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A PROOF-CHECKER FOR DYNAMIC LOGIC

S.D. Litvintchouk and V.R. Pratt
Massachusetts Institute of Technology

Cambridge, MA 02139

Introduction

Th. logical language.

Our objectiv, is to be able to discuss programs with a computer. The prerequisites are a
language for holding the conversation in, and reliable criteria for following a line of reasoning
expressed in this language. We adopt a simple language having just four basic constructs.
Thre. of these constructs come from ordinary logic; they are (unction symbols, predicate
symbols, and logical conriectives. (We lump constants and variables together with the ~eroa ry
Function symbols.) The fourth construct, while not a familiar one in logic, is nevertheless one
that occurs in everyday conversations about programs; it is the notion of “after executing
program a.” For example we may say in ordinary conversation, “After executing the program
X4, X is ejusl to 1.”

While these four constructs may not seem very much to go on, they are in fact sufficient
for almost any “first—order” conversation about the input-output behavior of programs. They
may express such diverse concepts as partial correctness, termination, equivalence, determinism
versus nondeterminism, totality, revers ibility of a process , access ibility of states , wea kest
antecedents, strongest consequents, weakest and strongest invariants, and convergents. They
also shed new light on the axioms relevant to quantifiers in first—order predicate calculus by
treating them from the programmer’s point of view rather than the logician’s.

We abbreviate “after executing program a” to (a], so that the observation of the first
paragraph condenses to (X:s1]Xtl. (We have found it convenient in conversation to pronounce
(.1 as “ box a.” ) We shall later find useful the dual concept ‘(a)’ which we write (a>,
pronounced “thunond a.” The notation is borrowed from modal logic. Dynamic logic is more
int imate ly connected with modal logic than one might at first suppose; the connection is
discussed In more detail in sectio n 3.2 of (21). Fischer and Ladner (6] demonstrate the



~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -.~~~~~~~~~~~~ -- - - -~~---

3

connection between various restrictions of dynamic logic and the classical systems K, T, S4 and
SS of modal logic. We call (a] and <a> modalities (respectively box and diamond modalities),
and formulae of the form (a)l’ and (a)P modal formulae. We shall call a quantifier—free logic
augmcnt~d with such modalities a dynamic ~~~ Syntactically, modalities behave exactly like
logical negation; they are placed in front of a formula, and their precedence is such that
(a]PnQ is parsed ((a)P)AQ, just as ‘PAQ would have been parsed (-‘P)AQ.

The programming language

In order to understand the meaning of a formula such as ~(X::1)~~~, we first need a precise
account of X::1. We shaU think of programs solely in terms of their effect on (he state of the
wor ld. A state is defined by the values taken on by the function and predicate symbols of the
lan~guage ~n ‘- om~ domain. (A logician wculd call a state an interpretation.) We call the set of
all possible states (keeping the domain fixed) the universe. Thus a universe is defined by the
available function and predicate symbols and the choice of domain.

We could restrict our attention to deterministic programs, permitting us to think of them as

functions from states to states. As we shall see later however , reasoning nondeterministica lly
about deterministic programs can simplify the argument. Hence we shall al low (or
nondeterministic programs by capturing the effect of a program on a universe as a binary relation
on that universe. This of course means that we will be able to discuss nondeterminislic
programs in general. However, the question of what first-order facts one wants to assert
about nondete!mirnstic programs is presently the subject of much discussion in the literature (see
(5] in particular), and we shall avoid that issue in this paper beyond observing that dynamic logic
as pr sented here can express many useful ideas about nondeterministic programs.

In treat ing programs as binary reiations we shall make use of the usual notation that 9aa is
true just when ~ and ~ are related by a. It is convenient to identify the relation a as its graph,
the set of pairs of states related by a.

Prog~ra~,ming constructs

The programs we want to discuss have five constructs. These constructs, while not all
entirely conventional, have been chosen primarily for the ease with which one can discuss
programs written using them.

(i) Assignments. X:4 is an instance of an assignment, as is C(l,K):sC(l,K).A(l,J)xB(i,K). In
general an ~s~ignment is a pair of terms (respectively the left-hand and right—hand sides of the

_ _ _ _ _ _ _ _ _ _ _ _ _  - - -- -----
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assignment) of our logical language. (A term is an expression constructed solely from (unction
symbols.) We shall take zeroary function symbols to be ordinary variables. Then when the
left—hand term is simply a zeroary function symbol the assignment is simple variable assignment;
for other left—hand sides we have array assignments. Formally, the simple variable assignment
X :t, where t is an arbitrary term, is ((9,3)IX~:tg and otherwise 9:a}. (X~ denotes the value
of X in L tg the value of t in ~.) Array assignments are slightly harder to define; see (21].

(ii) Tests. Conditionals are usually in roduced with “if—then-else.” However the rules of
reasoning (our axiom system) can be simplified by using a “smaller” notion of conditional, the
test, which we shall use in conjunction with the next two constructs to synthesize il—then—else.
X)O? is an instance of a test, as is iOvPattern(J):Text(K)?. In general a test P is constructed
from a formula P of the logical language. The idea of a test is that a computation may proceed
past a test just when that test evaluates to true in the current environment, otherwise the
computation must block (which for our purposes is equivalent to going into an infinite loop).
Formally, the test P? is the restriction of the identity binary relation on the universe to those
states satisfying P, i.e. (($,9)~$l’P). Most of what we say holds even for tests containing
modalities, corresponding to the side—effect—free programming construct “if P would be the
result of running a then...” However we shall confine our examples to the more familiar
modality—free variety.

(iii) Alternation. Execution of a~fl means the execution of either one (but not both) of a and
fi, the choic. being made nondeterministically. Formally, the relation alP is the union of the
relations a and 8.

(iv) Sequencing. Execution of a$ means execution of first a then 8. Formally, a8 is the
composition of a and $.

Using tests, alternation, and sequencing, we may express “if P then a else a,” where P is a
formula and a and 0 are programs, as P?;aI’P?$. In effect , P and ‘P act as “guards,” to use
Dijkstrs’s (5] terminology. P?;a can only be executed when P holds, and conversely for ~P?,$.
Hence when P is true P?;aJ’P? fl must be equivalent to a, and otherwise to 8, which is the
property “ii P then a else 8” should have.

(v) Iteration. Execution of a* means executing a zero or more times, the number of times
being chosen noedeterministically. Formally, .* is the reflexive transitive closure of a.

Using tests, sequencing, and iteration, we may express “while P do a” in much the same
spirit as if—then-eli., namely as (P .)*;~P. This permits a to be iterated For as long as P



remains true. Moreover, the iteration may not terminate while P remains true, on account of
the ~P guarding the exit. (This usage of a guard at the end is not permitted in (5].)

With these five constructs we can express any flowchart program that has decision boxes
and manipulates arrays. This can be done without introducing additional variables. This
follows from the fact that state transition diagrams can always be translated into equivalent
regular expressions. This is not possible with assignments, sequencing, if—then-else and while—
do (2), the difference having to do with the determinism of the latter.

Quasi—programming constructs

In addition to the five constructs (or our programming language, we shall find two more
constructs of interest, not in writing programs but in talking about them.

(v i) Random ~~~~~~~~~ X::? is an instance of a random assignment , which
nondeterministically assigns an arbitrary element of the domain to X. Consider the sense of
EX::?](X<OvX>,0). This says that no matter what element is assigned to X, alter the assignment
X will be either negative or non-negative. This captures what is meant by VX(X <OvX),0).
This demonstrates that we can introduce the ordinary quantifier VX into dynamic logic as just
another modality (X: ?]. Though we shall adhere io the standard notations VX and 3X it should
be understood that these stand respectively for (X::?] and <X: ?>.

(vii) Converse. Execution of a means the reverse execution of a. Formally, a is the
converse of a, sat isfying 9aa s aol. This permits us to reason either forwards or backwards
about a program’s ~~~~~ We mean this in the sense that (i) (a)P is a claim made before
execution of a based on the claim P that is supposed to hold after execution of a (backward
reasoning), and (ii) (a]P is a claim made after the execution of a based on the claim P that is
supposed to hold before execution of a (forward reasoning). We have not capitalized on
converse as r~uc as we would like in our work to date.

Truth—value Semantics of Dynamic logic

P~ow that we have settled on the pTogramming language, we can return to the question of
what ~CX:~1]fatse means, or more generally what any formula containing (a)P means. It is
lm~ortan here to realize the distinction between truth and validity. W hat we are about to
de fine is the truth value of a formula of dynamic logic in a single state. This is to be
cont rasted with, say, Hoare’s notion of “P(a)Q,” whose trut h is not defined on a state—by—st ate
basis but rather Is defined for the whole universe, and so corresponds to the usual notion in
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logic of validity.

In state 9, (a]P is true just when P is true in every state 
~ 

sat isfying 9aa. That is, P is
true no matter which state a terminates in when started in state 9. It follows that (a>P is
true just when P is true in some state a satisfying 9a3, that is, when it is possible for a to
terminate and satisFy P iF started in state 9.

Expressive power of dynamic logic

We may now show how dynamic logic may be used to express a variety of concepts.

P(a}Q l’(P,k*JQ)
Term ination analogue 1 (P,cu>Q)

of P(a}Q
asP l’VX I ( ca>Y.X) ~ (c Ø>Z=X) )

(This assumes that V ,Z are the respective output var i ables of a,~.
Uhile this generalizes to programs with any fin ite set of output
var i ables, It does not generalize to programs with arrays as output
unless we introduce second order quantifiers ,)

o deterministic ~VX (.cu>V~X , (uJ V=X)
(As for equivalence, V is the output var i able of a.)

a always halts ~ca>true
a 1—1 I’VX(cu ,Y.X , 1a )Y=XI
a onto l’<a >true

a halts in this state <a>true
weakes t antecedent (u3 P
strongest consequent cu >P
weakest Invar iant (a*JP (see (93 for proof)
strongest invar iant ca *>P
convergent

The reader wishing to pursue these concepts further is referred to (9]. Some simple
statements expressible in dynamic logic that do not (all into any of the above categories, and are
not expressible in Hoare’s partial correctness Formalism or the total correctness formalism of
Manna and Waldlnger (17], are: .

“If you sit V to X.i.S and then (Y:~X+5~Y:.V+2*J
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add 2 to V an indefinite <Yi~ Y_ 1*>VzX
number of times then it is
possible by repeatedly
executing V:~ Y—1 to make Y.X

“If P holds then after P,(o1 cu~ .P
execut ing a we will be in a

state accessible via a from
some state sat isfyIng ~~~

,
N

All of the above concepts can be stated in a second order logic that permits explicit
maflipulation of states and/or programs as individuals, as in [3] where states can be quantified
over, or (10] where programs are terms. The interest in dynamic logic is that it achieves its
express~ve power using only first—order language. The advantage of keep ing the language
restricted in this way is that it is easier to completely axiomatize parts of the logic, though loops
present an insurmountable obstacle to completeness as demonstrated in Theorem 16 of (21).

An axiom system for dynamic logic

3efore axiomatizing the programming language, let us begin with a sound complete axiom

system for first—order logic. A novelty of this system is that it separates into logical and non—
logical components what are usually taken to be entirely logical rules and axioms, on the principle
that facts about X::? are program—specific facts. This permits a programmer to apply his
intuition about programs to the problem of understanding the significance of each axiom.

Loq~cal Axioms
Al t tautolog ies of Propositiona l Calculus.
(a) 1P ,O) ~ (ta]P ~ (aJO) . (Axiom ti)

~~pica l Inference Rules
P, P~O I- Q . (tiodus Ponene)

P I- (aJ P (Necessitation; subsumes generalization , P I- YxP ).

Non—lo~ icel Ax ioms
VXP ~ P~ (any term T; P~ Ia P with 7 for X)

P ~ YXP unless )( occurs free in P

A xiom M can be thought of as a claim about programs; it says that for all states ~~~, if P
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implies Q in every state a that can be reached from I by executing a, and if P holds in every
state a similarly accessible From I via a, then Q holds in every state a accessible from I via a.

The second inference rule (the rule of necessitation of modal logic) can be considered as an
upper bound on the power of programs, which cannot falsify theorems. If P is a theorem then P
is true in every state, including states accessible via a.

In our system it is straightforward to prove as theorems the axioms of, say, Mendelson’s
system K (18) (p. 57), and it should be clear that the second rule subsumes the rule of
generalization; in fact, if the only modalities allowed are those with values of the form X::’
then the rule of necessitation s the rule of generalization, and the theorems of this system
coincide with the theorems of K. It is interesting to note that Mendelson manages to express as
one axiom what we take two to express, namely our Axiom M and the second quantification
axiom. The advantage of our decomposition of this axiom is that we get two axioms about
quantifiers that serve respectively as a lower and an upper bound on what the binary relation
X::’ may be.

So far we have only given axioms for random assignments. Now let us axiomatize the four
loop—free programming constructs.

(P?J O • P~O
(Xs~ t]P i P~ (see (213 for array assignment)
(aIpJ P i (a)PA (ØJ P
(a;ØIP s (aI (Ø]P

Interestingly (but fairly obviously, as demonstrated in (21]), the axiom system with these
four new axioms remains sound, complete and effective. (It is possible to give further axioms to
handle the converse operation, still preserving soundness , comp leteness and effectiveness.
However we shall not make use of this in the FolLowing.)

A derived rule

We could at this point proceed with the discussion of our ultimate objective , the
construction of a proof—checking program that would check proofs expressed in the above axiom
system. Unfortunately the above system is too weak to permit reasonably succinct proofs; for
examp le, it appears that 6 lines are needed to prove (X::1>X:l from the assumption 1:1 using the
above system . In this section we explore a derived rule with an eye on strengthening the axioms
and rules. In this respect we are emulating J.A. Robinson (22], who prescribed a new rule to

~~1
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facilitate the construction of automatic theorem—prove rs. The constraints on a proof—checker
are somewhat different from those of a theorem— prover , and the arguments for Robinson’s
resolution rule are not sufficiently compelling for us. In particular, the convenience of having a
clause as the unit of information, which helps an automatic theorem prover organize the proof ,
may be more hindrance than help in a proof-checker because the user may not have conceived his
proof in terms of clauses that are disjunctions of literals. This is not to say that we shall not
make use of unificati.rn; indeed, unification is a most valuable tool in automated logic.

We now give the details of the rule, which we call the Show Rule for lack of a more
descriptive term. A proof step using it looks like

Show S (ps) using TO (p0), TI (p1), T2 (p2),

For the moment ignore the items inside braces ( }. Ideally, we would like this rule to apply
whenever the formulae TO, Ti, T2, logically entail the formula S, a semantic characterization
of the rule. Unfortunately that would lead to a non—effective proof-checker , since logical
entailment is not even partially decidable For our language [9]. Instead we resort to an effective
syntactic characterization. This is where the items in braces enter the picture. The braces
enclose “templates” which contain the propositional content of the proof step, in the sense that
each template is a propositional “approx imation” to the formula it follows. For example, we might
say

Show (X:=1IX:=23 X>O {pAq) using 1>0 {p), 2>0 {q).

The temp late pnq refers to the result of expanding [X :~ 1IX ::2]X)O f i rs t  to
(X::1]X)On(X:~2)X)O and then to 1>OAI)O. It should be clear that the two uses of p in the
templates refer to the same Formula, 1)0, and similarly for the two uses of q. More generally, we
shall require only that multiple occurrences of the same letter refer to unifiable formulae.

We check this proof step in two phases, which can be done independently and in either order
(or in para llel by two processors). One phase, called IDENTIFY, is to check that repetitions of
the same letter can be justified. We do this by attempting to unify corresponding formulae. The
other phase, called VERIFY , is to see whether the temp lates alone constitute a sound argument in
modal propositional logic. In this example all modalities were eliminated so that we were left
with the argument

Show p~q using p, q

L _ _  ~~-~~~~~~~~— - - ~~~~~~~ -~~~~~- -
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which is in Fact a sound argument of non—modal propositional logic. A situation where modal
logic would help is:

Show (U; V) Y,O ((a] (0] p)
using (W X4 ((a3q), X~b(V)Y>0 (q~~(~3] p}.

Here we are dealing with “uninterpreted” programs U and V, a situation that arises when we are
given a program about which we have previously proved some useful properties and w hose code
we no longer wish to be bothered with. (This situation arises frequently in the extended
example of the next section but one.) In this case, knowing nothing about the programs U and V
beyond the facts given, we could not expand them in the way we did with [X: i], so they carry
over to the templates. Here the argument of modal logic is:

Show (a) (
~)p using (u)q, q,(ØJp.

This argument can readily be seen to follow if we app ly Necessitation to q~
(
~ )p to get

(a)(q~($]p) and hence (a]q~(a)(fl]p. The rest is propositional reasoning.

The IDENTIFY phase begins by determining what sublormula each occurrence of a template
letter refers to. This is done by systematically expanding the formula associated with the
template containing the given letter until the formula can be matched to the template. Thus
(U;V](W]X 0 will match (a](fi]p directly with a matched to 1J;V, b to W and p to X:O. However
(U;V]X 0 wilL not match (a]t6]p directly but must first be expanded as [U][V]X:O. (V IW )X :O
will not match p~ q directly but must first be expanded as [V]X:On(W]X:O. Once the formula
matc hes the template , the subformula corresponding to each letter can immediately be
determined. Then all the subformu lae corresponding to occurrences of the same letter are
checked for whether they can be unified. This may require further expansion; for examp le,
attempting to unify (X::1]X>O and W)O involves eliminating the assignment modality to give 1>0,
and instantiating W as 1, this latter step being performed by a unification algorithm. All
instantiations necessary must be compatible with each other.

Any formulae that fail to unify are put to one side while the remainder of the proof step is
checked. When that is done, then the failed pairs are expressed as an equivalence and tested by
a routine that checks for validity of quantifier—free Presburger arithmetic , in the hope that the
formulae turn out to be equivalent on arithmetic grounds. (This together with the Rule of
Convergence described in the next section is the only concession to domain—dependencies in the
system.)
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The VERIFY phase is a satisliability tester for modal proposit ional logic, It begins by
determining what applications of the Rule of Necessitation are sufficient to make the proof go
through. Boxes are then eliminated From the formula by the appropriate generalization of the
trans formation <a>PAEa]Q —> (a>(PAQ), w hich preserves sat isf iability for the intuitively
obvious reason that (a]Q acts only as a constraint on those worlds one might construct (in
attempting to satisfy <a>P) that are accessible via a and satisfy P, namely that in any such world
Q must be true. In our present implementation, we First eliminate all top—level propositional
letters by expressing the formula in conjunctive normal form and applying the Davis-Putnam
algorithm for each of those letters. Then we convert the resulting formula involving only
modalities to disjunctive normal form and apply the above transformation. Then the process is
repeated on the arguments of the top—level diamond modalities. Though this approach can be
inerric’ent, in practice on the kinds of formulae we encounter it is the most efficient of the
methods we have tried. With all boxes eliminated, the satisliability of the result no longer
depends on the names of the diamonds; that is, <a>Pv(fl>Q and (a>Pv(a)Q are equally
satisfl?ble. Indeed, satisf lability of the whole is preserved if (a>P is replaced by true when P is
sat isfiable and false when not. Thus we can proceed recursively, wor king up from the lowest
diamonds to determine satisfiability of progessively larger portions of the formulae.

Axioms for programs with loops

For programs with ioops we have the following axioms and rules.

ca”>P ~ ca*>P Ax ioms of Intent (one for each n).
P,(a] P I- P,(a*JP Rule of Invar iance.
n>z A P A 0(n ) 

~ ca>3w (z~ w c n A 0(w ) )
I- n~z n 0(n) ~ ca*,(’PA3W(z�wSnAO(n) ) v 0(z))

Rule of Convergence

These axioms and rules are explained and justified in more detail in (21). The First says that
if a can halt in some number of steps then a~ can halt. The second says that if a leaves P
unchanged, then so does a*. (Observe how convenient it is to reason about iteration expressed
in this form.) The third says that if a “drives” towar ds z without passing it, prov ided P remains

true, then eventually a* will either make P false somewhere on the way to z, or it will reach z.

_ _ _ _  
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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Example proof

The Following program was devised by Manna and Pnueli (16) to illustrate the efficacy of
their method of proving termination.

V s. Os
wh)Ie X ~~~Odo

(while X ~ 0 do (X :. X—1; V .
V :— V— i;
wh ile V a o do (V ~ = V— i ; X := X+i))

This program represents an obscure way of setting both X and Y to 0, namely by first
setting Y to 0, then copying X into Y by repeatedly decrementing X and incrementing Y, then
decrementing Y once, then copying Y back into X by repeatedly decrementing Y and incrementing
X. This process is repeated until X becomes 0. The point of this examp le was that it was
supposed to be difficult to prove termination of this program by Floyd’s method but easy by the
method described by Manna and Pnueli. Our own interest in this program besides the question of
ease of proving termination (not a problem in dynamic logic) is that it is just the right size to
illustrate the proof techniques appropriate to dynamic logic.

We may write this program in the programming language dynamic logic caters for thus.

Pit X>O?; X :aX—i; Vs .Y+1.
P2; V>O?; Yt u’Y—l ;

P3: X>O?; P1*: XuO?; Vz .V-1; P2*; V.0?.
P4* Y: .O; p3*1 X.0?.

P1 represents one step of “copying” a number from X to Y, while P2 represents one step of
copying from Y to X. PI*;X 0? and P2*;Y:O? each represent the entire copying process, from X
to Y and back again. P3 amounts to a program that, provided Y is initially 0, decrements X. P4 is
t hen the whole program for setting X and Y to 0. The statement we want to prove is, (P4>t (t
denotes 

~~~ which asserts that it is possible for P4 to halt. The following is the proof, which
uses 7 hypotheses from arithmetic and 13 theorems. This proof is machine—readable.

% The tLanna-Pnus I I program %
Pit X~O?; X:.X—i ; Yt -V il.
P2: Y O?; Y:.Y—1; XsaX+l.
P3: X O?; P1*; X.0?; Yt.Y—I , P2*; V.0?.
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P4* Y:.0; p3*; X.0?.

% Formu lae occurring common ly in the proof%
Ax(n) s X.rv~Y.0. Bx (m,n): X.niX+Y.m.
A~

(n) z Ysne~X.O. By(m,n)x V.ni~X+Vsm.

% Assumptions from arithmetic - riot proved here S
Hi: Z.n+1 s 1-1—n. 112: 1l-n+1 ~ IbO.
H3: Ax(n) i Bx(n,n). HI.; A~

(n) i By(n,n).
115: AxIn) i By(n,O). 116: Ay(n) i Bx(n,O).
117: 11.14.

Thel: Bx(m,n+1) , cPi>Bx(m,n).
Show Thml (pAr ~ cs?~ (pAr)) using 112 (p,s).

Thm2 : Bg(m ,n+1) ~ cP2>Bjj (m,n).
Show The2 (pAr ~ cs?~(p,r)} using 112 (p~s}.

1hm3s Bx (m n) , .cPi*,Bx(m,0).
Use Convergence(n) Thm3 from Thmi.

The’.: By(m ,n) ~
Use Convergence In) Thm4 from Thm2.

ThinS: Ax In) , cPi*>A~j (n) .
Show ThinS (p~ca,q)

using Thm3 (p~.ca>q).

Th~~s Ax(n+1) ~ .cPl*>AyIn+1).
Show ThinS (p] using Thm3 (p}.

Thm7s A~
(n) ~ cP2*,Ax(n) .

Show Thml (r,ca,s)

using The’. (p~.ca>q), 144 (rip ), 145 (aiq).

ThmBz A~j(n+1) ~ cV:.V—1>A y
(n).

Show ThmB (pAr ~ q,w) using Hi (paq).
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Thm9: Ax(n+i) ~ cP3>Ax(n) ,
Show Thm9 (xnlAyO , cxp?;a;x0?;dy;b;yO?> (xnAy0))

using H2 (xn1 ,xp),
ThinG (xnlAyO , ca>(yni AxO )} ,

Thm7 (ynAxO ,

Thm8 (yniAxO ~ .cdip (ynAxO)).

ThelO: Ax (n) ~ <P3*>Ax(O).
Use Performance(n) ThmlO from ThmS.

Theli: X.n3<Vz.O>(X.nAY.0) .
Show Thmii (p~pAq) using 147 (q).

Thmi2: X.n,cP4>t.
Show Thml2 (p.ca;c;r?>t)

using ThalO (pAq~cc>(rAq)}, Thmli (p~ca>(pAq)).

Thm13: cP4>t.

Show Thml3 (p] using Thmi2 (q~p). Hi (q}.

To avoid being distracted by extraneous issues such as arithmetic truth we have introduced
all arithmetic facts in this proof as assumptions. (In fact , in the implemented system we have a
very fast proof—checker for quantifier—free Presburger arit hmetic, using quasi —Caussian
elimination.)

The above proof is not the largest proof we have successfully checked with our system. A
substantial part of a total correctness proof oF the Knuth-Morris—Pratt pattern—matchin g
algorithm has been machine-checked, and we are in the process of completing this proof. This
extends work on the partial correctness of this algorithm by Wegbreit (24].

Discussion of the proof—checker

We have constructed a system For checking proofs of the kind exemplified above. In this we
are following in the footsteps oF Milner (20,21,26), who is doing for Scott’s Logic of Computable
Functions what we are doing for the above modal extension to first-order logic. Inasmuch as we
are treati ng programs that manipulate their environments, we are also continuing a tradition of
several years of implementing systems for proving and checking proofs oF properties of programs
(4,8,13,14,23,24]. However the greater expressiv , power of dynamic logic compared to that of

L __
~~~~~~~~~~~~:~~~~~~~~~~
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partial correctness assertions (the language used in almost all such systems) adds considerably to
the interest of our system. This consideration actually makes Milner’s system a closer relative
of ours than the partial correctness systems, due to the greater emphasis on “expressions as
first class citizens” in Milner’s system and ours, resulting in a logic where programs and fact s
mingle more freely than say with Hears’s notation. The major difference between Mim er ’s
system and ours is the LCF treatment of programs (computable functions) as individuals in the
underlying domain versus our treatment of programs as “adverbs,” analogously to quantifiers.
Another system relatet~ to ours is Richard Weyhrauch’s (1,25) FOL (First—Order Logic) proof-
checker. A detail in which our program differs from Milner’s and Weybrauch’s (apart from t he
obvious one of choice of logical language) is that our program makes less of an effort to help the
‘iser interactively than is done by either LCF or FOL, but rather is, at least thus far , a system in
which the user prepares his proof exactly as though he were writing a program. This means that
his ~roo exists on a file and is read by the proof—checker just as an interpreter reads a program
from a Ills. This has permitted us to focus all of our effort on the proof-checker proper.

The proof—checker is implemented on the PDP-I0 computer at M.I.T.’s Artificial Intelligence
Laboratory. The program written to date has aproximate ly 100 LISP functions comprising a total

~f 180C lines o~ code averaging 4 LISP atoms per line. The bulk of this code is for formula
manipulation. However, a small amount of it is ror book-keeping tasks of a relatively minor
nature associated with keeping track of the struc ture of a proof.

Directions For further research

Althou;h OL t immediate goals may not appear to be parti cularly ambitious or difficult to
- achieve , ~s we ll as not being obviously “Artificial inteIIigence~’ research, we admit to far more
ambitious ~,id less plausible objectives on a larger time scale. Ultimately we see the prooF—
checker itse!f becoming a component of a va:iety ol very intelligent program—manipulating
progran.s. This depends on our belief that the ability to check proofs is a vital part of any
program that pretends to “understand” some domain of discourse where the discussion is at all
involved. Two applicattons that we would like to exp lore when the proof—chec ker has reached a
satisi ctory hve l oF performance are Ci) the automatic production of reliable software and (ii)
machine—mediated reasoning about programs. Our plan of attack for each of these areas is not
present ly so crisp that we would feel conrident embarking on either area forthwith , particularly
the second, but we can nevertheless at this early stage present thoughts on these subjects.

lit , notion of program reliability through correctness proofs has gained momentum in the
past few years, spurred on most notably by the axiomatic methods of Floyd (7) and Hoare (11).
As yet there is not a si’red of hard evidence to suggest that this approach supplies the most
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economical approach to reliability (where the economics takes into account both the cost of
having unreliable software and the total programming and maintenance cost). Indeed, it may well
turn out that the bulk of the problems encountered today with unreliable software may be
disposed of by a happy combiuation of a good programming language and a clean programming
style. Nevertheless, if the proof—oriented approach can be made to work and does not put too
great a burden on the programmer and/or the computer, it may provide reliable software at low
cost. We feel it is well worth continuing the experiments that have been going on in this area in
the past few years. Although these experiments have not thus far demonstrated the value of
correctness proofs, it is still too early to draw any negative conclusions about the method in
general.

From a longer—range viewpoint, the burden of programmin g should become progressively
more the computer’s responsibility, requiring the computer to “understand” better the programs
it executes. This has been the trend since the First assembler was used, and though the trend is
perhaps not as pronounced as some have hoped, there is no doubt that the trend continues. As it

does, methods of reasoning about programs will concomitantly become a more essential part of
the computer’s repertoire. This raises the question of the choice of language most appropriate to
such reasoning. in view of the expressive power of dynamic logic we feel that it is worth
developing the methodology of reasoning in this language with an eye to automating the reasoning
as far as possible. A program like our proof—checker is precisely what is needed in the way of a
“black box” that “accepts” a reasonably sized step in a discussion about a program. The sort of
machine—mediated discussions we envisage could quite well be cast as proofs, albeit in the Form
of a dialogue. If the notion of a dialogue as a proof seems strange, visualize a conversation —

about a program — punctuated with “I don’t see why you need that test there” and “How do you
guarantee that X will never become negative?” Such conversations about programs arise all the
time, and it is clear that the questions are referring to proofs, probably expressed informally but
proofs nonetheless. One might argue that proof—checking is not understanding, but we would
insist that it is at least a component of understanding.

As humans are taken progressively further out of the loop (admittedly a very long—range
view) the dialogue will become more of a monologue. However it may still be appropriate for the
computer to reason about the programs it is contemplating using a Language like dynamic logic.
Thus even in this scenario the basic proof-checking methodology may continue to be used. We
should add that we see nothing strange in the idea of a computer checking proofs that it
generated itself; the best way to generats proofs may be to propose possibly faulty proofs and
subject them to detailed criticism. This would require not only the error-detecting capability of
our proposed pool-checker but error-correcting capabilities as well.
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