
— • —-
~~~~~~~~~~

4D AO b2 no STAIFORO RESEARCH INST MENLO PARK CALIF Ffl W2
ga: A PROC EDURAL CALCULLS FOR !NTUITIVE PE*SON!NS.(U)
NOV 72 4 F RULIFSCt4. 4 A O€RKSEN NASW—2086

UNCLASS IFICO TN—73 14.

i I!!! ________
__I!.. ! U________
_ _

FWRGII________



SRI . .
• — ~~ : .

/ / J~
,’ Nov.’-

3 . .

~~~~~~~
- — --

QA4 :
~

A PROCEDU RAL CALC~~ US FOR

}
/ ~J

“I,
INTUITIVE REASONING

---- ---
---- -

~~~~~~~~~

-

Tfls F ./R u ll f 5 0~~1~~~~
)Jan A.fDerksen

/ Richard J./Waldinger

Artificial Intelligence Center
TA) - /;C..) 

~7 j Technical ~iote (73 ~/
L~J SRI Project 8721

‘ u _ _ i

c~
____ The research reported herein was sponsored by the

National~~~~~~~~~jcs and Space Administration under
Coat ract~NA 86

D D C
f~rEc~Pnan2

APR 11 1978

c U~~~~L~UU~~

r~ISTRIBU~JO~~ STATE~~ENT &Approv.~ for public releaee ~~~~~ ‘ 

-

~~~~Distrjbut~o~ Unlimited ~

- -~~~
— --—‘ .__L.~_&_~.-,

~~~~~~~~~~~~~~~~~~~~ 
— - 

—_____________________________________ ___________



ABSTRACT

Th is report presen ts a lan gua ge , called QA4 , designed to facilitate

the construction of problem—solving systems used for robot planning,

theorem proving, and automatic program synthesis and verification . QA4

integrates an omega—order logic language with canonical Composition ,

associative retrieval , and pa ttern match ing of expressions; process

structure programming ; goal—directed searching ; and demons . Thus it

provides many useful programming aids . More importantly, however, it

prov ides a seman tic framework for  common sense rea soning abou t these

problem domains . The interpreter for the language is extraordinarily

genera l, and is therefore an adaptable tool for developing the special-

ized techniques of intuitive , symbolic reasoning used by the intelli-

gent systems .

Chapter Two is a primer for the QA4 language . It informally pre—

V

sents the language through the use of examples. Most of the unusual or

complicated features of the language are not discussed . The Chapter

concludes with a presen tation of a small robo t p lann ing systems tha t

uses onl y the language features presented in the Chapter. Chapter

Three presents a series of examples chosen to illustrate solutions to

automatic programming problems . The QA4 programs used in Chapter Three

rely on language features not presented in the primer. They are, how—

ever , explained as they occur. These programs illustrate most of the

Ii I ~~~~~~~~ .~r

tL ~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~ d

- w—~~~~ •
,~~~~~~~~~~~ ~~~~~~~ —- -.

~~~~~~~~~~

- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~


programming concepts Just discussed . Chapter Four is a complete

reference guide to the language . It provides the semantics of all the

features of the language together with many implementation notes and

design rational. Chapter Five discusses extensions to the language

that will probably be done dur ing the next year.

CE~~ 3~ hr

W ilts 2$CIIN

S.fl~ .ctI,. 0

. : ~~ltE D 0

~~~~~~~~~~~~~~
~ C~: nUT:O AYAIUIILI INU

L~iH

Iv

— — —~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~


ACKNOWLEDGEMENTS

The QA4 project has not been carried out in isolation; it has been

performed in the fertile environment of Stanford Research Institute ’s

Artificial Intelligence Center and in the artificial intelligence

community in general. Although it is difficult to give credit to all

the individuals who have contributed to the QA4 effort, the following

is a partial list of the principle contributors .

Cordell Green was the f irst to see the need for a QA4; he and

Robert Yates supplied the initial conceptual framework . Charles Rosen

was the manager of the SRI Artificial Intelligence Group at this time ;

his openness and en thus iasm for new ideas has been a con tinual source

of encouragement .

Dur ing its fo rmat ive period , the project benefitted from discus-

sions with Peter Deutsch, Alan Kay and Erik Sandewall. Furthermore ,

the name “bag ” was supplied by Peter Deutsch. Erik Sandewall invented

the table illustrating the meanings of the variable prefixes . Alan Kay

helped organize a conference in a beach house at Pajaro Dunes .

Carl Hew it t , who attended the Pajaro Dunes conference, taught us

much through the example of his language PLANNER; his advice and criti-

cisms heavily influenced the design of QA4. We were further impressed

and inspired by Terry Winograd ’s use of a PLANNER subset in the imple-

men tation of his BLOCKS program

. v

Richard Fikes helped us formulate our ideas about goal structures ,

backtracking, and the use of processes in robot planning .

Ber t ra m Rap hael , the present Director of the Artificial Intelli-

gence Cen ter, has given us detailed and thorough criticism of the QA4

conception , implementation , and manuscript drafts .

Richard Fikes, Peter Hart and Nils Nilsson have collaborated with

us on the app lica tion of QA4 to robot problem solv ing . All our work on

robot planning has been based on the STRIPS model and formulation.

Irene Gr ief helped us debug QA4 by w riti ng por tions of a p rogram

verifier using an early version of the system.

Ann Rob inson , Steven Crocker , Larr y Tesler , Bruce Anderson , and

Richard Fikes have given us readings and criticisms of this manuscript .

Ann Robinson did a thorough and insight ful reading of the proofs .

Thanks are due to Cordell Green for serv ing as Johns Rul ifson ’s

thesis advisor , an d to Jerome Feldman and Edward Feigenbau m for serv ing

on his committee .

This work has been supported at SRI by NASA and ARPA under Con-

tracts NAS12—222l, NASW—2l64 and NASW—2086 . For the past two years the

work has been suppor ted pr imar ily by NASA under Contract NASW—2086.

Samuel Rosenfel d, our contract monitor at NASA , has given us

excep tional suppor t, encouragement, and money .

We appreciated Kathy Spence ’s cheerfulness in typing several ver-

sions of this 400 page document , and correcting inconsistencies in our

notation .
vi

TABLE OF CONTENTS

ABSTRACT iii

ACK N OWLEDGEMENTS v

TABLE OF CONTENTS v ii

CHAPTER ONE--PROGRAMMING CONCEPTS 1

I PROJECT DEVE LOPMENT 1

A. Introduction 1
B. Project Origin 1
C. The Language 2

D. The Problem Doma in 3

I I EXP RESSIONS 5

A. Motivation 5

B. Data St.ructures 5
C. Example 6
D. Composition 8
E. Pattern Matching 9

I I I CONTROL 11

A. Context 11
B. Motivation 13
C. Indecision 13

D. Iteration 16

IV ORGAN I ZATION 19

A. Review of Goals 19

B. Goals 19
C. Choosing Solution Programs 22
D. Models and WHENs 23

V CURRENT STATUS 27

1”

1~

vii

______ - - - -
~~~~~~~~

.,.,- ;P~~
,- ~,. -~ ~~~~~~~~



S

CHAPTER TWO—-A PRIMER  29

EXPRESSIONS 29

A. Introduction 29
B. The Primitive Expressions 29

— ft

I I  BUILT—IN FUNCTIONS 35

A. Logical Connectives 35
B. Arithmetic Functions 37
C. Structural Functions 40

III PATTERN MATCHING 43

A. Introduction 43

B. Patterns 45

C. The Fragment Variable Applied to Construction  51
D. Multiple Matches 51

E. Subpatterns 55

IV EVALUATION AND INSTA NTIATION 57

V THE NET: ASSOCIATION INFORMATION WITH EXPRESSIONS . 59

A. Internal Format of QA4 Expressions 59
B. Entering a New Expression in the Syste~:i . . . . 60
C. Advantages of the Net Storage Mechanism . . .  61

VI PROGRAM CONTROL 67

A. Overview 67
B. Backtracking 67
C. The Goal Mechanism 69
D. Failure 72
E. Conditional Statements 74
F. The PROG Feature 78

V I I  THE CONTEXT MECHANISM 81

A .  Introduction 81
B. Crea ti ng a Con tex t 82
C. Builting a Tree of Contexts 82
D . Crea ting a Con tex t by Re fe r r ing to Foregoing

Nodes in a Context Tree 84

E. An Example 84

viii

__________ ~~~~~~~~~~~~~ 
-
~~~~

. - .

U

V I I I A ROBOT SYSTEM . 91

A . Introduction 91
B. The Robot Problems 92

IX THE SOLUTION OF THE PROBLEM OF TU RNING ON A LIGHT . . 95

A . The Framework 95
B. The STRIPS Representation 96
C. The QA4 Represen tation 98
D. Design Philosophy Revisited 104
E. Other Features and Appl ications 106

CHAPTER THREE— -PLAN SYNTHESIZERS 109

I INTRODUCTION 109

II CONDITIONAL PLANS ill

A. Predicates and Actions 111
B . Goal Sa ti s fac t ion 112
C. MOVIE and BEACH 113
D . ALTPLAN 114
E. (GOAL $HAVEFUN HAVEFUN) 116

I I I INFORMATION GATHERING 121

A. Operators 121

B. TESTABLE 122

C. (GOAL $DO (OPEN DOOR)) 121

IV LOOPS 129

A . When To versus How To 129
B. LOOPPLAN 129

C. (GOAL $DO (FA . . .)) 130

V CONSTRAINTS 133

A. “Thou shalt not .. .“ Pro b lems 133
B. Four—Step Operators 133
C. Trying Out the Final State 134

D. Remaining Planner Parts 135
E. (GOAL $DO (INROOM BOX ROOM2)) 137

ix

—
~~~~~~~~~~~~~~~~~~~~~~~~ - -  -



S

VI COORDINATED PLANS . 145

A .  A Shopping Problem 145
B. The Shopping List 149

C. Sorting the List 152
D. Process Control Programs 155

CHAPTER FOUR-- THE LANGUAGE 165

RUNNING THE SYSTEM 165

A. Warnings 165
B. Loading the System 165
C. Talking to QA4 165
D. Establishing a Program 166
E. Command s to Establish Models 167

I I  PRIMITIVE EXPRESSIONS

A. Types and Formats 169
B. Identifiers 171
C. Tuples, Sets , Bags , and Numbers 171
D. Contexts, Processes, and Semapho res 174
E. Applications 174

F. Bound Variable Expressions 175
G. Statements 184

III PRIMITIVE DATA OPERATIONS 187

A. Logical Operators 187
B. Structural Operations 189
C. Arithmetic Operations 191
D. Constructors 192

E. Syntactic Information 195
F. Decomposition : (NTH t n) 195
G. * Semaphores 196

IV PATTERNS 199

A. Motivation 199

B. Constants 200

C. Variables 201

x



a

D. Instantiation • 208
E. Extended Constructions 09
F.  Internal Representation 213

V PROPERTIES 215

A . General Statements 215
B. Macro Statements 217
C. Equivalence Relations 18
D. Special Context and Recommendation Options . .   228

VI QUERY STATEMENTS 231

A. Motivation 231
B. INSTANCES 231
C. EXISTS 233

VII CONTEXTS 235

A. Canonical Representations 235
B. Bindings of Properties 235
C. User Contexts 237
D .  CONTEXT Statement 239
E. Summary 239

VIII STANDARD CONTROL STATEMENTS 2-11

A. LIST Statement 241
B. Conditionals 241
C. Programs 247
D. Failure 249

IX WHEN STATEMENTS 251

A. Motivation 251
B. Form 252

X GOAL STATEMENTS 259

A . Form 259
B . Example 259
C. Order and Advice 262

i

xi

_________________________________ - - 

~



XI PROCESSES . 263

A .  RESUME Sta temen t 263
B.  INCARNATE Statement 266
C. CONNECT Statement 267

D.  WAIT Statement 268

XI I  ITERATION STATEMENTS 269

A .  REPEAT Statement 269
B. FIND Statement 272

CHAPTER FIVE--EXPECTATIONS AND REFLECTIONS 275

I PROJECTS 275

A. Imhotep 275
B. Other Projects 278

I I  EXTENS I ONS 281

a

A. Lamarckian Evolution 281

B. Searching for Goal Solutions 283
C. Transitive Relations 284
D. Efficiencies 285

I I I  TRENDS IN QA4 PROBLE M SOLVERS 289

A. Backtracking 289

B. Efficiency 290

C. Procedural and Declarative Language Development  291
D. Ad Hoc or General 292

Appendix I--LISTING OF THE ROBOT SYSTE M 293

Appendix Il——THE DISCRIMINATION NET 301

I BACKGROUND 301

A. Canonical Forms 301
B. Basic Mechanisms 303

xii



I I  FIXED RETRIEVAL , REORDERING , and RE NAMING 305

A. Coordinate Indexing 305
B. Reordering 307
C. Bound Variable Renaming 308

I l l HEURISTIC RETRIEVAL WITHO UT RENAMING 311

A. The Heuristic Technique 311

B. The Discrimination Net 312
C. Construction Search 313
D. Associative Search 314

IV SUMMARY 315

A. Storage Consumption 315
B. Time 316

C. Disadvantages 316

Appendix Ill——CONTEXTS 319

BIND I NGS 319

A. Properties 319
B. Dynamic Context 319
C. Backtracking Context 322

D. Benefits of Dispensed State 324

I I  ALGORITHMS 327

A. Terminology 327
B. Internal Expression Form 327
C. Retrieval 328
D. Storage 329

III EXAMPLES 331

A. Introduction 331

B. Function Calls 331

C. Cooperating Processes 341
D. Parallel Processes 351

xiii

______ __________________ — 

~~~ .~


S

IV IMPLEMENTATION . 355

V SUMMARY • 357

A . Space and Garba ge Collect ion 357
B. Binding Retrieval Time 357
C. Versatility 358

REFERENCES 361

xiv

- ~~~~~~~~~
-

S

\
N

- C

Chapt er One

PROGRAMM ING CONCEPTS

(

C

. — . ‘Th,,~
—- -

~~ ~~~~~~~~~~~~~
. . - -— , - ~ .,~~~

.., ,
~

CHAPTER ONE—-PROGRAMMING CONCEPTS

I PROJECT DEVELOP MENT

A. Introduction

This report presents a language , called QA4, designed to facilitate

the construction of problem—solving systems used for robot planning,

theorem prov ing , and automatic program synthesis and verification . QA4

integrates an omega—order logic language with canonical composition ,

associative retrieval , and pattern matching of expressions ; process

structure programming; goal—directed searching ; and demons . Thus it

provides a semantic framework for common sense reasoning about these

problem domains . The interpreter for the language is extraordinarily

general , and is therefore an adaptable tool for developing the special-

ized techniques of symbolic reasoning used by the intelligent systems .

This work was begun as part of a general program of research in

artificial intelligence supported at Stanford Research Institute by

NASA and ARPA under Contracts NAS12—222l and NASW—2l64 . For the past

two yea rs, the work has been suppor ted pr imar i ly by NASA under Con trac t

NASW—2 086 .

B. Project Origin

QA4 was star ted by Cordell Green and Ro bert Ya tes at SRI jus t af ter

Green finished his Ph.D. thesis at Stanford University in 1969. His

(

1

.-~
.--——~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —-- —-.-- — .-. - — — — - - -—-- —-—I-- -

thesis was on the use of resolution—based theorem—proving systems a~~

a means to automatic Question Answeri ng . (Hence the mnemonic QA .)

Their system was named QA3 (Green 1969). It did , and still does , prove

theorems in the first—order calculus using resolution . This system , in

fact , is the basis of the SRI ZORBA (Kling 1971) and STRIPS (Fikes 1971)

projects.

Green was bothered , however , by the difficulty of trying to use

problem—oriented semantic and pragmatic information to guide the theorem

prover. Resolution theorem—proving systems are well adapted to syntactic

heuristics such as unit preference . They may also be adapted to heuristics

tha t are tied to the deduction mechanism , such as ancestry filter. It was

very hard , and sometimes impossible , to use the semantics of the actual

problem at hand .

C. The Language

Thus the original goal of the QA4 project was to write a theorem

prover for automatic question answering . The formal language was to be

far more natural than first—order predicate calculus. This theorem

prover was to perform expression transformations on concise expressions

in such a way that it produced proofs with a natural style——the kind

that we would accept as being intuitive and obviously dominated by the

semantics of the problem. As we began to write such a theorem prover ,

however , we were continually confronted with the restrictions of LISP

*
References are listed at the end of this report .

2

— - - . - --~~~~~
- -‘. ~~~~ ~~~~~~ —

S

(McCarthy 1962, 1963). We wanted our program to plan and reason in

common sense way (McCarthy 1958). Thus we felt that the first step ‘as

to produce some theorem—proving protocols that looked intuitive , and to

be sure that these protocols could be guided b~ natural strategies——t he

kind of advice you would give students. Then we should design a system

that could take such strategies and attemp t to execute them. When the

strategies fail , we want easy, accessible methods of adding more advice

and program reorganization . We felt that the project would proceed

iterativel y——we would start a language and a theorem prover simultaneousl y ,

and let each guide the development of the other.

This Chapter explains the attitudes that have evolved about the

process of program construction . We will discuss the facets of the QA4

language that permit us to specify our problem solver in the vagueness

in which it is conceived and to refine it into an intelligent program .

But most importantl y, we want to program without losing our ~av si~ plv

because we had to express our thoughts in a language ‘~ith strict rules

about evaluation such as ALGOL or LISP .

D. The Problem Domain

Both the search space and the solutions for the problems we are

concerned with are small. Consider an example program verification

problem. Using a resolution—proof method , there are over 200 individual ,

necessary steps in the proo f of the program ’s correctness . By using

extended omega—order logic (Robinson 1969) and simplification methods ,

3

- -. - .--~ - .k $ - . - - —
~~~~~~

t-  -4-~~ a~~ - .... r — -



the proo f can be reduced to about 20 steps . Of these , 15 are obv ious

deductions (e.g., from A&B deduce both A and B). The remaining five

steps.requ ire ingenious instantiations and use of induction . We expect

a QA4 program verifier to have many special rules and detailed advice

on their use . It should produce the 20—step proof with little or no

wasted effort . Thus the emphasis in our language design is to permi t

the specification of many high—level rules and strategies . We antici-

pate that individual strategy steps may be time—consuming, but tha t

each step is valuable.

4 

— -. --- -~~ - -  — - —— 

- 
~

- -~“. - .-~~--i~~~~~~L~~~~.-  - 

—



11 EXPRESSIONS

A. Motivation

Remember that our original goal was to write a theorem prover tha t

proceeded according to pragmatic , intuitive protocols. Seemingly simple

axioms and inference rules normally presented in a mixed English—logic

language in textbooks often become lengthy, comp lex formulas when con-

verted to the notation of either first—order predicate calculus or stan— -

dard programming languages . To even describe our protocols , we needed

a conc ise, natural syntax for algebraic expressions . At the same time ,

the definitions should mirror the semantics of the primitive operators.

Most formal language def~ nitions are guided more by the syntactic proper-

ties of the symbols than by the semantics of the operators they stand for .

Because of thi s, these definitions lead to endless applications of tram—

sitivit v , associativity, and equality inference rules. To prove that

X — Y = V — X, for example , should not require any substeps——it should

be immed iatel obvious to even the simp lest theorem—proving programs .

B. Data Structures

Declarative statements in the language have convenient extensions

of omega—order calculus such as sets , spec ial quan tifi ers , and extended

primitive operators . The three basic data structures are tuples , bags ,

and sets:

a



• Tuples

Tuples are ordered lists; our notation is (TUPLE 1 2 3)

• Bags

Bags are unordered tuples . That is , a bag is a collection of

unordered elements , and the elements may be duplicated . Our

notation is (BAG 3 1 2 1)

• Sets

Sets are unordered collections of elements , and withou t dupli-

cation . Our notation is (SET 2 3 1). During the construction

of sets , eithe r during input or while a program is running and

building a set , duplicate elements are automatically removed .

Even during user inpu t , multiple occurrences of a variable

are reduced to a single occurrence .

C. Example

1. PLUS

Our definition of PLUS illustrates the use of these structures.

PLUS is associative and commu tati ve, so it may take a bag as its argu-

ment. A user may type (PLUS 1 2 1) as a line of a program. Internally,

QA4 uses a prefix representation ; thus that line means (PLUS (BAG 1 1 2)).

PLUS may not take a set as an argument , fo r  then we would have

(PLUS 1 1) = (PLUS (SET 1)) = 

I . 6



2 .  EQUA L

~~~~~~~ definition of EQUA L is another example of the use of these

structures. EQUAL is not merely associative and commutative , but it is

also an equivalence relation . Therefore , it may take a set as an argu-

ment . X = V = Z means (EQUAL (SET X V Z)) . During the evaluation of

this expression , the set is evaluated by first evaluating the members

and then collecting the resulting values into a set . The function EQUAL

is then app lied to that set. EQUAL is TRUE if and only if the value of

its argument has a single member. Thus if X and V were true , and Z was

FALSE , then the value of (SET X Y Z) would be the two—element set

(SET TRUE FALSE), and therefore the value of (EQUAL (SET X V Z)) would

be FALSE .

3. X~~- Y = Y - ~~X

Within QA4, the example we considered earlier——X V = V ÷ X——

means , by definition , EQUAL applied to a set. That set has the single

member ~:x ,y:.

typed in (EQUAL (PLUS X Y)(PLUS Y X)

initial internal (EQUAL (SET (PLUS (BAG X Y))
form (PLUS (BAG V X))))

reduced standard (EQUAL (SET (PLUS (BAG X Y))))
form

Thus either during program interpretation or expression simplification

within a theorem prover , the value of the expression is obviously TRUE .

- - - —
~:~~

—
~~

- - - — — -__________ — - —

~~~~~~~~~ ‘,...~



D. Composition

1. Canonical Forms

As expressions are composed , they are converted to a canonical

form so that semantic and pragmatic properties attached to them can be

associated automatically with all equivalent expressions . Composition

takes place whenever a particular data structure is constructed by a

program. The canonical composition provides for continual syntactic

simplification , a feature vital for program verification and theorem

proving .

2. Example

For examp le , the process of interpreting the statement

(SETQ —X (SET RED BLUE GREEN))

not only assigns X to be a set , bu t also composes a canonical represen-

tation of the set. Variables are always identified by a prefix charac-

ter. — means the variable is to receive a value , S means the variable

must have a value . The composition process ensures that if the datum

described by the expression (in this case , a set) has ever been pre-

viously constructed , the or igina l  va lue  is used and no new equa l  bu t

different structure is constructed .

3. Bound Variables

This identification of equivalence is even made between expres-

sions that include bound variables . Thus the 
functions8



(LAMBDA (TUPLE —X —V)(TIMES (PLUS SX SY)(PLUS SY 1)))

and

(LAMBDA (TUPLE —C —V )(TIMES (PLUS 1 SV)(PLUS SV SC)))

‘.vil l both be converted to the same internal canonicz~~~form , and infor—

nation known about one is always available to strategies that may deal

with the other.

E. Pattern Matching -

1. How It Integrates

The use of canonical representation together with definitions

that reflect the semantics of functions not only flakes manipulation

swifter , but permits rapid , natural access to previously developed

information. This retrieval and decomposition of expressions is accom-

plished by template pattern matching (Teitelman 1967).

2. Decomposition

Decomposition occurs during the process of assigning arguments

to functions or interpreting assignment statements. In the assignment

statement , the expression on the left must match (be an instance of)

the expression on the right . For example. the interpretation of the

statement

(SETQ (SET —X .—Y .. )(SET RED BLUE GREEN YELLOW ))

assigns one of the fou r color words to both X and to V. The double

dots denote a fragment , and permit the sets to be of 
different9



cardinalit y . Since sets are i nvolved , X and V may be assigned the

same word or different words.

3. Retrieval

The statement

(EXISTS (SET —X RED . . . ) )

will retrieve from the data base all sets that contain the word RED; X

is then assigned some element from one of the retrieved sets. This

form of pattern matching permits programs to be nondeterministic. The

program may signal that an incorrect choice was made by executing a

FAIL. The interpreter is then required to make an alternative assign-

ment . The backtracking necessary to interpret the programs is handled

automatically by the interpreter.

More important than backtracking, however, is the fact that all

queries into the data base are in the form of associative addressing .

Moreover , the search may go two ways. That is , given (P —K) a program

may find all expressions such as (P A) or (P B) or (P —Z) that match

(P —X ). Given (P A), on the other hand , it may find (P —X) or (P —Z).

This second kind of search permits programs to retrieve axioms about

concrete statements.

10

_ _ _ _ _ _  -- -- —~..- - - -____ -- -~~~—--— —



TO PROVE X—Y where X and V are any expressions

with respect to context C

ESTABLISH A NEW CONTEXT C ’

ASSERT X WRT C ’

GOAL , PROVE V WRT C ’

ERASE C ’

ASSERT X—Y WRT C

Here X is TRUE only in con tex t C ’. All changes in the global data base ,

including any side effects made during the proof of V , are erased when

C ’ is erased . Thus if the user wishes , he may manipulate properties

of expressions with a binding mechanism that operates withou t regard

to the bindings of his program variables .

3. QA4 Contexts

As strategies such as these are invoked in a QA4 program , they

are assigned a “contex t” in which they operate. All the properties

associated with an expression are stored and retrieved with respect to

some context . These running strategies nay operate independently in

paralle l, or may cooperate in a high degree of synchronization . The

backtracking , side effects , and communication paths of these strategies

are highly controllable . Moreover, the control may be handled either

automaticall y by the interpreter , or manipulated by the strategies

themselves . Thus the combination of canonical expressions and a context

mechanism permits the programmer new freedoms in strategy communication

and data retention .
12



B. Processes

1. Motivation

The effective use of process structures is anothe r important

aspect of QA4 programming techniques . These pseudo—parallel processing

structures simplify the programming task , and tha t is the object of our

language . Two instances of the use of processes mig ht illustrate their

intended use.

2. OR Example

Given the theorem—proving problem

PROVE A OR B

one could begin to prove both A and B in parallel and terminate as soon

as one proof finished . Even if both proofs are not physically running

at the same time the decomposition of the problem into conceptuall y

parallel processes has simplified the programming task . For the two

processes to be effective , however, they must work together. Suppose

we use the following strategy :

• Find the best part to work on , say B.

• Start proving it .

• If it progresses rapidly, keep working .

• If not (we may have made a mistake) , save the

state of this theorem—prov ing process , and start

out on A.

13



• If A begins to look harder than B, go back to B.

But now incorporate the information you have

learned from working on A.

We feel tha t concrete realizations of strategies of this type are

necessary for the construction of problem solvers, and that , by using

QA4, the s :rategies can be easily developed .

3. Exists Example

Another eapecially relevant problem is to prove

(3x) (P(X) & Q(X))

for some expressions P and Q.  In this case , we first find an X that

satisfies P. Then we see if it satisfies Q. If not , maybe we should

search for an X for Q, and then see if it satisfies P. Each tine we

redirect our attention , we want to save the state of the current

process , and begin where we left off.

4. Summary

What we seek for QA4 programs is not any magical speedup in

execution time , but a useful conceptualization of parallel processes

for the programmer. We want to encourage the writing of programs that

try this , then try that , then try this again , and at each step use both

their old information and newly gained information as best they can .

But the advantage comes from subdividing the problem , so the programme r

is only concerned with :i small problem at a time .

14

- ~~~~~~~~~~~~~~~~ 

--



C. Indecision

1. Valueless Variables

Many times , in even a simple problem , procrast ination is a

good heuristic. For example , in the command

move a block down the hail

choosing a block before you plan your path may be a poor approach.

First , one should plan a route , then look for an appropriate block——

maybe one close to the route. However, during the planning, one should

keep in mind that eventually a block will be involved . To ease the task

of writing programs that must operate this way, QA4 has unbound but

usable variables .

Suppose a program has X as a variable. X can be assigned

properties——in our case, it might be restricted to being a block .

Since X is a QA4 expression , it can have many properties besides its

value . X can also be used as an argument to a subroutine . Even if

X appears in an expression , say

(AT ROBOT —X)

X need not have a value . The expression will be bound to the actual

argument of the subroutine . The subrou tine can examine X and discover

that it does not have a value . It may also examine the properties of

X and plan accordingly. It may even pass X on to other subroutines or

( attach more properties to it.

15

—~— V 
— -  —— - - -V.—- — —- - 

V~ ~~~~~~~~~~~~ -



2. Backtracking

Automatic backtrack ing p rovides another mechanism for delaying

decisions . When a strategy determines that a variable should take its

value from a set , but is not certain which element , it can merely make

one of the possible assignments and go on. If a later strategy dis-

covers that the choice was incorrect it may FAIL , and the interpreter

will backtrack automaticall y. While thi s mechanism can be used as a

complete depth—first search mechanism , that is not its intended use.

The choice of elements should not be arbitrary . There should be a good

first decision , with the hope that the system will not backtrack . If

it does , the second should surely work .

D. Iteration

Backtracking also plays an important role in iteration . In ‘i~ur

problems , iteration is not naturally expressed as a subscript range . 
V

Sometimes it is inconvenient to express it as a logical condition . A

more natural way to express the iteration might be to say:

“Do something for all Xs such that X is the first argument

to a certain predicate. ”

or

“Do it for all Xs such that X is in this set and X satisfies

a predicate. ”

The REPEAT statement of QA4 provides such a mechanism. With it the

programmer can specify the executions of the body of the statement for

16

V 
- 

— - - ~~~~ ~~~~~~~~~~~~~~~~ -



all possible .~a s  of doing a particular pattern match , or for all

possible expressions in the data base that match a pattern. During

each iteration cyC1~ he may also specify which side effects are to

accumulate and which are to be removed . Thus the programmer does not

have to construct irrelevant data structures. As we have seen , every-

thing in QA4 is geared towa rd natural , concise expression transforma-

tion , even the iteration statements.

I

17



IV ORGANIZATI ON

A. Review ot Goals

Remembe r, the purpose of the QA4 language is to provide a method

whereby one can construct programs without having to understand the

whole problem or even to have worked out a globa l structure to the

solution process. We expect the programs to grow interactively and t~

be continually refined and improved . We feel tha t the p rogrammer has

a notion of how the program is to work , but does not understand enough

of the notion to write algorithms . If he must express his ideas in

standard formal languages the strict formality inhibits his intuition

and the ideas are lost. By using QA4, he can express these ideas ,

ambiguous though they may be. He can write small , individual strategy

programs . He may even try out some of the ideas , relying on the inter-

preter to handle all the ambiguity and make many irrelevant decisions

automatically. Then, as he works with the system , the problem solver

grows until it handles many cases and appears to have some generality .

Let us now look at some common problem—anal ysis techniques and

how they are expressed in QA4 .

B. Goals

1. Motivation

One of the most important problem—solving techniques is the

method of using subgoals. The strategy goes like this:

-‘-V 
-——

~~~~~

--

~~~~~~

-—---

~~~~~~~~~~~~~~

—

19

- - -V t — - - - ~~ V ——

Given a certain goal to satisfy, see if you know the

answer. If so, retrieve it and quit.

If not , t ry to break the problem down into subgoals ,

and try each one separately .

To encourage this kind of program organization , QA4 provides GOAL

statem~~its . To use them , we first write programs that accomp lish

specific subgoals . The subgoals may be divided into classes . In

our automatic program synthesizer , for example , we will have both

PROVE goals and SIMPLIFY goals . When our strategies discover new

goals , they will say

GOAL SPROVE , sone exp ;

or

GOAL SSIMPLIFY, some exp ;

2. How They Work

We first write programs to work on special cases. For example ,

we write a program that can prove implications by using the conditional

derivation method discussed earlier. We identify the structure of the

goal the program works on in the pattern that makes up the bound vari-

able of the strategy . Thus our strategy program starts out :

(LAMBDA (IMPLIES ‘-X —Y) ...)

The program also has a name , say CONDER . Now to inform the interpreter

tL~ t CONDER will solve goals , we add CONDER to the tuple of PROVE

programs :

20

V -

(SETQ —PROVE (CONS SCONDER SPROVE))

The interpreter now knows that if it is presented with a goal of class

PROVE , and if the goal matches the bound variable of CONDER , that

CONDER can be used to solve that goal . Later , when we write a program

to PROVE conjuncts , it may look like:

(LAMBDA (ADD —A —B) . . .)

and be named CONJ . When we state

(SETQ —PROVE (CONS (SCONJ SPROVE))

this program also becomes available for working on goals of class PROVE .

Since its pattern is different from CONDER , however , it will work on

different goals.

3. No Names

During this time , we may have written many programs that have

goal statements , and there may or may not be programs available to

solve the goals. The main point is that the program may be tried out

and tested . If more than one goal—solution program is available , the

interpreter will try them in turn and backtrack properly if they fail.

The goal programs are not organized in the fashion of standard program-

ming languages . The technique of invoking subroutines is the key . The

subroutines are not referenced by their name . Instead , they are called

because the y accep t arguments with a certain structure , and because the

programme r claimed that they will solve goals of a certain class.

21

— ~~~~~~~~~~~~
_V~~ —- - - V~ __VV - - - --V V ___ ___ —

,.r ..,,, ~ ,. -ta’ .

C. Choosing Solution Programs

It is not enough, however , to use oaly this single organization

technique. Many solution programs may apply, and they must be ordered

and selected . Suppose , for example, that the protocol of the problem

is to read as though means—ends analysis had been used . Instead of

using an executive to perform the analysis , we wish to make every deci-

sion on a local level , using pragmatic information . There are many

ways of doing this in QA4 programs .

1. Header Tes ts

The most obvious trick is to put tests at the front of each

GOA L program so that it attempts to eliminate itself as soon as possi-

ble. For example:

(LAMBDA (IMPLIES .-X —Y)(IF (EQUAL SX FALSE) THEN FAIL) . . .)

would make thi s strategy program fail when it is given conditionals

with false antecedents. But we would like to avoid initializing and

running the program in the first plCce .

2. Advice

In another method of giving advice to the system , we may

specify that a strategy program is to have control over the order and

execution of possible goal—solution programs . When these options are

used , the strategy program is given the set of choices along with other

necessary information . In a manner similar to co— routine execution ,

this strategy program work s with the QA4 interp reter to order and

22

contro l further executions . The strategy program may even try the

solutions in parallel. This permits one to work for a while , examine

the data base , shift ones attention to another , and later resume the

former.

D. Models and WRENs

1. Operative Models

We have saved for last a most serious problem: How should a

robot planner or theorem prover model the e n v i r o n m e n t i t attempts to

deal with? To begin , let us consider the two general types of models

discussed by Piaget——figurative and operative (Piaget 1960). Figurative

models are those in which the objects under consideration——say the

blocks in the room——are described by a set of logical statements and

general inference rules . That is, what we know about the objects is

simp ly the logical facts immediately at hand and those we could derive

with a theorem prover . Operative models , on the other hand , are those

in which the objects are modeled through the use of programs . In the

case of our blocks , we might have a program for each block . This pro-

gram could accept messages and give responses . The objec t is then

modeled by its reactions to input . Within tnis framework , the structure

of the object can be directly reflected by the structure of the program.

We do not have to go through the intermediate and most—often irrelevant

‘ semantics of logic or artificial data structures .

23

- — - - - V ~~~~~~~~~~~~~~~~~~~~~~~~~
V_

~-V-V~~ V -V-V -—
- - V

.

V - V
~~~~~~~~~~ ~~ “ ~~ 

-



We may even have a set of programs that model a block : one

for when it is pushed , one for when another block is placed on it , and

yet another for when it is viewed . These programs will no doubt use

data structures , and in that sense have figurative data. But the

emphasis is now on the program and its current interpretation of the

data. The PUSH program may answer many questions , such as:

“Where are you? ” V

or

“How long have you been there?”

It may also answer questions like “Where will you be if I shove you

this way?” . The information may be readily available in the program—

model data base or it may require computation. Thus the position might ,

at one time , be kept in the coordinates of a room, and at another time ,

with respect to another block . The answer to the shove question may

even be “I wi ll f a l l  over ,” and the derivation of this answer may

exceed our capacity to model blocks in logical statements. The model

is now one of action and reaction——using the full power of the QA4

language .

2. WHEN Statements

The GOAL mechanism is a help in implementing a problem solver

that uses operative models. But the WHEN statement is the basis of

the solution . This QA4 command permits us to create a “demon .” The

demon is assigned a set of watching posts. For example , it is assigned

24

—‘-
~~~~—. -V - V  -- V - V_ _~~~V~~~~ _ V_~~~~~~ - - - - — -—- 

V V
V - -

~~~~~
..,. ..



to watch all expressions tha t iiatch a certain pattern . When information

goes past its post that matches a second pattern , and satisfies tha t

pattern ’s predicate , it may take control and execute programs . In our

example , we may have programs that watch operations on boxes. When

things are done to the boxes, these programs modify local data , or

invoke yet other demons. In this way, the main method of keeping the

model up to date ~Vhi 1e taking into account complex interactions between

the objects is through the use of WHEN programs .

(

25

—~—- .,-,.----,- w - --~~~~
V’

~~~ 
- - - - V _ V_~_ V_V_~__ V_V ~~~_

V V
V - V ~~~~~~~~~~~~~~~~~~~~~

-

CURRENT STATUS

An interpreter for the language described herein appears to work

properly. This first imp lementation of the language is extraordinarily

general. Every possible step has been taken to be sure that , if we

wish , statement operation can be easily modified . This results in slow

execution time , but we feel it is worth the price . We will not know

just how GOALSs , WHEN s, and control structures should operate until we

have successfully written some major problem solvers . So we look at the

project as a design process that should converge . We have made a first

pass at the language . This has permitted us to construct some small

problem solvers and discover more precisely what the language should be.

As v.e learn more, we will change the language . And hopefully , we will

uncov~’r aspects of designing and building problem solvers at the same

time that we discover more about theorem p roving, program synthesis , and

robot planning .

PAGE BI~ANK~~0’F 11i1~~~~~~~
L V ~~~~~~~~~~~~~ — ~~~~~~~~~~~~~~~~~~~~~

-- —

27

V~~ ~~~~~~~~ - -

Chapter Two

A PRIMER

- ~~
- - -

V

-

I~~~~~~ ED1NQ PAGE BLAJ~ -Z’~OT 111J~~ ~~~~
-

~~ V~

— V~_-V~~
_jL____J-.a~.~i ~~~~

‘
~~~t

V ~~~~~~~~~~~~~ _~-V V
~~~V V V~


CHAPTER TWO——A P R I M E R

I EXPRESSIONS

A. Introduction

One of the design criteria of QA4 is that problems in the area of

theorem proving, automatic program verification and synthesis , and

robot planning are to have a compact and natural formulation . Thus,

although the form of QA4 is modeled after that of LISP , we find a

greater variety of syntactic types in QA4 than in most programming

languages : e.g., there are sets , ordered and unordered tuples , lambd a

expressions , quantified expressions , and function applications .

The basic building blocks of the QA4 language are the primitive

expressions . Each utterance in the language is made up of these

expressions which we introduce in the next section. Each expression

has a “value , which is also a QA4 expression. A basic evaluation

function associates with each expression either a number , identifier ,

or other QA4 expression.

B. The Primitive Expressions

(Identifiers , numbers , truth values , tuples , sets , bags , applica-

tions , variables , bound va riable express ions , special forms.)

1. Identifiers

An identifier is a string of letters and digits such as X ,

MARLENE , and A53QQ . The identifiers are used as constants , function

29

- V -V - .

names, predicate names , variable names , and labels of the language .

The value of a constant is the constant itself.

2. Numbers

Conventions of the host LISP systems are used , e.g., 3, 0, —2 .7

are numbers .

3. Truth Values

There are two special identifiers , TRUE and FALSE , deno ti ng

true and false respectively.

4. Tuples

A tuple expression is an expression of the form (TUPLE el . . . en).

Tuples are the QA4 version of LISP ’s lists , e.g., (TUPLE A 1 2 3),

(TUPLE A JIM (TUPLE 4 D)). The value of a tuple is the tuple whose V

elements are the values of the elements of the original tuple .

5. Sets

A se t expression is an express ion of the for m (SET el . . . e n) .

Since both the order of the elements and the number of occurrences of an

element in a set are immaterial , the sets

(SET A B C) (SET C A B) and (SET C A A B C)

are treated as identical expressions . No te tha t the set (SET C A A B C)

never could occur internally as a QA4 expression because each tim e a

set is created , the system reduces and reorders the set , putting it

into a normal form . The value of a set is a set made up of the evaluated

elements of the orig inal set .

30

V

V
~~~~



6. Bags

A bag is an expression of the form (BAG el . . .  en) . A bag may

be considered to be an unordered tuple or to be a set with multiple

eLements , e.g., (BAG 1 1 3 5), (BAG A (TUPLE 2 3) 7 KATHY 7). Note

that (BAG 2 3 2) = (BAG 2 2 3) ~ (BAG 2 3) . Bags are used as arguments

of functions that are commutative and associative , such as PLUS and

TIMES. The value of a bag is the bag whose elements are the evaluated

elements of the original bag .

7. Applications

An application is an expression of the form (f a). The value

of an application (f a) is the result of applying the value of f, which

is expected to be a function , to the value of the argument a. Internally,

all QA-! functions take one argument ; if n arguments are desired they

must be grouped into the tuple (TUPLE argl arg2 ... argn). Functions

cam also have sets , bags, or any other type of expressions as argument .

An abbreviation convention exists so that if F takes a tupie as argument ,

the user car write (F arg i arg2) instead of (F (TUPLE argl arg2)).

Furthermore , for certain built—in functions such as EQUAL or TIMES tha t

may take sets or bags as arguments , (F arg l . .  . argn) will be taken to

mean (F (SET argl ... argn)) or (F (BAG argi ... argn)), whichever is

appropriate. The system supplies , in this case , the additional informa—

tion. For instance , (PLUS 2 1 3) will be taken to mean (PLUS (BAG 2 1 3)).

31

— 
— V - ~

V V - V.
~~~~~~~~~~~~~~


S. Variables

A variable is an identifier with prefix — , ? , 5, —, ?? , or

$5. For instance , SY and —LINDA are variables. In QA4, variables

play more roles than in LISP . The use of pattern matching for decom-

position of expressions demands a precise “declaration ” of the role of

the variable in an expression . We do not want to explain the use of

all the prefixes at this point in the text . However , a complete

description is given in the sections on pattern matching . Roughly

speaking, when we want to use the previously assigned value of a vari-

able we give it the $ prefix , ~,,,Vhile when we want to assign the variable

a new value we use the .- prefix.

9. Bound Variable Expressions

A bound var iab le expression is an expression of the form

(keyword by—par t body) , where keyword is LA MBDA , FA (“ for all ”) or EX

(“ex i s t s ”) , by—par t or bound v a r i a b l e p a r t is an expression to be used

as a p a t t e r n , and body is any QA4 expression

Example : (LAMBDA —X (PLUS SX 2))

Thus, bound variable expressions are either lambda expressions or quanti-

fied expressions .

The QA4 variable binding mechanism is an elegant extension of LISP

lambda binding . The purpose of the bound variable part of a lambd a

expression is to assign values to one or more variables during the

evaluation or analysis of the body of the bound variable expression.

32

______ ~~~-
V -~~~~~ — - -

_____________ _________.—- — - — _ _ V V ~~~~~~~~~~~~

fl-

U n l i k e L I S P ’ s v a r i a b l e l i s t , a QA4 bound v a r i a b l e is a gene ra l p a t t e rn

which is matched against the argument of the l ambd a e x p r e s s i o n . The

pattern contains variables that are bound if the pattern successfully

m a t c h e s the a r g u m e n t . Thu s , l ambda express ions are f u n c t i o n s t h a t can

take any QA4 expression as argument.

Example : To evaluate the application

((LAMBDA (BAG 2 —x 3) (TIMES SX 5)) (BAG 3 2 4))

first the bou nd variable part (BAG 2 —X 3) is matched against the argu-

ment (BAG 3 2 4) , b ind ing the v a r i a b l e X to 4 . Nex t the body (TIME S SX 5)

is evaluated w i t h respect to the new b ind ing . The v a l u e of the applica-

tion is then 20.

Example :

((LAMBDA (TUPLE 2 (TUPLE —X A) —Y) (TUPLE 2 SX SY)) (TUPLE 2 (TUPLE 3 A) 4))

e v a l u a t e s to

(TUPLE 2 3 4)

For se ts and bags , the re can be many ways of m a t c h i n g the

bound v a r i a b l e p a t t e r n a g a i n s t the a rgument . This poss ib ly leads to

some c o m p l i c a t i o n s w h i c h we w i l l d iscuss in Section I I I — D .

10. Specia l Forms

A specia l f o r m is an express ion w i t h a n o n s t a n d a r d method of

e v a l u a t i o n . These specia l f o r m s are also called QA-1 statements. For

example , the I F s t a t e m e n t , the PROG statement , and the GOAL statement

are spec i a l fo rms .

33

-V;.- - - VV -

V

II BUILT—IN FUNCTIONS

A . Logical Connec t ives

Logical operators consider an expression to be TRUE i f it has any

v a l u e o the r t h a n FALSE . AND , OR , EQUAL , a nd NOT EQUAL t ake se ts as

a rgumen t s . In th i s way the c o m m u t a t i v i t y and i dempo tency (A i A = A)

of logic opera t ions ace b u i l t in and need not be s t a t e d e x p l i c i t l y .

The p o s s i b i l i t y of expressing logical functions and relations of more

than two arguments e l i m i n a t e s many occasions fo r use of the a s s o c i a t i v i t v

rule . We do not have to bu i ld expressions such as A & (B & C) or

(A V B) v C and then express the e~,~~A v a le n c e of A & (B & C) and

(A & B) & C w i t h a rule , but need only wr i t e express ions such as

(AND A B C)

(OR A B C)

or (EQUA L El E2 E3)

Recal l t ha t we need not inc lude the set i n d i c a t o r fo r a r g u m e n t s of

b u i l t — i n f u n c t i o n s .

• AND

The connective AND takes a set of expressions as a rguments .

If none of the e lements of th i s set has the va lue FALSE , i t s

va lue is TRUE . (We w i l l express “has value ” w i t h the meta

symbol =.)

I

- - ~~~~~~~~~~~~~~~~~~~~~~ ~

-V

PAGE BL~~~~~~~
.1

~~~~~~

L. __.~— - - - - -— - -

V~~V



(AND 1 2 3) TRUE

(AND SX SY) ~ TRUE sVhen X and V both are bound to TRUE

(AND A FALSE B) FALSE

• OR

The connective OR takes a set of expressions as argument  and

returns (“evoluates to ”) FALSE if each of the elements of the

set has value FALSE ; otherwise TRUE is returned .

(OR TRUE FALSE TRUE ) ~ TRUE

• EQUAL

The connective EQUAL takes a set as i t s  argument  and r e tu rn s

TRL’E if the  values  of a l l  of the  e lements  are id e n t i c a l ;

o therwise  FALSE is re turned . Not e tha t QA4 f u n c t i o n s  d i f f e r

s i g n i f i c a n t l y  from their LISP counterparts.

(EQUA L 2 2 2)  e v a l u a t e s  to TRUE

(EQUAL A $X SY) e v a l u a t e s  to TRUE i f  X and V have v a l u e  A .

• NOTEQUA L

NOTEQUA L takes  a set as a r g u m e n t .

(NOTEQUAL El  E2 E3) means El � E2 & E2 ~ E3 & El ~ E3

• IMPLIES

The connective IMPLIES takes a tuple as argument .

(IMPLIES SA SB SC) means $A SB & SB SC

where $X SY is TRUE unless V has a value FALSE and X

has a value other t h a n  FALSE .

36

- - V~ V V~~~V - ~~~~V V  -. ~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
V —- 

VV V ~VV~ V 
~~~~~~~~~~ 

~~~~~ V V~,a-



Examples: (IMPLIES FALSE TRLVE) TRUE

(IMPLIES 2 3) = TRUE

(IMPLIES TRUE TRUE FALSE ) FALSE

• NOT

NOT takes  a s ing le a r g u m e n t  and r e t u r n s  TRUE if the va lue

of the  a rgument  is FALSE and FALSE o t h e r w i s e .

(NOT TRUE) FALSE

(NOT 5) ~ FALSE

(NOT FALSE ) ~ TRUE

• 1FF

1FF takes a set as a rgument .

( 1FF El £2 E3 E4 )  means El = E2 & E2 = E3 & E3 E4

(
“

~~~~
“ st ands for “equivalent with .’

~)

1FF asserts that all the members of the set imply each

other. An 1FF expression is TRUE if none of the set members

are FALSE, or if all of them are .

(1FF 2 3) TRUE

(1FF FALSE FALSE FALSE) ~ TRUE

B. Arithmetic Functions

• pLUS

PLUS takes a bag as argument and returns as value the

sum of the values of elements of the argument .

Example: (PLUS 1 3 5) ~ 9 . V

37

— ________________ — — - —
V

-

V
V V~~ V - ~~~~~~~~~~~~~ V -

This choice of data structure for the argument makes it

V possible to handle commutativit v of addition in a natural

way -

Example : (PLUS SX SY SX 5) and (PLUS SY SX 5 SX)

both have the same value because (BAG SIC SY SX 5) and

(BAG $Y $X 5 $X) are indistinguishable in QA4.

• TIMES

TIMES takes a bag as argument .

(TIMES 1 5 3 7) forms the product 1 ‘~ 5 / 3 x 7

The use of a bag as argument for this operator gives us

the same advantages for TIMES as for PLUS .

• SUBTRACT
V

SUBTRACT takes a tuple as argument .

Example : (SUBTRACT 8 3 1 2) means 8 — 3 — 1 — 2.

(SUBT RACT nl n2 . . . nm) has as v a l u e nl - (nl + . . . +

• MINUS

MINUS forms the arithmetic negative of the value of its

argument. (MINUS 4) evaluates to —4.

• DIVIDE

DIVIDE takes a tuple as argument . (DIVIDE nl n2 . . . mm)

evaluates the quotient ril/(n2 x n3 . . .
~~

nm) .

Exa mple : (DIVIDE 16 2 4) ~ 2

38

— V~ V~~~~~~~~~V_ _ _ _ _
_ _ _ _ _ _ _ _ _ -

V
~~~~~~~~~~~~~~~~~~~~~~~ ~V



• GT

GT stands for greater than. GT takes a tuple as argument.

(GT ni n2 n3 - . .) is TRUE if ni > n2 & n2 > n3 . . - and

FALSE otherwise.

E x a m p l e :  (GT 10 7 4 )  TRUE -

• LT

LI means less t h a n .  I t  takes a t u p l e  as argument .

(LT nl n2 n3) e v a l u a t e s  to TRUE if  n l < n2 ~ n2 < n3

and FALSE otherwise.

E x a m p l e :  (LT 20 20)  ~ FALSE

• GTQ

GTQ stands for greater than or equal. GTQ takes a tuple

as argument . (GTQ nl n2 n3 . . . )  evaluates to TRUE if

nl � n2 & n2 ~ n3 . . .  and FALSE otherwise .

Example : (GTQ 5 4 4 2 )  e v a l u a te s  to TRUE

• LTQ

LTQ stand s for !ess than or equal. LTQ takes a tuple V I ~~

argument . ( LTQ ml n2 n3 . . . )  e v a l u a t e s  to VFRUE if

ml � n2 & n2 � n3 . . .  and FALSE otherwise .

Example: (LTQ 24 45 45) evaluates to TRUE

(

39

..—.-. — — ~~~~ VV - 
V ~, 4 ~~~~~~ .



C. Structural Functions

• IN

IN takes a 2—tuple as argument . (IN var s) evaluates

to TRUE if the value of the variable var is an element

of the set , bag, or tuple denoted by s.

Examples :

(IN 4 (BAG 5 A 4)) ~ TRUE

(IN $Z (SET 1 9 XX YY)) ~ TRUE when Z is bound to XX

(IN 9 (TUPLE 6 7 8 9)) ~ TRUE

• CONS

CONS takes a 2—tuple as argument. (CONS x s) returns the

results of inserting the value of x as an element of the

value of S. If s has a tuple as value , the value of x is

inserted at the front. We cannot say anything about the p o s i t i o n

of the added element if the value of s is a bag or a set. 
V

Example : (CONS JANE (TUPLE JANE CABBAGE 3))

(TUPLE JANE JANE CABBAGE 3)

Example : (CONS JANE (BAG JANE 3 SPINAC}’~ ) ~

(BAG 3 JANE JANE SPINACH))

Example: (CONS JANE (SET JANE CAULIFLOWER 2))

(SET 2 JANE CAULIFLOWER)

40

V 
~~~~~~~~~~~~~~~~~ 

V

• NIH

NIH takes a 2—tuple , (t n), as argument; the first element ,

t , is a tuple and the second element , n , is a number . Its

th
value is the n element of tuple t.

Example: (NTH (TUPLE C B A) 2) B

• APPEND

APPEND takes a tuple as argument . If the elements are

tup les themselves , APPEND concatenates them.

Example : (APPEND (TUPLE 1 A) (TUPLE A 2) (TUPLE 3 B))

(TUPLE 1 A A 2 3 B)

If the elements are sets , APPEND takes their set union .

Exam p le : (APPEND (SET 1 A) (SET A 2) (SET 2 B))

(SET 1 2 A B)

If the elements are bags , APPEND takes their bag union , i.e.,

i t preserves the m u l t i pl i c i t i e s of the elements.

Example : (APPEND (BAG 1 A) (BA G A 2) (BAG 2 B))

(BAG 1 2 2 A A B) -

• INTERSECTION

INTERSECTION takes a set of sets as its argument; its

value is the intersection of the elements of the argument.

Example: (INTERSECTION (SET 1 A) (SET A 2)) (SET A)

41

V
- V V~~ V ~~~~~~~~~~~~~~~~~~ -

• DIFFERENCE

DIFFERENCE takes a tuple of sets as its argument .

(DIFFERENCE Sl S2 S3 . . .) computes the set—theoretic

difference between Si and (APPEND S2 S3 . . .) ; that is,

the set of elements which belong to Si but which do not

belong to (APPEND S2 S3 . . .) .

Example : (DIFFERENCE (SET 1 A 2 B) (SET 1) (SET 2 3 C))

(S E T A B)

S

42

V — — -
—

V
-

~~~~~~



III PATTERN \L~TCH IN G

A. Introduction

Expressions are taken apart and their components are named through

the use of the pattern language . Pattern matching takes place during

the execution of statements , lambda binding, data base retrievals , and

va r ious  other  opera t ions  to be expla ined in the fo l lowing  sections .

Pa t t e rn s  and a rgumen t s  can be a r b i t r a r y  QA4 expressions . A simple

example  is the following assignment :

(SE TQ ( TUPLE —X .-Y) ( TUPLE 1 2 ) )

The pattern (TTJPLE —X —Y) is matched with (TUPLE 1 2 )  and v a r i a b l e s

X and Y will be bound to 1 and 2 respectively. If the pattern matche r

cannot match a pattern with an argument , a condition known as failure

~
V jll occur. This possibility is discussed in the section on failure ,

VI—D. The same decomposition process as described for SETQ takes place

during lambda bi nding .

E x a m p l e :  ( LAMBDA (TUPLE .—X —V ) (TUPLE SY SX)) (TUPLE 1 2)

(TLPLE 2 1).

Example : ((LAMBDA (SET 3 (TUPLE .—X 4)) SX) (SET (TUPLE 5 4) 3))

eva lua tes to 5 .

Example: EXISTS is a built—in QA4 statement to retrieve

expressions from the data base. Note that the

existential quantifier is called EX and is not

the same as the EXISTS construct .

43

V V 
‘ - - .-. -~~~~ - ‘.



(EXISTS (RED N —OBJECT)) searches the data base

for aki object asserted to be red and binds OBJECT

to tha t object .

As an example of the gain of clarity consider the following example:

Suppose L is a list of the form (IC Y (V W)) and we want to set variable

K to the rearranged list (V W (X Y)). In LISP we would write

(SETQ K
(CONS (CAADDR L)

(CONS (~ADADDR L)

(CONS (CONS (cAR L) (CONS (CADR L) NIL)) NIL))))

or , more efficiently,

(SETQ M (CADDR L))

(SETQ K

(APPEND M

(LIST (LIST (CA R L) (CADR L))) )) .

Although the operation described here is conceptually simple , it is

quite impossible to see what is going on. In QA4 we would write:

(SETQ (TUPLE —X —Y (TUPLE —V .-W))

$L)

(SETQ —K

(TUPLE $V SW (TUPLE $X $Y)))

The QA4 representation is clearer because it is more pictorial. Notice

that the QA4 representation is almost identical to the English wording .

44

V V 

V ~~~~~~~~~~~~~~~~~~~~~ 
V



The p a t t e r n  l a n g u a g e  makes i t  poss ib le  to s p e c i f y  an expression

by g i v i n g  a p a r t i a l  descr i p t i o n .  For e x a m p l e , to search fo r  an expres-

sion asserting that some door connects two rooms ROOM1 and ROOM2, y e

execute

(EXISTS (CONNECTS —DOOR ROOM 1 ROOM2)) . V

We see here an example of the use of an a p p l i c a t i o n  (CONNECTS —DOOR

ROOM1 ROOM2) that will not and cannot be evaluated . The expression is

always used in quoted form . We will use this technique often in repre-

senting predicates in QA4 .

When matching sets and bags , an element of nondeterminism can

enter.

Example: (SETQ (SET —X .—Y) (SET 1 2))

The two possible assignments are X ~ 1, V 2, and X 2, V 1.

The pattern matcher of the QA4 language implementation is able to

recognize the different alternatives , to choose one , and to produce

the ‘ next ” possible set of bindings on request. How this nondetermin—

ism is used for programmi ng purposes will be explained in the section

on program con trol , Section VI.

B Patterns

We will now introduce the reader to the variety of patterns that

can be used in QA4, and to their interpretation .

(

45

. — -- —---- V-- V 

V 
V ~~~~~~~~~ ‘V _~~~~ - V V .



I. Constants

Constants are identifiers without prefixes. A constant occur-

ring as a su b p a t t e r n  in  a p a t t e r n  w i l l  match only another instance of

i t s e l f , e . g . ,  ( S ETQ - ~) succeeds , a l t h o u g h  i t  does not actually rebind

an y t h i n g . ( SETQ A B) t a i l s .

2 .  Va r i ab l e s

A v a r i a b l e  is an i d e n t i f i e r  p re f ixed  by one of the symbols

5, —
‘ 

? , $8, —,

Example: —X

??COLEEN

—IDENT

Note that —X and $X represent the same variable with different prefixes

reflecting their differing roles . Var iables are used in a var iety of

ways in QA4. Variables need prefixes in order to resolve such ambigui-

ties in pattern matching as the following : Suppose the language did

not use prefixes , and we executed the statements: (SETQ X 4) and

(SETQ (TUPLE X y) (TUPLE 1 2)). Should the match of (TUPLE X y) with

(TUPLE 1 2) fail because X already has value 4, or should the match

succeed , rebinding X to 1 and binding Y to 2? In QA4 we solved this

dilemma by explicitly stating with the aid of variable prefixes what

action we want to be taken , as we will see in the next section .

46

V - —V------ . .- - — V 
V

V 
~~~~~~~~~~~~ - -~ — V j ,, •4~ VV~VV


Prefixes are also n e c e ss a i ’ : to distinguish variables from

constants: Unprefixed identifiers always have themselves as value.

3. The Prefixes

We will now discuss the various prefixes in detail.

a . — v a r

The prefix — permits its variable to take a new value.

Example : (SETQ —IC 4) w i l l bind IC to 4 .

(SETQ (TUPLE —X 2) (TUPLE 1 2)) w i l l b ind

X to 1, overriding the previous binding of

IC to 4.

The new value of the variable is retained after the success-

ful completion of a match. If the match fails or if a later program

f ai lu re occurs , the old value of the variable is maintained . Note that

within a single expression different occurrences of a variable , X, must

a l l he bound to i d e n t i c a l expressions : e . g . ,

(SETQ (BAG —X —X) (BA G 2 2)) w i l l succeed in binding X

to 2 but

(SETQ (BAG —X —X) (BAG 2 3)) will fail.

This restriction also holds for variables with other prefixes as well.

b . ?var

Variables prefixed by ? match a single element . ?var

mat ches an express ion ex p i f

47

VV

~~~~~~~
V VV

~~~ 
V - V V

V

• var already has value

• var has no value.

In these cases var will be bound to exp after the match has taken place .

If var has any valu e other than exp, the match will fail. Notice that

?var only d i f f e r s f rom — v a r when var has a v a l u e .

Examp le: (SETQ —IC 5)

(SETQ (TUPLE 3 ?X) (TUPLE 3 5)) succeeds, but

(SETQ —X 5)

(SETQ (TUPLE 3 ?X) (TUPLE 3 2)) fails .

c. $var

Whereas variables prefixed with — or ? can only appear in

pa tterns , variables prefixed with $ can appear at arbitrary places in

QA4 expressions. Furthermore, a va riable with prefix $ is generally

expected to have a value when it is used . Svar matches exp if and only

i f var already has val ue exp .

Example: The sequence (SETQ —IC 4)

(SETQ (TUPLE SX 2) (TUPLE 1 2)) fails ,

but if K had been bound to 1 with

(SETQ ‘-IC 1)

the match would have succeeded .

48

V V V~~~~~
V -

. I.•

I n an e x p r e s s i o n o t he r t h a n a p a t t e r n t ’ be ia t ched

Svar is t a k e n to mean t h e v a l u e of v a r . Thus , th e seque nce

(SETQ —X B)

(SETQ (TITLE A B) (TITLE A S I C)) ~ il 1 succeed .

Typi c a l ly , l ambda e x p r e s s i o n s have v a r i ab l e s V
~V j t h prefix

— in the bound variable part; if we w a n t to r e f e r to the bindings of

those variables in the body of the lambda expression , we use the same

variables with prefix S.

Example: Suppose we want to define a simplification rule

for addition . The function defined by

(LAMBDA (ADDITION --X 0) SIC) will have output 12

wh en appl ied to (ADDITION 12 0) .

The va lue of a v a r i a b l e may be a f u n c t i o n . Thus , ye can

d e f i n e a function by setting a variable to a lambda expression .

Example : A f t e r executing the sequence

(SETQQ —SIMP (LAMBD A (A D D I T I O N — IC 0) SX))

where SETQQ is a SETQ w h i c h does not evaluate

its second argument ,

(SETQ —V (SSIMP (QUOTE (ADDITION 5 0))))

Y will be bound to 5.

d. Summary of Prefix Types

We may summarize the differences hetaeen the prefixes in

the following table representing the result of matching the variable IC

49

_____ V -~~
V V V ~~~~VV

V
V~~~~4~~~~ V VV V . ~~~~~~ ‘ V

against the constant A. The vertical axis represents the prefix of X ,

and the horizontal axis represents the QA4 value of IC before matching ;

“unbound ” means the variable has no value. The item in the table rep-

resents the value of IC after the match , where NIL means a failure of

the match. If a match fails , the variable always has the value it

had previous to the attempted match .

X matched against A , for example (SETQ —X A)

(SETQ ?X VA)

or (SETQ $X A)

—
A unbound B

—IC A A A

?X A A NIL

NIL NIL

—VAR, ??VAR, $$VAR; Fragment Variables

The rules for matching a variable prefixed by —, ?? , or

8$ are analogous to those f or — , ?, and $ prefixes . However, va riables

with these prefixes will be bound to a fragment of a set , tuple , or

bag, rather than to a single element . These variables are called

fragment variables .

Example: (SETQ (TUPLE —x 4) (TUPLE 1 2 3 4)) will

bind K to the f r a gmen t (TUPLE 1 2 3) of

(TUPLE 1 2 3 4)

50

V - , . - V V~~ •,V

Examp le: If the statement (SETQ (SET 2 —X) (SET 1 2 3 I))

is execu ted , SIC a i l l the n e v a l u a t e to t h e t r a ~~—

ment (SET 1 3 -1) of (SET 1 2 3 1) .

C. The Fragment Variable Applied to Construction

A fragment variable can also be used in constructing a tuple , set ,

or bag . For instance , suppose ~~ are constructing a tuple one of whose

elements is a fragment variable , with prefix $8. The system then

assumes that the variable is itself hound to a tuple , v.hose elements

are then added to the original tuple.

V

Example : (LAMBDA (TITLE ——IC 4) (TUPLE 0 SSX)) applied to

(TUPLE 1 2 ~ 4) ~vill bind X to (TUPLE 1 2 3).

The body (TUPLE 0 $SX) evaluates to (TUPLE 0 1 2 3). If the body were

(TUPLE 0 $X), the value of the application would be (TL’PLE 0 (TUPLE 1 2 3)).

Example: (LA MBDA (SET A —‘--IC) (SET SSX 1)) applied to

(SET A B C D) will evaluate to (SET 1 B C D)

Note that the same variable can be used as a fragment variable arte r

having been bound as an individual variable.

Example : .A fter executing (SETQ —X (BAG A B))

(SETQ —Y (BAG B $SX .A)), V wil l hav e v a l u e

(BAG A A B B).

D. Mul tiple Matches

(By admitting patterns w ith sets , bags , or fragments, we have allowed

the possibility that a pattern may match the same exp ression in more than

one way . -

~~~~—, ~~~~~~~~~~~~ 
VV ~ - V V 

- 
V

“V 
V 

- ~~~ ~~~~~~~~~ ,V~~~~V VV



Example: (SETQ (SET —X —Y) (SET 1 2)) can either bind X to 1

and V to 2, or IC to 2 and V to 1.

When such nondeterministic matches are found , the system will choose

one of the possible matches . The alternative matches are made avail-

able through the failure and backtracking mechanism , which will be

explained in a later chapter. Now let us examine some other ways in

which nondeterministic matches can occur.

1. Tu ples

Nondeterministic matching occurs with the use of more than one

fragment variable .

Example :  (TUPLE —IC .—.--Y) (TUPLE 1 2 3 4)

V 

(~ means “matches .”)

with matches X (TUPLE) Y ~ (TUPLE 1 2 3 4)

IC ( TITLE 1) Y ~ (TUPLE 2 3 4)

IC ~ (TUPLE 1 2) Y (TL’PLE 3 4)

IC (TUPLE 1 2 3) V (TITLE 4)

and IC (TUPLE 1 2 3 4) Y (TUPLE )

Example : (TUPLE —X A —Y) ~ (TUPLE A B C A D E) matches

X~~~
( TUPLE), Y = ( T U P L E B C A D E )

X~~~ (TUPLEABC ), Y w (TUPL ED E )

52

V 

V 
~ V .:.p.V V



2. Sets

In sets and bags , only one fragment variable is allowed .

N o n d e t e r m i n i s t i c  m a t c h e s  occur with and without the use of fragment

variables .

Example: (SET —X —V —Z) (SET 1 2 3) matches

X 1, V 2, Z 3

X 2, V — 1, Z ~ 3, etc .

Example: (SET —X —Y ..-Z) (SET 1 2) ~V it h matches

X 1, V 1, Z 2

IC 1, V 2, Z 1

IC 1, V 2, Z 2

X 2, V 1, Z I

IC 2, V 1, Z ~ 2

IC m 2, V 2, Z 1

Note that two or more individual variables can be matched against the

same set element . However , if an element is in a set fragment to which

a fragment variable has been bound , no other variable may be bound t o

that element .

(

53

V ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ V
V - 

V - V~• V -~ - 
~~ P V ~~ V V V~~V 

~~~~~~~~~~~~ ~


Example: (SET —IC —Y —~—Z) (SET 5 6 7) matches

IC 5, V ~ 5, Z ~ (SET 6 7)

X ~ 5, V ~ 6, Z (SET 7)

IC ~ 5, V 7, Z (SET 6)

IC -
~~ 6, Y 5, Z (SET 7)

IC ~ 6, Y ~ 6, Z ~ (SET 5 7)

X ~ 6, Y ~ 7, Z (SET 5)

X ~ 7, V ~ 5, Z (SET 6)

X ~ 7, V ~ 6, Z ~ (SET 5)

X ~ 7, V ~ 7, Z ~ (SET 5 6)

However , the binding X 5, Y 6, Z (SET 6 7), for instance , is not

allowed .

3. Bags

In ba gs , as in sets , only one fragment variable is allowed .

The conventions for matching bags are slightly different from those for

matching sets. In bags we can have multiple occurrences of elements.

Examp le: (LAMBDA (BAG —IC —V —IC) body) (1 2 2) will bind IC

to 2 and Y to 1 with the body of the lambd a expres-

sion as scope .

Two variables in a bag cannot match the same element . Thus, (~ AG —X —Y)

does no t ma tch (BAG 1), whereas (SET —X .—Y) does match (SET 1)

54

V _ _ V
. V

V

V

Example: (SETQ (BAG —IC —Y —V —IC) (BAG A B A B)) ~,yjll bind

X to A , V to B, or IC to B , and V to A.

Example: (SETQ (BAG —x —IC .—Y) (BAG 1 2 3 1 3 2) matches

IC 1, V (BAG 2 3 3 2)

IC ~ 2, V ~ (BAG 1 3 1 3)

X ~ 3, V ~ (BAG 1 2 1 2)

E. Subpatterns

1. Tuples, Sets, and Bags as Elements of a Pattern

Patterns can have patterns as elements. Sets may have tuples

as elements , bags may have sets and ruples as elements , etc.

Example: The statement (SETQ (TUPL! .-.—X (TUPLE 3 4))

(TUPLE 1 2 (TUPLE 3 4))) will bind IC to (TUPLE 1 2).

Example: (LAMBDA (SET 2 (BAG —X —IC) (BAG —Y —1)) body)

applied to (SET (BAG 1 1) 2 (BAG 3 3)) will give

the matches IC 1, V = 3 and X 3, V — 1.

Example: (TUPLE (SET —IC —Y) (SET —Y —Z)) matches

(TUPLE (SET A B) (SET C B)) with

IC A

Y~~~ B

Z~~~ C

(

2. Find ing Subexp ressions

A pattern of the form (. . . p a t) , where pa t is a pattern ,

matches an expression if pat matches some subexpressio~ of that

expression .

E x a m p l e : (. . 2) (TUPLE (SET 2) 1)

(. . (BA G 2 3)) (BAG 2 3)

(TUPLE (. . —IC (. . —IC))) (TUPLE (SET A (TUPLE B))

(BAG C (TUPLE A))) with X A.

Use of the . . . construct may r e su l t in nondeterministic matches .

Example: (. . (TUPLE —IC (SET —Y))) (TUPLE A (SET (TITLE B

(SET C)))) w i t h X ~ A , V = (TUPLE B (SET C)))

or X B, Y C.

56

-
V

V
~~~

V
~~~~~~~~~~~~ V V V~~

V V
V

IV EVALUATION AND INSTANTIATION

In this section we will discuss the way statements and function

a p p l i c a t i o n s are e v a l u a t e d , and show methods f o r a l t e r i n g the mode of

evaluation.

When an application of the form (f x) is evaluated , first x and

then f is eva lua t ed , and the va lue of f is applied to the v a l u e of x .

Example: (SETQ —X (SF SY 2)) -

If F is bound to PLUS and V to 5, this statement will bind IC to 7.

However , s t a t e m e n t s do not ordinarily evaluate their arguments but

r a t h e r i n s t a n t i a t e t h e m . To i n s t a n t i a t e an express ion means to rep lace

the $ and ? v a r i a b l e s by t he i r va lue s .

Example: (RETURN (SF SY 2))

will return the value (PLUS 5 2) if F is bound to PLUS

and Y to 5.

An expression can be g iven a MODELVALUE . This MODELVALUE is

entirely independent of the value of an expression which is discussed

above . MODELVALUES can be assigned by a user to an expression with a

PUT or ASSERT statement (see Section IV—D) .

(

57

V V VI_ V V~

• Quot e

The QUOTE statement h-as the format (QUOTE e) . When th is

statement is evaluated it does not evaluate the expression e but merely

returns the unevaluated e as its value . The QA4 quote is the same as

the LISP QUOTE .

• The Quasi—Quote /

The quasi—quote / has the forma t (‘e) (Quine , 1965) . This

statement instantiates e and returns the instantiated expression as its value .

Example: (‘ (PLUS SIC 5)) (PLUS 2 7) when X has value 2.

• The Forced Eval =

If we want to evaluate an argument of a statement , which nor—

mal1~- would only be instantiated , we can apply the forced eval operator

= to the argument . Then the statement will be applied to the evaluated

argument.

Example: (RETURN (= (SF SY 2))

will return 7 if F is bound to PLUS and V to 3 .

• The Instantiation Inhibitor

Jf ~~ want to prevent the instantiation of a S variable that

appears in an expression that is to be instantiated , the prefix : is

added .
V

Example : (‘ (:SGOTOACTION ROBOT SIC)) (SGOTOACTION ROBOT ROOM1)

where IC is bound to ROOM1 .

58

V V V V ~~~V - - ~V V V
V ~VV

V
V - ~~~~~~~~~~~~~~~ -

V THE NET : ASSOCIATING INFORMATION WITH EXPRESSIONS

The QA4 expression may have many components. The character string

tha t we nor mally call an “expression” is only one of the components ,

namely, the syntactic form , of a complete QA4 expression . Other compo-

nents of an expression can be its MODELVALUE , how many times it has

been accessed , or other arbitrary information entered by the user.

A. Internal Format of QA4 Expressions

The assertion that a box is in a certain room can be represented

by a QA4 expression w it h syn tacti c component (INROOM BOX 1 ROOM1) and

value component TRUE . We may add other components too, for instance ,

an indication as to how this expression was derived . The whole expres-

sion is represented as a property list with the syntactic component of

the expression stored under an indicator. A QA4 expression might look

like:

(NETE XPRESSIO N NA ME 43

EXPV (SET 1 2 3)

COLOR RED

LENGTH 3 ...)

Properties are of two kinds:

• Syntactic——These are never changed by the user once the

expression is created . Examples are :

OCCURSIN , a list of pointers to the superexpressions ;

NAME, a number uniquely assigned to this expression
by the system.

59

- - ~
__

~~~~~~~~ V V V

V 

-



• Semantic——These may be changed by the user at any time .

Examples might be: MODELVALUE , the indicator for a user——

assign ed v al u e o f an expression; COLOR , SIZE .

B. Entering a New Expression in the System

When a new syntactic form is typed in or constructed by a program ,

i t  is entered i n t o  a d i s c r i m i n a t i o n  n e t .  A p rope r ty  l i s t  is cons t ruc ted

having the syntactic form as one of its properties , under the indicator

E XPV ; thi s property list is the QA4 expression , and it becomes a new

node in the net . If , at some later time another form is entered that is

i d e n t i c a l  to the  f i r s t , cons ide r ing  possible set and bag p e r m u t a t i o n s

and change of bound v a r i a b l e s , then the new fo rm is recognized as being

the same as the old and no new QA4 expression is constructed .

For instance, suppose we enter a new syntactic form (COLOR FLOWER

YELLOW) . Then the net is searched for other instances of the same form.

Finding none , the system constructs a QA4 expression with syntactic com-

ponent (COLOR FLOWER YELLOW) and inserts it as a new node in the dis—

crimination net (Minsky 1963)

Suppose that at some later time the same form (COLOR FLOWER YELLOW)

is constructed . The system then passes this form through the net and

identifies it with the QA4 expression it has already constructed , rather

than constructing a new one .

6)

- ~~~~~~~~~~~~~ —------ 
- 

- - V_ - — V V 
V

V — V V V V ~~~ ~~~~~~~~~



C. Advantages of the Net Storage Mechanism

The net mechanism makes it possible to store properties on expres-

sions in the same way that LISP stores properties in atoms . We may pass

a given syntactic form through the net to retrieve the property list on

which tha t form appears . This property list is the QA4 expression whose

syntactic component is the given form.

The discrimination net is also valuable for retrieving items from

the data base . Given a pattern , we can searc h the net for a QA4

\
express ion  whose s y n t a c t i c  component is matched by the  given p a t t e r n .

We will now describe the QA4 statements that search the net and

manipulate property lists.

D. Property List Operations

A series of operations is available to add or retrieve a property

under a certain indicator if the syntactic component of the expression

is given .

Example : (ASSERT (P A)) puts the property TRUE under indicator

MODELVALUE of the expression whose syntactic component

is (P A)

These expressions first retrieve the expression by dropping the

given syntactic form into the net. The expression is found on one of

the terminal nodes of the net and the appropriate action is t a k e n .

(

61

V - - V V~~~~VV V V V V V V V ~ V V - 
-V V~~~V~~V 

V ~



These statements do not evaluate their arguments , but they do

instantiate them; i.e., $ variables are replaced by their values , and

? variables that have values are replaced by those values .

1. PUT

Format : (PUT syntactic—form indicator property).

This statement puts the property under the indicator on the

expression with the given syntactic— form. The property is returned as

the value .

Example: When (PUT (TITLE A B) FATF~~R 24) is executed , the

express ion

EXPV (TUPLE A B) . . . )  becomes

EXPV (TUPLE A B) . . .  FATHER 24 . . .

and 24 is returned as value .

Example: (PUT (CLIMB SY) USE STABLE). Suppose SY has value

(BAG 2 2) and STABLE has value (TUPLE 1 A 2 B 3 C),

then the expression

EXPV (CLIMB (BAG 2 2)) . . . )

will be retrieved and transformed into

( . . .  EXPV (CLIMB (BAG 2 2))
USE (TUPLE 1 A 2 B 3 C) . . . )

2. GET

Format: (GET syntactic—form indicator)

This statement retrieves the expression , looks up the property

under the given indicator and returns this property.

62

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ V ~~~~V_V~~~~~~~~~~~~ 
,
~~~~~ ,, 

V

V - - V~~ V V~ ~~~~~~~~ ~~~~~ V V V V



Example: If IC has value A , and if the PUT in the first

examples of section 1 has been evaluated ,

(GET (TUPLE SIC B) FATHER) returns value 24.

3. ASSERT

Format: (ASSERT syntactic—form) .

ASSERT is a PUT statement which puts property TRUE under ind i-

cator MODELVALUE of the expression whose syntactic component is the

given syntactic form .

Example : (ASSERT (P A)) TRUE

Example : (ASSERT (P SX)) TRUE , with X A.

This assertion is identical to the first one .

Example: If R is bound to ON

(ASSERT (SR CUP SAUCER)) puts property TRUE under

indicator MODELVALUE of the expression corresponding

to (ON CUP SAUCER ).

4. DENY

Format : (DENY syntactic—form) puts the property FALSE under

the indicator MODELVALI’E on the property list of the expression .

Exa mple : (DENY (RAINY WEATHE R))

Example: (DENY (RED CUBE))

Note that (GET (RED CUBE) MODELVALUE) will now return FALSE .

63

_______________ V V •_ V V 

~~~ 
• _ ~~~ VV VV V V -~ - V ~~~~~~~~~~ V VV~~~

•
~V V

3. SETQ

Format: (SETQ pattern exp)

The SETQ statement matches pattern against the result of eval-

uating exp . The variables in the pattern are bound to the expressions

against which they match.

A variable , like other syntactic forms , is the syntactic com-

ponent of a QA4 expression , which is a property list . When a variable

is bound to an expression , t h a t express ion is s tored as a property under

the indicator MODELVALUE .

Example : (SETQ —X 4)

4 will be stored under indicator MODELVALUE of

the QA4 expression whose syntactic component is X.

Example: (SETQ (TUPLE —X —Y) (TUPLE 1 2)).

For more examples see Section IV on patterns . Note that if the match

is nondeterministic , more than one assignment can be made. However , the

system will choose one assignment , while the alternative choices for

assignments are available through the backtrack mechanism (Section IV—D—l)

6. SETQQ

Format: (SETQQ syntactic—form exp)

Iden tical to SETQ except that this statement does not evaluate

~~~~~~~~ SETQQ is handy  f o r  d e f i n i n g  f u n c t i o n s .

Examp le: (SETQQ —ADD1 (LAMBDA .-X (PLUS SIC 1))).

64

V V~~~ 

V 
V V V V ~~ V~~~~~~V ~~~~



7 . EXISTS

Format: (EXISTS pattern m d l  propi ind 2 prop2 ...)

The EXISTS statement tr~ es to find an expression in the net

whose syntactic component is matched by the pattern, and whose property

under indicator m d l  is propi, under indicator ind2 is prop2, and so

forth. If no indicators and properties are includ ed as arguments to

EXISTS , the system behaves as if indicator MODELVALUE and property

TRUE were specified as arguments. If the statement (EXISTS pattern

IGNORE MODEL VALUE ) is execu ted , the MODELVALUE of the net expressions

will be disregarded . In case more than one m a t c h  is possible , one of

the  fo rms  is cnosen to be the  value . In thi s case a “backtracking

point ” is established which makes it possible to obtain the other

matching syntactic forms . If no expression is found , a “failure ”

occu rs . When an expression is found , the variables of pattern are

bound to the appropriate parts of the expression . (For backtracking

and the FAIL mechanism see Section VI on program control.)

Example: (EXISTS (P —IC)) (P A) if (P A) has been asserted

prev ious ly .

Example : (EXISTS (—F 4) COUNT 20) (.ADD1 4) if (ADD1 4)

is in the net with COUNT 20 on its property list.

65

______________________ ~~~~~~~~~~~~~~~~~~~~~ - _ _ _ _ _ _ _  - - V

- 

~~~~~
--• -- - -

V
.V ~~~~~~~~~

V V . V

8. INSTANCE S

F o r m a t : (INSTANCES p a t t e r n m d l prop l i~~d2 prop2 . . .)

The INSTANCES s t a t e m e n t is s i m i l a r to EXISTS , but it r e t u r n s

a set whose e l e m e n t s are a l l poss ib l e m a t c h i n g sy n t a c t i c fo rms . The

v a l u e s of v a r i a b l e s are unchanged .

Example: (INSTANCES (P —X)) (SET (P A) (P 4) (P (ADD1 23)))

(INSTANCES (FA —X (OR (—P SIC) (NOT (—P —X)))))

(SET (FA Z (OR (HUMA N Z) (NOT (HUMAN Z))))

(FA Y (OR (BIG Y) (NOT (BIG V))))) -

All statements in this section have an optional last argument. This

argument specifies a context . The section on contexts will explain

this feature in detail.

66

-_~~V • ~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~VVV ~~~~~~~~~~~~

V ~~~~~~~~~~~~~~~~~~~~~~~~~~~

VI PROGRA M CONTROL

A. Overview

QA4 o f f e r s some unusual ways of governing the flow of control in

a program such as backtracking and pattern—directed function calls.

These techniques have proven to be usefu l in so many problem—solving

programs that it is worthwhile to include them as language features.

B. Backtracking

1. Setting Up a Backtracking Point

Whenever any indeterminacy occurs during the execution of a

program , the system makes an arbitrary choice between the alternatives ,

and , only on user request for SETQ and lambda expressions , establishes

a “backtrack ” or “choice ” point in the program (Golomb 1965) . At a

backtrack point a “snapshot ” of the world is taken , which makes it

possible to restore the s t a t e of the sy s t em as i t was when the po in t

was created , make an a l t e r n a t i v e choice , and resume execut ion f rom

immediately after the backtrack point .

Example: Suppose we execute (EXISTS (TYPE —N BOX)), and that

we have prev ious ly asse rted (TYPE A BOX), (TYPE B BOX),

and (TYPE C BOX). The system establishes a choice

point at this position in the program. One of the

first three assertions is chosen , say (TYPE A BOX),

N is bound to A , and execution resumes. If a

failure occurs later in the program , control returns

67

_ _— - - V V ~~~ V V~~V ~~V V - - - V - V - — V

to the choice p o i n t , the s t a t e of the s y s t e m I s

restored to what it was when the point was estab-

lished , and a different assertion is chosen , say

(TYPE B BOX) . Then N is bound to B, and execution

continues immediatel y after the EXISTS statement .

Example: (SETQ (SET ‘-X —Y) (SET A B C) BACKTRACK)

A SETQ (as well as a lambd a expression) must have

BACKTRACK as third argument if it is to cause the

e s t a b l i s h m e n t of a choice po in t . The f i r s t t i m e

th i s SETQ Is ev a lua ted , IC will be bound to A , B,

or C, and V to the set of remaining elements.

Suppose IC is bound to A; then V will be bound to

(SET B C) . A failure afterwa rds will cause a

return to the backtrack point . Then IC and V will

be rebound , say to B and (SET A C), and execution

proceeds immediately after the SETQ .

Example: Suppose CHOICE is bound to the lambd a exp ression

(LA MBDA (SET —IC --.--Y) SIC BACKTRACK) and the following

program is executed.

(SETQ —U 23)

(SETQ —Z (SCHOICE (SET SU B C)))

(SETQ —U (PLUS 2 SU))

68

V

V
- V ~~~~~~~~~

When the app l i c a t i o n of SCHOICE to (SET SU B C)

is e v a l u a t e d , a back t rack po in t is es tabl i shed and

Z is bound to an arbitrary element of the set.

Then U is rebound to 25. If then a failure occurs

in the execution of the program , control passes

back to the choice point , the application of

$CHOICE to (SET $U B C), the value of U is restored

to 23 and another application of SCHOICE to the

set is made.

Exam p le : Suppose we execu te

(EXISTS (CONGRESSMAN —IC))

(ASSERT (PRESIDENT SX))

Then X is bound to an arbitrary congressman , who

is then asserted to be president . If a failure

occurs af terwards , control returns to the EXISTS

backtrack point , the system is restored so that

the chosen congressman is no longer asserted to

be president , and a new congressman is chosen .

C. The Goal Mechanism

One of the most widely used problem—solving techniques is the

problem—decomposition method . Given a goal to achieve , first an attempt

is made to f ind a so lu t ion d i r e c t l y . If no immed ia t e so lu t i on is found ,

69

the problem is broken down into subgoals. Each of the subgoals is no~

tried separately . QA4 makes it easy to use a goal/subgoal approach to

solving a prob lem.

To encourage and simplify use of the subgoal method , QA4 provides

the GOAL construct , a mechanism for activating appropriate functions

without calling them by name .

1. The Goal Statement

The general format of the goal statement is

(GOAL goal—class goal—expression indicatorl propi

indicator2 prop2 - . .)

An example of a goal statement is

(GOAL SDO (STATUS LIGHTSWITCH1 ON))

The GOAL statement will first act as an application of the

EXISTS statement to theV goal exp ression with the given properties .

When no proper t ies are given , the d e f a u l t pa i r MODEL VALUE TRUE is

given . In our example a search is made in the net fo r the expression

(STATUS LIGHTSWITCH1 ON) with indicator—property pair MODELVA LUE TRUE

on its property list. If the lightswitch is already on, that is , at

some earlier time the assertion

(ASSERT (STATUS LIGHTSWITCH1 ON))

was made , the retrieved expression is returned as value of the GOAL

statement. However , in general , no matching expression is found in the

70

data base . In that case a function is activated . This function should

be applicable to the GOAL expression; tha t is , its bound variable should

match that expression . In our case we would look for a function that

would apply to the expression

(STATUS LIGHTSW ITCH1 ON)

To limit the number of applicable functions a further restriction is

imposed , that the function be included in goal class, the first argu-

ment of the GOAL statement . The value of goal class has to be a tuple

with function names as elements. These functions are the functions that

will be applied in turn to the goal expression . In our example ~e

could have assigned to SDO the value (TUPLE TURNONLIGHT SEARCHFORSWITCH) .

In that case the function $TURNONLIGHT would be activated . If

$TURNONLIGHT ’s bound variable did not match (STATUS LIGHTSWITCH1 ON)

or if the function failed (see the next sectia~~ somewhere in i t s

evaluation, control would return to the GOAL and now SEARCHFORSWITCH

would be activated .

It is possible for a program to be included in several goal

classes . This is a way of expressing that a program is usefu l for

achieving more than one kind of goal. A detailed example of the working

of the goal mechanism is given in Section X and in the third example of

Section VII—D—2 .

I

71

D. Failure

When during evaluation of a program or arbitrary QA4 expression a

failure is generated , the system will return to the most recent back-

track point in its history . Failure can be caused in the following

ways

• Failure of a match

• Exhaus t ion of a l l possible a l t e r n a t i v e s at a choice po in t

• User—invoked failure : the FAIL statement .

We will now give examples of each of these types of failure .

1. Failure of a Match

Example : (SETQ (TUPLE .—IC A) (TUPLE B C)) causes the system

to fail and return the most recent backtrack point .

Example: (SETQ (BAG —X —IC) (BAG 1 2))

Example: (LAMBDA (—FOO (TUPLE A —.--X)) (SF00 SIC)) ~ill cause

a failure when applied to argument

(FUNCTION1 (TUPLE B C D))

because the bound variable pattern

(—F OO (TUPLE A —‘-IC))

does not match the argument (FUNCTION1 (TUPLE B C D)).

2. Exhaustion of Choices

It is possible to return to a backtrack point (in QA4 jargon ,

“fail back ”) too ften and exhaust the set of possible choices. The

following examples illustrate this exhaustion for several QA4 constructs.

72

V V
V -

V
V~

V
V~~ I f VV ~,,V ~~~ V V

Example: (SETQ (SET —X —Y) (SET 1 2) BACKTRACK)

Evaluation of thi s expression will establish a

backtrack point and bind X to 1 and Y to 2. Fail-

ing back to the ~ETQ establishes the binding IC ~ 2,

Y ~ 1. If a failure occurs once more in the sub-

sequent program , no new binding is possible and

the statement fails.

Example: (EXISTS (TYPE —M BOX))

A backtrack point will be established the first

t ime t h i s expression is encountered . Suppose

we have asserted (TYPE BOX1 BOX), (TYPE BOX2 BOX)

and (TYPE BOX3 BOX) ; then f a i l i n g to the EXISTS

‘~il1 Jel iver success ivel y the bindings W~Xl , BOX2 ,

and BOX3 for M . A fourth try, however, will cause

a failure .

Example : (GOAL $D0 (INRO OM BOX 1 ROO M 4))

The programs GO1 and PUSH are put into the goal class

$DO by evaluating (SETQ ‘-DO (TUPLE GOl PU SH)). If

no assertion (INROOM BOX1 ROOM4) has been made,

programs in the goal class SDO are evoked .

Suppose GO1 is activated but the bound variable

of GO1 does not match the goal expression

(INROOM BOX1 ROOM4); then the other member of the

~~
jl class SDO, the function PUSH, is tried .

73

~~ ~~~~~~~~~~~~~~~ V
V

—

Suppose that the bound variable part of PUSH

does match (INROOM BOX1 ROOM4) but that some failure

occurs in the execu t ion of the PUSH program. Then

control returns to the GOAL statement; however ,

there are no other functions in the class DO, so

exhaustion of the choices causes the GOAL statement

to fail.

3. Explicit Failure

An explicit failure can be evoked by the statement (FAIL)

The following examp le uses the IF statement explained in the next

a
section .

Example: (IF (GT $EFFORT 20)

- THEN (GO LABEL1)

ELSE (FAIL))

E . C o n d i t i o n a l S t a t e m e n t s

A conventional IF statement is provided . A less conventional

ATTEMPT statement allows us to b r a n c h on f a i l u r e s .

1. IF Statement

The IF statement has the general form

(IF e
1
e
2

. . . e THEN e ’ e~ . . , e ’ ELSE e e” . . . e~)

The exp ressions e . . . e are evaluated in order. If the value of the
1 n

last exp ression e is FALSE the ELSE part , C , C” , . - .,e” , is evaluated
n 1 2 k

74

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
—

- V V~~~~ V VI~~~~~~~~~ V V

in order and the value of the last expression e” is returned as the

v a l u e of the IF s t a t e m e n t . I f the v a l u e of e is anything other than
n

FALSE the THEN part is evaluated , that is e ’, e ’, . . ., e’ are evaluated
1 2 a

in order and the value of the last expression e ’ is returned as value
m

of the IF statement.

Example: In this example we will use the GO statement ,

which is similar to LISP ’s GO and will be

explained in Section F—3 .

(IF(EQ SX 3) THEN (SETQ —FLAG SUCCESS) (PLUS SX 2)

ELSE (SETQ —FLAG ~V1ISSED) (GO AA))

If the value of IC is 3, then FLAG will be set to

SUCCESS and 5 r e tu rned as v a l u e . If the v a l u e of IC

is not equal to 3, FLAG will be set to MISSED and

control of the program will be transferred to the

statement following the label AA.

The THEN or the ELSE part of an IF statement can be omitted .

If the ELSE part is omitted , and the value of e is FALSE , the IF
n

statement returns the value of last evaluated expression , in this case ,

the va lue of e
n

: FALSE . If the IF appears as one of a sequence of

exp ressions , control will pass to the next statement . When the THEN

part is omitted and the value of e is not false , the conditional
n

(returns the value of e -
n

I0

V ~ V V

V ~~~
VJ~~~~~

V
~~~~~~~e V



Exa mple: (IF (SIS BLUE BOIC1) THEN (SPAINT BOX1))

($WRA P BOX1)

If the box is blue , it aill be painted as well as

wrapped ; otherwise , it will simply be wrapped .

2. Attemp t Statement, Limiting the Scope of Failures

The ATTEMPT statement has the general form

(ATTE MPT e e . . .  e THE N e ’ . . .  e ’ .. .. e ’ ELSE e e” . . .  e” )
1 2  n 1 2 a 1 2  k

I t s  e v a l u a t i o n  is similar to that of the IF statement , with failure

playing the role of the value FALSE . The expressions e , e , . -
1 2 n

are evaluated in turn , but if one of them generates a f a i l u r e , co n t rol

is passed immediatel y to the ELSE part . If none of the e , e~ , . .
1 2 n

fails , control is passed to the THEN part.

Example: (ATTEMPT (SETQ —IC 4)

(FAIL)

.t-

THE N 3

ELSE 5

sv i l l  h ind IC to 4 and r e t u r n  5.

Example: (ATTEMPT (F A I L )

(SETQ —IC 4)

THEN 3

ELSE 5

will not change the binding of IC and will return 5.

76

-
. 

V - -- -_ V ~~~~~~~~~~~VV - V - V~~~~ V_ V~~~~~~~~~ V 
• , 

V

V V



The ATTEMPT s t a t e m e nt  can be used without the THEN or the ELSE part.

a. (ATTEMPT e
1
.. .e) is very useful for protecting against

unwanted returns caused by failure to backtrack points

outside the ATTEMPT . A failure in the ATTEMPT will not

fail back to a backtrack point outside its scope——the

ATTEMPT s t a t e m e n t  w i l l  not t r a n s m i t  a f a i l u r e — — i n s t e a d

ATTEMPT w i l l  r e t u r n  v a l u e  FALSE .

b .  (ATTEMPT e . . . e  THEN e ’ ...e ’) .  In case of f a i l u r e  in
1 n 1 m

e . . .e the ATTEMPT returns with value FALSE .
1 n

c . (ATTEMPT e ...e ELSE e” . ..e~ ). If no f a i l u r e  occurs in
1 n 1 k

e . .  .e the value of e is returned as value of the
1 n n

ATTEMPT .

E x a m p l e :  The f o l l o w i n g  examp le is t a k e n  f r o m  the  robot

problem described in Section XI. Suppose the robot

has moved and we want to update the model of the

robot world accordingly. Then we have to retrieve

and deny those facts that are no longer t rue , us ing

such statements as the following :

(ATTEMPT (SETQ —IC (EXISTS (NEXTTO ROBOT —Y)))

THEN (DENY $X)). If an assertion of the form

(NEXTTO ROBOT —V) is found then IC is set to the

retrieved expression and the THEN part of the

77

V 
- V - 

V V+~~~~~~~~~~
V
~~~~V V V V V~


ATTEMPT is e v a l u a t e d . Suppose the expression found

was (NEXTTO ROBOT DOOR7); then DENY makes the MODELVALUE

property of the exp ression FALSE . if no matching

expression is found , the EXISTS generates a failure .

The ATTE MPT returns FALSE as its value in this case .

F . The PROG Fea tu re

1. PROG

V A PROG feature similar to LISP ’s PROG is included . The

general fo rm of the PROG s t a t emen t is

(PROG (DECLARE var . . . var) e - . . e
1 n 1 n

Example : (PROG (DECLARE IC Y)

(SETQ —X 4)

(SETQ —Y 9)

(SETQ —IC (PLUS SIC SY))

(RETURN SX)) .
V

Local variables are declared with the DECLARE statement . Notice that

no prefixes are used for the variables .

2. RETURN

For leaving the PROG the RETURN statement is used . The gen-

eral form of the RETURN statement is

(RETL’RN e)
‘S

78

— - . V V) V V V - -
V

~~~~~~~~ V



W h e n RETURN is execu t ed , t he  PROG in  w h i c h  it occurs -~i1l he exited

V
V V i t I I  it~ instantiated argument e as value.

Example: (PROG -

(RETURN (INROOM BOX1 SZ)) - -

I f  Z has the value ROOM4 then (INROOM BOX1 ROOM4) will be returned as

value of the PROG . RETURN may appear at any level nested inside other

statements.

3. GO

Identifiers can be used as labels. The GO statement transfers

contro l to the statement following the label provided as argument of
a

the  GO. GO ma s- appear  at ans- level nested i n s i d e  o the r  s t a t e m e n t s .

Example: (PROG (DECLARE X TEMP)

AA (SETQ —X (PLUS STEMP 4))

(GO AA)

(

79

- - - - V  - V~~~V - - V ~~~~~~~~~~~~~

V 
V~~~~~V V~~~~~~~~~~V V Vr



Vu THE CONTEXT .\~~C1L-~NIS M

A .  Introduction

A ll properties associated ~ith an expression can he stored and

retrieved with respect to a ‘ context , ” a scope for binding a variable

or , more g e n e r a l l y ,  a scope for assignment of properties to an expres-

sion . Under the same indicator , one expression can have different

properties with respect to different contexts. The same variable can

have one value with respect to one context , and another value with

respect to another context . Contexts are a means for the user to

c rea t e  scopes fo r  p roper t i e s  of express ions  independen t l y of the block

a and calling structure of the programs .

To make an assignment of a value to a variable or of a property

to an expression with respect to a context means that the new value

or property is available within the context , but tha t any old value

or properties are still retained outside the context .

A statement tha t creates a new context is of the form:

(CONTEXT action old—context ), where action is either PUSH or POP while

old—context is one of CURRENT, GLOBA L, or $variable . To assign proper-

ties or retrieve expressions and properties with respect to a context

outside of the current one, statements that handle properties of

expressions are given an additional constant WRT (with respect to)

and Svariable as arguments . These statements include EXISTS . INSTANCES ,

GOA L , PUT, GET . ASSERT , DENY , and SETQ .

81 
- 

V

_ _ _  
B1~~A

T V V V V ;~ T~



E x a m p l e :  (EXISTS ( INROOM ROBOT ROOM 1 ) WRT SC)

B. C r e a t i n g  a Con tex t

The statement (CONTEXT PUSH old—context) has as value a new con-

text . If we use GLOBAL for old—c ontext the newly created context has

all top—level bindings available. When CURRENT is used for old—context ,

all bindings existing at the moment of evaluation of the context state-

ment are available . If old—context is some context SC, all the bindings

available in context SC will be available in the new context also .

Example: Evaluating

(SETQ ‘-NEWCONTEICT (CONTE XT PUSH GLOBAL))

will assign a new context to the variable NEWCONTEXT .

This context has all top—leve l bindings of the QA4

sys t em a v a i l a b l e .  Note t h a t  this assignment merely

names a new context and does not change the current

context .

C. Building a Tree of Contexts

We can build a tree of contexts by using Svariables as second

arguments (old—context) in the CONTEXT statement . The following

example demonstrates how such a tree structure is built and shows

what bindings are available at each node of a tree .

A ssume we have the top—level bind ings

(SETQ —X 2)

(ASSERT (SIGNAL RED))

82

V 
~V V~~ V~~~~~~~~~~~ •V V V



Then (SETQ — Cl (CONTEXT PUSH GLOBAL ))  \,,V i l l  c r e a t e  a new c o n t e x t  in

which X has value 2 and (SIGNAL RED) is asserted TRUE . I could pictur e

thi s as

7 GLOBAL

Cl

Ev a lua ti ng (SETQ —C2 (CONTEXT PUSH GLOBAL) ) w i l l  r e t u r n  a contex t

identical to Cl . The initial context now has two descendants. In a

diagram:

GLOBAL

Cl C2

If ‘ie want to assert the expression (SIGNAL RED) to be false in context

Cl , we can e va l u a t e  (DENY ( SIGNAL RED ) WRT S d ) .  N o t i c e  t h a t  in bo th

the global context and context C2 the expression (SIGNAL RED) still has

value TRUE .

Evaluation of

(SETQ —Cil (CONTEXT PUSH SC1))

and (SETQ —Cl2 (CONTEXT PUSH SC1))

wi ll crea te two descend ant nodes of node Cl . T~~ tree now looks like

83

___-- ---____ - - - -_ _ _ _ _ _ _ _ _  ________ - V



In both contexts Cll and Cl2 , the expression (SIGNAL RED) will have

v a l u e  FALSE , w h i l e  X has v a l u e  2 .  Thus , w h i l e  (EXISTS ( SIGNA L RED ) WRT Sdl2)

will fail , (EXISTS (SIGNAL RED) WRT SC2) will not fail.

D. Creating a Context by Referring to Foregoing Nodes in a Context Tree

We can create a new context by “popping ” contexts. The value of

(CONTEXT POP SCT) is the context of which CT was the descendant. In

our example

(CONTEXT POP SCll)

w i l l  have as v a l u e  context  Cl , wh i l e

(CONTEXT POP SCl)

w i l l  have context  GLOBAL as va lue .

E. An Example

We will now illustrate the use of contexts with a simple example .

In th i s  example we derive a goal under h y p o t h e t i c a l  a s sumpt ions .

Suppose we want to derive goal g under the assumption that the expres—

sion exp has MODELVALUE TRUE . We express t h i s  in QA4 as

(SETQ —Cl (CONTEXT PUSH CURRENT)

(ASSERT exp WRT $Cl)

(GOAL SPROVE ~ WRT $Cl)

The assertion of exp is made only with respect to the context Cl; exp

w i l l  not  have MODELVALUE TRUE ou t s ide  Cl .  A l l  changes in  the d a t a  base

made by the  d e r i v a t i o n  of the  GOA L are v i s i b l e  on ly  by r e f e r r i n g  to  the

c rea ted  con tex t  C l .  In t h i s  way the  user is given explicit contro l of

84



a mechanism tha t is usually tied to t h e  block or calling st r u c t u r e  ~

the p r o g r a m .  In  our e x a m p l e , we have a simple ~VwI ld ~ ith a robo t ‘those

environment consists of two rooms , a garden , and a roofed veranda

ROOM I R OOM 2

— — — 

1 

~~~~~~~~ 
G A R D E N

— — —

V E R A N DA

The robot is not w a t e r p r o o f and so uses the ve randa to go f r o m one room

to ano the r whenever it rains but goes through the garden when it is

sunny . A plan is needed to move the robot between the rooms . This

plan should work in both rainy and sunny weather. Thus , it must be a

conditional plan . The given program is not the simplest solution to

this specific problem , but is intended as a demonstration of the use of

contexts for derivation of goals under hvp . thetical assumptions .

In the initial state we assert the robot to be in ROOM1 by

entering

(ASSERT (ENRO OM ROBOT ROOM 1))

V At the time of the planning it is uncertain how the weathe r will be

when the plan is used , so we assert

(ASSERT (UNCERTAIN (STATUS ~tATHER RAINY)

((STATUS WEATHER S U N N Y)))

85

V
~~~~~~~~~~~~~~~~ ~~~~~~~~~~~ ~~~~~ - V V - 

V — V ~~ --

- ~~~~~~~~~~~~~~~~~~~~ V V



We will use three functions or op er a t or s :  GOROOM , GOTHR UGA RDEN , and

GOTHRUVERANDA .

GOROOM returns a plan for going  between rooms . This p l a n  w i l l

have thF robot take the appropriate route according to the w e a t h e r .

The version of GOROOM presented here is simplified and somewhat arti-

f icia l ;  however , it is meant mere ly to illustrate the use of the con-

text mechanism.

The operators GOTHRUGARDEN and GOTHRUVERANDA do the planning for

moving the robot from one room to the other through the garden and

verand a respectively.

The GOTHRUGARVDEN operator has as the precondition for its use that

the weathe r be sunny, while the GOTHRUVERANDA operator has the precon-

dition that the weather be rainy .

The operators are :

GOROOM , with definition V

(LAMBDA (INROOM ROBOT —ROOM)

(COMMENT this function applies to
expressions of the form (INROOM ROBOT
exp), where exp can be any expression.)

( PROG (DECLARE IC Y PLAN 1 PLA N2)
(EXISTS (UNCERTAIN

(STATUS WEATHER — IC )
(STATUS WEATHER .-Y)))

(COMMENT retrieve the given expression
from the data base and find IC and Y; X
and Y are complementary.)

86

- V ~~~~~~~~~~ 
V



(SETQ —Cl (CONTEXT PUSH CURRENT))

(COMMENT create a new context Cl wh i c h
contains all current bindings . Note
that the current context is not changed ;

this assignment m erel y names a new con-

text.)

(ASSERT (STATUS WEATHER SX) hBT SC1)

(COMMENT assert with respect to Cl
that the status of the weather is the
value of X.)

(SETQ —PLAN1
(GOAL SMOVE (INROOM ROBOT SROOM) WRT SCI))

(COMMENT make a plan for moving the
robot which takes into account that

V the weather has the previously

asserted value.)

(SETQ —C2 (CONTEXT PUSH CURRENT ))

(COMMENT create a second context C2
and repeat the planning under a dif-
ferent assumption . Note that all
changes in the data base made by the
first planning are ignored by the use
of a new context.)

(ASSERT (STATUS WEATHER SY WRT 5C2))
(SETQ —PLAN2

(GOA L SMOVE ( INROOM ROBOT $ROOM ) ~VR T 5 C 2 ) )

(RETURN
(‘(IF (EXISTS (STATUS WEATHER SX))

THEN S5PLAN1
ELSE
(IF (EXISTS (STATUS WEATHE R SY))
THEN $$PLAN2))))))

(COMMENT combine the two plans in a
program with a conditional. IC and V
are instantiated and the elements of
the values of PLAN1 and PLAN? are
inserted at the same level as T’i-IN

and ELSE .

87

________ - V - 
— V _ — —  — V -- V



/ A0 A0b2 440 S1APFORO RESEARCH INST 14111.0 PARK CALIF F/S 9/2
9A4 A PROCEDURAL CALCULLS FOR INTUITIVE REASOtIINS.(U)
NOV 72 4 F RULIFSOt4. 4 A OCRKSEN NASW—2056

UNCLASSIFIED TN 73 14.

2 4•jj .



GOTHR CGARDEN , wi t h definition

( L4.MBDA (INROOM ROBOT .-V)

(PROG (DECLARE Z)

(EXISTS (STATUS WEATHER SUNNY))

(DENY (EXISTS (= (INROOM ROBOT -Z))))

(ASSERT (INROOM ROBOT SY))

(RETURN Y (GOTHRUGARDE N SY)))))

GOTHRUVE RA NDA , with definition

( LAMBDA (INROOM ROBOT .—Y)

(PROG (DECLARE Z)

(EXISTS (STATUS WEATHE R RAINY) )

(DENY (= (EXISTS (INROOM ROBOT —Z))))

(ASSERT (INROOM ROBOT SY))

(RETURN (‘(GOTHRUVERANDA $Y)))))

The initial goal statement which starts the problem—solving process is

(GOAL SGO (INROOM ROBOT ROOM2))

The robot is initially in ROOM1, this fact is expressed by making the

assertion

(ASSERT (INROOM ROBOT ROOM1 ))

We will assign the operators to appropriate goal classes

(SETQQ —MOVE (TUPLE $GOTHRUGARDEN $GOTHRUVERA NDA))

(SETQQ —GO (TUPLE $GOROOM))

The operator GOROOM sets up two new contexts , Cl and C2. In one

of these contexts , say Cl , (STATUS WEATHER SUNNY ) is asser ted , and in

the other , C2, (STATUS WEATHE R RAINY) is asserted . In each of these

contexts the goal (INROOM ROBOT SROOM) has to be achieved , so that the

88



p l an  ~ill take both weather conditions into account. In context Cl ,

GOTHRLVERANDA will fail and GOTHRCGA RDEN vi ii succeed , while in con-

text C2. GOTHRUGA RDEN will fail and GOTHRUVERANDA will succeed . GOROOM

puts the two resulting plans togethe r into a single plan that will have

the robot check the weathe r and behave accordingly .

89



V I I I  A ROBOT SYSTE M

A. In troduction

The remainder of this chapter illustrates the application of QA4

to some simple robot problems .

QA4 has been designed with a specific problem—solving philosophy,

which it subtly encou rages it s users to adop t , and which is an out-

growth of our experience with its antecedent , QA3 . QA3 contained an

axiom—based theorem prover , which we attempted to use for general—purpose

problem solving . However, all knowledge had to be stored in the declara-

tive form of logical axioms , with no indication as to its use. When a

large nu mber of facts were known , the knowledge could not be used

effectively . The system became swamped with irrelevant inferences ,

even when supplied with several sophisticated syntactic strategies .

In contrast , QA4 can store information in an imperative form , as

a program (Winograd 1971). This makes it possible to store strategic

adv ice loca l ly  ra ther than globally. In giving information to the

system , we can tell it how that information is to be used . Strategies

tend to be seman tic ra ther than syn tactic . We are concerned more with

what an expression means than with how long it is. QA4 programs are

intended to rely on an abundance of know—how rather than a large

search in finding a solution . ~%e expec t our problem solver to make
/

few poor cho ices , and we try to give it all the information at our

d isposal to restrict these choices .

91 t t
N~~ W1IG PAGI RI i1~~—ilOT fl

- r



B. The Robot Problems

We will now examine the kind of knowledge we expect a robot

planne r to have , and the class of problems we expect it to be able to

solve . We will consider some problems of a type recently approached

by the SRI robot (Fikes 1971) (Raphael 1969). We will then be better

able to discuss the application of QA4 to this domain and the merits

of the QA4 approach .

We env ision a wo rld cons isting of several rooms and a corr idor ,

connected by doorways . There are boxes and other objects in some of

the rooms , and there are switches that control the lights. The robot

can move f ree ly  around the f loor , can pass between the rooms, can see

and recognize the objects, can push all the objects, and can cl imb up

on to the boxes . If the robot is on top of a correct ly pos iti oned box ,

it can switch the light on and off.

The first problem faced by the robot is to turn on the light in

one of the rooms . To solve this problem it must go to one of the boxes,

push the box next to the lightswitch , climb up on the box , and turn the

switch.

We supply the problem solver with a MODEL or representation of the

world , which includes the arrangement of the rooms and the positions of

and relationships between the objects. Furthermore , corresponding to

*Ac tu a l l y , the robot that exists at SRI can neither climb boxes nor
turn switches .

92

-

~ 

~~~~~~~


each action the robot can take , we supply an OPERATOR , whose effect

is to alter the model to reflect the changes the robot ’s ac ti on makes

on the wo rld . Eac h oper ator has PRECONDITIONS , requirements that must

be satisfied before it is applied .

For exa mple , the PUSHTO operator corresponds to the robot’s ac tion

of pushing a box . It changes the model by changing the location of the

robot and the location of the box . Its precondition is that the robot

be next to the box before the operator is applied .

The GOAL of the problem is a set of conditions tha t we want the

model to satisfy. For examp le , in the problem of turning on the light ,

we require that the light be on when the task is completed . The problem

of p l ann ing , then, amounts to the problem of finding a sequence of

operators that , when applied to the initial world model , will yield a

new model that will satisfy the goal condition . If the robot then

executes the corresponding sequence of actions it -gill , presumably,

have solved the problem .

Le t us suppose that the problem solver work s backwa rds from it s

goal in its search for a solution . It finds an operator whose effect

is to change the model in such a way that the goal condition is

satisfied . However, the preconditions of that operctor might not be

true in the initial model. These preconditions then become subgoals ,

and the problem solver seeks out operators whose effect is to make the

93

subgoals true . This process continues until all preconditions of each

operator in the solution sequence are true in the model in which that

operator is applied , and thus , in particular , the preconditions of the

first operator in the plan are true in the initial model.

94

j,.- .
~~ ..

~~
..

~~~~~~~~ 
.—“~.



IX THE SOLUTION OF THE PROBLE M OF TURN I NG ON A LIGHT

A . The Framework

Let us examine within this framework the complete solution of the

problem of turning on a light . We assume that , in the initial model ,

the lightswitch , the robo t , and at leas t one box are a l l  in the sa me

room . We assu me that the problem solver can apply a set of opera tors

tha t includes the fol low ing : TIJRNONLIGHT , CLIMBONBOX , PUSHTO , and GOTO,

which correspond to the actions necessary to turn on the light . The

goal is that the status of the light be ON . The opera tor TURN ONLIGHT

has the effect of making this condition true . However , the preconditions

of this operator , that the box be next to the lightswitch and the robot

be on top of the box , are not true in the initial model. These precon-

ditions therefore become new subgoals. For the robot to be on top of

the box, it suffices to have to have applied the CLIMBONBOX operator .

Howeve r, this operator has the precondition that the robot be next to

the box ; this precondition becomes a new subgoal .

Both thi s subgoa l and the unach ieved preconditi on of the TURNONLIGHT

operator , that the box be next to the lightswitch , are achieved by the

PUSHTO opera tor , which can move a box anywhere in the room. However , the

PUSHTO operator still has the precondition that the robot be next to the

box . This new subgoal can be achieved by the GOTO operator , which can

move the robot anywhere around the room . The only precondition of the

95



GOTO operator is that the robot be in the same room as its destination ,

but this condition is satisfied in our initial model , since the robot

and the box are assumed to be in the same room. Thus , a solution has

been found , the sequence : GOTO the box, PUSHTO the box next to the

lightswitch , CLIMBONBOX , and TURNONLIGHT .

The QA4 solu tion to the robot problems is a d irect trans la tion of

the approach of the STRIPS problem—solving system , which uses the above

framework . STRIPS is the problem solver that does the planning for the

SRI robot. The solu tion of t he f irst three proble ms app roac hed by

STRIPS was the first exercise for the QA4 language . The operators were

encoded in the QA4 language, and the model was expressed as a sequence

of QA4 statements. This package of information , with no fu r ther

supervision or strategy , sufficed for the solution of the three sample

problems . Finding the plans amounted to evaluating the goals expressed

in the QA4 language. The solutions were found quickly and with no nore

search than necessary . More significantly, the operator descriptions

were wr it ten qu ickly and are concise and fa ir ly  readable .

B. The STRIPS Representation

For STRIPS , the model is a set of sentences in first—order logic;

the preconditions of an operator are also expressed as a set of first—

order sentences . The description of the operator itself is restricted

to a rathe r rigid format: There is a delete list , a se t of sen tences

96



to be deleted from the old model , and the add list , a set of sentences

to be added to the new model. The delete list expresses facts that

may have been true before the action is performed but tha t will not be

true afterwards. In STRIPS, the TURNONLIGHT operator , for instance ,

is described as follows : Its preconditions are that the robot be on

the box and that the box be next to the lightswitch. It deletes from

the model the fact that the light is OFF, and it adds to the model the

fact that the status of the light is ON. In STRIPS , the strategy for

selecting and forming sequences of operators is embodied in a large

LISP program . The applicability of operators and the differences between

states are frequently determined by a general—purpose first—order

theorem prover, and the operators themselves are coded in a special—

purpose Markov Algorithm language . In QA4, all these elements of the

problem—solving system can be handled within a single formalism. We

can use the full power of the QA4 programming language to construct

the operator description. To describe the operators we have discussed

above , we follow the STRIPS format rather closely . For more complex

opera tors and plans , we may make use of more of the language features ,

as we shall see below .

F

97

.—~ .~ ——.-- - -
~~

- — —,-- 

~~~~~~~~~~~~~~~~~ - ~~~~~~~~~~~ ~~~~~~~~


C. The QA4 Representation

We will now look at the QA4 program for the TURNONLIGHT operator;

the reader can thus become familiar with the flavor and some of the

features of QA4 without having to read a general description :

(LAMBDA (STATUS —M ON)

(PROG (DECLARE N)

(EXISTS (TYPE SM LIGHTSWITCH))

(EXISTS (TYPE —N BOX))

(GOAL SDO (NEXTTO SN SM))

(GOAL SDO (ON ROBOT SN))

(SDELETE (‘ (STATUS SM OFF)))

(ASSERT (STATUS SM ON))

($BUILD (‘ (:$TURNONLIGHTACTION SM))))

First , we summarIze the action of this operator on the model: It

selects a box and asks that the box be next to the lightswitch and

that the robot be on top of the box. It then turns the light on and

it adds the turning on the switch to the sequence of actions to be

executed by the robot .

The reader will note how concise and readable the QA4 representa-

tion of operators is. Now we will examine the TURNONLIGHT operator in

more de tai l , to see what it does and the constructs it uses .

*
The QA4 programs for the other operators , the precise formulation of
the lightswitch problem , and the tracing of the solution of that
problem , are included in Appendix I.

98

1. The Pattern

The program has a LISP—like appearance , but it is evaluated

by a special interpreter. In place of a bound variable list , it has

a pattern (STATUS —M ON) . This pattern serves as a relevancy test

for application of the funetio .i . An operator will be applied only to

*
goals that match its bound variable pattern . This operator will be

applied only when something is to be turned on. In STRIPS, the add

list serves the same function as the pattern . However , in QA4 the

relevancy test is distinct from the commands that change in the model.

All variables in QA4 have prefixes; the prefix — of the variable

M means that the pattern element —M will match any expression , and M

will then be bound to tha t expression . The other two pattern elements ,

STATUS and ON , have no prefixes : They are constants and will match

only other instances of themselves.

For the f ollow ing exa mp le we shall assume that we want to turn

on LIGHTSWI TCH1 ; our goal , therefore, is (STATUS LIGHTSWITCH1 ON).

The pattern of the TURNONLIGHT operator matches this goal , binding M

to LIGHTSWITCH1 .

Patterns play many roles in QA4; they may appear on the left

side of assignment statements and in data base queries. The ability

to have a pattern as the bound variable part of a function gives us a

In the prime r we use the term “bound variable part .”

99

concise notation for naming substructures of complex arguments. It

also gives us flexible alternative to the conventional function—

calling mechanism , as we shall see.

2. Searching the Data Base

The program must first be sure that the value of M is a

lightswitch. This is one of the preconditions of the operator. The

statement (EXISTS (TYPE $M LIGHTSWITCH)) searches for instances of

the pattern (TYPE SM LIGHTSWITCH) that have been declared TRUE in the

data base .

The S prefix of the variable M means tha t SM will match only

instances of the value of ~1; M will never be rebound by this match.

Thus, in our example we look only for the expression (TYPE LIGHTSWITCH1

LIGHTSWITCH) in the data base.

Unless otherwise specified , the EXISTS statement also checks

that this expression has been declared true . Expressions have values ;

to declare an expression true , we use the ASSERT statement . This con-

struct sets the value of its argument expression to TRUE . This value

is stored in the property list of the expression . In QA4, the model

is the set of expressions with value TRUE . For our example , we as sume

that the user has input (ASSERT (TYPE LIGHTSWITCH1 LIGHTSWITCH)) before

attempting the problem. Thus, the fact that LIGHTSWITCH1 is a light—

switch is included in the model.

100

- - ‘_ ,-~t ,,_

The EXISTS statement will cause a failure if no suitable

expression is found in the data base . A failure initiates backtrack-

ing . Control passes back to the last point at which a choice was

made , and another alternative is selected . Much of the power of the

QA4 language lies in its implicit backtracking, which relieves the

programmer of much of the bookkeeping responsibility .

3. Choosing a Box

The operator uses another EXISTS statement to choose a box

to use as a footstool: (EXISTS (TYPE —N BOX)) searches the data base

for an expressior~ of the form (TYPE —N BOX) whose value is TRUE . That

such a box exists is one of the preconditions of the operator. Note

that here the variable has prefix —, so there is a class of expressions

the pattern will match , and the variable N will be bound by the match-

ing process. We will assume that (TYPE BOX1 BOX) has been asserted to

be true , and that N is bound to BOX1 .

If for some reason the operator is unable to use BOX1, a

failure will occur. Control will pass back to the EXISTS statement ,

which will then select another box.

4. Moving the Box

The operator now insists as one of its preconditions that the

chosen box be next to the iightswitch . For this purpose it uses the

GOAL construct , a mechanism for activating appropriate functions

101

withou t calling them by name . To move the box, the operator uses

(GOAL $DO (NEXTTO SN SM)).

The GOAL first acts as an EXISTS statement : It checks to

see whether (NEXTTO SN SM), that is , (NEXTTO BOX 1 LIGHTS WI TCH1), is

in the data base . If BOX1 is already next to the lightswitch , the

goal has already - been achieved . However, in genera l , it will be

neces~ ary to move the box by using other operators . In other words,

the precondition is established as a subgoal.

Every operator has a bound variable pattern and a “goal class,”

a user—defined heuristic operator partition . A GOAL statement speci-

fies an expression and a goal class. In these problems there are two

goal classes, DO and GO. The operators in the GO class are those that

simply move the robot around on the floor: for example , GOTO . The

operators tha t move objects or tha t cause the robot to leave the f loor

are in the DO cl ass : PUSHTO , CLIMBONBOX , and TURNONLIGHT .

An operator can only be applied to a goal if it belongs to

the goal class specified by the GOAL statement . In our example the

goal class is DO. Therefore , the only operators tha t can be appl ied

are PUSHTO , CLIMBONBOX , and TURNONLIGHT .

Each of the operators has a bound variable pattern . To be

applied to a goal it is not sufficient that the operator belong to the

spec ifi ed goal c lass ; it is also necessary tha t the bound var iable

102

pattern of the operator match the exp ression specified by the goal

statement, In thi s case the bound variable pattern of the PUSHTO

operator , (NEXTTO —M —N), matches tile goal expression

(NEXITO BOX1 LIGHTSWITCI-Il) , with M hound . Theref ore , tile PUSHTO

operator is activated .

We will be somewha t more sketchy about the operation of the

PUSHTO opera tor, since our aim is to focus a tt en tion on the TURNONLIGHT

operator. The PUSHTO operator establishes another subgoal ,

(NEXTTO ROBOT BOX 1), with goal class GO. This goal activates the

opera tor GOTO , which succeed s without establishing any further sub-

goals.

The GOAL mechan ism is power ful because we need no t know in

advance which functions it will activate; that choice depends on the

form of the argument . The relevant operators come forward at the

appropriate time .

The TURNONLIGHT operator requires not only that the box be

next to the lightswitch , but also that the robot be on top of the box,

before it can turn on the ltght . This precondition is described as

(GOAL SDO (ON ROBOT $N)). Of the operators in the DO class , the only

one whose bound var iable pa tt ern ma tches the goal expression is

CLIMB ONBOX , with pattern (ON ROBOT —M), so this operator is applied .

(

103

S ..— . -
~~~~~~~~~~ 

- - - —- - -

‘ .. .. S .~ ~~~~~~~~~~~~~~ 
- .



The preconditions of this operator , including the requirement that

the robot be next to BOX1 , are already satisfied in the model. Thus ,

the operator can report a quick success.

The remaining statements effect the appropriate changes in

the model. The statement (SDELETE (‘ (STATUS SM OFF))) corresponds to

the spec if ica tion of the dele te list in the STRIPS descr ipt ion of the

operator. There is a S prefix on the DELETE function because thi s

function is a user—defined function: Its definition is the value of

the variable DELETE . The statement (ASSERT (STATUS SM ON)) represents

the add list of the operator. The final statement

($BUILD ( ‘  (:$TURNONLIGHT ACTION SM))), simply adds the action of

turning on the light to the planned sequence of actions to be carried

out by the robot .

D. Design Philosophy Revisited

A lthough our operators are as concise as those of STRIPS, we have S

given them a certain amount of strategic information. For example , in

TURNONLIGHT we tell the system that the box must be brought up to the

ligh taw it ch BEFORE the robo t moun ts the box , whi le in STRIPS the sa me

precond itions are unordered , so the planner may investigate the ill—

adv ised possibility of climbing the box first and moving it later.

STRIPS could have been given or dered precond iti ons , but its designers

were more interested in the behavior of the problem solver when it had

104



to discover the best ordering by itself. The decision about how many

hints to give the operators i~~ , we feel , primarily a matter of taste.

For QA4 we prefer to give the operators as much information as possible ,

and risk the charge of dealing with problems on an ad hoc basis. We

feel that this is the only way that our programs will solve interesting

problems .

Although STRIPS does not rely as heavily on axiom—based theorem

proving as QA3 does , it still uses a theorem prover for such purposes

as determining whethe r an operator is relevant or applicable , tasks

that QA4 accomplishes by using pattern matching . As STRIPS has shown

us , the theorem proving involved in such processes is quite straight-

forwa rd, and a pattern matcher seems to be a more appropriate tool

here than a full—fledged theorem prover.

We 5~lso applied the system to the two problems from the STRIPS

paper (Fikes 1971) . In these problems the robo t is envisioned to he

in a build ing w ith several rooms and a corridor. It is asked first

to push together the three boxes in one of the rooms , and second to

find its ~av from one of the rooms to anothe r one . The QA4 system

solved these proble ms also , and it made no mistaken choices .

These problems are , of course , particularl y simple. Had they been

~utfi cien tlv complicated , any QA4 program would have to do some search-

ing in ‘ryin ~ to find a solution . In that case , we would have had to

write oUz~ operators in a somewha t different “.av .

105

— . — .  -—-—~~~~----- - - 
- - - — -  - - - - 

~~~~~~~~~~~~~~~~~~~~~~


E. Ot her Features and Applications

These problems did not use many of the features of QA4 that we

feel would be valuable for more complex problems and in other problem

domains . For example , STRIPS p lans a re al ways linear sequences of

operators ; plans never include branches that prepare for various con-

tingencies . There is no mechanism for considering alternative world

models in a single plan . The construction of conditional plans is

facilitated by the “context mechanism” of QA4, which allows us to

store alternative hypotheses under distinct contexts without confusion.

STRIPS p lans also have no loops; an action in a STRIPS p l an can

be repeated only a prespecified number of tines . However, the fac t

t hat QA4 plans are programs tha t admit both iteration and recursion

opens the possibility of writing plans with repeated actions .

Since QA4 is successful in writing robot plans with loops, it will

probabl y be equally effective at the synthesis of computer programs .

Assembly code programs , in particular , are striking ly similar to robot

p lans: Computer instructions are analogous to operators , and whe reas

for robot plans we model the world , fo r compu ter programs we model the

state of the registers of the machine . QA4 has already been successful

at producing simple straight—line assembly code programs . More general

theorem—proving ability would enable QA4 to construct programs in other

languages , including QA4 itself.

106

We have applied QA4 to the verification of existing programs .

For this application we need considerable sophistication in ~ormu1a

manipul ation and the handling of arithmetic relations . We have intro-

duced some new data types , sets , and bags (bags are like sets , but may

have several instances of the same element) , which simplify many

arithmetic problems . For example , a stumbling block of earlier deduc-

tive systems has been the equality relation , which has required either

a plethora of new axioms or a slightly less clumsy new rule of inference

in order to describe its properties . In QA4 we simpl y place expressions

known to be equal in the same set; the symmetric , re f l e x ive , and

transitive laws then follow from the properties of sets , and need no t

be stated explicitly.

..~ similar technique simplifies the description of commutative

functions of n arguments , such as plus and times . We make these

arguments bags rather than n—tuples . Then the commutative law for

addition need no longer be mentioned , since bags , like sets , are

unordered .

107

.5

•r ~~~~~~~~~~ ~~~~~~~~~~

Chapter Three

PLAN SYNTHESIZERS

__________________________________ -j

CHAPTER THREE--PLAN SYNTHESIZERS

I INTRODUCTION

In th i s c h a p t e r we p resen t some QA4 programs t h a t solve robot p l a n —

fling problems . Each program is a simplified planner for a specific

problem area of robo t planning . The programs are overly simplified ,

and avoid the detail that would be necessary if they were joined together

in a large , unified robot planner. Singly, however , each demonstrates

ways the features of the QA4 language can be used to construct problem

solvers based on intuitive reasoning .

We have chosen robot problems exclusively because of their highly

i n t u i t i v e n a t u r e . The subjec ts of these p ro to type prob lem solvers ,

however , a r i se in any area of a u t o m a t i c p rogram s y n t h e s i s . Programs or

plans for either computers or robots must contain branches , loops , and

the other structures dealt with in these sample automatic planners .

109

— -
—.- ——

— . -SS~~a,; ., r ” -

I I CONDITIONAL PLANS

A. Predicates and Actions

Suppose that we have a set of related p redicates , P1, P2, .. ., Pm ,

whose values are unknown at the time a plan is generated , are testable

at the time the plan is executed , and are disjunctively true . For

program syn thes is problems, the predicates may be simple relations on

subroutine arguments such as X < 0. For robot planning, the predicates

could be either relations between objects in the world such as

LEFT—OF(BOX1,BOX2) or predicates on single objects of the world such as

OPEN(DOOR) or RAINY . At least one predicate of the set must always be

true . For examp le , if RAINY and SIJNNY are the two ways the robot

classif ies days , then for the robot it is always either RAINY or SUNNY .

Our problem is to formulate a plan that satisfies a goal , even

though different actions must be taken depending upon the particular

predicate that is true at the time the plan is executed . Suppose , for

exam p le , our goal is to have fun , and there are two ways : If it is

rainy we can go to a movie , and if it is sunny we can go to the beach .

The plan would be either

(IF RAINY THEN MOVIE ELSE BEACH)

or

(IF SUNNY THEN BEACH ELSE MOVIE)

- . - ~-ww-~~~~— _ _
-
-~~

ill _ _ _

In general , if the actions are Al , A2 ~n , then the form of

the plan should be

(IF P1 THEN Al ELSE

IF P2 THE N A2 ELSE

IF P (n — l) THEN A (n — l) ELSE An)

Notice that the last predicate need not be tested , for the only case

in which it would be tested is if all the others were false ; but in

that case we know it must be true.

B. Goal Satisfaction

The key to our solution will be a progr.~m that creates a new con-

text with fewer uncertain predicates than the current context and p la ns

for the goal in that new context . But before we study it in detail ,

let us assume we have such a p rogram , say ALTPLAN, and construct a

planner around it. ALTPLAN accepts as arguments a goal and a condition

and takes the following actions :

. If the condition is true in the current model , then ALTPLAN

will retu rn notification that no alternate plan should be

constructed . For example , the cond iti on may be true because

a more global program has assumed it is true. Thus the predi-

cat e is already known , and a branching plan does not have to

be created 5~t tais point . The robot could be outside when the

112

_;~~—S ~~
S - —

~~~
— - -—  - -- - -  - - 

S-, S - 
~~~~~~~~~~~~~ ~~~~~


subgoal HAVFFUN arises . Since it would never go outside in

the rain , SUNNY would be assumed to be true , and it could go

directly to the beach.

• If the condition is uncertain , then ALTPLAN will construct a

new model where the condition is false , solve the problem in

tha t new model , and return the plan .

C. MOVIE and BEACH

Using ALTPLAN we may construct simple programs to work on the goal.

Our MOVIE program that satisfies the goal HA VEFUN is

rRPAQQ MOVIE

(LAMBDA HAVEFUN

(PROG (DECLA RE ALT)

(SETQ —ALT ($ALTPLAN RAINY HA VEFUN))

(I F (EQUA L (TUPLE)

SALT)

THEN

(RETURN MOVIE)

ELSE

(RETURN (‘ (IF RAINY THEN MOVIE ELSE $ALT]

Thi s program first calls ALTPLAN and stores the alternative plan in the

variable ~~T. If ALTPLAN returned the empty tuple (TUPLE), then the

condition was true , so MOVIE returns the plan MOVIE. Otherwise , ALTPLAN

solved the problem under the assumption that RAINY was false , so our

113

program returns the plan

(IF R A I N Y THYSN MOVIE ELSE SALT)

The operator that formulates a plan to go to the beach is the same

except for the condition and the action .

PRAQQ BEACH

(LAMBDA HAVEFUN

(PROG (DECLARE ALT)

(SETQ —ALT (SALTPLAN SUNNY HAVEFUN))

(I F (EQUAL (TUPLE)

ALT)

THEN

(RETURN BEACH)

ELSE

(RETURN (‘ (I F SUNNY THEN BEACH ELSE SALT~

In a large ro~ot sys t em , we would not expect t h i s much s i m i l a r i ty

in detail , although the approach would always be the same .

D. ALTPLAN

Now let us examine ALTPLAN in more detail.

114

-r - s - ~~~~,.

r R PAQQ ALTPLAN (LAMBDA (TUPLE —CONDITION —GOAL)

(PROC (DECLARE NC Y ALT Z)

(ATTEMPT (EXISTS SCONDITION)

THEN

(RETURN (TUPLE)))

(EXISTS (UNCERTAIN (SET SCONDITION —Y)))

(SETQ —NC (CONTEXT PUSH CURRENT))

(DENY (UNCERTAIN (SET $CONDITION $$Y))

WRT SNC)

(DENY SCONDITION

WRT $NC)

(ATTEMPT (SETQ (SET —Z)

$Y)

THE N

(ASSERT $Z WRT $NC)

ELSE

(ASSERT (UNCERTAIN SY)

WRT SNC))

(SETQ —ALT (GOAL $GOALCLASS SGOAL WRT $NC))

(RETURN $ALT~

The first ATTEMPT statement check s the condition in the model and

returns the empty tuple as the notification tha t there should be no

alternative plan.

115

___ — ~~~~
- 5-----.--— - ——--

~~~~~
- - - — - - - 5--- - — _______ - 5--—



The EXISTS statement retrieves the set of uncertain conditions

and binds the variable V to the set consisting of all tile uncertain

conditions except the condition currently under consideration. Next

ALTPLAN creates a new context , NC , and then denies the set of uncertain

conditions in this context. This denial is done because the context NC

automatically assumes all the assertions from its parent context , but

in NC, we wi ll as sume tha t CONDITION is FALSE , and thus is not uncertain,

The final ATTEMPT statement of ALTPLAN checks to see if the re is

only one uncertain condition: If so, it asserts the condition in the

new con tex t ; if not , it asserts that the smaller set of conditions is

u n c e r t a i n .

Finally, ALTPLAN solves the problem in the context NC and returns

the plan . The WRT clause on the GOAL statement has a special effect

on all future model reference statements such as EXISTS and ASSERT .

It makes them operate in the context NC, until , of course , either

another GOAL with a WRT is established , or this current GOAL is solved .

The solution trace demonstrates this simultaneous establishment of

GOALS and contexts.

E . (GOAL SHAVEFUN HAVEFUN)

For our example , the GOAL will first call BEACH . This will

immediately call ALTPLAN who will simplify the UNCERTAIN condition and

rce’tablish the GOAL . BEACH is called again , and it calls ALTPLAN

again. This time ALTPLAN fails , caus ing the second call on BEACH to

116



fail. Thus the GOAL interpreter moves on to MOVIE . MOVIE calls

ALTPLA N , who discovers the condition is TRUE . MOVIE returns the plan

MOVIE as the value of the GOAL . ALTPLAN passes the plan back to BEACH,

who embeds it in a larger , conditional plan .

The following is a more detailed trace of the conditional plan

synthesizer. The numbers refer to the following automatic trace .

We begin with the assertion (UNCERTAIN (SET RAINY SUNNY)) (1) and

the goal (2). The system first checks to see if HAVEFUN is TRUE in the

model. Since it is not TRUE, a FAILURE is generated (4). This was the

EXISTS portion of a goal interpretation . Continuing to work on the goal ,

the interpreter applies the program BEACH to the constant HAVEFUN (5,6).

BEACH immediately calls ALTPLAN (7), which bind s the variables

GOAL( 8) and CONDITION (9). Next , ALTPLAN checks CONDITION (10), which

is now SUNNY , discovers it is not TRUE and FA ILS (11). It then goes

on to extract SUNNY from the set of uncertainties (12), and set the

variable Y to the set of those predicates remaining uncertain (13). In

this case, V is set to (SET RAINY). ALTPLAN creates a new context , NC

(14); denies (UNCERTAIN (SET SUNNY RAINY)) (15); and denies SUNNY (16)

in the new context , It now notices that only the condition RAINY

remains (17); asserts RAINY in the new context (18); and reestablishes

the original goal , HAVEFUN, with the original GOALCLASS , (TUPLE BEACH MOVIE ),

but with respect to the new context (19).

117



1-LAVEFUN is not TRUE , so the EXISTS portion of the goal fails (21),

and BEACH is called again (22). BEACH immediately calls ALTPLAN (23),

and the arguments are bound (24,25). The condition SUNNY is checked

(26), and is not TRUE because this is a recursive call on BEACH and

SUNNY is , in fact , FALSE . Next an attempt is made to find the uncertain

set (28). Since there is none in this context , the EXISTS fails (29),

causing BEACH to fail , and thus causing the goal interpreter to proceed

to the next program in the GOALCLASS.

MOVIE is called (30) and ALTPLAN is immediately called (31).

The arguments are bound (32,33). The condition RAINY is checked (34).

Since the EXISTS does not have a WRT value , the model query is made

with respect to the context established by the last GOAL——GOA L (19)

and context NC. RAINY was asserted (18) in this context and is TRUE .

ALTPLAN proceeds to return the empty tuple (35). Since ALTPLAN returned

the empty tuple , this call to MOVIE (30) returns the constant MOVIE .

The goal statement (19) is now complete, so the variable ALT in

ALTPLAN is now set to the value of the GOAL statement (36)——nanely MOVIE .

ALTPLAN re turns the var iable and thus re turns from the initial call in

BEACH (6). The variable ALT in BEACH is set to the returned plan (37).

Since the plan is not the emp ty tup le , BEACH re turns the cond itional

plan (38)

118



CONDITIONA L PLA N

1 . — !  (ASSERT (UNCERTAIN (SET RAINY SUNNY)))

2. .-! ( GOA L SHAVEFUN HAVEFUN)

3. (GOAL $HAVEFCN HAVEFUN)

4 .  SETVALUE GOALC LA SS (TUPLE BEACH MOVIE )

5. FAILURE

6. LAMBDA BEACH

7. LAMBDA ALTPLAN

8. SETVA LUE GOAL HAVEF UN

9. SETVALUE CONDITION SUNNY

10. (EXISTS SCONDITION)

11. FAILURE

12. (EXISTS (UNCERTAIN (SET SCONDITION —Y)))

13. SETVALL’E Y (SET RAINY)

14. SETVALUE NC (CONTEXT (5 4 3 2 1 0) 5 4 3 2 1 0)

15 . (DENY ( UNCERTAIN (SE T SCONDITION SSY) WRT $NC)

16. (DENY SCONDITION WRT SNC)

17. SETVALUE Z RAINY

18. (ASSERT SZ WRT $NC)

19. (GOA L $GOALCLASS SCOAL WRT SNC )

20. SETVALUE GOALCLASS (TUPLE BEACH MOVIE)

21. FAILURE

2 2 .  LAMBDA BEACH

23 . LAMBDA ALTPLAN

24. SETVALUE GOAL HAVEFUN

25. SETVALUE CONDITION SUNNY

26. (EXISTS SCONDITION)

119

-~~ ~~~ -‘ S --- — - — - - - - ___— - _ _ _ _ _ _ _



27 . FAILURE

28 . (EXISTS ( UNCERTAIN (SET SCONDITION ~~ Y)))

29 .  FAILURE

30. LAMBDA MOVIE

31. LAMBDA ALTPLAN

32. SETVALUE GOAL HA VEFUN

33. SETVALL’E CONDITION RAINY

34. (EXISTS $CON DITION )

35. SETVALUE ALT (TUPLE )

36. ( SETVALUE ALT MOVIE)

37 . (SETVALUE ALT MOVIE)

38. ( ‘  (IF SUNNY THEN BEACH ELSE MOVIE))

120

- 
— ~S. -~~M~S~~



I I I  INFORMATION GATHERING

A. Operators

As can be seen in the TURNONLIGHT problem of Chapter Two, the

robot planners of our examples are organized around “operators .” The

operators are programs that work to satisfy goals . When they succeed ,

they update the model and return a plan that , when executed , will

operate on the world much the way the program operates on the model.

Sometimes the plan depends on information that the robot gathers during

execution . Take, f or example , the OPENDOOR operator. To open a door,

the robot must go to the door , check the status of the door , and if it

is closed , open it. Thus the operator could always build the three—step

plan :

(GOTO DOOR)

(CHECKDOOR DOOR)

( I F  ( NOT (OPEN DOOR ))  THEN (OPENDOOR DOOR) )

I f , however , thi s plan is a portion of a larger plan , the robot may have

just moved to the door , or it may have already checked the door but have

just moved away from it. If states such as these arise during planning

where the mode l indicates some of the steps for OPENDOOR may be omitt ed ,

then the planner should omit them.

To build just the needed steps into the plan , we will construct

the operator in such a way that checking the preconditions will return

a plan that assures they will be true when the plan is executed . Then

121

__ - -n. - 
- - -  --

~~~~~~~
— - --— --- -- 5-- - -

the operator will update the model and return a plan composed of the

p lan for the preconditions togethe r with the final steps for the

operator . But first , if the door is not open in the model , we simply

return the plan (OPENDOOR SDOOR) . Our OPENDOOR operator has just these

four steps .

:~~ ‘1’QQ OPENDOOR (LAMBDA (OPEN —DOOR)

(PROC (DECLARE P1)

(ATTEMPT (EXISTS (OPEN SDOOR) MODELVALtJE FALSE)

THEN

(RETURN (OPENDOOR $DOOR)))

SETQ —P1 (GOAL $LOOK (TESTABLE (OPEN $DOOR

(ASSERT (OPEN $DOOR))

(RETURN (TUPLE S$Pl (I F (NOT (OPEN $DOOR))

THEN

(OPENDOO R $DOOR T
,

B. TESTABLE

When a plan is constructed to check the door, the predicate

(OPEN DOOR) is either asserted or denied in the model , correspond ing,

for example , to the two cases of conditional planning . Thus the planner

assumes that the door has been checked , the p red ica te has been given a

va lue , and the robot has begun to proceed accord ing to its plan using

the value . If such a plan step has been constructed , and the context

in which it was constructed is still valid , the statement

122

(GOA L SLOOK (TESTABLE (OPEN DOOR)))

w i l l a l w a y s invoke the procedure CHECKM ODEL f i r s t . This is because

(TESTA BLE —X) w i l l no t be found in the model and CHECKMODEL is the f i r s t

program of the GOALCLASS SLOOK .

r
RPAQQ CHECKMODEL (LAMBDA (TESTABLE —X)

(PROC (DECLARE)

(ATTEMPT (EXISTS SX)

THEN

(RETURN (T U P L E)))

(ATTEMPT (EXISTS $X MODELVALUE FALSE)

THEN

(RETURN (TUPLE)))

(FAIL]

CHECKMODEL simpl y in terrog ates the model to see if the pred ica te,

in this case (OPEN DOOR), is known either to be TRUE or FALSE . If it

is known , CHECKMODEL returns the empty tuple , and no preconditi on

planning steps are generated .

If (CHECKDOOR DOOR) has no t been appropr iately built into the

plan , (OPEN DOOR) will no t be known , CHECKMODEL w ill fa il, and the goal

interpreter will continue down the programs of GOALCLASS $LOOK to

attempt to satisfy the goal. It will find the program CHECKDOOR. which

is written in the same framework as OPENDOOR .

123

~5~~_5~~~ 55 ~~~~~~~~ -
S,~~ -~

—r .-.-“., ,—~~

:RPAQQ CHECKDOOR (LAMBDA (TESTABLE (OPEN —DOOR))

(PROC (DECLARE P1)

(SETQ —P1 (GOAL SDO (NEXTTO ROBOT SDOOR)))

(ASSERT (TESTABLE (OPEN SDOOR)))

(RETURN (TUPLE S$Pl (CHECKDOOR SDOOR1

To execute the operator CHECKDOOR , it must get the robot to the door .

Instead of directly testing the preconditions , it builds a plan that

guarantees the robot will be at the door. The plan may be null if the

robot is already there , or it may involve many steps if the robot is in

another room. In eithe r event , CHECKDOOR asserts that OPENDOOR is now

test able , and return~ the plan that makes it testable .

C . (GOAL SDO (OPEN DOOR))

The typed in goal statement (1) is executed by the i n t e r p r e t e r (2),

and the v a r i a b l e GOALCLASS is automatically set by the i n t e r p r e t e r (3)

The p r e d i c a t e (OPEN DOOR) is not in the model w i t h va lue TRUE , so the

EXISTS p o r t i o n of the GOAL f a i l s (4) , and the opera to r OPENDOOR is

called (5) to ~ork on the goal. The argument is bound (6), and the

goal to plan for the preconditions (7,8) is established .

(TESTABLE (OPEN DOOR)) is not true in the model , so the EXISTS portion

of the GOAL fails (9) and the program CHECKMODEL is called (10). Its

argument is bound (11), and it discovers (12,13 ,14 , 15) that the
5’

predicate is not true in the model , so it also fails (16, 17).

124

S.,. -

The goal interpreter continues down the GOALCLASS SLOOK to

CHECKDOOR (18). The argument is bound (19), and the goal is established

to get the robot to the DOOR (20,21). The EXISTS portion of the GOAL

fails (22), so the GOTO operator is invoked (23 through 29). (See the

TURNONLIGHT example in Chapter 2.) CHECKDOOR saves the p lan f ro m the

GOTO operator in P1 (30) and returns the composite plan to OPENDOOR (31).

OPENDOOR saves the composite plan in its local variable P1 (32).

OPENDOOR asserts that the door is open (33) and returns the full plan

(3-i) for the original goal (1).

125

INFORMATION GATHERING

1. — ! (GOAL SDO (OPEN DO0RT

2. (GOAL SDO (OPEN DOOR))

3. SETVALUE GOALCLASS (TUPLE LOOPPLA N MOVE BOX OPENDOOR GOTO)

4. FAILURE

5. LAMBDA OPENDOOR

6. SETVALUE DOOR DOOR

7. (GOAL SLOOK (TESTABLE (OPEN SDOOR)))

8. SETVALUE GOALCLASS (TUPLE CHECKMODEL CHECKD OOR)

9. FAILURE

10. LAMBDA CHECKMODEL
S

11. SETVA LUE X (OPEN DOOR)

12. (EXISTS SX)

13. FAILURE

14. (EXISTS SX MODELVALUE FALSE)

15 . FAILURE

16. (FAIL)

17 . FAILURE

18. LAMBDA CHECKDOOR

19. SETVALUE DOOR DOOR

20. (GOAL SDO (NEXTTO (TUPLE ROBOT SDOOR)))

21. SETVALUE GOALCLASS (TUPLE LOOPPLAN MOVEBOX OPENDOOR GOTO)

22 . FAILURE

23. LAMBDA GOTO

24. SETVALUE X DOOR

25. LAMBDA DELETE

26. SETVALUE EXP (NEXTTO (TUPLE ROBOT .-Y))

27. (EXISTS SEXP)

126

28. FA ILURE

29. (ASSERT (NEXTTO (TUPLE ROBOT SX)))

30. SETVALUE P1 (TUPLE (GOTO DOOR))

31. (ASSERT (TESTABLE (OPEN $DOOR)))

32. SETVALUE P1 (TUPLE (GOTO DOOR) (CHECKDOOR DOOR))

33. ASSERT (OPEN SDOOR))

34. (TUPLE (GOTO DOOR) (CHECKDOOR DOOR) (IF (NOT (OPEN DOOR)) THEN (OPENDOOR

DOOR)))

T

127

- - S_ _s.-

IV LOOPS

A. When To versus How To

Our sample program LOOPPLAN demonstrates how a looping program

may be validly generated ; it does not illustrate the much more diffi-

cult problem of discovering the necessity of a loop in the plan.

LOOPPLAN is given QA4 programs (or plans) P and Q such that P is a

p redicate with X free in P, and Q is an action with X free in Q. It

is to construct a plan that takes action Q on all objects in the set

defined by predicate P. The problems are presented to LOOPPLAN in the

form

(FA —X UF —P THEN —Q))

This form is not to be mistaken with the logical universally quantified

form . Since the logical form has no interpretation in QA4 , and since

the semantics are similar , we may use it to represent our goal.

B. LOOPPLAN

T RPAQQ LOOPPLAN (LAMBDA (FA —X (IF ..-P THEN —Q))

(PROC (DECLARE NC BODY NV1 NV2)

(EXISTS (GENE RABLE $P))

(SETQ —NC (CONTEXT PUSH CURRENT))

(ASSERT $P WRT $NC)

(SETQ ~BODY (GOA L $GOALCIASS sQ WRT $NC))

(SETQ (TUPLE .-NV 1 —NV2)

(SGENVA R (TUPLE)))

(SETQ .-P (SUBST $P (TUPLE SX $NV1)))

(SETQ —BODY (SUBST SBODY (TUPLE $X .$NV2)))

(RETURN (REPEAT (GOAL :SFIND SP)

(DO $BODY]
- -

129
~

~~~~~~~~~~~~~~~ ~~~~~~



LOOPPLAN has three major steps . First i t  shows that P is

GENEBABLE ; that is , that P can be enumerated when the plan is executed .

For our simple planner , we merely assert (GENE RABLE P)

Next it derives a new context , assumes P is true , and solves the

goal Q. This produces a plan that accomplishes the action Q for the

objects in the set defined by P. A careful statement of the problem

has assured that the plan is guaranteed to work for any object in the

set . Take, for example ,

(GOAL SDO (FA BOX (IF (INROOM BOX ROOM) THEN (INROOM BOX LAB))))

X is BOX , P is (INROOM BOX ROOM), and Q is (INROOM BOX LAB) . While BOX

is free in both P and Q, it is a QA4 constant , and plays the role of a

general box . It must have the attributes of all boxes, and since it

is a constant , will never be instantiated while the planner is construc-

ting a plan to accomplish Q. -

When the plan has been accomplished , the constant that is free in

both P and Q, and to which the variable X is bound , is replaced by an

appropriate variable in both P and Q. These new forms of P and Q are

then put together to form the looping plan.

C. (GOAL $DO (FA . . . ) )

The typed in goal (1) is interpreted (2,3) and not found to be

true in the model (4). LOOPPLA N is called to solve the goal (5) and

its arguments are bound (6,7.8). (INROOM BOX ROOM) is found to be

130



generable (9) and a new context is generated (10). (INROOM BOX ROOM)

is asserted in the new context (11) and (INROOM BOX LAB) is established

(12 ,13) with the sane GOALCLASS as the original goal (1).

(INROOM BOX LAB) is not found to be true in the model (14), so

MOVEBOX is called (15), and its arguments are bound (16). It is

successful (17), and returns a plan which is stored in the variable

BODY (18). —X is substituted for BOX in P (19), and $X is substituted

for BOX in Q (20). Finally the looping plan is returned (21).

131

~-1’ ~~~~~~~~~



LOOPS

1 . (GOAL SDO (FA BOX (IF (INROOM BOX ROOM) THEN (INROOM BOX LABT

2. (GOAL SDO (FA BOX (IF (INROOM (TL’PLE BOX ROOM)) THEN (INROOM

(TUPLE BOX LAB)))))

3. SETVALUE GOALCLASS ( TUPLE LOOPPLA N MOVEBOX)

1. . FAILURE

5. LAMBDA LOOPPLAN

6. SETVALUE Q (INROOM (TUPLE BOX LAB))

7. SETVALTJE P (INROOM (TUPLE BOX ROOM))

8. SETVALUE X BOX

9. (EXISTS (GENERA BLE $P))

10. SETVALUE NC (CONTEXT (3 2 1 0) 4 3 1)

11 . (ASSERT $P ~~T SNC)

12. (GOAL SGOALCLASS SQ WRT SNC)

13. SETVALUE GOALCLASS (TUPLE LOOPPLAN MOVEBOX)

14. FAILURE

15. LAMBDA MOVE BOX

16. SETVALtJE BOX BOX

17. (ASSERT (INROOM (TUPLE $BOX LAB)))

18. SETVALUE BODY ( PUSHBOXTO LAB BOX)

19. SETVALUE P (INROOM (TUPLE —X ROOM))

20.  SETVALUE BODY (PUSHBOXTO LA B SX)

21. (REPEAT (GOAL (TLrPLE LOCATE CHECK~ -~P) (INROOM (TL’PLE —X ROOM))) DO

(PUSHBOXTOLA B SX))

T

132



V CONSTRAINTS

A.  “Thou shalt not .. .“ Problems

Suppose our robot is operating in a three—room environment , where

one room contains a wedge , another contains a box, and the third is

empty .
- 

ROO M 2 J,,
ROO M3

_ _  
T _ _

ROOM I

The task for th~ robot is to push the box to ROOM1 . However, we wish

to make the constraint that the box and the wedge may never be in a

room simultaneously.

B. Four—Step Operators

Our planner solves the problem by another modification of the

handling of operator preconditions . Normally, an operator establishes

the preconditi ons as goals , and then appends its execution operator to

the plan for establishing the preconditions . To handle constraints , we

w ill assume the f inal sta te, formulate plans necessary to abide by the

constraints , then formula te plans to establish the preconditi ons , and

finally return a plan composed of three parts: the constraint satisfac-

tion plans , the precond iti on plans , and the execution operator.

133

~~~ 
~~~~~~~~~~~~~~~~ S.



The PUSHIN operator is supposed to push a box into a room. It

normally moves the robot to the box , updates the model , an d returns

the plan. For the wedge—box example , we insert an initial step. This

new operator step tries out the final state and returns a plan , if one

is necessa ry ,  that resolves conflicts before they arise , such as having

the wedge and box in the same room .

:RPAQQ PUSHIN (LAMBDA (INROOM —OBJ ..-NEWROOM)

( PROG (DECLARE OLDROOM PLAN 1 PLAN2)

E SETQ —PLAN 1 ($TRY ( ‘  ( INROOM $OBJ SNEWROOM ’

(SETQ —PLAN2 (GOAL SDO (NEXTTO ROBOT SOBJ) ) )

(SDELETE (‘ (INROOM $OBJ —OLDROOM)))

(ASSERT (INROOM SOBJ $NE~~~OOM))

(RETURN (TUPLE S$PLAN1 SSPLAN2 (PUSHOBJTOROOM SOBJ

SNEWROOM 1

C. T ry ing  Out the  F i n a l  S t a t e

The program that tries out the final state has, as its argument ,

the pattern that will be asserted by the operator. PUSHIN, fo r example ,

cal ls  TRY with the express ion (INR OOM BOX ROOM2 ), because that is the

predicate it will assert in the model. TRY uses constraint checking

programs to examine the potential assertion. When the constraint

checking programs discover a violation , they return a pattern expres-

sing a condition , called Cl in the TRY program , that is to be avoided .

134



TRY then establishes the goal (NOT Cl) . Operators are called to work

on thi s goal , and the plan they return is appended to the front of the

plan TRY is composing . This constraint—checking goal—establishi ng

procedure is repeated until no constraint violations are found . At

thi s time , TRY returns a plan that guarantees the constraints will not

be violated .

RPAQQ TRY ( LAMBDA .-X

(PROC (DECLARE Cl PLAN1)

(SETQQ —PLAN1 (TUPLE))

TOP (ATTEMPT (SETQ —Cl (GOAL SCONSTRAINTS $X))

THEN

(SETQ —PLAN2 (GOAL SDO (NOT SC1)))

(SETQ —PLAN1 (APPEND SPLAN2 SPLAN1))

(GO TOP)

ELSE

(RETURN $PLAN1))

(FAIL]

D. Remaining Planner Parts

1. Constraint Checking Programs

For our simple exa mple , there are only two constraint checking

programs . If the task is to push the WEDGE to ROOM, the potential

assertion of PUSHIN is (INROOM WEDGE ROOM). Thus there is a constraint

check ing program, BOXCHSECK~ that applies to expressions of the form

135



( I N R O O M WEDGE —ROOM ) and checks fo r  a BOX in ROOM . I f  one is found ,

it re turns  the expression (INROOM BOX SROOM) to TRY , for  TRY must  now

plan for (NOT (INROOM BOX ROOM)). The BOXCHECK program is:

~RPAQQ BOXCHECK (LAMBDA (INROO M WEDGE —ROOM)

(EXISTS (INROO M BOX SROOM

The corresponding constraint checking program, that will apply

when PTJSHIN is moving a BOX is WEDGECHECK :

RPAQQ WEDGECHECK (LAMBDA (INROOM BOX ‘-ROOM)

(EXISTS (INROOM WEDGE SROOM1

The GOALCLASS CONSTRAINT is :

(TUPLE BOXCHECK WEDGEC}IECK)

2. PL’SHOUT

The PUSHOUT operator will generate a plan for goals of the

form (NOT (INROOM —OBJ —ROOM)). It operates just like the PUSHIN

opera tor , except that it has the extra step of choosing a room that

is connected to $ROOM into which it will push $OBJ . The operator is:

RPAQQ PUSHOUT S

( LAMBDA (NOT (INR OOM —OBJ —OLDROOM) )

( PROC (DECLARE NEWROOM DOOR PLAN 1 PLAN2 )

(EXISTS (CONNECTS ~ DOOR (SET $OLDROOM — N EWROOM )))

SETQ —PJ.AN 1 ( STRY (‘ (INROOM SOBJ SNEWR OOM]

(SETQ —PLAN2 (GOAL SDO (NEXTTO ROBOT SOBJ)))

($DELETE ( ‘  (INROOM SOBJ SOLDROOM)))

(ASSERT (INROOM SOBJ SNEWRO OM) )

(RETURN (TUPLE SSPLAN1 S~PL~.N2

( TUPLE ‘PU SHOBJTOROOM SOBJ SNE WR OOM T

136



E . (GOA L SDO (INROOM BOX ROOM2 ))

The typed in goal (1) is interpreted ~2 , 3), and does not exist in

the model (4). The first applicable program of the $DO is called (5).

This is the operator PUSHIN, and its arguments are immediately bound

(6,7). PUSHIN’s fou r phases are the call to TRY (8), planning for the

preconditions (63,64), modification of the model (76 through 82), and

returning the composite plan (83). Trace steps 63 throug h 83 do not

involve cons tra ints, and proceed as a stra ight forward , norma l operator.

.The first phase of PUSHIN , the c-3ll to TRY (8), also has fou r

phases:

A——the constraints are checked (11 through 17);

B——a plan is constructed to avoid violation of the

constraints (18 through 52);

C——the plan just generated is appended to the plan to

avoid all violations (currently empty) and the constraints

are checked again (54 through 61); and

D—— the comp lete plan to avoid constraint violations is -

S 

returned (62).

1. Phase A——Initial Constraint Check

The goal (INROOM BOX ROOM2) is established with GOALCLASS

(TUPLE WEDGECHECK BOXCHECK) (11 ,12). Since (INROOM BOX ROOM2) is

not in the model (13), the WEDGECHECK program is applied (14,15). It

137

S 
~_ 

S 
-,. 

~~~~~ —
~~

- -

notices (INROOM WEDGE ROOM2) (16) is the condition that causes the

potential c o n s t r a i n t violation , and returns it to TRY, which saves it

in variable Cl (17).

2. Phase B——Plann ing to Avoid the Constraint

TRY now es tab l ishes (NOT (INR OOM WEDGE ROOM2)) as a goal to be

solved (18,19). The goal is not true in the model (20), so the operator

PUSHOUT is applied (21,22,23). PUSHOUT has five steps . The first

chooses a room into which it will push the WEDGE (24,25,26). The last

four phases correspond to the four phases of PUSHIN: it calls TRY (27),

plans for the preconditions (35), modifies the model (46 through 51),

and returns the plan to TRY (52) . The last three steps proceed as a

normal operator (35 through 52).

The recursive call to TRY (27), will check if mov ing WEDGE

to ROOM3 violates any constraints (30,31). Neither constraint checking

program can find a violation so they both fail (32,33). Thus TRY

returns the empty tuple , and it is saved by PUSHOUT in the variable

PLAN1 (34). With this , PUSHOUT proceeds through its last three phases ,

and returns to TRY a plan that pushes the WEDGE out of ROOM2 and i n to

ROOM3 .

I

138

__
~ 55_S~S S ~~~ _SS - . 5 . - - —5- 5.- - — —5- - S - - -

•,. 5,

3. Phase C——Checking for More Constraints

The plan to move the WEDGE is saved in the variable PLAN1 of

TRY (53), and TRY loops back to the constraint check . Now that PUSHOUT

has been executed , the model reflects the movement of the WEDGE . Even

though WEDGECHECK is called (57 ,58), the original potential assertion

(INROOM BOX ROOM2) no longer violates any cons traints (59,60,61).

4. Phase D

TRY has now completed its checking procedure, and returns the

plan it generated to P!JSHIN, which saves it in the variable PLAN1 (62).

I

139

- — -S ~~ 5 . • ~~~~ 5_~55~_~~~~~~~~S . - 5 — -—- - - — 5- - — - - - 5— .- -— _____-

CONSTRAINTS

1. — ! GOAL SDO (I N R O O M BOX ROOM2 ’

2 . (GOAL SDO (INROOM (TUPLE BOX ROOM2)))

3. SETVAL UE GOALCLASS (TUPLE PUSH IN PUSHOUT GOTO LOOPPLAN MOVEBOX OPENDOOR)

-1. FAIL UE1E

5 . LA MBDA PUSHIN

6. SETVALUE NEWROOM ROOM2

7. SETVALUE 08.1 BOX

8. LAMBDA TRY

9. SETVALCE X (INROOM (TUPLE BOX ROOM2))

10. SETVALUE PLAN1 (TUPLE)

11. (GOAL SCONSTRAINTS SX)

12 . SETVA LUE GOALCLASS (TUPLE WEDGECHECK BOXCHECK)

13. FA I LURE

14. LAMBDA WEDGECHECK

15. SETVALUE ROOM2

16. (EXISTS (INROOM (TUPLE WEDGE SROOM)))

17. SETVALUE Cl (INROOM (TUPLE WEDGE ROOM2))

18. (GOAL $DO (NOT SC1))

19. SETVALUE GOALCLASS (TUPLE PLSHIN PUSHOUT GOTO LOOPPLAN MOVEBOX

OPENDOOR)

20. FAILURE

21. LA MBDA PUSHOUT

22. SETVALUE OLDROOM ROOM2

23. SETVALUE 08.1 WEDGE

24 . (EXISTS (CONNECTS (TUPLE ~DOOR (SET SOLDROOM —NEWROOM))))

25. SETVALUE DOOR D00R23

26. SETVALUE NEWROOM ROOM3

27 . LAMBDA TRY

140

28. SETVALUE X (INROOM (TUPLE WEDGE ROOM3))

2 9 . SETVALUE PLAN1 (TUPLE)

30. (GOAL SCONSTRAINTS SX)

31. SETVALUE GOALCLASS (TUPLE WEDGECHECK BOXCHECK)

32 . FAILURE

33 . FAILURE

34. SETVALUE PLAN1 (TUPLE)

35. (GOAL $DO (NEXTTO (TUPLE ROBOT $08.1)))

36. SETVALUE GOALCLASS (TUPLE PUSHIN PUSHOUT GOTO LOOPPL1N MOVEBOX

OPENDOOR)

37 . FAILURE

38. LAMBDA GOTO

39. SETVALUE X WEDGE

40. LAMBDA DELETE

41. SETVALUE EXP (NEXTTO (TUPLE ROBOT —Y))

42. (EXISTS $EXP)

43 . FAILURE

44. (ASSERT (NE XTTO (TUPLE ROBOT $X)))

45. SETVALUE PLAN2 (TUPLE (GOTO WEDGE))

46. LAMBDA DELETE

47. SETVALUE EXP (INROOM (TTJPLE WEDGE ROOM2))

48 . (EXISTS $EXP)

49. SETVALUE X (INROOM (TUPLE WEDGE ROOM2))

50. (DENY $X)

51. (ASSERT (INROOM (TUPLE $OBJ $NEWROOM)))

52. SETVALUE PLAN2 (TUPLE (GOTO WEDGE) (PUSHOBJTOROOM (TUPLE WEDGE

ROOM3)))

53. SETVALUE PLAN 1 (TUPLE (GOTO WEDGE) (PUSHOBJTOR OOM (TU PLE WEDGE

ROOM3)))

141

5~~. (GOA L RCON STRA INTS SX)

55. SETVALUE GOALCLASS (TL’PLE WEDGECHECK BOXCHECK)

56. FAILURE

57. LAMBDA WEDGECHECK

58. SETVALUE ROOM ROOM2

59. (EXISTS (INROO M (TUPLE WEDGE SROOM)))

60. FAILURE

61. FA I LURE

62. SETVALUE PLAN 1 (TEPLE (GOTO WEDGE) (PUSHOBJTOROOM (TUPLE WEDGE R O O M 3)))

63. (GOAL SDO (NEXTTO (TUPLE ROBOT 5 0 5 . 1)))

64. SETVALUE GOALCLASS (TUPLE PUSHIN PL’SHOUT GOTO LOOPPLAN MOVEBOX

OPENDOOR)

65. FA I LURE

66. LAMBDA GOTO

67 . SETVALUE X BOX

68. LAMBDA DELETE

69. SETVALUE EXP (NEXTTO (TUPLE ROBOT — V))

70. (EXISTS SEXP)

71. SETVALUE V WEDGE

72. SETVALUE X (NEXTTO (TIJPLE ROBOT WEDGE))

73. (DENY SX)

74. (ASSERT (NEXTTO (TUPLE ROBOT SX)))

75 . SETVALUE PLAN2 (TUPLE (GOTO BOX))

76. LAMBDA DELETE

77 . SETVALUE EXP (INROOM (TUPLE BOX ..-OLDROOM))

78. (EXISTS SEXP)

79. SETVALUE OLD R OOM ROOM1

142

80 . SETVALUE X (I N R O O M (TUPLE BOX ROOM1))

81. (DENY SX)

s2. (ASSERT (INROOM (TUPLE $OBJ SNEWROOM)))

83. (TUPLE (GOTO WEDGE) (PUSHOBJTOROOM (TUPLE WEDGE ROOM3)) (GOTO BOX)

(PUSHOBJTOROOM (TUPLE BOX R O O M 2)))

T

143

5- — — — 5 - 5 - - - -5—— ---—— -
-

- -

VI COORDINATED PLANS

A. .A Shopping Problem

As a final problem , suppose our robot wishes to have some yogurt

and mail a letter. The GROCERY operator ’s structure resembles our

othe r operators . It works on the goal (HAS —X).

rRPAQQ GROCERY (LAMBDA (HAS —X)

(PROC (DECLARE)

(GOAL $PRECONDITION (HA S MONE Y))

EWAIT (‘ (TUPLE (GOTO GROCERY)

(BUY SX~

(SETQ —YOUAREHERE GROCERY)

(ASSERT (HA S $X))

(WAIT DONE]

First it makes sure the robot has money, then constructs the plan to go

to the grocery and buy yogurt, and finally modifies the model to reflect

these last plan steps-—namely (ASSERT (HAS YOGURT)) and

(SETQ —YOUAREHERE GROCERY) .

The operators in this example are invoked as procedures rather

than ord inary func tion calls . As we w ill see later , this permits the

plann ing of coordinated actions . It requires , however , that the

planning steps be sent to the calling programs with WAIT statements

rather than the RETURN statements used in the previous examples . The

use of the WAIT statements greatly enhances the power of the operators .

145 ~~~~~~~~~~~~~~~ ~~~~~~~~

- ~~-

bDI~~ ~~~~ ~~~~~~~~
— ~~~~~—~~

-— - -
~~~~~~~

—

5—- -- -- - - - -S__ -__
- 

-~~ ~~~~~~~~~
- • - - S S



When executed , they send their p1anni~ g steps as a message to the process

tha t created them. When they are resumed (‘ called ’ for a process) they

are given a message and continue operation at the statement following

the WAIT . This means they can intersperse preconditions and planning

steps . A MAILLETTER operator could , for example , have the steps

(1) preconditions (HAS ENVELOPE)

(2) plan step (PUT LE1~ ER IN ENVELOPE)

(3) precondition (HAS STAMP)

(4) pl an step (PUT STAMP ON ENVELOPE)

(5) precondition (BE AT A MAILBOX)

(6) plan step (MAIL LETTER)

The st ructure of our MAILLETTER opera tor , however , resembles the

GROCERY operator. First it plans for the precondition (AND (HAS STAMP)

(HAS ENVELOPE )), and then constructs the plan step (WHEN EXP (SEE MAILBOX)

THEN (MAIL LETTER)).

:RPAQQ MAILLETTER (LAMBDA (SENT LETTER)

( PROC (DECLARE )

(GOAL SPRECONDITION (AND (HAS STAMP)

(HAS ENVELOPE)) )

EWAIT ( ‘  (TUPLE (WHEN EXP (SEE MAILBOX)

THEN

(MA ILLETTER

( W A I T  DONE

146

• ~ 5 ~~~~~~~~~



It does not update the model. The WHEN statement it adds to the plan

establishes a demon during plan execution. The demon will watch for a

MAILBOX , and mail a letter when it notices one . We could , in a more

sophisticated planner , both build a WHEN statement into the plan and

establish a demon in the planner. Then as the planner progressed , it

would update the model to indicate the letter was sent when , during

planning, the robot passed a mailbox in the model.

We have chosen this structure rather than the multiple step struc-

ture mentioned above because the precond itions are unordered and we

usually mail letters only when we see a mailbox , not as the next step

after putting the stamp on the envelope . Completely ordered precondi-

tions may, at times , lead to a silly plan . Suppose we did not have

either a stamp or an envelope , and our street map was :

(RPAQQ STREETMAP (TUPLE GROCERY STATIONERY BANK POSTOFFICE))

(The mailbox is between GROCERY and the STATIONERY , and the POSTOFFICE

is a stamp machine , so letters must be nailed at the mailbox.) If we

force an order on the operations of buying the envelope , buying the

stamp, and mailing the letter we produce a poor plan.

Ins tead of forc ing an order on the precond itions , the goal of

(AND (HAS STAMP) (HAS ENVELOPE)) will generate a plan that assures we

have both items , but it may gather them in either order. The ability

to deal wit h unordered precond itions w ill permit our robo t to bet ter

plan for the origimal problem: (AND (HAS YOGURT) (SENT LETTER)).

147

-5 - -~~ -- ~~~~~~~~~~~~ - -—



The POSTOFFICE and STATIONERY operators are similar to the

GROCERY operator

PRAQQ POSTOFFICE (LAMBDA (HAS ST.AMP)

(PROG (DECLARE)

(GOAL SPRECONDITION (HAS MONEY))

EWAIT ‘-YOUAREHE RE POSTOFFICE)

(ASSERT (HA S STA MP))

(WAIT DONE T

RPAQQ ST.ATIONERY (LAMBDA (HAS ENVELOPE)

(PROC (DECLARE)

(GOAL” $PRECONDITION (HAS MONEY))

WAIT ( ‘  (TUPLE (GOTO STATiONER?)

(BUY ENVELOPE]

(SETQ —YOCAREHERE STATIONERY)

(ASSERT (HAS ENVELOPE ))

(WAIT DONE1

Notice that they both have the same precondition as GROCERY : that the

robot must have money before he goes shopping .

The BANK opera tor lacks preconditions , and has only one main step——

constructing the sing le planning step (TUPLE (GOTO BANK) (CASH CHECK)).

148

_____ - - __ ._~_~~__5.5.5~~~ S.5 
- 

-.~ - — 
- - SS 

- ‘ - 5 S’_5•~ ~~~~ 
5 -  -



: RPAQQ BANK (LAMBDA (HAS MONEY )

( PROC (DECLARE)

WAIT (‘ (TUPLE (GOTO BANK)

(CASH CHECK]

(SETQ —YOUAREHERE BANK)

(ASSERT (HAS MONEY) )

(WAIT DONEI

B. The Shopping List

The planner must somehow coord inate preconditions so that the

shopping trip is executed in a reasonable order , in this case, the

initial goal (AND (HAS YOGURT) (SENT LETTER)) uses the operators

GROCERY and MAILLETTER . GROCERY establishes the precondition (HAS MONEY).

BANK satisfies this condition , thus the first step of GROCERY will be

(TUPLE (GOTO BANK) (CASH CHECK)). MAILLETTER establishes the precon-

dition (AND (HAS STAMP) (HAS ENVELOPE)). POSTOFFICE works on

(HA S STAMP) and STATIONERY works on (HAS ENVELOPE). Both POSTOFFICE

and STATIONERY also have the precondition (HAS MONEY). For coordinated

planning we must notice this and first go to the bank, then go to each

store, making a single trip through town, and begin to wa tch for a

mailbox as soon as we have both a stamp and an envelope .

Our robot plans from a shopping list. The shopping list contains

all the possible next steps for the final plan. The planner chooses

the next step based on its location in town and the direction it is

1.49



going, and adds that step to the general p lan . Associated with the

step just added to the plan was an operator , and the planner then adds

to the shopping list the next step from that operator. When an operator

is DONE , it is removed from the shopping list.

If an operator wishes to suspend itself from consideration , until

a precondition is true , it is included on the shopping list in condi-

tional form . On each iteration through the list , the condition is

checked ; if it is true , the operator is resumed , and its next step is

then included on the list.

Let us first step through the initial building of the shopping

list in an intuitive way, bypassing the details of the processes and

their methods of interaction . The goal (HAS YOGURT) creates a process

for GROCERY , say G, which has two effects. First it creates a process

for BANK , say GB , whi ch adds (TUPLE (GOTO BANK) (CASH CHECK)) to the

shopping list. Then GROCERY adds itself to the shopping list as a con— 
S

ditional element . Thus (HAS YOGURT) initially makes the shopping list

into

(TUPLE (TUPLE BG (TUPLE (GOTO BANK ) (CASH CHECK)))

(TUPLE C (TUPLE CONDITIONAL (HAS MONEY]

The goal (SENT LETTER) creates a process for the MAILLETTER operator ,

say , M . This operator has an AND precondition similar to the initial

AND goal for the problem. So M creates a process for STATIONERY, say S.

S immediately creates another BANK process, say SB. The AND precondition

150

S — .5 
-—.5-:- S S

S - —q5 ~~~~~~~~~~~~~~~ - -



for \IAILLETTER then creates a process for POSTOFFICE, say P , that

creates yet another process for BANK , say PB. Finally, MAILLETTER adds

itself to the shopping list as a conditional element . At the e~1d of

the first phase of planning we have a shopping list of seven items :

(TUPLE (TUPLE GB (TUPLE (GOTO BANK) (CASH CHECK)))

(TUPLE G (TUPLE CONDITIONAL (HA S MONEY)))

(TUPLE SB (TUPLE (GOTO BANK ) (CASH CHECK) ))

(TUPLE S (TUPLE CONDITIONA L (HAS MONEY)))

( TTJPLE PB (TUPLE (GOTO BA NK) (CASH CHECK)))

(TUPLE P (TUPLE CONDITIONA L (HAS MONEY)))

(TUPLE M (TUPLE CONDITIONAL

(AND (HA S STAMP) (HAS ENVELOPE]

Internally, the planner has built a structure of processes that

resembles , in many ways , a critical path or PERT chart for accomplish-

ing the tasks. Our chart—builting process has not identified equal

nodes; that will be done during the iterative cycles over the shopping

list. The chart for this example is:

:~~~

PB

151

—-- --S.  
S - S



C. Sorting the List

To generate the plan , we enter a second phase . The planner will

choose a next step from the shopping list and add it to the plan. This

step is replaced by a new next step front the appropriate operator and

the whole list is considered again. When an operator is DONE, it is

removed from the list. Let us step through the sorting process in the

same intuitive way we described its construction .

On the first pass through the initial list of seven items , none

of the conditionals are true , so all four conditional items remain on

the list . The remaining three items are all the same . Two are removed ,

and the thi rd is considered the best. The plan step for the best item

is appended to the main plan and the process associated with the best

item is resumed to get its next step . Stnce it is one of the BANK

items , it returns DONE . When it is resumed , it has the important side

effect of asserting (HAS MONEY) . Thus , at the completion of the first

cycle , the plan is

(TUPLE (TUPLE (GOTO BANK) (C.ASH CHECK)))

and the shopping list is:

(TTJPLE (TUPLE GB DONE)

(TUPLE G (TUPLE CONDITIONAL (HA S MONEY)))

(TUPLE S (TUPLE CONDITIONA L (HA S MONEY)))

(TUPLE P (TUPLE CONDITIONAL (HA S MONEY)))

(TUPLE M (TUPLE CONDITIONAL

(AND (HA S STA MP ) (HA S ENvELOPE ’

152

S 
- ‘ 

~~~~~~~~~~ ~~~~~~ . -


During the second cycle through the list , GB is discarded . This

time , however , the condition (HAS MONEY) is true . The process G is

resumed and returns (TUPLE (GOTO GROCERY) (BUY YOGURT)) as it s next

step . Then this next step is compared to other next steps and is either

considered BEST or put on the shopping list. In this case, since it is

the first step considered during the cycle , it is considered BEST .

(TLPLE S (TUPLE CONDITIONAL (HAS MONEY))) is considered on the

second step of the cycle through the shopping list. Since (HAS MONEY)

is true , S is resumed and returns , as a next s tep , (TUPLE (GOTO STATIONERY)

(BUY ENVELOPE)). According to the street nap , this is a better next

step because the STATIONERY is on the way to the GROCERY . Thus it is

made BEST and (TUPLE G (TUPLE (G-OTO GROCERY) (BUY YOGURT))) is added to

the new shopping list.

When (TUPLE P (TUPLE CONDITIONAL (HAS MONEY))) is considered , a

similar event occurs . But since going to the POSTOFFICE would require

backtracking in the plan , it is not better than going to the STATIONERY.

Thus (TUPLE P (TUPLE (GOTO POSTOFFICE) (BUY STAMP))) is added to the

new shopping list. Finally, whe n (TUPLE M (TUPLE CONDITIONA L (AND

(HAS STAMP) (HAS ENVELOPE)))) is considered , the condition is not true ,

so it remains on the shopping list. Having considered all four items

on this sec ond cycle , the planner appends (TUPLE (GOTO STATIONERY)

(BUY ENVELOPE)) to the plan , resumes S, and includes (TUPLE S DONE) on

the shopping list.

153

5— - - - - - - — - ----~~~~~ -- -__---5 - - -

On the third cycle , GROCERY is BEST , and the shopping list

becomes :

(TU PLE (TUPLE G DONE)

(TUPLE P (TUPLE CONDITIONA L (HAS MONEY)))

(TUPLE M (TUPLE CONDITIONAL

(AND (HAS STAMP) (HAS ENVELOPE]

On the fourth cycle, the condition for M does not yet hold , so P is

BEST.

At the beginning of the fifth cycle, the plan is

(TUPLE (TUPLE (GOTO BANK) (CASH CHECK))

(TU PLE (GOTO GROCERY) (BUY YOGURT))

(TUPLE (GOTO STATIONERY) (BUY ENVELOPE))

(TUPLE (GOTO POSTOFF I CE) (BUY STAMP~

Since S and P both have been resumed (HAS STAMP) and (HAS ENVELOPE)

have both been asserted . Thus the condition for M will hold . When it

is resumed , its next step is included in the plan . On the sixth cycle ,

the shopping list is reduced to the empty tuple , and the plan is

completed .

154

D. Process Control Programs

1. Initial Construction

The program SHOP sets up the initial model for our problem.

RPAQQ SHOP (LAMBDA —X

(PROC (DECLARE SHOPPINGLIST PLAN1)

(SETQ .-COMING FALSE)

(SETQ .-SHOPPINGLIST (TUPLE))

(SETQ —PLAN 1 (TUPLE))

(DENY (HA S MONEY))

(DENY (HAS YOGURT))

(DENY (HA S STAMP))

(DENY (HAS ENVELOPE))

(PUT (SENT LETTER)

WHERE $MAILLETTER)

(PUT (HAS STA MP)

WHERE SPOSTOFFICE)

(PUT (HAS YOGURT)

WHERE $GROCERY)

(PUT (HAS ENVELOPE)

WHERE $STATIONERY)

(PUT (HAS MONE Y)

WHE RE $BANK)

(GOAL (TUPLE MAPPLA N ONEPLAN)

$X)

(RETURN (= ($SORTPLAN (TUPLE

Its final two statements , GOAL and RETURN , initiate the two main phases

(of the solution .

155

S
~~~~. — ———---5 - —--5- --5—- — --5-



On the top level , the programs ONEPLAN and MAPPLAN both use

ADDTOLIST to generate the initial shopping list.

(RPAQQ ONEPLAN LAMBDA —GOAL

- (SADDTOLIST SGOAL~ )

(RPAQQ MAPPLAN ‘LAMBDA (AND .-.-GOALSET)

(MAPC $GOALSET $ADDTOLIST1 )

RPAQQ ADDTOLIST (LAMBDA .-GOAL1

(PROG (DECLARE TASK 1)

(SETQ —TASK1 (INCARNATE (GET SGOAL1 WHERE)))

rSETQ .-SHOPPINGLIST (TUPLE SSSHOPPINGLIST

(TUPLE STASK1 (RESUME

$TASK1 SGOAL1]

(RETURN ADDTOLIST]

Suppose our initial goal were only (HAS YOGURT). Then GOAL statement

of SHOP would call ONEPLAN , which wo uld call ADDTOLIST w ith (HAS YOGURT)

as the argument GOAL1 . The GET statement of ADDTOLIST finds the program

GROCERY . The INCARNATE statement creates a process from this program ,
.5
’

called G in the di scussion above , and TASK1 is set to this process. 
S

The second SETQ statement of ADDTOLIST performs two steps. First it

resumes the process. The value of the RESUME will be the first step

for the opera tor GROCERY . In this case the value of the RESUME will

be (TUPLE CONDITIONAL (HAS MONEY)). Then , the step is coupled with

TA SK1 into a two—tuple and added to SHOPPINGLIST .

156

- - .5---  --5— ~~~~~-~~~~~~~S- - ---5_ -- -_ _ _ _



When the process C was initially resumed , the interpreter bound

the message of the RESUME statement , SGOAL1 or (HAS YOGU “), to the

variable X of GROCERY, and began the interpretation of GRGCERY . The

first statement , (GOAL $PRECONDITION (HAS MONEY)) calls the program

SIMPLECONDITION with (HA S MONEY) as the argument .

[RPAQQ SIMPLECONDITION (LAMBDA ‘-GOA L

(PROC (DECLARE)

($ADDTOLIST $GOAL)

($WAITGOAL $GOAL)

(RETURN SIMPLECONDITION]

SIMPLECONDITION immediately calls ADDTOLIST with (HAS MONEY) as the goal .

When ADDTOLIST returns , SIMPLECOND1T1ON then calls WAITGOAL .

IRPAQQ WAITGOAL (LAMBDA —CONDITION

(PROC (DECLARE NEXTSTEP)

(SETQ —NEXTSTEP (TUPLE CONDITIONAL $CONDITION))

LOOP (SETQ .-NEXTSTEP (WAIT $NEXTSTEP))

(IF (NOTEQUAL $NEXTSTEP ALL—DONE)

THE N

(GO LOOP))

(RETURN WAITGOAL]

This program sets NEXTSTEP to (TUPLE CONDITIONAL (HAS MONEY) )

and executes a WAIT with NEXTSTEP as the message . A WAIT resumes the

mother process , so at this point the RESUME of the initial call to

157



ADDTOLIST from ONEPLAN is evaluated , and the top level process con-

tinues by adding the conditional to SHOPPINGLIST .

The cal l  to ADDTOLIST from SIMPLECONDITION has the side ef f ect

of creating a process from (HAS MONEY), ca l led GB above , and resuming

it. By the time the RESUME in the initial call to ADDTOLIST is

evaluated , two processes have been created .

When a process is resumed by any other process , it begins

execution at the point it executed its last WAIT or RESUME . The process

B is waiting for a message to become the value of the first WAIT state-

ment in the function BANK . When ADDTOLIST at the top level returns,

ONEPLAN has satisfied the GOAL, and SHOP is abou t to execu te the RETURN

statement . The process structure is:

STATE PROCESS

at RE TU RN top level

in WAITGOA L C
loop .5

in BANK GB

WAITGOAL will play an important role in maintaining conditional

processes until their preconditions are true . When the top level

process resu mes GB , the WAIT in GB will cause G to become activated .

Since it is not ALL—DONE , the message will be immediately relayed to

the mother of G——the top level process. However , when the top—level

158



process is ready to activate G directly, it resumes with the message

ALL—DONE . This happens during the sorting phase when a condition is

t ru e and the next step fo r  a -cond i t i ona l  process needs to be considered .

WAITGOA L then recognizes ALL—DONE as a message that the precondition

is sa tisfi ed and re turn s to SIMP LECONDIT I ON . SIMPLECONDITION returns

to GROCERY , which sends a message back to the top—level with a WAIT.

The addition of AND goals to this process structure is trivial .

We merely apply ADDTOLIST to each member of the AND set . The GOALCLASS

for SHOP on the top level is (TLTPLE ONEPLAN MAPPLAN). MAPPLAN is a

MAPC extension of ONEPLAN. Within each process , the GOALCLASS for

SPRECONDITION is (TUPLE ANDCONDITION SIMPLECONDITION). ANDCONDITION

is a MAPC extension of SIMPLECONDIT 1ON .

~RPAQQ ANDCONDITION (LAMBDA (AND —GOALSET)

(PROC (DECLARE )

(MAPC SGOALSET SADDTOLIST)

(SWAITGOAL (‘ (AND SSGOALSET)))

(RETURN ANDCONDIT ION~

2. Process Interaction

The progra m SORTPLA N , execu ted by the top level p rocess , uses

the program MAKEPLAN1 to add the best next step of the plan and create

a new shoppi ng l ist. I t simp ly cal ls  MAKEP LAN 1 and checks if

SHOPPINGLIST is empty. If not , it repeats the call to MAKEPLAN1 .

159

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —5-- — —~~~ •5-5 -S--—S-


RPAQQ SORTPLAN (LAMBDA (TUPLE)

(PROC (DECLARE)

SORT (SETQ —PL1N1 (SMAKEPLAN1 SPL~.Nl))

(IF (EQUAL $SHOPPIN GLI ST (TUPLE))

THEN

(RETURN SPLAN1)

ELSE

(GO SORT]

MAKEPLAN1 performs an iteration through the elements of

SHOPPINGLIST and chooses the bes t one .

rRPAQQ MAKEPLAN1 (LAMBDA —BIGPLAN

(PROG (DECLARE BESTPLAN BESTPROCESS BESTPLACE NEWLIST BEST

NEWPLAN)

(SETQ —NEWLIST (TUPLE))

(SETQ —BEST FALSE)

(SETQ —BESTPLACE MIT)

(SETQ .-BESTPLAN (TUPLE))

(MAPC $SHOPPINGLIST SFINDNEXTPLACE)

(IF (EQUAL $BESTPLACE MIT)

THE N

(SETQ .-NEWLIST (TUPLE))

(SETQ —COMING (NOT SCOMING))

(MAPC $SHOPPINGLIST SFINDNEXTPLACE))

(SETQ —SHOPPINGLIST $NEWLIST)

(I F $BESTPROCESS THEN (SETQ —N E WPI~~N (RESU ME
SBESTPROCESS TRUE))

(SETQ —SHOPPINGLIST (TUPLE (TUPLE SBESTPROCESS
SNEWPLAN)

S$SHOPPINGLIST)))

(RETURN (TUPLE SSBIGPLAN $$BESTPLAN

160

First it initializes BEST to be the worst possible place . It then uses

a MAPC to apply FINDNEXTPLACE to each member of SHOPPINGLIST . If no

BESTPLACE was found , it reverses the direction of the robot from COMING

to (NOT COMING), or going , and tries again to find a BESTPLACE .

FIN D NEXTPLACE crea tes NE WLIST , a nev; shopping list. MAKEPLAN1 sets

SHOPPING LIST to NEWLIST . Then , if a BESTPROCESS was found , it resumes

it in order to get its next plan step . This NEWPLA N together with

BESTPROCESS is then add ed to SHOPPINGLIST and MAKEPLAN1 returns the

new plan .

FINDNEXTPLACE analyzes each proposed step .

rRPAQQ FINDNEXTPLACE (LAMBDA (PAND —P (TUPLE —PROCESS —PLAN))

(PROC (DECLARE CONDITION)

(IF (OR (EQUA L $PLAN DONE)

(EQUAL $PLAN $BESTPLAN))

THEN

(RETURN FINDNEXTPLACE))

(ATTEMPT (SETQ (TUPLE CONDITIONA L .-CONDITION)

SPLAN)

THEN

(IF (GOAL $CHECK $CONDIT ION)

THEN

(SETQ —PLAN (RESUME $PROCESS ALL-DONE))

(SETQ —P (TUPLE $PROCESS $PLAN))

($COMPAREPLA N SPLAN)

ELSE

(SETQ .-NEWLIST (TUPLE $P $SNEWLIST)))

ELSE

($COMPAREPLAN $PLAN))

(RETURN FIND N E XTPLACE

161

L~~~~~~~
-- -- SS S

~
S S - - - - _

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

- 
5~~~~~~~~~S~~~~~~~~~~~~~~~~~~~~~

~_



If the plan is DONE it takes no action , and neither adds anything to

NEWLIST , the new SHOPPINGLIST , nor compares PLAN to BESTPLAN . If PLAN

is EQUAL to BESTPLAN it also does nothing . This is where the three

BANK steps were recognized as the same .

If PLAN is a cond iti ona l , it checks the condition using

GOALCLASS $CHECK . If the condition is not true , it adds the condition

to NEWLIST . If it was true , it resumes the PROCESS with ALL—DONE .

This finds the next step for PROCESS . Then the program COMPAREPLAN is

used to compare this next step to the BEST so far. If the PLAN was not

a conditional , the ELSE clause of the ATTEMPT statement calls

COMPAREPLAN directly. COMPAREPLAN first checks to see if the plan ’s

first step is a GOTO. If it is, is uses BETTER to compare the PLACE

to BESTPLACE . If the f irs t step is no t a GOTO , then COMPAREPLAN ass umes

it can be executed -ANYWHERE, and thus makes it the BEST. If COMPAREPLAN

upd a tes BEST , it also updates NEWLIST by adding the old BEST to it.

162

- - ,• 4 _~ ~~~ ,_ _ S S



E RPAQQ COMPAREPLAN (LAMBDA (TUPLE ~STEP1 —OTHERSTEP)

(PROC (DECLARE PLACE ISGO ILIKE)

(SETQ —PLACE ANYWHE RE )

(SETQ —ISGO FALSE)

(SETQ —ILIKE FALSE)

(SETQ —ISGO (ATTEMPT (SETQ (GOTO —PLACE)

SSTEP1)))

(IF SISGO THEN (SETQ —ILIKE ($BETTER $PLACE)))

(IF (OR (NOT SISGO)

$1 LIKE)

THEN

(IF SBEST THEN (SETQ .—NEWLIST (TU PLE SBEST

$$NEWLIST)))

(SETQ —BEST $P)

(SETQ .-BESTPROCESS SPROCESS)

(SETQ —BESTPLAN SPLAN)

(SETQ .-BESTPLACE $PLACE)

ELSE

(SETQ —NEWLIST (TUPLE $P $$NEWLIST

For thi s simple shopping problem , STREETMAP is a tuple. In

this way BETTER can use a single pattern match with fragment variables

to compare PLACE and BESTPLACE .

163



RPAQQ BETTE R

(LAMBDA —PLACE

(PROC (DECLARE X Y Z)

( I F  (EQUAL SBESTPLACE MIT)

THEN

(RETU RN TRUE ))

(IF (EQUAL $BESTPLACE ANYWHE RE)

THEN

(RETURN FALSE))

( I F  (NOT SCOMING)

THE N

(ATTEMPT (SETQ (TUPLE .-.--X $YOUAREHERE —.-Y SPLACE

.—Z SBESTPLACE —.-W)

SSTREETMA P

The GOALCLASS $CHECK checks the MODELVALUE of each item of the condition .

(RPAQQ CHECK ( TIJPLE ANDCHECK SIMPLECHECK ))

rRPA QQ ANDC HECK ( LAMBDA (AND —CONDITIONS )

(PROC (DECLARE X)

(SETQ —X TRUE)

(MAP C SCONDITIONS SCHE CKONECO NDITION )

(RETURN $X1

RPAQQ CHECKONECONDITION (LAMDBA —Y

(SETQ —X (AND (GET $Y MODELVALUE )

sx]

(RPAQQ SIMPLECRECK LAMBDA —CONDITION

(GET $CONDITION MODELVALUE])

164

-
~~~~~ 

-~~~~5- — -~~~~~~~~~ - - S - - -5—- - ----—-- 5-5-— - ----
- S

—
- - ~~~~

_
~~~‘5~~



Chapter Four

THE LANGUAGE

( 
.5

‘
_

S5 
S

I

S.- 
5_

; S 
~~ 

S 
- - ~~~~~~~~~~ - 5 ’

~~~~~~~~~~~~~~~ *~+5e’ —~’ t_ -~ 
~~~~~~~~~~~~~~~~~~~~~~~~~



CHAPTER FOUR—-THE LANGUAGE

I RUNNING THE SYSTEM

A. Warnings

This chapter may be read without an intimate knowledge of TENEX

or BBN LISP (Te ite lman , 1972). If you wish to run QA4 however , you

will find it necessary to READ YOUR MANUAL .

This note contains details on all the system features that work

and , additionally, those that are planned for in the future . Some

section titles are marked with an asterisk (*) to indicate that these

features do not yet work . They may be coded ~nd not debugged , so be

care ful.

B. Loading the System

To use the QA4 system . one must first LOGIN to TENEX and enter BBN

LISP . The •nost recent version of the QA4 system is kep t as a SYSOUT

file named QA4.SYS;l in Rulifson ’s directory . Thus the LISP command

—SYSIN(~~RULIFSON~QA4 .SYS ; 1)

will load the system. The response should be HELLO . You have then

loaded QA4 are talking to the top level of LISP .

C. Talki! to QA4

A l l  communication to QA4 is done through LISPX . The breakout

character is ! . For examp le , the command

, ! (SETQ —x 3)

163

- ~~~~~~~~~~~~~~



would set the top—level QA4 value of the variable X to 3. Since LISPX

has had a chance to see the input line , all its commands such as F I X

and REDO w i l l  work p r o p e r l y .  The QA4 user  l anguage  is s l i g h t l y  d i f f e r e n t

from the QA4 internal form for expressions , althoug h typing the internal

form will always work . Before QA4 is actually presented an input line ,

an automatic editing occurs . This initial editing pass will supply many

of the key words used in the internal format . For example , the internal

form of the above line is

(STATEMENT SETQ (BV X PREFIX — ) 3)

meaning X is a bound variable with prefix — . The differences in the

two formats are discussed throughout this report .

D. Establishing a Program

All QA4 programs must have a name . The user form of the program

is stored as the LISP value of the name , and the internal form of the

program is stored as the QA4 value of the name . Only the QA4 va lue  is

necessary to execute the program. Thus the command

— (SETQQ ~FOO (LAMBDA —X (PLUS —X 1)))

will set the QA4 variable FOO to an expression that is a QA4 program.

The function EDITQ will edit QA4 programs . It first checks for a LISP

value for it s argument , and i f it canno t f ind one it crea tes one from

the QA4 value . It then calls the LISP editor to permi t the user to

)
edit the function . When the editor exits with an OK or SAVE , EDITQ

saves the LISP value and generates a new QA4 value. The next time the

166

S - — 
- ~~~~~~~~~ 

f~~- U  -



function is edited , the edit history list is restored so that old

command s ma’; be UNDONE just as with LISP functions . EDITQ is called

i n  t he  same m a n n e r  as EDITF .

E. Commands to Establish Models

Usually a file contains commands to the QA4 s y s t e m  as wel l  as

functions . These commands are expressions to be evaluated at the top

level and establish the model and inform the system about the use of

programs to work on goals and establish demons . To save a list of

command s 10 a file , a user first puts the list of command s under the

property HISTORY on a LISP atom . To save these properties , add

(PROP HISTORY nl n2 ...) to fi1eVARS . Each ni is an atom whose LISP

value is a list of commands. The format of the list of commands is a

list of lists. Each sublist has ! as the first element and the command

as the second element. For example ,

((! (ASSERT (P A))))

((! (DENY (P B)))))

Appemdix I contains a detailed example of a file with many functions

and commands.

167



I I  PRIMITIVE EXPRESSIONS

A. Types and Formats

The entities of the QA4 language are expressions , and every expres-

sion has a ‘syntactic type .” This feature of an expression indicates

the way the expression is to be interpreted . The syntactic types are :

INDENT, SET , BAG, NUMBER, CONTEXT, PROCESS , SEMAPHORE, LAMBDA,

FA , EX , APPL , STATEMENT.

This notion of type plays a different role in the interpretation of the

language than the more common “data type .” In QA4 a tup le and a se t

both have data type list, but have different syntactic type, and thus

have different meaning during evaluation .

There are two formats for QA4 express ions : user , and internal.

The user format is a condensed or shorthand version of the internal.

As we discuss each of the types and their meaning in the rest of this

note , we will point out the differences in these two formats. Any

time expressions are printed or edited within the system , the expres-

sions are first converted from internal to user format. The internal

for mat that is used by the interpreter is the key to many of the more

complicated operations the interpreter performs on expressions .

Each expression has a standard or canonical internal form . Any

time an expression is constructed within the system it is converted to

this canonical form . Expressions that are syntactically equivalent are

S—S- -S .,- 
-

169
~~~~RDIM~ p’G~ E1A

S
.5

-
S

- - ~~~~ S ~~~~~~~~~~~~ ~

always converted into the same expression . For example , (SET 2 1) and

(SET 1 2) are the same set and are represented within the system by the

same expression. Appendix II contains a complete description of thi s

process. This internal format also permits the expressions to have

properties. In fact , the expression is a list of properties and the

syntactic component identifies the expression . Expressions that are

the same up to change of bound variables and set and bag permutations

are identified . For example , using mathematical notation rather than

QA4 notation , if the expression

(‘ (X Y) (X i- Y) * (Y + 1))

existed in the system and a program constructed

(~~~(U V) (1 2 ÷ l) * (V + U))

they would be recognized as syntactically equivalent , and only the

first would remain in the memory of the interpreter. This feature is

particularly powerful when two programs wish to share information about

quantified expressions .

The canonical representation of expressions is an extens ion of the

ATOM feature of LISP . In LISP all strings , including identifiers , that

are syntac tically equivalent , that is have the same characters in the

same order , are converted by the function MKATOM to a pointer to the

same word in memory . This word , in turn , gives access to a property

list for the atom. In QA4 the constructors for each syntactic type ,

for example , the primitive programs that make tuples and sets, first

170

look in memory to see if an equivalent expression has been previously

constructed . If so, they return a pointer to that expression; if not ,

they construct a new expression and make its syntactic component their

argument , and finally return a pointer to the new expression . This

expression look—up process is explained in detail in Appendix II.

B . Ident if iers

An identifier is an individual symbol such as X, Y, MAX , etc. The

identifiers are the function symbols , predicate symbols , and var iables

of the language . Certain identifiers such as AND, OR , and UNION are

reserved in that they have predetermined built—in meanings . All other

iden ti f iers may genera l ly be used fo r va riables , nam ing, defined func-

tions , etc.

The rest of this section discusses each of the syntactic types——

fully def ining the bas ic ones and outlining the more complex ones such

as STATEMENT and LAMBDA .

C. Tuples, Sets, Bags, and Numbers

1. Tuples

A tuple is an express ion of the form

(TUPLE el . . . en)

where el ... en are expressions . Its meaning is the tuple of objects

denoted by the express ions. Tha t is , a tuple evaluates to the tuple

of the values of its components. For example , (TUPLE 1 1 + 1 6/2)

171

evaluates to (TUPLE 1 2 3) . Two evaluated tuples (TUPLE el . . . en) and

(TUPLE fl ... fm) are equal provided they have the same length (n=rn)

and each ei is equal to the correspond ing fi. Because QA4 uses a

canonical internal representation , the two tuples will be equal if ,

and only if , they are the same expression .

In QA4 all functions have exactly one argument . Thus, a tuple

is used as the single argument to a function demanding more than one

input. The application of a function f to arguments (1 2) (in mathematics

f(l 2)) is represented in QA4 as the expression

(APPL f (TUPLE 1 2))

where f takes the tuple (TUPLE 1 2) as its single argument .

In the user language, one may leave out the syntactic type word

APPL and merely list the arguments. The QA4 preprocessing system will

perform the appropriate translation . Thus, one would write

(F 1 2)

in a QA4 program , but the internal form would be

(APPL F (TUPLE 1 2))

2. Sets

A set expression is an expression of the form

(SET el ... en)

where el ... en are any express ions . The mean ing of the set express ion

is the set of objects denoted by the expressions within the set. Since

both the order of the elements and the number of occurrences of an

172

S - - - - - - - - -- -___ _ _ _ _ _ _ _ _ -
S

-

- .- _
~~~~~~~~~S.



elemen t in a set are immaterial , the sets

( SET A B C) (SET C A B) (SET C A A B C)

are all treated as identical expressions . When the sets are constructed ,

eithe r during inpu t or by a program , multiple occurrences of syntactically

identical elements are reduced to a single occurrence of the element .

Thus, the last set in the above example could never occur internally as

a QA4 expression . During evaluation , when the expressions are replaced

by the objects they denote , a continued reduction may occur.

3. Bags

A bag expression is an expression of the form

(BAG el ... en)

where el ... en are arbitrary expressions . A bag is like a set in that

the elements are considered to be unordered . It differs from a set ,

and resembles a tuple in that elements may have multiple occurrences,

for  exam p le , the bags (BAG 2 3 2) and (BAG 2 2 3) are equal but neither

is equal to the bag (BAG 2 3).

QA4 uses bags or sets as arguments to many primitive functions .

Since PLUS is commutative and associative , for exa mp le , 2+2+3 can be

represented internally as (APPL PLUS (BAG 2 3 2)). The QA4 preprocessor,

however , knows the argument type of all primitive functions and will

a u t o m a t i c a l l y pe r fo rm necessary reformatting . Thus 2~-2-’- 3 would be
I

written in a program as

(PLUS 2 2 3)

173

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-S.~~~~~~~~

__~~-- - - - — — - 5 - - -- -5— - - - -
~~~~~~~~

—S- _ - 5
~ ~S_~S_~_ _~



Fu nc t ions  tha t  are also idempotent  may take sets as arguments. For

example , TRUE ~ FALSE & TRUE could be represented as (APPL AND (SET TRUE FALSE))

but could be written in a program as (AND TRUE FALSE). Permitting the

interpreter to control the order of the elements of bags and sets signifi-

cantly reduces searching during such jobs as pattern matching and expres-

sion simplification .

4. Numbers

A number is simp ly a LISP number, for example, 3, 0, —17.2 are

numbers .

D. Contexts, Processes, and Semaphores

There is no special notation for the syntactic types CONTEXT, PROCESS ,

and SEMAPHORE . Internal representation., for these objects are built and

manipulated by primi c~ ve functions and statements. Semaphore statements

are discussed in Section III—G , Process statements .n Section XI, and

Context statements in Section VII. The internal form of contexts is 
S

described in Appendix III.

E. Applications

An app lication is an expression of the form (APPL F A) where F is

am expression denoting a function and A is any expression . All QA4

functions take one argument ; however , the argument can be a tuple ,

(TUPLE al ... an), so there is no loss of generality. The meaning of

an app lication (APPL F A) is its natural one——namely, the result of

applying the function denoted by F to the argument denoted by A. As

) 74 

.~‘



we have noted previously , the preprocessor will supply APPL, thus the

form in a program is simply (F A) . It is not necessary within QA4 to

specify the syntactic type of arguments in the function definition . In

this way a sing le program can operate on tuples , sets , or bags . A sort

program , for  example , could sort e i t h e r  bags or sets i n t o  t up l e s .

F. Bouna Variable Expressions

A bound variable expression is an expression of the form (keyword

by e), where e is any expression , by is a bound variable or pattern ,

and keyword is one of LAMBDA , FA (for  all ), or EX (exists). All lambda

expressions and quantified expressions are bound variable expressions .

The bound variable , by , is a pattern and has syntax and semantics tha t

extend the usual definition of expressions . It is akin to a variable

declaration. Basically, the purpose of a bound variable is to assign

values to one or more variables during the evaluation or analysis of

the expression e, the body of the bound variable expression .

1 . Bound Variables

Unless more advanced pattern—matching features are invoked ,

a bound variable is usually a norma l QA4 expression. Thus the internal

and ~iser formats are the same . When the bound var iable of a la mbda

expression is bound or matched to the actual argument for the evaluation

of an application , the pattern matche r decomposes the actual argument .

As we will see w hen s tatemen ts such as SETQ and EXISTS are di scuss ed

la ter , almos t ill expression decomposition in QA4 programs is accomplished

175



by pattern matching . The following brief description of patterns

should suffice for most examples . The full pattern language is pre-

sented in the PATTERNS Section .

a. Pattern Variables

During template pattern matching, var iables may take on

roles not normally found in programming languages . For example, suppose

X has the value 1 prior to the match of (TU PLE X Y) against (TUPLE 2 3).

Do we want the match to fail because X already has the value 1? Or

should the match succeed with X set to 2? Still another problem with

norma l var iable usage comes from the dominant role of cons tants in

patterns . Variables tend to play a secondary role, and to identi fy

quoted expressions with special syntax, say quote mark s, and not to

identify the variables obscures the template quality of the patterns .

QA4 uses a quasi—quote mode (Quine , 1965) in all expres—

-.5

sions . This means that all symbols are treated as being quoted except

for those that are specifically identified as variables . There are

many var iable ident ifi cation symbols . Some are meaningful within the

context of a single pattern , while others have meaning only in the

context of programs . Most examples use only the symbols $ and — .

• Symbol $

In user forma t , a $ Immed iately preced ing an identi f ier

flags it as a variable. The $ must , in fact , be the

176

___  - 5 5  ‘~~~~~• S’.5~~ • - - --5-- - ---—---5—-—--- —- S .



first character of the LISP atom tha t constitutes

the i d e n t i f i e r .  I t  means tha t  the  v a r i a b l e  must

have a value during evaluation , i.e., be boun d to an

object . If the variable does not have a value , the

program fail s . For example , the expression (PLUS 3 $X)

with X bound to 2 evaluates to 5 , but if X does not

yet have a value the program fails. If (TUPLE 3 $X)

is matched against (TUPLE 3 2) it succeeds if X had

va lue 2 prev ious to the ma tch , and it fails if X has

any other value or does not have a value .

• Symbol

— permits the variable it flags to take a new value

within this particular execution of this specific

ma tch , but requires that the value be consistent withi n

the match . For example , if we match (BAG ~X .-.X) against

(BAG 2 2) then if X already has a value it will be

ignored and X will take the value 2. But if we match

( BAG .-X .-X) against (BAG 2 3) then the match will fail

S and the value of —X before the attempted match will be

retained . If an expression is being evaluated , t hen

a — variable must have a value just as a $ variable .

For example , to evaluate (PLUS 2 —X ), —X must have a

177

_ _  - 5 - -  — - 5 -

p ~~ 5 • * S~~~’S44~ 5~ --



value or the expression cannot be evaluated . If the

— variable does not have a value , the program fails.

• Internal Format

The internal format of bound variables is a LISP—sty le

property list that begins (BV v PREFIX p) where v is

the LISP atom for the variable and p is the prefix

code. For example , $X in user format becomes

(BV X PREFIX 5) in internal format . This compacted

form of the user fo rma t grea tly enhances the templa te

quality of QA4 programs while the internal format

eases the tasks of the interpreter in its more compli-

cated operations .

b. Simple Patterns

A pattern with $ variables is a parameterized template

for the expression to be decomposed . For example , suppose we wish to

match (LEFTOF .-X $Y) to the expression (LEFTOF BLOCK1 TOWER3) and SY

is bound to TOWER3 . First the pattern is instantiated . That is , all $

va riables are replaced by their values and the template is constructed .

S 
In our example (LEFTOF .—X TOWER3) would be the template . The internal

forma t of the expressions would now be (APPL LEFTOF (TUPLE —X TOWER 3))

and (APPL LEFTOF (TL~PLE BLOCK1 TOWER3)). The pattern ma tcher must

check tha t the same constants appear in the same positions , construct

178

5- 
- -‘S ~~~~~~~~~~ 

~~~~ -


a binding list for newly encountered variables , and assure the consis-

tency of the role of variables on later encounters .

If the pattern contains a set or bag of bound variables,

then the expression to be decomposed must have an expression of the

same syntactic type in the sane position. Here the situation is more

complex since there is more than one possible assignment . An initial

ass ignmen t is chosen by the pattern matcher , and a backtracking point

is established by the interpreter. Future failures may return to the

backtracking point , at which time alternat e assignments are made . For

example , we may wish to bind (NEXTTO (BAG —X .-Y $Z)) to

(NE XTTO (BAG BLOCK1 BLOCK2 TOWER3)) with $Z bound to BLOCK2 . The

pattern matcher may choose an initial binding of —X to BLOCK1 and ~Y

to TOWER3 . Later, if the program fails back to this point , the

alternate binding of .-X to TOWER3 and —Y to BLOCK1 would be established .

A second failure to this point would cause a failure from this back-

tracking point to its immediate predecessor , for there are only two

possible ways to carry out this match .

2. Lambda and Quantified Expressions

A LAMBDA expression is a bound expression with both user and

internal form (LAMBDA by e). A LAMBDA expression denotes a function

whose value at an argument A is the value of e with the variables of e

set to the result of binding by to A. The main use of LAMBDA expres-

sions is in defining new functions . An example is

179

_ S_ . S -

(LAMBDA (TUPLE .-X —Y) (TUPLE $Y $X))

This is a function that reverses a tuple of length 2. (TUPLE —X —Y) is

the by , and (TUPLE SY $X) is the expression body e.

If by contains a set or bag that , in turn , contains a variable

there may be more than one possible binding . For example ,

(LAMBDA (BAG —X —Y) (TUPLE $X $Y))

applied to (BAG 1 2) could evaluate to either (TUPLE 1 2) or (TUPLE 2 1).

For such applica tions the interpreter does not normally es tablish a

backtracking point and performs the alternate bindings and evaluations

on failure . It uses the first binding chosen by the pattern matcher.

Since it does not establish a backtracking point , a fa ilure bypasses

this potential choice point . If the user wishes the interpreter to

invoke alternate bindings on failure , an alternative form of the lambda

expression must be used :

(LAMBDA by e BACKTRACK)

A quant ified expression is an expression of the form

(quantifier by e), where e is a truth—valued expression and quantifier

is either the universal quantifier FA (for all) or the existential

c~.antifier EX (exists). The mathematical (VX)(yY)(’~Z)P(X Y Z) is

expressed in QA4 as -

(FA (TU PLE X Y Z) (P X Y Z))

We have , at times , considered adding other quantifiers to the

QA4 language . This v.111 probably be done , but only as the need ar ises

180

in the construction of problem—solving programs . Some candidates are :

• The X such that F(X), sometimes known as the
denotation or choice operator .

• There is exactly one X such that F(X).

• The set of objects X such that F(X), an extended
denota tion operator.

Within QA4 there is no notion of an application of a quantified expres-

sion to an argu ment (t here is, however , the application of lambd a

expressions to arguments).

3. * Extended Applica tions

a. The WITH Clause

We have des igned , but not yet implemen ted , an extens ion

of applicat ions that permits the programmer to specify strategies to

guide the pattern matcher during the bound variable decomposition. For

example , suppose we def ine a funct ion FUN to be

(LAMBDA (BAG .-X —1) (TTJPLE $X $Y))

In normal appl icat ions we have no way to force the pat tern matcher to

choose one particular order over another. To force an order we must

use a WITH clause as an option in the application :

($FUN (BAG 1 2) WITH $MYORDER)

MYORDER is a f unc t ion we have def ined t ha t w i l l communicate w i t h the

interpreter and thus force an order on the possible choices . It must

have a 2— tuple as its by. This 2—tup le has as elements

181

• A pattern that will be bound to the by of FUN ; and

• A pattern that will be bound to the actual arguments

to which FUN is applied .

We may have def ined MYORDER as

(LAMBDA (TUPLE (BAG —U —V)

(BAG —A .—B))

(PROG ()

(IF (LT $A SB) THEN (SETQ (TU PLE —B —A)

(TUPLE SA $ B)))

(BIND SU SA SV SB)

(BIND SU $B $V $A)))

Now when the interpreter begins to appl y FUN to (BAG 1 2)

and encounters the WITH clause it calls MYORDER rather than the pattern

matc her. The argument it constructs for MYORDER is the 2—tuple

(TUPLE (BAG —X —Y) (BAG 1 2)). The first element of this 2—tuple is

the by of FUN and the second element of the 2—tuple is the actual argu—

ment for this application of FUN . That is, the by of MYORDER is

deco mposed by ma tch ing -

(BAG —U —V) to (BAG —X —Y)

which resul ts in binding

—U to —X and

—v to —Y

and by m a t c h i n g -
‘

(BAG —A .—B) to (BAG 1 2)

182

p
- S ~~~~~~ S5tS~P •t ,s.~4 - - --

which r e su l t s in b inding

—A to 1 and

—B to 2

At this point MYORDER is run as a process. When it executes

a BIND statement , the specified bindings are established for FUN and

FUN is started . The arguments of the BIND statement are an alternating

series of. variables that are to be bound and the corresponding values.

The interpre ter establishes the bind ings and suspends the WITH program

as though a RESUME statement had been executed . In our example X is

bound to 2 and Y is bound to 1. If a fa ilure occurs that would norma lly

backtrack to try an alternate binding for FUN, MYORDER is resumed instead .

Our example would then bind X to 1 and Y to 2. When MYORDER initiates

a return , either through a RETURN statement or by completing a PROG,

no more BIND statements can be executed and a failure is created .

Thus a user stra tegy has replaced the normal function of

the pattern matcher. This strategy may, however, rely heav ily on the

pattern matcher for its internal operation , but order the bindings in

a way that would work better than the ordering the sys tem would produce

On its own .

b. The ALL Clause

The ALL clause acts as an iterative operator for applica-

tions. It serves the same purpose as the MAP functions in LISP. For

example ,

183

— 5- - - - - - -__ - - -_ _--

((BAG SF1 SF2) A ALL FNS)

means to form the bag of applications

(BAG ($F1 A) (SF2 A))

The fo r m

($Fl (BAG A B) ALL ARGS)

on the other hand , means to form t he bag

(BAG($Fl A) (SF1 B))

rather than to apply Fl to (BAG A B) as an argument .

((BAG SF1 SF2) (BAG A B) ALL FNS ALL ARGS)

means to form the bag of all four possible applications .

ALL may be applied to sets and tuples as well as bags .

This fea ture is not implemented, but appears to have potential value

in some problem—solving programs , especia l ly when used with REPEAT

statements. It c-an easily be added when the need arises.

G. Statements

In QA4 , statements are syntactic forms that violate the standard

rules of expression evaluation . The normal mode of evaluation of

applications in QA4 is to first evaluate the operator (function part),

then the operand (argume nt par t), do the binding, and then evaluate the

body of the function. Many times , however , concise syntactic forms

require lists of directions or options and must bypass the normal mode

of evalua tion. The most common example of this is the IF or COND form .

184

- - S - 5 5 -- - - r - - --5 - - — - —
S

- .

~ - s S . ~~~~~ 4 ,~~~~555

ALL syntactic forms that have nonstandard evaluation rules have syntactic—

ty pe STATEMENT , and are the QA4 statements.

As we have seen , QA4 operates in inverse quasi—mode where all

symbols are quoted except those flagged as being variables . This rep-

resentation gives statements an especially natural appearance . Another

addition to this natural syntax is the instantiation rather than evalu-

ation of some parts of statements. That is, the expression (PLUS $X $Y),

with $X bound to 3 and $Y bound to 2, stands for the expression (PLUS 3 2)

if i t occurs as a par t of a s ta tement tha t is i n s t a n t i a t e d rather than

evaluated .

The AMONG statement is a simple example of the way statements are

interpreted . AMONG takes a series of expressions and has as its value

the value of one of the expressions . For examp le ,

(AMONG 1 2 3)

will have the va lue 1, 2, or 3. The internal form of the statement is
S

(STATE MENT AMONG 1 2 3)

bu t the preprocessor alwa ys supp lies the type word STATEMENT .

When the interpreter executes the statement it instantiates only

one of the expressions , es tablishes a back track ing point, and proceeds

with the program. If the program backtracks to this statement , another

expression is instantiated , and so on . If the expressions are finally

exhaus ted the s t a t emen t fa ils , and forces backtrack ing to the prev ious

backtracking point .

185

Notice that as each expression is chosen as a candidate for the

value of the statement it is not evaluated in the normal way but merely

instantiated . That is, an expression is formed that is just like the

expression in the AMONG statement except that all the $ variables have

been replaced by their values. For example, if X, Y, and Z have va lues

1, 2, and 3 respectively,

(AMONG (PLUS $X $Y) (PLUS $Y $Z))

would have either the expression (PLUS 1 2) or the expression (PLUS 2 3)

as its value (not 3 or 5).

186

5
-

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- - - S

S 
- -t .sfl- -a;;s, 5-—



I I I  P R I M I T I V E  DATA OPERATIONS

The primitive QA4 o p e r a t i o n s  can be b road ly  sepa ra ted  i n t o  s ix

ca tegor ies : logica l  (AND ) , s t r u c t u r a l  ( U N I O N ) ,  a r i t h m e t i c  (PLUS),

constructors (CONS), decomposers (NTH), and syntactic information

(STYPE) .

A. Logical Operators

• (AND p1 . . .  pn)

The operator AND takes a set of truth values and returns TRUE

if FALSE is not a member of the set and FALSE if otherwise.

Thus , (AND p1 ... pn) is true provided none of the expressions

deno tes FALSE .

• (OR p1 ... pm)

OR is analogous to AND except that it returns TRUE if any pi

denotes any exp ression other than FALSE . That is,

(OR p1 ... pm ) is FALSE only if p1 . . .  pn all denote FALSE .

• (EQUAL el ... en)

EQUAL is TRUE if all of the members of the set are logically

equal-—that is , denote the same object .

I 
(NOTEQUAL el ... en)

NOTEQUAL is TRUE if there are at least two different objects

denoted by the expressions el ... en. Equal can be considered

as a conjunct of pairwise EQUAL assertions . Thus, NOTEQUA L

187

—5. _fl-~ V~~~~ .5W’ - - - - - - - _____-



Ir~ A0 A052 flo STAIfORD RESEARCH INST MENLO PARK CALIF ~~~
~~ q; A PROCEDURAL CALCUL.LS FOR NTUITIVE REASOtIINS .EU)
NOV 72 4 F RLLIFSCt4. 4 A OERKSEN NASW—2066

UNCLASSIP Ito TN—?)

3cc 4

I

_ _

_ _  

I
_____ 

~~~~~~~~~~~~~~

u
I

_ _ _ _

can be considered the corresponding disjunct . That is

(EQUAL el e2 e3) is equivalent to

(AND (EQUAL el e2) (EQUA L el e3) (EQUAL e2 e3))

whi le

(NOTEQUAL el e2 e3) is equivalent to

(OR (NOT (EQUAL el e2)) (NOT (EQUAL el e3)) (NOT (EQUAL e2 e3)))

Since AND, OR, EQUAL, and NOTEQUAL are commutative , assoc iative ,

and idempotent (e.g., (AND A A) is equivalent to A), they have

been given sets as arguments rather than bags or tuples . Thus

their internal forms are :

(APPL AND (SET p1 ... pn))
(APPL OR (SET p1 .. . pm))

(APPL EQUAL (SET el ... en))
(APPL NOTEQUAL (SET el . . . en))

• (NOT p)

NOT negates the truth value of its argument . It is FALSE if

its argument is any expression other than FALSE , and TRUE

only if its argument is FALSE.

• (IMPLIES p1 ...
This form of IMPLIES corresponds to the mathematical form

which is also equivalent to the QA4 form

188

(AND (IMPLIES p1 p2) (IMPLIES p2 p3) ... (IMPLIES pn—l pn))

For it to be TRUE all the pi ’s that denote FALSE must come

before any that denote TRUE . Since QA4 uses the convention

tha t any expression other than FALSE denotes TRUE, IMPLIES

is TRUE unless an expression denoting FALSE follows an expres-

sion not denoting ‘FALSE .

• (IFF e1 ... en)

1FF is TRUE if every member of the set is not FALSE . 1FF

like EQUAL, takes a set as its argument.

B. Structural Operations

• (INxs)

IN is TRUE if x is an element of s. s may be either a set,

bag, or tuple.

• APPEND

APPEND performs three different operations depending on the

syntactic type of its argument . If the argument is a tuple

of subtuples it joins together the subtuples, if it is a bag

of subbags APPEND adjoins the subbags and may reorder the

resul t; if it is a set of subsets APPEND takes the set—

theoretic union of the subsets. For example ,

(APPEND (TUPLE (TUPLE 4 3) (TUPLE 4 3 2 1)))

(TUPLE 4 3 4 3 2 1)

189

-
~~~~ 

-.t -’ ~-~~~~~— _,__—. - -
~~~~ 

—,- -
~
- - -

-. ~~~~~~~~~~~~

(APPEND (BAG (BAG 4 3) (BAG 4 3 2 1)))

= (BAG 1 2 3 3 4 4)

(APPEND (SET (SET 4 3) (SET 4 3 2 1)))

= (SET 1 2 3 4)

APPEND depends on the syntactic type of its argumen t which

may vary , the preprocessor will not automatically group

together arguments——the user form and the internal form

are the same .

• (INTERSECT ION sl . . . sn)

INTERSECTION is the set—theoretic intersection of the sets

sl . . . Sn. INTERSECTION takes a set as its argument , so the

internal form is

(INTERSECTION (SET si . . . Sn))

• (DIFFERENCE sl . . . Sn)

DIFFERENCE is the set—theoretic difference of the two sets

sl and (APPEND (SET s2 . . . Sn)). Since the order of the s ’s

is important , DIFFERENCE takes a tunle as its argument . The

internal form is

(DIFFERENCE (TUPLE si . . . Sn)

• (CONS x e)

CONS adjoins the element x to the tuple , bag, or se t e .

For exam p le ,

190

! ~~~~~~

(CONS 1 (TUPLE 1 2 3)) = (TUPLE 1 1 2 3)

(CONS 1 (BAG 1 2 3)) = (BAG 1 1 2 3)

(CONS 1 (SET 1 2 3)) = (SET 1 2 3)

CONS takes a tuple as its argument , thus the internal form is

(CONS (TUPLE x e))

C. Arithmetic Operations

• (PLUS nl . .. nm)

PLUS forms the sum of the elements ml . . . mm. It takes a

bag as its argumen t, so the internal form is

(PLUS (BAG ml ... mm))

• (TIMES ni . . .

TIME S forms the product of the elements ml . . . mm . It also

takes a bag as its argument , so the internal form is

(TIME S (BAG ml . . . mm))

• (SUBTRACT ml . . . mm)

SUBTRACT subtracts the sum of n2 through mm from ml. It is

equ iva len t to

(SUBTRACT ml (PLUS m2 ... mm)). It takes a tuple as its

argument , so the internal form is

(SUBTRACT (TTJPLE ml ... mm))

• (DIVIDES ml ... mm)

I

DIVIDES forms the quotient of ml and the product of n2 ... mm.

Thus DIVIDES is equivalen t to

191

— —.e~
- — .- —— - —

(DIVIDES nl (TIMES n2 . . . nm))

It takes a tuple as its argument , so the internal form is

(DIVIDES (TUPLE ml ...

• (MINUS a)

MINUS forms the arithmetic negation of its single argument .

• All the arithmetic relation operators take a tuple as their

argument . The tuple means that the relation must hold for

each juxtaposed pa ir of t he tuple . Tha t is, if r is a primi-

tive arithmetic relation ,

(r nl n2 ... mm) means

(AND (r ni n2) (r n2 n3) . . . (r nm— i nm))

Since the preprocessor will supply the TUPLE, the internal

form of

(m l ...nm) is

(r (TL’PLE ni . . . mm)) .

The relation symbols and their meanings are :

GT greater than

LT less than

GTQ greater than or equal to

LTQ less than or equal to

D. Constructors

The most commonly used constructors in the system are TIJPLE, SET,

and BAG . Every time a TIJPLE is evaluated , for example , a new TL’PLE is

192

constructed from the values of its elements. In a similar sense

APPEND , INTERSECTION , DIFFERENCE , and CONS are also constructors .

While they are primitive operators , they are no t , however , primitive

constructors for internally they rely on the primitives TUPLE , SET,

and BAG .

1 . (QUOTE e)

QUOTE is the simplest constructor, for e is its value . For

example , (QUOTE (SET .-X .-Y)) evaluates to (SET .—X —Y).

2. (‘ e)

is a special form of QUOTE, called quasi—quote , added to

QA4 to cause im stantiatiom in places where evaluation would normally

take place . For example , suppose $X is bound to BLOCK1, and we wish

to call function FUN with the instantiated form of

(NEXTTO (SET ROBOT $X))

If we writ e

(SFUN (QUOTE (NEXTTO (SET ROBOT SX))))

in our program then $X will not be replaced by BLOCK1 in the argument

to FUN . If we write

($FUN (NEXTTO (SET ROBOT $X)))

then the interpreter will attempt to evaluate NEXTTO applied to

(SET ROBOT BLOCK1) and use the result as the argument to FUN . Since

NEXTTO may not have a function definition , an error may result .

193

The ‘ ope:ator provides the mechanism for constructing the

argument properly. When ‘ is applied to its argumen t , the value is

the instantiated form of the argument . That is, all $, ? , and f r a gment

variables are replaced by their values . For example ,

(‘ (NEXTTO (SET ROBOT $X)))

gives

(NE XTTO (SET ROBOT BLOCK1))

Thus the proper notation for the function call would be

(SFUN (‘ (NEXTTO (SET ROBOT $X))))

The sectioi on PATTERNS gives a full explanation of this process.

The ‘ will construct QA4 expressions of all syntactic types,

but there is still the problem of constructing an expression with a

variable in it. Suppose, for example , we wish to apply a funct ion,

say FUN to the expression 1 + $X where the $X is mean t l itera l ly and

not to be replaced by its value . If we precede the 5, — , or ? cf a

variable immed iately wi th a : , the instantiated form will contain the

variable without the :. Actually, any number of :s can be used and

one less will appear in the instantiated form . For example,

$X gives $X

: : : ? Y gives : :?Y

Thus the form for our appl ication wii l be

($FUN (‘ (PLUS 1 :$X)))

194

The internal form of a variable with a : is

(By v PREFIX pfx : a)

where v is the LISP atom for the variable , pfx is the 5, ? , or — pref ix

symbol , and n is the number of :s.

E. Syntactic Information

The primiti ve function STYPE returns the syntactic type of an

expression . For example ,

(STYPE (‘ (PLUS 1 2)))

is APPL, and

(STYPE (‘ (AMONG 1 2 3)))

is STATEMENT .

Currently , this is the only function that returns syntactic infor-

mation . If functions such as LENGTH are added they will be in this

class.

F. Decomposition : (NTH t n)

th
NTH extracts the n element from a tuple. For example ,

(NTH (T t J P L E 1 2 3) 2) = 2

NTH is the only primitive function for expression decomposition .

Expressions are normally taken apart and their components named through

the use of the pattern matching language . Most of the pattern matching

wit hin a program arises from one of the following language usages:
/

195

_ _ ~~- —- --- -_ _ _ _ _ _ _ _ _ _ _

- -~~~~~~~~~~~~~~~~~~ - -~~-

• LAMBDA exp ressions that take a single argument which

is decomposed according to a pattern .

• Assignments made by assigning an expression to a pattern .

• WREN and GOAL statements that use patterns to guide the

program flow of control.

• EXISTS and INSTANCES statements that use patterns to query

the data base for expressions that match their patterns .

0. * Semaphores

Semaphores are a syntactic type that has not yet been implemented .

They would be used to synchronize parallel programs . The primitive

operations on them would be:

• (SEMAPHORE

Crea tes a new sema phore and ass igns it to the var iable V .

• (SEMAPHORE—SET v)

Turn on the semaphore assigned to v .

• (TEST— IF—SET v)

Has value TRUE only if v is on; otherwise it has value FALSE .

• (WAIT-UNTIL—OFF v)

Suspend this process until the semaphore assigned to v

become s o f f .

The ass ignmen ts of semaphores to variables operate in an unusual way .

Suppose $X is bound to a semaphore . If the operation of calling a

function binds the value of SX to, say , SY, the binding is like a

196

“call by name .” If $‘i’ is reset , the semap hore itself is changed , not

the value of SY . In thi s way $X also changes appropriately. This

happens because semapho re statements do not bind Y or X to new values ,

but rathe r change the semaphore itself. Thus if X and Y are both bound

to the same object , changing the object changes them both.

(

197

- - --—-,—-___ -
~
-. —

~
—-—

~~~ 
-
~~~~

--

IV PATTERNS

A . Motivation

The pattern language plays an important part in nearly every

aspect of QA4, making it possible to describe actions in a single ,

often graphical way . For example , if we match (TUPLE .—X .~Y .—Z) agains t

(TUPLE 1 2 3 4 5) the assignments are 1 to X, 2 to Y and (TU PLE 3 4 5)

to the fragmen t Z. In LISP three assignments using operations -
~uc~. as

CADR and CDDR would be equivalent to this single QA4 assignment. As

anothe r example ,

(LAMBDA (SET (TUPLE 1 —X) —Z) body)

is a lambda expression that expects as an argument

• A s e t

• With a 2—tuple as one of its elements

• With 1 as the first element of the 2—tuple.

The variable X will be bound to the second element of the 2—tuple , and

the variable Z will be bound to the remaining elements of the set . If

there is more than one 2—tuple with 1 as the first element in the set ,

there will be more than one acceptable assignment . If there are no

such 2—tuples , the application will fail. These two examples show the

simplicity of a pictorial description of data structure decomposition .

In general the pattern language and matcher is used for locating

c
subexpressions in a la rger expression and perhaps nam ing the located

subexpressions and expression transformations . Operations of thi s sort

199 ~~~
-

p

+IN~~~~~~
BI~W~~~r f l U~~~~~~j 4

are difficult to describe in a function—oriented language . In LISP ,

the absence of a pattern matcher leads to indigestible programs that

are written with many ~ADDRs , CONSs , LISTs , and APPENDs .

Use is often made of partially specified patterns . In the EXISTS

statement , for example ,

(EXISTS PROVE (ON GREENBLOCK —X))

the system w il l try to find an item in the data base that matches the

pattern (ON GREENBLOCK —X) . Such an item could be

(ON GREENBLOCK REDBLOCK) .

Still anothe r application is the use of patterns to specify the

demons of WHEN statements. The WHEN statement is activated whenever

an expression in the data stream that the WHEN is watching matches the

pattern given in the WHEN statement. For example ,

(WHEN X RECEIVES (TUPLE _Z 7) THEN p)

will trigger action p each time a tuple with last element 7 is assigned

to the variable X.

B. Cons tan t s

An a tom withou t a p r e f i x is t reated as a cons tan t and w ill on ly

match another instance of itself. For example ,

(NEXTTO (BAG ROBOT BLOCK1))

matches itself , and would therefore match

(NEXTTO (BAG BLOCK 1 ROBOT))

but will not match either of the following :

200

- t -7.~ .?ter

(NE XTTO (TUPLE ROBOT BLOCK 1))

(NEXTTO (BAG ROBOT BLOCK2))

Since QA4 uses canonical forms for expressions , only one instance of an

exp ress ion can actu a l l y occur in the QA4 memory, and cons t a n ts ma tch

only if they are the same constant .

C. Variables

If an atom is to be treated as a variable , it must have a prefix.

There are six variable prefixes : .-., ?, $, — , ?? , and S$. The first

three prefixes restrict the variable to match only individual terms .

The double—character prefixes allow the variables to match “f ragme nt s ”

or segments , but otherwise play analogous roles to their single—character

counterparts. In user format , the prefix must be the initial characters

of the LISP atom tha t constitutes the variable. See Section II—F—l—a ,

Pattern Variables , for an introductory explanation of the use of

prefixes .

1. .— (Accept a Value)

The — prefix will permi t a variable to match any individual

term , rega rd less of whatever QA4 va lue the var iable may have. For

example ,

(TUPLE 1 —X 2)

natches

(TUPLE 1 (BAG 1 2) 2)

201

by matching —X to (BAG 1 2). And there are two ways

(BAG .-X .-Y)

matches

(BAG 1 2)

—X may match 1 and ~-Y may ma tch 2 , or vice ve r sa .

Note , however , tha t the match ing of d i f f e r e n t instances of the

same va r i ab le w i t h i n a single pa t t e rn must be cons i s ten t . For example ,

there is only one way

(BA G —X —Y —X)

matches

(BAG 1 1 2)

w i t h —X matched to 1 and —Y matched to 2 .

2 . ? (Accept a Value If You Can)

A ? v a r i a b l e w i l l behave d i f f e r e n t l y from an — va r i ab l e if the

variable had a QA4 value before the match was attempted . In that case,

the variable will only match its value; otherwise the ? variable will

behave like an — var iable and ma tch any term , proving the matchi ng is

consistent w i t h other previous matches the var iab les may have . For

example , if X has value 2 ,

(TUPLE 1 ?X 3)

matches

(TUPLE 1 2 3)

202

but does not match

(TUPLE 1 1 3)

Note t h a t , even if X does not have a value ,

(TUPLE —X ?X)

w i l l not match

(TUPLE 1 2)

3 . $ (Has a Value)

If the variable has no value , it will not match anything and

w i l l cause a f a i l u r e . If i t does have a value , i t w i l l on ly match t h a t

va lue . We use $ var i ab le s m a i n l y when we expect the v a r i a b l e to have

a va lue and do not want i t to be bound to a n y t h i n g else as a result of

the match . For exa mp le , if X has va lue 1,

- (TUPLE $X 2)

matches

(TUPLE 1 2)

but would not match

(TUPLE 2 2)

4 . Summary of P re f ix Types

We may summarize the d i f f e r e n c e s between the prefixes in the

f o l l o w i n g tab le represent ing the result of matching the variable X

aga in s t the cons tan t A. The vertical axis represents the prefix of X,

(and the horizontal axis represen ts the QA4 va lue of X.

203

~~~~~~~~~~~~~~ ~~~



The item in the table represents the value of X after the

m a t c h ;  “unbound ” means i t  has no value , and N I L  means the match  f a i l e d .

If a match  f a i l s , the variable always has the value it had previous to

the attempted match.

X matched aga ins t  A

— 
A unbound B

.-X A A B

?X A A NIL

$X A NIL NIL

5.  Notes on Matching Sets and Bags

Sets and bags nay have the i r  elements rearranged in searching

for  a match . Thu s ,

(SET —X A .-Y)

can match

(SET A B C)

Furthermore , more than one d istinct elemen t of a set pa ttern can ma tch

the same element of the argument . For instance ,

(SET —X —Y B)

will match

(SET B)

with X matched to B and Y also matched to B. However , the same is not

true of bags . For example ,

204

- -.~ ~~~~~~~~~~ -



( BA G —X .-Y)

will not match

( BAG A)

This convent ion  r e f l e c t s  the d i f f e r e n c e  between the  set and bag con-

cepts: equal elements are identified in sets but not in bags .

Noncieterminism occurs in matching sets and bags . For instance ,

matching

(SET —X —Y )

against

(SET A B)

can produce either

X ma tched to A

Y ma tched to B

or

X matched to B

V matched to A

In practice , one of these will be produced on the first match, and

information to proceed in future matches will be kept by the back-

tracking mechanism of the interpreter. A failure to this backtracking

point will cause the interpreter to call the pattern matcher for alter-

native bind ings . When all alternatives are exhausted , a fa ilure to

thi s backtracking point will cause a failure to the preceding back-

tracking point .

205

~~~~~~~~~ ~
— -

~
- --- - — - - - - -—--____ - - —

_
.-b_ _.,

6. Fragments

Var iab le s p re f ixed w i t h ~~~, ?? , or S$ match not single items

but fragments of the argument. For example ,

(TUPLE .-~-X 3)

can ma tch

(TIJPLE 1 2 3)

with X matched to (TUPLE 1 2). X is thought of as having matched the

sublist (1 2), but that list is put into a tuple for the sake of con-

sistency of internal representation . Fragment variables may match the

empty fragment. For example ,

(TUPLE .—X A)

will match

(TUPLE A)

with X matched to the empty tuple (TUPLE). Fragment patterns of sets

and bags will be bound to sets and bags respect ivel y, and order need

not be preserved . For example ,

(SET ..—X B)

matches

(SET A B C)

with X matched to (SET A C). Sets and bags may have only one fragment

va r iable; however , tuples nay have more than one , and thi s leads to

nondeterminism . For example ,

206

(BA G —X — Y)

will not match

(BAG A)

This convention reflects the difference between the set and bag con-

cepts: equal elements are identified in sets but not in bags .

Nondeterminism occurs in matching sets and bags . For instance ,

matching

(SET —X —Y)

against

(SET A B)

can produce either

X matched to A

Y matched to B

or

X matched to B

Y matched to A

In practice , one of these will be produced on the first match , and

i n f o r m a t i o n to proceed in future matches will be kept by the back-

tracking mechanism of the interpreter. A failure to this backtracking

point will cause the interpreter to call the pattern matcher for alter-

na tive bind ings . When all alternatives are exhausted , a failure to

t his backtracking point will cause a failure to the preceding back-

tracking point .

205

(TUPLE —X —Y)

can ma tch

(TUPLE A B)

in three different ways :

(1) X matches (TUPLE)

V matches (TUP LE A B)

(2) X matches (TUPLE A)

V matches (TUPLE B)

(3) X matches (TUPLE A B)

Y matches (TUPLE)

A s ingle var iable may be pref ixed in seve ral ways in a sing le

pattern . For example ,

(TU PLE —-X —X)

can match

(TUPLE A (TUPLE A))

Variables may also match parts of expressions other than tuples , sets ,

and bags . For example ,

(—F (BAG ROBOT —X))

can match

(NEXTTO (BAG ROBOT BLOCK1))

.vith F matched to NEXTTO and X matched to BLOCIC1 .

4’

207

The fragment p r e f i x e s ?? and 5$ behave analogously to the

individual prefixes ? and 5; e.g., a variable prefixed 55 must have

a value already, and must match a fragment equal to its value .

Patterns may be nested to arbitrary depth. Thus,

(PLUS (BAG (EXPT (COS —X) 2) (EXPT (SIN .-X) 2)))

ma tches

(PLUS (BAG (EXPT (SIN 30) 2)(EXPT (COS 30) 2)))

The pattern is one side of a well—known trigonometric identity. As

another examp le,

(SET —X (SET (NOT .-P) ‘.—Q) (SET —P ‘—R))

matc hes

(SET (SET A B C) (SET (NOT A) B D) (SET E))

The above pattern might be the argument for a function representing the

propositional calculus resolution rule .

D. Instantiation

An i n t r o d u c t o r y e x p l a n a t i o n of i n s t a n t i a t i o n is given in Sections

I I—G (Statements) and III—D (Constructors).

The rules are straightforward . For the following examples , suppose

X has value 1; Y has value (TUPLE 3 4); and Z has no value .

• Constants remain as constants.

• $ va r iables are replaced by the ir values .

(TL’PLE $X 2) becomes (TUPLE 1 2)

(TUPLE $Y 2) becomes (TUPLE (TUPLE 3 4) 2)

(TUPLE $Z 2) causes a failure .

208

—t ’ ,
~~ 4_’_’ .~

• ? variables are replaced by their value if they have one .

If they lack a value they are converted to — variables.

(TUPLE ?X 2) becomes (TTJPLE 1 2)

(TUPLE ?Z 2) becomes (TUPLE —z 2)

• — variables remain as they are .

(TtJPLE .-X 2) becomes (TL’PLE —X 2)

• Fragment variables follow the same rules except that when

they are replaced by t he i r value , they are expanded in to a

sublist rather than maintaining the status of a single item.

(TUPLE $X 2 $$Y) becomes (TUPLE 1 2 3 4)

(TUPL.E $Y $SY ??Z) becomes (TUPLE (TUPLE 3 4) 3 4 .—.--Z)

E. Extended Constructions

These features use special operators to signal either the instan-

tiation , matching, or lambd a binding programs that extraordinary opera-

tions are to take place . These patterns follow the same syntax as

regular QA4 expressions, but they use operators that have a meaning

only in some phase of the pattern matching process . These are the

exceptions to the template rule——that expressions and patterns are

identical.

1. Expre ssion =

When = is applied to an expression , the instantiation program

will evaluate the expression and use the value as the pattern . For

example ,

209

(= (TUPLE ,-X (PLUS 1 2)))

instantiates to

(TUPLE —X 3)

Note that the internal form for the uninstantiated pattern would be

(APPL = (TUPLE —X (PLUS (BAG 1 2))))

The = operator may only be used on the top—level of a pattern . While

the expression is being evaluated , the interpreter guard s against

backtracking out of the evaluation . If a backtracking attempt is

made , the program proceeds to the next statement . For example ,

(SETQ (TUPLE .-X ‘-X) (TUPLE 1 2))

U

has no effect wha tever . This is similar to the protection offered in

the ATTEMPT statement .

2. Expression

A pa ttern of the form . . pat , where pat is a pattern expres—

sion matches an argument if pat matches some subexpressions of that

argument , perhaps the entire argument itself. For example ,

(PLUS (BAG —X 0)))

matches
-

(TIME S (BAG A (PLUS (BAG 0 B C))))

by matching X to (BAG B C).

The . . operator and its argument need not be an application

if they are embedded in another expression . The operator is assumed to

take the expression immediately to its right . For example ,

210

(—P —X) . . (NOT ~~P ~~ Y))

matches

((AND (BETWEEN C A B) (ONTOP C T))

(IF (NEAR C D) (NOT (BETWEEN C U V))))

3, *Logical Combinations of Patterns

• PAND

Several patterns can be combined with a Pattern AND . It

simply means that the argument must match all the given subpatterns .

A common use of this feature is to name an expression and decompose it

in a single operation . For example ,

(PAND —X (TtJPLE 1 —Y))

matches
(TUPLE 1 2)

by matching X to (TUPLE 1 2) and V to 2. The matching of variables

withi n a PAND must be consistent , just as they must be for a normal

pattern .

• POR

The Pa ttern OR succeeds if one of the pa tt erns ma tches

the argument. For example ,

(POR (TUPLE 3. ..-X 2) (TUPLE 1 .-X 4))

ma tches

(TL’PLE 1 3 4)

I
ci th X matched to 3. Both PAND and POR applications are done by the

pattern matcher directly, rather than during instantiation . Thus they

211

may occur at any level in the pattern . For example ,

(PAND .-X (POR (TUPLE 1 —Y) (TUPLE 2 .-Y)))

mat c he S

(TUPLE 2 3)

by matching X to (TUPLE 2 3) and Y to 3.

4. *Type Constraints

~ variable ’s domain may be constrained by providing syntactic

type information . For example , —X/SET can only have sets assigned to

it. The / and the type word must be part of the ATOM that constitutes

the variable. The internal form is expanded to include this property.

The checks must be made in the pattern matcher , when it associates a

value with the variable .

5, *Predicate Constraints

With each pattern can be associated an evaluable QA4 expres-

sion that can constrain the match. The predicate may use the variables

in the match , but if the match fails or the predicate is not true , the

variables will be restored to their previous values. The predicate

opera tor is . For example ,

(t (TUPLE 1 —X) (LT $X 2))

~atches

(TUPLE 1 0)

bu t would not ma tch

(TUPLE 1 2) .

212

This feature can be implemented by building T:MATCHO to ‘~atch for on

the top level , and do the evaluation after the match. The evaluation

should be protected against backtrack failures in the same vay = is

protected . On a predicate failure with a potential alternative match ,

a rematch should be tried immediately. If no match works , T :MATCHO

can return its usual NIL.

F. Internal Representation

The preprocessor translates the user form into an internal form .

A table of representative sample expressions together with translations

is given .

User Internal

—x (BV X PREFIX —)

—X (BV X PREFIX — : 1)

?X~ SET (BV X PREFIX ? STYPE SET)

(= (SF SA)) (APPL = (APPL (BV F PREFIX S)

(By A PREFIX 5)))

(PAND —X (TUPLE 1 —Y)) (APPL PAND (SET

(BV X PREFIX .—)

(TUPLE 1 (BV V PREFIX —))))

(TUPLE 1 .. (BAG 1 .—Y)) (TUPLE 1

(PAPPL OCCURSIN (BAG 1

(BV V PREFIX —))))

213

V PROPERTIES

A . General Statements

the PUT , GET , and ERASE statements manipulate the properties of

expressions. The forms are :

(PUT ~~~~ m d prop ctx— rec)

(GET pexp m d ctx—rec)

(ERASE pexp m d ctx—rec)

In each statement pexp, m d , and prop are QA4 patterns and are instan-

tiated rather than evaluated ; ctx—rec are options that will be dis-

cussed later. A PUT statement might be

(PUT SE P5 $X)

This sets the value of indicator P5 to the value of X on the expres-

sion that is the value of E.

It is vital , at this point , to understand exactly under which con-

text the changing takes place . We assume that normally the program is

generating a globa l data base , and that assertions and properties are

to be made available to all programs , not just the current one . Thus,

all property manipulation statements are done with the most global

dynamic context and the current backtracking context. See Appendix III

for a deta iled explanation of these terms . Using these two contexts

perm its all parallel process and backtrack bookkeeping to be handled

automatically while all properties are available to any program regard-

less of the current function nesting . If a GOAL or CASE statement is

215 ~~~~~ -,~ — — - ~ — — -

~~~~~~~~~~ 
fl~~~ _~ J4.



in effect , and it had a WRT opt ion , then the context  spec i f i ed  in t h a t

option is used instead of the most global context (see the CASES state—

ment).

Programs may create their own contexts as they wish , and thus

overr ide the sys tem . This permi ts  the programs to pe r fo rm hypothe t ica l

reasoning outs ide  the f ramework of f unc t ion  nes t ing  and i ts  correspond-

ing variable binding . If the programs want to assign properties rela-

tive to other contexts, say during the solution of a frame—problem or

conditional derivation , they may specify it under ctx—rec.

A PUT s t a t emen t  may not change an ex is t ing  proper ty  unless tha t

specific option is requested . It also ac t iva tes  a l l  appropr ia te  WHEN

statements unless a ctx—rec option states otherwise . The value of a

PUT statement is the instantiated prop .

The GET statement retrieves the property under the same context

used by the PUT statement . As with the PUT, al l  WHE N progra ms that

apply are activated . As we will see in the WHE N d iscu ssion , each WHEN

program may specify whether it is to be a c t i v a t e d  on PUTs , GETs ,

ERASEs , or any combinat ion  of them.  The ERASE s ta tement  also uses the

global  context  and ac t iva tes  WHEN s t a t e m e n t s .

Certain special properties are available to the user, but they

must not be changed or QA4 will stop working correctly . Currently the

indicators for these are EXPV (the syntactic form of the expression)

and INDEX (t h e  set—bag order ing c o d e) .

216

_ _ _ _ _ _  —- -



B. Macro Statements

Other properties used by the QA4 interpreter may be manipulated by

the user . The indicator MODELVALUE is normally used in QA4 programs to

model an environment . The ASSERT and DENY statements put TRUE and

FALSE respec ti vely  ~is the properties of thi s indicator. They use the

same context  as the PUT s t a t emen t . Their fo rm is:

(ASSERT pexp ctx—rec)

(DENY pexp c tx—rec )

The SETQ s t a t emen t  eva lua t e s  an expression, exp , and then  matches

i t  to a p a t t e r n . pexp . If  the va lue  of exp , cal l  i t  vexp, can be

decomposed in to  the form pexp , a l l  the v a r i a b l e s  w i t h i n  pexp w i l l  have

t h e i r  va lue  set to the corresponding part  of vexp . The form of the

statement is

(SETQ pexp exp ctx—rec )

If the match fails , the statement fails and the program backtracks to

the most recent backtracking point . If the match is nondeterministic ,

a backtracking point is not established unless an alternative form of

the statement is used :

(SETQ ~~~~ exp BACKTRACK ctx-rec)

If this form is used and the match is nondeterrninistic, a backtrack ing

point is established and alternative matches are tried if the program

fails back to this statement .

217 

—--~~~~~~~~~



The SETQQ statement operates in a similar way, excep t tha t it does

not evaluate exp, but instead uses the instantiated form . For example ,

(SETQ —x 3)

(SETQ —Y 5)

(SETQ —U (PLUS SX SY))

(SETQQ —V (PLUS $X SY))

sets the value of U to 8 and the value of V to (PLUS 3 5).

C. Equivalence Relations

1. The Forms

The EQUIVASSERT and EQUIVDENY statements are automatic

mechanism for storing and manipulating information about arbitrary

equivalence relations . The forms of the statements are :

(EQUIVASSERT r rbar el e2 . . .  en ctx—rec )

(EQUIVDENY r rbar ul u2 ... un ctx—rec)

where r and rbar are indicators used to stand for the relation and its

negation (say EQUA L and UNEQUAL). Each ci and ui is an expression and

ctx—rec is the standard context recommendation option available on all

the property manipulation statements. This discussion will carry

through a single , detailed example illustrating the full operation of

the statements. To begin , the statement

(EQUIVASSERT EQUAL UNEQUAL A B C)

asserts to the system that A=B.C, wh ile

(EQTJIVDENY EQUAL UNEQUAL F G H)

218



asserts that F, G, and H are not all equal. That is , they do not all

have the same value . Logically this is equivalent to

(F~G or F~H or G~H)

These statements operate by manipulating sets of expressions

stored under the indicators r and rbar on each of the mentioned expres-

sions . They do not operate by storing the value TRUE on expressions

such as

(EQUAL (SET A B C))

This results in enormous savings in both time and space . It also per-

mits the system to do a complete consistency check of the assertions ,

and generate a failure if an inconsistency occurs . Thus the user is

encouraged to use these statements rather than the equal operator.

Throughout the rest of this discussion we will use EQUAL and

UNEQUAL as r and rbar; but other indicators may be used , and more than

one relation may be handled simultaneously.

2. Partition Sets

Before we exam ine the operation of the statements let us

examine the data structures and their interpretation . Suppose we have

some finite collection of expressions , say

A , B , C, D, E, F, G, H, I

I f we declare some set of them to be equal with the EQUIVASSERT state—

ment the equality is represented as sets (or equality partitions)

stored as properties on each of the expressions . For examp le , if we

219

- - - —-————-——.---—... - -- -



r

start with a fresh system

(EQUIVASSERT EQUAL UNEQUA L A B C)

(EQUIVASSERT EQUAL UNEQUAL D E)

places the following indicator—property pairs on the corresponding

exp ressions :

Expression Indicator Property

A EQUAL (SET A B C)

B EQUAL (SET A B C)

C EQUAL (SET A B C)

D EQUA L (SET D E )

E EQUAL (SET D E)

Thus each expression has a set of all the expressions asserted equal

to it stored on its property list. Logically the two statements mean

A=B=C and D=E .

If we declare other combinations of the original expressions to

be unequal , the information is stored as a set of unequal sets. For

example , the statements

(EQUIVDENY EQUAL UNEQUAL F G H)

(EQUI V DENY E QUAL UNEQUAL H I )

place the following indicator—property pairs on the correspond ing

expressions:

220



Expression Indicator Property

F UNEQUAL (SET (SET G H))

G UNEQUAL (SET (SET F H))

H UNEQUAL (SET (SET F G) (SET I))

I UNEQUAL (SET (SET H))

Each set of sets represents a conjunct of disjuncts in the

following way . For some expressions , say e , call its set of sets

NES(e) . Next , name the elements of NES(e) :NES(e) (1). Each NES(e) (1)

is a set of expressions , say NES(e) (1) = (SET ul u2 ... un). Then

NES(e) (1) represents the disjunct

e~ ul  or e~ u2 or e~ un

NES(e) represents the conjunct of the individual disjuncts. For

example , for H in the above table ,

NES(H) is (SET (SET F G) (SET I))

N E S ( H ) ( l )  is (SET F G)

NES(H)(2) is (SET I)

This property logically represen ts the assertion

(H~F or H~G) and H~ I

F

221 

—~ 
- - -  —-— -—-——----- -



3. EQUIV A SSERT

Now let us examine the operation of EQUIVASSERT statements ,

say

(EQUIVASSERT EQUAL UNEQUAL el e2 . . .  en)

a . Equality Partition

The first step is to form a set , say S, of all expressions

relevant to this statement that are known to be equal. To do this we

first define , for each ei in the EQUIVASSERT sta tement , a set ES (ei)

as:

If ei has an EQUAL property then ES (ei) is that set ,

otherwise ES(ei) Is (SET ei).

The union of all the ES(ei) is the equality partition , call it S.

S = UNION ES(ei) for all el in the EQUIVASSERT statement .

b . Cons istency Checks

The next step is to check the consistency of values

already assigned to each element of S. If two expressions have already

been assigned values (normal QA4 values like TRUE), and if these values

are di f f e r en t , the expressions canno t be equal, so a failure is gen-

erated . Moreover , if some of the expressions have been assigned the

same va l ue , that value is assigned all the expressions in S.

The second consistency check assures that the new equality

does not conflict with all the previous unequal assertions . Since we

are asserting that all the expressions in S are equal , all the unequal

222



sets of each expression in S apply to every other exp ression in S. To

form the set , NS, of a l l  those unequa l  sets, we first define , for each

ci in S. the set NES(eI) as:

If ei has UNEQUA L set of sets then NES(ei) is that

set , otherwise NES(eI) is the empty set.

We can now define NS as

NS = UNION NES(ei) for all ci in S.

NS now has the form of an UNEQUAL set of sets. Name the elements of

NS , NES(i). Each NES(i) has either come from an e in the original

statement or it has come from some e known to already equal an e in

the original statement . If NES(i) is contained in S for any i , then

there is a conflict , for we have nreviously asserted that not all

expressions in a set are equal , while we are now attempting to assert

tha t they are all equal (because they are all in S). This condition

is checked ; if an inconsistency occurs , a failure is generated .

c. Unequal Partitions

Next a new unequal set of sets, NSS , is computed by

tak ing S f rom each NES( i) . Tha t is , NSS is a set of sets, each subset

of NSS is ca l l ed NSS ( i ) , and each NSS(i) is computed by:

NSS(i) = NES(i) — S

Remember tha t each NES(i) represented a disjunct of the form

e~u1 or e~ u2 . . .  or e~un

Since we are now asserting something of the form

223



e=uj and e=uk

we may delete uj and Uk from NES(i).

I f  both checks pass , S is made the EQUAL partition for

every elemen t of S, and NSS is made the UNEQUA L set for every elemen t

of S. If  any S had a va lue , moreover , that value is assigned to every

element of S.

d. EQUAL Example

Let us now carry out an EQUIVASSERT with our previous

ex amp le. Suppose we made the statement

(EQUIVASSERT EQUA L UNEQUA L D F H)

First we compute

ES (D) = (SET D E)

ES(F) = (SET F)

ES(H) (SET H)

S = (SET D E F H)

Next we perform the value check , and let us assume it passes . For the

second consistency check , we f irs t comp ute

NES(D) = (SET)

NES(E) = (SET)

NES(F) = (SET (SET G H))

NES(H) = (SET (SET F 0) (SET I))

NS — (SET (SET G H) (SET F G) (SET I))

224

_ _  - - - -----



Since none of (SET G H), (SET F G), or (SET I) is contained in

(SET D E F H), this check passes . Finally we are ready to compute NSS:

YSS = (SET (DIFFERENCE (SET G H) (SET D E F H))

(DIFFERENCE (SET F G) (SET D E F H))

(DIFFERENCE (SET I )  (SET D E F H)))

= (SET (SET G) (SET I),

Note that empty sets are discarded . To complete the statement , S is

added as the equality partition to each element of S, and NSS is added

to each element of S as the unequal set of sets. We now have:

Expression Indicator Property

A EQUA L (SET A B C)
B EQUA L (SET A B C)
C EQUAL (SET A B C)
D EQUA L (SET D E F H)

UNEQUA L (SET (SET G) (SET I))
E EQUAL ( SET D E F H)

UNEQUAL (SET (SET G) (SET I))

F EQUAL (SET D E F H)
UNEQUA L (SET (SET G) (SET I))

G UNEQUAL (SET (SET F H))
H EQUAL (SET D E F H)

UNEQUAL (SET (SET G) (SET I))

I UNEQUA L (SET (SET H))

4. EQU IVDENY

When we make an EQUIVDENY statement , a completely di fferent

operation occurs . Suppose we state

(EQUIVDENY EQUAL UNEQUAL ul u2 . . .  Un) .

225



a. Equal Partitions

The system begins by first forming a set T of all the ui

and every expression known equal to them. That is ,

T = UNION ES(ui) for all ui in the EQUIVDENY statement .

b. Consistency Checks

The only consistency check is to verify that for each Ui

in the original statement, ES(ui) is not identical to T. ES(ui),

remember , represents the conjunct

ui=uil and ui=ui2 and

while T represents the d isjunct

ui~ ul or ui~ u2 or

Thus ES(ui) claims everything in a set is equal while T claims at least

two expressions in a set are unequal. Moreover, T is a union of ES(ui),

SO each ES(uJ.) must be contained in 1. If amy ES(ui) is equal to T, we

have a contradiction——a set of equal expressions with the claim that

two are not equal.

c. Unequal Partitions

For the EQUIVDENY statement we must compute a new set of

se ts , NSS , for each element of T. Each NSS will be different . For

some element of T, say ej, the computat ion proceeds by first computing

a set N:

X(~~~) = T - ES(ej)

226

-~ 
. .

~~~~ -.-


Since ES(ej) is the set of all expressions equal to ej, X(ej) is now a

minimal set of unequal expressions . Remember that NES (ej) is the set

of unequal sets already on ej. Now to form the new conjunct , ‘~e

include a reduced form of each element of NES (ej) and X(ej) . To get

the reduced sets let us name the sets of NES(ej): NES(ej)(l),

NES(ej) (2), etc. Both NES(ej)(l) and X(ej) represent disjoints; thus,

if either strictly contains the other , the smaller subsumes the larger

and we may include , as the reduced form , the set difference of the

larger less the smaller . If, however, they are partially disjoint ,

then we could include the union, but since X(ej) is included already,

we merely include NES(ej) (i) itself.

d. UNEQUAL Example

Let us complete our example with the statement

(EQUIVDENY EQUAL UNEQUAL A F I)

First we compute

ES(A) = (SET A B C)

ES(F) = (SET D E F H)

E S (I) = (SET I)

T = (S E TA B C D E F H I)

The consistency check certifies that (SET A B C), (SET D E F H) and

(SET I) are all strictly contained in T. To compute NSS for A we first

compu te

X(A) = I — (SET A B C) = (SET D E F H I’~

227

S in ce no member of A ha d an UNEQUAL property, the new NSS is

(SET (SET D E F H I)) . The computations for B and C are the same .

For D

X(D) = T — (SET D E F H) = (SET A B C I)

NES (D) = (SET (SET G) (SET I))

The reduced form of (SET G) is just (SET 0). (SET I) however , is

strictly contained in X(D) so its reduced form is (SET A B C). Thus

the NSS for D is

(SET (SET G) (SET A B C) (SET A B C I))

The computations for E are the same and the computations for F and I

quite similar .

D. Special Context and Recommendation Options

A ctx—rec may occur on any of the property manipulation statements.

Some , however , are relevant only to statements that change properties

(GET only peeks at the property). All except the context option are

merely key words without parameters that are listed at the end of the

statement . These options may be classified into four groups .

1. Special Context

The form WRT v, where V is a variable that has been bound to

a context (see the Section on Context Statements), will force the

statement to use the requested context rather than the standard most—

global—dyn ami c current—backtracking . That is, this statement will

operate with respect to v. This option applies to all the statements.

228

~*, •~~.
_.-~‘~q--

2. ~Changing Properties

a . CHANGES

This permits the statement to change a property. The

normal case is assumed to be one where properties are not changed once

they are set. Thus, if the same property is reassigned nothing happens .

However , if an attemp t is made to change the property without the CHANGES

option , a failure is generated .

b . FA IL-IF-NO—ACTION

This not only permits a change , but causes a failure if

one does not occur. Neither of these options apply to EQUIVASSERT and

EQUIVDENY statements,

3. “Demon Control

The key word NO— WI-{ENS forces the statement to bypass the WHEN

checks . That is, if this option is present , no WHEN progra ms w ill be

activated . This option applies to all the statements.

4. *Backtracking Control

a. PERMANENT

This forces any changes to remain even if a failure back-

tracks over this statement . This is accomplished merely by using the

second backtracking element of the backtracking context as the back-

tracking head and moving the property if it is currently stored under

the present backtracking head .

229

b . TEMPORARY

This forces the change to be removed if the current sub-

program successfully returns to its calling program . This is accom-

plished by using the current dynamic context rather than the most

global. Both apply to all the statements except GET.

230

VI QUERY STATE~~~NTS

A. Motivation

As QA4 programs run , they construct and modify a global data base .

The items in this data base are organized as properties of expressions .

The data base is indexed with patterns . For example , the GET and PUT

statements perform property manipulation . The statements , however, use

the pattern in an explicit way :

(GET (P A) PROP1)

fetches the value of PROP1 from (P A) while

(GET (P —X) PROP1)

fe tches t I~ value of PROP1 from (P .-X) . Get does not permit the program

to ask : Find all expressions that match (P .-X) and have PROPI .

B. INSTANCES

1. Example

The INSTANCES statement permits QA4 programs to associatively,

according to patterns , query the global data base . If

(ASSERT (P A))

(ASSERT (P B))

had been executed , the s t a t emen t

(INSTANCES (P ‘—X))

would evaluate to

(SET (P A) (P B))

the set of expressions that match the pattern and are TRUE .

231

_ _

2. Form

The full form of the statement is

(INSTANCES pexp c—r)

where pexp is a pattern and c—r is a list of context modifications and

restrictions . If c—r is absent , the expressions found must have the

value TRUE . This is commonly the only necessary restriction. Normally,

some restriction is necessary for there may be many irrelevant expres-

sions in the data base that match pexp . For example , (P —Y), (P SX),

and (P (SET 1 2)) all match (P —X). These may, howeve r, be in the data

base merely because they exist as forms in other programs . If c—r is

absent , the context under which the expression must have value TRUE is

the global...dynamic current—backtracking . This is the same default as

the property manipulation statements.

3. Restrictions -

c—r can be a list of property—value pairs and context modifica-

tions . If MODELVALUE is one of the properties , then the value indicated

is used for the check . If MODELVALUE is not listed as a property, then

is must have value TRUE. To avoid checking it , the pair IGNORE

NETVALUE must be included in c.-r. Just as in Property Manipulation

statements WRT v alters the context for succeeding checks to v. For

example

(INSTANCES (P ~X) WRT SC P1 Vl)

viii requ ire expressions that match and have a property P1, wit h va lue

232

Vi in the context SC . Alternatively, for all e in the set

(INSTANCES (P —X) WRT SC P1 V i)

we have that

(GET e P1 WRT SC) = Vi

3. Evalu a ti on

The INSTANCES statement operates by first instantiating pexp

to , say pexpi. Then the data base is searched and a list made of all

expressions that may match pexpi. This heuristic search is described

in Appendix II , The Discrimination Net.

Nex t , for each expres~~ un c—r is checked , and for those that

pass , the pattern matcher is used to verify that they match pexpi. The

value of the statement is the set of expressions that pass both tests.

C. EXISTS

The EXISTS statement also retrieves expressions from the global

data base and uses the same c—r. However , it is coupled with the back-

tracking mechanism and appears to retrieve the expressions one at a

time . The form is

(EXISTS pexp ~~~~

where pexp and c—r are the same as in the INSTANCES statement. The

interpreter first instantiates pexp to pexpi and searches the data base

for potential matching expressions . The chosen expressions are
/

examined one at a time until one is found that satisfies c—r and

matches pexp i. A backtracking point is €stablished and the — variables

233

of pexpi are bound to the appropriate parts of the selected expression.

If a failure causes backtracking to this point , the examination is

resumed . When the chosen expressions are exhausted , a fa ilure is

generated .

For example ,

(EXISTS (NEXTfO (BAG ROBOT —X)))

may first find

(NEXTTO (BAG (ROBOT BLOCK1)))

and bind X to BLOCK1 . After a failure to this point another NEXTTO

expression may satisfy c—r and the program may resume with X bound to

something else . Further failures would eventually cause the statement

to fail.

The value of the EXISTS statement is the current chosen expres-

sion. Thus

(SETQ ~Y (EXISTS (NE XTTO (BAG ROBOT —X))))

would bind Y to (NEXTTO (BAG ROBOT BLOCK1)) as well as bind X to

BLOCK 1.

234

—--- - - —-

V II CONTEXTS

A . Canonical Representations

Every QA-4 expression is always constructed in a canonical form .

Thjg process is ‘ilseussed in 1 1—A , Types and Formats and in Appendix

I I , The Discrimination Net. Together with the query statement , this

provides a rich associative indexing scheme into the total data base

of the system. In QA4 only one instance of an expression may occur ,

thus all the expressions of the language nay be used as data stores

and as communication paths between running processes . In LISP , ATOMS

have property lists that are often used to store data. This is possible

in LISP because every instance of the same ATOM is a pointer to the

same word in memory , and that word is the head of the property list.

In QA4 every expression is a pointer to a word that is the property

lIst for the expression . The syntactic form of the expression is only

one of the properties of the expression . This property, kn own as EXPV ,

corresponds to the PNA ME of a LISP ATOM.

B. Bindings of Properties

As another extension of LISP in a similar vein , QA4 extends the

notion of variable bindings to the properties of expressions . Within

LISP , property list modifications are permanent and never restored to

previous states automatic ally . This could he thought of as a “top

level ” binding . Since top level always remains at the top , the binding

mechanisms of LISP never manipulate property lists. (There is a slight

235

exception in the way that some LISP systems handle SPECIAL variables ,

but this is unnecessary .)

In QA4 all statements that manipulate properties may use either

the top level , or the current level , or any level they wish . That is,

the WRT option on statements such as PUT and SETQ permit the user to

specify precisely which context is to be used . A context level is

created every time a function application is performed or a PROG is

entered . When the PROG or function is exited , the level is popped and

everything modified with respect to that level is restored to its

state before the level was created .

The defaults of the QA4 system give the same effect as LISP . The

SETQ statement uses local context when it changes the value property

of a variable . All the other statements change values of properties

at the top level or the most global context . Since the only data base

available to QA4 programs is QA4 expressions and their properties, al l

data base changes are made under a binding or context mechanism.

The extension of binding to all data base changes compensates for

the generality of the canonical representations. When multiple

processes are operating, each process will require that its changes

be local to it. That is, suppose process P beg ins two su bprocesses

P1 and P2 , and rums them as co—routines . P1 and P2 each have a differ-

ent context assigned at the time of their creation that remains

throughou t their lives as processes. And each may manipulate properties

236

with respect to P’s context without interfering with still other

processes wi thin the system. In effect , top level has become a rela-

tive notion , and groups of programs organized around process—structures

may use a relative top level for their group.

C. User Contexts

QA4 was spec if ical ly designed to a id the construction of progra ms

that perform robot planning and theorem proving . These two areas of

artificial intelligence must constantly deal with a binding problem

similar to the variable binding problem for programming languages . For

robot planners it is called the frame problem (McCarthy and Hayes , 1969).

Simply, the model of the robot world is large and individual actions

modify the model only slightly . Thus the planner needs a mechanism

for changing the model , and after explor ing the effects of the change ,

restoring the model to a previous state. For theorem provers , the

problem is one of hypothetical reasoning . The theorem prover must make

an assertion (which is really an assumption), carry out a proof, and

then remove all the side effects of the proof as well as the assumption .

To prove (A implies B) for example , we wou ld assume A , prove B , and

remove A and al l the proof steps, and then assert (A implies B).

Both these problems share many similarities with the regular

variable binding task for programming languages. It is inconvenient ,

however , to attempt to solve the user problems by forcing the robot

planner or theorem prover to use the standard variable binding mechanism

237

— - - - - - ‘ - - . --_ _ —- -

to control the robot model or theorem base . Instead , an independen t

binding mechanism can be made available that is controlled by the user

program but not directly tied to the particular way his programs call

one another (McDermott , 1972). For example , a robot planner may have

an initial model in the global context and derive a context CO from that

global con text .

It could move the robot in CO and explore the consequences . It may

then find two alternatives to explore and create two processes P1 and

P2 , but it could now derive two new , independent contexts Cl and C2

from CO.

GLOBAL

CO

Cl C2

There may have been function calls and contexts created , yet the

planner is manipulating a model that reflects only the changes rele-

van t to the actions of the robot. When a path is no longer relevant ,

the context may be popped . Moreover, since the tree of contexts does

not contain irrelevant nodes, it is easy for the programs to explore

values in various parts of the tree .

238

- -~~~~~~~~~~~~~~~~~ ---- V

..~~ ~~~~~~~~~~ ~~~~ -

D. CONTEXT Statement

The context statement has two forms

(CONTEXT PUSH

(CONTEXT POP c)

where e is eithe r GLOBAL, CURRENT, or a var iable tha t is bound to a

context . The value of the statement is a new context . For example,

the tree

GLOBAL

Ni

V
N2

N4

N3

N5

could be grown by executing the following series of statements:

(SETQ .-Nl (CONTEXT PUSH GLOBAL))

(SETQ .-N2 (CONTEXT PUSH $Nl))

(SETQ .—N3 (CONTEXT PUSH $N2))

(SETQ —N4 (CONTEXT PUSH $N3))

(SETQ .-X (CONTEXT POP $N4))

(SETQ ~N5 (CONTEXT PUSH $X))

Note that N3 and X are the same context .

E. Summary

QA4 uses one general mechanism for all context manipulation and

property retrieval. This mechanism is based on a “dispersed state ”

239

rather than the more common stack mechanisms . The programs and their

operations are described in Appendix III. This unusual method was

chosen for QA4 because of the experimental nature of the language . The

language was designed to permit research into process structures and

their relation to backtracking . Neither of their programming concepts

have been used extensively enough to freeze a design within a language .

With QA4 we have to evolve a semantics by constructing robot planners

and theorem provers . During this evolution , the intricacies of both

processes and backtracking will most probably undergo radical modifica-

tion . The context mechanism will , we hope , permit this evolution with

minimu m effort .

240

V I I I STANDARD CONTROL STATEMENTS

A. LIST Statement

Many of the QA4 statements permi t a list of statements as part of

their form. In the user form of the statements the list is enumerated ,

but the preprocessor gathers up the statements of the series and con-

structs a single LIST statement from them. This LIST statement may

also be used any place a single expression is required in a form . The

form of the LIST statement is

(LIST el e2 . . . en)

where an e is an arbitrary QA4 expression . The internal form is

(STATEMENT LIST el e2 ... en)

The LIST statement is evaluated by evaluating el through en in order.

The value of the LIST statement is en.

In order to simplify the description of other statements , we wi ll

call a series of statements that are automatically converted to a LIST

statement by the preprocessor a list—segment .

B. Conditionals

1. IF Sta temen t

The IF statement has the user form

(IF el THEN e2 ELSE e3)

where el, e2 and e3 are list—segments. That is, they may be a single

statement or a series of statements. If they are a series , they will

be gathered together by the preprocessor and converted to a LIST

241

- ~~~~~~~~~~~~~~~~~~ - — ‘ — - -- - V~~~~~ -~~— - _____________ - V_ -V

statement for the internal form of the IF statement . Both the THEN and

ELSE parts of the statement are optional . That is, either or both and

their corresponding list—segments may be absent . The value of the IF

statement is:

If the value of el is FALSE

then (if there is an ELSE part then the value

of e3 else the value of el (which is FALSE))

else (if there is a THEN part then the value of e2

else the value of -

2. ATTEMPT Statement

The ATTEMPT statement provides a way that the program nay be

protectei from unexpected failures . The intent of the statement is to

provide a barrier that can catch failures. The form of the statement is

(ATTEMPT el THEN e2 ELSE e3)

whe re el , e2 , and e3 are list—segments. To understand the way ATTEMPT

is evalua ted , we must distinguish between a failure during the evalua-

tion of el and failure for the completed evaluation of el. el may con-

tain many backtracking points , especially if it has function calls.

Thus, during the evaluat ion of el there may be many failures, yet the

evaluation may eventually be successful . However, if the failures

exhaust the alternatives of the first backtracking point , then the

evalua tion fails. Normally, the interpreter would backtrack to the

choice poInt established prior to the evaluation of the LIST statement

242

(list—segment el). The ATTE MPT s ta temen t erec ts a barr ier to the

failure mechanism so tha t a failure for the evaluation of el transfers

control to the ELSE part of the ATTEMPT statement rather than a prior

backtracking point . Just as in the IF statement , the THEN and ELSE

parts are both optional . Thus the value of the ATTEMPT statement is:

If the evalua tion of el fa ils

then (if there is an ELSE part

then (if the evaluation e3 fails

then FALSE

else the value of e3)

else FALSE)

else (if there is a THEN par t

then (if the evaluat ion of e2 fails

then FALSE

else the value of e2)

else FALSE).

From this we can see that the ATTEMPT statement cannot fail. It is

the only statement of the language that has this property . Another

feature of the statement is that, once it has been executed , it cannot

be failed back into. That is , once the statement has been executed,

all backtracking points that may have been established are removed .

(Thus the barrier to failures works both ways . A program can be pro-

tected from an automatic restart due to failure as well as inhibit

243

fa ilures from causing restarts outside the ATTEMPT . Finally, no par t

of the statement may fail into another . That is , even if el contains

backtracking points , and is successfully evaluated , the evaluation of

e2 cannot fail back into el.

3. CASES Statement

a. Form

The CASES statement provides a way of selecting a pro-

gram to run based on pattern matching . The user form of the statement

- V is

(CASE S t pexp)

t must be a pattern that instantiates to a tuple of lambd a expressions ,

and pexp is a pattern . The statement is evaluated by matching the

instantiated form of pexp, say pexpi, against the bound variable part

of each lambd a expression in turn . When a match is found a backtrack-

ing point is established , and the lambda expression is applied to pexpi.
V

The value of the CASES statement is the value of the application . If

the appl ica t ion fa ils , the matching of pexpi against the bound variables

continues . If t is exhausted , a failure is generated for the CASES

statement.

b. Examples

Suppose we executed the statement

244

(CASES (TUPLE

(LAMBDA (TUPLE :—X 0) (SUCH :—X))

(LAMBDA (TUPLE :—X :—Y) (DIVIDES :$X :SY)))

(TUPLE SA SB))

If D is 0 it calls function UGH with the value of A; otherwise it

divides A by B. As another example, suppose the variable ACTION is a

tuple of function names . We may have executed

(SETQQ .-ACTION (TUPLE SF001 SF002))

Notice that we used SETQQ . Then the statement

(CA SES (= $ACTION) (P $X))

would attempt to apply the instantiated form of (P $X) to FOOl and

- F002 in turn .

We could al terna tivel y set ACTION to the tuple of lambda

expressions by executing

(SETQ —ACTION (TUP LE $FOO1 $FOO2))

and then executed

(CASES $ACTION (P $X))

This can lead to bugs, for if we edited the function FOOl after we set

the value of ACTION, the CASES statement would still use the old form

of FOOl . Since this is often the case when variables such as ACTION

are part of the initial model and we are interactively debugging the
I

Q)~4 progra ms , this second form should not be used .

245

c. Unbound Variables

Suppose FOOl were

(LAMBDA (P —z) (SETQ —Z 3))

and ~~~~ executed

(cA SES (= $ACTION) (P ::—X))

Then pexpi would be (P :—X) and when it is matched to (P —Z) , Z would

match —X . Thus Z would be bound to —X. This is, in a sense, treating

.-X as a quoted form .

The case where —X is not considered quoted , however ,

occurs in QA4 but not in most other programming languages . For

example , in

(CASES (= $ACTION) (P ..-X))

we cannot bind Z to .-X . Instead , Z is bound to NOSUCHPROPERTY , indica-

ting it has been bound , but not yet to an object . It is in a state of

limbo . After FOOl has been executed , the value of X with respect to

the context of the CASES statement is set to the value of Z with

respect to the initial application context of FOOl . In our example ,

af ter execu ti ng

(CASES (= $ACTION) (P .—X))

X would have the value 3.

d. The WRT Option

A CASES or GOAL statement may contain a WRT option with

a user—generated context . For example ,

246

V
-

~~~~~~~~~~~~~~~~~~



(CASES (= SACTION) (P X) WRT SC)

where SC was set to the value of a CONTEXT statement . When this option

is used , a variable , CTXREC , is set to the WRT context , and the SETQ

is done in the current dynamic context of the program in which the

CASES or GOAL statement occurs . Whenever any property manipulation

stat ement or query sta temen t is executed , this variable is checked .

If it has a value in the context in which the ASSERT or EXISTS state-

men t is being executed , then its value is used as the context for the

ASSERT or EXISTS . This has the effect of permitting a GOAL statement

to establish a subcontext . If all the property manipulation statements

in the program that work on the goal do not use a WRT clause , then all

the model manipulation is performed in the appropriate subcontext .

C. Programs -

The PROG , RETURN, and GO statements play a role similar to their

counterpart s in LISP .

1. PROG

The form of the PROC statemen t is

(PROC (DECLARE vi v2 . . .  Va) el e2 . . .  em)

where each v is a variable and each e is either a label or an expres-

sion. Each v is an unprefixed variable and is initially bound to

NOSUCHPROPERTY to indicate that it does not yet have a value . If an

I

e is an identifier , that is an unprefixed atom , it is treated as a

label; otherwise it is treated as a statement of the PROC . The PROC

247



is evaluated by first creating a context and binding each v . Then

each e is evaluated in turn . Labels are not evaluated , and GO state-

ments cause control to transfer to the appropriate label. The value

of the PROC is the value of the last statement executed ; if no RETURN

statement is executed , the value of the PROC will be the value of em.

2. GO

The form of the GO statement is

(GO v)

where v is an unprefixed identifier ,

3. RETURN

The form of the RETURN statement is

(RETt.TRN pexp) -

The RETURN statement causes the PROC to be exited . The value of the

PROC will, be the instantiated form of pexp .

4. Example

The following function computes the factorial of its argument .

(LAMBDA .-X

(PROC (DECLARE Y)

(SETQ .-Y 1)

LOOP (IF (LTQ $X 1)

THEN (RETURN SY)

ELSE (SETQ ..-Y (TIMES $X SY))

(SETQ —X (SUBTRACT $X 1))

(GO LOOP))))

248



D. Failure

1 . FAILING’? Statement

The form of thi s statement is

(FAILING? exp )

where exp is any QA4 expression . The statement has the effect of

establishing a backtracking point wi th exp as the alternative . That

is , exp is not evaluated when the FAILING? statement is executed .

Instead , a backtracking point is established . If failures eventually

cause backtracking to this point , exp is then executed .

As an example , suppose we have in our model a number of

expressions of the form (P —X), say (P 1), (P 2), etc. Also suppose

we wish to try a Plan—A with one of the forms but we are not certain

which one . Plan—A will fail if the chosen one is not correct . If

none of the expressions work for Plan—A , we them wish to try Plan—B.

The progra m could t ake the fo l low ing for m:

(FAILING? Plan—B)

(EXISTS (P —X))

Plan—A

Notice the difference of thi s program with

(ATTEMPT (EXISTS (P —X)) THEN Plan—A ELSE Plan-B)

With the ATTEMPT statement only the first choice of (P —X) is tried for

Plan—A . If it does not work and Plan—A fails , the ATTEMPT is immediately

249

— 
________________________________________________________________________________

— 
- V



fin ished with value FALSE . Only if no expression of the form (P .-X)

exists will Plan—B be tried .

2. FAIL Statement

The FAIL statement is a way of forcing a failure . Its form

is

(FAIL)

It causes a failure to be generated .

250

- - ,- --‘.e~a- -



IX WHEN STATEMENTS

A. Motivation

Problem—solving programs written in QA4 are organized around

strategies such as

Whenever a sentence follows from previous assertions

by ruodus ponens , assert that sentence .

Heuristics such as these are easily introduced into a problem—solving

system by using a WREN statement . The statement directs the interpre-

ter that whenever any expression that matches a particular pattern is

assigned a property,execute a program.

WHE N stateme nts correspond to “demons .” Conceputally , one can

think of demons that watch the flow of data between programs . When

data that triggers a demon moves past its watching post , it execu tes

a program causing side effects. In a speech understanding system ,

for example , a user might demand “When you remove a triangle also

remove a circle .” A QA4 problem solver could easily accommodate these

directions by first synthesizing a program that deletes a circle . A

demon could then be generated by a WHEN statement that monitored the

REMOVE program and activated the circle deletion program when that

demon notices a triangle being removed . This simple method of carry-

ing out and understand ing is parti cularly awkward outside the framework

of a system such as QA4, yet simple and natural within the QA4 language .

251



QA4 problem solvers evolve through interactive programming . At

first the programmer guides strategies to their solutions . As insights

develop, the strategies are tuned . Developing the insights, however ,

requires extensive trace features. The WHEN statement is such a full

trace system.

B. Form

1. Overall Form

The WHEN sta temen t takes the fo r m

(WHEN trigger—condition THEN event)

trigger—condition refers to a dynamic situation. These situations

occur when a process sends a message WHEN or a variable is bound to a

value . The event is the statement that is executed whenever the con-

dition occurs . These usually take the form of a PROC statement or a

function call. The demon is a process that assumes the global dynamic

context unless a more restrictive context is specified . The process

is directly assimilated into the interpreter and activates the event

as a subprocess whenever the condition occurs .

2. trigger—condition

The form of the trigger—condition is item—to—monitor

direction pattern wrt .

For example,

(WHEN X RECEIVES 5 THEN ($FOO $X))

specifies that whenever the variable X receives the value 5 the program

252



FOO is to be applied to X. The item—to-monitor is X, the direction is

RECEIVES , the pattern is 5, and the event is ($FOO SX). rt could

restrict the scope of the monitoring to the usage of X within a speci-

fic process .

The WHEN mechanism can be viewed as a tribe of demons . Ear ”~

demon is assigned either a collection of expressions or a process. He

watches the data path of his item—to—monitor. What he sees are all

expressions that go in direction (to or from the item) past his watch-

ing post. He is , howeve r, awake only when the processes in context wrt

are active . When he notices an expression that matches pattern he

causes event to become the active process . When event is finished , he

reestablishes the process he suspended .

a. item—to—monitor

The item may be either a class of expressions or a

process. The most simple class of expressions is a variable . Larger

classes are specified by using a pa ttern .

• Express ions and Patterns

Expressions have the most extensive set of specifica-

tions . Merely to give the name of a variable may result in an enormous

number of unnecessary invocations of the testing procedure . The re is ,

therefore , an option that restricts the domain of testing . The form

of item—to—monitor for patterns is

EXP pexp INDICATOR m d

253

- ~~~ ~~~~~~~~~ - -



Only EXP pexp is necessary for it specifies exactly which expressions

to monitor. If pexp is a simple variable , say X, then just that vari-

able is monitored . pexp may be, however , any complex pattern expres-

sion . For exa mple ,

EXP (AT ROBOT .-X)

might monitor all instances of the AT predicate involving ROBOT . The

item

EXP (—F .-.X 7)

on the other hand , monitors all two—argument predicates that have 7 as

their second argument .

The INDICATOR option permits the WHEN test to be

restricted to an individual indicator or property of the expression.

For example: -

INDICATOR NETVALUE

would restrict the monitoring to only the value of the expression .

However, a progra m may be us ing many other prope rties . For examp le :

INDICATOR TIMEARRIVED

might be the re al t ime the AT used above was es tabl ished . The f u l l

specification

EXP (AT ROBOT .-X) IND ICATOR TIMEARRIVED

would monitor the AT pred icate about the ROBOT, but will only watch

the properties associated with TIMEARRIVED rather than NETVALTJE . In

this case the predicate may have the value TRUE, an uninteresting

254



aspect of the exp ression . The usefu l information is the location of

the ROBOT, which would be bound to X, and the time , that can be bound

to variables in the pattern portion of the trigger condition. The

default option for INDICATOR is NETVALUE .

• Processes

Processes also have a simple item—to—monitor. Its

form is

PROCESS e

where e instantiates to an expression of type process . The form speci-

fies that all RESUMES into or out of the process e are to be monitored .

e is usually a $ variable set to the value of an INCARNATE statement .

a. direction

This is yet another way of restricting the scope of the

demon , direction is one of the three words: SENDS, RECEIVES , or

ERASES . In the case of a process , it SENDS when it executes a RESUME

statement and it RECEIVES when another process sends it an expression .

ERASES does not apply to processes. An expression SENDS when a program

reads a property from an indicator. Expressions RECEIVE when the

property for an indicator is set as the result of a PUT or SETQ state-

ment. ERASES appl ies only to expressions and is triggered by the

ERASE statement. The following table shows the actions that are

related to direction.

255

- - V~~~~~~~~~V~~~ V~~~~~~_ _  -~~~~~ -- -- -_ _- -



- -

direction expression process

SENDS GET RESUME

RECE I VE S PUT activa ted

ERASES ERASE does no t app ly

The default for direction is to watch all the activity

of the item.

b . pattern

The pattern both restricts the cases that activate the

event and provides a way of binding variables global to the event to

the parts of the message that are of concern . Suppose we wish to

monitor all predicates of two arguments and cause an event whenever

one becomes TRUE . The statement

(WHEN EXP (—F —X .-Y) RECEIVES TRUE . . -)

used the simple pattern TRUE to accomplish the task . As another

examp le , we may use a tuple pattern as the TIMEARRIVED property of

the AT predicate . Then

(WHEN EXP (AT R-OBOT —X) INDICATOR TIMEARRIVED

RECEIVES (TUPLE —HOUR .—MINUTE ~SECOND ) . . . )

will cause the event when ROBOT moves, bind X to the new location, and

bind HOUR MINUTE and SECOND to the tine .

c. wrt

The final restriction enables each particular WHEN to

have relevance only witn respect to a certain context . The form of

256



the wrt option is:

WRT context

context is an expression that mus t instantiate to a context. This

context can narrow the scope of the monitoring of the item to times

when context is an active context. The WET option is especially use-

ful for large special-purpose problem solvers . Suppose a problem

solver had a linear—equation solver and used it as a high—level infer-

ence rule. Part of this subproblem strategy might be to monitor cer-

tain variables . Each time it was entered , this subproblem could execute

WHE N statements with the appropriate WET options . Even if the system

• was suspended , and later resumed , the expressions would not be monitored

during the execution of the intervening processes .

3. event

event must be a single expression. I t may be a PROC or as

simple as a function call. When the demon is triggered a context is

created for event, The variables in the trigger condition that are

bound as a result of the pattern matching are bound in this newly

created context , event is then evaluated .

257



X GOA L STATEMENTS

A. Form

GOAL statements provide a powerful tool for program organization.

Their form , however, is quite simple.

( GOA L t pexp c—r)

where pexp is a pa ttern, t is an expression that instantiates to a

GOALCLASS tup le , and c—r is the context—restriction option of the query

statements. The execution of the GOAL statement can be defined in

terms of more primitive statements:

(FAILING? (CASES t pexp))

(EXISTS pexp c-.r)

B. Example

Normally, the flow of control of a program is completel y de term ined
4

by the code literally appearing in the form of subroutine calls and

transfer statements. These two control mechanisms , taken in isolation ,

are a formid able barrier to the organization and structuring of programs

that are mainly guided by the construction and satisfaction of subgoals .

A theorem prover , for examp le , should operate by accepting and analyz ing

its input; making assertions about it; developing subgoals; and acti-

vating programs especially suited to prove each subgoal. In this

organizational scheme , programs are not identified by their names but

rather by the job they do and the type of input they operate upon .

- V ~~~~~~~~~~~~~~~~~~~~ 

959 . -
- 

~~~~~~~~~OT J1JJ1b_~~_l 

--~~~~. -~~~~~~~ -
,
~‘•~;,‘

- - -

P.— V

Su ppose , for example , the system has somehow obtained these two

facts:

factl (ON BLUEBLK REDBLK)

f act2 (ON REDBLK GREENBLK)

By call ing these facts , we mean that their value is TRUE . Now suppose

our program has developed a subgoal. It is necessary to f ind a b lock

that is on the green block . The s t a t ement

(GOAL $PROVE (ON —X GREENBLK))

would accomplish the subgoal.

The first step in the interpretation of the GOAL statement is to

make a list , say L, of all expressions in the system that could match

the pattern (ON .-X GREENBLK) and that also satisfy c—r . Since c—r is

absent , the expression must have property TRUE under the indicator

NETVALUE . In our example only one expression is on L, namely fact2 ,

The system chooses an expression from L, binds X to the appropriate

subpart , establishes a backtracking point , and continues . When a

failure occurs, the next item from L is chosen . This process would

conti nue down the list until one was found that did satisfy the goal

and permitted the program to come to a successful termination or until

the list was exhausted .

To carry our example a step further, suppose we want to extend

ON to mean “directly on or somewhere in a pile on.” We could introduce

a program that attemp ts to satisfy ON goals. First we would define a

260

recursive function that decides if one block is on another . We call

it PILE and give it the definition

(LAMBDA (ON .-Bl —B2)

(PROC (DECLARE B3)

(GOAL $PROVE (ON —B3 $B2))

(GOAL $PROVE (ON —BJ. $B3)))

Next we link the program PILE to the GOAL statement by executing

(SETQ —PROVE (CONS SPILE SPROVE))

This means that the system can use the program PILE to satisfy the

GOAL statement provided that the goal matches the bound variable of

PILE.

Now, if we develop the goal

(GOAL SPROVE (ON BLUEBLK GREENBLK))

the system would first attemp t to construct a list of expressions that

might satisfy the GOAL . This fails , for the list is empty , so the

system next finds programs from the tuple $PROVE whose bound variables

match the goal. In our case , the function PILE would be located and

applied to the goal pattern . Bl would be bound to BLUEBLK and B2 would

be executed like our first example, and the goal would be satisfied

when PILE concludes its execution .

(-

261

C. Order and Advice

The order in which programs are attempted is taken di rectly from

t , the GOALCLASS tuple of the goal statement . Thus the program can,

itself , change the order by manipulating the values of the variables

used in the GOALCLASS . This is not only a way of guiding the search

to more direct solutions , but of being sure that excessive amounts of

time are not wasted continually rejecting some programs . It may also

serve as a method of permi tting the system to advise itself of better

search methods . After a problem has been solved , the problem solver

would record the successful programs for various kinds of goals . When

a similar problem arises, variables could be set to tuples arranged so

that the successful programs are at the heads. In this way the problem

solver would go directly to the solution of this second problem .

262

-~ ~~~~~~~~~ ~~~~~~~~~

XI PROCESSES

A . RESUME Sta temen t

1. Example

A process is an object that can be executed . It is made up

of a contex t, a program , and sta te informa tion (Conway , 1963) (Landin ,

1963). Any process can be suspended at arbitrary points and restarted

at any later time . When the processes work in cooperation , however,

they are suspended and restarted only duri ng the evaluation of certain

statements. Suppose , for example , that we have two cooperating

processes: A and B . They communicate in two ways: through a global

data base and by their RESUME statements. The following figure is a

flow—of—control diagram that illustrates the interp lay of the two

processes. Underneath each process name is a list of the RESUME state-

ments for that process in the order they are executed . The annotation

describes how these suspension points are reached and how each process V

is eventually restarted .

Control Between RESUME statements

A B Tl

(RESUME $B ’ l) T2

(RESUME $A 2) T3

V

(RESUME $B 3) T4

263

_______ - — -- ~~ V -~~~~ V

- -,.:, ~.,-
..• - -

There are four distinguished points of time Tl through T4.

Ti • A has started execution . We will see in a later section

how it is started .

• B is a suspended process. Its state requires that an

argumen t for Bs LAMBDA expression definition be supplied

so that the first step in its execution may take place,

namely the binding of its argument . This argument will be

suppl ied the first time B is resumed .

• Suppose that B is an expression of the form

(LAMBDA .-BX ...)

T2 • A executes a RESUME statement . This particular one sends

the message 1 to B.

• A now becomes a suspended process. Its state is left in

such a way that it requires a value for the RESUME state-

ment in order to be restarted and continue execution .

• The message is sent to B. It becomes the argument to B

and BX is bound to 1.

• B then proceeds in execution .

T3 • B executes a RESUME statement . This time the message 2

is sent to A.

• B now becomes a suspended process requiring a value in

order to continue .

264

V V

• The message is received by A , and 2 becomes the value A ’s

RESUME statement , and A continues execution. Thus each

RESUME s t a t e m e n t serves two purposes: i t sends a message

and receives a message in return .

T4 • A executes a RESUME statement and sends a 3 to B.

• A becomes suspended and B begins execution with 3 as the

value of its RESUME statement .

2. Form

The form of the RESUME statement is

(RESUME process message)

where process instantiates to a QA4 process and message is the expres-

sion that is instantiated and sent to the process. When a RESUME

statement is executed , its process is suspended . The suspension is

made in such a way that a value is required asV the value of the RESUME

statement before the process can be restarted . This value can be

supplied by a RESUME statement from any other process in the system.

Normally , process is a variable that is the value of an INCARNATE

statement . Thus, processes are linked together merely because they

have variables that point to other processes . This means that there

is no rigid structure to QA4 processes as there often is in systems

that require pipes or plugs and sockets. Moreover , the interconnec-

tions can be dynami c and continually change within a QA4 process

struc ture .

265

B. INCARNATE Statement

Suppose that F and G are functions . The following lines of pro-

gram may have created the above example .

(SETQ —A (INCARNATE $F))

(SETQ ~B (INCARNATE $G))

(RESUME SA 0)

The form of the INCARNATE s ta tement is

(INcARNATE &
where e instantiates to a lambd a expression . The value of the

INCARNATE statement is a process that needs a value to begin execution.

The lambda expression indl’cated by e will be applied to the message

from the first RESUME statement that resumes the process. For example,

suppose F has the definition

(LAMBDA (Q .-X) ..)

and we execute

(SETQ —P (INCARNATE SF))

(RESUME $P (Q 7))

e of the INCARNATE statement is $F and this instantiates to the LAMBDA

definition of F. The value of the INCARNATE statement ‘s a

process, and P is bound to that process. The RESUME statement supplies

the message (Q 7) to the process . Since this is the first resume to

the process, the lambd a expression ~s applied to the message. That is,

(Q .-X) Is bound to (Q 7) and the process is started .

266

A particular LAMBDA expression can be incarnated many times. We

could , for example, have a program that reads:

(SETQ —C (INCARNATE SF))

(SETQ —D (INCARNATE SF))

C and D are different processes with different contexts . They share

the sane cod e but will have different variable bindings . Since this

multiple incarnation is possible, ref erences to processes mu st be made

via the process and not the function name .

C. CONNECT Statement

The CONNECT statement has the fo rm

(CONNECT p a q b)

where a and b are variables that are bound to processes ~nd p and p

are identifiers . The statement assigns p the value of b under a ’s

context , and it assigns q the value of a under b’ s context . For

example , suppose we execute

(SETQ —A (INCARNATE SF))

(SETQ —B (INCARNATE $0))

(CONNECT P $A Q SB)

The fol low ing diagram shows the situation after the CONNECT statement .

Arrows indicate values, circles indicate processes, variables within

circles indicate what the value is with respect to the context of the

process.

267

A B

D . WAIT Statement

A newly incarnated process is called the chi ld of the process

that incarnated it , and we refer to the creating process as the mo ther

of its child . Many times a child wants to RESUME to its mother , but

lacks a way of referring to her. The WAIT statement provides a

mechanism for this.

(WAIT message)

operates just like a RESUME to the mother process, but does not require

that the mother process be explicitly mentioned .

Once a process has been created it may be passed between func—
V

tions just like any other data object . It can thus take on a life

independent of its mother . This violates ALGOL scope conventions and

normal stack operations . When all references to a process are removed ,

the process automatically disappears . That is, when there are no

longer any variables that are bound to a process, the garbage collector

w i l l come and get i t .

- 268

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

V.:
V

X I I ITER A TION STATEMENTS

A . REPEAT Statemen t

1. Example

In many languages , iteration statements are intended to step

through indexed data structures: FOR in ALGOL and DO in FORTRAN for

example. In QA4, howeve r, they are intended to enhance the utility of

the nondeterminism of the language . As a result , they operate through

the failure mechanism rather than simple transfers . They provide two

features : iteration through data structures or multiple pattern

matches without the loss of side effects, and collection of items at

each iteration step . For examp le ,

(REPEAT (EXISTS (PAND ~-Y (ON—TOP—OF —X BRICK1)))

DO ($PICKUP $X)

($PJ.ACE-IN $X BLUE—BOX))

is a statement that puts all th€ bricks on BRICK1 in the blue box .

REPEAT is the major statement , and all the other iteration statements

are defined in terms of it. Some of the options of the REPEAT are

included to facilitate the definition of the other statements and may

not appear useful .

2 . Form

The form of the REPEAT statement is

((REPEAT nde op t ions DO el e2 . . . en)

269

___________________ V — -— — - - — V ~~
____ V.___V_ V.___•____~

__
~__VV~

VV__ VVV____VV ~V__ ~_ V

V
V - V -‘ ~~~~~ p•~ *~-

where nde is a nondeterministic expression , each e is an expression ,

and options are pairs of keywords and expressions . The options are :

• A terminal condition and a terminal action

• A collection condition and an item

• An iteration step

• A final failure expression .

These will be discussed more fully below . The execution of the

REPEAT may be described by the following pseudo—QA4 program:

(SETQ —COLLECTION (TUPLE))

(FAILING? failure expression (RETURN $COLLECTION))

el e2 ... en

(IF terminal condition THEN terminal action

(RETURN $COLLECTION))

(IF collection condition THEN (SETQ s-COLLECTION

(CONS item $COLLECTION)))

iteration step

(FAIL)

The nondeterministic expression may be any QA4 expression . Normally,

the REPEAT statement is intended to gather information by the use of

side effects. Therefore, the FAIL at the conclusion of each step is

only partly backtracking . If the FAIL backtracks to any place in the

bod y , conditions, or step it is treated as a normal failure . However,

if any FAIL backtracks to the nondeterministic expression, full

V 270

- -- ~~~~~~~ V~

backtracking does not occur . Side effects are not removed , but the

next alternative is chosen and variables are rebound under the old

backtracking context , and the body is again executed .

3. Options

• terminal—condition

The terminal—condition can take the form

UNTIL p

or the form

WHILE p

where p is a predicate expression . If a terminal—

condition is present it may be followed by a

terminal action that takes the form

THEN e

If the condition causes the termination of the

REPEAT, the expression of the action is performed

just before the final exit from the statement .

• Collection

The collection condition and the item provide a

method of gathering a single data object during

each step of the iteration . This clause takes

the form

r
COLLECT e WHEN p

271 -

~~~tV --— V -- ~~~~~~ - -- - — V



If it is present , p is tested just after each

execution of the REPEAT body . If it holds , e is

appended to a special tuple kept by the interpreter.

If p is not present , a is a lways  appended to the

tup le. This tuple becomes the value returned at the

completion of the REPEAT.

• iteration—step

The iteration—step takes the form

STEP e

I t is executed just before the cond ition FAIL is

given .

• final failure

The final failure expression is executed if the

cases of the nondeterrninistic expression have

been exhausted and the REPEAT termination condition

still does not hold . It takes the form

FINALLY a

B. FIND Statement

The FIND statement Is a macro expansion of the REPEAT statement.

- 
.- ~‘orm of the statement is

F1~iD BETWEEN lower upper item

i’ ci .~2 . . . en)

272

-j



Its definition in terms of the REPEAT is

(REPEAT (WHILE (LTQ SNUMBER upper ))

(COLLECT i t e m )

(STEP (SETQ —NUMBER ( PLUS SNUM BER 1)))

(FINALLY (IF (LT lower SNUMBER) THEN (FAIL)))

DO el e2 . . .  en)

For example , the following statement finds three boxes that contain

green blocks :

(FIND BETWEEN 1 3 X DO

(GOAL SPROVE (BOX .-X))

(GOAL SPROVE (CONTAINS $X .—B))

(GOAL $PROVE (GREEN SB)))

273



Chapter Five

EXPECTATIONS AND REFLECTIONS

-~~~ — - ..V,.- --- - - - -

~~~~~~~~~~~~~~~~ r~~~
-
~~

P~~~~EDIN~ P*GZ ~~AI~~—~OT flLJ~~~ J. -
~~

‘ 4 ~
____________ LV ~~~~ ~

j

V -

CHAPTER FIVE--EXPECTATIONS AND REFLECTIONS

I PROJECTS

A. Irnhotep

There will be, during the next year, a number of problem—solving

systems programmed in QA4. Each of these will deal with its own,

highly specialized problems . But one robot project will attempt to

be a focal point of QA4 development , incorporating innovations as

they arise and even using large portions of the other projects as

subsystems .

Our robot , “Irahotep, ” will be a simulated arm that can stack

blocks. We have chosen the problem of building a house as the long—

range goal of our effort . The following scenario demonstrates the

research problems we wish to explore .

Imhotep will begin with detailed initial knowledge in the follow-

ing subject areas :

• Primitive arm movements , e.g., move to location (X Y Z).

• Intermediate—level actions , e.g., pick up a block .

• Facts about the world , e.g., blockl is on top of stack3.

• Common sense reasoning, a simple theorem prover.

• Program synthesis , a program that writes primitive QA4
programs .

d

• The world , e.g., programs that simulate the arm and that

simulate falling blocks.

275

- -~~—~~~-~ - -- - ~~~~~~~~~~~ - -V -~ - ~~~ - - --

- - - - . V V - V - ~~~~~. V -

A ll this knowledge will have to exist as QA4 programs . That is , each

of these packages will be a QA4 problem solver tha t can work on certain

kinds of goals. (The design , implementation , and refinements of these

packages will require most of the effort on this task during the coming

year.) Not included in this initial knowledge will be concepts of

stacks , building , wal l s , lintels , roofs , corners, and other notions ~

that will arise duri ng the scenario.

Step 1: We ask Imhotep to build a stack. He responds that

he does not understand “bu ild ” or “stack .” We supply more

precise definitions , and eventually a stack program is syn-

thesized . The program is executed , and the resul ts are

evaluated . If we are not satisfied , we express our complaints,

and Imhotep modifies the program accordingly . A most impor-

tant point during this process is that all actions are goal—

di rected , and all inputs to the system are in response to a

question by the system. Inhotep accepts input only to resolve

an internal question or test a hypothesis .

Step 2: Build a lintel. This is also a program—synthesis

problem , but now the stack—building program may be used as

a subroutine . This will be evident from the definition of

a lintel : two stacks with a span .. .

)

276

— V~~
~~~~~~~~~~~~~~~~~~~~~~ - -



Step 3: Build a wall. Here we expect ~ ~V ali to have inter-

locking blocks and flush ends. We also expect the wall—

building program to he synthesized by using information

developed during the solution of Step 1. This might be

more appropriately called program modification , for it

involves changing an existing program to meet new require-

ments. Blocks of various sizes will be available.

Step 4: Build a vail with a lintel. For this problem we

wish to coordinate the wall and lintel programs , using then

together without writing new programs . This will be by far

the most difficult task , for it will require coordinatin~

two independen t processes so as to produce a more elaborate

result than either would p roduct alone .

Step 3: Build two -~ore V v al l s

Step 6: Add a roof. A roof is a stack of long blocks rest-

ing on its side on top of the walls.

When the program has achieved these steps , it will have sucess—

fully built a house. As can be seen, this project will be primarily

V 
directed toward program synt hesis and the use of QA4 as an aid in the

development of problem—solving programs . This effort will also empha-

size the useful integration of new programs into the systen , and their

( subsequent modification .

277

- --,.4.V~~V,~;,V - - -



B. Other Projects

The othe r projects , most of then underway, include:

• .\ program verifier tha t will be used to automatically verify

the correctness of small programs . It will also operate in

an interactive mode , permitting the user to guide the process

of verifying large programs (Elspas , 1972). The ver if ier

will stress expression simplification as an inference rule.

• A program synthesizer , similar to the verifier , tha t will

automati cally synthesize small programs and interactively

synthesize large programs (Mann a and Wald inger, 1971). The

synthesizer will stress the coordinated use of quantified

logical statements , procedural definitions , and pragma tic

advice for its program construction . It will also stress the

development of the internal structure of programs , unl ike

Imhotep which is primarily concerned with the usefulness of

the finished programs .

• A robot planner that will generate plans similar to those

required of Imhotep, but will actually perform the plans,

recover from errors of either reasoning or execution, gain

knowledge about the world during plan execution , and replan

intelligently. This system will stress pseudo—parallel

searching , plan construction , and the recognition of

similar problems .

278

• - 
- , :  ~

—- - ~~~~~~~~~ - -- — — ~~~~~~ - 
-~~~~~~~~

- ~ - ~~~~~~~~~~~~ -



• A vision system that will direct its analysis of scenes

in a goal—oriented fashion with the intent of deducing

relational information abou t its environment. This system

will stress the use of large amounts of relational infor-

mation , especially using sets and bags, to deduce relevant

fea tures and opera tions tha t, in turn, will guide the top—

down ana lys is progra ms.

As we have pointed out , each of the projects emphasizes a differ-

ent problem area and each ~V i ll stress different facets of QA4 . Since

they all strongly share a common base , howeve r, they blend well and

• each will continually contribute to the success of the others .

(

279

V 
~~~~~~~~~~~~~~~~~~~~~~~~


II EXTENSIONS

V~t~~ Lamarc kian Evo lu t ion

Much of the character of the QA4 language has resulted from

gradual changes , introduced to aid or enhance systems as they were

being programmed . Automatic backtracking exemplifies how the summa-

tion of minute changes results in a quali tative difference in the

character of the language . We first believed that automatic back-

tracking would be especially useful for searching small finite sets.

The effect , however , produced comic debugging sessions where mis-

spelled variable names or slightly incorrect program forms initiat ed

automatic backtracking, which, in turn , led to the belief that the

models were incorrect or that the goal direction had gone awry . Even-

tually, backtracking was made optional and the standard default for

the interpreter was to respond to failures as errors . Slowly, one

program form at a time , all the automat ic backtrack ing disappeared ,

so that now the programmer must explicit ly state where backtracking

is to occur. Thus, while the fundamental power of the language

remained constant , the style of programming took a complete turn-

around.

A similar experience has occurred with the GOAL statements.

Originally all programs could be applied to a goal and only their bound

variable patterns would disqualify them . Then the system was changed

281 _ _ _

V
-

-~ ~~V - -
-.

V 4.ss*4,- .~

so that programs could be classified into goal classes. There we re

snecial statements in the language to classify the programs, and an

especially obscure method was implemented to test if goals were ~atis—

fied” before programs were chosen from the goal classes . These state-

men ts were f ina l ly discarded . An optional form of restrictions was

added to the EXISTS and GOAL statements , and the goa l class met hod

was changed to the current tuple format .

When the current restrict ion format was substituted for the

obscure ‘~atisfied
”prograrns , the idea of a relevant context developed .

This led to the current WRT semantics . Since the tuple of relevant

programs has replaced the goal class, we have begun to see ways to

save the tuples used in a particular problem solution . The saved

tuples could be reordered so that the successful programs——i.e., the

ones that satisfied the goals——are first. This set of reordered

tuples can be saved as a “plan.” Later, when a similar problem arises,

the “p lan ” will direct the problem solver directly to a solution

except, of course, at the points where the new problem differs from

the original.

Similar evolution has occurred with other facets of the system.

Currently, a convention of quantified expressions and goals is being

developed . We expect that , in the long run, each of these sma ll

changes wi ll result in a qualitatively different and more intuiti ve

language.

282

B. Searching for Goal Solutions

The most dramatic change we anticipate will be in the semantics

of the goal statements. During some kinds of robot planning , the

depth—first orientation of the goal mechanism appears to be a major

deterrent to speedy, succesful planning . There are many cases , rou te

finding for example , when pseudo—parallel searches appear to economize

effort rather than waste it. If we think of the search as a growing

gra ph , then our pseudo—parallel search means that we are saving nodes

and later returning to them for further expansion . Within the QA4

f r amework , however , the nodes arise from goal statements and backtrack-

ing is not a satisfactory method for conducting the search.

V Ins tead , each goal statement should spawn processes for the

programs that can satisfy the goal. Each process should run until it

reaches a point where its utility can be approximated . At that point ,

a RESUME statement in the process can return control to the mother

process. The mother process nay then alternate among the programs

working on the goal , always choosing the best. If the mother was

originally given a bound , and each child exceeds the bound , the mot her

may , in turn , RESUME its mother with an estimate of success. While

each child is running, moreover , it may execute goal statements that

either generate more processes or search in the standard goal fashion .

283

~~~~~~~~~~~~~~ - - __________ -____________________________________



With this framework we have preserved the basic QA4 approach of

using procedures as models and have introduced the facility for each

goal statement to search according to the method appropriate for it.

Estimates of success are determined on a local basis and are computed

by the procedure doing the search, eliminating the almost impossible

task of writing programs that examine another program state to deter-

mine its progress. We must yet make the searching operate smoothly

and defaul t in natural ways . We must also work out techniques for

approximating progress . But we have designed a robot planner based on

this type of goal statement , and it appears to be a considerable

advancemen t over current planners .

C. Transitive Relations

The idea behind the automatic handling of equivalence relations

can be extended to transitive relations as well. Within many problem—

solv ing tasks , goals are ma inly concerned with small sets of objects

and their relations (Elliott , 1965). For example, robot planners may

be concerned with a few rooms and a few blocks together with relations

such as n e x t — t o , l e f t — o f , and between .

There are many propert ies that transitive relations satisfy .

For instance , they may be reflexive or irreflexive; symmetric , anti—

symme tr ic , or asymmetric; functional in the first argument or func-

tional in the second argument . Combinations of relations may form

284

- - ~V~V 
- 

V 
- - J M~~.t flV _ .St~~~



groups . For examp le <, �, >, and �, form a group of order four under

the operations of negation and argument reversal. Composition of

relations also satisfies algebraic properties such as absorption

(X < V N - Z < V -~- Z) and adsorption.

If  the user could ident i fy a collection of relations , state both

their individual properties and the relations between them , a sys tem

could be writ ten that would mirror the equivalence relation mechanism .

Statements of the form

(FA X IN A) (EX Y IN B) (R X Y)

could be assimilated into a storage network . Space could be kept at

a minimu m and questions about the specific relations of objects could

eas ily be answered . Statements using different but related relations

would be accommodated into a single unified structure .

A system similar to the equivalence relations statements could

be made to operate within the QA4 language . Such a system could

greatly enhance the problem—solving ability of systems that deal with

many sometimes complex relations between small sets of objects.

D. Efficiencies

The QA4 user community is expanding beyond the small group that

has built the system. And with this growth comes the expected con—

plaint s . The interpreter is too large, as are all systems that govern .

The services consume too much of the available resources . The met ,

for example , takes up too much storage and the system is unresponsive .

285

V -- V -— -



The pattern matcher is too slow , and the system programmers do not

react quickly enough to user demands. The solutions , o f course , are

in the promises for the future .

There are great reductions that can be achieved with the net .

As discussed in Appendix II , a decrease of about a factor of 10 in

storage is easily achievable. The net programs currently use the extra

space to keep sta tist ics on each pa th fol lowed by every reference to

the net . When we are convinced that the distribution is substantially

uniform for large problems , the monitoring can be removed and the

savings realized .

The pattern matcher suffers the effects of a more fundamental

deficiency . With many QA4 patterns there are alternative matches .

Sets, bags , and fragment var iables are the sources of the alternatives -

When the pattern matcher is invoked and a match is found , information

must be saved so that , la ter , the matcher can be restarted to find the

next alternative match. Not only is this saving of information costly,

but the matcher itself is written in a clumsy manner with many extra

programs to perform the restarting . If LISP had a process structure

(Bobrow and Wegbreit , 1972), so that the matcher could be run as a

coroutine and the restart informa ti on could easily be saved as, say,

a stack segment , significant savings could be realized in both the

size of the pattern matcher and the amount of restart information .

Moreover, the internal structure would be more clear and straightforward .

286



I / AD AOb2 no STANFORD RESEARCH INST MENLO PARK CALIF F/S 9/2
gAls: A PROCEDURAL CALCULLS FOR !NTUITIVE REASONINS.(U)
NOV 72 4 F RULIFSCt4. .1 A OCRKSEN NASW—20S6

UNCLASSIFIED TN—75 P4.

4aF 4
~~~~~ I i

‘4

END
DAT E

F IL ME T

______ 5 —7 8

Finally, if LISP permitted the process structure programming that

would benefit the pattern matcher, the QA4 interpreter cou ld be

abolished . When backtracking, th e state of variables and data struc-

ture within QA4 is restored with the context mechanism . The only

information not restorable is the state of the QA4 interpreter——tha t

is, LISP’s push down stack . If this information were savable , then

QA4 programs could be LISP programs that called functions such as GOAL

and ASSERT . This would result in many improvements.

QA4 programs would not be in the net , reducing the size of the

net , saving la rge amounts of storage for QA4 sys te ms, and reducing the

net search time .

The QA4 interpreter would disappear , and with it would go about

25 percent of the code of the QA4 system. More importantly, the list

structures built by the QA4 interpreter to evaluate QA4 programs , the

ones that serve the func tion of sava ble stack s , would then be LISP ’s

savable stacks . Those CONSES that build the stacks account for about

30 percent of the total CONSES during QA4 evaluation .

And f ina l ly , if QA4 programs were LISP programs they could be

compiled . There is no doubt that this could result in at least a

speed—up factor of 100 and maybe even more . There are a few problems

in making QA4 programs LISP programs , but they are all minor. All in

(
all , it efficiently becomes a limiting factor for QA4 users ; the solu-

tion , as opposed to stopgap measures , is to introduce process structures

into LISP.
287

Il l TRENDS IN QA4 PROBLE M SOLVERS

A . Back tracking

The shift away from backtracking is the most surprising trend in

QA4 programming . What we originally thought would be a heavily used

feature has come to play an important but different role. In almost

all cases where backtrack ing offers a solut ion to a programm ing problem ,

other solutions are available . Moreover, it usually introduces more

problems than it is worth. When one attempts to use it for small local

loops , it tends to leave unexpected backtracking points in the execu-

tion path , and these inev itably interfere with the global strategies .

To program them away with the ATTEMPT statement or other similar pro-

gramming techniques often introduces yet another layer of interference

in the global strategies. Even the potential problem of misspelled

identifiers in patterns causes havoc during debugging .

Thus , the trend is away from backtracking for small local problems .

We are , however, discovering its use for problems more deeply rooted

in the models and problems . That is, backtracking seems particularly

suited as a means by which a problem solver can simplify a major

problem. For example , it may have to solve a complicated problem and

has three blocks that may work . Solving the problem by supposing one

specific block will do and then attempting to find the solution with

that concrete example is often a good strategy, and backtracking on

289

_(1

~~~~~~~~~

1i .



that level provides a way of easily implementing the strategy . The

skills of programming with appropriate backtracking will , we hope,

develop as our problem—solvers evolve.

Even with highly restricted use of backtracking , however , there

is a nagging worry that computational power is being wasted . For in

standard backtracking, all side effects of a computation are removed .

If the search with the second alternative is to use information gleaned

from the searc h with the f irst alternat ive , spec ial care mus t be taken

to ensure that the infor ma tion is ava ila ble a f t e r  the back track ing has

occurred . This requires considerable additional effort in the design

of programs to work on goals—-so much, in fact , that when one attempts

it , one f ina l ly  wri tes  programs that cons ider all the al ternat ives

simultaneously . Thus backtracking still appears as a large unanswered

question . Just when it is appropriate seems to be a matter of taste

and a question of tradeoffs——clear concise or easily wr itten programs

versus more efficient but sometimes complicated programs .

B. Efficiency

There has finally begun to develop, among QA4 programmers, less

of a concern for minor efficiencies and more concern abou t the nature

of the searching . If the problem—solving system is large, compl ica ted ,

and still developing and a speed—up factor of 10 is needed , then the

system needs better strategies . Faster matches, interpre ter , storage

290



retrieval programs , or what have you , are not the solution . When a

search problem can be concisely stated and algorithm search me thods

are available , then tight code will always help . But the problems to

be solved by QA4 problem—solvers do not have that flavor . This atti-

tude is held by everyone working with QA4 and is reflected in the

effort they put into the overall structure of their problem—solvers .

C . Procedural and Declarative Language Development

The mixing of procedural and declarative know].~edge within QA4

is constantly becoming richer. With the realization that many appar-

ently declarative statements can also be considered procedural , QA4

users are beginning to blur the distinction . Thus we see QA4 programs

tha t have both quantified assertions and programs that may be used by

GOAL statements. For example , one might develop during a problem solu-

t ion , the facts (P .-X A ) and (P —X B). The system may also have pro-

grams tha t work on goal expressions of the form (P .-X .—Y) . In this

way, a goal statement may sometimes be satisfied by the quantified

expressions and at other times by the program. So, ins tead of stress ing

either the logi cal or the p rocedural formula tion of knowledge , QA4

prog ra ms are tend ing to thoroug hly mix the two . This mixture , moreover ,

is irising because we are making both available.

291



D. Ad Hoc or General

The development of QA4 and the problem—solvers being constructed

with it is a clear shift away from the idea of a general problem—solver

or question—answering system. How far the shift can go before the

systems are though of as ad hoc is a question of taste . What is

significant about this shift , however , is that much of the emphasis of

the research has shifted to the problem domains . Instead of attempting

to f i t a pro blem in to a syn tactic f r a mework that could be d igested and

man ipula ted by some arb it r a ry  reason ing method or progra mming language

such as resolut ion log ic or GPS , the researchers working with QA4 are

free to manipulate the problem and the solution simultaneously . This

new latitude has led to research into the nature of program synthesis

and the relational structure of robot models. This style of problem

formulation will , in the end , overcome the suggestions of being ad hoc

and lead more directly to the invention of intelligent sys tems than

the search for a single universal solution.

292



I ft

Append ix I

LISTING OF TI~ ROBOT SYSTEM

C

— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~


THE QA4 OPERATORS: THE GOTHRUDOOR OPE RA TOR

L ? ? P ~~~C ~OT~4)D~~fl ~~~~~~~ (I~~~~3r1 (T U P LE ~ O~~O T ‘ M))
(~~~ CC (O E C L A r ~F i~ r’~ L)

(IF C~~3T ~W ~~LCU~~
)

~ A I L .))

..~~< I ~~T S (C T . W c ! 3 .-~(..~. $M))
~~~~~ ~GJ ( 7~~RO O M R~~~CT I L ) )
( G

~) ” ~L sc, ) (‘:LXTT O RO BO T ~,<) )
~ M 1~PC (~~Wj I E~ ( T U P LE ( A T R O e Q T  ..X)

( N E X T T O  iW BUT ..~~)))
~~ ~~~~. U.. TE. )

3 .~C ’ ~T ( !~~~~
t jC~’ ‘~CF~OT UI))

~~~ J ILJ ‘ : ~~ JT J~J C C R A C T I~~N ~K J

THE GOTO2 OPERATOR

C~~r A L Q G uTn : (L h 3 -~~~ C ~~x T T n ~~~~OT ~~~
(r ’~~~

)(, (ULLLA Y V ,)
~
‘ I~ C ~~~ ~L) ;F L~IO~

)

C F A IL
C A T T ~~iPT (

~~X I S T S (I~” PCC . I £i~1 ~- x))
(L ~~~ L ~~ O C I N F O O 4 ROtC. T f ,) ())
1 —
(V 1 I SH
LI_ H.

~~~~~~ bCU ( I \ P~~~1 PO - ~3T X ) )
(c. :~iS lS  ( C (~~\ E C T S  iM T X  ~ Y ) )  )

~

. I’ I~; .1

C ( ... CT ~ C T u PL~ 
( ,~T k ’ j~~~T .‘X
(
~\ E X T T O  R O B O T  X H )

~.~~ L LT F )
c 4 r;L~~r (~~L~ lu ~UF~~T P1))
(
~~~ iILJ C ’ C G O T i ) 2 p~~T t O ~’J ~ MJ

THE FUNCTION DELE TE

r R ~~4 C L ~ ~CLr~~E (L~~~i A ‘-~ x i~
(r ’) G C j ~~~:LA ~~ X j

~A T T ~~~~~ (S~.T U .X (
~T X I S T S) E X P))

C . ~C CX]

(

293

THE GOTO1 OPERATOR

C R P A ~~Q GO T C’i (L~~~1L~A C A T R U .~.)T ‘.;i)
(P~~3G (

~~~CLA ~~ ~
)

( I F  ( 4 0 1  ~G iFLG0~~
)

I $4 £ N
( F A L L ) )

( EX I~~T5 ( L C ~C I  ~C ’Ot~ % M
( G IA L  ~c.o C I N R L 3 : 1  R O R C I  IX))

C i~~ (jT~ (T U P LE C A T R O B O T  X )
(NIX IT O ROBOT .~X ) ) )

t~~ELt . T~~)
(
~~-~~~ RT ( A T - ~.)~~OT S M ) )

C ~~ J ILC C ’  ( : IG3TC I. AC TION ~‘i]

THE PUSHTO OPERATOR

[ t .) PJ S i U  C L A A L ” A  C ’ J a X T T ! j  .~~ ~ N)
C P~ J(, C D~ CL AR ~

C I F  C r~J T  ~C .~~ LOfl~
( F A I L )

( 
~ v; I S ( 

~~~~~~~~~ b M )  )
‘ A T T E)~’PT (L X I S T 5 (I N R O O M ~bri . .X))

(t. x J t ,T~3 (I~~ c OM ~b’~ % x))

~~~~~~~~ C I N R ’ D O M  ~M ~~~~
(~ ~1~~T S t C r j ’JN~~CTS ~~~ s~ 

i - f ) ) )

( G ~~L ~ C ~. X T’ r~ P O~ CT .~H ) )
C M A P  (~~‘ ;C )T E ( T ’ J~~L~ ( A T R O ~~OT i - x )

( A T  UI i-X )
(
~~EX T T 3  P390 1 i - X )
( ‘ .~~X T T 0  ;r.)

C j
~~ X1’TO g~ < ~~ ) ) )

‘Y~t: LL T’~_
)

( 1~.,SE~~T ~E.~~T 1C~ p~(
~~:~~~~ T (~.L~~T T O  SN ‘ f9 ) )
( i~~’

,
~~~T (~~.X T 1O ~‘)~3~~T ~ #‘$ ) )

C
~~~

. ‘I~_ ’ J C ’  (:~~PIJ 3~1l3A~~T IJ ~ 
(T ,~PLC ~~

294

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

-.



THE CLIMBONBOX OPERATOR

f R~~A .’~Q C L I ’~~QN bO X (LA MuflA ( ) ,
~ ~OBflT 

i - p d )

(P
~~PG c :~E~~LA~~ ~~~)

C I F  (
~~O T ~~ .FLOOR )T ‘-4 E ~* (
~~cL IMb ) FF~~~X ) )

CE X T ; T S  ( T Y P E  ~ M O O X ) )

~~~~~~~ ~~~~ (‘tX TT Q ~3BOT ‘III))
(
~~)a L ET~ (‘~U’ iT E C A T ~~(J9~~T ‘ X)))
(S~~T~ i-ONFL :~JR FALSE)

~~~~ ( C ’ 4  ~O~~ T $M )
~~~~~~~~ C ’  ( : 5 C L I M~~O N B ) X A C T I O ~ bi~1]

THE CLIMBOFFBOX OPERATOR

[r~’-’ Q C L l ’~~~)F~~-~)A ~~~~~~~~ (TUPLE)
(~~~~JG ~~‘~~~ _ 4 ’~E M)

(
~~

(I S T S CO f ’~ ~ C~- iOT ‘-~I))
(E X I S T ’ S (1 ’~~~ 5~ B O X))
U~~~LETE

(~~J•)TE. CO N R3~~OT ~~~~~~
(S, ~ i-~~~ FLj j ~~ T4UC)
C~~~’~ IL) C ’ (:~~CLI M3)FFB 0XA CTI3~ ~~~

THE TURNONLIGHT OPERATOR

C~~PAQ) TjR ,ONLIG ~’ (LAM ~ t.~ (3tAT ~’S ‘-M ON)
C~~R O G (J E C ~~A RE N)

C E~~IST S (T Y P E ~M L I G H T S W I T C H))
(E \ NT S (T Y ’ ~-~ .- “1 Bin)

~~C)~~ (
~~C X T T O ~~

(G 3 ~~L ~ ‘O (‘J~ ~~ 3 O T .)X t))
C~~)~~L~~T E (

~~ J J T ~ (S T A T US UI O F F)))
(ASS~~i4T (S1ATU S UI ~DN))
C i ~~ !I L D C ’ (:j T (J J O~ L I G H T A C T I O ~)M]

THE FUNCT I ON BUILD

C R~~A~~C 3J I’..~ (‘~~~~~J~ .•X
(S E T ’ .) ‘-A ~~~i~~R (C C. ”S .L X ~A .~S i E RJ

THE FUNCTION SOLVE

~~~~~~ ~~~~~~~ ( ‘ .A i ’~~JA i-P~~j E ’., M
(~~~~; r ’ ,~ L c L A ~~F x )

i-~~ 
(
~~~.~~PS E ‘~~~~~~LE~

1))
•~~ I ire,, (~k a C ~~CL ~RE)

295

The following is a model of the robe ~oj i d . Expressions are evaluated

by the QA4 evalua tor (“ ! “) and stored in the net.

CD LIS T C~)U0’EE S E T U ~
(C C (j z ~~~è ‘-~~~~~~

(
~~~~~~ cL :~~~i~~~~x Tu~ NO r’ .UGrl T PL) S~ TO~

C M  C 5~~~1 •~,jO 
r d ,- T~~~~~ t~~~~

-
~~ ~j 3T D .  G~~TU 2 )

(C !  (S ~~T’4 ‘ - L~.) CJ~’ T ’~t.~. ) ) )
[ C !  (~~L T ~ A ~~~~~~~ v C r JP L ~~][ (  (~~~~~ 4T (1~~~

u)u’ L 1~~ lT3~,IT C -41 RuO~i2.~[ C !  ~~~~~~~~ (I~~~UJ -’ $~( O T  
~-‘~U’~1~C M  (

~~:~~~~~T (4 r o [ ~~iT E~
~ (A ~~~t~~T (L3C L~.~~~U~ F

C C !  ~~~~~~~ (P..’S p iA .~L E  ~1OXj . ]
C C !  ~~~~~~~~ (P .S$4A :LE ~O X 2 ~C C !  ( A S S E ’~T (a t ~~h.~ 1LE ~~~~~[ ( ! (A5.~ERT (I\~~JC 1 b3X~ R Qt) ’~1.~
N !  . A E . ~ T ( I  

~~~~~~~ ~OX 2 R~10r ~j ]
[(! (‘S E~~T (j . ~~~~fl~~~’1 1~~X3 ,~)3M1.J
N (A ~~~‘~~T ~~~~~~~~ LI T S • ~IT C’ i j . O F F)
[C! ~~~~~~~ (T~~F~. LI TS~~iT~’4i. L IG j~TS~~I TCri J
C C ! (A ~~~~~~T (T ’ ~’~~L ~.‘,.‘X 1 H~x J
N: (J C ~~~~~~ .~~7 (T’ ~i~~ ~

“i~~2 £~~ X J
(
~~C:~~~-~’ (T V ~~~ -~~~ 3 ‘~O~~)

CM C~~~S~~~ T (41 L I~~~ T~~~I T C H 1 ~~~)
[C (A S ~~.~~

’
~

(A T L J < 1 P)
- t M USSEk 1 C A T ~..LX2 u~

[C (4 S $ ~.-~T (A T ‘HX3 ~ J
CM (~~~~~~‘r C CV ~~E~~T S IJOOHi. ROOMI. ROO~~5)
N! (~~S~~~~T (c~~~r~~~rS 000Rt RO~~~5 RO OM i)
C C ! (

~~S $ L~~T (C~~
.- (. EC T S or~O P2 •~~OM2 R Q C M 5

C ~ ~~ I (C t ” ,
~~ ~~~ Ufl~~R2 RuJ :A 5 RoO~1,

~)
c c : (A ~~ E~ I

(C 5 ’ ’~ c~’ S ‘)L)F~ 3 RC rjr 3 ~c C’i ~
)

C C ! (LS~ t.~~T (C~: “L~~
f
~ ~~~~ RO,JM 5 R0 3 M 5]

C C ! (~~~~ ;~ -T ((~~
“ - ‘~.~~T S OU”~~4 R~~O~~4 ~i;G~’5)

((! (~~~~. S~~~~~T (C ’~~i~~.C1~~ ~~~~~~~~~~~ ~()j 1 5
~O Cit 4J

THE 3 INITIAL PROBLEM STATEMENTS

C 3 E u x P ~ir mLE~: (
~

(C ’ .~~L~~r. (L I S~ (GJ k L W J C N E X T T 3 $
~QXj . .~OX2)

(
~,O~ L W C (~.E X T T J BCI X2 •3 0X3)

[R ~~O M P k O - ~LE~
((C (~~i. L v ’ (G 3.~L ~~~ (A T P ~C~~’)T FJ

~~~~~~~~~~~~~~~~~~~~ ( C M  (
~~~~L~ E ( C r ~~L ~~3 ( S T A T u S  L IG~4 T S W T T C ~ 1

ON~))(C.~.’)lE ~~~~~~~~~~

296

p t~~~~~’ ’ .q ,.0” -

TRACE OF ThE SOLUTION OF THE PROBLEM OF TURN ING ON A LIGHT

1 (C O A L £L) O (S T ~~TJS (T UPLI LI~~r4 T S W I T C H 1 O N)))
2 G O A L C L A S S ‘- C T J P Lt CLI’I~~O~~~OX T LJ RN ONL IG HT P U S $ 4 T O)
3 ~~~~~~~

LA M b J A TU R~~3 .4 LIG H1
5 M _ IG r4 T SWI TC r4 i.

(EXIST S (TY ~~E (TJPLE ~M LIG$4’TSW !TCH)))
7 (EX I~3TS (T Y P E (TU PLE i-N B O X)))
3 ‘

~ ‘- h~0X i.
9 (GOAL £00 (NEXTTO CTLH~L.E $N U

I)))
1k.! GOA LCLASS CIUPLE CL Ih3ON ROX TURNONLIG$4 T PJSi-lTU)
1.1 FA I L U R E
12 LAMBDA PUS~~T0
13 N LIGHTS~~ITC$41
14 M ~OX 1

(EX I ST S (
~~US dA~~L~ UI))

16 (E X I S T S C I.~~33’I C TU PLE UI i - X)))
17 X ‘- ROON, i
2. 8 (E X I S T S (I ’~~O ’~M (T ~ PL~ ‘f\ 3 X)))
19 (G O A L £ GJ (J ~~xTT0 (ILPLE . RO~~OT UI)))

G O A L C L A S S ‘- (T UP L E ~~ T 4 ~~CJD0 OR G~~TOj . GO T O 2)
21 F ,~ILURE
‘22 LA M B D A G Q T D 2
23
24 (EX I S T S C HROOM t T U ~ tE ~M i- f l))
25 >‘ ‘-

26 (G O A L ‘
~~ ;~~ (I~~~O~~ (T UP LE R O 3 O T I X)))

27 G O A L~~L A - i ‘- (T U PLE G C T ~~~J DOOR 50101 G O T O 2)
2~ L A M B D A DELET E
29 EXP .- (

~~~R0BO T .-X
3~ ( E X I S T ..; !EXP )
..S1 A F,
32 ‘- C ) , uT E)
33 (LE v 

~~A )

34 L A 1 1~~Lu  E L E TE
35 EX? i- (

~~CX I1O (IU~~LE P~T hOT ‘ - X ) )
30 ( X IST ~ IE.XP )
37 FA I L u R E
38 C A S S F P T  c -

~E X T T ~’ 
( TL. $

~LE RO b OT U I) ) )
39 LA ’ E~~ M B’J ILO
4~-1 X ‘- ( * r ~J T 3 2 A C T IOr ~ ~ OX 1)
41. A ’ ~S~~E P  .. (TUPLE (

~~~o r o 2 A c T Ie~ BOX IJ )
42 LAM ~ t~A ~~L T E

EX P (~~‘ ‘ -JoL T i-Xi
4’ (E x T ~~ T 5 b E E P)
4~~ FA IL.~~E

L A M P ~~A ‘EL.EIE
4 7 E X P ‘- C , T VIJP LE ~~~‘ . .X))

C E Y I S T S ~~~ X R)

49 FA IL J~ E
50 LA M B P A ~) ELE 1~.

297

51 E.’ P .- v ; ,< rT ~ (T U~- L L RO t ~0 T i - A))

52
53 ;I, I-

.- (~~‘~ i T ~~ (~~ ‘ iP L . t ‘)bOT ~)~~~))
(L t . ~
L~~~ 3,~A .)‘-LET ~

‘. C ~-‘~~T T J C l’JFLE SM .-X)
(E X i S T S ,~~~~(~~‘)

~
‘ A I _ ~~~~

5:) L A ~ ~~~ L ~. t E
61. EX P ‘- C ~~xT T (T J P L E j ’X U i))
62 ~~~~~~~~ ~ T S b E X ~~

)

64 f~:~T (x T ’!~., C T J P L E ft ‘P’J)))

(A5 ~~r ” ~t C - ,cTTJ ~Tjp - L~ T~ ~~‘1))
(A 5 S E ~’r C ~C :~1T) C 1i~” LE r~U’~3 T 5 1)))

~ 7 LA 1 3 -) A ~ J I L.J
C es- ’ ~~,1 JA C T1 J ~ (TLJPLE BOX 1 L IG $~1TS~~I r~~~i))

‘- (T J ~’ L-~ (~~,-‘ JS H TOA cT ION CIUP LE 3~~~1.
LI;~~T S ” . IT ~~~1

)) C b~~uT : RA~~T I u~-~ b~JX 1)
7.. ((.

~L s;:i C ~ ‘~ C TJ PL~ ~O - ~Q T B O X i))
7t GI~A L C LA S S C T H L E CL I~~-~()~~~C)X T U 4 ’~O~~LIGrI T FJ~~r iT J)
72 ~~~I1..J-~E
73 L .~~du . \ CL I I~~J 4~~0X
74 ‘“

(
~~ I~~T~ C T 1

~ E (T:JPLr ~ :‘~~
()))

(
~~J .~L ~~~

(‘.~~A T TJ (TJ :~L~. ~G9C.T U’))
)

77 G 1A LCL~~S~ .- (‘Ii ~ L~ L-.;T - 1 4 0 j JC’ R :.;~~T 31. GO T ~~2)
73 _ ,~.I 4 : J A J.~~~Ei T~.79 E xP — (~~~~i - .. r .~ ‘ C)

-

(~~ X I ~~ 1~~ ~~~~~

O- . _ ~~
-
~~

‘ ‘-

~ ~~~~~~~~~~ T .JP L.~~ I%L ’ ~.)T ~M)))
L ~~; i - A ilL. ~

‘- :_ .: .- , . -4O~~A L I I~~ J ,0X 1)
•. (1 -- ‘- ‘L~ ~.CL[; c)~~2 O X A C T tON ~ T X .) (

~r~~l~,r, T ’,~~t T I) 1 (1 •~~~~~~
- -~~x i. LI5~~T.S~~t T C $ 4 i.)) ~~~~~~~~~~~~~~

~~~~. ~J.. ‘
~~( t . ’~ T~,. ( S T Y  ‘ ‘ ( T

~J~’LL ‘ O F F ) )
~~ .. A~~~ )

rA IL i-
91. ( A s ~;E!, r !: T ’ r . J )  ~IJ~’L~ ~~~~

‘ C)j)))
L.i ;4 u :.. u ~~~~~53 x (~~T L - ~ • . : . L .  ,~~T ; C T I _ - L 1c~ 4 r S ~~I r C ~~1)

~. ~~~~~~~~~~~~~ 
(
~~ T1J h~~~~4 L T G r T M C T !~~~J LIGIII~~ ’II C~4 1)

~~~~~~~~~~~~~~~~~~~~ ‘~~.i) C ;s~~Tu A C T 1 r , ’ (T UPLE ~‘OX 1
L I T ~~A I T i . r1~,

)) (~~ “ ‘T ’ 4 A C ’ T ILN
~~~~~95 LA ~ ~‘)A ~~~~~

298



..,, 
;,. -.

~ ~~~~ ~ C T  ~~~~~ 
(~~ T 

~
. ‘ , LI~,.. IA C T l~~ ~~~~~~~~ 1 ,~-.1)

( i C . . . ! ’  , ~ C x . ~ ’~~~I~~ ’ “ ~
1) ( b ~-~~~. ’l l’ ’) . ~C T t C ~ (T~.~~LE • ‘ j X ~

LI~~~l~~~1 I C - i l )  C .
~2 A T IC ~ . ‘- ..~

.j )
51 -~ (T~~P~J C ’- ~~~~~~~~~~~~~ - :.~~~ / ~

1 ) I S . IT .JAC T I;’ ( T t j P Lr
)- :).x 1  L1~~-~T~. .. I1r’ .- :; ) C ~C L I  ‘ t L  ~~~~~~~ T C ~. ‘~JX i)
~~~~~ ., . L I ~~r I L I T  ..i -~ - T ~ IT ,, .. ’~ )
~~~~‘ 

(~~ L T J~~~ ~~~~~~~ ~
. C )CCL ...) ~~~~~ X ) )

~~~ ( , ~~. : i ( , ( ‘ C . ~~~I. f~~~
) C ~ L T T ~ 2 :‘ “ X j) (IPU~ k T U A C T I L N

~~)A 1 L I ~~ ’~~l . - I 1 .~~- 1 ’) (~~ C L ’~~~1’x A C T L O ~~ ~O A1) C

~~~~~ L IDr ~T . - C ’T I., ’ L L ’ ;~”~T .’ ” I T C ’ i . ) )

THE ANSWER RETURNED BY QA4

~~~~~~ ( 1) EC L~~~.) 
~~ ‘:YrJ2ACT jC ’~ i O X l) (S P L ~3~~T f l A C T I 3 4 (T U PL E ~f l X 1

L i ~ ”~1Sy .ITCH1)) C~~C L I ’ J, .~~CJA~~~T IC ;f.
~~~~~~ 

(~
,TU JC~~LI $ T A C T 1 ’ O~J

L . I ~~’4 T S ’~. J I T C H 1 )  )

C

299



Append ix II

THE DISCRIMINATION NET

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

fl~~ EDUG Pa~~ i~~-~~~ flLM)L - -~~~~~~~~~~~~~~~~~~~~~~
~ ‘

I BACKGRO (JND

A. Canonical Forms

Within QA4, the requirement that expressions have a standard form

is the result of a more basic need . QA4 programs operate mainly

through manipulating expressions by:

• Constructing new expressions

• Decomposing with pattern matching

• Associatively indexing with patterns

• Retrieving properties of expressions .

The EXISTS statement is an example of associatively indexing . It

requires that all the expressions in the system that could match a

pattern be examined . It is this process together with the problem of

re tr iev ing proper ties of express ions that necess itates a canon ical

form approach for all expression storage . For example , suppose a

program constructs a tuple , say (TUPLE 1 2 3), and mus t associate a

property, say property—value TRUE under property—name CONTAINS—PRIME ,

with the tuple . Later , if ano ther p rogra m constructed the same tuple ,

it must have access to the property CONTAINS—PRIME . With only tuples ,

this is an easy task . When sets and bags are added to the language ,

the task is only slightl y more comp lica ted . There are , however ,

secondary benefits . When sets are kept in a standard in ternal order ,

(all the set manipulation primitive functions such as L’NION can operate

as one—pass iterative programs . A standard order for sets also

301

‘.*~ i’* ~~~~ ft --

simp lies pattern matching . When expressions with bound variables are

added to a language that con tains sets , the task of f ind ing a standard

form becomes complica ted and a heuristic approach for the retrieval

system appears best.

A s t ra ightforward approach for associating properties with expres-

sion is to extend the ATOM feature of LISP . Each expression will be

represented by a single pointer to a property—list , and one item of

that property—list will be the syntactic form of the expression. In

LISP an atom , say ABC , is represented by a pointer to a property—list ,

and one item of the property—list (usually PNAME) contains the internal

representation for ABC. Moreover, every occurrence of ABC in the sys-

tem is represented by the same pointer . In QA4, each expression is

represented by a pointer to a property—list , and the property EXPV is

the syntactic form of the expression . Thus the QA4 expression

(TTJPLE 1 2 3) is a list of the form

(NE TEXPRESSION EXPV (TUP LE 1 2 3) 0 (0 CONTAINS-PRIME TRUE))

The f irst item , NE TEXPRESSION , ident ifies the list and is used as a

temporary marker during garbage collection .

Normall y all properties of a QA4 expression are stored with the

context mechanism. CONTAINS—PRIME in the above example illustrates

this form of storage . However , a few properties , called syntactic

proper ties , are distinguished and may never be changed . They are not

stored with the context mechanism and their property—names are on the

302

top level of the list representing the expression . In our example ,

EXPV is a syntactic property, and CONTAINS—PRIME is a normal property

that has the value TRUE under context ((0) 0).

B. Basic Mechanisms

Since each occurrence of an expression tha t appears the same must ,

in f ac t , be the same , the expression constructors are the core of any

system that implements an expression property—association feature .

For example , given the list (1 2 3), the tuple cons tructor mus t f ind

the pointer to the express ion

(NE TEXPRESSION EXPV (TUPLE 1 2 3) . . .)

For sets , a prel iminary reorder ing is requ ired . Thus if the QA4 set

constructor is given the elements (3 2 1) it would find the expression

(NETEXPRESSION EXPV (SET 1 2 3) . . .)

If bound var iables occur in the expression , they mus t be converted to

standard names before the lookup can be accomplished . For example:

(LAMBDA (TUPLE —X .-Y) (SF $X $Y))

could be converted to

(L~MBDA (TUPLE —Vl —V2) (SF $V1 $V2))

and then the lookup performed . Then if the expression

(LAMBDA (TUPLE —Y ..-X) (SF $Y SX))

were to be con struc ted , Y would be replaced by Vi and X by V2. Now ,
1~

since the standard form would represent both expressions, properties

associated with either would be available just as in the tuple example.

303

—‘- ~~~~~~~~

I I FIXE D RETRIEVAL , REORDERING , and RE NA~1ING

A . Coordinate Indexing

The requirement that the data must be associatively retrievable

combined with the lookup requirements of the constructors demands a

da ta structure where items are indexed by their subexpressious .

PLANNER (Hewitt , 1972) uses a scheme called coordinate indexing . The

coordi na tes of an express ion are taken from the natural num ber ing of

the positions of subexpressions . For example , in the expression

(A (B C)(D CE F) G)), the subexpressions have the following coordinates:

Coordinate Subexpression

1 A
2 (B C)
3 (D (E F) G)
(2 , 1) B
(2 , 2) C
(3 , 1) D
(3, 2) (E F)
(3 , 3) 0
(3 , 2, 1) E
(3 , 2, 2) F

A hash table is genera ted for each coord inate and t he items of the hash

table are all the expressions that have occurred in that coordinate

position in some expression . Associated with each hashed item is a

list of the expressions in which the hashed expression occurred .

Suppose we had the three express ions

1’
- -p.--

- - - -

305 ‘ - ---_—4.-- ’

- -- - r -‘ .na’ .r -

el (NETEXPRESSION EXPV (TUPLE A B) . . .)

e2 (NETEXPRESSION EXPV (TUPLE B el) . . .)

e3 (NETEXP RE SSION EXPV (TUPLE A D) ...)

The user forms printed for el , e2 , e3 would be (TUPLE A B),

(TUPLE B(TUPLE A B)), and (TUP LE A D), respectively . The coordinate

hash tables for these three expressions would be

Coord inate 1 Coord ina te 2

A (el e3) B (el)

B (e2) (TUPLE A B) (e2)

D (e3)

The task for a constructor is now made quite easy. Given a collection

of componen ts for an express ion , say el , e2 , ... en , the cons truc tor

first looks for el in hash table 1 and either finds a list or nothing .

If it finds nothing, it is constructing a new expression and must enter

each e and its subexpression in the hash tables . If it finds a list ,

say 2, it then looks for e2 in the table for coordinate 2. If it find s

a list , it intersects the list with 2 and makes a new ~~ . If the new 2

is empty or if it found nothing, it enters the new expression as before .

If the new 2 is not empty, it continues the intersection process.

To associatively Index , essent ial ly the same process can be carr ied

out , but the variable items are skipped . The 2 resulting from all the

intersections is then reduced further by forcing the variables to cor-

respond prc.perly. This final ~ is the result of the search. During

assoc iative searching, the tables are used in a depth—first left—right

306

------- - — -

manner rather than just on the top level , and only cons tan t expression s

(ones without variables) can be used . For example , to retri eve

(TUPLE .A (TUPLE .-X B))

we woul d only check coordi na te tables 1 and (2 , 2).

This indexing scheme has the advantage that the retrieval time

remains almost constant.

B. Reordering

To use any storage method , the expressions must first be reordered

and variables must be renamed . For all the parts of an expression that

have order , such as tuple~ and appl ica tions , nothing needs to be done .

For sets, the reordering task can be accomplished by assigning

each expression that occurs .n a set an index number and then ordering

the items of sets based on their index numbers . Since each expression

given to the s’~t constructor is an expression with a property—list the

index numbers can be kept as syntactic properties on the property—lists .

For example , to cons t ruc t the set f ro m the componen ts (TUPLE 1 2)

(TUPLE 2 1), 3, and A , the 3 would become the f irst it em because

numbers are always sorted to the fron t and then sor ted in the ir na tural

order. The other three items would each have an index number. We may

have

el (NETEXPRESSION EXPV (TUPLE 1 2) INDEX 3 . . .)

e2 (NETEXPRESSION EXPV (TUPLE 2 1) INDEX 2 . . .)

(atom—flag PNAME “A ” INDEX 7)

307

Thus the set constructor would return the expression

(NETEXPRESSION EXPV (SET 3 e2 el A) . . .)

C . Bound Var iable Rena ming

Bound variable renaming, however, is a more difficult task——so

difficult it appears to prohibit the use of fixed retrieval methods

such as coordinate indexing . In QA4, only the syn tac tic for ms SET and

BAG are unordered . Thus if we scan a QA4 expression in a depth—first

left—right manner , an order is na tu ra l ly imposed on all var iables

except those that only occur in sets and bags. For example,

(LAMBDA (SET .-X .-Y) (TUPLE .-Y .-X))

naturally orders Y before X because of the final tuple .

Sometimes , however, the order is on iy part ial and at other times

apparent order is not really present . For example , in

(LAMBDA (SET .-X .-Y) (SET (TUPLE 1 .-X) (TTJPLE 2 .-.Y)))

X and Y are not ordered , while in

(LA MBDA (SET .-X .-Y .-Z) (SET (TUPLE ..-X ..-Y) (TUPLE —X —Z)))

X is less than Y or Z, but Y and Z are not ordered . To see this order,

construct a graph whose nodes are the expressions at each coordinate

and whose directed arcs connect the coordinates appropriately and are

labeled with the natural position numbers if they exist . Thus the last

example would genera te the graph :

308

LAMBDA

SET

1/~~~~~2

Some arcs do not have numbers and thus there are variables that do not

have a path completely numbered up to the head of the tree . For vari-

ables that do have a numbered path, we can easily assign an order.

For the other variables , we can assign a partial ordering by first

order ing the nodes they po int to and then use the frequency of their

position numbers within that grouping . This process can be carried on

iterativel y, el iminat ing var iab les fro m cons idera tion un ti l only truly

unorderable variables remain. The process, however , is complicated and

cum bersome .

309

I I I HE CJRIST~C RETRIEVA L WITHOUT RENAMING

A. The Heuristic Technique

The heuristic approach used in QA4 eliminates the job of renaming

while maintaining competitive retrieval times and storage growth. We

have implemented a retrieval method that , given a syntac tic form ,

retrieves a list of candidates (some of which may be incorrect), t hat

must be checked by the pattern matcher. That is, given the EXPV prop-

erty of an expression , the re trieval sys tem returns a collection of

property—list expressions, one of which may have an EXPV property that

ma tches the input expression .

For example , suppose our system conta ins the express ions

el (NET EXPRESSION EXP V (SET 1 1) . . .)

e2 (NETEXPRESSION EXPV (SET 1 2) ...)

e3 (NETEXPRESSION EXPV (TUPLE 1 2) . . .)

and we ask to retrieve (SET 1 —IC). The system would return the list

(el e2), and then use the pattern matcher to verify that each expres-

sion does in fact match . If we ask to retrieve (SET .-X —X) the system

would st i ll re turn (el e2), and the pa ttern ma tcher wou ld be requ ired

to verify that el did match while e2 did not .

The system avoids renaming variables during construction because

it keeps original variables and always checks to see if the expression

(already exists or if one exists that could match it. For example, if

we constructed the expression

311
_ _

-.- ~~~~~~~~~~~~~~

(LAMBDA (BAG .-X .-Y) (PLUS $X $y))

and later attempted to construct

(LAMBDA (BAG —U .-V) (PLUS $U $V))

the LAMBDA constructor would find that the expression to be constructed

would match the previous expression and thus would return the property—

list form of the previous expression as the constructed form of the

expression containing U and V. In order to use the pattern matcher

for this process , it mus t be inhibited so tha t var iables must match

variables . Normally, a variable in a pattern can match any subexpres—

sion . For example , (SET .-X —Y) matches (SET 1 (SET 2 3)), bu t when

checking for syn tac tic iden ti ty dur ing cons truction var iables can only

match variables .

B. The Discrimination Net

The retrieval system uses a discrimination net . Nodes of the net

are either terminal or nontermizial . Nonterminal nodes have two compo-

nents: a coordinate with an optional type—flag and a list of branches .

The branches are pairs of features and corresponding subnodes . For

example, the expressions

(SET A A)

(SET A B)

(TUPLE A B)

(TUPLE B B)

could be stored in the tree .

312

0

SET
TYPE TUPLE

A

(SET A A) (SET A B) (TUPLE A B) (TUPL~ B B)

The top node has coordinate 0 and the optional type—flag , so it means

that the branches emana ting f rom it are based on the syn tac tic type of

the top level of the express ion , sets are in the branch t o the lef t ,

and tuples are in the branch to the right . The node w i t h coordinate 2

means that its branches are based on that coordinate of the expression .

*
Terminal nodes have a single property—list form expression on then.

C . Constru ction Search

For cons t ruc tion , the search algorithm is quite simple . Given a

syntactic form , we fe tch the f ea tu r e speci f ied by the top node , choose

the appropriate branch, and cont inue the process un ti l we reach a

terminal node . At that point we have either found the property— ’ist

for the expression or we must add a new expression to the net by

replacing the terminal node with a new nonterminal node that has as

branches the old terminal node and a new terminal mode that contains

the expression we just constructed . The coordinate for this new

non ter mi nal node is construc ted au toma ti cal ly by search ing for the

first difference in the two expressions , excep t tha t a va r iable can

never be used as a coordinate.

313

Sometimes a coordinate at a node does not apply to an expression .

For example , if we searched the above net with (SET A), the cooxlinate

2 would not apply . In this case , we build a default branch and con-

tinue in the normal way. The left side of the above tree would become :

(SET A A) (SET A B) (SET A)

D. Associative Search

Dur ing associa tive retrieval , a sligh t l y more compl ica ted search

algorithm is used . If we are searching with a pattern and a coordinate

spec if ies a variable in the pa t tern or the search for the coord inate

passes through a set or bag, the result of the search is the un ion of

the search applied to all the branches at that node . Thus if we searched

the previous tree for the expression (SET A .-X), when we were at the

node for coordinate 2 , the search algorithm would be called recursively

with the nodes emanating from both branches A and B.

If the coordinate specifies a constant , however, and there is no

branch correspond ing to tha t constant , then the answer for that branch

is nil. I t is this last search modification that requires that only

atoms be used as features . Otherwise , if any expression could be used

to identify branches it would be time—consuming to continually check if

a complicated expression contained a variable .

314

-.

~

--—-- — - —-‘—.- --—--—-- —- ____--- .—

IV SUMMARY

A . Stora ge Consumption

If the net grows in an even fashion , the branching at each node

wou ld be the sa me , say it is B. Then , if the net has T terminal nodes,

the depth of the tree would be log~ T. Let N = lo~~ T — 1, then N is the

number of nonterminal nodes in a path of the net; that is, N is the

deoth of the net. The total number of nonterminal nodes is now the sum

of the geometric series

N+ 1
2 N B - l T - l

S = l ÷ B + B + . . . ÷ B = =
B - i B - i

Eac h nonter minal node would have a coord ina te and a collecti on of

branches . Thus S, the overhead storage for the net, wou ld be

K * CT — l) / (B — 1), and would grow linearly with the number of terminal

nodes. Currently, K is approximately 25, an excessive amount . The net

is kept in a property—list format , and stati stics are kep t on every

reference to every property. This is done to study the evenness of

grow th and the regular ity of the search pat hs . K coul d, howeve r, be

made quite small. In fact , it could be reduced to K 1 ~- 3B . The

single cell could point to a ter minal node coordi na te tree t hat would

be used for the entire net .

315

For ex ample , the trees

1 ~~~~~~~~~~2~~~~~~~~~~3/\
l~~~~ 2~~~~~ 3

2

P

can be kept as a list structure, and P indicates coordinate (2 1 3);

3B is the storage necessary for a list of branches .

B. Time

It is difficult to even estimate the theoretical ratio for

retrieval times between alternative storage systems . Real timing, on

the other hand , may be more a function of the operating system than the

storage system . Thus we have no meaningful comparisons .

C. Disadvantages

The major disadvantage with the discrimination net is not with the

net system itself but with the way the QA4 interpreter uses it. Within

QA4, all expressions must have a canonical form . Thus all programs are

kept in the net. Moreover, during evaluation, all intermediate results

are made into expressions and stored in the net. This permits a clear ,

unified semantics for the QA4 language . For example, the definition of

EQUAL can be tha t the set it applies ~o has a single element af ter

evalua tion . But , this excessive use of the net generates a sizable

316

amount of garbage . Thus, on the one hand , we have a language with

unusual but extraordinarily useful semantics , while on the other hand ,

it eats up storage too fast. We hope, however , that the problem can

be solved by a better interpreter organization. In the meantime , the

net appears to offer the best solution for canonical construction and

associative retrieval.

I.

317

Append ix I I I

CONTEXTs

~:
- - _ _ _ _

~~~~~D1~~~ PAGI BLAP~ -N0T f1LkI4~ ~
_ _  - ~~ ~~ - •~7 ~~



I BINDINGS

A. Properties

Properties of QA4 expressions are distinguished along three dimen-

sions . The first is the name of the property; EXPV and NETVALUE are

common names. The second parameter of the GET statement is a name .

For exa mp le:

(GET (ON $X $Y) TIME )

retrieves the va lue of the proper ty TIME fro m the ins tantiated for m of

the expression (ON SX $Y), and TIME is the name . All of the names used

in the system form a dimension with discrete coordinates . Thus, fo r

each expression we may v isual ize a space whose f irst d imens ion is the

enumeration of names used in the system.

B. Dynamic Context

The second dimension is the binding information . Suppose we have

su brou ti nes FEE , FIE , FOE , and FUM . We c a l l  FEE , and the fo l l ow ing

takes pl ace:

FEE 0

FIE 1 FIE 4

FOE 2 FUM 3 - FUM 5 

::: :

319

1~~— — .- -:-—-- — -  - - . -.-— —-----—- —— - —

-I-



meaning that

FEE ca lls

FIE cal ls

FOE re turns

calls

FLJM returns

re turns

calls

FIE calls

FUM returns

calls

FOE calls

FOE returns

returns

re turns

re turns

The numbers in the nodes represent the order of subroutine calls . At

any instant during the execution of the program only one path of the

tree is active . Paths to the left of it have already been executed ,

and paths to the right are yet to be executed . Thus, for each incarna-

tion of each subroutine there is a path from the bottom node to the

root of the tree tha t contains the binding information for that particular

320

- ~- g __4.q



call on tha t subroutine . For example , (2 1 0) and (7 6 4 0) are paths

for two different incarnations of FOE . All the paths , subpaths

included , make the second dimension by which properties are accessed .

The pa ths are called “contexts .” By associating a context with

each incarnation of a subroutine we nay fetch and store properties

within a “d ispersed s ta te” system and yet have the same apparent bind-

ings provided by stack organized systems . This dynamic binding is

accomplished by always looking for the most relevant context first.

That is , looking for a binding closer to the head of the path (e.g., 7)

before looking for more global bindings (e.g., 5).

We may now visualize the space for each expression with two dimen-

sions . For our exa mple we would have

(7 6 4 0)

(6 4 0)

(5 4 0)

(4 0)

(3 1 0)

(2 1 0)

(1 0)

(0)—

EXPV NETVALUE TIME

Each indicator is a coordinate of the horizontal dimension , and each

context is a coordinate of the vertical dimension . Each expression

has such a space and may thus have a different value for each property

321

- - -~~ i4~~~~’~ ~~~~~~



under each context . In practice , however , this is rarely the case .

Usua l ly  onl y a few points of the space have values dif f e r e nt from

adjacent points . In a programming sense, bind ings do not change very

often. So instead of copying values to each new context coordinate,

we modify the retrieval mechanism. Given a context, say (7 6 4 0) ,  and

an ind ica tor , say TIME, the retrieval program scans down selected points

of the line defined by the indicator coordinate . That is, it first

checks (TIME , (7 6 4 0)) for a value , if none exists it checks

(TIME , (6 4 0)) , then (TIME , (4 0 ) )  and f inal ly  (TIME ,(0)). The scan

algorithm takes advantage of the tree structure of the context coordinate .

C. Backtracking Context

The third dimens ion is similar to the second but prov ides for

backtracking . Suppose the system is in a binding context C and must

establish a context C’ such tha t (1) all proper ties of expressions are

carr ied forw ard fro m C to C ’, (2) all property manipulation takes

p lace wit h respect to C’ , and (3) all the values wit h respect to C can

be restored . This can be established by creating a backtracking con-

text tree similar to the dynamic binding context tree . Nodes in this

tree are generated when a backtracking point is established .

For example , suppose there was a stack of blocks: BLOCK4, BLOCK3 ,

BLOCK2 , BLOCK1; where only BLOCK3 is a cube ; BLOCK4 is on BLOC Z3,

BLOCK2 and BLOCK1; and BLOCK2 is on BLOCK1 . The statements

322



( 1) (EXISTS (ON BLOCK1 —X))

(2 )  (EXISTS ( UNDER SX —Y ) )

(3)  ( I F  (NOT (GET (CUBE SY) NE TYALUE )) THE N FAIL)

could for m the tree

~~~~~~~:L 3Y:BLo;K4 FAIL:::BL~~~4

Both (1 0) and (5 4 0) are backtracking contexts. Just like dynamic

contexts, only one path is active at any instant , paths to the lef t

have been executed and paths to the right are yet to be executed .

We may now visualize the space for each expression with the full

three dimensions . For our example we would have :

(5 4 0)

(4 0)

(3 2 0)

(2 0)

(1 0)

(0)

/(0) EXPV NETVALUE TIME

1(1 0)

/(2 1 0)

/ (3 1 0)

323

Creating a new backtrack ing context creates a new plane in the space .

A l l values are projec ted into the new p lane and any changes are made

only in the new plane . When a subroutine returns, any changes made to

variables global to the subroutine must be kept . Thus if a subrou tine ,

5, has dynamic context D, and backtracking context B, and called sub-

routine S’, 5’ would begin with dynamic context D’ (derived from D)

and backtracking context B. When 5’ returns , however, backtracking

points may have been established and the backtracking context may be

B’ . Thus when 5’ re turns to S, S retains its original dynamic context

D, but adopts the new backtracking context B’ . These three dimensions

could be searched for values in any order , so eff iciency conside rations

guided the algorithms actually implemented . -

D. Benefits of Dispensed State

By using these paths as the coordinates of the three dimensions ,

we have a system that can backtrack and still have a dispersed state.

By keep ing the dimens ions independent , QA4 prov ides a wide range of

binding and backtracking options . The examples in the next section on

process structures illustrate the many combinations of binding and

backtracking available in QA4.

By keeping all three dimensions free from any control information ,

backtracking is simplified and experiments such as backtracking out of

order cam also be tried . For example, a speech understand ing program

may parse a sentence incorrectly, discover its error only at the end

324

of the sentence , but also discover most of its work was correct . If

the operations for each segment have been collected into events , the

event for the incorrect segment could be backtracked or undone withou t

destroying the rest of the parse. That segment could then be reworked

in view of the new knowledge of the rest of the sentence and results

combined with the original work .

Fin a l l y , this entire mechanism can be used by user programs to

create and manipulate context independent of their program structure .

This facility is playing an important role in programs that synthesize

plans with conditional statements and theorem provers that use hypo-

thetical deduction methods .

325

I I ALGORITHMS

A . Terminology

A context is represented by a dotted pair (d . b), where d is the

dynamic context and b is the backtracking context. d and b are both

simple lists of atoms tha t may be generated in a nonrecurring fashion .

Numbers are currently used . For examp le

(2 l).(3 2 1) is a context

(2 1) is the dynami c context

2 is the dynami c head

(3 2 1) is the backtracking context

3 is the backtracking head

B. Internal Expression Form

An expression is a proper ty list . Those proper ties t hat may

change are not stored in the normal property lis t way . Rathe r, the

dyna mic head and the backt racking head are use d as proper ty nanes ,

forming a path to a standard name—value list form . If we stored

prope rty PROP 1 under name INDI on express ion e we might f ind

e = (NETEXPRESSION I i P1 12 P2 ... 2 ((3 IND1 PROP1)) ill)

If we then stored PROP2 under IND 2 , e would become

(, . . 2 ((4 IND1 PROPI) (3 IND1 PROP1 IND2 PROP2)) ...)

Thus the dynami c heads become names on the top level of e, while back—

(
tracking heads become the names of associated pair lists.

327 - _______

_ _ _ _ _ _ _

flUs~~~~

C. Retrieval

The property—retrieval function is given a name , an expression ,

and a con text , and it is expected to return a property . The search

occurs in two phases . The first phase uses the dynamic context to

choose a sublist from the top level of the expression . The choice is

made by first considering the dynamic head . If it occurs as an indica-

tor, the corresponding sublist is chosen; if not , the next ele ment of

the dynamic context is tried . This continues until a sublist is found .

If our context were

(3 2 l).(4 2 1)

*

and we used the f inal e given above , this first phase would find the

sublist

((4 IND 1 PROP 1) (3 IND 1 PROP1 IND 2 PROP2))

as the property for the name (and dynamic context element) 2. This

search process is speeded up by always inserting new dynamic names at

the front of expressions and stepping through the dynamic context and

the expression in parallel until a common element is found .

The final phase uses the backtracking context in a similar way

to find the appropriate list of name—value pairs . It first searches

for a list headed with the backtracking head . If that fails, it uses

the next element of the backtracking context and continues this way

until a sublist is found . In our example this would produce (4 IND1 PROP1).

328

If rio element of the backtracking context is present , the firs t phase

is reentered with the next dynamic element .

After a list is found beginning with a backtrack ing element , i t

is searched for the appropriate name . If one is found , the corresponding

property is returned . If one is not found , the search for another

sublist continues using the next element of the backtracking context .

If we were searching for the property under IND2 in our example , the

initial sublist search would fail , and the search using the second

backtracking context element would produce

(3 IND 1 PROP 1 IND2 PROP2)

Here the search for I ND2 would succeed and we would find PROP2 .

D. Storage

The storage function also works in two phases . Given an expres-

sion , name , property, and context , it stores the property. The first

phase uses the dynamic context to find a top—level sublist of the

expression . The search is identical to the first phase of the retrieval

function. The second storage phase , however , does not perform a repeti-

tive search . The associated pair list that results from the first phase

is searched for the backtracking head . If a sublist is not found for

the backtracking head , one is immediately generated and t he name—va lue

p a i r put on i t . Thus , under each new back t r ack ing context , old va lues

are no t des t roy ed , and they may be re tr ieved l a t e r by r e s t o r i n g the

context to its previou s state,

329

I I I EXA?I~~LES

A . Introduction

The interaction of the dynamic and backtracking contexts can

become quite complicated . Basically, contexts are modified during

one of the following :

• Function calls and returns

• Creation of cooperating processes

• Creation of parallel processes

• Passing of backtracking points.

The following 11 examoles illustrate the interplay of these processes .

The exa mp les only d iscuss the bind ing of var iables to values , but the

same procedures are used to handle arbitrary properties of expressions .

The figures show the flow of control. Each major control point is

labeled in sequence : Tl, T2 , etc. Other notations are explained in

the examples . There are no loops in the programs . Backtracking, how-

ever, causes control to be restored at previous (higher) points in the

f igu res . When poss ible , indentation is used to clarify this procedure .

B. Function Calls

1. Simple Function Calls——Example 1

Figure 111—1 shows the role of the context mechanism during

common subroutine calls. Assume the global context is (l).(1) when

1’ subroutine A is called . The following is a protocol of the rest of

the execution .

-

- 331
_ _

(1) .(l)

A (2 l) .(l) Tl

Declare X

X - l

+ B (3 2 l).(1) T2

X — 2

+ C (4 3 2 l).(l) T3

Daclare X

X — 3

- T4

— T5

- T6

FIGURE 111-1 SI~~~LE FUNCTIONS CALLS

332

Tl The dynami c context is increased to (2 1).

X is declared local. Its property list takes the form

(. . . 2 ((1 NETVALUE NOSUCHPROPERTY)) ...).

X is assigned the value 1. Its property list is changed

to (... 2 ((1 NETVALiJE 1)) ...).

T2 Subroutine B is called . The dynamic context is increased

to (3 2 1) -

X is assigned the value 2. Notice that X is global to

B. Its property list takes the form

(... 2 ((1 NETVALUE 2)) ...).

T3 Subroutine C is called . The dynamic context is increased

to (4 3 2 1)

X is declared local. Its property list takes the form

(. . . 4 ((1 NETVALIJE NOSUCHPROPERTY)) ((2 NETVALUE 2)) - . .) .

X is assigned the value 3. Its property list is changed

to (... 4 ((1 NETVALUE 3)) 2 ((1 NETVALtJE 2)) . . .) .

T4 Subroutine C returns . The dynamic context is restored to

(3 2 1).

The indicator 4 and the property ((1 NETVALUE 3)) on the

top level of X are now garbage , and will be collected

la ter. They are made garbage merely by removing 4 from

the list of currently active dynamic context numbers .

They have become garbage because the dynamic indicator

333

_ _ _ _ - - ------ --- -- - —--~~~~---

4 was created solely for this incarnation of subroutine

C. The subroutine is finished , and mak ing them garbage

is equivalent to popping them off a push—down stack in a

more conventional system.

T5 Subroutine B returns . The dynam ic con tex t is res tored to

(2 1) -

Notice that since X was global in B, the value was changed

under A ’s context .

T6 Subroutine A returns . The dynamic context is res tored to

(1). The indicator 2 and the property ((1 NETVALUE 2))

now become garbage .

2. Simple Backtracking——Example 2

Figure 111—2 shows the role of the context mechanism during

the execution of a simple backtracking program . Assume the global con-

text is (l).(i) when subrou tine A is called . The following is a proto-

col of the rest of the execution .

Ti The dynamic context is increased to (2 1).

X is declared local . Its property list takes the form

(... 2 ((1 NETVALUE NOSUCHPROPERTY)) ...).

X is assigned the value 1. Its property list takes the

form (... 2 ((1 NETVALUE 1)) . . .) .

T2 A backtracking point is passed . The backtracking context

is increased to (2 1)

334

- V

(1) .(i)

A (2 l) . (l) Ti

Dec lare X

-
X — 1

• (2 l).(2 1) T2

(2 l).(3 1) T4

(2 l) .(4 1) T6

X _ X + 1

FAIL T3,T5,T7

— T8

FIGURE 11 1—2 SIMPLE BACKTRACKING

335

- -.q. ~~~~~~~~~~ - - - -

1 is added to X and the result assigned to X. Notice

that the value of X is retrieved from backtracking con-

text (2 1). The form of X’s property list is now

(...2 ((2 NETVALUE 2) (1 NETVALUE 1)) ...).

T3 The program fa ils .

Control is returned to the last backtracking point.

T4 Assume that a second alternative is available at the

backtrack ing point . The back track ing contex t is changed

to (3 1). Since the backtracking context 2 will never

aga in be used , the change to X under T2 is effec tively

erased and the list (2 NETVALUE 2) is mow garbage .

X is again increased by 1. Just as before, the value

is read under backtracking context (1), but this time

the value is stored under backtracking context (3 1).

The property list of X now takes the form

(...2 ((3 NETVALUE 2) (2 NETVALUE 2) (1 NETVAT.UE 1)) ...).

T5 The program fails again.

Control is returned to the last backtracking point .

T6 Assume that a third alternative is available at the

backtracking point. The backtracking context is changed

to (4 1).

X is increased for the third time , but still ass igned

the value 2.

336

T7 This time the program does not fail and control proceeds.

T8 The subroutine returns .

The dynamic context is restored to (1).

Everything under property 2 on X’s property list now

becomes garbage .

3. Multiple Backtracking——Example 3

Figure 111—3 shows what happens when there are no alternatives

left at a backtracking point . The program begins just like example 2.

T3 The second point is passed . The backtrack ing context is

increased to (3 2 1)

T4 Failure occurs and control is returned to the last back-

tracking point .

T5 A second alterna tive is chosen and the back tracking con tex t

is updated .

T6 Fa ilure occurs for the second t ime . Con trol is again

returned to the last backtracking point .

T7 No alternatives are ava ilable, so fa ilure occurs and control

is returned to the first backtracking point .

T8 The second alternative is chosen at the first point , and the

backtracking context is updated .

T9 The second backtracking point is passed for the second time .

An alterna tive is chosen and the backtracking context is

increased .

337

-.~
.- ~~~~~~~~~ ~~~~ -

(1). (1)

A (2 l).(i) Ti

~~. (2 i).(2 1) T2

(2 l).(5 1) T8

~~. (2 l).(3 2 1) T3
(2 l).(4 2 1) T5

FAIL T7
(2 l).(6 5 1) T9

FAIL T4,T6,TlO

- Tll

FIGURE 111-3 MULTIPLE BACKTRACKING

338

- ,- ~~~~

TlO This last time , no failure occurs and the program proceeds .

Til The subroutine succeeds and returns to the calling program .

4. Function Calls with Backtracking——Example 4

Figure 111— 4 shows the interaction of the dynamic and back-

tracking contexts. The program begins the sane way as examples 2 and 3.

T3 Subroutine B is entered . The dynamic context is increased .

T4 Subroutine C is entered . The dynamic context is increased

again.

T5 A backtracking point is passed . An alternative is chosen,

and the backtracking context is increased to (3 2 1).

T6 Subroutine C has returned, and a back tracking point is passed

in subroutine B. An alternative is chosen and the backtrack-

ing context is increased to (4 3 2 1). Notice that the back-

tracking context was not reduced during the return from the

subroutine while the dynami c context was reduced ,

T7 Subroutine B has returned to subroutine A , and a fa ilure

occurs . Control is returned to the last backtracking point ,

the middle of subroutine B in the state when the point was

originally passed . This state was preserved by the context

mechanism when new backtracking contexts were created .

T8 The second al terna tive is chosen, and the backtracking context

is updated .

339

(1) ~(1)

A (2 l).(l) Ti

1 (2 l).(2 1) T2

÷ B (3 2 l).(2 1) T3

+ C (4 3 2 l).(2 1) T4

~-. (432l).(3 2 l) T5

(4 3 2 l).(3 2 1) Tll

~~-i (3 2 l).(4 3 2 1) T6

(3 2 i).(5 3 2 1) T8

FAIL TlO

(3 2 l).(7 6 2 1) Tl2

—FAIL T7 ,T9,T13

- Tl4

FIGURE 111-4 FUNCTION CALLS WITH BACKTRACKING

340

T9 Subroutine B has returned to subroutine A for the second

tine . Another failure occurs, and control is again returned

to subroutine B . B is restored to the same state is was in

the first time the backtracking point was passed .

TlO - No alternatives are available and the backtracking point

fails. Control is now restored to subroutine C.

Tll The second altern ative is chosen , and the backtracking con-

text is updated .

T12 This second backtracking point is now passed for the second-

time . The first alternative is chosen, and the backtrack ing

context increased .

Tl3 No failure occurs at this time , control flows on.

Tl4 Subroutine A succeeds and thus returns .

C. Coopera ti ng Processes

Examples 5 through 9 deal with cooperating processes . The charac-

teristic that differentiates these programs from standard functions is

that they transfer control back and forth , always retaining their state .

“Coroutine ” as well as other names have been applied to these kinds of

programs . These names have attempted to distinguish parallel coopera-

tion , subordinate cooperation , and other structures. We make no suc h

formal distinction and call them all cooperating processes .

341

1. Simple Cooperating Processes——Example 5

Figure 111—5 shows how the dynamic context is used to create

and use a cooperating process. As in the first example , the global

context is (l).(l).

Ti Subroutine A is called . The dynamic context is increased

- to (2 1).

T2 Process B is created . A new dynamic context , (3 2 1), is

created and assigned to it. The process is not yet run.

T3 Process B is called . Any local variables are modified

under the dynamic context (3 2 1). The current backtracking

con tex t becomes B ’s backtracking context .

T4 B returns to A. The dynamic context is restored to (2 1).

Unlike func tion calls , B’s dynamic context is not discarded

and garbage is not generated . Everything is saved for further

processing with B. Notice that A cannot reference B’s local

variables without special context processing .

T5 A again calls B. The dynamic context (3 2 1) is again

restored . Nothing within B has been lost.

T6 B returns to A. A’ s dynamic context is restored .

T7 A returns to the calling program.

342

_ _ _ --~~~~~~~~~— ----~~~~~~—-~~-~~~~ - - --_ _ _ _ _ _ _

(1) .(l)

A (2 l).(l) Ti

B (3 2 1) T2

* B (3 2 l).(l) T3

(2 l).(l) * T4

* (3 2 l).(l) T5

(2 l).(l) * T6

— T7

FIGURE 111-5 SIMPLE COOPERATING PROCESS

6’

343

V

2. Coroutines—-Example 6

Figure 111—6 shows the creation and running of ordinary

coroutines .

Ti Subroutine A is called and started in execution .

T2 Coroutine B is created .

T3 Coroutine C is created .

T4 B is entered .

T5 C is entered from B.

T6 C returns to B.

T7 B returns to C.

T8 C returns to B. All these returns have been RESUMEs , they

are not returns .

T9 B does a normal return to A.

3. Cooperating Processes with Backtracking (l)——Example 7
.
~

Figure 111—7 shows the running of a simp le subordinate process -
fl

with back t racking to the superordinate process.

Ti A is called .

T2 B is created .

T3 B is entered . I t is assigned A ’s backtracking context .

T4 B re turns to A .

T5 A passes a backtracking point .

T6 A returns to B. B is again assigned A ’s current back-

tracking context.

344

(1) .(l)

A (2 l).(l) . Ti

B(3 2 1) T2

C(4 2 1) T3

B (3 2 l).(i) T4

* C (4 2 i).(l) T5

* T6

* T7

* T8

* T9

FIGURE 111— 6 COROUTINES

345

(l).(l)

A (2 l).(l) Tl

~~B (3 2 l) T2

* B (3 2 l).(l) T3

* T4

~. (2 l).(2 1) T5

(2 i).(3 1) T8

* (3 2 l).(2 l) T6

(32 l).(3 1) T9

-FAIL T7,TlO

* Tll

FIGURE 111-7 COOPERATING PROCESSES WITH BACKTRACKING (1)

346

T7 B fails. Control is restored to the last backtracking

point.

T8 The backtracking context is modified and execution continues .

T9 A again returns to B. B is assigned A ’s new current back-

track ing context.

TlO B does not fail and control continues.

Tll B returns to A.

4. Cooperating Processes with Backtrackir-”2)——Exanple 8

Figure 111—8 shows, like Figure 111—7 , the running of a simple

subordinate process with backtracking to the superordinate process.

However , the running concludes with the subordinate process passing a

backtracking point (to illustrate passing on of backtracking context).

TI. A is called .

12 B is created .

T3 A passes a backtracking point.

14 B is entered .

T5 B returns to A.

T6 A returns to B.

T7 B fails .

T8 The backtracking context is modified .

T9 B is again entered .

TlO B again returns to A.

Til A again returns to B.

347

j -~.~~~.~44- -.—‘-
---,‘- -

(i) .(l)

A (2 l).(i) Tl

B (3 2 1) T2

.—~~~. (2 i).(2 1) T3

(2 l).(3 1) T8

* B (3 2 l).(2 1) T4
(3 2 l).(3 1) T9

* T5 ,TlO

* T6,Tll

FAIL T7,T12

• (3 2 i).(4 3 1) Tl3

(2 l).(4 3 1) * Tl4

FIGURE 11 1-8 COOPERATING PROCESSES WITH BACKTRACKING (2)

348

- .,. -.‘, —

Ti2 B does not fail. Control continues.

113 B passes a backtracking point.

114 B returns to A. A’ s backtracking context is set to B’s,

while A ’ s dynamic context is set to its original state.

5. Cooperating Processes with Backtracking (3) -—Example 9

Figure 111—9 shows the creation of two subordinate processes.

The backtracking occurs between these two pr ograms, rather than back to

the superordinate process as in examples 7 and 8.

Ti A is called.

T2 B is created .

T3 C is created.

T4 B is entered.

T5 B passes a backtracking point.

T6 B returns to A. Notice the transfer of the backtracking context .

T7 C is entered from A. C is assigned A ’s backtracking context .

18 C fails. Control is transferred back to last backtracking

point in B.

T9 The backtracking context is modified .

TlO B again returns to A. A is assigned the new backtracking

context .

111 A again returns to C. C is assigned the new backtracking

context .

Tl2 C does not fa i l and control continues .

349

- P ‘ r -~ ’—”-.~~-

(1) .(l)

A (2 l) . (l) Tl

~ B (3 2 1) 12

~ C (4 2 1) T3

* B (3 2 l).(l) T4

‘—. (3 2 l).(2 1) T5

(3 2 i).(3 1) T9

(2 l).(2 1) 16
(2 l).(3 1) TlO

C(4 2 l).(2 l) 17

(42 l).(3 1) Tll

FAIL T8,Tl2

FTdURE 111-9 COOPERATING PROCESSES WITH BACKTRACKING (3)

350

-
~~~ ---— ~

— . - _ _ _ _ _ _ _ _  - -— - - -



D. Parallel Processes

Examples 10 and 11 deal with parallel processes. As will be seen,

the current definition is strict, and does not appear to be useful. More

experimentation with problem—solving systems will help bring out the

needs of cooperating parallel processes.

1. Simple Parallel Processes-Example 10

Figure 111—10 shows the creation and running of two parallel

programs. It also illustrates that the parent process can be run in

parallel with the two subordinate processes.

Ti A is called .

12 B is created .

T3 C is created .

T4 A , B , and C are all started in parallel. A new backtracking

context is assigned to each one. This means that A ’s state

at this point becomes and remains the global state for B and

C even thou gh A , B, or C might change a common global variable.

Notice that the procedures cannot affect each other in any way.

15 At some t ime , maybe even all together, all three processes

change the global variable X. Each changes it in his own

way. Thus, the programs are truly parallel, but cannot

communicate with each other.

351



( 1) .( 1)

A (2 l).(l) Ti

B (3 2 1) 12

~~C ( 4 2 i ) T3

* B (3 2 l).(3 1) C (4 2 l).(4 1) T4
(2 l ) . ( 2  1)

X .- X + l  X — X + 2  X — X + 3  T5 -

FIGURE 111—10 SIMPLE PARALLEL PROCESSES

352



2. Parallel Processes with Backtracking——Example 11

Figure Ill—il shows the creation of a subordinate parallel

process with failure back to the superordinate process.

Ti A is called.

T2 B is created .

T3 A passes a backtracking point.

T4 B is started in parallel with A.

T5 B fails.

T6 Control is restored to the backtracking point. The backtracking

context is modified .

17 B is again started in parallel with A. Notice that each is

again assigned a new backtracking context .

T8 B does not fail and both progr ams proceed .

353



( 1) .( l)

A (2 l).(i) Ti

~~~~B(3 2 l) T2

—~~~ ... (2 1) . (2 1) T3
(2 l).(5 1) T6

* (2 l).(3 2 1) 8 (3 2 l).(4 2 1) T4

(2 i).(6 5 1) (3 2 l).(7 5 1) T7

rAIL T5,T8

FIGURE I l l — i l PARALLEL PROCESSE S WITH BACKTRACKING

354

1~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
—.- -- - ---- - — - -

~~~ 

~4-’.-..



IV IMPLEMENTATION

There are two main parts of the context mechanism : the garbage

collector and the store and fetch routines . The garbage collector is

of no concern to the user since its operations are self-contained and

cannot be modified . The names of general store and fetch routines all

start with the prefix CTX:. There are only a few routines, and each is

small and simple . In the following description of the programs, the letter

used for the argument indicates the type of the argument. The corres-

pondence is

E any general QA4 expression

I an indicator name—-should be a LISP atom

P a property, any LISP expression

C a context.

The functions with CTX: as prefix are:

PUT(E,P,I,C) Puts P on E under I and C.

GET(E , I ,C) Gets a P from E us ing I and C.

XD (C ) Increases the dynamic context of C and returns the new C.

POPD(C) Removes the dynamic head of C and returns the new C.

POPB(C) Removes the backtracking head of C and returns the new C.

SETU P Initializes the context mechanism.

DYN (E ,C) Searches the top—level of B for the appropriate sublist

defined by the dynamic context of C. Used by both GET

and PUT .

355

- - ---___ - - - - - - -  

~~~~~~ --


DECLARE (E,C) Sets up the expression E so that it is local in the

context C.

The global variables DCTXNDX, BCTXNDX, VDCTX, and BVCTX are used

to generate new context numbers and keep track of 311 currently valid

context numbers for the garbage collector. These names come from: D

for dynamic, B for backtracking, CTX for context, NDX for index , and V

for valid .

356

~~---- -_-i_ - -- - -—---- - -—
- - . _ ;

‘-- ‘~~~~~~~~—. -
~ - .~ -

V SU~ D.-1ARY

A. Space and Garbage Collection

There are two fundamental drawbacks with the context mechanism:

(1) the size of storage and (2) garbage collection time. The amount of

storage needed to store a value for a variable is about three times that

required in a stack system. This should be expected , because the state

is dispersed and thus each value must have state information associated

wi th it. Garbag e collection time is also greatly increased. This is

due to the fact that, with a concentrated state system (Floyd 1967), the

variable bind ings for entire states may be freed with a single stack -

operation. With a context mechanism, however, the state information for

each variable binding must be examined separately . Both of these ineffi-

ciencies appear to be inherent in the context approach, and there is no

known way of overcoming them.

B. Binding Retrieval Time

The QA4 implementation also extends the store and fetch time by a

considerable but unmeasured amount. This inefficiency, however, could

be overcome by more extensions to the QA4 system.

For interpreted code, a search must take place for variable bindings

in both types of systems. In LISP. for example, the stack must be

searched, while in QA4 the property list of the variable must be searched .

Both these searches, moreover , scan block structured entities. Thus scan

techniques, such as zeta coding, that improve one can be used for the

other.
357

References for nonlocal variables in compiled code must be made

through similar scan techniques for both approaches. References to local

variables in compiled code , however , are made directly to a stack position

in a stack—oriented system. It does not appe ar that this eff ic iency can

be matched with a context mechanism, but it can be closely approximated.

Each variable could have an indirect cell associated with it that could

store a pointer to the last referenced value for the variable. Then each

reference would first compare the context code in the indirect cell with

the context code for this reference and use the indirect cell with the

context code for this reference and use the indirect pointer if it applied .

If it did not apply, a search could be made and the indirect cell updated

after the search. This would only cause a loss of time for the first

reference to a local variable. The compare operat ions could be a part

of the hardware, j ust as stack operations have been incorporated into

hardware. With a machine of this sort, the binding retrieval time could

be equivalent to that of stack systems . -
‘

C. Versatility

The major advantage of the context mechanism is its implementation

simplicity and the ease of experimenting with the interpreter. The QA4

language is primary a research tool to help evolve a semantics for a

language for writing problem-solving systems. Thus, experimentation and

change are vi ta l for success. This context mechanism has greatly aided

this developmental type research. Various styles of backtracking can be

358

tried in conjunction with different process interactions. It is es-

pecially difficult with stack systems to backtrack over RESUME statements

between inde penden t process structures, and such systems dictate a single

interpretation for backtracking . A most important kind of experimenting

has occurred because a unified system was used for both the interpreter

and the user WRT options. This has led to the current WRT semantics

and will , we expect , lead to even more useful semantics in the future .

Fut ure areas of experimentation will include not only the semantics

of dynamic process structures, but static data structures. That is,

data structures that represent areas of knowledge where words or expres-

sions have me anings that vary between the areas . The problem we will

study will be the interaction of these dynam ic and stat ic structures.

The context mechanism appears to provide the versatility for such a study .

359

REFE RENCE S

(
I

- ...-_~
_

~~~~
.._

~~
,w,—-.——----____-- .- -~ —~--._r —_—__— — - 

- .- —. - - - . - - - - -
~~ *. ~~~~~~~~~~~~~~~~~~~~~~ 

_ -~_..~~~~
r _ _



t

RE FE RENCE S

D.  G. Bobrow and B. Wegbreit , “A Model and Stack Implemen tation of
Mu l t ip le  Environments , ” Bolt , Beranek and Newman , Cambridge ,
Massachusetts ( 1972)

M. E . Conway. “Design of a Separable Transition—Diagram Compiler ,”
C. ACM, Vol . 6, pp. 396—408 (1963).

R .  W. E l l io t , “A Model for  a Fact Retrieval  System , ” Ph.D. Thesis ,
The Un ivers i ty  of Texas , Austi n , Texas (1965) .

B. Elspas , M. W . Green , K.  N . Lev i t t , and R.  J .  Waldi nger , “Research
I n In terac t ive  Program—Proving Techniques , ” SRI Project 8398 ,
Phase II , Stanford Research Institute , Menlo Park , Cal iforn ia
(May 1972).

H .  E .  Fikes and N .  J .  Nilsson , “STRIPS : A New Approach to the Appli-
ca tion of Theorem Prov ing to Problem Solv ing , ” Art ificial Intelli-
gence, Vol . 2, Nos . 3/4, pp. 189—208 (1971).

R .  W . Floyd , “Nondeterministic Algorithms ,” J. ACM, Vol . 14, pp. 636—
644 (October 1967). -

C. C. Green, “Applications of Theorem Proving to Problem Solving, ”

Proc. International Joint Conference on Artificial Intelligence,

D . E . Walker and L . M . Norton, Eds., Washington , D.C., pp. 219—

239 (May 1969).

L. Golumb and L. Baumert , “Backtrack Programming, ” J. ACM, Vol. 12,
No. 4, pp. 516—524 (1965).

C. Hewitt , “Description and Theoretical Analysis (Using Schemata) of

PLANNER: A Language for Proving Theorems and Manipulat ing Models
in a Robot , ” Ph.D.  Thesis , Department of Mathematics , Massa chu-
setts Ins t i tute of Technology , Camb ridge , Ma ssachusetts ( 1972)

0. K alish and R.  Montague , Logic, Techniques of Formal Reasoning,
Harcourt , Brace , and World , Inc., Chapter 1, p. 16 (1964).

H.  E .  Kli ng, “A Paradigm for  Reasoning by Analogy , ” A r t i f i c i a l  Intell i—
gence, Vol.  2 , No. 2 , pp. 147—178 ( 1971).

361

- —. 
~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ - -- - - - .~~~~~~

.-‘--- — — -V --— — —- —-- —-—- - -- —--— —

P. J. Landin, “The Mechanical Evaluation of Expressions,” Computer
Journal, Vol . 6 , pp . 308—320 (1963/64) .

J . McCarthy, “Programs w i t h Common Sense , ” in “Mechaniza t ion of Though~
Processes , ” Proc. Symposium Nat iona l Physical Laboratory , Vol . 1,
pp. 77—84 (1958) . Also , Stanford Ar ti f icial In te l l igence Project
Memo No. 7, Stanford Univers ity, Stan fo rd , Cal ifornia .

J. McCarthy , “A Bas is for a Mathema tical Theory of Computa tion,”

Computer Programming and Formal Systems, Braffort and Hirschberg,

Eds., North—Holland , pp. 33—70 (1963).

J. McCarthy, et a l . , LISP 1.5 Programmer ’s Manual, M.I.T . Press,
Cambridge , Massachusetts (1962) .

J. McCarthy and P. Hayes, “Some Philosophical Problems from the Stand-
point of Artificial Intelligence,” in Machine Intelligence 4,

B. Meltzer and D. Michie, Eds., American Elsevier Publishing
Co., Inc., pp. 463—502 (1969).

V. McDermott and G. J . Sussman , “The Conniver Reference Manual , ”

~assachusetts Institute of Technology A r t i f i c i a l Intel l igence
Laboratory , Memo No. 259, Cambridge, Massachusetts (May 1972).

Z. Manna and R . J . Waldinger , “Toward Automat ic Program Synthesis, ”
C. ACM, Vol. 14, No. 3, pp. 151—165 (March 1971).

M. Minsky, “Steps Toward A r t i f i c i a l Intel l igence, ” in Compu ters and
Thought, E . Feigenbaum and J . Feldman , Eds., McGraw—Hill Book
Co., Appendix A , p. 5: Property Lists (1963).

J . Piaget , Genetic Epistemology, Columbi a Universi ty Press, New York ,
p. 21 (1960).

W . V. 0. Quine, Mathematical Logic, Harvard University Press, Cambridge,
Massachusetts, pp. 33—37 (1965).

B. Raphael, “A Computer Program which ‘Understands’,” AFIPS Conf. Proc .,
Vol . 26, Pt. 1, pp. 577—587 (1964)

J. A. Robinson, “Mechanizing Higher—Order Logic,” in Machine Intelli-
gence 4, B. Meltzer and D. Michie, Eds., American Elsevier
Publ i sh ing Co., Inc . , pp. 151—170 (1969).

362

_ _ _ —.- - . ~~~— —

~

-

p.

A. Winograd , “Procedures as a Re presen tation for Data in a Compu ter
Program for Understanding Natural Language,” Ph.D. Thesis,
Department of Mathematics , Massachusetts Institute of Technology,
Cambridge , Massachusetts (1971).

W . Te itelman , D. G. Bobrow , A. K. Hartley, and D. L. Murphy, “BBN—LISP
TENEX Reference Manual ,” Bolt , Beranek and Newman , Inc., Cambridge ,
Massachusetts (1972).

W . Teitelman , “Design and Imp lementa tion of FLIP, a LISP Format Directed
List Processor,” Bolt, Beranek and Newman, Inc., Cambr idge,
Massachusetts (1967) .

t

I

a
363

~~~~~~~~~


