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ABSTRACT

In the context of random variate generation on digital
computers, the use of piece—wise linear majorizing functions

• 
•

~ in conjunction with the general rejection algorithm is pro-
posed . Based on previous results obtained in the generation
of beta varia tes, the expected advantages and disadvantages
of applying the concept to other distributions are discussed ,
as is the use of minorizing functions for fas t accep tance of
values. Areas of potential application are also discussed.
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I. INTRODUCTION

Much literature in the last twenty years
has been devoted to process generation on
digital computers . Process generation is the
creation of a sequence of observations having
the properties of some desired distribution
or process . Almost always process generation
is a transformation of one or more uniform
(0 ,1) values to the desired distribution .
Common methods for performing the transfortna-
tion include using the inverse distribution
function transformation , rec tangular approxi-
mation, special proper ties , composition , and
rejec tion. (See for example , [2,5 ,6].) In
the pas t mos t interes t has centered on the
firs t three methods . Recently composition
and rejection have received much attention .
In a wide variety of cases , rejec tion is
fas t , easy to code , and requires little
memory .

In this paper the use of piece-wise
linear rejection functions and methods for
fast acceptance of observations are discussed
for the univariate continuous case. The beta
distribution is used as an example , drawing
on the results of Schmeiser and Shalaby [8].
Discussion centers on concepts necessary for
generalizing the results to other distribu-
tions . The general rejection algorithm is
discussed in Section II and specialized to
the piece-wise linear case in Section III.
Discussed are limitations in Section IV, fas t
accep tance in Sec tion V , and potential appli-
cations in Section VI.

II. THE GENERAL REJECTION ALGORITHM

In this section a general form of random
variate generation using rejection is given .
This general form is specialized to the
piece-wise linear special case. Implications
and applicability of the piece-wise linear
approach are discussed . H

The common rectangular rejection algor-
ithm can be generalized as follows . Let p(x)
be the density function from which random
variates are to be generated. Let t(x) be a
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majorizing function of p(x); i.e., t (x) > p(x)
for all x. Corresponding to t(x) is the

• density function r(x) = t (x) / k , where
k = t (x) dx . Figure 1 illustrates the

relationship of p(x), t(x) and r(x). The
general rejection algorithm for generating
variates from p(x) is

1. Generate a value x from r().
2. Generate a value u from the

rectangular distribution over the
interval [0 , 1] .

3. If u < p(x) / t (x ) , accep t x by
settii~g y = x .  Otherwise go t o
step 1.

Proposition: The algorithm provides values
of y from the distribution having density
function p(.).

Proof: Let A denote the event that step 3
• results in acceptance . In any given itera-

t ion
P(A j x) p(x) / t (x) = p (x) / [k r(x) ]

ACCESSION for

Figure 1. The functions used in the NTIS White SectIon~~
gene’ral reject ion algorithm DCC Butt Section 0
for generating random UNANNOUNCED 0
variates  from p ( x ) . MTIFICATI0N
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and therefore
P(A and X I)

P(A J X I) = C

P(X
~
I)

= 
P(A x) r (x) dx

f ~ r(x) dx

= f i [p(X)/t (x)] r(x) dx

11 r (x) dx

= f 1 p(x )  dx

f ~ t ( x )  dx

and

P (A) = L~ P(A x) r (x)  dx = 1/k

Let Y be the random variable resulting• from the algorithm. It is necessary to show
that P(Y E l) f

~ 
p(x)  dx for any interval I.

The proof follows directly from

(Y
~
1) = P(X

~ I A)

= P(A I XCI) P(X~
I) / P (A)

= 
~ 

p ( x )  dx
~1r(x)  dx !  [1/k ]

~~ 
t (x) dx

= p(x)  dx as desired. I

• Although stated in a aifferent form,
this rejection algorithm is mathematically
equivalent to that described by Tocher
[11 , p. 25].

For a given majorizing function t(x)
k r(x), k is selected to be as small as
possible while still maintaining t(x)>p(x)
for all x. This results in maximizing the
probability P(A) that in any given iteration
the value x generated in step 1 will be
accepted in step 3.

For a given density function p(x) the
choice of majorizing function t(x) = k r(x)
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plays a central role in determining whether
or not the resulting algorithm is efficient.
The majorizing function must both have near-
ly the same shape as p(x) (thereby resulting
in a small value of k) and a density function
r(x) which is amenable to variate genera-
tion (via any technique , but probably not
rejection).

The reason for early disfavor of rejec-
tion was the selection of a uniform distri-
bution for r(x). (In fact , many textbooks
discuss only this special case.) The rec-
tangular assumption restricts consideration
to distributions having a finite range or to
approximations obtained by truncation .
While such approximations may be made as
accurate as desired in theory , great ineffi-
ciency results from using a rectangular dis-
tribution to model tails having small proba-
bilities .

In the last several years the use of
non-rectangular rejection regions has appeared
more frequently in the literature . The gamma
distribution especially has been the topic of
several papers [1,9,10,121 . All of these
papers have used density functions r(x)
corresponding to well-known distributions .
The basic results of these papers is the iden-
tification of suitable functions r(x) and the
determination of k such that valid and
efficient algorithms result.

III. PIECE-WISE LINEAR MAJORIZING FUNCTIONS

While the use of common theoretical
distributions for r(x) has been fruitful ,
another approach which is very general and
often easy to apply is to use piece-wise
linear majorizing functions . Piece-wise
linearization calls for partitioning the
range of the random variable into segments
such that t(x) is linear over each segment .
The usual rectangular rejection region is a
special case corresponding to only one seg-
ment. Another special case , briefly dis-
cussed by Lewis [5 , p. 82] , is the use of
“regular parts ,” which is a discontinuous
piece-wise linear majorizing function having
only rectangular segments. More generally,
however , the linear segments may lie at the
angle providing the best fit to p(x). As an
example , Schmeiser and Shalaby [8] used a
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• piece-wise linear majorizing funccion in con-
sidering rejection methods for the beta dis-

• tribution . Figure 2 illustrates the algor-
ithm for a particular beta density function .

Step 1 of the algorithm requires genera-
tion of variates from the density r(x) =
t ( x )/ k .  Now the p iece-wise linear r(x)  is
composed of a mixture of rectangular , tri-
angular , and trapezoidal densities . Note in
Figure 2 that the trapezoidal densities are
each composed of a rectangular lower density
and a triangular upper density . Thus ,

n
r(x)  = o.i r~~(x) where E = 1 and

i=l i=l
0 < ct~~< l f o r all i~ i = l ,2,..., n and each
r~~(x) is either a rectangular or a triangular
density .

_t(x)
• — P ( x )

I I

j I

x •

1

Figure 2. Rejection algorithm using a
piece-wise linear majorizing
function t(x).

The generation of variates from a piece-
wise linear r(x) (using the composition
method) requires the generation of a variate

_ _ _
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trom r.(x) with probability aj . The rectan-
• gular ~ensities may be easily generated usingx = a + (b - a) u where u is a uniform (0,1)

variate and a and b are the bounds of the
rectangular density function . The triangular
densities require x = a + (b - a) max (u1, u2)when r~(x) has a positive slope and
x = a + (b - a) mm (u1, u2) when r~(x) has a

• negative slope , where u1 and u2 are indepen-
dently generated uniform (0, 1) variates .
Since generation from a piece-wise linear r(x)
requires no exponential level operations ,
step 1 can be executed quite rapidly .

In addition the probability of accep-
tance in step 3 can be made close to one,
since a piece-wise linear majorizing function
can be made to fit any density function p(x)
arbitrarily well by increasing the number of

• segments . Here a trade-off developes between
few segments resulting in simple coding (with
associated minimal memory requirements) and
many segments resulting in longer code , more
memory requirements , but higher probability
of acceptance. The use of even a few seg-
ments provides a considerably better fit than
the simple rectangular region . For example,
in reference [8] three and five segments are
used in two of the beta generation algorithms.

• While the single segment provides an algor-
ithm which is not competitive for many beta
parameter values , five segments are the nu-

• cleus of the fastest algorithm available for
many parameter values .

IV. LIMITATIONS

The applicability of the rejection tech-
• 

• nique is dependent only upon the selection of
the niajorizing function. For a particular
density p(x), the minimal value of k such that
k r(x) > p (x) for all x is central to the
applica~ility of the rejection technique .
This inequality implies two conditions :
I) k r(x) must be greater than zero whenever
p(x) is greater than zero and
2) u r n  k r(x) ~ whenever u r n  p(x)

x-*a
Since k must be greater than one and
finite these two conditions become 1)
r(x) must be greater than zero whenever p(x)

~ 

_ _
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is greater thin zero and 2) lim r(x) =~~~ when-

ever lim p(x) = . Since the piece-wise
x-~alinear majorizing function cannot be non-zero

at infinity nor be infinite , the piece-wise
approach is applicable only as an approxima-
tion to distributions having densities with
one or more infinite values and to distribu-
tions with infinite length ranges.

• These are two theoretically important
restrictions. For example , the beta distri-
bution with parameters less than one , the
gamma distribution with shape parameter less
than one , and some members of a general fami-
ly of distributions of Schmeiser and Deutsch
[7] have points at which p (x) is infinite.
In addition , many distributions have infinite
length ranges , most commonly (-~~, ~x )  and
10 , u) .

• However these restrictions are not im-
portant in practice. First consider the
problem of lim p(x) = 

~~~~~. Few computers have
x-~a

accuracy beyond lO~~ , nor do many applica-
tions require more accuracy . If C ~.s the mini-mum discerriable accuracy , then an approxima-
tion using the finite values r(a + c) or
r(a - c) rather than the infinite r(a) will

• probably be quite acceptable . The second
problem of infinite length range may be over-
come by including so much of the range that
the excluded portion will never be missed.
For example , consider the normal distribution .
While having a range of (-°°, 

c~D ) ,  the probab-
ility of observing a point more than ten
standard deviations from the mean is only
1.524 x lOE-23 . Of course , if this is
unacceptable then one hundred standard
deviations can be included with little
additional cost.

Although the theoretical limitations are
• not important , the use of a piece-wise linear

majorizing function does require that the
density function p(x) yields r(x) with a
reasonable amount of effort . For distribu-
tions having only a single shape this is not
important , since an appropriate r(x) may be
determined once and for all. For example ,
see Kinderman and Rarnage’s [4] normal variate

_ _  --~~~ •~~~~~~~ -~~~~~
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generator. However , families of distribu-
tions such as the gamma and beta include mul-
tiple shapes. A generator designed to gener-
ate values from any member of the family must
be able to quickly determine an appropriate
majorizing function . For example the beta
generators of reference [8] use the equations
for the location of the mode and points of
inflexion to locate the junctures of the
piece-wise linear segments. The points of
inflexion are critical since the convexity
or concavity of the density function at
various points is necessary to prove that
indeed k r(x) > p (x) for all x.

V. FAST ACCEPTANCE

In addition to choosing r(x) such that
the probability of acceptance is high ,
another function b(x) may be chosen to reduce
the time necessary to determine whether or
not u < p(x) / t(x) in step 3. If b(x) is
substantially faster to evaluate than p(x)
and if b(x) < p(x) for all x , then the
algorithm may be made faster by replacing
step 3 with

3(a). If u t(x) < b(x), accep t x by
se tting y = x.

3(b). If u t(x) < p (x), accept x by
setting y = x. Otherwise go to
step 1.

The theory underlying the algorithm has not
changed , since step 3(a) accepts x only if
3(b) would accept x anyway . However , the use
of step 3(a) often makes the evaluation of
p(x) unnecessary . Since density functions
often include time consuming operations such
as exponential and gamma functions , the
savings due to this minorizing function can
be substantial. In particular , a piece-wise
linear minorizing function is often easy to
determine and is always fast to evaluate .

Sometime a minorizing function is not
necessary . If a trapezoidal region is formed
by t(x) which is composed of triangular and
rectangular regions , then the rec tangular
region is often entirely under p(x). In this
case no check is necessary in step 3, the
value of x being accep ted automatically . 

-~~~ - - - . - . . - - ——~~~~-~~ -~~~- - -
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Note also that the minorizing function
b(x) may be used with any majorizing function ,
not just the piece-wise linear functions
discussed in Sections II and III.

VI. POTENTIAL APPLICATIONS

There are a number of distributions to
which the above concepts can be applied. The
gamma distribution generators currently
available involve several logarithmic oper-
ations . The use of piece-wise linear major-
izing and minorizing functions would almost
cer tainly be faster . Pearson distributions
other than the gamma may also be amenable to
the piece-wise linear approach . Two families
which have well-known , but slow, generators ,
the Weibull and lognormal, could also be
generated using this approach . The F and t
distributions , classically generated using
their relationships to the normal or the beta
distributions , could be more quickly generated
using the above techniques . In addition , the
J-shaped beta family could benefit from such
techniques . (Jöhnk’s algorithm [3] for U-
shaped and the algorithms discussed in
Schmeiser and Shalaby [8] for bell-shaped beta
distributions probably preclude much faster
times using the above techniques.)

It is also possible that the piece-wise
linear techniques can be applied to discrete
distributions such as the Poisson and bino-
mial . Current generators for these two
distributions require times proporticrial to
the mean of the Poisson and to the number of
trials for the binomial . The commonly used
normal approxima tions could be avoided by the
use of rejection techniques .

VII. SUMMARY AND CONCLUSIONS

The commonly used rec tangular rejec tion
region has been generalized and the mos t gen-
eral form of rejection has been specialized to
the use of piece-wise linear majorizing func-
tions . The implications of the piece-wise
linear approach have been discussed and poten-
tial applications have been mentioned.
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generator . However , famil ies of distribu-
tions such as the gamma and beta include mul-
tiple shapes. A generator resigned to gener-
ate values from any member of the family must
be able to quickly determine an appropriate
tnajorlzlng function . For example the beta
generators of reference [8] use the equations
for the location of the mode and points ofL inflexion to locate the junctures of the
piece-wise linear segments. The points of
inflexion are critical since the convexity
or concavity of the density function at
various points is necessary to prove that
indeed k r(x) > p (x) for all x .

V. FAST ACCEPTANCE

In addition to choosing r(x) such that
the probability of acceptance is high ,
another function b(x) may be chosen to reduce
the time necessary to determine whether or
not u < p(x) / t(x) in step 3. If b(x) is
substantially faster to evaluate than p(x)
and if b(x) < p(x) for all x , then the
algorithm may be made faster by replacing
step 3 with

3(a). If u t(x) < b(x ) , accept. x by
se tting y x.

3(b). If u t(x) < p(x), accept x by
setting y = x. Otherwise go to
step 1.

The theory underlying the algorithm has not
changed , since step 3(a) accepts x only if
3(b) would accept x anyway . However , the use
of step 3(a) often makes the evaluation of
p(x) unnecessary. Since density functions
often include time consuming operations such
as exponential and gamma functions , the
savings due to this mincrizing function can
be subs tantial . In particular , a piece-wise
linear minorizing f~.inction is often easy todetermine and is always fast to evaluate .

Sometime a minorizing function is not
necessary . If a trapezoidal region is formed
by t(x) which is composed of triangular and
rectangular regions , then the rectangular
region is often entirely under p(x). In this
case no check is necessary in step 3, the
value of x being accepted automatically. 

— - ~~ ••-•- •~—-——-———- • • • • • - -  -•- 
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Note also that the minorizing function
b(x) may be used with any majorizing function ,
not just the piece-wise linear functions
discussed in Sections II and III.

H VI. POTENTIAL APPLICATIONS

There are a number of distributions to
which the above concepts can be applied . The
gamma distribution generators currently
available involve several logarithmic oper-
ations . The use of piece-wise linear major-
izing and minorizing functions would almost
cer tainly be fas ter . Pearson dis tributions
other than the gamma may also be amenable to
the piece-wise linear approach . Two families

• which have well-known , but s low , generators ,
the Weibull and lognormal, could also be
generated using this approach . The F and t
distributions , class ically generated using
their relationships to the normal or the beta
distributions , could be more quickly generated
using the above techniques. In addition , the
J-shaped beta family could benefit from such
techniques . (Jöhnk ’ s algorithm [31 for U-
shaped and the algorithms discussed in
Schmeiser and Shalaby [8] for bell-shaped beta
distributions probably preclude much faster
times using the above techniques.)

It is also possible that the piece-wise
• linear techniques can be applied to discrete

distributions such as the Poisson and bino-
mial . Current generators for these two
distributions require times proportional to
the mean of the Poisson and to the number of
trials for the binomial. The commonly used
normal approximations could be avoided by the
use of rejection techniques .

VII. SUMMARY AND CONCLUSIONS

The commonly used rectangular rejection
region has been generalized and the most gen-
eral form of rejection has been specialized to
the use of piece-wise linear majorizing func-
tions . The implications of the piece-wise
linear approach have been discussed and poten-
tial applications have been mentioned . 

—— •— —-~~~~~ - --~~~ . - .~~~-
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The rejection algorithm using the piece-
wise linear majorizing function has both
advantages and disadvantages compared to other
rejec tion methods . The disadvantage is that
the determination of the piece-wise linear
majorizing function can require a non-trivial
set-up cost. The expected advantages are

1. applicability to a wide variety of
distributions ,

2. fast and easy generation of x in
step 1,

3. high probability of acceptance in
step 3 , and

4. fast acceptance in step 3(a).
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