" AD=A052 568

UNCLASSIFIED

MITRE CORP BEDFORD MASS F/6 17/2

BUILDING BLOCKS FOR C3 SYSTEMS.(U)

MAR 78 J A CLAPPr M HAZLE F19628=77=C=0001
MTR=3504 ESD=TR=77-360 NL

L = =
'I:E |||||22
m" 1-1 ':.u: 2=

e |
s _g?_‘mrr; (
|

1

NATIONAL BUREAU OF STANDARDS

@/]

;
Cu
£ Fee Rk, SR S,

BUILDING BLOCKS FOR cﬁ SYSTEMS ?
= 3

()0

e ————— 5 SR ————

g B

BY] gA/gLAPP 4P M. EAZLE

1Y yanemas | =
@7,

Prepared for

'Zz,é,ufﬁ C/ %

——— DEPUTY FOR DEVEI:OPMENT PLANS
ELECTRONIC SYSTEMS DIVISION

AIR FORCE SYSTEMS COMMAND 4
UNITED STATES AIR FORCE

Hanscom Air Force Base, Bedford, Massachusetts

'

¥

O Y g B AL 5

Project No. 7060

Prepared by
THE MITRE CORPORATION
Approved for ;u“:t‘:‘ relesse; Bedford, Massachuaetts
distribution u .

Contract No. 19628-77-0-'0”1 }

/5

438 éo’o — v i

When U.S. Government drawings, specifications,
or other data are used for any purpose other
than » definitely related government procurement
operation, the government thereby incurs no
responsibility nor any obligetion whatsoever; and
the fact that the government may have formu-
iated, furnished, or in any way supplied the said
drawings, specifications, or other data is not to be
regerded by implication or otherwise, as in any
manner licensing the holder or any other person
or corporation, or ving any rights or per-
mission to manufacture, use, or sell any patented
invention that may in any way be related thereto.

Do not return this copy. Retain or destroy.

REVIEW AND APPROVAL

This technical report has been reviewed and is approved for publication.

\——,
d#ﬁu (/ é« g7y P %
» Capt, USAF ’ 4
Project Officer Director, Technological Planning
Technological Planning Deputy for Development Plans

Deputy for Development Plans
FOR THE COMMANDER

Deputy for Davalo Phna .

e M ot

e

UNCLASSIFIED

SECURITY CLASSIFICATION OF TH|IS PAGE (When Date Entered)

READ INSTRUCTIONS
1. REPORT NUMBER o 2. GOVT ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER
ESD-TR-77-360

BUILDING BLOCKS FOR C3 SYSTEMS

4. TITLE (and Subtitle) . S. TYPE OF REPORT & PERIOD COVERED

€. PERFORMING ORG. REPORT NUMBER

MTR-3504
7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)
Sk o F19628-77-C-0001
. _Hazl
9. ;;:F;;;’}N;ERE:)?;Q;::I;I:”E AND ADDRESS 10. ::giRQA”OERLKE'L‘ISINTT'NPU':AOBJEESJ' TASK
Box 208 k
Bedford, MA 01730 - & Project No. 7060
11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Deputy for Development Plans MARCH 1978
Electronic Systems Division, AFSC 3. NUMBER OF PAGES
Hanscom Air Force Base, MA 01731 70

T4. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office) | 15. SECURITY CLASS. (of this report)

UNCLASSIFIED

SCHEDULE

15a, DECL ASSIFICATION/DOWNGRADING

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

DATA FLCW ANALYSIS SOFTWARE SYSTEM DEVELOPMENT
REUSABLE

SOFTWARE ADAPTABILITY

\ SOFTWARE BUILDING BLOCKS

0. ABSTRACT (Continue on reverse side If necessary and identily by block number)

This report contains the results of a one-year study to assess the feasibility of
constructing the information processing components of Cg systems from reussble
building blocks. The objective is to reduce the time, cost, and risk of acquiring

(over)

and modifying Cf, computer systems. Three kinds of building blocks are identified: —=sp

DD 5" 1473 eoiTion oF 1 NOV 68 1S OBSOLETE ' UNC LASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Dara Entered)

|
e

r e T S T S T T T T R g R T e T P P T W S B s B T

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

20. Abstract (continued)

=

requirements, design, and software. A data flow architecture is proposed as a
framework for partitioning a system into functional components with flexibility to
adapt to changing requirements and different configurations. A preliminary plan is
presented for further work to demonstrate the building block concept for Ca systems.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered) | 3§

ACKNOWLEDGMENTS

This report was prepared by The MITRE Corporation under Project
7060, Iterative Software Synthesis (ISS). The Project Officer for
ISS has been Capt. D. Kawamura, ESD/XRE.

The man/machine interface characteristics model that appears in
Appendix I was developed and documented by Nancy C. Goodwin. Donald

R. Peterson performed much of the C3 system review that is reflected
in this report.

The authors wish to thank Jane S. McCarthy for her expert
support in the typing and editing of this report.

ACCESSION for
NTIS White Section

pOC Buff Section (O
UNANNOUNCED o

JUSTIFICATION ——

USROG 0

m
Al ||

S e

SR

TABLE OF CONTENTS

| Page
SECTION I SUMMARY 6
OBJECTIVE OF THIS STUDY 6
TECHNICAL APPROACH 6
PROJECT GOALS 7 R

|

CURRENT RESULTS 7 i

SECTION II BUILDING BLOCKS FOR C3 SYSTEMS 9 l

E! INTRODUCTION 9 "
CHARACTERISTICS of C3 SYSTEMS 9

What is a C3 System? 9 '
' » THE IMPORTANCE OF THE BUILDING BLOCK APPROACH 11

PROBLEMS WITH THE USE OF SOFTWARE BUILDING 13 '

BLOCKS |
Technical Problems 13
Administrative Issues 14
ANOTHER CONCEPT OF C3 BUILDING BLOCKS 15
Requirements Building Blocks 16

Design Building Blocks 16 i
Significance of the Concept 16
4 A PLAN FOR DEVELOPING C3 SYSTEM BUILDING BLOCKS 18

A Flexible Design Framework 18 .

Specification of C3 Building Blocks 19 {

‘ Design Trade-off Study 19 |

Support Tool Collection 19 !
Prototype Demonstration 19

3

SECTION III

SECTION 1V

TABLE OF CONTENTS (Continued)

REQUIREMENTS BUILDING BLOCKS

WHAT IS A REQUIREMENTS BUILDING BLOCK?

HOW WILL REQUIREMENTS BUILDING BLOCKS BE USED?

HOW TO BUILD A REQUIREMENTS BUILDING BLOCK
SUMMARY AND CONCLUSION

DESIGN BUILDING BLOCKS

INTRODUCTION

THE DESIGN PROCESS FOR C3 SYSTEMS

THE IMPORTANCE OF DESIGN

DESIGN BUILDING BLOCKS

A FLEXIBLE SYSTEM DESIGN STRUCTURE

Attributes of a C3 Information System
Structure

A Proposal for a Flexible System Design
Structure

Advantages of a Data Flow Architecture

System Implementation of a DFA Design

STUDIES RELATED TO DATA FLOW ARCHITECTURE

System Partitioning Study

Modular Software Construction

A Highly Reliable Distributed Computing
System

Operational Software Concept

Data Flow Computer

Modular Concurrent Programming

Data Flow Analysis

20

21

22

24

29

31

31

31

32

32

33

33

34

35
36

37

37
38
38

39
40

40

i-:

CONCLUSIONS

SECTION V

APPENDIX I

REFERENCES

TABLE OF CONTENTS (Concluded)

SOFTWARE BUILDING BLOCKS
SOFTWARE BUILDING BLOCK CHARACTERISTICS
RELATIONAL DATA BASE DEMONSTRATION

MAN/MACHINE INTERFACE CHARACTERISTICS

41
42
43
45
48

67

SECTION I

SUMMARY

OBJECTIVE OF THIS STUDY

This report presents the results of a one-year study under the
Iterative Software Synthesis (ISS) project which was a part of the
MITRE Technology Base program sponsored by the Electronic Systems
Division (ESD/XR) of the Air Force. The objective of this study was
to investigate and evaluate technology which could provide more
rapid deployment and modification of computer system components of c3
systems. The current methods for development of military computer
systems, consisting <f both computer hardware and software,
typically take at least four to six years from the time an
operational requirement is defined until an operational capability
is delivered. That is often too long to wait, especially to find
out if the originally specified requirements were the right ones.

It is necessary to put together systems more quickly. Furthermore,
the operational concepts for employing automation in c3 systems are
still evolving based on actual experience, changing tactical
requirements, and changing technology. It is therefore essential
that computer systems supporting tactical applications be capable of
rapid adaptation, modification, and extension to meet changing
requirements. Typically, modifications might be for the following
reasons: to process new kinds of messages, to accept data from new
sources, such as sensors or other c3 systems; to change the format
and contents of displays; to add to or to restructure data bases to
accommodate new data or new patterns of data usage; to improve
system response time; and to extend the automated capability of the
system. In today’s systems, such modifications are time-consuming,
expensive, and error-prone. The real cost of our inability to
rapidly deploy and modify computer systems can be measured as a loss
of capability to perform required mission functions when they are
needed.

TECHNICAL APPROACH

The selection of a technical approach to this study was
dictated by a requirement to find a near-term (within about five
years) solution which would also be amenable to exploiting new
technical advances in the longer term. The approach which has
evolved over the past year is to develop a framework and supporting

methods and tools for efficiently utilizing and adapting a common

set of computer system components across many tactical systems.

This approach relies on the notion that the information processing
requirements of each tactical system can be divided into (1) mission-
and system-specific requirements, and (2) common functional
requirements which support most tactical systems. Examples of

common functiorns are data base management, computer system resource
scheduling and allocation, display generation and management,

message processing, and report generation.

PROJECT GOALS

The goals for the first year of this project were to
investigate the feasibility of defining C3 system requirements in
terms of building blocks representing a set of central functioms
which recur across many systems; to identify the tools and
techniques which facilitate the construction of C3 systems from
building blocks; and to plan for a demonstration and subsequent
implementation of the approach by the Air Force.

CURRENT RESULTS

The need for reusable and adaptable c3 data processing system
building blocks has been reaffirmed. Some technical and
administrative problems with the reuse of software today and the use
of building blocks in the future have been identified. A technology
assessment has indicated that a building block approach to C3 system
development and maintenance is feasible, provided a concerted effort
is made to conduct tasks in the plan outlined in the report.

The initial concept of C3 system software building blocks has
been expanded from that of reusable of f-the-shelf software modules
to include other reusable products of the system development
process. Requirements building blocks and design building blocks
have been defined. They are identified as important elements in a
collection of capabilities designed to reduce system development
time and cost through increased utilization of existing products of
the software development process.

A requirements building block is a statement of requirements
for a data processing function that can be used as a starting point
for the specification of the function in different systems. It
defines functional concepts, terminology, and typical and
alternative capabilities included in the function. The content and

b bl i S R e sl

form of requirements building blocks are being determined in the
process of developing a building block for the c3 system man/machine
interface support function.

Three kinds of design building blocks have been identified:
design structure, macro-design modules, and detailed design modules.
The key to the development and use of reusable design building
blocks is a methodology for partitioning systems into components and
an associated design structure. A data flow architecture is
proposed as the means for achieving flexibility and providing a
framework for defining lower-level design building blocks.

Since some kinds of software building blocks are available
today, it is suggested that experience with their application in c3
systems be obtained and fed back into the requirements and design
building block development efforts. A laboratory demonstration is
identified as a means to obtain some of that experience and to
evolve an approach to constructing systems out of building blocks.

SECTION II |

BUILDING BLOCKS FOR C3 SYSTEMS

INTRODUCTION

In this section, the relevance of building blocks to C3 system
acquisition and maintenance is discussed. First, the
characteristics of C3 systems which establish the requirements for
their computer systems are discussed. Important reasons are
presented for investigating the feasibility of using building blocks
in €3 systems. Impediments to widespread use of building blocks for
C3 systems are also identified. Finally a revised concept of
building blocks for C3 systems is proposed.

CHARACTERISTICS OF C3 SYSTEMS

What is a C3 System?

The discussion of an approach for building c3 systems clearly
requires an understanding of what a c3 system is. The c3 systems
procured by the Air Force consist of heterogeneous collections of
aircraft, sensors, communication equipment, data processing
equipment, software, maintenance capabilities, shelters, furniture,
and whatever else is required to provide a set of capabilities to
fit into an existing or otherwise procured mission environment.
They support such military operational functions as surveillance
data acquisition, tracking, identification, weapons control,
navigation, mission planning, operations monitoring, weaponeering,
communications, network control, etc. The information systems that
perform the military functions consist of people and procedures as
well as the data processing hardware and software elements of the
larger systems. The characteristics of the procured systems and of
the information systems that utilize them affect the characteristics
of the data processing systems for which one might define building
block capabilities. Although the missions supported by C3’systems
may vary greatly from system to system, and although the details of
the support for a given function may vary significantly from one
system to another, nevertheless there are some common
characteristics of the C3 systems that result in some important
common characteristics among the data processing systems which
support them. Some important characteristics of these systems are
as follows:

0
S i s34,

A C3 system frequently supports several military functions.

There are frequently several instances of a system or of
information processing system elements of a system. An
instance may be in a fixed location or may be mobile.

There are multiple external elements with which the system
interfaces and many different message types exchanged over
different kinds of communication media.

There are requirements for real-time interface with the
external world and for real-time internal data processing.

There are requirements for continuous operations.

There are frequently requirements for different modes of
operation; for example, live and simulated modes, normal
and expanded modes, or normal and degraded modes.

They are semi-automated at best, and counsequently human
beings play a large role in the performance of the military
functions. There is therefore a significant requirement
for on-line interaction between the human and data
processing elements of the system.

Some resultant requirements and characteristics of the c3
operational software systems (data processing systems) are the
following:

They are large and complex because of the aggregation of
several individually large and complex functions into a
single system. The functions supported by a single system
are generally related and as a consequence require
significant internal interfacing. This interfacing is
frequently effected through a common data base.

They have requirements for adaptability of the software to:
- different hardware configurations (resulting from

differences between various instances of a system or

from requirements for degraded operations or hardware
backup),

- different geographical locationms,

- different data environments, and

10

i e e S, N e s

- different modes of operation.

e They have requirements for high software reliability
because of the requirement to support the continuous
operations of the information system.

@ They have requirements for correctness because of the
nature of the missions supported (for example, the
classification or the direct life support characteristics
of the mission).

e There are many different external messages accepted and
transmitted. There are also many different application
elements in the data base.

e There are requirements for real-time data processing.

e There are requirements for the quasi real-time support of
multiple different user functions. As a consequence, there
are many different user inputs to be processed and displays
to be generated.

THE IMPORTANCE OF THE BUILDING BLOCK APPROACH

To many people, a building block approach to system development
means reutilization of software modules in more than one system.
Many cogent arguments have been given for the use of this approach
in DoD defense systems. For instance,

"Having reusable software available can significantly
reduce system development time. The more software
that can be obtained off-the-shelf, the less new

sof tware that must be created. The risks involved
are thus reduced, since of f-the-shelf software should
already have been well tested and debugged. Reduced
time and risk enhance the probability that a project
will be completed on time and within budget... Such
benefits constitute a major resource savings,
ultimately reducing the required DoD software
investment." (COOP75].

Recently, a Congressional Committee, deliberating the FY78
defense budget, reviewed 18 different automated message handling
systems. The Committee recommended drastic reductions in Research
and Development funds for these systems because it felt that there

11

FoAS W P

T i

may be unnecessary duplication in their development. According to
the Committee, fewer systems with higher degrees of commonality may
be possible and desirable. While software is only one form of
commonality which might be achieved, the magnitude of the savings
which might result from reusing software was suggested by another
source:

"...transferring software from existing systems to
new systems by one percent more would save $20M per
year." [NYMA77].

The same Committee had another important concern about defense
systems. It noted that it is not entirely clear that these
expensive systems are designed to meet the needs of operational
commanders. In many instances, the Committee stated, the
operational commanders are being given information systems which
they had little hand in developing and whose capabilities are
frequently not fully understood and utilized. While the committee
did not say so, a software building block approach may even improve
this situation. A study of software problems by DoD for the House
Armed Services Committee in 1975 recommended that we

"...stop treating software as a fixed product which
is developed, maintained and discarded; and begin to
develop evolutionary systems which adapt and become
more sophisticated over long periods of time."
[CARL76].

If the use of software building blocks can significantly reduce
the time for developing and modifying system software, then it would
be possible to use an iterative, evolutionary approach to system
acquisition. Users would receive operational capabilities through a
succession of operational system deliveries such that:

e Users acquire an operational capability sooner;

® Users receive feedback on the adequacy of the requirements
they have defined;

e Both requirements and systems can evolve to keep responsive
to user needs in a cost effective way.

Pressures to reduce the duplication in system costs, to lower
the cost of software, and to provide systems which are more closely
matched to the operational needs of commanders, have all been cited
as reasons for employing a building block approach to C3 system

12

S

acquisition and maintenance. Pressure also comes from the direction
of hardware technology. Smaller, cheaper microprocessors are
causing a revolution in the architecture of computer systems.
Networks of cooperating processors are threatening to replace
monolithic systems with centralized processing. The promise of
"logic on a chip" also portends a shift in the distribution of
functional capabilities from software to hardware. These trends in
hardware technology are a pacing factor in forcing the consideration
of system structures composed of physically separate, possibly
standardized, components. The economic advantages of such
configurations will become irresistible. However, preparation is
needed to design and implement systems which can exploit the
distributed system architecture. A building block approach is one
way to prepare for the use of standard functional components, which
might initially be implemented in software, and eventually in some
other form.

PROBLEMS WITH THE USE OF SOFTWARE BUILDING BLOCKS

With all of the compelling reasons, cited earlier, for sharing
software among C3 systems, it is natural to expect that C3 systems
are frequently constructed this way. At present, this is rarely the
case. There have been both administrative and technical deterrents
to the use of building blocks. These are discussed below.

Technical Problems

According to a DoD study of software problems:

"There are two primary impediments to the widespread
sharing of standard software modules. First, there
is no satisfactory way to specify how a module will
respond to all possible inputs. Second, such general
purpose subroutines may not be structured in the most
efficient way to fit in the context of the larger
application system..." [CARL76].

Rigorous specification of module functions and adaptable software
are certainly key requirements for sharing software. The current
concern for improving the reliability of software has led to more
formal specification languages for describing the functions of

sof tware modules. Specification languages can also permit selection
of software modules for reuse in other systems. Of course, the
accurate specification of what a module should do is of no value
unless the module actually behaves that way, and we assert with

13

great certainty that it will continue to behave according to its
specifications. Proving the correctness of software is a goal that
current technology is approaching; the goal may be easier to attain
for small, self-contained software building blocks.

The second impediment to widespread sharing of software, cited
in the previous quotation, is more complex and difficult to
overcome. For a module to be useful in more than one system, it may
require adaptation in one or more of the following ways:

e The functions that it performs must be the right
combination for that system, i.e., those functions that are
required, without additional functions which are either
unnecessary or already performed by other components of the
system.

] The processing of those functions must be sufficiently fast
and sufficiently accurate, with a sufficiently large
capacity to meet the system load.

@ The module’s resources, such as computer memory, other
hardware devices, and data bases, must be adapted to what
the new system can supply.

) The software module must adapt to the architecture of the
system, i.e., its internal interfaces, and the machine
architecture. In other words, the software must be
‘transportable”’.

Adaptability in all of the above ways is difficult to achieve,
and it can be an expensive process. Greatest success comes when the
adaptability was planned at the time the module was designed, e.g.,
general purpose data management systems. Most general purpose
sof tware modules are far less efficient than special purpose
sof tware. A number of research activities in software technology
may lead to the ability to describe a generic set of capabilities
which, by semi-automated methods, is transformed into efficient
software for a wide range of operational applications.

Administrative Issues

Non-technical shortcomings have also made it difficult to reuse
software from system to system. Administrative actions are
necessary to facilitate planning for the use of common software in C3
systems. Without such actions, it is less likely that a higher

14

ez

o ——

degree of commonality will be achieved. Among the major
administrative issues that must be resolved are the following:

e Major defense system acquisitions are each separately
managed. Differences in funding and schedules alone can
make it difficult to attempt a joint effort by several
programs to develop common software. The initiative is
best taken by some separate, central organization which
could then make software modules available to all programs.

e To maximize the sharing of software components among
systems may require some greater level of standardization
in such areas as requirements, system interfaces,
programming languages, and computers. The usual issues
regarding standardization apply in this case too.

e Program managers must be willing to trade the desire for
the most efficient solutions to their operational
requirements against the lower cost and risk in using
available but less efficient software components.

When software modules are available, the Air Force must be willing
to require their use as a part of a new system. Such a commitment
implies willingness to take responsibility for the performance of
the government-furnished programs (GFP) and to maintain and upgrade
them.

ANOTHER CONCEPT OF C3 BUILDING BLOCKS

In the context of C3 systems, it may be beneficial to broaden
the concept of building blocks from reusable off-the-shelf software
modules to include other products of the system development process
which may be adapted for reutilization among systems and between
modifications of a system.

Two additional kinds of building blocks are proposed:
requirements building blocks and design building blocks. Each of
these is briefly described below and discussed in greater detail in
subsequent sections of this report. The significance of this
concept is explained below. 4

15

Requirements Building Blocks

Operational requirements for a C3 system describe the user’s
view of what functions a system will perform, how fast the functions
must be performed, and other system characteristics such as
reliability, availability, and survivability. Strictly speaking,
requirements specifications do not define how the processing will be
accomplished.

There is a level of commonality among c3 system requirements.
Requirements building blocks can be specifications for common
functions. These specifications would be reused, with suitable
modification, as parts of system specifications which require the
functions they define. An example, elaborated on in the next
section, is the operational requirement for a man/machine interface
to an information processing system.

Design Building Blocks

System requirements must be translated into a system design as
a part of the development process. A system design is a structure
of processing components and data bases, along with their
interrelationships. Some portion of the total system requirements
must be allocated to each component such that all requirements are
satisfied. Designs are developed at several levels. A high level
design simply partitions the system into a structure of functional
components, while detailed design defines how each component will
function. Modern software development practices begin with the high
level, more abstract design, and gradually evolve details such as
the selection of hardware and a system configuration, and the choice
of processing algorithms, data structures, and data representations.
Design building blocks can be reusable products of any level of the
design process. These products include the organization chosen for
a collection of processing components, as well as the design
specifications of the individual components themselves.

Significance of the Concept

The process of developing software for Air Force defense
systems follows a sequence which is shown in Figure 1. Software is
the end product of the development process which must be derived
from the specification of requirements and the determination of a
suitable design for a hardware/sof tware configuration.
Reutilization of software modules must be tied to both the
requirements they fulfill and the framework provided by the system
design. Hence the use of requirements building blocks and design

16

o

Sy o

103 1TV 243 uj juswdoTaaa(2IBMIJOS JO SISEBYJ

S3ITPNY
uorlean8yjyuo)
Ted1s4yq

pPue Teuofjoung

- e wn

NOLLVYOFTINI
aNV 1S3l

LN0XDFHD
aNV 3d0D

MITADY

ugysaq

TedF371)
i

NOISaa

‘T @2an81g

maTARY
udysag
LieummyTaxg

SISXTVNV
SLNIWDI INdOZIY

17

e T i

building blocks follows the natural course of system development
which can lead to the identification and use of existing software
modules. Furthermore, requirements and design building blocks can
be useful whether or not they lead to the selection of available
sof tware modules. Both types of building blocks represent
significant effort. When duplication of that effort can be avoided
from system to system, then both time and cost are reduced for
system acquisition. Similar savings can result in the modification
of systems, since the requirements and design must be altered to
reflect system changes.

The concept is significant for another reason. Requirements
and design building blocks may be much more adaptable to shared use
than software building blocks. Software represents an optimized
solution to a set of functional requirements for a given system.
Furthermore, the software has been specialized to the hardware
environment in which it will operate. Specialization and
optimization reduce flexibility and often add complexity which makes i
it harder to utilize the software under different circumstances and
harder to change it. Both requirements and design building blocks
can be specified at a more general level, independent of details
usually determined as a part of the optimization process. This
should facilitate their reutilization and adaptation.

A PLAN FOR DEVELOPING C3 SYSTEM BUILDING BLOCKS

A preliminary plan for developing a repertoire of building
blocks for C3 systems has been defined in terms of tasks which
should be undertaken. These tasks are briefly described below.
For those tasks which have been initiated, progress is described
in subsequent sections of this report.

A Flexible Design Framework

The key to the use of building blocks is a methodology for
partitioning systems into processing components which provides
maximum independence between system components and simplifies their
integration and testing. A design structure developed with such a
me thodology would allow building blocks to be combined in many ways
to provide a variety of system capabilities for a range of different
system hardware configurations. A flexible system structure and
criteria for functionally partitioning systems into it must be
developed.

18

Specification of C3 Building Blocks

The objective of this task i1s to identify and produce
specifications for information processing functions common to
tactical C3 systems. Requirements and corresponding design building
block specifications will be produced. The design building blocks
will be partitioned from the system design according to the criteria
developed for the flexible system structure in the preceding task.

Design Trade-off Study

The objective of this task is to define tools and methods for
utilizing design building blocks in the implementation of a system.
Starting with a flexible system structure, developed in the initial
task, detailed design trade-offs can be made to select a suitable
combination of hardware and software. Analytical aids, such as
simulation, can be adapted to the flexible system architecture to
provide performance prediction. Other trade-off criteria, for which
methods and aids are needed, include system reliability, cost, and
survivability.

Support Tool Collection

The objective of this task is to develop an integrated
collection of support tools to be used in the implementation of
building block systems. Many of the tools may be simple adaptations
of existing tools and the task becomes one of assembling and
interfacing the tools with each other. Support tools encompass
libraries for maintaining building blocks, design aids for selecting
and combining and optimizing the performance of building block
systems, tools developed in the Design Trade-off study, and tools
which assist in the generation of software or hardware logic such as
compilers for Very High Level languages, compilers which can tailor
code to the parameters of a specific use of a building block, tools
for timing the performance of the system, and tools for testing or
validating both design and implementation of a system.

Prototype Demonstration

This task will demonstrate the application of the products of
the other tasks to a set of tactical functions. Using the support
system and prototype building blocks, an operational capability will
be developed and its adaptation to a range of requirements
demonstrated and measured for implementation time as well as system
performance. If successful, this task proves the feasibility of the

concept and opens the way for the procurement of other building blocks.

19

SECTION III

REQUIREMENTS BUILDING BLOCKS

A requirements building block is a statement of requirements
for a data processing function that can be used as a basis or
starting point for the specification of the requirements for that
function in more than one C3 system. The concept of requirements
building blocks grew out of some specific needs in the ISS project
and also out of observations about problems in the requirements
determination, specification, and review process for c3 data
processing capabilities. The ISS needs were to identify data
processing functions common to several C3 systems and to express
their requirements in such a way that they could be used to identify
and ultimately acquire software building blocks. Needs seen in the
general requirements specification area were for the development of
a common understanding of what capabilities a given function may
include; establishment of a common terminology for a given
functional area; and documentation of the functional description so
that it could be used as a starting point in the requirements
determination process for a specific system.

System specifications (Type A) and development specifications
(Type B) for specific C3 systems have long been used as starting
points or building blocks in the development of requirements for
other related systems. For example, the specifications for each
generation of the Air Defense systems have drawn heavily on the
specifications for preceding systems. The availability of detailed,
proven specifications from earlier systems is widely believed to be
an important factor in the successful acquisition of a new systen.
The use of such specifications as models for new specifications has
several limitations, however. First, a specification for a specific
system reflects only one set of choices with respect to the
capability of fered for a given function. Alternatives are not
identified, nor are the omissions, deliberate or otherwise. Also,
the functional capability requirements are usually documented in
terms of the specifics of the application. The potential
applicability of a set of requirements to other systems may be
obscured by the specificity, or simply by the use of parochial
terminology. The development and use of requirements building
blocks is seen as an extension and formalization of the practice of
using the requirements - general concepts, details and words -
generated for one system in the development of others. It is hoped
that requirements building blocks will be more useful models than

20

et i

individual system specifications because they will consolidate
information about a given function from many sources; they will
reflect options, and they will be expressed in generic rather than
system-specific terms.

The concept of what a requirements building block actually
consists of and what it looks like in detail is still under
development. Our current activities directed at developing a C3
man/machine interface support building block and an example of
something like a building block are described under "How to Build a
Requirements Building Block." Our current thoughts and assumptions
about building blocks in general are described below.

WHAT IS A REQUIREMENTS BUILDING BLOCK?

As was stated above, a requirements building block is a
statement of requirements for a data processing function that can be
used as a basis for the requirements specification for that function
in more than one C3 system. The functions for which one would have
building blocks would obviously be those common to several C
systems. They might be large and complex, with many possible
subfunctions, as for example, a data base management function. They
might be relatively small functions, as for example, a simple
keyboard editing function. They would include both mission-specific
functions, such as tracking or identification functions, and mission-
independent functions such as message processing or display
management functions. As the functions vary in size, complexity,
and logical relationship to each other, so would the corresponding
building blocks. It is assumed that the functions and subfunctions
for which building blocks are defined will be determined by a
methodology that results in logically coherent functions with well-
defined external interfaces.

The requirements are understood to be data processing
requirements, not software requirements. No assumption is made
about the allocation of those requirements to hardware or software.

Requirements building blocks are documents, written according
to some yet to be defined organization and content specification.
There would be some descriptive and explanatory material and some
data processing function specification material suitable for easy
incorporation into requirements specifications. In the long run the
specification portions might be written in a formal requirements or
specification language.

bmtthais s 4ot o

Requirements building blocks are seen as being vehicles for the
expression of functional requirements primarily. Although it might
be possible to indicate the kinds of performance requirements
appropriate to a function, it seems inappropriate to try to indicate
a function’s performance requirements quantitatively out of the
context of a specific system. A requirements building block might
also include a mechanism for describing the critical characteristics
of the function and the contexts in which it might be used so that
its applicability in a given situation could be readily determined.
It would also be desirable to provide a mechanism for identifying
high level characteristics of the requirements and the corresponding
set of appropriate subfunctions.

The requirements contained in a requirements building block are

for capabilities visible to and accessible to the external interface
: of the function. 1In the work on the man/machine interface support
% function described below, the capabilities are those visible to the
; on-line system user. Clearly, not every data processing function
for which there might be a requirements building block has an
external human or other system user. One of the most promising
areas for the development of building blocks is in the intermediate
level between the application specific external system interface and
system architecture and hardware specific functions. So, users of a
function must be seen as programs as well as human beings and other
systems.

HOW WILL REQUIREMENTS BUILDING BLOCKS BE USED?

A requirements building block will be used to help define the
requirements for a given function in a specific system. It will
also be used as the statement of requirements for the development of
a matched set of design and code building blocks.

Requirements building blocks might be used in the following
way. During the determination of the overall requirements for a
data processing system and the identification of the functions to be
performed, the set of available building blocks might be used to
suggest possible (and presumably reasonable) functional partitions.
Given a functional decomposition for a given system, individual
building blocks could be used in the following ways by someone
specifying detailed data processing system requirements. For every
function for which a building block having reasonable correspondence
exists, the building block will be reviewed. The purpose of the
review is to identify (or refresh the memory of) the concepts,
terminology, and capabilities normally associated with that

22

function. The overall structure of complex functions will be seen
as well. The specification for the function in the specific system
will use the building block concepts, terminology, and functional
structure. A subset of the building block capabilities will
probably be identified as those capabilities meeting the system’s
requirements. It is assumed that the building bl-ck will show
functional dependencies and that the completene:: of the selected
subset could be checked. For a given capability, the building block
may indicate several ways in which the capability can be provided;
the desired ones would be selected. For some capabilities the
statement of requirements contained in the building block will be
copied without change. For other capabilities, they may need to be
augmented or modified to meet the system’s requirements. The
specifier will develop the specifications for requirements not
expressed in the building block, keeping them as consistent with the
rest of the specification as possible.

In an automated ISS environment, the building blocks could be
expressed in a formal machine checkable notation. The automated
support to the specification process would provide for the creation
of new specifications from the building blocks. It would include
checking of the new specifications as well as general text editing
and manipulation. It might also include such things as the
identification of corresponding design building blocks. As user
requirements evolve they will be incorporated into the system
specification, using the building blocks as a baseline for their
definition and expression.

Requirements building blocks can be used for other purposes in
the system development cycle besides the specification of detailed
data processing system requirements. Specifically they can be used
in the review of the specifications by other than the preparers.
The building block would provide a checklist for checking
completeness and for reminding the reviewer of alternatives
rejected. They can also be used as a framework for comparison of
systems when that is of interest.

Requirements building blocks will also establish the set of

capabilities for which design and code building blocks are built in
an ISS facility.

23

bt bl S e it e 2

HOW TO BUILD A REQUIREMENTS BUILDING BLOCK

An obvious activity in an effort to develop C3 system building
blocks is a review of existing or specified c3 systems to assess the
commonality of system functions and their data processing support
requirements. Although we recognized from the outset that a
comprehensive review and analysis of c3 system characteristics were
beyond the scope of project resources available for such a task, we
nevertheless believed it necessary to develop some insight into the
degree of commonality across C3 systems and into the difficulty of
obtaining that kind of information. Our resources were more limited
than expected and the job turned out to be even larger and more
difficult than anticipated. As a result we are unable to make
conclusive statements about the extent of the commonality of data
processing support requirements across c3 systems, but we do have
some greater insight into the subject. We also believe that we have
made some progress in the development of a requirements building
block for the man/machine interface function in C3 systems.

The approach taken was to look in a top-down manner for
commonality of processing requirements as identified in System (Type
A) and Software Development (Type B) specifications, and similar
documents. Available documentation for 12 ESD systems was briefly
reviewed. The systems are identified and categorized below.

Communications Systems

AFSATCOM I
JTIDS

SATIN IV
TRi1-TAC TCCF
TACS /TADS

Surveillance and Control Systems

E-3A

COMBAT GRANDE
JSS

GEODSS

PAVE PAWS

Command and Management Systems

TACC AUTO

Intelligence Systems

TIPI-DC/SR

The review revealed that communications processing and on-line
user/machine interface support functions were the most commonly
occurring requirements across these systems. A more detailed look
at those two functional areas was then initiated to obtain a better
understanding of the degree of commonality in those areas. A subset
of the 12 original systems was selected for the next level of
assessment in each functional area.

The systems selected for further examination of the
communications processing requirements included communications,
surveillance and control, and command and management systems. They
were the following:

AFSATCOM
JTIDS
SATIN IV
JSS

TACC AUTO

Working from requirements level documents (primarily Type A
specifications) it was possible to categorize the communications
sof tware processing requirements into the five areas of message
processing; network control; communications equipment interface/
control; operator interface; and performance monitoring.
Subfunctions in each area were identified to provide a mechanism for
grossly representing and comparing requirements across the systems.
The tabulation of requirements across the systems showed the
presence of many of the subfunctions in several or all of the
systems. However, although such results could be seen as an
indication of potential commonality, the review tended to inspire
skepticism by the reviewer about the presence of true commonality,
around which building blocks could be developed. The determination
of the requirements and their comparison across systems were, as
expected, made difficult by the varying levels of detail in source
documents and the dif ferences in terminology from system to system.
The systems were deliberately selected to include those in which
communication was a primary function and those in which it was not.
The communications processing functions in these systems support
very different communications system architectures, processing and
transmission equipments, protocols, and message types. These are
some of the communications system characteristics which clearly can
influence the nature of the detailed requirements for data

25

it S e—

processing support. The effects of these characteristics may not be
apparent at the level of documents reviewed and to the extent that
they are, they seem to reflect more difference among the systems
than commonality.

The review of the communications area was terminated after a
short effort. The primary result of that effort was a heightened
appreciation of the apparent differences among the communications
areas of C3 systems as a whole and the size and difficulty of the
task of further assessing the potential for meeting their
requirements with common building blocks.

The further examination of the on-line man/machine interface
requirements within c3 systems was pursued in two ways, one looking
for gross indications of commonality among c3 systems, and the other
asssuming some commonality and aimed at the development of a common
framework or model in terms of which the requirements of diverse
systems for man/machine interface support could be expressed.

The review that was intended to give gross indications of
commonality among systems for man/machine interface support
requirements included COMBAT GRANDE, representing the air
surveillance and control class of systems; TACC AUTO, representing
the command and management class of systems; and TRI-TAC,
representing the communications class of systems. The source
material available spanned Type A, B, and C specifications and
obviously varied in the amount of detail presented. The
requirements information extracted included the following: the
generic types of devices included in the user station (CRT graphic
and/or tabular display, alphanumeric keyboard, various types of
switches, cursor positioning devices, printers, audible alarms); the
various types and numbers of information displays presented
(graphic, tabular; fixed, ad hoc; requested, forced; substantive,
forms; etc.); the numbers and types of screen areas defined for
independent and concurrent displays (tabular, situation, attention,
error feedback, menu, etc.); display manipulation capabilities (off-
set, expansion, feature selection, etc.); and number and mode of
user inputs. The primary result of this review was observation of
enough commonality of requirements to support further interest in
continuing the separate and concurrent effort described below.

The second effort in the man/machine interface requirements

area has been in the development of a model for expression of those
requirements. The objectives of the effort have been the following:

26

P R T R T ——————'2

e To identify grossly the characteristics of an interface
between the data processing system and the on-line user
that can be used for the purpose of facilitating top-level
differentiation among interfaces and permitting inference
about the data processing support required for the
interface.

e To identify the set of on-line user requirements and
capabilities that are present in c3 systems.

e To categorize and organize those requirements.

e To identify options available in the selection or
specification of capabilities to meet higher level
requirements.

e To provide common concepts and terminology for use in the
description and specification of a man/machine interface
and its data processing support.

e To provide a vehicle for assessing commonality among
different interfaces.

e To provide a checklist for preparing or reviewing
man/machine interface support specificatioms.

e To provide the statement of functional requirements against
which man/machine interface design and code building blocks
could be developed.

The on-line man/machine interface area was selected as the
subject of the requirements building block effort because of the
universality of man/machine interface support requirements across
all C3 system types and the resultant potential for broad
application of the results. The choice has also been inspired by
the importance of this functional area in user acceptance of and
ability to use the data processing systems. It was further
motivated by interest in movement towards some human/system
interface standards. It was also felt that making requirements
explicit might correct the problem of underspecifying and therefore
underestimating the implications of man/machine interface
requirements.

The initial work on the model consisted of a detailed review of

the TACC AUTO Type A specifications to extract the man/machine
interface requirements. The requirements for the interface support

27

s s et

effected through the tabular display terminal were analyzed and used
to formulate a simple model for organizing and categorizing those
requirements. The model included functional, capacity, and
performance requirements. The functional requirements categories
were the following: management of displayed data, management of
display screen content, man/machine protocol, ease of operator use,
formatting, and editing. The COMBAT GRANDE interface requirements
were subsequently extracted from the Type B specifications and
organized in terms of the model to test for general suitability of
the model to the requirements of a very different C3 system and to
compare the specific requirements of the two systems. The COMBAT
GRANDE specifications mapped into a subset of the TACC AUTO based
model. The absence of any COMBAT GRANDE requirements to support the
management of displayed data (e.g., to store a display or to
transmit it) highlighted the dif ference between the two systems in
the use of the systems and the display interface by the on-line
users. The other functional categories generally accommodated the
COMBAT GRANDE requirements reasonably well. A comparison of the
requirements of the two systems reveals some obvious commonality -
such as editing requirements - and also indicates a potential for
identification of greater and higher level commonality given a common
terminology and level of detail in the expression of the
requirements.

The second phase of this effort has consisted of a significant
broadening of the scope of the model, reorganization and expansion.
The approach that has been taken in this second phase is to begin by
developing a strawman idealized model covering known types of
requirements from many different systems. The next step is to then
refine it by mapping the man/machine interface characteristics and
requirements of various C3 systems into it and iteratively tuning it
to better reflect those requirements.

The current version of the man/machine interface requirements
characterization is contained in Appendix I. It is a preliminary
general model that is being used in the review of existing c3
man/machine interface requirements and has yet to be modified to
reflect that review.

The first section of the model, Overall Characteristics of
Position, identifies the overall characteristics of the user’s role
and environment that should be recognized and may affect the nature
of the data processing support requirements. The second section of
the model, Workstation Characteristics - Physical Environment,
identifies physical characteristics of the user station and its

28

environment that need to be considered in the specification of the
interface.

The third section of the model, Software/Processing
Requirements Directly Related to User Interaction, addresses the
functional requirements of the man/machine interface. It is
subdivided into components that identify capabilities for
significantly different aspects of the interface. The first
subsection identifies the user’s requirements for management of the
medium of the interface. For example, it identifies capabilities
for controlling display content, appearance, space utilization and
allocation, etc. The second subsection identifies generic
capabilities needed to support the user in the performance of his
task. Dzta editing, data entry, and data transmission are among the
kinds of capabilities included. The third subsection identifies
user requirements for error handling and the fourth subsection
suggests types of capabilities that may be provided to facilitate
the user’s interaction with the system. The last section,
Software/Processing Requirements Indirectly Related to User
Interaction, identifies data processing system requirements that are
not considered to be a part of the man/machine interface
requirements but are related to them.

This man/machine interface characterization is far from being a
man/machine interface requirements building block for c3 systems.
It is still a general model, not yet specifically tuned to c3
systems. It needs significantly more work than has been put into it
so far to clarify man/machine interface concepts and terminology; to
elaborate in general and even out the level of detail of the
capability specifications; and to select and implement an
appropriate orientation and general form of the requirements
statements or specification. The characterization has been included
here because it is the best approximation of a requirements building
block that we have developed thus far and provides some illustration
of the concept. It is also felt that even in this preliminary state
it may be a useful tool in the development or review of man/machine
interface specifications for c3 systems currently being acquired.
It is suggested that it could be used to review the completeness of
specifications and to indicate alternate ways of providing
capabilities.

SUMMARY AND CONCLUSION

Our work in the requirements area this year has convinced us
that the development of requirements building blocks for C3 systems

29

will require significant amounts of time and effort. Further ISS
work should make it possible to procure requirements building
blocks. The completion of one building block can serve as a model
for others. Other tasks should also include the development and
documentation of the general definition of a requirements building
block and an approach or methodology for generating specific
instances of one. 1In addition, the building block should be used as
the statement of requirements for the procurement (presumably the
design and implementation) of at least some portion of a prototype
man/machine interface capability to assess its usefulness and to
provide input to its refinement.

__"__ﬁ,.w_wmj

SECTION 1V

DESIGN BUILDING BLOCKS

INTRODUCTION

This section relates the design process to the phases of c3
system acquisition and suggests several types of design building
blocks. The key to the use of design building blocks is a
methodology for selecting system components and organizing them into
a system structure. A data flow architecture is proposed as the
means for achieving flexibility and enhancing the reusability of
functional design building blocks within and among c3 systems.

THE DESIGN PROCESS FOR C3 SYSTEMS

In a sense, the design process can be defined in terms of Air
Force regulations governing the acquisition of computer resources.
These regulations dictate products of the design process which must
be delivered for review and approval, as well as the sequence in
which these reviews occur. Air Force Regulation 800-14, Volume II
[AIRF75], describes two phases of computer program development
during which design is accomplished. The Analysis phase normally
begins with the release of the system specifications and ends with
the successful accomplishment of a Preliminary Design Review (PDR).
The Design phase which follows accomplishes the development of a
preliminary Computer Program Product Specification and its review
during the Critical Design Review (CDR). Thus, there are two major
stages in design. We will refer to the first as "macro-design" or
"preliminary design" and the second stage as "detailed design.”

Overall, the design process is one of transforming system
requirements into a structure of system components which together
accomplish the required functions. The design process is a
succession of similar activities, which partition the system into
components at finer and finer levels, allocate requirements to
components, and define interfaces. As summarized by Glore [GLOR77],
during preliminary design the system specifications are divided into
components called Functional Areas, interfaces are defined among
components, and the system’s functional requirements, technical
performance, external interfaces, design and test requirements are
allocated among the Functional Areas. Functional Areas can be
divided into segments, if necessary, and then into Configuration

31

Items (CI) or, in the case of software, Computer Program
Configuration Items (CPCI). Finally CI’s can be divided into
functions. As the design process proceeds, algorithms are selected
and computer resources are allocated to functional components.

THE IMPORTANCE OF DESIGN

Design decisions affect the technical quality of a system and
the ease with which a program can be managed. The partitioning of
the system at the macro-design level affects the division of labor
for developing a system. Separate organizations or groups within
organizations may be responsible for developing individual
subsystems or CI‘s. The level of communication among these
organizations will be affected by the number and complexity of
interactions among system components. The number and composition of
Conf iguration Items affect the number of design reviews, the
difficulty and extent of the system integration and testing
activities, and the level of the government’s technical monitoring
of full-scale development.

Design decisions affect the quality of software in several
ways. A study of software errors [BOEH75) showed that 65% of all
errors found were design errors, that is, errors that required
changes in design. The ease of integration and system level
testing, and the rate at which causes of errors can be identified
are affected by the number of dependencies among system components.
In a similar way, the effort required to modify a system will depend
on the distribution of functions and interfaces among its
components.

DESIGN BUILDING BLOCKS

Any component of a system which is specified as a part of a
system design can be a building block. At the macro-design level,
the building block may be specified as a black box, whose external
attributes only are described. External attributes include external
interfaces such as input and output formats and data requirements,
functions performed and output generated for each legal set of
inputs, and errors detected. At the detailed design level, the
algorithms for accomplishing the functions of a building block are
defined as are the data structures used for the processing. These
detailed design specifications constitute a second type of building
block.

32 '
,%

There is one additional product of the design process which is
essential to the reusability of designs: the structure of the
system design. The design structure is derived from an explicit or
implicit set of rules for partitioning a system into components. At
the abstract or conceptual level, the structure is the counterpart
of a system architecture, although it may differ from the actual
system architecture which is implemented in terms of configurations
of computers and other hardware, and the connections among them.

In summary, three kinds of design building blocks are possible:
a design structure, macro-design modules (components), and detailed
design modules.

A FLEXIBLE SYSTEM DESIGN STRUCTURE

The importance of a flexible system design structure has
already been noted. It is the key to partitioning a system into
components which can be used as parts of other systems. It must
also allow the alteration of a system to easily accommodate required
changes in the system’s behavior over its life cycle.

Attributes of a C3 Information System Structure

A system structure, like a network, is composed of components
and connections among them. In an information processing system,
the components consist of processes and data. A processing
component also referred to as a module, accepts data as it is input,
performs some set of functions, and produces data as output. The
connections among components may be viewed as relationships of two
types: control, and data. Control relationships determine what
processes can cause other processes to execute their functions.

Data relationships determine how the outputs of processes become the
inputs to other processes. Connections among components within a
system are internal interfaces. A system also has external
interfaces to its operational environment. These interfaces can be
stimuli which enter the system such as signals from equipment and
sensors, messages from other systems or actions of operators.
External outputs, similarly, can be messages, reports, displays, or
signals to control weapons and sensors.

The design structure of a system can also determine the
sequence in which processes are executed. Execution sequence can be
a function of control flow and of data flow through the system.
Sequential (or one step at a time) execution and concurrent (or
parallel) execution are possible.

33

.

Many of the functions of a c3 system are real-time functionms,
each activated by some external stimulus to which the system must
rapidly respond. The total system requirements consist of many such
stimulus-response patterns, often occurring asynchronously and
concurrently but not independently. Thus the system can be viewed
as a set of cooperating processes sharing data.

A Proposal for a Flexible System Design Structure

The following is a proposal for a design structure which might
provide flexibility and serve as the framework for defining
functional building blocks at the macro-design level. This proposal
is in line with a variety of ideas appearing in many contexts for
many purposes in current computer science literature. Some of these
related ideas are described later in this report.

Major characteristics of the design structure, which will be
referred to as a data flow architecture (DFA), are the following:

e The system is viewed as a collection of processes which can
operate concurrently. Each process is itself a single,
sequential process.

® The connections between processes are primarily data
connections, i.e., the outputs of processes are connected
to the inputs of other processes. The data are explicit,
self-contained messages which are defined so that they can
be tested for reasonableness.

® The sequence of execution of processes is determined by
data flow through the system, i.e., any process may operate
when it has inputs and cease execution when it has
generated the corresponding outputs.

@ Each process has its own resources. Messages are
transmitted among processes but data resources are not
shared. In concept, each process also has its own
processor.

Such a structure is clearly abstract, in the sense that it
ignores many of the realities of an implementation such as sequence
control, synchronization of processes, and resource allocation.
Application of the DFA also requires the development of a companion
set of partitioning rules which provide guidance in the selection of
the functions for each processing component.

34

e A .

At present, the DFA apgears to have attractive advantages. Its
controlled application to CY systems is needed to refine the concept
and to develop the rules for its use.

Advantages of a Data Flow Architecture

The Data Flow Architecture is representative of one stage in
the transformation of a set of system requirements into an
implementation of thosz requirements. It is a stage worth capturing
and documenting because it is the point at which the essential
dependencies among components of the system design are shown in
their simplest terms. It is free of dependencies and complexities
introduced by implementation constraints. It is possible to move
forward from the Data Flow Architecture in many directions toward an
implementation. For example, processes can be centralized or
distributed over more than one processor; processes can be scheduled
or allowed to run concurrently and asynchronously. The use of
concurrently executing processes in the DFA makes it easy to map the
systen design into either sequential or concurrent processing
components, whereas it is more difficult to unravel a system design
which assumes strict sequential order into one which is implemented
with concurrent processing.

The restriction of connections in the DFA to explicit transfers
of information among modules has several advantages:

e This corresponds closely to the stimulus-response nature of
c3 system requirements. System behavior, as represented by
the design, can be traced back to and verified against
system requirements which are expressed as expected outputs
for sets of system inputs.

e Al)l interactions between modules are observable. There can
"be no implicit side effects. Analytical aids can be used
to test the data connections to see if they are well-
formed, i.c., consistent and complete.

® Modules defined for a system using the data flow
architecture should be easily reused. Their specifications
can be expressed solely in terms of input, process, output.
They are free of any assumptions about the behavior and
sequence of execution of other modules so long as inputs to
them are generated by the system. They also perform simple
sequential processes, so they do not rely on complex
control sequences.

35

System Implementation of a DFA Design

As noted above, a macro-design of a system using a DFA is one
stage in the total development process. The utility of a DFA must

be judged by how well it prepares for and simplifies the stages of
development which succeed it.

If the architecture of the system implementation were identical
to a DFA, then the implementation of a DFA design would be
straightforward. There may soon be data flow-oriented distributed
processing systems, composed of a network of processors, each
dedicated to a single process with adequate resources for that
process, and a very fast data bus over which processes send
messages, containing requests or information, to other processes.
Many elements of such a system are already feasible.

There are ways to approximate the DFA design in a system.
Explicit data connections have been achieved between processes on a
single processor through strict use of a message queue for
interprocess communication. The queue can also be used to schedule
processes which have messages, i.e., as determined by data flow. If
data connections are more efficiently provided through sharing of
data among processes, then rigid and explicit control over access to
common data bases can, at least, minimize the possibility of
unintended accesses and limit the extent of data dependencies. Such
control over common data base access can be achieved by management
policies, automated aids and language features. All of these
methods must force explicit declaration of common data needs for
each module, see that these are minimal, and test for conformance to
the declarations. Control over data base access can be done during
system operation, at system load time, or even by a compiler.

The DFA design does not deal with scheduling and sequence
control of functions or with resource allocation. Much of the DFA
system design can be preserved if these functions are introduced
into an implementation as separately as possible from other system
functions. This fosters a closer correspondence between the
processing modules of the DFA design and the software modules which
implement them. As long as the software isolates control
dependencies, the modules are capable of greater utilization in
other combinations and other configurations.

In the studies summarized below, mechanisms for closely
approximating features of the DFA are identified.

36

e

T R T P TR N R R OT TP s Ly

STUDIES RELATED TO DATA FLOW ARCHITECTURE

The idea of a data flow oriented system is neither original to
this project nor of recent vintage. The association of a Data Flow
Architecture with the objectives of this project was due to our
familiarity with a suggestion made several years ago by a colleague.
He proposed a new software design technique which he termed
"egalitarian programming" [SULL73]. He felt it would increase the
flexibility of programs and the clarity of expression of procedures
within programs. He demonstrated by example that unnecessary
dependencies were created among procedures by a hierarchical
decomposition of a system into levels of control which determined
which functions might call on which other functions. Many of these
unnecessary dependencies could be eliminated by placing all
procedures at the same level of control and allowing them to
interact through the transfer of data alone.

Subsequent to selection of the DFA for the ISS project, a
survey of recent computer science articles was conducted to see what
kind of support or evidence might be found to confirm the utility of
the DFA. A number of recent articles was found which presented
similar architectures to serve a range of purposes such as improved
system design, compiled code optimization, distributed processing
system architecture, and a new computer architecture. A
representative sample of these articles 1s btriefly presented below.
With increased interest in distributed and concurrent processing,
more work on data flow analysis will undoubtedly appear.

System Partitioning Study

The Systems Technology Project Office of the Army Ballistic
Missile Defense Systems Command has initiated a System Partitioning
Study, reported in [SMIT76]. The orientation of the study is toward °
improving the technical and contractual management of large system
acquisitions by developing better rules for selecting major system
components. These rules would be applied prior to detailed system
design. The outcome would affect the boundaries between multiple
organizations involved in a development effort. By inspection of
several similar systems, and interviews with developers, a
preliminary-set of partitioning rules was deduced. These rules were
used to repartition a portion of the Site Defense program. The
study concluded that complexity, cost and company interactions might
have been reduced by bettek\partitioning. Several rules are
concerned with partitioning 'a system into elements with interfaces
"which feature messages to be acted upon and which are subject to
reasonableness tests for error control..." and producing elements

37

"that exhibit the performance of a complete function based upon a
clear stimulus and upon well-bounded output requirements.'" The
application of these and other rules was termed "Data Flow
Partitioning'". The study also described the use of N2 charts as a
technique to document the data flow among processing functions and
to assist in the decomposition process.

Modular Software Construction

The study which comes closest to the Data Flow Architecture
concept is one by K. Jackson [(JACK77]. This. paper recommends using
parallel processing as the basic criterion for decomposing a system
into modules. The approach provides flexibility to combine modules
in many ways in the construction of real-time systems. Process
synchronization can be handled in a modular way by concentrating it
in the access control to intercommunicating data areas. Precompiled
modules can be formed into a network by naming the data areas
required by each process. A system, called MASCOT, implements these
concepts. It provides facilities to form systems from collections
of highly independent modules with restricted forms of communication
and connection. MASCOT also contains synchronization primitives to
control data flow through a system. Its use is reported to have
resulted in "remarkable" programmer productivity and ease of
integration. A language, MORAL, was reported to be under
development to use with MASCOT.

A Highly Reliable Distributed Computing System

A process structure similar to the Data Flow Architecture was
proposed several years ago as a design for a hardware configuration
of a highly reliable, distributed processing system (GORD73]. Major
features of the design are: a decentralized processing environment
in which there is no central control; separate and non-overlapping
memory and input/output resources for processors; and connections
among processes primarily through the sending of messages, rather
than direct control. A model was developed which contains elements
for controlling the system, connecting user functions, and handling
files. Subsequently, a Distributed Computing System (DCS) was
developed at the University of California, Irvine which implements
the basic concepts of the model. [ROWE75] The DCS consists of
processors connected to a unidirectional digital communication ring.
Processes are assigned to processors and then interact with other
processes by addressing messages to them and placing them on the
ring. Functions to schedule processes within a processor and to
perform message transmission are contained in a nucleus within each
processor. While processes do directly address other processes by

38

T ——

name, they do not know the processors on which they reside.
Allocation of processes to processors is a function handled by
polling all processors on the ring. Resource allocation,
input/output functions and file management are also distributed
processes which are accessed by messages. Each resource is treated
as a process which need not reside on the processor whose resources
it allocates. Failsoft operation of the system is achieved by
distribution of control, isolation of processes, controlled access,
and redundancy. This prevents the failure of one component from
causing total system failure.

Operational Software Concept

Several years ago, the Air Force Avionics Laboratory sponsored
a study to develop a design methodology and framework for efficient
reuse of operational flight software throughout the life cycle of an
avionics system and to permit the efficient transfer of software
between dif ferent missions and different computer architectures
[ENGE76]. During the study, a software structure was defined, tools
and documentation aids were selected to support its use, and its
effect was evaluated by employing the design framework in the
construction of demonstration software.

The software structure was based on partitioning rules to
enhance reusability which included "separating out machine
dependencies, mission dependencies, utility functions, data
structures, and individual function elements." Interfaces between
these clusters of functions are concentrated in specific system
components. For example, the executive acts as an interface between
application programs and the computer as well as real-time
dependencies. An Intertask Communication component controls all
synchronous operation, while a Data Access Control component handles
asynchronous access to data. The study describes the use of
Directed Flow Graphs, which provide a graphic notation for
explicitly representing both data and control flow, and an
associated algebra for mathematically verifying the operation
represented by the graphs.

Through a prototype demonstration, the study showed that common
sof tware modules can be built for different missions and different
computers. While the price of commonality was inefficiency, it was
felt that hand tuning could overcome that problem. Furthermore, the
unoptimized version is the best baseline from which to make system
modifications or reapplications because it is in its most machine-
independent, mission-independent form.

39

Data Flow Computer

Recently, a data flow model was described which can serve as a
conceptual tool to explore a new kind of computer architecture
[RUMB77]. The model appears to be equally useful for system design,
and is similar to the Data Flow Architecture proposed in this
report. The model consists of a network of functional operators
connected in pairs by one-way asynchronous data links. Modules
(operators) interact by sending messages. The sequence of execution
of all operators is independent and concurrent. Any operator is
enabled when values are present on all of its input links. Side
effects between modules are avoided by the same explicit links for
both flow of control and of data.

Modular Concurrent Programming

A recent paper described the results of research to develop an
effective method for constructing large, reliable concurrent

-programs from small modules [(BRIN77]. The programming language

Concurrent Pascal was designed to support the method. Processes
perform operations on data that are inaccessible to other processes
and communicate via a special module called a monitor which controis
access to shared data. The compiler checks data access as well.

The effect is to isolate programming errors within modules and to
facilitate systematic testing. Experiments in using the method and
tools for three model operating systems showed greater efficiency in
implementation of the systems and higher reliability of the

sof tware. A surprise benefit was noted: 14 modules of one system
could be used without change in another system.

Data Flow Analysis

There are a number of algorithms which have been developed for
analyzing the flow of data in computer programs, e.g., [ALLE76].
These algorithms, based on graph theory, are being used for
optimizing the execution speed of code produced by compilers. It
has been suggested that they might also be used to find anomalies in
data processing which are potential errors in program logic
(FOSD76]. These techniques translate control sequences (a
succession of operators accessing and changing data) into data flow
sequence. These or similar techniques might be used to analyze
system designs in data flow form as well.

B e

e ————

CONCLUSIONS

Design building blocks appear to be a useful extension of the
building block concept. The concept of a Data Flow Architecture is
worth investigating and refining because of its general utility in
the design of reliable, modular concurrent processing systems. It

is also an important key to partitioning systems into reusable
components.

41

SECTION V

SOFIWARE BUILDING BLOCKS

A software building block is a capability for providing
3
compilable or executable code for incorporation into CY systems. A
sof tware building block may take the form of an automatic program
generator. In the short term, a c3 system software building block
is more likely to take the form of source code that is capable of
being adapted or modified for use in various systems.

A technology review early in the ISS project identified some
commercially available systems and some research and develop-
ment systems that generate software. There are a number of
business application systems that generate code, usually COBOL,
given a specification more abbreviated and frequently much less
detailed than a COBOL program. These systems include ADPAC,
METACOBOL, SCORE, CL*IV and WORKTEM, summaries of which can be found
in (AUER] and (CANN75]. It is difficult to learn the details of
implementation of these systems but, in general, they appear to use
existing COBOL code designed to fit into some basic standard
structure, tailored to meet specific needs, and possibly augmented
with user specific code. The Business Definition System, a research
effort at IB! Thomas J. Watson Research Center, is aimed at
generating business programs based on the answers to a multiple
choice questionnaire that elicits user requirements. [(HAMM74,
HAMM75] A baseline application program for an application area is
contained within the system as are the alterations to that program
which correspond to the possible answers to the questionnaire. The
system generates a customized program based on the model and the
questionnaire answers supplied by the system user. Protosystem 1
sought to automate the analysis, design, and coding phases of
sof tware development for a class of data processing systems which
perform simple operations on very large keyed files in batch mode.
[RUTH76] The system takes as input a very high level non-procedural
language, HIBOL, and after several phases of processing, generates
optimized PL/1 code. It is noted that this work is all in the
business application area and directed to the generation of code for
well understood problems to be implemented in batch data processing
systems. There is much interest in the development of automatic
programming capabilities but it seems likely that code generating
building blocks will not be available for use in c3 systems in the
near term. We assume then that ISS software building blocks will be
in the form of code.

42

SOFTWARE BUILDING BLOCK CHARACTERISTICS

Software building blocks do exist today. Examples are
subroutine libraries or the individual subroutines within the
libraries, operating systems, data management systems, report
generators, etc. Software building blocks vary from the very small
building block, such as a subroutine in a subroutine library, to
very large, such as a modern operating system or data management
system. A software building block may or may not be adaptable. A
very small building block probably won‘t be adaptable because it is
more work to adapt it than to write your own. The larger building
blocks are frequently adaptable through such techniques as run time
parameterization or conditional compilation. The small building
blocks may be reasonably transportable. The large system building
blocks, however, are very frequently tied to the hardware
architecture and some well-defined range of hardware configurations
on which they will run so that in fact the building block is a
combination of hardware and software. The very small building
blocks are plugged into a detailed program design and are used to
reduce the amount of coding and unit testing necessary in the
program development. The larger building blocks that provide a
higher level of capability are generally selected early in a system
development. They contain much of the detailed design for the
capability they provide and affect the design of the system built
around them.

Sof tware building blocks not only exist but they are being used
today in c3 systems. Sizable pieces of both application-dependent
and application~independent software from the 407L CRC operational
and Recording Program were used in the TACS/TADS Interface Module
Processor Program and those in turn have been used in the SALTY NET
operational program.

The most commonly used building block in c3 systems is probably
the operating system. For example, in both the TACC AUTO
communications processor and data source terminal elements, an
existing operating system was used as the basis for the operational
program. The PAVE PAWS central data processing system software is
built around a modified version of a commercial operating system.
The Standard Software Base (SSB) is a set of software building
blocks that has been developed by RADC/IR for use in the development
of systems to support intelligence analysts. [MIX77] The SSB is
built on a commercially available operating system and provides
building blocks that support display terminal and various
communication system interfaces.

43

Sof tware building blocks have also been used in C3 testbed and
prototype systems. The TACC Current Operations and Current Plans
support software developed in the MITRE/ESD Tactical Data Systems
Development Testbed were built on operating system, data management
system, and display generation and management building blocks. A
commercial data base management system was used in a prototype
version of the ATEC system. The Navy/ARPA Advanced Command Control
Architectural Testbed includes several kinds of software building
blocks to support its development of c3 capabilities. [NELC76] The
MIT candidate message processing system in the Military Message
Experiment was based on a library of existing software building
blocks.

As was indicated above in Section II, there are problems with
the use of software building blocks which have limited their success
and have inhibited their widespread application. The problems
listed there are the differences in functional requirements from
system to system and the different functional environments into
which a building block must fit; different requirements for speed,
accuracy, and capacity; different hardware configurations and
architectures; and different interfaces among software functions and
between the functions and the data to be processed.

Although these problems are seen as being associated with the
reuse of software, they are mostly not implementation problems. The
fundamental problem with the reuse of software in the face of these
differences is insufficient modifiability or adaptability. The
problems associated with adaptability to different functional
requirements, different functional partitioning, and different
functional interfacing are basically design issues and should be
addressed as design issues. Some of the implementation problems in
the reuse of software are being addressed by the movement toward
high order language standardization and toward establishment of
standard computer family architectures. Pending further progress in
the development of an ISS design approach, it appears that the most
important activity that can be pursued with respect to software
building blocks per se under the ISS program is the examination of
the use of existing software building blocks in c3 systems. This
investigation should include both the review of experience with the
use of software building blocks in those systems where they have
been used, and the laboratory application and demonstration of
sof tware building blocks. The objective of such an investigation is
to develop insight into the use of software building blocks which
can be fed back into the development of a building block methodology
and design structure. It would allow the determination of what
shortcomings the current software building blocks have relative to

44

real C3 requirements. The shortcomings in both basic capabilities
and adaptability would be identified. In particular, performance
problems would be examined and ways of addressing them would be
sought.

RELATIONAL DATA BASE DEMONSTRATION

As a part of the FY77 ISS program an effort to demonstrate the
application of a software building block to a C3 system data base
management problem was initiated. The data base management function
was chosen because it is recognized as an important data processing
function in many C3 systems and because it is a function for which
building blocks are available. As was indicated above, data base
management packages have been incorporated into some prototype C
systems. The system selected for application is the INGRES system,
which operates under the UNIX operating system on the PDP 11/45
computer. Although the effort is still in its early stages and has
therefore not produced any results that can be reported, it is
useful to discuss the rationale for the selection of INGRES and the
objectives of the effort.

INGRES is a relational data base management system, as
distinguished from a hierarchical (e.g,. IMS/VS) or a network (e.ge,
IDS) system. A relational view of data

"provides a means of describing data with its natural
structure only - that is, without superimposing any
additional structure for machine representation
purposes. Accordingly, it provides a basis for a
high level data language which will yield maximal
independence between programs on the one hand and
machine representation and organization of data on
the other" (CODD70].

The primary advantages of relational systems have been summarized in
[CHAM76] as simplicity, which allows a user to formulate requests
(or operations) simply in terms of information content; data
independence, the immunity of applications to change in storage
structure and access strategy; symmetry, which makes the ease of
asking a question at the user interface independent of the structure
of the data base; and its strong theoretical foundation, which rests
on the mathematical theory of relations and on the first-order
predicate calculus and thereby makes possible the definition of
relational completeness and the rigorous study of good data base
design.

45

The properties of relational data base management systems
appear to be well suited to the ISS concepts of facilitating
adaptation of software across systems to different requirements for
data base manipulation and within a system to changing requirements.
The separation of the concern for and specification of functional
requirements from performance requirements is perhaps essential to
the success of an ISS approach to system development. The data
independence property of relational systems allows that separation.

The definition of a data base in terms of its natural structure
only might allow the development of data as well as functional
building blocks. The same data entities appear in several different
c3 systems. The data bases of these systems, however, may appear to
be quite different, because they represent and structure the data
differently, each reflecting the actual or anticipated accessing and
performance requirements for the specific system. A data base
definition reflecting a natural structure only and representing all
information explicitly in terms of data values could provide an
implementation independent model of the data for a given functional
area. Such a model could be used directly in a relational data base
systen and as a source document for data bases to be developed for
other kinds of systems. It would be desirable to gain some insight
into the feasibility of developing a relational data building block
for some C3 functional area.

The separate specification of data base content and its machine
representation and organization is consistent with the ISS concept
of common functional requirements for which building blocks can be
built without knowledge of system unique performance requirements
and constraints. It first of all allows the developers of
functional requirements and design to focus on the specification of
the data base and operations on it before and without addressing
performance and implementation issues. This separation and the
resultant simplicity also permit the operational user, a key
participant in the ISS concept, to address functional problems
without knowledge of data processing issues.

Given a statement of data base operations, the data
independence property of the relational data base model permits the
tuning of a system’s performance in light of actual workload and
data accessing patterns, which may be difficult to predict prior to
the utilization of a system or which may change during the system’s
life cycle. Requirements for this kind of adaptability of
performance characteristics during the O&M phase of a system life
cycle are among those identified for C3 systems and targeted for 1SS
attention.

46

It is often the case that C3 systems are proposed and developed
to support operational concepts and environments that do not exist
at the time that the system is being specified. It is therefore
difficult to anticipate the kinds of data base operations that will
be required to support the users in the performance of their tasks,
although the data itself may be definable. Not only may there be no
"normal" set of data base operations defined for the users but there
will not be an appreciation of the data base manipulation
requirements for different personal styles of interacting with a
data base. Although research is being undertaken to develop a
better understanding of user information requirements in cd systems,
the burden is on the system to adapt to the vagaries of and
evolution of user data manipulation requirements. The symmetry
property of the relational data base model facilitates the support
of different associations of entities in a data base, without
redefinition of the data base or without perfcrmance penalties that
can only be dealt with by restructuring of the Jdata base.

The objectives of the application of a relational data base
system are to develop an understanding of the advantages and
disadvantages of the user interface properties of a relational
system, and by necessity of a specific implementation, in the c3
context. It is also an objective to gain some experience with the
basic performance characteristics of relational data base systems
and with the degree to which performance can be improved by
adjusting the user-transparent machine representations and
organizations to reflect the access patterns, workload, and
performance requirements of a specific application. It is
recognized that relational data base systems are not generally
commercially available and are as yet untested in any large data-
base system [MICH76]). It is also recognized that much work needs to
be and continues to be directed at the achievement of greater
efficiency in relational systems. It is believed, however, that in
spite of the current impracticality of using a relational system in
a €3 acquisition program, the application and demonstration of a
relational system will provide an opportunity to obtain first-hand
experience with the use of an existing capability that has many of
the characteristics deemed to be desirable for ISS building blocks.

47

T ————— e e b e K e
APPENDIX I
MAN/MACHINE INTERFACE CHARACTERISTICS*
Overall Characteristics of Position
I. User Role
A. Operator

le Structured task and interaction with system

2. Forced pace

3. Monitoring or controlling through system outputs and
inputs

4. Fast decision making -- initiate action through system
within limited time constraints

5. Examples:
a. Air traffic control
b. Process control
c. Radar track monitoring

B. Analyst

l. Unstructured task and interaction with system

2. Self-paced

3. Data used as one input for decision making; may also
rely on data from other sources, or experience, to
recognize problem

4. Manipulation of data within system to establish
relationships; use of on-line tools

*

The man/machine interface characteristics in this appendix were
developed and documented by Nancy C. Goodwin.

48

it

5.

6.
7.

8.

Result of decisions may or may not be entered into the
system for direct action

Entry of decision may not control system directly
Decision may not be made immediately

Examples:

a. Intelligence analyst

b. Mission planning

ce. Message handling

C. Data entry/service

1.

2.

3.

4.

5.

6.

User not source of data being entered

Retrieval in response to query; to answer specific,
direct question

Data retrieval through highly structured sequences -
user does not pull together information from several
sources through multiple sequences

Structured task and interaction with system

Forced paced

Examples:

a. Airline reservations

b. Telephone directory assistence

c. Word processing center

II. Patterns of Use

A. Dedicated use

1.

2.

Terminal is located in primary workspace

During his shift, user has primary or sole access to

terminal

49

III.

Iv.

V.

B.

3. Most of user’s time is spent interacting with system

4. Most of user’s job is accomplished through interaction
with system

Non-dedicated use

l. Terminal is not in primary work area

2. Access to terminal casual or shared

3. User spends time on job away from terminal

4. User may not depend on system to accomplish many tasks

Data characteristics

A.

Classified or not
Primarily graphic (tracks, drawings, status boards)
Primarily data tables

Primarily textual

Training requirements

A. User available for training away from primary work space
B. Amount of time user can spend on training before
accomplishing primary tasks on system
C. Amount of time user expects to spend with system after
training (A vs. B in patterns of use above)
D. Transferability of previous skills to system use
Environment
A. Land, sea, air
1. Stability
2. Space requirements
B. Dedicated vs. shared space

50

' “"““M — -

l. Other demands on user’s attention

2. Amount of space available for terminal/workstation

3. Competing requircments for light levels, noise levels,
etc.

C. New facility vs. adapted facility vs. integration with
existing facility 3

D. Number of users per terminal/workstation per shift

E. Multiple vs. specialized functions per terminal

.
P TRPR———

51

- Pmarermet

S TR

P R S PR S

II.

Workstation Characteristics - Physical Environment

Input devices

Function keys

Numeric keypad

Alphabetic entry

l.

2.

QWERTY keyboard

Alphabetic order keyset

Output Devices

A.

B.

E.

F.

Teletype

CRT

l.

2.

Graphic
Alphanumeric
a. Primarily tabular data

b. Primarily textual data

Status panels

Transmission rate

Full or half duplex

Transmission mode

l.

2.

3.

4.

Character
Line
Block

Page

52

D ———

III. Control devices

A. Cursor positioning

1'

2.

3.

4.

5.

Keys
Lightpen
Joystick
Trackball

Special (e.g., "mouse")

B. Display intensity controls

C. Focus

D. Audible alarm volume controls

IV. Console design

A. Desk/table size

B. Devices to be accommodated

C. Multiple purpose/dedicated purpose

D. Number of users per station

V. Room layout

A. Single/multi-purpose

B. Number of workstations

C. Number of users

D. Observers

E. Lighting requirements

53

I.

PO e

Sof tware/Processing Requirements

Directly Related to User Interaction

Interface Management -- manipulation of appearance and content
of displayed data, which will not affect the content of the

data base itself.

A. Control of display content -- specification by the user of
the data to be displayed

l. Request data set
a. Request by id ~- data set is preformatted and
specified, and identified by name, number or other
type of specific identification
i. id specified by typed entry

it. id specified by menu selection —- displayed list
of ids

iii. id specified by function key

b. Request subset -- user can specify portion of named
set, by id

c. Request by characteristics - user specifies data
set or subset wanted by listing characteristics of
set, i.e., particular fields or values

2. Clear display -- remove data from the display without
affecting data base

a. Entire display
b. Partial display
B. Control of display appearance =-- given that a data set has
been specified, the user can manipulate the appearance of

the data on the display, or the amount of data on the
display

54

i O e e i

1.

e el

Text-Tabular display

b.

Ce

Page -- the amount of data presented at one time on
a display. If requested set exceeds display
capacity, data are divided into multiple pages.
i. Size

a. Determined by terminal or system capacity

b. Specified by user when making request

ii. Display request =-- how user accesses and
changes pages

a. Name or number entered

b. Relative -- next or previous page requested
Scrolling =-- if requested dataset exceeds display
capacity, the excess is accessed by line-by-line

changes under user control

i. Scroll up -- top line of data is deleted, next
line added to bottom of display

ii. Scroll down =- bottom line of data is deleted,
earlier line added to top of display

iii. Headers -- if tabular display, headers at top
of columns identify data fields

a. Stay on display during scrolling
b. May scroll off display

Formats =-- describe the arrangement of the data on
the display

i. Size -- specifies how much data will appear
a. Number of characters (text)

b. Number of rows/columns (tab)

55

V
|

ii. Type -- describes number of items and
associated values to be displayed

a. Summary - shows some or all data for
multiple items

b. Individual -- shows some or all data for a
single item.

iii. Selection -- associated with requesting data
sets above

d. Clear =-- deletion of data from the display
i. Delete entire display
ii. Delete part of display
2. Graphic displays -- consisting of images rather than text
a. Control of rate of presentation
i. Speed up
ii. Slow down
iii. Freeze
iv. Resume dynamic presentation
b. Control of orientation
i. Select view by name/id
ii. Recenter/of fset
iii. Backup
iv. Zoom in
Ve Zoom out
vi. Clear display

3. Display Coding -- technique used to call attention to,
or distinguish among data items

56

a. Color
b. Blink
; c. Highlight
d. Underline
C. Data functions =-- various types of information may be
presented to the user, whose control of the data is related

to the function

l. Types of functions

a. System status -- number of users, system load,
system in use, etc.

b. Error feedback -- notifies user that an input error
has been made

c. Alarm/notice -- notifies user that system error has
been made, emergency situation developed, input
arrived requiring his attention

d. Command/menu -- lists of commands, files, displays,
etc. that user may select as input to system

e. Read-only data -- user cannot edit directly on
screen

f. Editable data -- user can change or edit these data
directly, by making changes on display screen

2. Window usage -- areas available for two or more data
types to be presented or used concurrently on one

- display
4 A
1 :
b a. Size

i. Constant

ii. Varies depending on number of windows displayed
i11. Specified by user

b. Location

57

o

D.

dl

€.

f.

i. Constant

ii. Varies depending on number of windows displayed
Relationships/concurrence

i. Which windows can be displayed concurrently

ii. Which windows active concurrently

iii. Data moved from the window to another -- e.g.,
deleted from one, inserted in another

iv. Data copied from one window to another -- e.g.,
duplicated in both windows

Ve Contents can be cleared independently of others
Window contents can be printed

Window contents can be stored in data base

Window contents can be transmitted

Window contents can be cleared

Presentation of feedback to user ~-- the user should receive
feedback as a result of all inputs as well as status
information. This may be presented on the terminal in form
of audible alarms.

l. System status =-- user should be aware of status of
system elements which affect his interaction with the
system.

ae

b.

Coe

d.

System load (if heavy load implies slow response
time)

Files available
Functions available
Position active

Date/time

58

. . o bt

|

2.

3.

4.

5.

Presentation of system status information

a. On demand

b. Periodically

c. Constantly

Error feedback (See also Error Handling, Section III)
a. Error noted in error message window

b. Error message written in terms that user can
understand

c. Error message should be noticeable

Response to correct inputs =-- all user inputs should be
acknowledged in some way

a. Notification if no data satisfy valid request

b. Changes in data acknowledged, displayed, or
highlighted

c. Transmission of data acknowledged

d. Notification if data exceeds display capacity
so only partially displayed (i.e., page numbers
given)

e. Notification if data exceeds display capacity so
none can be presented

System alerts or notices ==- notify user if new data (or
message) has arrived, if emergency notice has arrived,
if dangerous situation is developing

a. User may override or suppress alerts by category i

i. Routine
ii. Previously seen

iii. Specified category

1I.

St R P T S S

b. User may remove alerts or attention-getters after
having seen them (automatically vs. user action)

c. User may specify where (window, printer) alerts are
sent

d. User may send alerts to other terminals

Data Base Manipulation -- functions needed to support the
user’s application, which may affect the content of the data

base.

A. Text editing -- functions needed to support the en:vy of
text and data into the data base

1.

2.

3.

4,

5.

6.

7.

8.

9.

Type -- typed character appears on the display at
cursor location, replacing character (if any)
previously in that position; cursor moves right one
space

Insert -- typed character appears on the display at
cursor location; character (if any) previously in that
location and cursor move right one space

Delete -- character marked by cursor is deleted from
display; characters to right of deleted character move
left one space. Cursor does not move

Move text -- marked string of characters is moved from
one part of text to another

Copy text -- marked string copied

Delete text —-- marked string deleted

Save text in named file -- text is saved and can be
recalled explicitly by name, is saved beyond session
end

Save text in named buffer -- text is saved and can be
recalled explicitly by name, is not saved beyond

session end

Save text in unnamed buffer -- text is saved
temporarily, is recalled implicitly by buffer id or

60

C.

D.

command, is deleted by successive saves, is not saved
beyond session end.

Graphic editing capabilities -- explicit changes to
appearance of images on graphic display

l. Image creation -- specification of a new image on the
display

2. Image deletion -- deletion of an image on the display
3. Update image -- change of an image on the display

Data manipulation/entry =-- user can explicitly change
content of data base during session

l¢ Entry -- addition of data to data base

2. Editing -- change value of data in data base
3. Deletion =-- erase value from data base

User Control Functions

l¢ Cursor control =-- cursor moved around display;
character or image marked is not deleted by cursor

a. Lightpen

b. Keys
i. Up, down, right, left, home
ii. Word right, word left
iii. Line right, line left

2. Mode control -- user selects

a. Read only

b. Data entry

ce Graphics

i. "normal" -- system controlled

61

E.

3.

4.

5.

ii. Override
Command entry
a. Typed
b. Menu/list
c. Function keys

Item selection -- for update, tracking, detailed data
display, deletion

User can interrupt sequence of actions if he does not
want to continue. He will be returned to status before
sequence begun.

Transmission -- user can send data to system, terminals, or
priater

1.

2.

3.

Data eligible for transmission

a. Only displayed data can be transmitted
b. Data not displayed can be transmitted
Transmit displayed dataset to:

a. External system

b. His stored files

c. Other users’ files

d. Other users’ terminals

e. Printer

User can transmit all or part of displayed data to 2a-e
by specifying:

a. Name of displayed data
b. Area of display where data shown

ce All

62

4. Transmit named data not on display to 2a-e
5. Transmission control
a. Data transmitted as result of explicit user action

b. Data transmitted in response to request from system
(e.g., status read periodically)

6. Feedback
a. Data remains on display after transmission
b. Data is cleared from display after transmission

c. Transmission acknowledgement is printed or
displayed

III. Error Handling -- consequences of user or system errors

A.

c.

D.

E.

User inputs will be checked before execution to ensure they
are valid

Erroneous user inputs will not be erased from the display

User will be protected from making errors which destroy the
database, whether files belong to him or to someone else

If error occurs partway through sequence of actions, user
should not have to return to beginning of sequence - user
should be able to correct error and continue

User will be notified if system errors occur

1. Type

2. Extent

3. Recovery techniques

IV. User-aids -- capabilities which are not necessary to accomplish
functions, but which aid user in his interaction with system.

A.

On~-line help =- instructions describing job-oriented

commands or sequences which can be accessed during job-
oriented interaction

63

e A

B.

E.

F.

Pre-stored command sequences -- creation of "macro"
commands to enable user to execute frequently used series
of commands with single input

Guidance in error recovery -- user will be told type of
error, place where error occurred (Section III, Error

Handling)

Automatic update of related files -- single data entry
results in multiple updates of that item when item appears
in multiple files

Automatic form filling -- system fills in data entry form
as much as possible when data is available in data base -
user is saved from entering data already in system

Alternate data entry techniques =-- user given choice of
data/command entry techniques, may select one which suits
his personal style, preferences, or experience

I.

Performance characteristics -- system ability to support
multiple users, multiple functions, with adequate response

time.

A.

C.

D.

Capacity =-- Terminals

l.

2.

3.

Capacity =-- Users

1.

2.

Capacity -- Data Base

1.

2.

3'

4.

5.

6.

7.

Response time == how quickly does system respond to user
inputs (commands, instructions, or function keys)

Sof tware/Processing Requirements

Indre-tly Related to User Interaction

Number of user terminals that system will handle

Number of dif ferent functional roles terminal can
handle

Relationship of terminals -- are they independent or
slaves? Do they need to communicate with each other?

Number of users -- individuals =-- that system can
handle

Number of different functional roles system can
handle

Number of data files to be supported

Rate of data input to system from non-user sources
Volume of data input from non-user sources

Rate of data input from users

Volume input from users

Rate output from system

Volume output from system

65

l. Terminal level -- return of cursor, echo of typed
character >

| 2. System level -- execution of command correctly results

in a noticeable feedback within specified time(s) (may
vary according to complexity of command function)

|
: 3. Execution of command incorrectly results in error
E feedback within specified time

II. System Monitoring/Control Functions

A. Access Controls

l. Files
F a. Read
b. Write

2. Functions = who can do what
B. Routing Controls

l. System to user/terminal

2. User to system
3. User to user
C. Maintenance
D. Data Collection

E. System Performance Monitoring

l. Response time

2. Load effects

P S N o S P

P R T R R T e

66

AIRF75

ALLE76

AUER

BOENR7?77

BRIN77

CANN75

CARL76

CHAM76

CopD70

COOP75

REFERENCES

AF Regulation 800-14, Volume II, Acquisition and
Support Procedures for Computer Resources in Systems,
26 September 1975.

F. Allen, J. Cocke, "A Program Data Flow Analysis
Procedure," CACM Vol. 19, No. 3, March 1976, 137-147.

"Auerbach Computer Technology Report," Auerbech
Publishers, Inc. .

B. Boehm, R. McClean, D. Urfrig, "Some Experience with
Automated Aids to the Design of Large-Scale Reliable
Software, Proceedings of the International Conference
on Reliable Software, April 1975, 105-113.

P. Brinch Hansen, "Experience with Modular Concurrent
Programming," IEEE Transactions on Software
Engineering, Vol. SE-3, No. 2, March 1977, pp. 156-159.

R. Canning, "Progress Toward Easier Programming," EDP
Analyzer, Vol. 13, No. 9, September 1975.

W. Carlson, "Software Research in the Department of
Defense," Proceedings, 2nd International Conference on
Software Engineering, 1976, pp. 379-383.

D. D. Chamberlin, "Relational Data Base Management
Systems," ACM Computing Surveys, Vol. 8, No. 1, March
1976, pp.43-66.

E. F. Codd, "A Relational Model of Data for Large
Shared Data Banks," CACM, Vol. 13, No. 6, June 1970,
ppo 377"387.

Cdr. J. Cooper, "Increased Software Transferability

Dependent on Standardization Efforts," Defense
Management Journal, October 1975.

67

R AP

A AN AL

PRSP ———

ST —

ENGE76

FOSD76

GLOR77

GORD73

HAMM?7 4

HAMM75

JACK?77

MICH76

MIX77

NELC76

J. Engelland et al., Operational Software Concept

(Phase Two), AFAL TR-75-230, Air Force Avionics o
Laboratory, Wright-Patterson AFB, Ohio, January 1976(AD

A021 327).

L. Fosdick, L. Osterweil, '"Data Flow Analysis in
Software Reliability," Computing Surveys, Vol. 8, No.
3, September 1976, pp. 305-330.

J. Glore, "Software Acquisition Management Guidebook:
Life Cycle Events," ESD TR-77-22, Electronic Systems
Division, USAF, Bedford, MA, February 1977.

E. Gord, M. Hopwood, "Nonhierarchical Process Structure
in a Decentralized Computing Environment, Technical
Report #32, Department of Information and Computer
Science, University of California, Irvine, CA, June
1973.

M. Hammer, W. G. Howe, I. Wladawsky, "An Interactive
Business Definition System,' SIGPLAN Notices, Vol. 9,
No. l)' PP 25-33’ April 1974,

M. Hammer, W. G. Howe, V. Kruskal, I. Wladawsky, "A
Very High Level Programming Language for Data
Processing Applications," IBM Research Report RC5583,
August 15, 1975. (to be published)

K. Jackson, "Language Design for Modular Software
Construction," Information Processing 77, B. Gilchrist,
ed., North-Holland Publishing Company, Amsterdam, 1977,
ppe 577-581.

A. S. Michaels, B. Mittman, C. R. Carlson, "A
Comparison of Relational and CODASYL Approaches to
Data-Base Management,'" ACM Computing Surveys, Vol. 8,
No. 1, March 1976, pp. 125-151.

M. Mix, et al., Standard Software Base, RADC-TR-77-99,
Rome Air Development Center, Griffiss AFB, NY, March
1977.

Advanced Command and Control Architectural Testbed
(ACCAT) Program Management Plan FY1977, Volume I -

Management Plan, Prepared by NELC for ARPA/NAVELEX03, .

15 November 1976.

68

e s bt e 0T -

- —

NYMA77

ROWE7S5

RUMB77

RUTH76

SMIT76

SULL73

T. Nyman, DoD Software Research and Development
Technology Program Plan," Abridged Proceedings from the

Software Management Conference Series 1977, AIAA, Los
Angeles, 1977, p. 58.

L. Rowe, The Distributed Computing Operating System, TR
#66, Department of Information and Computer Science,
University of California, Irvine, CA, June 1975.

J. Rumbaugh, "A Data Flow Multiprocessor," IEEE
Transactions on Computers, Vol. C-26, No. 2. ¥zbruary
1977, pp. 138-146.

G. R. Ruth, "Protosystem I: An Automatic Programming
System Prototype," AD 026912, Office of Naval Research,
Arlington, VA, July 1976.

R. Smith, System Partitioning Study Final Report, MDC
G6603, McDonnel Douglas Astronautics Company-West,
Huntington Beach, CA, December 1976.

J. Sullivan, "Egalitarian Programming," unpublished
project note, August 1973.

