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Abstract. A number of image analysis tasks can benefit from registration of
the image with a model of the surface being imaged . Automatic navigation using
visible light or radar images requires exact alignment of such images with
dig ital terrain models. In addition , automatic classification of terrain ,
using satellite imagery, requires such alignment to deal correctly with the
effects of varying sun angle and surface slope. Even inspection techniques
for certain Industrial parts may be improved by this means.

We achieve the required alignment by matching the real Image with the synthetic
Image obtained from a surface model and known positions of the light sources.
The synthetic image intensity is calculated using the reflectance map, a con-
venient way of describing the surface reflection as a function of surface
gradient. We il~ustrate the technique using LANDSAT images and digital terrainmodels.
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1. MotIvation.

Interesting and useful new image analysis methods may be developed if

registered image intensity and surface slope Information is available.

Automatic change detection, for example, seems unattainable without an

S ability to deal with variations of appearance with changes In the sun ’s

position. In turn, these variations can be understood only in terms of

surface topography and reflectance models. Similarly, human cartographers

consult both aerial photographs and topographic maps of a region to estab-
S lish the location of streamlines. Automatic analysis of either of these

information sources alone is unlikely to lead to robust methods for per-

forming this task.

.Accurate alignment of images with surface models Is therefore an im-

portant prerequisite for many image understanding tasks. We describe here

an automatic method of potentially high accuracy that does not depend on

feature extraction or other sophisticated image analysis methods. Instead,

all that is required is careful matching of the real with a synthetic image.

Because this is an area-based process, it has the potential for sub-pixel

accuracy —- accuracy not attainable with techniques dependent on alignment
of linear features such as edges or curves. The method is illustrated by

registering LANDSAT images with digital terrain models.

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _  

j
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2. POSSIBLE APPROACHES.

One way to align a real Image with a surface model might be through

the use of a reference image obtained under controlled conditions. New

images could then be matched against the reference image to achieve align-

ment. Unfortunately, the appearance of a surface depends quite dramatically

on the position of the light source (as seen in figure 1 , for example), so

that this method works only for a limi ted daily interval for a limited num-

ber of days each year [‘1]. This problem disappears when one uses synthetic

S images, since the position of the source can be taken into account.

A more sophisticated process would not match images directly, but first

perform a feature extraction process on the real image and then match these

feattires with those found in the reference image. One finds , however, that

different features will be seen when lighting changes: for example, ridges

and valleys parallel to the illumination direction tend to disappear (see

figure 1 again). In addition, the apparent position of a feature as wel l as

its shape may depend somewhat on illumination . More serious may be the pres-

ent featI.re ext~’act~on schemes ’ co.nputational cost and ~ack of robustness.

Finally, we should note that the accuracy obtained by matching linear features

is l ikely to be lower than that obtainable with a method based on an aerial

match.

One might next consider calculati ng the shape of the surface from in-

tensities in the image [2]. This, however, is computationally expensive and

not likely to be very accurate in view of the variation in the nature of sur-

face cover. A more accurate method, estimating the local gradient using S

similar methods [3] and then matching these with gradients stored In the

terrain model, still involves a great deal of computation.
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The method chosen here depends instead on matching the real image with

a synthetic image produced from the terrain model. The similarity of the

two images depends in part upon how closely the assumed reflectance matches

the real one. For mountainous terrain and for Images taken with low sun

elevations, rather simple assumptions about the reflectance properties of

the surface gave very good results. Since all LANDSAT images are taken at

about 9:30 local solar time, the sun elevations in this case are fairly smal l

and image registration for all but flat terrain is straightforward.

This implies that LANDSAT images are actually not optimal for automatic

terrain classificat ion, since ‘the Intensity fluctuations due to varying sur-

face gradients often swamp the intensity fluctuations due to variations in

surf~ce cover. An important appl ication of our technique in fact is the

removal of the .intensity fluctuations due to variations in surface gradient

from satellite images ‘In order to facilitate the automatic classification

of terrain. To do this, we must model the way the surface reflects l ight.

S S
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3. THE REFLECTANCE MAP.

Work on image understanding has led to a need to model the image-forma-

tion process. One aspect of this concerns the geometry of projection, that

is, the relationship between the position of a point and the coordinates of

its image. Less well understood is the problem of determining image Inten—

sit ies, which requires modelling of the way surfaces reflect light. For a

particular kind of surface and a particular placement of light sources,

surface reflectance can be plotted as a function of surface gradient (mag-

nitude and direction of slope). The result is called a reflectance !~2.

and is usually presented as a contour map of constant reflectance In gradient

space [3].

~One use of the reflectance map is in the determination of surface shape

from intensities [2] in a single image; here, however, it will be employed

only in order to generate synthetic images from digital terrain models.
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4. DIGITAL TERRAIN MODELS.

Work on computer-based methods for cartography, prediction of side-look-

ing radar imagery for flight-simulators , automatic hill—shading and machines

that analyze stereo aerial photography has led to the development of digital S

terrain models. These model s are usually in the form of an array of terrain 
S

elevations, z~~, on a square grid.

Data used for this paper’s illustrations was entered into a computer

after manual interpolation from a contour map and has been used previously

in work on automatic hill-shad ing [4, 5]. It consists of an array of

175 x 240 elevations on a 100-meter grid corresponding to a 17.5 km by

24 km region of Switzerland lying between 7°l ’ East to 7°15’ East and 46°8.5’

North to 46°21.5’ North. The vertical quantization is 10 meters, and ele-

vations range from 410 meters (in the Rhone val ley) to 3210 meters (on the

Soninet des Diablerets. The topographic maps used in the generation of the

data are “Les Diablerets” (No. 1285) and “Dent de Morcles” (No. 1305), both

on a 1:25 000 scale [6]. Extensive data editing was necessary to remove

er~try errors; sone minor distortions of €ievations may !‘~ave resul ted.

Manually-en tered models of two regions in Canada have also been used

[5, 7]. Another data set, covering a region of California , was produced by

a digital simulator of a proposed automatic stereo scanner. (Output of two

exper imental automa tic stereo scanners , one built at ETL [8] and one built

at RADC [9], could not be obtained.)

The United States Geological Survey [10] supplies digital terrain models

on magnetic tape, each covering one square degree of the Uni ted States, with

a grid spacing of about 208 feet (63.5 m). These models apparently were pro-

duced by interpolation from hand-traced contours on existing topographic maps

~
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of the 1:250 000 series. Interpolation to a resolution of .01 inch (0.254

nyu) on the original maps fills in elevations between the contours spaced

200 feet (60.96 m) vertically. The final result Is smoothed and “generalized”

to a considerable extent; nevertheless, this Is the most prolific source of

surface models availabl e to the public.
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5. THE GRADIENT.

A gradient has two components, namely the surface slope along two mu-

tually perpendicular directions. If the surface he~~ht, z, is expressed as
S a function of two coordinates x and y, we define the two components, p and

S 

q, of the gradient as the partial derivatives of z with respect to x and

y respectively. In particular, a Cartesian coordinate system is erected

with the x-axis pointi ng east, the y-axis north and the z—axis up. Then, p

is the slope of the surface in the west-to—east direction , while q is the

slope in the south-to-north direction:

One can estimate the gradient from the digital terrain model using

first differences ,

p [Z(j + l)j — z1~]/~ q [z~(~ + 1) — ~~~~~

where ~ is the grid-spacing . More sophisticated schemes are possible [5]

for estimating the surface gradient, but are unnecessary.

_ _ _ _ _ _ _ _
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6. POSITION OF THE LIGHT SOURCES.

In order to be able to calculate the reflectance map, it is necessary

to know the location of the light source. In our case the primary source is

the sun, and its location can be determined easily by using tables intended

for celestial navigation [11 , 12, 13] or by straightforward computations

[14, 15, 16, 17]. In either case, given the date and time, the azimuth (e)

and the elevation (
~~) of the sun can be found. Here, azimuth is measured

clockwise from North, while elevation is simply the angle between the sun

and the horizon (see figure 2). Now one can erect a unit vector at the origin

of the coordinate system pointing at the light source,

= [sinCe) cos(+), cos(e) cos(+), sin(~)].

Since a surface element with gradient (p,q) has a normal vector n = (-p, -q, 1),

we can identify a particular surface element that happens to be perpendicular

to the direction towards the light source. Such a surface element will have

a surface normal = (-p5, -q5, 1), where PS = sin(e) cot(~) and q5 =

cos(e) cot(+). We can use the gradient (~~‘ 
q5) as an alternate means of

specifying the position of the source.

In work on automatic hill-shading , for exampl e, one uses PS 
= —0.707

and q5 = 0.707 to agree with standard cartographic conventions which require

that the light source be in the North-west at 450 elevation (e = (7/4)w ,

= ir/4) [5].

S - ________________ _________ S 14
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7. REFLECTANCE AS A FUNCTION OF THE GRADIENT.

Reflectance of a surface can be expressed as a function of the incident

angle (I), the emittance angle Ce) and the phase angle (g) (see figure 3).

We use a s imple, idealized reflectance model for the surface material ,

e, g) = p cos(i).

This reflectance function models a surface which, as a perfect diffuser,
S appears equally bright from all viewing directions. Here, p Is an “albedo”

factor and the cosine of the incident angle simply accounts for the fore-

shortening of the surface element as seen from the source. More sophisti-

cated models of surface reflectance are possible [3], but are unnecessary

for this applicati on.
‘The incident angle is the angle between the local normal (-p , -q, ‘I) and

the direction to the light source (-ps, ~~~~ 
1). The cosine of this angle

can then be found by taking the dot-product of the corresponding unit vectors,

(1 + P P + q q)
S cos(i) = 5 , S 

-

+ p~ + q~ 1i + p2 + q2

Finally,

~ (1 + p p + q q)
s1 (p,q) 

= 
S S

/ l +p~~+ q ~~f l +p2 + q 2

Another reflectance function , similar to that of materials in the maria

of the moon and rocky planets [2, 18], is a little easier to calculate:

~~~~~~~gSS,. 5 . 5 5 -S  ~~~~~~~~~~~~~~~~~~~~~~~~ 5 S~~~~~~~~~~~~~~~~ ’~~ 5 S - -- 5~~~~~ S - S - ~~~~~~--~~~~ _~~~~•~ 5~~ 5 • S S S 5 S5 S 555 
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p (i + p 5p + q q )
* •2(p ,q) = p cos(i)/cos(e) = S

I~~p~+ q~
This reflectance function models a surface which reflects equal amounts of

light in all directions. For small slopes and low sun elevations, it Is very

much like the first one , since then (1 + p2 + q2) will be near unity. Both

functions were tried and both produce good alignment -- in fact, it is diffi-

cul t to distinguish synthetic images produced using these two reflectance

funct ions.

~
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5 
8. SYNTHETIC IMAGES.

Given the projection equations that relate points on the objects to images

of said points , and given a terrain model allowing calculation of surface

gradient , it is possible to predict how an image would look under given 11-

luminating conditions, provided the reflectance map is available. We assume
5 simple orthographic projection here as appropriate for a distant spacecraft

looking vertically down with a narrow angle of view. Perspective projection

would require a few minor changes in the algorithm.

The process of producing the synthetic image is simple. An estimate

of the gradient is made for each point in the digital terrain model by

considering neighboring elevations. The gradient’s components , p and q, are

then used to look up or calculate the expected reflectance. An appropriate

intensity is placed in the image at the point determined by the projection

equation . All computations are simple and local , and the work grows l inearly

with the number of picture cells in the synthetic image.

Sample synthetic images are shown In figure 1. The two images are of

5 the same region with differences in assumed location of the light source.

In figure 2a the sun is at an elevation of 340 and azimuth of 153°, corres-

5 ponding to its true position at 9:52 G.M.T., 1972/Oct/9, while for figure

2b it was at an elevation of 28° and an azimuth of 223°, correspond ing to its

position at 13:48 G.M.T. later on the same day. The corresponding reflectance

maps are shown in figure 4.

Reflectance maps for the simpler reflectance function •2(p ,q) under the

same circumstances are shown in figure 5. Note that near the origin there

is very little difference between ~1(p,q) and •2(p q). Since most surface

elements in this terrain model have slopes less than l//�~, as shown in the

~ 

S-.”-
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scattergrain (see figure 6), synthetic images produced using these two re-

flectance maps are similar.

Since the elevation data is typically rather coarsely quantized as a

result of the fixed contour intervals on the base map, p and q usually take

on only a few discrete values . In this case, it is convenient to establish
- 

S a lookup table for the reflectance map by simply precalculating the reflec-

tance for these values. Models with arbitrarily complex reflectance func-

tions can then be easily accomodated as can reflectance functions determined

experimentally and known only for a discrete set of surface orientations.

Since the real image was somewhat smoothed in the process of being re-

produced and digitized, we found it advantageous to perform a similar smooth-

ing operation of the synthetic images so that the resolution of the two

approximately matched. Alignment of real and synthetic images was, however,

not dependent on this refinement.
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9. THE REAL IMAGE.

The Image used for this paper ’s illustrations is a portion of a LANDSAT
[1, 19] image acquired about 9:52 G.M.T. l972/Oct/9 (ERTS-l 1078-09555). We

used channel 6 (near infra-red, .li.i to .8~4, although all four channels

(4, 5, 6, & 7) appeared suitable -- wi th channel 4 (green, .5p to .6p)

being most sensitive to water in the air column between the satellite and

the ground, and channel 7 best at penetrating eyen thin layers of clouds and

snow. Figure 7 compares an enlargement of the original transparency wi th

the synthetic image generated from the terrain model .

A slow-scan vid icon camera (Spatial Data Systems 108) was used to digi-

tize the positive transparency of 1:1 000 000 scale. Individual picture

cel1~ were about .1 mm on a side in order to match roughly the resolution

of the synthetic image data. In recent work, we used a more accurate version

digitized on a drum-scanner (Optronics Photoscan 1000), again wi th a .1 mm

resolution on the film. Note that the “footprint” of a LANDSAT picture

cell is about 79 x 79 meters [1], compati ble wi th the resolution of typical

d g ital terrain models. The digitized image use.i for the illu3tratio~s 1.1

this paper is of lower resolution , however, due to limitations of the optics

and electron-optics of the dig itizing system. In future studies we intend

to use the computer-compatible tapes suppl ied by EROS [19].

Al ignment of real Images with terrain model s is possibl e even wi th low

quality image data, but terrain class ificat ion us ing the al igned image and

digital surface model requires high quality data.

We generated Image output, as for figures la , ib, 7a, and 11, on a drum

film-wri ter (Optronics Photowriter 1500) and interpolated to alleviate Un-

desirable raster effects due to the relatively small number of picture cells

in each image.
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10. TRANSFORMATION PARAMETERS.

Before we can match the synthetic and the real image, we must determine

the nature of the transformation between them. If the real ‘image truly is

an orthographic projection obtained by looking straight down, it is possible

to describe this transformation as a combination of a translation , a rotat ion

and a scale change. If we use x and y to designate points in the synthetic

image and x ’ and y’ for points in the real image, we may write:

- cos 0 sine x - x0
= s  +

y ’ - y ’ -sine cos e y - y
0

where ~x and ~y are the shifts in x’ and y ’ respectively, e Is the angle of
rotation and s is the scale factor. Rotation and scaling take place relati ve

to the centers (x0,y0) and (x~,y~) of the two images in order to better de-

couple the effects of rotation and scaling from translations. That Is, the

average shift in x’ and y ’ induced by a change in rotation angle or scale

is zero.

In our case , the available terrain model restricts in size the synthetic

image. The area over which matching of the two will be performed is thus

always fixed by the border of the synthetic image. The geometry of the
5 

coordinate transformation is illustrated in figure 8.

--5--- —-—— 5 - - — - —  -5- - - ———-—-—-——- 55 S - -  5 5 S~~~~~~~~~~~~~~~~~~~~~ 5 . . S S
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11. CHOICE OF SIMILARITY MEASURE.

In order to determine the best set of transformation parameters (ax ,

~y, s, e), one must be able to measure how closely the images match for a

particular choice of parameter val ues. Let S1~ be the intensity of the syn-

thetic image at the 1th picture cell across in the ~th row from the bottom

of the image, and def ine R1~ similarly for the real image. Because of the

nature of the coordinate transformation, we cannot expect that the point

in the real Image corresponding to the point (i,j) in the synthetic image

will fall precisely on one of the picture cells. Consequently, S,~ will

have to be compared with R(x’,y’), which is interpolated from the array of

real image intensities. Here (x’,y’) is obtained from (i,j) by the trans-

formation described in the previous section.

One measure of difference between the two images may be obtained by

summing the absolute values of differences over the whole array. Al ternately,

one might sum the squares of the differences:

n in
{S.. - R(x ’ ,y’)}

1 = 1  j = l

This measure will be minimal for exact alignment of the images. Expanding

the square, one decomposes this result into three terms , the first being the

sum of S~~, the last the sum of R2(x ’,y’). The first is constant, s ince we

always use the ful l synthetic image; the last varies slowly as different

regions of the real image are covered. The sum of S1~R(x ’~Y’) is interesting

since this term varies most rapidly wi th changes In the transformation. In

fact , a very useful measure of the similar ity of the two images is the correla-

tion:
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n m
E E S11R(x ’,y’).

i = 1  j = 1  J

This measure will be maximal when the images are properly aligned. It has

the advantage of being relatively insensitive to constant multiplyi ng factors.

These may arise in the real image due to changes in the adjustment of the

optical or electronic systems.

Note that image intensity is the product of a constant factor which de-

pends on the details of the Imaging system (such as the lens opening and the

focal length), the intensity of the illumination striking the surface, and

the reflectance of the surface. We assume all but the last factor is constant

and thus speak interchangeably of changes in surface reflectance and changes S

in image intensit ies.

—-— -... , S 5 5 S 5 - —~~— .- -S — - . -.’—- ---5. —-—- S4~~~~
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12. INTERPOLATION SCHEME.

The real image intensity at the point (x’,y’) has to be estimated from

the array of known image intensities. If we let k = Lx i, and & = Ly ’J
be the integer parts of x ’ and y’, then R(x’,y’) can be estimated from

Rk&, R(k + 1)t’ Rk(& + 1) and R(k + l)(& + 1) by linear interpolation (see

figure 9).

R
~

(x ’) = (k + 1 - x’)RkL + (x ’ - k)R(k + l)t

+ 1) (X ’) = (k + 1 - x’)Rk(& + 1) + (x ’ - k)R (k + l)(& + 1)

R(x ’,y’) = (
~ + 1 — y ’)R

~
(x ’) + (y ’ — L)R(L +

The answer is independent of the order of interpolation and , in fact , corres-

ponds to the result obtained by fitting a polynomial of the form

(a + bx ’ + xy ’ + dx ’y’) to the val ues at the four indicated points. Align-

ment is not impaired , however , when nearest neighbor interpolation is used

instead. This may be a result of the smoothing of the real image as previ-

ously d~scrib~d.

__ S



-19-

1 3. CHOICE OF NORMAL IZATION METHOD.

High output may result as the transformation is changed simply because

the region of the real image used happens to have a high average gray-level .

Spurious background slopes and false maxima may then result if the raw correla-

tion is used. For this and other reasons, it is convenient to normalize.

One approach essen tially amounts to div iding each of the two images by its

standard deviation; alternately, one can divide the raw correlation by

I n  in n m
4,/ E E S~. x E R2(x ’ y’)
~~i = i  j = l  

‘

~~~~ 1 j  j = l

An additional advant,age is that a perfect match of the two images now corres-

ponds to a normalized correlation of one. An alternate method uses a normaliza-

tiorl factor that is slightly easier to compute and which has certain advantages

if the standard deviations of the two images are similar . Instead of using

the geometric mean , Hans Moravec proposes the arithmetic mean [20].

I n  m n m ]
I s~. + RL(x1 ,y1) I /2

[
i = l  j = l  ~~~~ i = l  j = 1  J

The first term need not be recomputed, since the full synthetic image is al-

ways used . Since we found the alignment procedure Insensitive to the choice

of normalization method , we used the second in our illustrations .
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14. LOCATING THE BEST MATCH.

S Now that we have shown how to calculate a good similari ty measure,

we must find a method to find efficiently the best possibl e transformation

parameters. Exhaustive search is clearly out of the question. Fortunately,

the similarity measure allows the use of standard hill -climbing techniques.

This is because it tends to vary smoothly with changes in parameters and often 
S

is monotonic (at least for small ranges of the parameters).

When images are not seriously misaligned , profiles of the similarity

measure usually are unimodal with a well-defi ned peak when plotted against

one of the four parameters of the transformation (see figure ‘ID). It is

possible to optimi ze each parameter in turn , using simple search techniques

in one dimension . The process can then be iterated. A few passes of this

process typically produce convergence. (More sophisticated schemes could

reduce the amount of computation , but were not explored).

When the images are initia lly not reasonably aligned , more care has to

be taken to avoid being trapped by local maxima . Solving this problem using

more extensive search leads to prohibitively lengthy computations. We need S

a way of reducing the cost of comparing images.

S ~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~ S S S S S S S S S S _ _ _ _ _  
S
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‘15. USING REDUCE IMAGES. 
S

One way to reduce the computation is to use only sub-images or “windows”

extracted from the original images. This is useful for fine matching , but i s

not satisfactory here because of the lack of global context.

Al ternately, one might use sampled images obtained by picking one image

intensity to represent a small block of image intensities. This is satis—

factory as long as the original images are smoothed and do not have any high

resolution features. If this is not the case, aliasing due to under-sampl ing

will produce images of poor quality unsuitable for comparisons.

One solution to this dilemma is to low-pass filter the images before

sampling. A simple approximation to this process uses averages of small

blocI~s of image intensities. The easiest method involves making one image

intensity in the reduced image equal to the average of a 2 x 2 block of in-

tensities in the original image. This technique can be appl ied repeatedly

to produce ever smaller images and has been used in a number of other appl ica-

tions [20, 21].

Th~ resul t,, t~f th e appl icaticn of this reduction p.~ocess to real and S

synthetic images can be seen in figure 11. First, the most high ly reduced

image is used to get coarse alignment. In this case extensive search In the

parameter space is permissible, since the number of picture cells in the images

to be matched is very small. This coarse alignment is then refined using the

next larger reduced images (with four times as many pi cture cells). Finally,
S 

the full resolution images are used directly to fine tune the alignment.

False local maxima are, fortunately, much rarer with the highl y reduced plc-

tures , thus further speeding the search process. It is as if the high resolu-

tion features are the ones leading to false local maxima .

j 
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We found it best, by the way, to determine good values for the transla-

tions f i r s t ,  then rotation and, finally, scale change. Naturally when
searching for a peak value as a function of one parameter, the best values
•found so far for the other parameters are used.

ii
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16. RESULTS OF REGISTRATION EXPERIMENTS. 
S

We matched the real and synthet ic images using the s imi larity measure

and search technique just described. We tried several combinati ons of

implementation details , and in all cases achieved alignment which corresponded

to a high val ue of the normalized correlation , very close to that determined

S manually. For the images shown here, the normalized correlation coeff ic ient

reaches .92 for optimum alignment , and the match is such that no features

are more than two picture cells from the expected place , with almost all

closer than one. (The major errors in position appear to be due to perspec-

tive distortion , as descr i bed later , with which the process is not designed

to cope). The accuracy with which translation , rotation and scaling were

determined can be estimated from the above statement.
- Overall , the process appears quite successful , even wi th degraded data

and over a wide range of choices of implementation details. Details of in-

terpolation , normal ization , search technique , and even the reflectance map

do not matter a great deal .

Hav ing s~.ated that ~liq,’~ient can he accurately achieved , we m~y now ~sk

how similar the real and synthetic images are. There are a number of unin-

formative numerical ways of answering this question. Graphic illustrations ,

such as images of the differences between the real and synthet i c image , are

more easily understood . For example , we plot real image intensity versus

S synthetic image intensity in figure 12. Al though one might expect a straight

line of slo pe one, the scattergram shows clusters of points, some near the

expected line , some not.

The cluster of poin ts indicated by the arrow l abelled A (figure 12)

corresponds chiefly to image points showing cloud or snow cover, wi th intensity

—- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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sufficient to saturate the image digitizer . Here the real image intensity ex-

S 
ceeds the synthetic image intensity. Arrow B indicates the cluster of points

which corresponds to shadowed points. Those near the vertical axis and to

its left come from self-shadowed surface elements, while those to the right

are regions lying inside shadows cas t by other portions of the surface .

These cast shadows are not simulated in the synthetic image at the moment.

Here the synthetic image is brighter than the real image. Finally, the

cluster of points indicated by arrow C arises from the valley floor, which

covers a fairly large area and has essentially zero gradient. As a resul t,

the synthetic image has constant intensity here, while the real image shows
S both darker features (such as the river) and brighter ones (such as those

due to the cities and vegetation cover). Most of the ground cover in the

valley appears to have higher “albedo ” than the bare rock which is exposed

in the higher regi ons , as suggested by the position of this cluster above

the line of slope one.

If one were to remove these three clusters of points , the rema inder

would form one elongated cluster wi th major axis at about 45°. Th i s shows

that , while there may not be an accurate point-by-point equality of intensities ,

there is a high correlation between intensities in the real and synthetic

images.

Note, by the way, that no quantization of intensity is apparent in

these scattergrams. This is a result of the smoothing appl ied to the synthetic

image and the interpolation used on the real image. Without smoothing , the

synthetic image has fairly coarse quantization levels because of the coarse

quantization of elevations as Indicated earlier . Without interpolation , the

real image , too, has fairly coarse quantization due to the image digiti zation

procedure.
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Finally , note that we achi eve our goal of obtaining accurate alignment.

Detailed matching of synthetic and real Image intensity is a new problem
I

which can be approached now that the problem of image registration has
5

S
~~~ been solved. 
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17. REASONS FOR REMAINING INTENSITY MISMATCHES.

We may need more accurate prediction of image intensities for some

appl ications of aligned image intensity and surface gradient information.

Thus, it is useful to analyze the reasons for the differences noted between

the syntheti c and the real image:

Satellite Imaging. Geometric distortion In satellite imagery

may be small but noticeable and traceable to several sources

[1]. Shifts of several hundred meters can arise. Perspective

distortion for the image used here amounted to about 200 meters

on the highest peaks , for example.
S Intens ity di stortions are caused by the fact that scan lines are

- 
not all sensed by the same sensor [1]. Electronic noise and at-

S mospheric attenuat ion, dispersion and scattering are also important

for some of the spectral bands.

Digitization. When film transparencies are digitized , the resolu-
S tion limi tations of the opt ic s and the nonlinear response of the

film are important. More large errors are introduced if an electron-

optic device is used. These typically introduce geometric distor-

S tions, nonlinearity and nonuniformity of response. Picture cells

S may not be square and axes not perpendicular.

Terrain Model. Inaccuracies due to manual entry and editing are

common in present day digital terrain models. In addition , the

contour maps used commonly as source information are already

liberall y “generali zed” and smoothed by the cartographer. Finally,

the estimation of surface gradient Is likely to be crude, since the

5555
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data in such maps is intended to be accurate in el evation , not

in the partial derivatives of elevation . Coarse quantization

of the gradient is one effect of this that has already been

mentioned. We hope that terrain models produced by automatic

stereo comparators in the future will not suffer from all of

S these shortcomings.

Reflectance. The assumption of uniform reflectance and the

modelling of reflectance by means of the simple , rather ad hoc

functions used here contribute errors to the synthetic image.

More seriously , cast shadows are not modelled. Illumi nation

from the sky and mutual illumination between mountain slopes

~re less important. Including even crude surface cover information

improves the match between the synthetic and the real image.

Water. In its various forms, water can produce large mi smatches
S s ince , at least for the shorter wavelengths, moisture In the

atmosphere contributes to attenuation and scattering of light.

In liquid fo rm, water produces bright , obscur ing areas in the

form of clouds and dark regions such as rivers and lakes. Snow

and ice provide highly reflective areas which produce large

mismatches.

In v iew of all these factors , it is surprising that a match as good as that

in figure 12 is possible . 

S ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
—
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18. FURTHER IMPROVEMENT OF THE SYNTHETIC IMAGE.

S Using the original digital tapes [19] would elimi nate the errors we

believe are due to the digitization process. Most of the geometric distor-

tion can be dealt with as well [1]. Further match improvement must come

from better synthetic images.

The most significant step here would be the inclusion of surface cover

information. Even a coarse categorization into materials of grossly differing

“albedo ” might be useful . Conversely, of course , one can exploit the differ-

ence in intensities between the real and the synthetic image to estimate

surface reflectance. Since alignment is possible without accurate reflec-

tance models, the ratio of real to synthetic intensity (a measure akin to

al becto) can be used in terra in class if ica tion, particularly if it is calculated

for each of the spectral bands.

Cast shadows are fairly easy to deal wi th, if we implement a hidden-

surface algori thm to determine which surface elements can be seen from the

source. This computation can be done fairly quickly using a wel l known al-

qorithm [22]. Sky illumination in shadowed areas presents no great stumbling

S block in this regard.

The qual ity of terrain models is likely to increase most rapidly when

fully automatic scanning stereo comparators become available. Unti l then ,

hand-editing of hand-traced information will have to be used to limit the

errors in the estimation of gradient.

One notion that shows great promise is that of masks derived from both

the terrain model and the real image . The masks are used to limi t the correla-

tion operation to those areas which are not as likel y to lead to mismatches.

Areas of very high intensity in the image , for exampl e, may suggest cloud or

-55 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ----- -- 55 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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snow cover, and ought not to be used in the matching operation. Similarly,

-~ it may be that areas of certain elevations and surface gradients are better

than others for matching. The correlation can be improved considerably if

we use only those regions above the elevations at which dense vegetation

exists and below the elevation at which snow may have accumulated. A

S 
slightly more sophisticated method would note that snow tends to remain 

-

S 
- 

longer on north-facing slopes.

55 
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19. THE INFLUENCE OF SUN ELEVATION.

S Aerial or satellite photographs obtained when the sun is low in the 
S

sky show the surface topography most clearly. In this case, the surface S

gradient is the major factor in determining surface reflectance. Ridges

and valleys stand out in stark relief, and one gets an immediate impression

of the shape of portions of the surface. Conversely, variations in surface 
S

cover tend to be most important when the sun is high in the sky. Photographs

obtained under such conditions are difficult to align with a topographic S

map -- at least for a beginner.

What is the sun elevation for which these two effects are about equally 
S

important? Finding this val ue will al low us to separate the imaging situations

in to -two classes: those which are more suited for determining topography

and ‘those which are more conducive to terrain classification success. We

will use a simple model of surface reflectance. Suppose that the surface

has materials varying in “albedo” between p
1 

and p2. Next, suppose that

the surface slopes are all less than or equal to tan(e). The incident

angles will vary between e - (90° - ~
) and e + (90° - ~). where • is the

elevation of the sun. If we use the same simple reflectance function em-

ployed before, we find that for the two influences on reflectance to be just

equal :

S 

~l 
cos(e + 90° - •) ~ 2 

cos(e - 900 +

Expanding the cosine and rearranging this equation leads to:

tan(~) = 
- tan(e)p 1 p2
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When , for example , the surface materials have reflectances covering
S a range of two to one and the sun elevation is 350 , then regions with sur-

face slopes above approximately 0.23 (e 13°) will have image intensities

affected more by surface gradient than by surface cover. Conversely, flatter

surfaces will result in images more affected by variations in surface cover

than by the area’s topography.

S One possible conclusion is that alignment of images with terrain models

is feasible without detailed knowledge of the surface materials if the sun

elevation is smal l and the surface slopes are high. Since LANDSAT images

are taken at about 9:30 local solar time [1], the first condition is satis-

fied and alignment of these images is possible even in only lightly undulatin g

terrain.

Conversely, if one is attempting terrain classifi cation in anythin g

but flat regions, hi gh sun elevations are needed. Curiously, LANDSAT does

not provide such imagery despite the fact that one of its main applications

is in land use classification .
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20. SUI’IIARY AND CONCLUSIONS.

We have seen that real images can be aligned with surface models using

synthe tic images as an intermediary . This process works wel l despite many

S fa c tors which contri bu te to differences between the real and synthetic

images. The computations, while lengthy, are straightforward, and reduced

images have been used to speed up the search for the best set of transformation

parameters.

Several applications of aligned images and surface information have been

resented. More can be found ; for problems in a different domain , see reference

[23] for example. Aside from change detection , passive navigation , photo-

interpretation , and inspection of industrial parts, perhaps the most important

appl ication lies in the area of terrain classification. S

So far, no account has been taken of the effect of varying surface gradient ,

sun position , and reflective properties of ground cover. Recently, some

interest has ari sen in an understanding of how surface layers reflect light

[24, 25, 26] and how this understanding might aid the interpretation of satel-

lite imagery [27, 28, 29].

It is imperative that interpretation of image information be guided by

an understanding of the imaging process. Thi s, in turn, can be achieved if

one understands how light is reflected from vari ous surfaces and how this

might be affected by such factors as light source position , moisture content

and point in the growth cycle of vegetation . 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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S FIGURE CAPTIONS.

Figure la. Early morning (9:52 G.M.T.) synthetic image.

S Figure lb. Early afternoon (13:48 G.M.T.) synthetic image.

Figure 2. Definition of azimuth and elevation of the sun.

Figure 3. The geometry of light reflection from a surface element is
S 

governed by the incident angle , i , the emittance angle , e,
and the phase angle, g.

Figure 4a. Reflectance map used in the synthesis of figure la. The curves
shown are contours of constant 4?1 (p,q) for p 

= 1.
S Figure 4b. Reflectance map used in the synthesis of figure lb.

Figure 5a. Alternate reflectance map , which could have been used in place
of the one shown in figure 4a. The curves shown are contours
of constant ~2(p,q) for p = 1.

Figure 6. Scattergram of surface gradients found in the digital terrain
model .

Figure 7a. Synthetic image used in the alignment experiments.

S Figure 7b. Enlargement of the transparency containing the real image used
S in the alignment experiments.

Figure 8. Coordinate transformation from synthetic image to real image .

Fig ure 9. Simple i nterpolation scheme appl ied to the real image array.

Figure lOa . Variation of similarity measure with translation in x direction.

Figure lOb. Variation of similari ty measure with translation in y direction.

Figure lOc. Variation of similarity measure with rotation .

S Figure lOd . Variation of similarity measure wi th scale changes.

Figure 11. Successive reduction by factors of two appl ied to both the syn-
S thetic (left) and the real (right) image.

Figure l2a . Scattergram of real image intensities versus synthetic image
intens iti es based on

Figure 12b. Scattergram of real image intensities versus synthetic image
S intensi ties based on



-55 5 _____ 5 — 5 —~~- S S 55~~~ S55~~ 55 55

~~~5 
. 5 ~.

! L~~mERT DEHT_DE_rIORCLES

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .~c ~~~~~~~~

_

~ 55 S

; j
~11~ ~ 

~ ?,, ,

~~~~~~~~~~ 
~~

‘
- -. 

~~~~~~~~~~~~~ —~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _- ~~~~~~~~~~~~~~~~

-
‘ ~~~97 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

.
~~

r i ~~~~~~~~~~T_ ~ 
“ I ..

’
.

~ ~~~~~~~~~ 
.~~~:

~~~~~~~~~~~~~~~~~~~~~~~~~~~ ,
.
~~~~~ ~ -~~~~

~~~~~~~~~~~~~~~~ - . -~ — S

— —. ‘ S ~~~~~~~~

S I 
—

-

_ A. 4 ir ~~~~
—

S 
‘ 

S ~~~~~~~~~~~~~~~~~~~~~~ 

d~~~~~~J

-

- S

~~~
.

- ‘ ;.  
.

. 

~~~~~~~~~~~~~~~~~~~~~~~

I IIAGF . . .~~t :• ‘ ~~ r~~~ c, 
‘ 5

Da ta ~~~~~~ I~4 ., ‘e’ ~ t e l . II IL_ ~~~ 1

FIGURE la

S ~~~~~~~~~~~~~~~~~~~~~~~~~~~ 5 -  -55 -5



LAIIBERT DEHT_DE_tIORCLES

‘c’:: ~~~~~~~~~

5

’ .
;
, *‘ z, .

S 
.

. ~~
~
. -

.-S ..~.

~~

%

-

.

.

.

‘

.

-,

~~~~~ ~

‘
.~~•:;

I 

~~~~~~5luii~~ ~~

‘ 

~
‘ ..

- I ~c’’~ ’ rI  - - . I .  - I

FIGURE lb

L . 
~~~~~~~~~-55S



r~
5 

55 5 5  S~~~~~~ 55~~~ -

I

/ N
~~~~~~~~~~~~~~~~~~~~~~ 

/  ~~~~~~~~~~~~~~~~

S 
W~~ _ _

S

FIGURE 2

5555

) 1

— 5 5  -
_S 5~~-~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~ 5S 5 S ~~S s ~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _____



5 S 5 ~~ 5 5 5 S S

FIGURE 3

5-55-555- 5 5 5 55



pqr 
~~~~~~~~~~~~~~~~~~~~~~~~~~ 

5 S-.-~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _ _

+ 

q
1

S&f-&~sdowsd

.4

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

FIGURE 4a

FJGURE 4b



2

FI GURE 5a

FIGURE 5b

+

S 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~

S 5 5 S~~~~~~~~~~~~ S S~~~~~~~~~~~~~ 5 S S 5 5 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~5



- -5 5  S
555 5~~~~~~~~~~~~~~~~~~ 5~~~~ 5 S 5 5 • S~~~~~~~~ S~~~~ SS ~~~ S 5 5 -5~~~~~~ 5 5 5~~~~~~~ •~~ 55

555S S_ _5 5~~~~~~~~~~~~~~~~~~~~

+ * . - I. • + * - . +
+ + . +  + +  + • +

• . . • ++ . .  .•. . + .  
• . . . .+ . • •  •. .. . ... ‘- -

• . • • •... .+ .  -

* * •  •...•• •

• •...•
* • . .. .. •  •.... 

a. • ‘ ~~~~~•••..

• . • • • . • . . . .. • • . . . .. . . • .
• • . . . .. .• •• . •.. , .  -

* .•... ... •• -

• • . • . . . .. .•

• •.......•.••~~••.•..... 
• - •... ... ••• •• ... ... 

• . ..... •.•. ••.... .. ...
. * * • . .• + •  • • . ++ . .  . . . •

• • + •  • • • . + +• .  . . • • .

• • • • 5 * • • • 4 4 5 . . * * 4 4 .

• . • 4 • • • 4 4 * 4 4 • 4 4 4 . . • • .

• • * . . . • . • .

FIGURE 6 
‘ 1



5 _ s__s s s s S S
~

5S
~~ ~~~~~~~5~~ 55 5 ~55~~~ 55_ S

555 S _ SS SSS - S - S  5
55

5 5 5 5 5 5  5_5 5 5 5 5

..

! LAPIBERT oEHT_~~ naRcLEs

~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ØPj

4
• .

.

- 

-

6 .
‘

.

r -. -

S • ‘~~~~ . 
..

- 
.
~~ 

— “~.uij
ii

~ ~~~d~. ~~~~ ..l

~~~~~~~~~~ 

•~q•55S
_.. 

-
. 

~ - r
p - S J

,•
•

e

s.. :. 
~~~~~~~~~~~~~~~~~~~~~~~~~~~

IIIAGE2.2 at pho towr iter resolution 3.
Data l i ne ar l y interpo l ated. JULY 14 . 1977.

FIGURE 7a 

-5- 5 
~~~5

55 5

5 5 5 5 5 5 5 5 55 5 5 5 5 5 5 5 5 5 5 5 5 S 5 5 5~~~ S S S S S S
SS ~~~~~~~~~



- -  SS 555~~~~

- 

-
.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

.
. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ i~~~~~~

- •

~~~~ . ~~‘!t :
-

,

S ~~~~~~~~~~~~~~ . ,
.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~
‘ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ I ~1’ ~ 

- f . V ..a,i.—~ - . 
- -

SI~ W / -

• 

‘ 
5 

55

. 

:‘
~ 

• 55 ’

55

..-. 
‘ . .

5 

, ,1. :- .
~~~~ 

• - ~~ . - 

_ 4

_,

.

;,

- - 
•: “ ?‘ 

~~~~~
-‘ 

~~~~.
- 

~~~

-

* S ‘~ .;w ‘~~~~~~ 
- .. •q’l

~~~~~ - .

. — 
* 55 55

S 

( ~~~~~ 
— 7’

,. 
-

- 
‘~~. 

1

‘~~
. 

•
55 ~~~~

55

~~~,~~ 55~~~~~ 4~~~~~~~~~
•

55 ,— . s _p_ f C - - - ‘ . i,,’ ~~~~~ ~

- y,, 
-;,

~ ~~~~~~~~~~~~~~~~~~~~ 
-. ~~~~~ 

. 554. ;~

-
-
.~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~J~~~~~~~~f~~~~~’ r

~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~a~c!W?~ ç~~~

-

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

FIGURE lb

-S 
~~~~~~~~~~~~ S5~~~~~~~



- — 5 5 5 5 5 5 ~~~~ ::: ‘~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

5 ,  it 

—

/ I
/ ILl
I SI—.

I 5

5
I

Li-

4 

1.t 
K

A



1 
•

Ri(j +~) • 
R~+(x ’) R(~+1)(~+1)

R(x . y’)

R1~ R1(x ’) R(j +1)j

S

. FIGURE 9

_1

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
55



I 
-

F I
I

S 
S

U U 
S

0

Q
Li-

0 0~d q  II
~~~~~~

“ )
I

h~ /
___  _ _ _ _  

S

U 
S__

_ 

d 



S 
_ _ _ _ _ _ _  S S S~~~~~~~~~~

-5
~~~~~~~~~ S

5— 
~~~~~~~~~~~~~~~~~~~~~~~~~~~ 5s ~~5 —~~ - -  S-— S S~~~~- -~~~~~~~

~~~~ ‘~:~
p.iI ,•

1~~~~ - .

~

l

:~~~~~~~~~~~~~~

_ ” •
•

FIGURE 11 

5~~~~~~~~~~ 555 5 5 5  ~~~~~~~~~~~~~~~~ 55 5~~~~~~ 5 5 5 5 5 5 5 --5 - - ~~~~ S S S S S 55 S S S S S ~~~~~~~~~~ 5 S SS ~~~~~~~~~~~~~~~~~~~~~



F5555 ~~~ 5 55- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ S

R(x ~y ’)

C
V

A ~~~~ 
- 55 — - ~~~~~~ - -; 55 

-.55 - .‘- I.T— .- 
.
..~

-~~ 
.~‘:

- ;.-
S - - .4~.

55 55

_ .
~

55

t ~___________ _~~—‘-.
‘ 

-__________ -

55 . 55 
_ _ _ _  

55

.

• S c ~~~~~~~~~~~~~

ii S ~~~~~~

‘ .~~~~
S5’.

~~- —  -

sij

FIGURE 12a

FIGURE 12b

R(x y’)

C
V

S -
~ ~~~~~~~~~~~~~~~~~~ ‘

-5 - - 5 5 --

• - :; 
~~~~~~~~~~~~~~~~~~~~~~

- - . -. ..‘.~ ., ~
—‘ ~~.

• i.-.: ,~, —~~~. - - —

~~~~~~~~~~ ~~~~~~~~~~~

:-‘:~ 
-: 

~~~~~ ~~~~~

~ 4’ ________ 55 ;._
~•.,~

•• 5
;
~ 

- 
- 

5.

- _., .5._ ,  - 
.- 55

________ S

H 
~~~~~~~~~~~~~~~~~~~~~~~-- .‘.

-
. - :-

55 

•
_

*t*I ______ ~~~~~~~~~~~~ ._ -~

,_

55 55 -

_ _ _  
-
~~~~~‘

~~~~~ :~
- ‘

‘-4 B-
55 

.5. 
‘~—~~~~~r~ -

Si’

/-‘

- S ~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~ 5 5 S  5 5 S 5 5 S S



I


