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COMPUTER SIMULATION OF SPACE CHARGE EFFECTS IN
PARTICLE ACCELERATORS

I. Introduction

Recent stu dies1 have ind icated the feasibili ty of using intense en-

ergetic heavy ion beams as the source of ignition energy for inertially

confined nuclear fusion reactions. It appears that heavy ion beams with

suitable powers and energies can be produced using modest extrapolations

of conventional particle accelerator technology . However , one of the

major limits on the beam intensities which can be delivered to a target

is due to the space charge repulsive forces of the beam particles them—

•selves. It has therefore become important to examine the effects of

these space charge forces on particle focussing and transport.

The transport of charged particle beams is well understood when the

space ch~rge densities are small.
2 In this limit , the particle trajec-

tories can be accurately, described by their single particle orbits in

the external focussing fields. A commonly employed focussing system

uses alternate gradient quadrupole magnets. We will assume that all

particles have the same longitudinal velocity and proceed to discuss the

transverse behavior of quadrupole systems.

If the plane perpendicular to the direction of beam propagation is

described in rectangular coordinates properly aligned with respect to

the quadrupole magnet pole tips , each particle is subjected to an
Note : Manusc ript submitted January 16 , 1978.
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x—directed force proportional to its x distance from the center of the

system and a y—directed force proportional to its y distance from the

center. If this force is focussing in x, it is defocussing in y. Each

successive magnet is then rotated 900 so that in each direction a parti-

cle is alternatively focussed and defocussed. However , the net effect

is focussing in both directions.

A part icle which starts off center , is focuss ed towar ds the cent er ,

goes past it , and eventually returns thr ough it s init ial pos itio n, t here-

by executing a periodic m otion. The fraction of this period excecuted

per lens pair , is a phase shift uc~ 
given by2

Cos 1 — ~
2/2 (1)

where n v
~
TIF , v~t is the distance between succeeding lenses. 2r is

therefore the time taken to traverse a complete lens doublet.

If the trajectory of a particle in x_px phase space is plotted as

it passes through successive focussing lenses, in the non—degenerate

case where ~ ~.!, the particle traces an ellipse. Every other

particle which has an initial phase space location on this same ellipse

also remains on it , so that an initial phase space distribution which is

uniform along this ellipse remains that way. A beam which fills such an

ell ipse w ill retain a const ant cros s section as it passes throug h suc-

ceeding lens systems and is spoken of as a matched beam. The product

XoPxo C which is the area of the ellipse in phase space divided by ii ,

is known as the emittance c.

2 

—~~~~~—-~~~~~~~~~ - -.-, 
- .~~~~-



Fig. la shows the X_Px phase space of such a matched ellipse of

particles half way through a focussing lens. Fig. lb shows the phase

space 2/5 way to the next (defocussing) lens. Fig. lc shows the phase
S

space half way through the defocussing lens. Fig. ld shows the phase

space of the ellipse now having executed 415 of its period and Fig. le

shows the ellipse back where it started. It should be noted that though

the ellipse looks as it did when it started, the individual particles

have moved only u0 degrees (in th is case 900) around the ellipse.

The space charge forces in this case are neg ligibl y small.

In the presence of space charge forces , the beam transport system

becomes somewhat more complex. Each particle orbit is no longer inde-

pendent of the ot hers and the x and y directions are no longer decoupled.

However , by assum ing a part icle distr ibut ion funct ion of the f orm

f (r ,p) = ~ 
[
~xix0~

2 
+ (y/y 0)

2 
+ x’~ xo~

2 
+ y’~ yo~

2 - ro2] (2)

which is uniformly distributed on the X_ P
x
_ Y_ P

y hyper—ellipse,

Kapchinskij and Vladimirskij3 (K—V) , have derived a self—con~istent set

of equilibria for focussing systems in the presence of space charge. By

assuming such an idealized K—V distribution function , the beam dynamics

including space charge can be described by a pair of coupled ordinary

differential equations for the two configuration space axes of the K—V

hyper—ellipse. These may be written in the form of Lambertson , Laslett

and Smith4 as

3 
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2d u  
1 U

S (ø)u + —  +x x2 3 u+ude u x y
X (3)

d2uy 1 U
= — S (e)u +— +

2 y u+ude u x yy

where 0 is a normalized distance along the beam, u~ and u>, are propor-

tional to the major axes of the elliptical beam cross sections in x and

y. The focussing term 5(e) is a unit amplitude IS function in the thin

lens approximation . The dimensionless parameter

2 Nr4q p (4)
A 2 1/2By cK 

-

where r~ is the classical proton radius and K=l/fL is the lens strength,

is a measure of the strength of the space charge effects on the beam.

Since the space charge forces are repulsive and therefore act against

th e lens focuss ing f orces , the phase shift per lens system, ~, is less

than the value in the absence of space charge. Since it is a prop-

erty of the K—V distribution that the space charge forces are linear, ii

is the same for all beam part icles and can also serv e as a measure of

the amount of space charge. It is significant to note that in the ab-

sence of space charge there is only one free parameter. That is, the

dist ance between lens es , whic h is relate d t o the phase shift per cell

~~ 
Adding th e space charge then , the system of equat ions has two fre e

parameters. These beam envelope equations can be integrated numerically

to obtain the behavior of this special class of space charge systems.4’

54
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The analysis of space charge effects by integrating the equations

for the axes of a K—V distribution suffers from a number of fundamental

limitations. Only uniformly loaded ellipses of the K—V form are treated.

Therefore, any collective behavior not characteristic of a uniformly

loaded ellipse can not be represented . Degrees of freedom expected to

occur in a real system such as deviation from either uniformity or el—

lipticity can not be represented. Therefore, even if the K—V distribu-

tion were a realistic initial distribution , the sta bility of th is system

to realistic perturbations can not be investigated within the K—V for-

malism. Many physical effects which can be of crucial importance to

successful accelerator design may be missed by this approach.

II. The Numerical Model

Standard particle simulation techniques6 can be employed to inves-

tigate finite space charge beam transport somewhat more generally than

is possible by following the K—V envelope equations. Since the beam is

long compared with its transverse dimensions, non— uniformities of the

beam in the direction of propagation ar& neglected. By working in a

reference frame moving with the beam , the evolut ion of t he beam as it

pro pagate s in the z direct ion translate s into t he temporal evolut ion as

viewed in the x—y plane. In this reference frame the magnet forces be—

come electrostatic forces.

The numer ical t ime differen c ing is shown in Fig. 2. The particle

velocities and pos~itions are defined one half time step apart. The par—

tid e positions are advanced according to

X
t 
+ vt+~t/2 ~

t. (5)

5
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The partic les at the new times are then accumulated onto a grid to give

a charge density array . Poisson ’s equation is then solved using fast
S

Fourrier transforms to give the electric fields self—consistent with the

charge density. These electric fields are then used to change the veloc—

ities according to

vt+3~~/2 
vt+~t/Z + (q/m)E~4~~~t (6)

This numerical algorithm is time centered, re versible an d second or der

accurate. It is also simp le and fast.

The quadrupole lenses are assumed to be thin and implemented numer-

ically by applying to each particle impulsive accelerations , Av x and

proportional to the x and y displacement of that particle from the cen-

ter of the system. v~ is assumed unity for convenience and the parti—

d es are then given an impulsive acceleration

— (x—x )6x o (7)
= (y—y 0)6

when passing through a lens which is focussing in the x direction (de—

focussing in the y direction). Here (x0, y0) is the center of the sys—

tern and ó 1/F, where F is the focal length of the lens. In the

absence of space charge t he part icle s will then coa st between lenses

according to Eq. (6) so that the numerical system reproduces the thin

lens system to within machine roundoff.

6
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Because of the finite grid on which the electric field is defined ,

space charge phenomena can be resolved only on the scale of a grid cell.

Because Poisson ’s equation is only solved once per time step the charge

density can not be allowed to vary significantly within a time step .

The physical implications of these statements will be dealt with in the

next section.

III. Tests of the Numerical Model

Because the numerica l model being employed follows many particles

in their self—consistent orbits the large class of nonlinearities possi-

ble in an “n—body problem ,” where n is several thousand , may be present.

The details of the physical behavior to be modeled may therefore be

quite complex . The numerical system should do a good job of modeling

the “important1’ behavior , where important is defined in terms of the be-

havior of the average system parameters. For example , if the physical

system is unstable to a perturbation whose characteristic wavelength is

smaller than a cell size, this behavior may be missed entirely, or at

least poor ly represented , because of the inability of the numerical sys-

tem to resolve phenomena on this scale. The same may be true for per-

turbations with growth times much smaller than a timestep . Lacking a

complete theory of the system behavior , such questions must be resolved

experimentally by varying the numerical parameters until a regime is

found where the system behavior is insensitive to numerical parameters.

From similar simulations in plasma physics where particle dynamics are

dominated by the collective nature of the electric fields , it may be

expected that the time step must be of order the plasma oscillation time

7 
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(t ~~~~~~~) and the length scale should bi~ of order a characteristic length

defined by the maximum velocity divided by the plasma frequency (analo—

gous to the Debye length).

Preliminary designs for transport systems1 have assumed a rough

balance between magnetic focussing forces and space charge defocussing

forces. Accordingly, numerical tests have been run on a transport

system which is in this range of parameters .

Magnet strength in the test case has been chosen to correspond to a

phase shift per doublet of 900 as defined in Eq. 1. In the absence of

space charge , as in the case which was shown in Fig. 1, it is possible

to calculate the initial conditions for a matched system analytically .

How ever , in the presence of space charge , it is most convenient to cal-

culate the initial condition for a matched system iteratively . Succes-

sive guesses are obtained by following the system through a doublet lens

system , from t=o to t:2r. The x extent of the next guess is chosen as

the average of x extent initially and after one doublet holding the emit—

tance, x 
~~~~

‘ 
constant. Similarly, the y extent at t=2t is used to cal-

culate a new averaged y dimension. This procedure usually converges in

just a few iterations. Fig. 3 shows the initial conditions thus found

at the center of a lens which is focussing in the x direction , for a

slightly mismatched system with a phase shift per doublet of p
0 = -ir/2.

A mismatch of about 10% was chosen so the system would evolve fairly

rapidly and thereby test the numerics . Four projections of the density

in X_Px
_Y_P

y space are shown for 2000 sample particles . The distances

labelled on the axes are in terms of program grid points and velocities

8
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are in units of cells/t . The initial space charge density is such that

the U defined in Eq. 4 is equal to 3.9. In this case the phase shift

per doublet is about 300 . The particle positions and momenta are set up

using the formulae

x = x /~~cos (-
~;-)

= 1
~xo ~~~ sin (-h-) (8)

y y0 VI~~ cos (
~~~~~~ )

= /T~~ sin

where q, r, and s are uniformly distributed random numbers between zero

and unity.

The Poisson solver uses Fourier transforms and periodic boundary

conditions to solve for the electric field from the particle charge dis-

tribution. Since it is impractical to follow the trajectories of as

many particles as are actually found in a beam , anomalously high fluc-

tuations in density occur in a particle code simulation . In addition ,

following only a finite number of modes leads tc a band—limited situa-

tion in which short wavelength overshoots can occur in the vicinity of

sharp changes in charge density. Both these effects can be mitigated

somewhat by considering “macro—part icles” with a Gaussian charge den-

sity.7 When th is is done , the points plotted as in Fig. 3 are really

the centers of these “macroparticle” charge clouds rather than point

particles.

9 1 



Fig. 4a is a plot of Ex vs x for a y coordinate 1/2 cell off the

center of a 64 x 64 system whose initial conditions are similar to those

shown in Fig . 3. Fig. 4b is a plot of the same fields with Gaussian

smoothing applied to the system so that the particle “size” between l/e

points on the Gaussian is one cell. Note that E
~ 

is really the average

field applied to the smoothed cloud , i.e., the acceleration field. The

smoothed fields are closer to linear near the center but the peaks at

the edge of the beam are somewhat rounded. Figs. 5 and 6 are a compari-

son of the phase space of two systems after traversing 16 focussing mag-

net pairs with and without smoothing . The comparison time was chosen

because of the fine structure at this time which ought to accentuate

numerical differences. Figs. 5 and 6 are phase space plots which corre-

spond to the same smoothing as in Figs. 4a and 4b respectively. Though

there are minor differences, they do not appear to be significant and

they are small compared with differences which arise from changing the

number of grid cells and which will be dealt with later. In both Figs.

5 and 6, 2048 particles are shown out of the 4096 used in the run .

Other parameters ar e ~t .2r , 64 x 64 cells and w~ r = 1.2. Since the

smoothing does not have a major effect on the short time system evolu-

tion and does not seem to negatively affect evolution of the beam edge,

there is a net advantage to employing it for long times in order to

avoid anomalous fluctuation effects.

In simulating a collisionless plasma , it is usually impract ical to

represent anything like the number of particles in a real system. Con—

sequently the num ber of particles per Debye volume is low. The simula-

tion may then represent the collisionless behavior only for a number of

10 
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plasma periods proportional to the reciprocal of the actual number of

simulation particles in a Debye volume. Fig. 7 is a phase space plot

a from a calculation with conditions as in Fig. 6 but with double the num-

ber (8192) of simulation particles. While the fine structure changes

slightly , mainly in the y~Py view , the computed results are essent ially

independent of the number of simulat ion part icles; the small residual

differences are due as much to different statistics in the initial dis—

tribution as to fluctuations in the fields during the run. The differ-

ence is made more noticeable in Fig. 8 by again doubling the number of

particles to 16384. Here, too, however , it is felt that any differenc es

are due to different statistics.

The Fourier Transform Poisson solver employed uses periodic bound-

ary conditions. This means that the neutralizing charges4 instead of

being at infinity or in finite images are, uniformly distributed through-

out the system. Furthermore each beam particle has an image of the same

sign and size one system length away in each direction. Such a computa-

tional system clearly repro duces the inf inite syst em when the boundary

is far enough away.

Fig. 9 shows results from a calculation using a 128 by 128 finite

difference mesh where the beam occup ies only one quart er of the system

area of the previous runs. That is, measured in beam size, the bounds—

ries are twice as far out as in the previous runs. The numerics are

otherwise identical to Fig. 6. The behavior of the two systems is again

quite similar , showing that the boundary conditions are not having a

major effect.

11
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We have thus far seen that , when run through 16 magnet pairs, the system

behavior is relatively insensitive to varying the particle smoothing ,

a the num ber of particles and , the distance to the boundaries.

A comparison of Fig. 6 with Fig. 10 shows the differences in be-

havior caused by changes in the resolution . Fig. 6 uses twice as many

cells in the description of the electric fields of the beam and fine

structure has appeared which was not present in the coarser grid run of

Fig. 10. A comparison of Figs. 9 and 11 shows the result of doubling

the resolution again. Fig. 9 is a 64 x 64 system and Fig. 11 is 128 x

128. Each run has 16K particles. (The number of sample particles for

plotting is still 2K.) Though the difference is not as great as the

original doubling, more fine structure is evident.

Finally , Fig. 12 shows the effect of taking twice as many timesteps

(20) per magnet period. The parameters are otherwise the same as the

run in Fig . 11. A comparison of the two pictures shows that the two are

extremely close.

It is evident from these series of tests that the numerics are in-

deed capable of affecting the fine structure of the phase space distri-

bution of the beam particles. The important question is whether differ-

ences in the fine structure have any important physical significance.

Though the question can only be answered definitively when the physics

of space charge effects in particle transport systems is well understood ,

there are sever al reasons for conf idence that the nu merical results wi ll

be reliable.

12
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The fine structure observed in these runs is probably a consequence

of the sharp edge of the distribution function . This particular initial

distribution was chosen because the K—V distribution is well understood
S

theoretically . It is not a physically realistic distribution because of

the very sharp edges. A more physical distribution would have diffuse

edges and the fine structured behavior would then be washed out. Some

evidence has already been obtained that this is the case. In fact, it

appears as if a steady state can be reached which is independent of the

numerical parameters and the details of the intermediate turbulent

structure.

That the numerical system can do as good a job as it does in exam-

ining the behavior of the sharp edged K—V distribution is encouraging

since this type of system is generally the most difficult one to treat

numerically. It seems clear that the similarities in behav ior over a

large range of numerical parameters indicate that reliable data on

focussed beam systems can be inferred from this approach . Furthermore ,

because of the flexibility of this numerical approach it is easily pos-

sible to include many complexities such as finite length lenses and lens

non—linearities which can give valuable insight into design of practical

transport systems. Initial simulations to gain insight into the physics

of beam transport systems in the presence of space charge should concen—

trate on simple systems and these are currently underway .

13
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Fig. 1 — x-p~ phase space plot showing the evolution of a matched phase
space ellipse of particles as it passes through a lens system with a phase
shift of 90 per doublet. Fig. la shows the initial distribution halfway
through a focussing lens. Fig. lb shows the distribution 2/5 of the dis-
tance to the next lens. Fig. ic shows the distribution halfway through a
defocussing lens. Fig. id is 4/5 through the doublet. Finally, Fig. le is
one complete lens period away showing a return to the initial elliptical
shape.
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Fig. 2 — Time centering of the numerical system showing how the
system quantities are advanced thro ugh a time step
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Fig. 3 — Initial phase space ellipses of a slightly mismatched Kapch inskij-
Vladirnirkij distr ibution with a magnet tune of 90° per doublet and e-
nough space charge to bring the tune down to 30° . Units of length are
in cells and units of velocity are in cells/r where r is the time between suc-
ceuive magnets . Center of the beam is the center of the numerical system
so that the system size (128 x 128) can be infer red from the labels on the
configurat ion space axes. 2048 sample particles are plotted . -
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