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\ ABSTRACT
\5

This report presents a language, called QA4, designed to facilitate
the construction cf problem-solving systems used for robot planning,
theorem proving, and automatic program synthesis and verification. QA4
integrates an omega=-order logic language with canonical composition,
associative retrieval, and pattern matching of expressions; process
structure programming; goal-directed searching; and demons. Thus it
provides many useful programming aids. More importantly, however, it
provides a semantic framework for common sense reasoning about these

problem domains. The interpreter for the language is extraordinarily

general, and is therefore an adaptable tool for developing the special-
ized techniques of intuitive, symbolic reasoning used by the intelli-
gent systems.$k
Chapter Two is a primer for the QA4 language. It informally pre-
sents the language through the use of examples. Most of the unusual or
complicated features of the language are not discussed. The Chapter
concludes with a presentation of a small robot planning systems that
uses only the language features presented in the Chapter. Chapter
Three presents a series of examples chosen to illustrate solutions to
automatic programming problems. The QA4 programs used in Chapter Three

rely on language features not presented in the primer. They are, how-

ever, explained as they occur. These programs illustrate most of the
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programming concepts just discussed. Chapter Four is a complete

reference guide to the language. It provides the semantics of all the

features of the language together with many implementation notes and

design rational. Chapter Five discusses extensions to the language

that will probably be done during the next year
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CHAPTER ONE=--PROGRAMMING CONCEPTS

I PROJECT DEVELOPMENT

A. Introduction

This report presents a language, called QA4, designed to facilitate
the construction of problem-solving systems used for robot planning,
theorem proving, and automatic program synthesis and verification. QA4
integrates an omega-order logic language with canonical composition,
associative retrieval, and pattern matching of expressions; process
structure programming; goal-directed searching; and demons. Thus it
provides a semantic framework for common sense reasoning about these
problem domains. The interpreter for the language is extraordinarily
general, and is therefore an adaptable tool for developing the special-
1zed techniques of symbolic reasoning used by the intelligent systems.

This work was begun as part of a general program of research in
artificial intelligence supported at Stanford Research Institute by
NASA and ARPA under Contracts NAS12-2221 and NASW-2164. For the past
two years, the work has been supported primarily by NASA under Contract
NASW=2086.

B. Project Origin

QA4 was started by Cordell Green and Robert Yates at SRI just after

Green finished his Ph.D. thesis at Stanford University in 1969. His




thesis was on the use of resolution-based theorem-proving systems as
a means to automatic Question Answering. (Hence the mnemonic QA.)

*
Their system was named QA3 (Green 1969). It did, and still does, prove
theorems in the first=order calculus using resolution. This system, in
fact, is the basis of the SRI ZORBA (Kling 1971) and STRIPS (Fikes 1971)
projects.

Green was bothered, however, by the difficulty of trying to use
problem=oriented semantic and pragmatic information to guide the theorem
prover. Resolution theorem=proving systems are well adapted to syntactic
heuristics such as unit preference. They may also be adapted to heuristics
that are tied to the deduction mechanism, such as ancestry filter. It was
very hard, and sometimes impossible, to use the semantics of the actual
problem at hand.
€. The Language

Thus the original goal of the QA4 project was to write a theorem
prover for automatic question answering. The formal language was to be
far more natural than first-order predicate calculus. This theorem
prover was to perform expression transformations on concise expressions
in such a way that it produced proofs wiph a natural style--the kind
that we would accept as being intuitive and obviously dominated by the
semantics of the problem. As we began to write such a theorem prover,

however, we were continually confronted with the restrictions of LISP

*
References are listed at the end of this report.
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(McCarthy 1962, 1963). We wanted our program to plan and reason in a

common sense way (McCarthy 1958). Thus we felt that the first step was

to produce some theorem=proving protocols that looked intuitive, and to

be sure that these protocols could be guided by natural strategies=-the

kind of advice you would give students. Then we should design a system

that could take such strategies and attempt to execute them. When the

strategies fail, we want easy, accessible methods of adding more advice

and program reorganization. We felt that the project would proceed

iteratively--we would start a language and a theorem prover simultaneously,

and let each guide the development of the other.

This Chapter explains the attitudes that have evolved about the

process of program construction. We will discuss the facets of the QA4

language that permit us to specify our problem solver in the vagueness

in which it is conceived and to refine it into an intelligent program.

But most importantly, we want to program without losing our way simply

because we had to express our thoughts in a language with strict rules

about evaluation such as ALGOL or LISP.

D. The Problem Domain

Both the search space and the solutions for the problems we are

concerned with are small. Consider an example program verification

problem. Using a resolution-proof method, there are over 200 individual,

necessary steps in the proof of the program's correctness. By using

extended omega-order logic (Robinson 1969) and simplification methods,

e et e
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the proof can be reduced to about 20 steps. Of these, 15 are obvious

deductions (e.g., from A&B deduce both A and B). The remaining five

steps.require ingenious instantiations and use of induction.

a QA4 program verifier to have many special rules and detailed
on their use. It should produce the 20-step proof with little
wasted effort. Thus the emphasis in our language design is to
the specification of many high-level rules and strategies. We
pate that individual strategy steps may be time-consuming, but

each step is valuable.

We expect

advice

or no

permit

antici-
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11 EXPRESSIONS

A Motivation

Remember that our original goal was to write a theorem prover that
proceeded according to pragmatic, intuitive protocols. Seemingly simple
axioms and inference rules normally presented in a mixed English-logic
language in textbooks often become lengthy, complex formulas when con=
verted to the notation of either first-order predicate calculus or stan-
dard programming languages. To even describe our protocols, we needed
a concise, natural syntax for algebraic expressions. At the same time,
tﬁe definitions should mirror the semantics of the primitive operators.
Most formal language definitions are guided more by the syntactic proper-
ties of the symbols than by the semantics of the operators they stand for.
Because of this, these definitions lead to endless applications of tran-
sitivity, associativity, and equality inference rules. To prove that
X +-Y=Y + X, for example, should not require any substeps--it should
be immediately obvious to even the simplest theorem=-proving programs.

B. Data Structures

Declarative statements in the language have convenient extensions

of omega=order calculus such as sets, special quantifiers, and extended

primitive operators. The three basic data structures are tuples, bags,

and sets:

ol Loty s, o




e Tuples
Tuples are ordered lists; our notation is (TUPLE 1 2 3)
Bags are unordered tuples. That is, a bag is a collection of
unordered elements, and the elements may be duplicated. Our
notation is (BAG 3 1 2 1)
Sets are unordered collections of elements, and without dupli-
cation. Our notation is (SET 2 3 1). During the construction
of sets, either during input or while a program is running and
building a set, duplicate elements are automatically removed.
Even during user input, multiple occurrences of a variable
are reduced to a single occurrence.
€ Example
1. PLUS
Our definition of PLUS illustrates the use of these structures.
PLUS is associative and commutative, so it may take a bag as its argu-
ment. A user may type (PLUS 1 2 1) as a line of a program. Internally,
QA4 uses a prefix representation; thus that line means (PLUS (BAG 1 1 2)).
PLUS may not take a set as an argument, for then we would have

(PLUS 1 1) = (PLUS (SET 1)) = 1.




B T

2. EQUAL
Our definition of EQUAL is another example of the use of these
structures. EQUAL is not merely associative and commutative, but it 1s
also an equivalence relation. Therefore, it may take a set as an argu=-
ment. X = Y = Z means (EQUAL (SET X Y Z)). During the evaluation of
this expression, the set is evaluated by first evaluating the members
and then collecting the resulting values into a set. The function EQUAL
is then applied to that set. EQUAL is TRUE if and only if the value of
its argument has a single member. Thus if X and Y were true, and Z was
FALSE, then the value of (SET X Y Z) would be the two-element set
(SET TRUE FALSE), and therefore the value of (EQUAL (SET X Y Z)) would
be FALSE.

Sl L& Y=Y X

Within QA4, the example we considered earlier==X + Y = Y + X-=
means, by definition, EQUAL applied to a set. That set has the single

member +_X,Y].

typed in (EQUAL (PLUS X Y)(PLUS Y X)
initial internal (EQUAL (SET (PLUS (BAG X Y))
form (PLUS (BAG Y X))))

reduced standard (EQUAL (SET (PLUS (BAG X Y))))
form

Thus either during program interpretation or expression simplification

within a theorem prover, the value of the expression is obviously TRUE.

vt oy o



D. Composition

1. Canonical Forms

As expressions are composed, they are converted to a canonical
form so that semantic and pragmatic properties attached to them can be
associated automatically with all equivalent expressions. Composition
takes place whenever a particular data structure is constructed by a
program. The canonical composition provides for continual syntactic
simplification, a feature vital for program verification and theorem
proving.

2. Example
For example, the process of interpreting the statement
(SETQ ~X (SET RED BLUE GREEN))
not only assigns X to be a set, but also composes a canonical represen-
tation of the set. Variables are always identified by a prefix charac=-
ter. ~ means the variable is to receive a value, 3 means the variable
must have a value. The composition process ensures that if the datum
described by the expression (in this case, a set) has ever been pre-
viously constructed, the original value is used and no new equal but
different structure is constructed.

3. Bound Variables

This identification of equivalence is even made between expres-

sions that include bound variables. Thus the functions




(LAMBDA (TUPLE ~X ~Y)(TIMES (PLUS S$X 3Y)(PLUS SY 1)))
and
(LAMBDA (TUPLE ~U -V)(TIMES (PLUS 1 SV)(PLUS S8V 8U)))
will both be converted to the same internal canonica‘ form, and infor=-
w
mation known about one is always available to strategies that may deal

with the other.

E. Pattern Matching

1. How It Integrates

The use of canonical representation together with definitions
that reflect the semantics of functions not only makes manipulation
swifter, but permits rapid, natural access to previously developed
information. This retrieval and decomposition of expressions is accom-
plished by template pattern matching (Teitelman 1967).

2. Decomposition

Decomposition occurs during the process of assigning arguments
to functions or interpreting assignment statements. In the assignment
statement, the expression on the left must match (be an instance of)
the expression on the right. For example. the interpretation of the
statement

(SETQ (SET ~X «~Y .. )(SET RED BLUE GREEN YELLOW))
assigns one of the four color words to both X and to Y. The double

dots denote a fragment, and permit the sets to be of different




cardinality. Since sets are involved, X and Y may be assigned the
same word or different words.
3. Retrieval
The statement
(EXISTS (SET -X RED ...))
will retrieve from the data base all sets that contain the word RED; X
is then assigned some element from one of the retrieved sets. This
form of pattern matching permits programs to be nondeterministic. The
program may signal that an incorrect choice was made by executing a
FAIL. The interpreter is then required to make an alternative assign-
ment. The backtracking necessary to interpret the programs is handled
automatically by the interpreter.

More important than backtracking, however, is the fact that all
queries into the data base are in the form of associative addressing.
Moreover, the search may go two ways. That is, given (P ~K) a program
may find all expressions such as (P A) or (P B) or (P -Z) that match
(P ~X). Given (P A), on the other hand, it may find (P -X) or (P ~2).
This second kind of search permits programs to retrieve axioms about

concrete statements.

10




TO PROVE X=Y where X and Y are any expressions

with respect to context C

ESTABLISH A NEW CONTEXT C'’

ASSERT X WRT C’

GOAL, PROVE Y WRT C’

ERASE C’

ASSERT X=Y WRT C
Here X is TRUE only in context C’. All changes in the global data base,
including any side effects made during the proof of Y, are erased when
C’ is erased. Thus if the user wishes, he may manipulate properties
of expressions with a binding'mechanism that operates without regard
to the bindings of his program variables.

3. QA4 Contexts

As strategies such as these are invoked in a QA4 program, they
are assigned a "context"” in which they operate. All the properties .
associated with an expression are stored and retrieved with respect to
some context. These running strategies may operate independently in
parallel, or may cooperate in a high degree of synchronization. The
backtracking, side effects, and communication paths of these strategies
are highly controllable. Moreover, the control may be handled either
automatically by the interpreter, or manipulated by the strategies
themselves. Thus the combination of canonical expressions and a context
mechanism permits the programmer new freedoms in strategy communication

and data retention,




B. Processes
1. Motivation
The effective use of process structures is another important
aspect of QA4 programming techniques. These pseudo-parallel processing
structures simplify the programming task, and that is the object of our
language. Two instances of the use of processes might illustrate their
intended use.
2. OR Example
Given the theorem-proving problem
PROVE A OR B
one could begin to prove both A and B in parallel and terminate as soon
as one proof finished. Even if both proofs are not physically running
at the same time the decomposition of the problem into conceptually
parallel processes has simplified the programming task. For the two
processes to be effective, however, they must work together. Suppose
we use the following strategy:
® Find the best part to work on, say B.
e Start proving it.
e If it progresses rapidly, keep working.

e If not (we may have made a mistake), save the
state of this theorem=proving process, and start

out on A.

13




e If A begins to look harder than B, go back to B.
But now incorporate the information you have

learned from working on A.

We feel that concrete realizations of strategies of this type are

necessary for the construction of problem solvers, and that, by using

QA4, the st rategies can be easily developed.

3. Exists Example

Another especially relevant problem is to prove
(dX) (P(X) & Q(X)) ’
for some expressions P and Q. In this case, we first find an X that
satisfies P. Then we see if it satisfies Q. If not, maybe we should
search for an X for Q, and then see if it satisfies P. Each time we
redirect our attention, we want to save the state of the current
process, and begin where we left off.
4. Summary

What we seek for QA4 programs is not any magical speedup in
execution time, but a useful conceptualization of parallel processes
for the programmer. We want to encourage the writing of programs that
try this, then try that, then try this again, and at each step use both
their old information and newly gained information as best they can.
But the advantage comes from subdividing the problem, so the programmer

is only concerned with a small problem at a time.

14




(& Indecision

1. Valueless Variables

Many times, in even a simple problem, procrastination is a

good heuristic. For example, in the command

move a block down the hall ,

choosing a block before you plan your path may be a poor approach.

First, one should plan a route, then look for an appropriate block--

maybe one close to the route. However, during the planning, one should

keep in mind that eventually a block will be involved. To ease the task

of writing programs that must operate this way, QA4 has unbound but

usable variables.

Suppose a program has X as a variable. X can be assigned

properties--in our case, it might be restricted to being a block.

Since X is a QA4 expression, it can have many properties bhesides its

value. X can also be used as an argument to a subroutine. Even if

X appears in an expression, say

(AT ROBOT ~X)

X need not have a value. The expression will be bound to the actual

argument of the subroutine. The subroutine can examine X and discover

that it does not have a value. It may also examine the properties of

X and plan accordingly. It may even pass X on to other subroutines or

attach more properties to it.




2. Backtracking
Automatic backtracking provides another mechanism for delaving

decisions. When a strategy determines that a variable should take its
value from a set, but is not certain which element, it can merely make
one of the possible assignments and go on. If a later strategy dis-
covers that the choice was incorrect it may FAIL, and the interpreter
will backtrack automatically. While this mechanism can be used as a
complete depth-first search mechanism, that is not its intended use.
The choice of elements should not be arbitrary. There should be a good
first decision, with the hope that the system will not backtrack. If
it does, the second should surely work.
D. Iteration

Backtracking also plays an important role in iteration. In our
problems, iteration is not naturally expressed as a subscript range.
Sometimes it is inconvenient to express it as a logical condition. A
more natural way to express the iteration might be to say:

"Do something for all Xs such that X is the first argument

to a certain predicate."
or

"Do it for all Xs such that X is in this set and X satisfies

a predicate."
The REPEAT statement of QA4 provides such a mechanism. With it the

programmer can specify the executions of the body of the statement for

16
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all possible ways of

possible expressions

each iteration cycle

accumulate and which

doing a particular pattern match, or for all
in the data base that match a pattern. During
he may also specify which side effects are to

are to be removed. Thus the programmer does not

have to construct irrelevant data structures. As we have seen, every-

thing in QA4 is geared toward natural, concise expression transforma-

tion, even the iteration statements.

17
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IV ORGANIZATION

A. Review of Goals

Remember, the purpose of the QA4 language is to provide a method
whereby one can construct programs without having to understand the
whole problem or even to have worked out a global structure to the
solution process. We expect the programs to grow interactively and to
be continually refined and improved. We feel that the programmer has
a notion of how the program is to work, but does not understand enough
of the notion to write algorithms. If he must express his ideas in
standard formal languages the strict formality inhibits his intuition
and the ideas are lost. By using QA4, he can express these ideas,
ambiguous though they may be. He can write small, individual strategy
programs. He may even try out some of the ideas, relying on the inter=-=
preter to handle all the ambiguity and make many irrelevant decisions
automatically. Then, as he works with the system, the problem solver
grows until it handles many cases and appears to have some generality.

Let us now look at some common problem=analysis techniques and
how they are expressed in QA4.

B. Goals
1. Motivation
One of the most important problem=solving techniques is the

method of using subgoals. The strategy goes like this:

,‘.W-!r"“» RS ’r
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Given a certain goal to satisfy, see if you know the

answer. If so, retrieve it and quit.

If not, try to break the problem down into subgoals,

and try each one separately.
To encourage this kind of program organization, QA4 provides GOAL
statemeats. To use them, we first write programs that accomplish
specific subgoals. The ;ubgoals may be divided into classes. In
our automatic program synthesizer, for example, we will have both
PROVE goals and SIMPLIFY goals. When our strategies discover new
goals, they will say

GOAL SPROVE, some exp;

GOAL SSIMPLIFY, some exp;

(V)
.

How They Work

We first write programs to work on special cases. For example,
we write a program that can prove implications by using the conditional
derivation method discussed earlier. We identify the structure of the
goal the program works on in the pattern that makes up the bound vari-
able of the strategy. Thus our strategy program starts out:

(LAMBDA (IMPLIES ~X ~Y) ...)
The program also has a name, say CONDER. Now to inform the interpreter
tlict CONDER will solve goals, we add CONDER to the tuple of PROVE

programs:




(SETQ ~PROVE (CONS SCONDER SPROVE))
The interpreter now knows that if it is presented with a goal of class
PROVE, and if the goal matches the bound variable of CONDER, that
CONDER can be used to solve that goal. Later, when we write a program
to PROVE conjuncts, it may look like:
(LAMBDA (ADD ~A -B) ...)
and be named CONJ. When we state
(SETQ ~PROVE (CONS (SCONJ SPROVE)) ;
this program also becomes available for working on goals of class PROVE.
Since its pattern is different from CONDER, however, it will work on
different goals.
3. No Names

During this time, we may have written many programs that have
goal statements, and there may or may not be programs available to
solve the goals. The main point is that the program may be tried out
and tested. If more than one goal-solution program is available, the
interpreter will try them in turn and backtrack properly if they fail.
The goal programs are not organized in the fashion of standard program-
ming languages. The technique of invoking subroutines is the key. The
subroutines are not referenced by their name. Instead, they are called
because they accept arguments with a certain structure, and because the

programmer claimed that they will solve goals of a certain class.
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(e Choosing Solution Programs

It is not enough, however, to use ouly this single organization
technique. Many solution programs may apply, and they must be ordered
and selected. Suppose, for example, that the protocol of the problem
is to read as though means-ends analysis had been used. Instead of
using an executive to perform the analysis, we wish to make every deci-
sion on a local level, using pragmatic information. There are many
ways of doing this in QA4 programs.

1. Header Tests

The most obvious trick is to put tests at the front of eéch
GOAL program so that it attempts to eliminate itself as soon as possi-
ble. For example:

(LAMBDA (IMPLIES ~X ~Y) (IF (EQUAL $X FALSE) THEN FAIL) ...)
would make this strategy program fail when it is given conditionals
with false antecedents. But we would like to avoid initializing and
running the program in the first place.

2. Advice

In another method of giving advice to the system, we may
specify that a strategy program is to have control over the order and
execution of possible goal-solution programs. When these options are
used, the strategy program is given the set of choices along with other
necessary information. In a manner similar to co-routine execution,

this strategy program works with the QA4 interpreter to order and




control further executions. The strategy program may even try the

solutions in parallel. This permits one Lo work for a while, examine

the data base, shift ones attention to another, and later resume the

former.

D. Models and WHENs

1. Operative Models

We have saved for last a most serious problem: How should a

robot planner or theorem prover model the environment it attempts to

deal with? To begin, let us consider the two general types of models

discussed by Piaget--figurative and operative (Piaget 1960). Figurative

models are those in which the objects under consideration--say the

blocks in the room=-are described by a set of logical statements and

general inference rules. That is, what we know about the objects is

simply the logical facts immediately at hand and those we could derive

with a theorem prover. Operative models, on the other hand, are those

in which the objects are modeled through the use of programs. In the

case of our blocks, we might have a program for each block. This pro-

gram could accept messages and give responses. The object is then

modeled by its reactions to input. Within tnis framework, the structure

of the object can be directly reflected by the structure of the program.

We do not have to go through the intermediate and most-=often irrelevant

semantics of logic or artificial data structures.
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We may even have a set of programs that model a block: one
for when it is pushed, one for when another block is placed on it, and
vet another for when it is viewed. These programs will no doubt use
data structures, and in that sense have figurative data. But the
emphasis is now on the program and its current interpretation of the
data. The PUSH program may answer many questions, such as:

"Where are you?"

or

"How long have you been there?"
It may also answer questions like 'Where will you be if I shove you
this way?"”. The information may be readily available in the program-
model data base or it may require computation. Thus the position might,
at one time, be kept in the coordinates of a room, and at another time,
with respect to another block. The answer to the shove question may
even be "I will fall over,'" and the derivation of this answer may
exceed our capacity to model blocks in logical statements. The model
is now one of action and reaction--using the full power of the QA4
language.

2. WHEN Statements

The GOAL mechanism is a help in implementing a problem solver
that uses operative models. But the WHEN statement is the basis of

the solution. This QA4 command permits us to create a 'demon.' The

demon is assigned a set of watching posts. For example, it is assigned
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to watch all expressions that match a certain pattern. When information
goes past its post that matches a second pattern, and satisfies that
pattern's predicate, it may take control and execute programs. In our
example, we may have programs that watch operations on boxes. When
things are done to the boxes, these programs modify local data, or
invoke yet other demons. In this way, the main method of keeping the
model up to date while taking into account complex interactions between

the objects is through the use of WHEN programs.
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V. CURRENT STATUS

An interpreter for the language described herein appears to work

properly. This first implementation of the language is extraordinarily

general. Every possible step has been taken to be sure that, if we

wish, statement operation can be easily modified. This results in slow

execution time, but we feel it is worth the price. We will not know

just how GOALSs, WHENs, and control structures should operate until we

have successfully written some major problem solvers. So we look at the

project as a design process that should converge. We have made a first

pass at the language. This has permitted us to construct some small

problem solvers and discover more precisely what the language should be.

As we learn more, we will change the language. And hopefully, we will

uncover aspects of designing and building problem solvers at the same

time that we discover more about theorem proving, program synthesis, and

robot planning.

27




Chapter Two
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CHAPTER TWO--A PRIMER

I EXPRESSIONS
A. Introduction

One of the design criteria of QA4 is that problems in the area of
theorem proving, automatic program verification and synthesis, and
robot planning are to have a compact and natural formulation. Thus,
although the form of QA4 is modeled after that of LISP, we fin<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>