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ABSTRACT

Robust Statistics provides a fresh app roach to the diff icult

problem of editing in data reduction. Of prime concern are grossly

erroneous measurements which, when undetected , completely destroy

automated data reduction procedures causing costly reruns and

time delays with human detection of the erroneous measurements.

The application of robust statistical methods has been highly

successful in dealing with this problem. An introduction to

the robust M—estimates and their numerical computation is given.

The application of H—estimates to data preprocessing, instrument

calibration, N—station cinetheodolites , N—stat ion radar solution ,

and filtering are described in detail. Numerical examples of

these applications using real measurements are given.
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INTRODUCTION

Robust statistics provides a new approach to data editing in trajectory
data reduction. Data editing, whose function is to deal with wild obser-
vations, has been a most frustrating problem for the data analyst. The
use of robust statistics has been highly successful, much more so than
previous methods, in dealing with this problem. There are several appli-
cations of robust statistics to data editing in trajectory data reduction.
The applications considered here are:

Data Preprocessing
Instrument calibration
N—station Cine solution
N—station radar solution
Filtering

Before describing these applications we need to answer: What are robust
statistics and how do robust statistics apply to data editing? In answer
to the first part of the question robust statistical methods are those
which tend to retain their desirable properties under at least mild
violations of the assumptions under which they were derived. Possibly
a more useful description of a robust statistical procedure is one which
will perform well under a variety of underlying distribution functions
or in the presence of observations from contaminating distributions.
Thus, the sample median is a more robust procedure than the sample mean
for estimating the mean of a symmetric parent distribution, if even a
moderate amount of contamination from a long tailed distribution is present.
In answer to the second part of the question we are probably not very
concerned about the performance of data reduction procedures under a wide
variety of underlying distribution functions of the observations but are
mainly concerned about the performance of our methods in the presence
of observations from contaminating distributions, i.e., outliers. Thus,
in data reduction we are interested in the development of robust statistical
methods which are highly outlier resistant. In data reduction we are
usually interested in estimating the parameters in some postulated linear
or nonlinear model of a process. Thus, in data reduction we are specifically
interested in developing methods for linear and nonlinear regression
which are insensitive to a large percentage of outlying observations.
Many sources of outliers are present in trajectory measuring systems.
Without going into any detail, these sources may be broadly grouped into
the categories of equipment malfunction, ou~side interference, and human error.

The usual methods of least squares, optimally weighted least squares,
maximum likel ihood , etc., used in data reduction for estimating parameters
in a regression model are rendered useless by the presence of outliers.
To quote Huber [i], “even a single grossly outlying observation may spoil
the least squares estimate and moreover outliers are much harder to spot
in the regression case than in the simple location case.”
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Although the history of robust estimation goes back to the 19th century,
the development of robust regression methods is just currently becoming a
popular topic for statistical research. Some of the earliest methods for
robust regression were developed in the 1950’s, notably the methods repor ted
by Brown and Mood (9] and by Theil [5]. Robust estimation methods have been
classified by Huber [1] and (2]. Huber’s classifications are termed L—estimates,
N—estimates, and R—estimates. The L—estimates are estimates which are linear
combinations of the order statistics. The a—trimmed mean is an example of an
L—estimate for a simple location parameter. The R—estimates are estimates
derived on the basis or rank tests. The estimate of location obtained by
taking the median of all pairwise averages of the observations is an R—estimate.
Of the three classifications for robust estimates given by Huber we shall only
be concerned with H—estimates in this report. The reason for this is not that
N—estimates are superior but because we are only interested in describing the
applications of robust regression to data reduction and this seemed easiest
to do with the H—estimates.

Given the linear model

P
y = E x~ 0 •+ e i=l , N (1)

j—l ~~~~~~~

the regression parameters 0
1 
are to be estimated. The M—estimates of

o minimize

N
E P (y1 

— E X
jj O

j
) (2)

1=1 j  .

where p ( )  is some function which is often convex. Differentiating with
respect to 0 leads to

N
E X~~ (y1 

— E x~~, G ) = 0 (3)
1=1 j

where

4 col(x11, x12, — — — x1~ )
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and 4’ () is the derivative of p (‘) .  (3) is the analog of the normal equations
in least squares regression. The estimate which results from solving (3)
is called an N—estimate. Rather than specifying the function p, N—estimates
are usually described by specify ing the f unction 1’. If f(y;e) is the
probability density function underlying the observations, and if

4’ ~f(y;0) / f(y;0)
then the N—estimate obtained is the maximum likelihood estimate. Since
the function p is usually not homogeneous, as it would be in least squares,
the N—estimates obtained would usually not be scale invariant. Hence,
to force scale invariance we minimize

N /y~ 
— E x1.04

E p ( .j (4)
i=1 \ S

where s is some measure of dispersion of the residuals , y
1 

— E x
1 

€3

j ii
The measure s also needs to be a robust measure of dispersion.

Several 4’ functions have been proposed in the literature. Basically
those 4’ functions fall into two classes, the redescending type and non—
redescending type. We will only consider one member of each of these
classes in this report. The original 4’ function proposed by Huber is of
the non—redescending type. This function is

[x IxI<a

4’(x) = (5)La sgn(x) xI>a

* 
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~~~

- - -



~~~~~~~~~~~~~~~~~~~~ —,-- . ,- .--. ~~~~~~~~~~~~ • _
~~~ •~~~~ •_ —5--- .~~~~~- 5 - —. 5- -5-——- —‘5—---’,

An example of a 4’ func tion of the redescending type is the function proposed
by Ranipel [6].

x IXL9

a sgn(x) a<Ix f<b

a — c sgn(x) \ b<IxI’< c (6)
b - c  )
0

*

—c —b —a ________________________________ x
b e

Other 4’ functions have been proposed by Andrews [8], Tukey [3], and
Ranisay [4]. There are also a number of other methods for robust regression,
see [11].

An attractive feature of least squares regression is the ease of
numerical solution. One might be inclined to think that the numerical
solution for an N—estimate would in many cases be prohibitive. At worst
(4) can be minimized by one of the many algorithms for minimization, e.g.,
the Fletcher—Powell method [10].

An iterative solution such as a Gauss—Newton method can easily be
applied to minimize (4). Settn1~ the derivative of (4) to zero and

linearizing about an arbitrary point in the iteration sequence gives

~ 
-_x1~~~~~_ 

~
‘(Yi_- 

+ 1) 
- 

0
j=1 L\ ~ I \. ~ I ~ 1(7)

Solving (7) for 3{uc + l} 
— yields

l} 
— = ~ 

— 

xT (8)
i=i \ s J 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



where

A { ,~~)~~ T
H = E 4! ( Y1 — X~O 

~ ____ 
(9)

1—1 8
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The iterative application of (8) and (9) results in a fairly simple method
for obtaining an M—estimate. An approximate sample covariance for this
estimate is given by

cov(O) = V = 1 E ~2 
(
‘)Tj  

— ~~~~~ ~~~ f~ x~x~ M 1
n—p i=1 s J ~j=1 ~~ (10)

An even simplier numerical method and one which has achieved considerable
popularity for obtaining M—estimates is the iterative application of weighted

• least squares. Setting the derivative of (4) with respect to 0 equal to
zero gives -

N I
E xT *(Yi

_
~
(i0)= o

i=l ~ / (11)

Now rewrite (11) as

N ~ / T A

E 
______________ 

Xj (yi 
— XiO) = 0 (12)

i 1  

(
~~i 

—_xis)

Let

...

W~ (O) = 
______________ 

(13)

(Yi
_ x

~~~
) 
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Then (12) is

N TE w1(0) Xj(yi 
— X10) = 0 (14)

1=1

(14) can be solved iteratively as follows. Starting at an arbitrary

point o K 
in the sequence of iterations, ‘ .

~ . replace (14) by

z W
1
(e~~~)X~ (y

1 
- 

+ l}~ ~ (15)
i=1

~{K + l)
.
5 Solving (15) for 0

+ ‘~ = 

(~~!~ 

W~ (®~~~ )X~x
.) 

-l 

i=l 
W.(O

~~~
)x
~
yi (16)

Thus, we can use an ordinary weighted least squares algorithm iteratively
to obtain the N—estimate.

Throughout the discussion of N—estimates we have used the dispersion

measure s of the residuals y
~ 

— X~0 without consideration for its computntion.

Robust dispersion measures are often taken to be a multiple of the inter—
quartile range or of some other range statistic of a set of residuals. A
dispersion measure which seems to be most popular with those using N—estimates
is the median deviation or the MAD (~ edian of the Absolute Deviations)
estimate as it is sometimes called. The MAD estimate used above is defined by

s = mediril / .6745 (17)

where ri = y
~ 

— X~0. Hampel [6] has shown that the MAD estimate is

the most robust estimate of dispersion.

Both the Gauss—Newton method and the weight•ed least squares method for
obtaining M—estimates are iterative and therefore require a starting
solution. The required closeness of the startIng solution to the final
solution is dependent on the app lication and the type of 4’ function used.
Quite of ten an ordinary unweighted least squares solution is a suff icient ly
good starting solution. In some cases it is necessary to use a starting
solution which is more robust, see [12].
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APPLICATION TO DATA PREPROCESSING -

It is this application which provided our original motivation for
the development and application of robust st~ tistical methods in data
reduction. There are several possible functions of data preprocessing.
Ambiguities in phase measurements might be resolved by preprocessing. It
might be used merely to detect outliers in the measurement data oecause
their detection in the main processor might be considerably more difficult.
Also, the main processor often requires the use of weights for each of the
measurements or the main processor might require that a set of meas—
surements be synchronized before processing. These requirements can be
fulfilled by data preprocessing.

Given the time history of a particular measurement function for its
entire span of observation on a trajectory , the preprocessing
function divides the interval of observation into equal segments of T
seconds except for a final segment either shorter or longer that T. Over
each of these segments a polynomial, usually a quadratic , is fit to the
measurements. Alternatively, a cubic spline might be fit to the entire
span of measurement data using the end points of the T second segments as
knot times. Thus, in measurement preprocessing we might model the ath
measurement over an arbitrary interval of the trajectory as

y(ti) = 0
~ 

+ — + 

~2~~i 
— t) 2 

1=1, N (18)

where

• N
t = 1  E t .

i~ i=i 
1

Using some robust M—estimate of the parameter vector 0 = [0
0 

0~ 02]

we would minimize

Q = 
i=l 

~(Ya (t
i

) — 0
o 

— 0
1

(t~~ — t) — ®
2

(t
1 

— 

.
~ ) 2) (19)

which upon differentiating gives the analog of the normal equations

Z T~4’()~cz
(t
i
) — — 0

1
(t

1 
— — ®

2
(t
i 

— ~~2) (20)

where

= [ (ti — 

~ (t 1 
—

. 1  

—— —- , -~~~~~~~~~~~~ — -- -~ -—



We solve (20) iteratively to obtain robust estimates 00, 
~l’ 

0v
In the iterative solution of (20) s is taken to be the median of absolute
residuals

s = ined lr (t 1) f
/
’.6745

where

r(t~) = y(t1) 
— 00 

— 01(t 1 — 1) — 02 (t 1 
—

The following data set is from a real data reduction situation. The
measurements are a sequence of azimuth measurements from a cine.

RESIDUAL S RESIDUALS FROM
OBSERVATIONS FROM ROBUST FIT LEAST SQUARES FIT

—1.70987 - .000012 — .157774

—1.70942 —.000004 — .000204

— 1.70893 .000003 .105480

—1.70845 — .000015 .159227

—1.70793 — .000010 .161087

—1.70741 — .000021 .111021

—1.70682 .000022 
• 

.009099

—1.70626 .000019 — .144780

—1.70571 —.000010 — .350595

—1.70510 .000005 — .608277

—1 .70449 .000004 — .917885

1.43777 3.141637 1.862231

1.44602 3.149243 1.456410

—1.70257 — .000007 —2 .158177

1.44667 3.146558 .473139 

---
~~~~~~~~
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H

There are three obvious outliers In the data. The residuals from an
-~~ ordinary least squa re fit which are given in the last column yield
• no Information about outliers in the data. The residuals from the

robust fit which were obtained using a Hampel 4’ function (breakpoints 2.5,
5.0, 7.5) show exactly which observations were outliers. Outliers can

- - be detected as those residuals r
1 

for which r1~ ks. The dispersion

a may be saved for use in making weights for the observations in the main
- - 

- 
processing. Another example of data preprocessing is provided by the 40
point data sequence below. 

-



— 

LEAST • NORMALIZED
SQUARES ROBUST ROBUST
RESIDUAL S RESIDUALS OBSERVATION RESIDUAL S

1 — .011022 — .000278 .20642275 1.005559
2 —.009071 —.000006 .20973521 .020803
3 — .007471 —.000033 .21296912 .120171
4 — .005711 .000151 .21663652 .546808
5 —.004461 —.000123 .22006619 .445501
6 —.002730 .000136 .22425138 .492246
7 — .001590 — .000144 .22811853 .519552
8 — .000213 —.000135 .23249603 .487267
9 .001201 —.000038 .23718297 .136926
10 .002489 — .000014 .24201791 .051970
11 .003798 .000082 .24714760 .297949
12 .005624 .000748 .25306741 2.703007
13 .005421 —.000564 .25723122 2.037977
14 .008660 .001617 .26510980 5.845255
15 .006010 — .002037 .26737381 7.361710
16 .009663 .000662 .27621340 2.394020
17 .011016 .001113 .28302583 4.023731
18 .010359 —.000392 .28810282 1.418292
19 .011568 .000019 .29531815 .067036
20 .012005 —.000291 .30203451 1.051051
21 .012861 —.000129 .30944403 .464413

- 22 .013557 — .000075 .31696650 .269818
23 .014001 —.000222 .32450959 .800901
24 .014501 —.000260 .33238295 .938668
25 .015039 — .000209 .34056693 .754131
26 .015433 —.000249 .34888132 .898506
27 .015913 — .000152 .35755414 .547835
28 .016283 —.000113 .36639033 .406971
29 .016494 —.000181 .37534057 .654202
30 —.058265 — .075167 .30959446 271.639732
31 — .172487 —.189565 .20465789 685.052254
32 .018472 .001270 .40517605 4.589248
33 —.064416 —.081690 .33212063 295.211357
34 .089274 .071980 .49591643 260.122231
35 — .251831 — .269092 .16519139 972.446930
36 .007852 — .009326 .43552655 33.701152
37 .159606 .142564 .59820610 515.197899
38 .059168 .042313 .S0896735 152.912771
39 .016704 .000088 .47797510 .318960
40 .016296 —.000028 .48931307 .101770
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The solution for the N—estimate used a -least square starting solution and
a Hampel 4’ function with breakpoints at 2.5, 5, and 7.5. In the list of
least square residuals given above some of the outliers are obvious while
others are not. The column of normalized residuals Is merely the robust
residual divided by the robust dispersion measure s. If we declare that
residuals greater than 2.5s are outliers then we would flag observations
12, 14, 15, 17, 30, 31, 32 , 33, 34 , 35, 36, 37, and 38 as outliers. Some
of these outliers are much more gross than others. The N—estimate of the

parameter vector is 0
0 

= .20388, .05419, 
~2 

= .04427. This

example is simulated data so that the true parameter vector is known to
be 0 = .20397, 0 = .0537, 0 = .0445. The least squares starting

-‘ solution was ~~~~~ = .21636, 0
{o 

~ 
= .01901, 0 

o} 
= .05466.

INSTRUMENT CALIBRATION

Surveyed targets are used for calibrating, i.e., estimating the
coefficients in an error model , for radars , cinetheodolites or laser trackers.
Suppose for example we have N surveyed targets for a laser tracker. Let
R~~1 ~~~ E~~ be the surveyed range, azimuth, and elevation for the jth target.

Suppose that multiple observations of the targets are available so that we
have N~ observations for the jth target. Denote these range, azimuth and

elevation observations by ~~~~ Au and E1~~ I = 1, ~~~ j = 1, H. Let

AR
1~ 

= R
1~ 

— R~~ = r~0 + (random error)

T
= A

u 
— A~~ = a~0 + (random error)

AE1~ = E1. — E~~~ = e~€3 + (random error)

where 0 is an unknown parameter vector and rj~ ~~ and e
j 

are known
vectors. A common model for r

j~ 
a
j 

and e~ is given by

r~0 = 01 
+ 0

2
1
~sj (21)

a~0 = 0
3 

— O4 tanE ~cosA — 05tanE~~sinA~~ — 0
6/ cosE~~ (22)

• e~0 = 07 
+ O

4
sinA~~ — 0

5
cosA~~ (23) 

- - -~~~~~~~~~ -- -~~~~~-~~ -‘5—.- - - -- -~~- - - -
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The usual least squares estimate of the parameter vector 0 would minimize

E E
3 

fTAR1 
— r

TO) 2 + (AA~ — a
TO) 2 + (AE

1 
— e

TO) 21 (24)
3=1 1=1 L ~ ~ ~ ~ J

An H—estimate alternative to least squares would minimize
~~~~ 

r(~ 13 - r~0~ + (AA 13 - 
a~0~ + (AEj~ - 

e~0~~~ (25)
~~l ~~~ L’ ~r / ~ ~a / k ~e I]

DIfferentiating (25) gIves the analog to the normal equations

~3 - r~0 ~~ + 
- a~0 ~~ + 4(

’
~Ejj_-_e~~)ei o 

-

3—1 1=1 
L~~ 

8r / 8r ~ 
8a I 8a ~ 

8e 1
~J

(26)

An iterative solution of (26) with 
-

= inedld (i,j)I /6745
1,3

— me dl d (i , j ) l  /.6745
1,3

8
e 
- med ld (i,j)I /.6745
1,3

Where

d(i j) — — r~0 (27)

d (i ,)) — AA~~ — a~0 - (28)

d (i ,j ) — — e~0 (29)

H 

—5—- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - - .4



gives a robust estimate 0. Since the elements of the parameter vector

are usually small , the elements of the starting solution o{01 may be set
{o) {o} {o}

to zero except for 0
1 , 0~~ , and 07 which can be set to the medians

of li
13
, A

13
, and E

13
, respectively.

The following example illustrates the application of H—estimates to
the calibration of a laser tracker using real field data. The laser tracker
Is calibrated by using azimuth and elevation observations from eight reflective
targets arranged in a circular pattern around the tracker at a range of about
2500 feet. We use the error model given in (21) — (23). Since the elevations
of the eight calibration targets are approximately equal, it is obviously
impossible to estimate 

~6 in (22) without additional observations. 
—

In order to provide these additional observations we observe the same
calibration targets but with the tracker “dumped” , i.e., with an azimuth
of approximately A 1 + 180 and an elevation of approximately E

1
— 180

0
. These additional observations are called dumped readings and

are treated as additional calibration targets. A].so, we can see from
(21) that we will be unable to estimate 

~2 
using the eight calibration

targets since the ranges to all targets are approximately equal. In order
to estimate ®2 we observe four additional calibration targets with

ranges varying from 20000 feet to 60000 feet. In this example dumped
readings were not available so that 06 

could not be estimated. Also,

data from two of the close targets are missing. Approximately 250
observations are available for each of the remaining target boards.

A Hampel 4’ function which was defined in (6) was used for this example.
The parameters or break points of the ilampel 4’ in this example are a = 2.5,
b = 5.0, c = 7.5. The results of this robust calibration are summarized
in the figure below by tabulating the number of residuals for each target
lying in each region of the J-Iampel 4’. We show only the positive side of
the 4’ function with the number of residuals in each region being the sum
of the numbers of residuals in the positive and corresponding negative side
of the 4’ function.

- — - — — ‘ 5 -

~
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TARGET I! U RESIDUALS U RESIDUALS U RESIDUALS U RESIDUALS

1 250 0 0 0 -

2 250 0 0 0
3 - 246 0 0 0

• 4 250 0 0 0
5 250 0 0 0
6 250 0 0 0

• 9 245 4 0 1
10 83 141 26 0
11 215 32 2 1
12 0 0 0 250

DISTRIBUTION OF RANGE RESIDUALS

TARGET II U RESIDUALS U RESIDUALS U RESIDUALS U RESIDUALS

1 250 0 0 0
2 250 - 0 0 0
3 246 0 0 0
4 250 0 0 0
5 250 0 0 0
6 250 0 0 0
9 245 5 0 0
10 238 12 0 0
11 247 3 0 0
12 248 2 0 0

DISTRIBUTION OF AZIMUTH RESIDUALS

TARGET U U RESIDUALS U RESIDUALS U RESIDUALS U RESIDUALS

1 250 0 0 0
2 250 0 0 0
3 246 0 0 0
4 250 0 0 0
5 250 0 0 0
6 250 0 0 0
9 245 5 0 0

10 238 12 0 0
11 247 3 0 0
12 248 2 0 0

DISTRIBUTION OF ELEVATION RESIDUALS



Thus, we can see that a significant percentage of the range observations
from the long range targets are bad including all range observations from
target number 12. The parameter estimates for this example are 0

1 —

1.69 feet, 02 
= .508145 x ~~~~ 03 

.11405 mr 0
4 — 

.511565 mr,

0
5 

= — .105925 mr, 0
7 
= — .04014 mr. The least squares calibration for

this example gives the erroneous values for the range calibration 0
1 

—

—395.27 f eet and 
~2 

= — .96948 x io
_2

.

N—STATION CINETHEODOL ITE SOLUTION
4

The N—station Cine solution is a standard problem in data reduction.
In this situation we are given azimuth observations aa (t j) and elevation

observations e(t
1

) ,  a = 1, N1, from Ni cines at each time point t1 along a

trajectory. From these N
1 
cines we must estimate the cartesian positions

x(t~)~ y(t1
) ,  z(t .) ,  at each time point. The observations are a (t

1
) =

A ( x
1
) + error and e(t

1
) — E(x

1
) + error. The measurement functions

A ( x
1
) and E(x

1
) are functions of the position vector = [x(t

1
) y( t

1
) z(t.)].

These measurement functions are given by -

— —l x ( t ) —xA (x
1
) = tan I a (30)a y(t

1
) —

—1 z(t ) — z
E (x) tan I a (31)
a 

~~x(t1
)— x )

2 
+ (y(ti

) — Y ) 2]1/2

where (x , y ,  z )  18 the cartesian position of the atl
~ cine. The usual

least square problem to estimate the position x(t
i
) ,  y ( t~ ) , z(t

1
) is

nonlinear. Thus, the robust estimation of these quantities will be nonlinear
both because the objective function for the robust estimation problem is
non—quadratic and because the measurement model is a nonlinear function of
the parameters to be estimated . The usual least squares solution would
minimize

• ~~ 
~~~a(t1

) — A (
1))2 

cos2e (t1) +(e(tj) - E(x1)~~~ (32)

I

_ _ _ _ _ _ _ _ _



F’. -

~~~ 
—
~~~ 

- —‘5-- -‘5—-——-- -‘5-- ~~~~~~~~ ‘5—.- —‘5-  .- --- _ -----“---.— —-- —r~~~- ~~
—  ~~~~~~~—•- - —‘5- -.— -‘5----

I
An M—estimate of the position vector x wou1d~minimizeI

a B ~~~~

t1) 

~~~~~~~~ 

cos
2
e(t1

) + 
(e

(ti) 

e~~~~~~)1 ~~~
Differentiating (33) gives

a=1
~~~a 

4’(r
(ct) ) aA ()~~~ C0s

2
e ( t

1
) 

~~~~~~ 

4’(t
~~~~ ) aEG 1~~

(34)

where

r (a) = a (t
1
) — A ( x

1)

-~ 

I r (a) = e(t
1
) — E ( x.)

(34) can be r ewritten as

- 

a~1 
C
T
~~1
) ( r (cL)) = 0 (35)

where

cT
~~~ ) 

=E 

aA G ~1) ~ 
~

E (

~
i
)1a I e

a 3 x 2 matrix and - —

2 .
- 4’ a 1 cos e(t ..)

- _ :  4~ (r
(a) r

(a)) ~a / (36)

a e

I
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An iterative solution of (35) with s medir (a) 1/.6745, 8e — m~dIr~
(a)I/.6745

gives a robust estimate of the parameter vector x
1
.

As an example or robust estimation applied to a cinetheodolite solution
consider the following situation which is rather extreme but sometimes occurs.
A missile is fired at a drone and cinetheodolites are observing both the
missile and drone. It is required to provide a cine derived trajectory
on both the missile and the drone. Due to an inadvertent clerical error
one of the cines which was actually observing the missile was erroneously
listed as observing the drone. Obviously, when doing a least squares
solution to obtain the drone trajectory , the azimuth and elevations from
one cine will be gross outliers and may destroy the least squares solution
for the drone position coordinates. A single point example of this situation
is furnished by the actual cine data given below

Cine Obs. Azimuth Obs. Elevation

1 .568106 .338886

2 — .626010 .122620

3 —2.665036 .359168

4 1.926249 .327177

Cine 2 is the one which is actually tracking the missile rather than the
drone. Obviously, as in most situations which are the nonlinear, there is
no way of distinguishing the outliers by inspecting the observations. As
always in robust estimation a preliminary solution is required to start the

iteration. Let (x
a, ~

‘a’ Z~~) be a position solution obtained from the

pair of cines. In this example we have six possible pairs of cines so that

a = 1, 6. We then start the iteration with (x°, y°, z°) where x0 = med x ,

a=l, 6
y° = med 

~a’ 
z
0 
= med For the example, the median gueso solution

a=l, 6 c~=1, 6
is x0 = —45147.9 ft., y = 87423.8 ft., z 11117.3 ft. After five iterations
the sequence has converged to the solution x = 32964.8 ft., y 87425.2 ft.,
z = 11114.9 ft. The residuals from the final solution are 

- - ‘ 5 -



Residuals

Cine Azimuth Elevation

1 .000008 —.000064

2 — .242553 .011513 
-

3 .000022 .000081

4 .000057 — .000019

Thus, the robust solution using the Hampel 4’ with breakpoints of 3, 6, 9,
correctly identified the outliers. Let us carry this example farther.
Suppose we have no observations from Cine 1, i.e., we have data from only
three cines one of which is bad. In this case our starting solution turns

out to be x
0 
= 45147.9 , y° = 87424.1, z0 = 11120.2. After four

iterations the solution has converged to x = —32966, y 87424.6, z = 11115.3.
Thus, we are again able to correctly identify the bad cine. Now suppose we
have data from cines 1, 2, 3. In this case the initial guess solution is

x° = 45147.9, y° = 67033.9, z0 = 11118.9. After ten iterations the
solution is x — —35023.9, y = 84462.1, z = 11004.1. The solution eventually
converges to the correct value, but slowly. A third possibility to have
data from only three cines Is obervations from cines 1, 2, 4. In this case

the guess solution is x0 = —46454.3, y° = 87548.3, z
0 

7262.7. After
three iterations the solution has converged to x = —35392.6, y = 86464.3,
z — 1044.8. Thus, in this case the iteration has converged to the wrong
solution. In the last two cases where the solution converged very slowly and
converged to the wrong solution , the starting solution was too far from the
correct solution. If a sufficiently good start had been provided the solution
would have converged correctly in a few iterations. If the number of cines
were great enough in comparison to the number of bad cines, using the median
of the solutions obtained from the cine pairs provides an acceptable starting
solution. Unfortunately, the number of cines is often no more than three
or four. In the case of three clues the use of a starting solution predicted
from preceding points might be a desirable procedure. If preprocessing had
been used on the cine data most If not all of the outliers of the spike
variety in the cine data would have been detected before attempting a solution.
Thus, robust estimation in the solution has only to contend with detecting
badly biased cines. In any situation with three ‘r more cines with one bad
clue , the robust solution will usually provide a better solution than the
usual least square procedure. A strategy for choosing a good starting solution
needs to be developed. A robust N—station radar solution is developed along
the same lines as a robust cine solution. In the radar case a starting
8olutIon for the Iteration is somewhat easier to obtain.
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Application to Recursive Filtering

Very little development has been done on the application of robust
statistical techniques to filtering. The most significant effort known

• to the author is given in the paper of Masreliez and Martin [7]. Their
development of robustifying the Kalman filter is quite complex and will not
be considered here. It is a simple matter to specify a form for an
approximate M—filter and its covariance.

Suppose we wish to estimate the state x(n) of the linear dynamic
model described by the state equation

x(n + 1) = ~~n + 1, n)x(n) + u(n) (37)

wi-jere ‘~(n + 1, n) is an mxiii state transition matrix and u(n) is an rn—vector
of state noise with covariance Qn. Suppose we are also given scalar
observations Z(n) of the state specified by

Z(n) = Hx(n) + v(n) (38)

where H is a lxm matrix of constants and v(n) is observation error. By
analogy with the least squares filter derivation we minimize

N 
-

B p Z(i) — Hx(i) + 1 u(i)Q~~u(i) (39)
1=1 si 2

Subject to the constraints

x(i+l) —~~x(i) — u ~~= O  1 = 1 , n — i

Minimizing (39) leads to the approximate filter equations

A A p
x(n+l/n+l) = x ( n + l / n ) + n + l  4’ Z(n+l) — Hx(n+1/n)

S Sn + 1  n + l
(40)

,c(n + i/n) •x(n) (41)

with approximate covariance

“n +  1 
= 1/n + R H  Z(n + 1) — llx(n + 1/n)

) 

(42)

P ~~ 
,~
T
+Q  (43)

TI ii 
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SI Where 4’() is an appropriate influence function. Note that the derivative
of 4’ is required for the update of the filter covariance matrix.

• This robust filter is certainly easy to implement and anyone who has
.4 done much recursive filtering of data on a computer has probably implemented

such a filter with the following 4’ function,

cx lxkk

Lo !x k

-k

we process observations only if the predicted residuals are within
±ka where o is an estimate of the measurement noise standard deviation.
Thus, robust filtering presents nothing new as far as filter implementation

- 
is concerned, but we are now in a position to possibly improve our robust
filtering by borrowing some 4’ functions and other concepts which have
proved very useful in robust regression.

_ _
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