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COMPUTER SIMULATION OF SPACE CHARGE EFFECTS IN
PARTICLE ACCELERATORS

I. Introduction

Recent studies1 have indicated the feasibility of using intense en-
ergetic heavy ion beams as the source of ignition energy for inertially
confined nuclear fusion reactions. It appears that heavy ion beams with
suitable powers and energies can be produced using modest extrapolations
of conventional particle accelerator technology. However, one of the
major limits on the beam intensities which can be delivered to a target

is due to the space charge repulsive forces of the beam particles them-

-selves. It has therefore become important to examine the effects of

these space charge forces on particle focussing and transport.

The transport of charged particle beams is well understood when the

space charge densities are small.2

In this limit, the particle trajec-
tories can be accurately described by their single particle orbits in
the external focussing fields. A commonly employed focussing system
uses alterpate gradient quadrupole magnets. We will assume that all

particles have the same longitudinal velocity and proceed to discuss the

transverse behavior of quadrupole systems.

If the plane perpendicular to the direction of beam pfopagation is

described in rectangular coordinates properly aligned with respect to

the quadrupole magnet pole tips, each particle is subjected to an
Note: Manuscript submitted January 16, 1978.




x-directed force proportional to its x distance from the center of the
system and a y-directed force proportional to its y distance from the

center. If this force is focussing in x, it is defocussing in y. Each

successive magnet is then rotated 90° so that in each direction a parti-
cle is alternatively focussed and defocussed. However, the net effect

is focussing in both directions.

A particle which starts off center, is focussed towards the center,
goes past it, and eventually returns through its initial position, there-
by executing a periodic motion. The fraction of this period excecuted

per lens pair, is a phase shift o given by2

Cos u, = i -~ n2/2 (1)

where n = vzr/F, v,T is the distance between succeeding lenses. 2t is

therefore the time taken to traverse a complete lens doublet.

If the trajectory of a particle in X=p, phase space is plotted as
it passes through successive focussing lenses, in the non-degenerate
case where o # %1, the particle traces an ellipse. Every other
particle which has an initial phase space location on this same ellipse
also remains on it, so that an initial phase space distribution which is
uniform along this ellipse remains that way. A 5eam which fills such an
ellipse will retain a constant cross section as it passes through suc-
ceeding lens systems and is spoken of as a matched beam. The product

*oPxo? which is the area of the ellipse in phase space divided by r,

is known as the emittance €.
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Fig. la shows the X=P. phase space of such a matched ellipse of
particles half way through a focussing lens. Fig. lb shows the phase
space 2/5 way to the next (defocussing) lens. Fig. lc shows the phase
space half way through the defocussing lens. Fig. l1d shows the phase
space of the ellipse now having executed 4/5 of its period and Fig. le
shows the ellipse back where it started. It should be noted that though
the ellipse looks as it did when it started, the individual particles
have moved only Mo degrees (in this case Mo = 90°) around the ellipse.

The space charge forces in this case are negligibly small.

In the presence of space charge forces, the beam transport system
becomes somewhat more complex. Each particle orbit is no longer inde-
pendent of the others and the x and y directions are no longer decoupled.

However, by assuming a particle distribution function of the form
2 2 2 2 2
i) = 8 [+ (/1) + B/ + (o foyg)? - 1, ] i

which is uniformly distributed on the x-px-y-py hyper-ellipse,
Kapchinskij and Vladimirskij3 (K-V), have derived a self-consistent set
of equilibria for focussing systems in the presence of space charge. By
assuming such an idealized K-V distribution function, the beam dynamics
including space charge can be described by a pair of coupled ordinary
differential equations for the two configuration space axes of the K-V

hyper-ellipse. These may be written in the form of Lambertson, Laslett

and Smith® as
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where 6 is a normalized distance along the beam, u, and uy are propor-
tional to the major axes of the elliptical beam cross sections in x and
y. The focussing term S(e) is a unit amplitude & function in the thin
lens approximation. The dimensionless parameter

an Nr

Q= e (4)
A Byzekl/z

where rp is the classical proton radius and k:l/FL is the lens strength,
is a measure of the strength of the space charge effects on the beam.
Since the space charge forces are repulsive and therefore act against
the lens focussing forces, the phase shift per lens system, u, is less
than the value Mo in the absence of space charge. Since it is a prop-
erty of the K-V distribution that the space charge forces are linear, u
is the same for all beam particles and can also serve as a measure of
the amount of space charge. It is significant to note that in the ab-
sence of space charge there is only one'free parameter. That is, the
distance between lenses, which is related to the phase shift per cell
oo Adding the space charge then, the system of equations has two free

parameters. These beam envelope equations can be integrated numerically

to obtain the behavior of this special class of space charge systems.a’5




The analysis of space charge effects by integrating the equations
for the axes of a K-V distribution suffers from a number of fundamental
limitations. Only uniformly loaded ellipses of the K-V form are treated.
Therefore, any collective behavior not characteristic of a uniformly
loaded ellipse can not be represented. Degrees of freedom expected to
occur in a real system such as deviation from either uniformity or el-
lipticity can not be represented. Therefore, even if the K-V distribu-
tion were a realistic initial distribution, the stability of this system
to realistic perturbations can not be investigated within the K-V for-
malism. Many physical effects which can be of crucial importance to

successful accelerator design may be missed by this approach.

II. The Numerical Model

Standard particle simulation techniques6 can be employed to inves-
tigate finite space charge beam transport somewhat more generally than
is possible by following the K-V envelope equations. Since the beam is
long compared with its transverse dimensions, non-uniformities of the
beam in the direction of propagation are neglected. By working in a
reference frame moving with the beam, the evolution of the beam as it
propagates in the z direction translates into the temporal evolution as
viewed in the x-y plane. In this reference frame the magnef forces be-

come electrostatic forces.

The numerical time differencing is shown in Fig. 2. The particle
velocities and positions are defined one half time step apart. The par-

ticle positions are advanced according to

Xteat = %t * Visat/2z A% (5)




The particles at the new times are then accumulated onto a grid to give

a charge density array. Poisson's equation is then solved using fast
Fourrier transforms to givé the electric fields self-consistent with the
charge density. These electric fields are then used to change the veloc-

ities according to

Veesat/2 = Veaatsz ¥ (@/MEL ot (6)

This numerical algorithm is time centered, reversible and second order

accurate. It is also simple and fast.

The quadrupole lenses are assumed to be thin and implemented numer-
ically by applying to each particle impulsive accelerations, v, and Avy
proportional to the x and y displacement of that particle from the cen-
ter of the system. v, is assumed unity for convenience and the parti-

cles are then given an impulsive acceleration

Av
X

-(x-xo)s

(7

Avy (y-y,)é

when passing through a lens which is focussing in the x direction (de-
fbcussing in the y direction). Here (xo, yo) is the center of the sys-
tem and § = 1/F, where F is the focal length of the lens. In the
absence of space charge the particles will then coast between lenses

accordihg to Eq. (6) so that the numerical system reproduces the thin

lens system to within machine roundoff.




Because of the finite grid on which the electric field is defined, -

space charge phenomena can be resolved only on the scale of a grid cell.
Because Poisson's equation is only solved once per time step the charge
density can not be allowed to vary significantly within a time step.

The physical implications of these statements will be dealt with in the

next section.

III. Tests of the Numerical Model

Because the numerical model being employed follows many particles
in their self-consistent orbits the large class of nonlinearities possi-
ble in an "n-body problem," where n is several thousand, may be present.
The details of the physical behavior to be modeled may therefore be
quite complex. The numerical system should do a good job of modeling
the "important" behavior, where important is defined in terms of the be-
havior of the average system parameters. For example, if the physical
system is unstable to a perturbation whose characteristic wavelength is
smaller than a cell size, this behavior may be missed entirely, or at
least poorly represented, because of the inability of the numerical sys-
tem to resalve phenamena on this scale. The same may be true for per-
turbations with growth times much smaller than a timestep. Lacking a
complete theory of the system behavior,'such questions must be resolved
experimentally by varying the numerical parameters until a regiﬁe is
found where the system behavior is insensitive to numerical parameters.
From similar simulations in plasma physics where particle dynamics are

dominated by the collective nature of the electric fields, it may be

expected that the time step must be of order the plasma oscillation time
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(mp-l) and the length scale should be of order a characteristic length
defined by the maximum velocity divided by the plasma frequency (analo-

gous to the Debye length).

Preliminary designs for transport systemsl have assumed a rough
balance between magnetic focussing forces and space charge defocussing
forces. Accordingly, numerical tests have been run on a transport

system which is in this range of parameters.

Magnet strength in the test case has been chosen to correspond to a
phase shift per AOUblet of 90° as defined in Eg. 1. In the absence of
space charge, as in thé case which was shown in Fig. 1, it is possible
to calculate the.initial conditions for a matched system analytically.
However, in the presence of space charge, it is most convenient to cal-
culate the initial condition for a matched system iteratively. Succes-
sive guesses are obtained by following the system through a doublet lens
system, from t=o to t=2t. The x extent of the next guess is chosen as
the average of x extent initially and after one doublet holding the emit-
tance, x Py constant. Similar}y, the y extent at t=2t is used to cal-
culate a new averaged y dimension. This procedure usually converges in
just a few iterations. Fig. 3 shows the initiél conditions thus found
at the center of a lens which is focussing in the x direction, for a
slightly mismatched system with a phase shift per doublet of Mg = /2.

A mismatch of about 10% was chosen so the system would evolve fairly
rapidly and thereby test the numerics. Four projections of the density
in x-px—y-py space are shown for 2000 sample particles. The distances

labelled on the axes are in terms of program grid points and velocities

8




are in units of cells/t. The initial space charge density is such that
the Q defined in Eq. 4 is equal to 3.9. In this case the phase shift
per doublet is about 30°. The particle positions and momenta are set up

using the formulae

i L
X = X /q cos (2")
P, = P,, ¥G sin (%) (8)

¥o vI=q cos (%;)

e
n

= — oin (3—
Py = Pyg YT-0 sin &7)

where q, r, and s are uniformly distributed random numbers between zero

and unity.

The Poisson solver uses Fourier transforms and periodic boundary
conditions to solve for the electric field from the particle charge dis-
tribution. Since it is impractical to follow the trajectories of as
many particles as are actually found in a beam, anomolously high fluc-
tuations in density occur in a particle code simulation. In addition,
?ollowing only a finite number of modes leads tc a band-limited situa-
tion in which short wavelength overshoots can occur in the vicinity of
sharp changes in charge density. Both these effects can be mitigated
somewhat by considefing "macro-particles" with a Gaussian charge den-
sity.7 When this is done, the points plottéd as in Fig. 3 are really

the centers of these "macroparticle" charge clouds rather than point

particles.




Fig. 4a is a plot of Ex vs x for a y coordinate 1/2 cell off the

center of a 64 x 64 system whose initial conditions are similar to those
shown in Fig. 3. Fig. 4b is a plot of the same fields with Gaussian
smoothing applied to the system so that the particle "size" between 1l/e
points on the Gaussian is one cell. Note that Ex is really the average
field applied to the smoothed cloud, i.e., the acceleration field. The
smoothed fields are closer to linear near the center but the peaks at
the edge of the beam are somewhat rounded. Figs. 5 and 6 are a compari-
son of the phase space of two systems after traversing 16 focussing mag-
net pairs with and without smoothing. The comparison time was chosen
because of the fine structure at this time which ought to accentuate
numerical differences. Figs. 5 and é are phase space plots which corre-
spond to the same smoothing as in Figs. 4a and 4b respectively. Though
there are minor differences, they do not appear to be significant and
they are small compared with differences which arise from changing the
number of grid cells and which will be dealt with later. In both Figs.
5 and 6, 2048 particles are shown out of the 4096 used in the run.
Other parameters are At = .2t, 64 x 64 cells and pr = 1.2. Since the
smoothing does not have a major effect on the short time system evolu-
tion and does not seem to negatively affect evolution of the beam edge,
there is a net advantage to employing it for long times in order to

avoid anomolous fluctuation effects.

In simulating a col}isionless plasma, it is usually impractical to
represent anyfhing like the number of particles in a real system. Con-
sequently the number of particles per Debye volume is low. The simula-
tion may then represent the collisionless behavior only for a number of

10
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8 plasma periods proportional to the reciprocal of the actual number of

simulation particles in a Debye volume. Fig. 7 is a phase space plot

N from a calculation with conditions as in Fig. 6 but with double the num-

ber (8192) of simulation particles. While the fine structure changes

slightly, mainly in the y-Py view, the computed results are essentially

independent of the number of simulation particles; the small residual

differences are due as much to different statistics in the initial dis-

tribution as to fluctuations in the fields during the run. The differ-

ence is made more noticeable in Fig. 8 by again doubling the number of v
particles to 16384. Here, too, however, it is felt that any differences |

are due to different statistics. |

The Fourier Transform Poisson solver employed uses periodic bound-

ary conditions. This means that the neutralizing charges, instead of

being at infinity or in finite images are, uniformly distributed through-
out the system. Furthermore each beam particle has an image of the same

sign and size one system length away in each direction. Such a computa-

tional system clearly reproduces the infinite system when the boundary

is far enough away.

Fig. 9 shows results from a calculation using a 128 by 128 finite
difference mesh where the beam occupies only one quarter of the system
area of the previous runs. That is, measured in beam size, the bounda-

ries are twice as far out as in the previous runs. The numerics are

otherwise identical to Fig. 6. The behavior of the two systems is again

quite similar, showing that the boundary conditions are not having a

major effect.
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We have thus far seen that, when run through 16 magnet pairs, the system
behavior is relatively insensitive to varying the particle smoothing,

N the number of particles and the distance to the boundaries.

A comparison of Fig. 6 with Fig. 10 shows the differences in be-
havior caused by changes in the resolution. Fig. 6 uses twice as many
N cells in the description of the electric fields of the beam and fine
structure has appeared which was not present in the coarser grid run of
Fig. 10. A comparison of Figs. 9 and 11 shows the result of doubling
the resolution again. Fig. 9 is a 64 x 64 system and Fig. 11 is 128 x
128. Each run has 16K particles. (The number of sample particles for
plotting is still 2K.) Though the difference is not as great as the

original doubling, more fine structure is evident.

Finally, Fig. 12 shows the effect of taking twice as many timesteps
(20) per magnet period. The parameters are otherwise the same as the
run in Fig. 11. A comparison of the two pictures shows that the two are

extremely close.

It is evident from these series of tests that the numerics are in- |
deed capable of affectiﬁg the fine structure of the phase space distri-
bution of the beam particles. The important question is whether differ-
ences in the fine structure have any important physical significance.-
Though the question can only be answered definitively when the physics'
of space charge effects in particle transport systems is well understood,

there are several reasons for confidence that the numerical results will

be reliable.




The fine structure observed in these runs is probably a consequence
of the sharp edge of the distribution function. This particular initial
distribution was chosen because the K-V distribution is well understood
ﬁheoretically. It is not a physically realistic distribution because of
the very sharp edges. A more physical distribution would have diffuse
edges and the fine structured behavior would then be washed out. Some
evidence has already been obtained that this is the case. In fact, it
appears as if a steady state can be reached which is independent of the
numerical parameters and the details of the intermediate turbulent

structure.

That the numerical system can do as good a job as it does in exam-
ining the behavior of the sharp edged K-V distribution is encouraging
since this type of system is generally the most difficult one to treat
numerically. It seems clear that the similarities in Behavior over a
large range of numerical parameters indicate that reliable data on
focussed beam systems can be inferred from this approach. Furthermore,
because of the flexibility of this numerical approach it is easily pos-
sible to include many complexities such as finite length lenses and lens
non-linearities which can give valuable insight into design of practical
transport systems. Initial simulations to gain insight into the physics
of beam transport systems in the presence of space charge should concen-

trate on simple systems and these are currently underway.
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Fig. 1 — x-p, phase space plot showing the evolution of a matched phase
space ellipsg of particles as it passes through a lens system with a phase
shift of 90 per doublet. Fig. 1a shows the initial distribution halfway
through a focussing lens. Fig. 1b shows the distribution 2/5 of the dis-
tance to the next lens. Fig. 1c shows the distribution halfway through a
defocussing lens. Fig. 1d is 4/5 through the doublet. Finally, Fig. le is
one complete lens period away showing a return to the initial elliptical
shape.
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Fig. 2 — Time centering of the numerical system showing how the
system quantities are advanced through a time step
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Fig. 3 — Initial phase space ellipses of a slightly mismatched Kapchinskij-
Vladimirkij distribution with a magnet tune of 90° per doublet and e-
nough space charge to bring the tune down to 30°. Units of length are
in cells and units of velocity are in cells/r where 7 is the time between suc-
cessive magnets. Center of the beam is the center of the numerical system
so that the system size (128 x 128) can be inferred from the labels on the
configuration space axes. 2048 sample particles are plotted.
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(b) with a particle 1/e width of one cell

Fig. 4 — Near axis force field in a 64 x 64 system with
and without smoothing
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3 Fig. 5 — Phase space of a 64 x 64 system showing 2048 sample particles
1 of 4096 in the system after 16 magnet pairs of 160 time steps. (7 = 32)
g | No smoothing was used.
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Fig. 7 — Phase space of a 64 x 64 system as in Fig. 4 again showing
2048 sample particles but with twice as many particles (8192) in the
system
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Fig. 9 — Phase space of a 128 x 128 system with 4096 particles.
The resolution describing the beam is unchanged but the bounda-
ries are twice as far away.
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Fig. 11 — Phase space of 2048 sample particles on a system with
sixteen thousand particles and 128 x 128 grid points showing the
effect of the greater resolution on the fine structure of the system

evolution
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