
1?? 0 1 0 0 0 0 3 12?
123 0 1 0 0 0 0 0 123
12 ~ 0 1 0 0 0 0 C 32’.
125 0 1 0 0 0 C 0 125
125 0 1 0 0 0 0 0 126
127 0 1 0 0 0 0 1 127
128 0 1 0 0 0 0 1 123
124 0 2. 0 0 1 0 1 229
130 0 1 0 0 1 0 1 130
131 0 1 0 0 1 0 1 131
J~~2 0 1 0 0 3. 0 1 13~
133 1 1 C 0 1 0 0 133
1 3 4 -2 1 0 0 0 0 C 134
131. 2 1 0 0 0 0 0
13 t- 2 1 0 0 0 0 C 3 3 6
137 C’ 1 1 0 0 0 C.
lIt 2 1. 1 0 0 0 0
334. 0 1 1 0 0 0 0 13s
2 . 1 1 1 0 0 7- 1~.C

3- 1 1 0 0 0 0 141
1.2 0 1 1 0 C 0 0 142
3’ . ’ 2 1 1 0 0 0 0 34 ’
14’. 0 3. 1 C- 0 7’ 0 14’.
1 4 1 . 0 1 1 0 C C 0 145

C 1 1 0 0 C. C 146
14 7 C 1 1 C 0 0 0 347
14 -’- C 1 1 0 2 0 1 148
144. 0 1 1 0 C C 1 149
1~~C, 0 1 1 0 1 0 1 150
121 U 1 1 0 1 0 1 151

Fig . 24. --Continued Circuit 4 run 1.

- - - ~~ - ,~~-~~ . - ~~~ - - - - —- -

79

‘a

162 0 1 1 0 1 0 1 152
153 0 1 1 0 1 0 1 153
154 0 1 1 0 1 0 C’ 154
155 0 1 1 0 0 0 C 15 5
155 0 1 1 0 0 0 0 156
1 5/ 0 1 1 0 0 C C 157

1 1 1 1 0 0 0 I5~1 1 1. 0 1 0 C
lsC 1 1 1 0 C’ C’ 3 6 0
3 4 3 1 1 1. 0 0 C 0 161
162 1 1 2. 0 0 0 0 162

1 1 1 0 0 0 0 143 3
164 1 1 1 0 0 0 0 1k’ .

1 1 1 0 0 C 0 165
1 3. 0 0 0 0 3 5 6

1 4 3 7 1 1 1 0 0 6 C 1~~7
1~~5 1 1 1 0 0 0 0 3643
164. 2. 1 3 0 0 CL 1 143 9
1 / 3 - 1 1 2. 0 0 C 3. 170
171 3 1 1 0 1 0 1. 171
17? 1 1 2. 0 1 0 1 17?
173 1 1 1 0 1 1 1 173
174 1. 1 3. 0 1 1 1 174
175 1 1 C 1 0 172
l/t 3 1 1 0 0 1 C 3143
177 1 1 0 0 0 7’ 177
1743 1 1 . 0 0 0 0
17~ 1 1 1 C 0 0 0 376

1 1 1 0 0 0 0 1~~0
131 1 1 1 2 0 0 1 161

1 0 1 0 0 0 C 1~~2
183 1 1 1 ‘1 0 C 0 1 4 3 3

I 0 2. 0 0 0 0 164
185 1 0 1 0 0 0 0 185
1431- 1 C 1 0 0 C 0 lrb
117 I 0 1 0 0 C 0
1 5 8 1 0 1 0 0 0 3 8 4 3

1 0 1 0 0 0 7’ 143 9
190 3. 0 1 0 0 0 1 14.0
I’ l l 1 1 0 0 0 1 191
192 1 -, 1 1 0 1 1Q2
l~~3 1 0 1 0 1 0 1 193
1’’. 1 0 1 0 1 1 1 19’.

0 1 0 1 1 1 195
1 1 1 0 1 2 0 196

1’~ 7 1 0 1 0 0 1 0 197
14.0 0 A 0 0 0 0 198

1 0 1 Ca 0 0 0 14.4.
2 0C 1 3) 1 0 0 0 0 200
201 1 0 1 0 0 3-’ 0 201

0 0 1 0 0 0 0 202

Fig . 24 .--Continued Circui t 4 run 1.

~

:
I

too

Fig. 24.-—Continued Circuit 4 run 1.

. 5
- ~~~~~~~~~

--

r _ _ _ _ _
- -

81

‘a

2 5 ’, 1 1 I 1 1 1 2 - - - .
1 1 L I I
1 2. 1 0 1 3 - - ‘ - 4

• 2 1 I 1 15/
(~~~ 1 t I . . 0
- ‘ - a ’ I 2. 3. 1 0 1 —

• 2. 1 U I.
.41 1 1 0 1 1.

~~ 1 1 1 2. u 0
•~u3 1 1 0 0 - .

4 .2 C
• 1 1 0 C ‘ - *

- - I I . 0 ~
- -

‘-a 2. 1 ‘_‘ 0 — C

“ I - ’ ‘-. 1 ‘3 II 3-
- ‘ - ‘ 0 1 (4 0 t. ‘

1” 7’ 1 2 0 v
. 7 1 3 3 0 0 1

I 2 0
- ‘1 v 3 1 -

—

5 p ’ • 1 r

- - ‘ — -a 1 • I .
- ‘a 3 1 -

. 7 . - - 2.
379 0 1 ‘ 3 -

-

(I I,. ‘ 0
I I 0

2 7 - - • •~~

0 1 ‘ 0 1 ‘‘
I

£ V C - ‘ a

l~~5 0 1 I) 0
0 • 0 ~. 3 - 1 0

0 I 0 0 - -
z e’

0 1 0 ‘ 0 1a 1
‘2 1 0 .

2 . . 0 2. 0 3 0
2~~~~L 0 ‘, 0 Ci ‘‘1 1
29? ‘3 1 0 0 6- -

0 • 0 C C (. li i
2 ’ - . 0 0 0 0 0 I -

1.5 0 3 0 0 0 C
2’” 0 I 3 0 1 2.’ 3
i . P

~-a 3 0 -3 I ‘ :
0 2. 0 0 2. 0

2 . ’ -. 0 0 C.
101 0 1 0 0 1 0 1 . 3 - 0

01 0 1 0 0 0 7 3. 101
1,. . ii 1 ‘3 0 0 0 ‘12

U 1 0 0 0 (.- 0
0 1 2. 0 0 C 90 ’.

Fig . •‘4 .—— CO fltlnued Circuj’ 4 run 1.

—~~~~~~
- —

82

1 4” - 0 1 0 1 0 0 0 305
0 I 0 I 0 0 C 3 (1

‘ - 7 1 0 1 0 1 0 0 0 307
0 1 0 1 0 0 0 IC’-

30 . .., 1 0 0 (1’ C 304’
‘I t ’ 0 1 0 1 0 0 C ~ 10

0 1 0 1 0 C 7’
4I~

_
C 1 0 1 0 0 0 3 3 2

‘ - I ’ 1 0 1 C- 0 r- 21 3
3-’ 1 0 1 0 0 0 33 ’ .

‘ 1 5 0 1 ‘3 1 0 C’ I C ’ S
I I . 1 0 I 0 (
.1. 1 0 1 1 31 1 7 3 7

2 0 3 1 0 1 3 1M
3 2 - . 1 0 1 1 0 1
I , — 1 0 1 1 1, 2.
I C- 1 0 1 1 C 0 3fl

4 1 0 1 0 7’ C
I .3 3 0 C’ V 3 2 3

‘a -
.’. • . 0 1 0 CL’

0 1 1 1 0 1’ ‘ 3V
I ’ ’ 2. 1 0 3 - ’ 3--

I I • C 2.. r

-
- 1 I C C U 3 . ’ ” -

9 ’ -. - 3 1 2 3.
- ‘ 3 1 C’ C

‘ . 2 ‘ I 2 C C C I ’ -)
- - 2 1 C C C’
- I I L C 3-. ‘- ‘3

- 1 1 0 0 0 3 3 ’ .
• 3 1 0 c (a

I. I 2 0 C’ I
- p : 1 0 C

- ‘ I ‘ I I V

- I C ‘

• I I 2 1 0 I 3 ’ . ’.
— I I • 3- I ‘ ‘a

-
~ 1 2 2 0 CL ‘ C l

‘I . 1 C’
‘ ‘a . . & I • C 7

1 0 C L

3 1 1 0 (a 31.1

- , - 1 1 1 3. C’ .
1 2 1 4. 3-

~~1 . • • I C’ C ‘ ‘ a .
• I 1 1 ‘ 0 CL’ C’ .50
‘ - 1 1 2. 1 C “ C ‘31

3 1 1 2 V C’ C’
1 1 1 I 0 0 0 3 1 1

92’ 2 1 1 1 0 0 CL’
1 2. 1 1 0 0 0 ‘55

F’ j * I . 24 ..——Contjnued Circuit 4 run 1 .

_ _ _ _ _ _ _ -. - --—~~~~- ------------- - - - -

83

‘a

1 2. 1 0 C C 356
3~~7 1 1 1 1 0 0 I 357

3. 3 1 1 0 0 1 ‘58
l 1 1 1 1 C- I 3~~~3oO 1 3 1 1 1 C - 23-0

3. 1 1 1 1 1 343 1
1 1 2. 1 1 3
1 1 1 1 1 1 0 3b 3
1 1 3 1 0 0 3~~4

) t)’) 1 3 1 0 0 0 3 4 3 5
1 1 1 0 C (.

1 1 1 1 C’ C’ (. ~o7
1 1 1 1 0 L- C’

3”. 1 1 1 1 0 C’ 0
1 0 1 1 0 C 0 375,

~71 1 0 1 1 0 0 C’ 3 7 1
C l ? 1 0 1 1 C- C’ C 37?
‘P 3 1 0 2. 1 0 0 7’ 373
37~ 1 .‘ 1 1 0 C t- 7 ’ .

1 0 1. 1 C :‘ 7 -,
2. 0 3. 1 0 C -I

. / ? 1 1 3 0 0 1’ 3 7 7
~7,. 1 ‘3 1 1 0 0 2. 3 7 4 3
4 / , 1 a) I C 0 1 ~79
IdO 3 7’ 1 1 1 0
C ’ I 1 0 I 1 1 C 1 3 n 1

0 1 1 1 1 1
1 0 1 • 1 3 2. l~~2 0 1 1 1 7’
1 ‘3 1 3 0 1 C 3~~1 .3 I 0 0 0
• 0 1 0 0 C 3 - 7

ibd 1 ‘3 1 0 C C
• 1 0 3 1 0 C’ C 3 39

‘ ‘ 1 0 4) 2. 1 C C • - ‘ ‘1
a) 0 I 1 0 4. C -‘ c i
0 3 2. 0 a. C’

3 ’ ’ ..~ 0 1 1 0 1 0
3 1 2 7’ 0 C ~c 4

l a 0 0 I 1 0 0 CL
0 3) 1 2. C 0 ~.

3 . 7 4.’ 3 1 I 0 31 C
I 0 1 1 0 C 2.3

3 ’ ’ .3 ‘2 1 1 .2 0 1
31 0 1 1 0 0 2. 400
0 ‘7 1 1 I 7’ 3. 4 0 1

• 0 0 3. 1 1 1- ‘ .22
0 0 1 1 1 0 1 403
0 7 2. 1 CL 1 4 .04
0 1 1 1 0 C 405
0 0 1 1 0 0 0 4 06

Fiu . 24 .——Con tinued Circuit 4 run 1.

-
_

2

~~ ~:

UI
Flu . 24.-—Continued Circuit 4 run 1.

j

~
- ‘ __ — - _ _

85

clock frequency of 7.6 mHz. Certainly , the simulation is

valid.

Figure 25 is provided in order to point out what

happens when the user makes an input control error . Notice

that the user has requested output for element number 35.

Referring back to Fig. 23, it can be seen that no such

element existed .

CIRCUI T NUMBER = 4

*************E RRDR ME SSAGES**************

ERRO R 2C5 TH IS IS A F A TAL ER R OR

LIST OF REQUESTED ELE MENT OUTPUTS
1 2 3 4 5 35 1001 —0 —0 —‘0 —O —o

Fig. 25. Circuit 4 run 2.

‘a

CHAPTER 7

U SER ’S GUIDE TO EVESIM

Th is chapter describes the use of EVESIM as it

exists at The University of Arizona. It outlines the

control cards required and the input data format . Also

included is a detailed list of the existing error messages

and their interpretation . The last two sections of the

chapter are dedicated to explaining the debug capabilities

of the program and explaining how a user would write his

two element models.

General Input Data

There are two phases to the process of using

EVESIM. The circuit to be simulated must be prepared for

the simulation and the required data must be punched on

cards . Though the circuit preparation requirements have

been discussed throughout the previous chapters , it is

repeated for user clarity . -
‘

Circuit Preparation

EVESIM must be provided with a descript ion of the

actu,ail circuit to be simulated. The information is taken

from the circuit diagram . This requires that each element

86

- —---.~~ --- - —~~~--,-— - - - -

r
87

have a unique number for identification. The numbering is

‘a
bequt-i it I and continues sequentially through n elements .

An EVESIM user must then refer to a manufacturer ’s

logic data book and determine the values for tPLH and t PHL

for all the elements in the :ircuit. From this information

the user should determine a value for At which by definition

is the greatest common divisor of the element delays. All

element delay time s are then determined by ne De
-: At

where D
e

is the element de lay s tPLH or tPHL as appropriate.

As an example , consider two types of elements with delays

tPLH1 = 10 nsec , tpHLl = 6 ns o~., tpLH2 = 12 nsec , and

tPHL2 = 8 nsec. The greatest common divisor (At) is 2 nsec.

The values for n are then computed :

2
~lLH lO

~~~~
2 5  n lHL 6 . 2 3

“
~2LH 1 2 2 6  n 2HL 8 . 2 4

One simulation time is now equivalent to 2 nsec and all

delay parameters have been defined in terms of simulation

times. It should be noted that all timing information now

required as input data shall be in this same format ,

adjusted by At.

Card Input Format

The data cards are presented and discussed in the

sequence that they should appear for a proper program

execution . The normal system control cards required are :



r

ItT’~~ AD—A052 613 AR IZONA (Idly TUCSON DEPT OF ELECTRICAL £NeINURINS F/S 9/2 N
SINILATIGN OF DISITAI. CIRCUITS. (U)
1976 D N NOEN

L$&CLASSIFIED It

_ _ _  

U!!! I

I



-T

88

JOB CARD , CM70000

ATTACH (SIM, ID = MOEN)

SIM

7,’8/9

The circuit data cards follow the system control

cards . Unless otherwise noted , all numbers are right

justified integers in 5 column fields .

Card 1: Title Card. The first 10 columns are used for

the month , day , and year; for example , MarlO ,l975.

The circuit number is right justified to column 20.

The total number of simulation times to be executed

is right justified to column 25 and the debug mode

indicator is right justified to column 30. The use

of debug is discussed later.

Card 2: Circuit Parameters . NGATE is the total number

of elements in the circuit (col. 1-5). NEXIN is the

total number of external inputs to the circuit (col.

6—10).

Card 3: Element Description . Each circuit element

description is contained on a single card . That is ,

each element in the circuit will have a card with

the following format :

Element circuit number (col. 1-5).

Element type (col. 7-10). The element type must be

one of the following: JKM1 , NAN2, NAN3, NAN4,

NAN8, NOR2, INVE, XOR2 , 0R2 , or AND. All



- -

H 89

flip-flops are to be listed first. Then all

other memory devices followed by the combina-

tional logic elements.

Element input connections to this element. They are

listed in 5-column fields beginning with columns

16-20 up to column 45 and then beginning with

columns 56-60 up to column 75. The maximum

number of inputs is 10. External input X is

designated by 1000 + X. A constant logical 1 is

indicated by 1000. A constant logical 0 is

indicated by -1000. The second output of an

element Y , for example ~ of a flip—flop , is

indicated by 2000 + Y. The third output would

be indicated by 3000 + Y, etc.

Element delay information appears as indicated below

(right justified) :

clocked or normal tPLH (col. 47-48)

clocked or normal tPHL (col. 49-50)

preset , clear or second tPLH (col. 51-52)

preset , clear or second tpHL (col. 53-54)

Card 4: Memory Element Information .

• LFF is the total number of flip-flops (col. 1-5)

LOM is the total number of other memory type

elements (col. 6-10)

NCLWID is the . -‘irimt~ c’ock pulse width

(col. 11—15)



90

NPCWID is the first minimum preset or clear pulse

width (col. 16—20)

NCLW2 is the second clock pulse width (col. 21-25)

NPCW2 is the second minimum preset or clear pulse

width (col. 25—30)

Card 5: Initial value of the Q output of all flip-flops,

listed in order as they appear above, beginning with

column one. Every column is used. A 0 represents

logical 0. A 1 represents logical 1. A 2 repre-

sents an unknown condition.

Card 6: Same as card 5 except for all other memory

devices , if any , otherwise skip this card.

Card 7: Initial value of external inputs listed in

order, beginning with the clock (1001). Again ,

each column should have a 0, 1, or 2.

Card 8: Initialization parameters LIMIT is the limit of

the number of attempts that will be made to

initialize . LOVER is set to 1 if the user desires

to override LIMIT, otherwise LOVER is left blank .

Card 9: External Input Changes.

IETIME is the simulation time that the indicated

external inputs are to change value (col. 1—5)

INUV(15,2) is the number (1000 + K) of the external

input that is to change and the value (0, 1, or

2) to which it is to change. The number appears

in 5-column fields beginning in columns 7-11,

— ~~—---- ~~~~ A



91

the first four (7—10) columns contain the

external input number and the fifth column (11)

contains the new value of the output . This can

be repeated fifteen times per card ; however ,

only events for the time indicated in the first

five columns can be on a card .

Following the circuit data cards , a 7/8/9 card is

used to separate the output requirements card , card number

10.

Card 10: Element Outputs to be Plotted . The numbers of

the elements to be plotted appear in 5—column fields

beginning in columns 6-10. Twelve numbers are

allowed per card.

The final card is a system control card . It is a

6/7/8/9 card.

Error Messages

The error messages can occur as either fatal or non-

fatal. Fatal errors are indicated by numbers greater than

199. Non-fatal errors are less than 199.

Fatal Errors

Fatal errors cause execution to stop in all cases

except error 203 which has an override condition . Normally ,

the fatal errors are programming errors . The present fatal

nrror messages are as follows:



• • • 
~
•—

~~~~~
--

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ •

• 92

Error 200: The user has asked for an element model that

• does not exist.

• Error 201: The user has specified an element that has a

fanout greater than 10.

Error 202: A memory type element is out of sequence as

required by data card 3.

Error 203: EVESIM was unable to initialize the circuit.

Increase LIMIT and/or set LOVER equal to 1 on data

card 8.

Error 204: Array LIST(I) is full and an attempt was

made to schedule another event. The user has

reached the limit of EVESIM. The array LIST(I) must

be increased in size.

Error 205: The user requested the output of an element

that could not be found in the output file.

Non—Fatal Errors

Non-fatal errors are errors that occur during the

course of a simulation of a circuit caused by generation of

illegal conditions within the circuit. These error messages

are intended to aid the user in identifying flaws in the

circuit design or implementation of a design. The existing

error messages are as follows :

Error 1: The input pulse to the clock input of a flip—

flop is too narrow.



93

Error 2: The J and/or K inputs to the JK master—slave

flip—flop are not stable while the clock is high .

Error 3: The preset and clear inputs to a JK master-

• 

• 

. slave flip-flop are changing to a high value at the

same time.

Error 4: The input pulse to the clear input of a flip-

f lop is too narrow.

• Error 5: The input pulse to the preset input of a f lip—

flop is too narrow.

Error 6: The preset and clear inputs to a flip—flop are

changing at the same time before either a preset or

clear input was able to cause a change on the output

of the flip-flop .

Error 7: The J and K inputs to a JK flip-flop have the

same value. The present state of the flip—flop is

unknown ; therefore , a new output cannot be deter-

mined .

Debug

During the course of the development of EVESIM, a

debug ability was integrated into the program . Originally ,

the intent for its use was only for development purposes and

was later to be removed from the program . However , it has

been left ir the progra-~ ~~.
- 

~n aid to continued maintenance

of the proqram .



94

Debug basically consists of three options. The

first is to leave column 30 blank on data card 1. This

effectively provides no debug information . A 1 in column 30

will execute all portions of debug. If DEBUG is set equal

to 2, array IDESOU(I ,J) is not printed . All other debug

information is printed . If DEBUG equals 3, array LCOUNT(I)

is printed .

Figure 26 is an example output for DEBUG equal to 1.

The first four lines is the array IDESCR(I ,J) as defined in

Chapter 3. The next 10 lines is the array IDESOU(I,J) also

defined in Chapter 3. The clock fanout is listed next. The

remaining information is self-explanatory .

Array LCOUNT(I) is used as a bookkeeper. It is used

to count the number of times a particular subroutine is

called during a simulation execution. Table 6 defines.

LCOUNT(I).

Adding Element Models

Table 6 indicates that there are more element models

available for use than were previously mentioned. These

include a D flip-flop (DET1), a 4-bit counter (COUN), a 4-

bit parallel—in-parallel-out shift register (SHRE), a 4—bit

adder (ADD4), and a BCD-to-decimal decoder (DECO). In

addition , an unused name for a combinational logic gate has

been provided called UNS. At this time , these models have

not been included in EVESIM. However , the overhead required



$
95

)

I

>-
o o a~~~

I I I I 
0 0

0 0

?~~~~~~~~
? ? e oo o o 0 00 0 0  

2.. o . .  o LU.LJ

:

~~~~~~~~

0
0

:

0

:

0

:

0

:

0

:

0

:

0

:

0

:

0

:

0

:

: J :~ :

~
~

0

• —~~~~~~~~~~ •~~~~~~~~--- -~~~~ -~~~~~~~~~~~- -~ -~~~~~~~~~—- --~~~~~~~~~~~~~~~~~

Table 6. Definition of LCOUNT(I).

I Subroutine

1 Output
2 FUNSIM
3 JKM 1
4 DET1
5 COUN
6 SHRE
7 MOD1

F

8 SCI-IED
• 9 UNSCHE

10 COMLOG
11 NAN2
12 NAN3
13 NAN4
14 NAN8
15 NOR2
16 INVE
17 XOR2
18 0R2
19 AND
20 UNS
21 ADD4
22 DECO
23 IODEST
24 ERROR
25 READIN
26 INCOND
27 INITIAL
28 PLOT1

97

has been programmed into EVESIM to include these models.

This has been done in order to facilitate the addition of

these models.

The user of the program is reminded that the model

is required to calculate when an event shall occur . The

actual scheduling of the event is accomplished through the

use of subroutine SCHED. Certain information must be

available to the model. This information is passed via

common Blocks. The required common Blocks are listed in

Table 7.

The values of IOD1-IOD12 have been established by

subroutine IODEST. IOD1 is the pointer to IDESOU(I ,J) of

the element being processed . IOD2-IOD12 are the pointers to

IDESOU(I ,J), which are the input elements to IODl , listed in

order. The value of the input is found by IDESOtJ (IOD~~ J05).

The new outputs are calculated and the times of change are

calculated. The times of change are placed in IDESOU(IODl~~1

J06) and the new values are placed in IDESOUT(IODln~
J07)

and NOUT(N). Subroutine SCHED is called to schedule the

events in the future.

In order to add more models than are listed in Table

6, additional changes must be made. The size of LTYAL (l6)

and LTNOU (16) must be increased to reflect the total number

of models . In conjunction with this Block Data subroutine

DES must be changed. LTYAL(n) must contain the new element

name and LTNOU(n) must cort~
4 n the number of outputs of the

98

Table 7. Common blocks required by subroutine models .

COMMON/ELEM/LECH , lET IME

COMMON/INCL/ICL (100,2), LIST(1024), LSP, LENCL, INUV(15,2)

COMMON/MACH/IND , INI

COMMON/DESCRP/IDESCR (100,19), IDESOU(350,l7), JIl , J12 , J13 ,
J14, J15, J16, J17, J18, J19, JIb , JIll , J112, J113, J114,
J115, J116, J1l7 , J118, J119, JOl , J02 , J03 , J04, J05 , J06 ,
J07, JOB , J09, JOb , JOll , J012 , J0l3 , J014, J0l5, J016,
.7017 , LISTCL(50)

COMMON/WORK/1001, 1002, 1003, 10D4, 1005, 10D6, 1007, 10DB ,
1009, 10Db , IOD11, 10D12, II, NOUT(10), NGATE, IEX , LFF,
LOM , LTYAL(16), LTNOU(l6), NAVL , IODL , NOW , NSCTI , LERROR ,
NEXIN, LFATAL

COMMON/VALE/LOW , LHIGH, LUNK , IFAN , LIMIT, LOVER

COMMON/DEBUG/ LBU, LCOUNT(40)

COMMON/WID/NCLWID , NPLWID , NCLW2 , NPCW2

99

• new element. NAVL must also be adjusted to reflect the

total number of models available. With these changes ,

additional models can be added as explained above .

-~~ — ~~~ •-•---- - -- - — -• - •~~~- • • •~~~~- • —rn

H

CHAPTER 8

CONCLUSION S AND RECOMMEN DATION S

EVESIM has been found to be an e f f e c t i v e program for

ana lyz ing a d ig i ta l logic c i rcui t . EVESIM provides a means

for the designer to quick ly verify his logic circuit designs.

EVESIM also gives the des igner a tool with which his design

can be optimized and quickly re—verified. The time con-

suming task and manually tedious operation of design verif i-

cation of logic circuits has been reduced to a computer

program.

Conclusions

The original objectives as stated in Chapter 1 have

been accomplished. EVESIM is a level mode simulator that

uses element level models. The efficiency gained in using

a time-driven event simulator have allowed the original

objectives to be expanded to include the use of three valued

logic and the individual assignment of delays depicting

whether an element output is rising or falling. In addi—

• tion , the use of an iterative process during initialization

has allowed a limited capability for circuit stability

analysis.

The three valued logic is used to identify illegal

conditions or unknown conditions generated in a circuit .

100

101

This information is used by the designer to improve his

design or identify flaws to be corrected in his design. The

three valued logic is also used during the initialization

process. The initialization of the circuit can then be

accomplished within the program without any requirements for

S ordering of the elements of the circuit.

The assignment of delays relative to whether a

• signal is rising or falling presents a much improved model

over other techniques. The modeling accuracy gained is in

keeping with the growing need for more accurate timing in-

formation as the speed of logic increases . This technique

also insures that EVESIM will not grow old and useless as

loc~ic families change.

Iterations are made through the circuit during

initialization until all unknown conditions are cleared and

no e~1ement outputs are still toggling, or until the preset

leve)~ of attempts to initialize is reached . If increasing

the n~imber of iterations does not result in the elimination

of el€~ments toggling, then those elements toggling are

flagged as being part of an unstable condition . Certainly ,

this may be part of the design , and therefore EVESIM has an

• override capability . However, at a minimum , the user is

made a~~re of the situation such that he can make a decision

as to w1~ethe~ it will ~~

tEVESIM has also pro .~ ded the user with an improved

ability ~to identify erro’~ ~~~~
‘ ~is circuit through the use of

- - ~~ - - -— -~~~~~~~~~~
— S—

~~~~~~
--

~
•
~~~


• 102

error messages. In conjunction with this , debugging in-

formation is available when it is needed .

It is hoped that most programming errors have been

eliminated from EVESIM. However, it is a rube of program-

ming that the elimination of one error is going to cause

another error some other place in the program . It is time

that EVESIM move from a development phase to a phase of wide

usage. It is during this phase of wide usage that those

hidden programming errors will be identified. It is hoped

that EVESIM will continue to grow and be expanded to include

the recommendations of the next section .

Recommendations

The process of developing a program is never ending.

If time were not a factor , the author could continue forever

adding to and improving the program. Areas of recommended

improvement for EVESIM are discussed here in hope that

someone may be able to include them in a future version.

Assignment of delay values can be partially auto-

mated . Certainly , it would be more realistic to assign

delays automatically by a random number generator process.

The limits of the random number generator could easily be

the minimum and maximum values of delays as depicted in a

data book. This would relieve the burden to the user of

assignment of “typical” delay values. In conjunction with

this process , the delay value assignment could also be

_ _ _ _

103

weiqhted by the fanout of the element. This would not be a

major extension since EVES~M ~tlready generates a fanout

description for other purposes.

A further extension of the delay information would

be to add a fourth logic va ue. The intended use of this

fourth value would be to indicate that an element output is

changing in value. ~rhis could possibly be defined as a

non-propagating unknown condition. It would represent the

element output during the time from when an input change has

occurred until the output was stable at its new value.

The timing mechanism for EVESIM is no longer very

efficient if the length of the internal clock is forced to

become very long as the result of a single long delay . For

example , a circuit containing a single one-shot element

would require the clock to be of the length of the one-shot.

This problem can be overcome by establishing an events queue

for events that are beyond the length of the clocking

mechanism. If these events are placed in a stack and

ordered by time , then after each pass through the clocking

mechanism , the event at the top of the stack is checked to

see whether the event will ~~t into the next pass through

the clocking mechanism. If it will fit in the time frame

of the next pass, it is then inserted appropriately into the

normal timing mechanism for processing . This technique

would be much more efficient than extending the length of

the clock to accommodate a single element.

104

The final recommendations is probably a much longer

range goal than the previous recommendations . The above

recommendations require minimal changes to EVESIM. How-

ever, it is considered that an extension to include an

• ability to perform critica’ race analysis would be an

ultimate and final addition to EVESIM. The inclusion of

this ability along with the existing SCRITSS test sequence

generator and the completion of the MACRO AHPL compiler

would provide maximum automation to logic circuit design.

-S
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



REFERENCES

Anwaruddin . “Efficient Simulation of Logic Networks. ”
Thesis, Department of Electrical Engineering ,
University of Arizona , 1969.

Breuer, M. A. “Functional Partitioning and Simulation of
Digital Circuits,” IEEE Transactions on Computers,
C—l9:l038—1048 (November , 1970).

Chappell , S. G., C. H. Elmendorf , and L. D. Schmidt.
• “LAMP: Logic—Circuit Simulators,” The Bell System

Technical Journal, Vol. 53 , No. 8 (October 8, 1974).

Components Group, Engineering Staff. The TTL Data Book for
Design Engineers. First Edition. Texas Instruments
Incorporated , 1973.

Hayes, Gwendolyn G. “Comput~r—Aided Design: Simulation
of Digital Design Logic,” IEEE Transactions on
Computers, C—18:l—1C (January , 1969).

Hill , F. 3., and G, R. Peterson. Introduction to Switchin~
Theory and LogIcal Design. 2nd ed. New York : John
Wiley and Son, 1974.

Larson, R. P., and M. M. Mano. “Modeling and Simulation of
Digital Networks,” Communications of the ACM, 8:
302—312 (May, 1965)

Stang , 0, R. “Simulation of a Small Logic System with a
FORTRAN Program ,” Computer Design, 7:56-60 (January ,
1968)

Stockwell, C. N, “Computer Logic Testing by Simulation ,”
IRE Transactions on Military Electronics, Mil—5:275—
282 (July, 1962)

Szygenda , S. A., and E. W. Thompson. “Digital Logic Simula-
tion in a Time-Based , Table.-Driven Environment ,
Part 1, Design Verification ,” Computer, Vol. 8,
No. 3, 24—36 (March, 1975).

Ulrich , E. G. “Exclusive Simulation of Activity in Digital
Networks,” Communications of the ACM, 12:102-110
(February, 1969).

b c



• ~~~~~~~~~~~~~~ •

106

Weingarten , F. W. “Simulation of Computer Logic by FORTRAN
ARITHMETIC ,” Communications of the ACM, 8:516-517
(August, 1965),

Williams , T. L. “Logic Design, Part 1,” Digital Design,
5:118—121 (April, l975a).

Williams, T. L. “Logic Design , Part 2,” Digital Design,
5:58—65 (May, 1975b).


