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SUMMARY

The electric conductivity tensor of a beam-plasma interacting
system is an extremely significant operator. Within the model we
have chosen , one calculates the effects of the beam on the plasma
as corrections to the classical results found from Drude theory .
This work has been supported by the Independent Research Program
of the Center.
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I.  INTRODUCTION

Many approaches to the understanding of the frequency-

dependent , electrical conductivity tensor of a plasma have been

made over the years. Depending on the plasma model one was con-

sidering, investigators have chosen the relevant transport equa-

tion that best suited their needs. One of the earliest treat-

ments of the conductivity was that done by Drude) He considered

a gas of electrons that were free to move and collide with a

collection of fixed ions at rest . When an external electric

field is applied the motion of individual electrons is governed by

Newton ’s law which contains a field—dependent term and a collision

frequency term. The resulting conductivity depends inversely on

the collision frequency in the low frequency limit of the applied

electric field. This is the so-called DC conductivity . Since

the average collision frequenc~ is proportional to the mean velo-

city of the electron , the conductivity goes inversely as the

square root of the absolute temperature of the electrons. Cohen ,

Spitzer and Routley2 used the Boltzmann equation to obtain the

velocity distribution function for an electron gas mixed with

singly-ionized atoms . They treated the collision term (i.e. the

time rate of change in the distribution function due to colli-•

sional processes) as composed of two parts. The first part is

the traditional representation 3 for close encounters which pro—

duce large deflections in particle trajectories. The second

represents a diffusion process, such as one finds in Brownian

: 1 motion. Thus distant encounters produce only minor deflections

in the motion of particles. The DC conductivity obtained from

3 
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this theory exhibits a temperature behavior that is proportional

to the 3/2 power. In a later paper, Spitzer and Harm
4 included

the effects of electron-electron interactions on the collision

term represented by the Fokker—Planck equation , for a fully

ionized gas. The results were quantitatively comparable to those

of Chapman and Cowling3 and Cowling.5 Jackson6 was able to com-

bine the Drude theory with an expression for the mean ion—electron

collision frequency. This expression results from a careful

treatment of the multiple scattering of electrons as they pass

through a finite region of matter . His results compare with

those of Spitzer to within a factor of 2. Paramount to this re-

sult was the assumption of small-angle Coulomb scattering as the

dominant process. These results are, of course, for the zero

frequency limit (or DC) conductivity. Rosenbluth , MacDonald and

Judd7 found a series representation for the distribution function

satisfying the Fokker-Planck equation . The series is given in

terms of Legendre functions relative to some axis of symmetry

that is specified by ~n external field . The first term in the

series corresponds to Chandrashekhar~
8 calculation , the second ,

to that of Cohen , Spitzer and Routly.
2 Retaining higher order

terms in the distribution function expansion will lead to a

temperature dependence in the DC electric conductivity that de-

parts from the 3/2 power behavior. These approaches to the

electrical conductivity do not retain the dynamics of the trans-

port process itself except for the very simplistic Drude theory .

The response to some time-dependent , external electric field , in ‘

genera l, will depend on the history of the disturbance as well as

4 
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its present value . For a plasma medium that is subjected to a

time—vary ing external electric field , the medium takes a finite

amount of time to respond to the field and cannot keep up with

its changes. Thus the electric polarization of the medium at any

given time will be responding to excitations experienced at some

time in the past. More concisely, the electric displacement and

the electric field will be functionally related through a con-

volution in time .9”° Thus the electric conductivity and the

electric permeability of the medium are frequency-dependent

quantities.

An alternative approach to the study of such time—dependent

phenomena is a theory of irreversible processes for a system

that is not very far from thermodynamic equilibrium . This

theory relates the thermodynamic average of the time fluctuations

of generalized forces which act on a system to some dissipation

parameter or kinetic coefficient. For the situation at hand , the

generalized force would be the applied , time-dependent electric

field , the kinetic coefficient would be given by the electric

conductivity. Nyquist11 introduced the notion of coupling be-

tween the voltage fluctuations in a linear electrical network to the

electrical resistance of the system . The dissipation process is

the result of the system attempting to come into thermal equili-

brium with the external source. The fluctuations in the external

source serve as the mechanism for the transfer  of energy to the

dissipative , or electrical system , and dissipation results from

the randomizing effect of the fluctuations on the external source.

Kirkwood 12 found an expression for the friction constant that

5 
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plays an important role in the theory of Brownian motion through

the Langevin equation . The correlation of intermolecular forces

acting on a given particle in some system of particles is propor-

tional to the friction constant . Callen and Welton13 generalized

Nyquist’s results and obtained a relationship between the general

impedance of a linear system and fluctuations of generalized

forces. The time correlations between a generalized force and

any function of momenta and coordinates for a statistical system

was considered by Takahasi)~
4 His results served to unify the

static statistical theory of Gibbs15 to the time dependent

phenomena represented by thermal noise in electrical circuits, as

discussed by Nyquist.11

The first attempt to apply the general concept of the fluc-

tuation dissipation theorem to the problem of electric conduction

in metals was made by Kubo and co-workers.16 They obtained

expressions for the generalized susceptibilities for systems that

are strongly coupled to external generalized forces , and related

these susceptibilities to fluctuations in observable macroscopic

quantities such as particle coordinates or momenta . In the case

of the conduction problem , the applied electric field plays the

role of the generalized force. H. Mon 17 successfully unified

Kirkwood ’s theory 12 of statistical mechanics with the stochastic

theory of Brownian motion ‘~mbodied by the Langevin equation .
8

The resulting generalized Langevin equation successfully treats

the behavior of transport processes through the time evolution

of microscopic internal processes such as the temperature gradient

and stress tensor in fluids. He also distinguishes between two

6 
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types of relaxation processes in fluids , a macroscopic process

which is represented by hydrodynamic equations and a microscopic

process which allows for  local thermodynamic equilibrum . The

electric conduction problem studied by Kubo16 is analogous to the

macroscopic process in fluids studied by Mori)7 A study of

plasma transport coefficients using the correlation function

approach of Kubo and Mon was made by Bartis and Oppenheim)8

In particular , the self—diffusion coefficient was studied in the

absence of external electric or magnetic fields. Short range

forces, as represented by a binary collision operation , and long

range Coulombic forces are used to represent the forces acting on

the particles in the system. Diagrammatic techniques are em-

ployed to conveniently sum the non-zero contributions to the

interactions and to arrive at convergent values .

Questions have been raised concerning the failure of Kubo ’s

theory to distinguish between the observed , macroscopic field ,

and the applied field. Izuyama19 included the effects of Coulomb

interaction between the electrons in the metal as well as the

interaction of the electrons with the external field. His

spatially-dependent , and frequency-dependent conductivity has as

its leading term , the Kubo result. 16 Higher order terms corre-

spond to the Coulomb interaction. He obtains an expression for

the conductivity that represents the ratio of the current res—

ponding to the effective field in the metal to the macroscopic ,

e f f e c t i v e  f i e l d .  This  e f f e c t i v e  fi e l d  is nothing more than the

applied field plus the induced polarization field.

We shall use the correlation function method developed by

7
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Kubo~
’6 to study the electric conductivity of a plasma in an

external field . The origin of the field will be a line source of

charge and current, which serves to model an electron

beam. The time evolution operator for the current flowing in

H the plasma shall be represented by the isual one established by

Kir kwood ,12 the harmonic, exponential, Liouville operator . A mean

field theory approximation will be introduced to simplify the

expressions for the interactions between the various charged

particles in the plasma. The time dependent response function

is expressed in terms of the radial and axial current components

within the plasma . The P’ouriertransform of this quantity directly

yields the tensor components of the frequency dependent electric

conductivity . Ignoring spatial changes in the Hamiltonian yields

the usual results of Drude theory , retention of the changes in-

troduces some addit ional complexity in the f r equency dependence

of the conductivity.

We shall postpone for a later paper the effects of binary

collisions on the conductivity tensor, where we shall study the

“nonlocal” characteristics of the conductivity as well.

B

L~. 
-
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II. THE ELECTRIC CONDUCTIVITY , THE ADMITTANCE FUNCTION
AND THE RESPONSE FUNCTION

The introduction of a relativis’.ic electron beam into a

neutral gas dis~urbs the initial state of the system quite abrupt-

ly and dramatically. If , however , instead of a sharp “switching

on” of the beam , we adiabatically insert the beam into the gas

before we def ine the ini tial state of the system and the beam

particle density is much less than the gas density, then the

beam—gas interaction may be represented by some perturbation

energy . A simplified model of this system shall be a plasma (the

result of ionization by the beam front) in the presence of an ex-

ternal current, charge source of infinite length which is the

initial state of the system at t= - 
~~~~. The details of the

ionization process and other attendant phenomena such as recombi—

H nation, excitation , and radiative processes shall be totally ig-

nored. What shall be addressed in this paper is the response of

the plasma to the external field. A brief discussion relating

the generated conductivity to the general admittance and response

function will help to establish the approach to charge conduction .

If we represent the induced time-dependent current as a

change in some initial value we can write

~J(t) = (2~ )~~~ f~
’ 
dwe~~

t
~~(~~) (2.1)

We have not allowed for spatial variation in the current . This

assumption is reasonable if we assert that the external electro-

magnetic field var ies quite slowly through space , over distances

large compared to the Debye length of the plasma. Furthermore ,

for simplicity we res trict ourse lves to one dimension so that we

9 
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may most easily establish relations that can be directly extended

to the three dimensional case. For convenience , we also assume

there is one Fourier component that dominates heavily over all

others, then we may write approximately,

E(t) - E e~~
t (2.2)

where E(t) is the external , perturbing electric field .

We use the generalization of Ohm ’s law which is valid for

rapidly time varying fields whose principle frequencies are not

small in comparison to those frequencies that characterize the

electric properties of the plasma , such as the plasma frequency .

The general izat ion is

3(w) = a (w)E(w) (2.3)

and the frequency dependent conductivity a is a scalar in the

one dimensional case.

We then obtain the result

t,~J(t) = R e { E0a (w ) e ~~
t } (2.4)

This equation relates the response ~J(t) to the excitation

E0e
1t
~
t directly, and the conductivity may be interpreted as a

general admittance function which has been well described by nuny

researchers)1’13’1~
4’16 In particular , Kubo 16 has related the

general admi ttance function to the response function , as Fourier

transforms of each other. Using his results we may write

t~J(t) = _ L
t 

~~ (t - t )E(t )dt (2.5)

10
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a is the response function and eq. (2.5) says that the sum of

excitations that act on the system from the present time back

through infinite past times produces a net response E~J (t), the

current that flows in the plasma . Kubo derived an expression

for the response function in terms of an equilibrium ensemble

average of a product of current components, namely

6(t) = <~ J(o)~~J(t)>0 (2.6)

This expression assumes the plasma to be a collisionless ,

single component system of volume charge density n com-

prised solely of electrons having charae e. The angular

bracket represents an equilibrium ensemble average. This

is an extremely important point in the interpretation of this

formalism. The presence of the external electric field does not

push the initial system far from equilibrium which allows us to

express any change in the distribution function as a linear

functional of the equilibrium distribution function . This

obviates the need to solve some difficult transport equation for

the non—equilibrium distribution function , and allows us to substitute an

easier problem , that of the calcula tion of the current correla-

tion fun ct ion , which represents the effect of a perturbation on

the originally quiescent system. For a three dimensional system

the frequency dependent conductivity tensor is given by the

Fourier transform of eq. (2.6),

G (w) 
m’kT 

limit 
f dte~~~~~~~ 

t<p (o)p (t)> (2.7)

11
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We have recast the correlation function in terms of the charged

particles momentum components rather than the current. The

exponential damping factor is a convergence factor that eliminates

any persistent oscillations that may be present in the response

function. The static conductivity is the zero frequency limit

of eq. (2.7), i.e.

a
~~~

(o) 

~~~ 

l~ IT~ t 

~: 
dte_ c t

<p p ( o )p v (t )  >
0 (2.8)

A further comment on eqs. (2.6) through (2.8) is required to

emphasize that these expressions result from a linear approxi-

mation to the Poisson bracket of the distribution function and

the perturbation . Retaining higher order, non-linear terms would

include higher inverse powers of kT and stronger time dependence.

This will consequently introduce higher inverse powers of fre-

quency in the frequency dependent conductivity tensor. Thus the

results we shall present in this paper are regarded as a linear

approximation which may require further refinement in the future.

12
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III . THE HAMILTONIAN

We shall consider the electrons in the plasma as the primary

carriers of current, and shall ignore electron-electron collisions,

and electron—ion collisions . The Hamiltonian for such a system

of N electrons in the presence of an external line charge and

current source may be written

• N N
H = — e~~ 

(~~)] . — eA (~~.)] + e~~~~ (r.) (3.1)

and 4 (~~~) are the vector and scalar potentials associated

with the external sources and the electrons in the plasma . Let us

assume there is a uniform distribution of charge in the z direction .

Then we have the scalar potential expressed as a superposition of

• plasma sources and external sources ,

= ~0(r) + ~ ~~~~~~~~~ 
r.) (3.2)

j =i~~ 
3

whe re

çj 2~, ( r)  = — _.~:-. ~~~ (3.3)
o C

0 r

and

2 , ó(r— r .)
V 4’ .( r~ O; r

3~~O~~) = r ~ ~(O— O .) (3.4)

The potentials satisfy Poisson ’s equation with A and e’ representing

13
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the charge per unit length , i.e. dq/dz for the external source and

the plasma , respectively . The variables r and r~ represent the field

and source radial coordinates res~~ctively. The solutions to eqs.

(3.2) and (3.3) are6

c~0(r) = — 2ir c0 
ln(r/R) (3.~~)

— 
~~~~~~~~~~~~ [ln(r/R)

_
~~

1 
~(—~-)‘~

‘[cos m(O_ O j)1] ~r>r~

= (3.6)

— 2n6~ 
[ln(r j/R)

_~~~
1
~~~p~_)

m
cos [m(O_O ~ )J] r<r~

where R is the radius of some conducting shell concentrically

surrounding the line charge which permits the potential to go to

zero as the radial variable approaches R. R is large compared to

the source radial dimension . We further assume that there are n1

electrons having source coordinate greater than the field coordinate

(r~ >r) and n2 with source coordinate less than the field coordinate

(r
3
<r) . The total scalar potential may be expressed by

• ~ (r,G;r., 8.) = - 2nc0 
[Xln (r/R) + e’ 

j~=l 
-

1 (r )m [m ( O _ O ~ )]}  
+ (3 . 7)

+ n2e’ln(r/R)- ~~~~~~~~~ ( J)
m [m (8_O

j)]]

• 14
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The vector potential is treated in a manner analogous to

the scalar potential. It satisfies a vector Poisson’s equation

whose solution may be expressed in terms of Green ’s dyadic.

Presenting just the results we have

I_to -~A(r ,0) = -~~ -[n ev0ln(r/R)e +

-
~ 1 r m+ e ’~ v .  {ln ( r ./ R )  — (— ) cos [m(0_0~ )J } (3.8)

j 1  m=l j

n

+ e ’ l n ( r/ R )~~~~~. {i- ~~~ ( J )m cos [m (0_0~ )J}]

where n0 represents the number of electrons per un i t  length

• in the beam , i.e. dn/dz and v0 is the velocity of the beam

electrons. The coordinates r
1 
and 0.i in eqs. (3.6) and

(3.7) and the velocity vector are randomly distributed so we

shall replace them by their expectation values, through the rrean fields

approximations (so called because the vector and scalar potential

fields are consequently replaced by their average values)

n.

~~1
f~~j) ~~~~~~~~~~~~~~~~~~~~~

= 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ (3.9)

= 

~~ 
f P(~~. , )  ~~~~~~~~~~~~~~~ f ~~~~~~~~~~~~~~

15 
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In the notation of eq. (3.9) p is the probability distribution

function and f may be any arbitrary function . In this mean field

approximation , the average vector potential momentum <eA> is

assumed small compared to the average momentum < >  for any

electron in the plasma. This zero order approximation will permit

us to calculate dynamical quantity averages including vector

potential effects at a later stage. The initial distribution

function we shall use is

= exp 
~ 
-~ [H 0 (~v~ ) + e~0(~~ ) 

]
~ ( 3 .10 )

is the kinetic energy of the jth electron , e40 is its po-

tential energy with respect to a shielded line charge potential .

For a line charge of radius on the order o f 1 cm , surrounded by a

plasma of electrons having a Debye wave number kD on the order of

lO~ cm~~ we may approximate the Debye H
’ückl potential for a system

possessing cylindrical and azimuthal symmetry. The exact solution

is derived in Appendix A. Quoting the result,

4 0 ( r )  = ~I KO (kDr) (3.11)

is a modi f ied Bessel function and is related to the ordinary

Bessel function through the relation

K
~
(x) = . 

~~~~ ff (U (ix) (3.12)

Since the product of Debye wave number and radial coordinate for

our system is always much greater than unity we approximate eq.

• 16
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(3.12) with the expression

—~ -~
A 

(e~~ D
r//f\ (3 .13)

cov’8
~*kD ‘ /

Calculating the average vector and scalar fields using eqs.

(3.7), (3.8), (3.9), (3.10) and (3.13) requires our evaluating

<ln (r
3
/R)> , < (r/r~)

m> , < (r~/r)
m> , and <

~~~~~

> . Because the Debye-

Huckel potential of eqs. (3.11) or (3.13) is central in nature , i.e.

~~ (r) = q 0(r)

we find

= <(r./r)m> = 0 (3 .14 )

In the absence of the vector potential , there is no preferred

direction in velocity space and we have

+
= 0 (3.15)

3

The only non-vanishing average is the logarithm term.

<ln (r./R)> = - (j~-R0)~~ [R0ln(~~~) + (R-R0) + 861] (3.16)

I = (k0R)~~~{R~ e
_
~~

R0 
- R½ e DR } -

(3 .1 7)

- k~~ { R~~ e~~~~~0 - R½ e ’
~~~}

6 = e A/ c O/S1TkD 
(3.18)

17
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and R0 is the vanishingly small but f in i t e  radius of the line

source. Substituting the results of eqs. (3.14) through (3.16)

into eqs. (3.7) and (3.8 ) gives the average vector and scalar

potentials that shall be used in the Hamiltonian of eq. (3.1)

2

H = 

=i 
+ 

~~~~ve 
1fl(

~~
)P
~~ 

+

+ 
p
0 0

v0e 
)
2 

ln 2
~~~~~
] 

-

(3.19)

— 
2ir c ~ (A+n2

(r~)e’)ln (~~~) - n1(r1
)Ne ’(R—R0)~~ x

O j=l

x [Roln (~~ ) + (R-R ) + 861]

The number of electrons n 1 and n2 that enter into (3.19) de-

pends on the radial coordinate r~ . Using the distribution function

of eq. (3.10) and the fact that e40
/kT<<l , we find that the electrons

for all practical purposes are uniformly distributed throughout the

medium , and we obtain

n1(r.) ~ n 7TLJR
2 

- r.2p (3.20)

n2 (r~ ) 
‘
~~ n 7 rLJr~

2 
— R 2)

where n~ is the number density of electrons in the plasma , and L0is

an arbitrary length in the z direction . The average number of

electrons is given by

= <n2 (r3
)> “ n~/2 (3.21)

18 
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IV. THE LIOUVILLE OPERATOR AND THE TIME PROPAGATOR

The Liouville operator for a system of N electrons is
12given by

L = - i~ (~~~~ 
-

~~~~ 
- 

~~~~ 4 ) (4.1)
j=l ~Pj ~rj ar~ ~Pj

In a cylindrical coordinate representation with azimuthal

symmetry this becomes

— ~~ (~~ H aH 
_ _ _L — _ i

L 1
~~ jr ~~~~~~~~ 

— 

~~

•F

~:~

• 

~~jr 
(4.2)

From the Hamiltonian of equation (3.19) we immediately find

= —a-— (4.3)
~~jr 

m

= [Kl l:(
f~); K2P~~ 

÷ K
3] 

(~~~~ ) (4.4)

K1 
= 

2 (4.5)
2rT

2
~ n v  e

K = ° ° °  (4.6)2 lTm

K = — 
eA (4.7)3 2ir c

19
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Substitution of eqs. (4.3) and (4.4) into eq. (4.2) leads to an

explicit expression for the Liouville operator

L =-i~~~~(.... ~~~~~~ 
— ln + K2P~~ 

+ K
3] 

~~ ~~jr~ 
(4.8)

For any function ~ of momenta and coordinates , ~ and q, which

&~CS r~ t explicitly depend on time ,

x (~~ t , ~ (t)) = exp(tiL) x (~~(t0) ~ (t0) (4.9)

~~l2and L depends on time implicitly through p and q. It should be

noted that L = L(~~(t0), ~ (t0)) , that is, the Liouville operator

is expressed in terms of momenta and position vector at some

arbitrary initial moment, to. The operator exp (tiL) is known as

a time propagator for it “propagates” a function at some initial

arbitrary instant into a later time, according to eq. (4.9).

Using the powe r ser ies expansi on

2
exp (tiL) = 1 + tiL + ~-(iL) (iL) ÷ ... (4.10)

allows us to obtain resul ts , repeating the application of iL to an

arbi trary func tion of a dynamica l variable as many time s as is

necessary .

20
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V. THE ELECTRIC CONDUCTIVITY TENSOR

If we explicitly utilize the propagator of eq. (4.10) in the

conductivity tensor of eq. (2.7) we find

0 (w )  = 

rn2kT 
limit J~ t e

_
~~~~~~~~

t 
~

(5.1)

x <exp(tiL)p
1~ ~~~~~~~~~~~~~~~

Performing the indicated operations of time propagation , ensemble

averaging, and Fourier transformation we find the components to be

0 (w) = 
~~~~~

— — a2R 
(1T~T)

½ 
x

(1 — e
_
~~2

R) 1 1 (5.2)

1(R — cL~
1) + ~—l e ’

~~2~~f

2 2
a
~~~

(w) = ~~ ~~ [1 
- 

41Ta2R
2n,JcT 

x (5.3)

x {R
2e~~2

R + :R:;
;
(2e~~ 2

R 
+1) + 6a;

2(e~~ 2
R 

l)} /

/ ( R — c t 2 +~~ 2 e )]

21
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0 (U) = 

IT1
2kT 

[ 2 ~~~~T ½ 
~~~~ (e~~ 2

R + 1) + (5.4)

+ 2cz 2 (e
_ci2R_l)} ~~~~~~l — (1 + ~ )e 2 +

+ (1 — e
_ci

2l
~)}_~~] / R — + c i e

’
~~
2’
~

*
0 (w )
zr

where

Cl = p n y e2
1 0 0 0

ct2 = e(A + n 2e’) / 2 l T e0RkT

and R0, the radius of the line source is ignored compared to R,

the radius of the outer conductor. Examining the leading terms

of the conductivity diagonal elements we see they are what one

would expect using Drude theory. The remaining terms involve

higher or der invers e powers of f re quency , and arise from the

interac tion of plasma electrons with themselves and with the

external line source. These components diverge in the low

frequency limi t since we ignored binary col l is ions , which serve

as a damping mechanism for the system. Thus the resistivity of

such a system in an applied DC electric field should be zero , and

its conductivity , infinite.

The z and r components of current that flow in the plasma

are given by a three dimensional extension of eq. (2.5),

22
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A

The response funct ion  a (t) is found from the Fourier transform
I.”)

of the conductivity . The external electric field may be written

as in eq. (2.2) . Performing the integration in eq. (2.5) yields

a term that is harmonic in time , plus higher order terms that

involve a product of various powers of time with exp(iwt). Con-

sequently the current increases and oscillates in time and will

increase indefinitely without approaching a stationary state.

• This result differs from that described by Bc~~~sc~
2° for a homoge-

nous plasma in an externally applied field. He calculated the re-

sponse current from a Green ’s function solution to the Boltzmann

equation and arrived at a stationary state. However Balescu has

accounted for the potential energy of interaction specifically

through an iterative perturbation solution for the Fourier

transformed Green ’s function. We have used a mean field

approximation to arrive at a time propagator which then leads to

dynamical quantities that monotonically increase with time , never

reaching a steady-state value .

23
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VI. CONCLUSIONS

The correlation function approach to the electric

conduction problem of a beam-plasma system is successful in

predicting the frequency dependent conductivity tensor in a

mean—field approximati on. The local behavior of the conductivity

is ignored in this calculation . Such an effect will be considered

in a future paper. The effects of electron-electron , electron-ion, and

electron—neutral binary collisions have also been ignored and it is

hoped that this too shall be studied at a later date. The

general behavior of the conductivity components follows the

classical Drude theory1’6 results with the interaction between

beam and plasma showing up as higher order terms in inverse

powers of frequency. The off-diagonal component does not

possess Drude-like behavior as its leading term , however.

Thus the response current in the plasma increases with time

indefinitely, and a steady-state or purely oscillating current

is not obtained within this model .

.

24
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APPENDIX A . THE SHIELDED LINE SOURCE POTENTIAL

According to the Debye—Hückel theory as presented by

Jackson6 we imagine the line charge surrounded by a specified

distribution of electrons with a uniform background of positive

charge . The distribution function for the electrons will be the

canonical one described in eq. (3.10). Then Poisson ’s equation

is written

V24~$r) = ± 6 
— ~~ [e~~8~~ o_  

1] (A.l)

The first terms on the right hand side is the charge distribu-

tion of the external source , the second represents the electron

plus uniform ion distributions. 8 is just the Boltzmann factor

(kT)~~~. For a plasma having a temperature of a few thousand degrees

with a Debye wave number of

kD~~ 
lO 5cm 1 

, the condition

eq~4r)/kT << 1

is easily met. So we may linearize eq. (A.l)

d d~ 2

~~ 
(r~

_
~ — rkD 

= — ± 6(r) (A.2)

where

2 2
• kD = n0e 13/E0 

(A.3)

is the Debye wave number. We have assumed cylindrical symmetry to

arrive at eq. (A.2). Its solution is found in Morse and Feshbach.21

~Jr) = ~,!— (
~~

_ )K
O (kDr) 

(A.4)

• 25

_ _ _  _ - - - ~~~~~~~ ----- ----- _ --- - -



F— — • :~~~~~~~ :. ~~~~~~~~~~~~~~
—

~~~
--- .--.- -- . - - --- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

NSWC/WOL TA 77-146

APPENDIX B. AVERAGE VALUE OF THE

LOGARITHMIC TERM IN THE MEAN FIELD APPROXIMATION

The average value of the logarithmic term in the expressions

for the scalar and vector potential of eqs. (3.7) and (3.8) is

found from eqs. (3.9) and (3.13) .

<ln (r~/R)> = 

J

R
exp~~_o [6exp _k

Drj /r
1
½]} x

(B.l)

x ln (r~/R)dr . /1 exp { _8f6exp (_kDrj)/rj½] dr~

The limits of integration reflect the upper and lower bounds on

the radial coordinate , R representing the radius of the outer con-

• ducting shell , and R0 the small , but finite beam radius.

Inspection of the exponential argument reveals that a lineari-

zation is a suitable approximation for the typical beam-plasma

systems that are of interest to us, i.e.

MAX Ie4 0(r~ )I/kT << l

Retaining the linear first order term in the expansion of the

numerator and unity for the denominator in eq. (B.l) yields

<ln(r./R)> — (R—R 0)~~~f0
ln(R0/R) + (R—R ) + BoI} (B.2)

where
R 

½I fexp{— kDr.} ln(r./R)/r . dr. (B.3)
R
0

The integral in eq. (B.3) may be expressed as a combination of in-

complete gamma functions if we use the leading term in a ser ies

26

_ _ _ _ _  -—— - - .-~--. . -— •~~--- - _. — - . - - - - • - ----•- • _ - - - _ -



Fr •
~~~~

NSWCIWOL TA 77-146

approximation for the logarithm. Then

l n x ~~~x — 1 , 0< x~ . 2

We find

I = R½ [(kDR)
_3/2

y(~~,kDR) - (kDR)~~~Y(4~
kDR)j -

-- R½ 
[kDR

_312
Y~~~ kDRO - (kDR)

_½ 
Y (
1
k R )]  (B.4)

The incomplete gamma function , y is defined in terms of the ordinary

gamma function F(C) and the complementary incomplete gamma function

= F ( c,,~~) + y (ç,~~) (B.5)

F (ç,~~) has an asymptotic representation (since kDr >> 1)

F(ç, E~) = ~~~~~~ 

14—1 (...1)m F (l—?+m ) 
+

m=0 ~ F (l— ~ )

+ 0(1~~~—m ) (B.6)

for ~~ 
-*

Consequently we obtain

y (c,~~
) = 

~~~ (~~~~ ) - 
1 e~~ (8.7)

where we have retained the first term in the asymptotic series

for ~~~~~~ Substitution of eq. (B.7) into eq. (B.4) yields

eq. (3.17).

27
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