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The ratio of arterial oxygen content to its capacity is called arterial
oxygen saturation (Saoz). Its level is dependent on the alveolar gas exchange
efficiency. A normal person, breathing room air at sea level, has an average
of 97% Sa0;. This saturation may fall in a variety of conditions, such as
low oxygen breathing or pulmonary-disease. It is-well known that blood_oxygen ....
saturation bears a relationship with the\partial pressure of oxygen to which
it is exposed. This relationship, known a$ the oxygen-hemoglcbin (Oi-ﬂb)
dissociation curve, is also modified by several factors, i.e., pH, temperature.

When a man goes to altitude, the arterial oxygen saturation is modified
for many reasons. First, because of the low barometric pressure, the inspired
oxygen tension (P;09 is low. Therefore the alveolar and the arterial oxygen
tension (Paoz) are lower thanlsea level values. In short, tgg magnitudé of the

Sao2 will depend on the P Second, once the Pa0, has decreased, the

1%
arterial chemoreceptors will be stimulated, therefore the ventilation will
be increased. Hyperventilation influences the SaO2 by two mechanisms (fig._l):

2 2
sociation curve relationship, and b) producing respiratoay; alkalosis, which

a) increasing the Pao,, which will increase Sa0, according to the O_-Hb dis-
will affect the 0,-Hb dissociation curﬁe! shifting:&tto the left through

the pH effect. Average values of Sa0,, pH and Pao, ob;a#ggﬁ_#n fourugga-level
subjects (3,10) which sojourned to 4350 m (Cerro de Pasco, PB 461 torr) are
depicted in fig. 1. The circle containing a cross represénts two days, and
the circle with an X iﬁdicates ten days at altitude. On the assumption these
subjects would not have-hyperventilated, their arterial blood could be pre-
dicted to be 32 torr Po s, 62% So . Starting from this point, the dotted line

2 2
shows the increase of SaO2 to 83% due only to increase in Pao2 (constant pH).




The interrupted line labeled alkalosis shows the additional increase in Sa0

,2

to 887% due to the pH effect.'
Third. Several investigators have shown that-high altitude exposure
produces a rightward shift of the 0,-Hb dissociation curve (1,6-8). Pgo
(7.4) determinations made on the same subjects (4), are shown in the lower
part of fig. 1. Average values were 24 aqd'28 torr at sea level and high -
altitude, respectively. The saturation marked on the ordinate should not
be considered in this case, since P

50
50% saturation. However, that ordinate gives an idea of the magnitude of

by definition is the Poz pressure at

the saturation changes that 0,-Hb dissociation curve shift will produce in

2
the 24-28 torr range. Although the rightward shift of the 0,-Hb dissociation
curve at altitude would facilitate the O2 release at tissue level, it is‘
seen in fig. 1 that PSo measuremeﬁts obtained at sea level and at altitude,
when calculated to the in vivo'(fuil symbols) , pH, have almost the same value.
This means that, the shift described in vitro does not have any effect in vivo.
Indeed, SaO2 measured was 89% and not 82% that would be obtained were the in
vitro phenomenon to take place. Similar conclusion has been reported previously
®. .

Once the SaO2 has beenAreaéhed at altitude in the-resting condition, it
is further modified when a peréon performs exercise. Fig.fz shows the changes
in SaO2 observed in the same subjects. Average values obéained in 8 high
altitude natives are also included (3,9). This observation, i.e., the fall
in Sao2 with exefcise at altitude.'has been published by several tnvest;ggtors
(2,5,11,12). The mechanisms fhat produce this Sa0; fall are discussed under

the remaining three points.

-




o T eA

- change the Sa0

Fourth. Once again, Sa0, will be modifiéd by the ventilation. Hozever
the increase in ventilation obtained during exercise is adequate fof the
metabolic demands, except during heavy work. The final Pao2 obtained during
exercise will therefore depend on the alveolar gas efficiency. Our subjectg
did not modify their PaO2 during heavy work (fig. 3). Thus the Saoé fall
observed, is fully explained by the metabolic acidosis (interrupted line
labeled acidosis). However, additional factors are taking place that furcher
2° : :

Fifth. An increase in body temperature occurs during exercise. Assuming
a 2°C increase, the calculated saturation would fall to 79% (dotted line
of fig. 3) largely because the pH becomes more acid, due to the temperature
effect on pH. However at the same time the Po2 riées due to the tenpe;ﬁture
effect on P02 (vertical dotted line of fig. 3) and the final calculated
saturation is 86%. | |

t§1§£g, We have found that during heavy exercise, Py, (7.4) shifted to
the left (4); Average values are shown in the lowest part of figure 3 at-
rest (R) and‘during heavy work (E). The in vivo PSO at rest and during
exercise are also shown (full symbols). Taking this mechanism into account,
i.e., left shift of the Oz-Bb.dissociation curve, the SaO2 would further
rise to 897%. .

It is concluded that it appears possible that Sao2 &oés not change at
all in vivo, and what we observe are the in vitr§ changes due to ;he acid pH.

The same mechanismsin the discussion ipplies to high altitude native subjects

since no differences are observed in Sa0, when compared with sea level

subjects (fig. 2).
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The reasons for the arterial oxygen saturation (Saoz) changés during -
altitude eprsure at rest and during exercise are presented and discussed.
Sa0, is prevented to show lower values thaﬁ usually measured due to hyper- .
ventilation. Ventilation increases SaO2 through an elevation of P°2 and pH.
No negative contribution is found with the rightward shift of the Oz-Hb

dissociation curve reported in vitro. The explanation is found on similar

) P5o in vivo values shown at sea level and at altitude. The Sa0, fall observed

during exercise at altitude is fully explained by the metabolic acidosis
(Bohr effect). However, if additional factors are taken into account, such

as temperature increase and left shift of the O,_-Hb dissociation curve, no

2

changes are expected to occur in vivo.
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FIGURE LEGENDS

. Fig. 1  Arterial oxygen saturation (Saoz) changes due to altitude exposure
“ in resting conditions. Mean values of Sa0,, pH and Pa0, obtained
: .in four sea level subjects sojourning at 4350 m are plotted on a

saturation-pH diagram. Circle with a cross: 2nd day, and circle

with an X: 10th day at altitude. Three iso—PO2 lines are also drawn.
i; The changes in SaO2 due to hyperventilation (62ito 88%) are represented 4
a) by an increase of PO, at a constant pH (dotted line) and b) by the
resultant alkalosis at a constant PO, (dashed line). Mean PSO values
obtained at sea level (SL, circles) and at altitude (BA, squares).
are also shown. Saturatiqn scale should not be considered in this
case. The calculated in vivo PSO'S (full :symbols) show similar ot
values at SL and at HA, which explain the 1ack of effe§; of the

' rightward shift of the 0j-Hb dissociation curve on Sa0,.

Fig. 2 Mean + SE of arterial oxygen saturation (Saozs as a function of
relative oxygen u?take obtained at high altitude, 4350 m (9,10). | o
Note the low Sa0, values oﬁtgiﬁed‘at the 2nd day at altitude (daehéﬁ
line) of sea level subjects (SLS) and their increase at the 10th day
(dotted line) reaching similar values to high altitude natives :

(HAN, continuous line).

% Fig. 3 Arterial oxygen saturation (Sa0;) changes obtained with heavy exercise
at altitude. Similar diagram to figure 1. Symbols are mean values

- obtained at rest (R, circles) and during maximum oxygen uptake (E, squares)

in four sea level subjects after 10 days at altitude. ‘The arterial oxygen

saturation (Sa0;) change observed is fully explained by the pH shift due to
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metabolic acidosis (dashed line labeled acidosis). However, if we
take into account the effect of temperature effect on pH and POy

(dotted line) and the left shift of P 7.4 (continuous line), the

50’

final Sa0, is similar to the resting value, which suggests the

2
possibility that no changes in Sa0, are taking place in vivo. Mean

——
H

P., values shown in the lower part of the figure as discussed'_"_

50
in fig. 1.
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