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~J were made to develop the final LFC configuration. This configuration was sized to determine the

gross weight, engine size, wing area, and fuel requirements necessary to achieve the design
mission. Various performance trade and sensitivity studies were conducted for the turbulent and
LFC airplanes in the third phase. Life-cycle and operating cost evaluations were also made. A
valid assessment of an LFC airplane must be preceded by an extensive design, development, and
flight test program. Consequently, this study focused on identifying the relative benefits from
applying LFC, and on the sensitivities of these relative benefits to the current major LFC
uncertainty items./i

The optimum LFC wing planform is shown to have a high aspect ratio, low thickness/chord
ratio and low sweep. This planform minimized both fuel and gross weight, and maximized
productivity. The same planform geometry results in low chord Reynolds numbers, low cross-
flow and low attachment line Reynolds number and thereby eases the task of laminarization.

Normal military reserves were found adequate to meet the mission objectives with reasonable
losses in LFC. The reserves allow the LFC airplane to fly 2000 nmi or 5 hours with full loss
of laminar flow and it can then achieve the mission range by establishing the design laminariza-
tion for the remainder of the flight.

Results of an extent of laminarization study suggest the following order for achieving maximum
LFC benefits with minimum technical risks. First, laminarize the wing back to the trailing-edge
control surfaces. Second, laminarize the empennage back to the trailing-edge controls. Then
conduct the necessary trade and detailed design studies to identify the practical benefits and
technical risks of full chord laminarization.

The fuselage drag of an LFC airplane is a significant drag item. A 25% drag reduction in the body
drag of an LFC airplane results in additional fuel (8%) and gross weight (4%) savings.

Results indicate that LFC can provide large reductions in fuel usage (27 to 30%). The gross
weights are also reduced (7 to 10%); however, the gross weights are very dependent upon the
total LFC structural and systems weight increment. Operating costs for a 60-day surge condition
are lower (10 to 15%) but depend on the required maintenance costs. The life-cycle costs were
found to be higher for the LFC airplane because the low peacetime airplane usage rates do not
reflect the large fuel savings as a significant cost item.

Recommendations are given for additional system studies, and for more detailed design and
development work to fully establish the potential performance and economic benefits for appli-
cation of LFC to very large transport aircraft.
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Slot width, in

Wing loading, lb/ft2

Second derivative of the crossflow velocity
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Effective origin of the turbulent boundary layer
Landing gear location as a fraction of the wing MAC
Transition location

Transition location as a fraction of total length

Angle of attack
Falkner-Skan parameter
Boundary layer thickness, in.
Displacement thickness

Boundary layer thickness at which one-tenth the maximum crossflow
velocity occurs

Incremental amount

Total LFC structural plus systems weight penalty, lb/ft2 of the treated
laminarized area

Induced drag increment due to flap span loading
Slot-spacing distance, in.
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Taper ratio

Sweep angle

Pi=3.1416; empennage arrangement

Density

Momentum thickness, in.
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0 Pitching moment rate acceleration

(i Equivalent leading-edge ellipse semiminor/semimajor axes ratio
w(‘RIT Crosstlow minimum stability limit Reynolds number
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app Approach

AVE Average

CL Climb
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F Flap

FS Falkner-Skan
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J Jet

L, LOC Local
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Min Minimum

N Normal to leading edge
(0] Free-stream condition, wall value
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ref Reference
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SOB Side of body
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1.0 INTRODUCTION

Increased concern about the cost and availability of aviation fuel in addition to the possible
requirements for global-range movement of large payloads suggested the need for efficient
military transport aircraft designs that conserve fuel.

The recently completed AFFDL/Boeing Boundary Layer Control Technology Application
study! 1) evaluated large military transport designs that incorporated various advanced aero-
dynamic concepts. Study results identified laminar flow control (LFC) as the aerodynamic
concept offering the gre« st potential for conserving fuel.

The Northrop X-21 Flight Test progrum(z) demonstrated the technical feasibility of LFC in
the 1960s. The economic and practical feasibility of LFC remained to be proven. The afore-
mentioned fuel concerns, together with projected new technology developments, may have
a large favorable impact on the practical feasibility of LFC.

The purpose of this study was to conduct a preliminary design investigation of a large sub-
sonic military transport aircraft to assess the economic application of LFC. Technology
developments, wind tunnel tests, and flight test verification, necessary to reduce the risk
associated with the application of LFC, also were to be identified. The study consisted of
three phases:

®  Phase 1-Initial LFC conceptual design investigations were conducted to identify fea-
tures of an LFC airplane optimized to accomplish mission objectives. A refersnce fully
turbulent airplane also was developed in this phase.

®  Phase 2 Design and analysis studies were made to develop the final LFC configuration.
The final LFC configuration was sized to determine the gross weight. engine size, wing
area, and fuel requirements necessary to achieve the design mission.

® Phase 3—The preliminary design definitions of the LFC and reference turbulent air-
planes were finalized. Performance trade and sensitivity studies were conducted for the
LFC and turbulent airplanes. Life-cycle and operating cost evaluations were made for
the LFC and turbulent configurations.

The approach and results are presented in Sections 2.0, 3.0, and 4.0. Sections 5.0 and 6.0
describe the evaluation of the LFC configuration. Section 7.0 describes how the study tasks
were accomplished and the methods used. Remaining sections present the research and
development recommendations and the main conclusions.

1. Kulfan, R. M. and Howard, W. M., Application of Advanced Aerodynamic Concepts to
Large Subsonic Transport Airplanes, Tech. Report AFFDL-TR-75-112, Nov. 1975.

2. Whites, R. C.; Sudderth, R. W.; and Wheldon, W. G., “Laminar Flow Control on the
X-21,” Astronautics and Aeronautics, July 1966, pp38-43.
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2.0 APPROACH

Design mission objectives for the study configurations included:

° Range = 10,000 nmi
® Payload = 350,0001b

®  Takeoff field length = 9;000 ft

®  Mach number: determined by tradeoff studies

Payload density limits were set by the requirement to carry either 75 military standard

cargo containers or three M-60 tanks.

The general technology level assumed for the study configurations as shown in Figure 1
corresponds to projections that would allow start of prototype production in 1985. First
flight would occur in 1988 or 1989 and airplane in service would be after 1990. >pecific
advanced technology assumptions are discussed in Section 7.0.

1975 1980 1985 1990 1995 2000
A
ENGINE
TECHNOLOGY e T
LEVEL |
AIRPLANE IN SERVICE

START OF

PROTOTYPE

PRODUCTION

Figure 1 Study Technology Levels

This study used results of the substantial data base of past and present laminar flow control
studies and Boeing in-house large freighter studies showa in Figure 2 to provide design
ground rules and configuration development guidance.

2.1 DESIGN DEVELOPMENT METHOD

The design development method used to develop each of the aircraft configurations is

illustrated in Figure 3.
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LFC TRANSPORT A/P STUDIES
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DESIGN INTEGRATION STUDIES
DR.W. PFENNINGER
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Ref 5

Ref 6
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© SUCTION SYSTEM

® MANUFACTURING
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Figure 2 Boundary Layer Control Study Data Base

NASA Contract NAS1-14630, “Evaluation of Laminar Flow Control System for Sub-
sonic Commercial Transport Aircraft,” (study underway 1976).

Weiss, D. D. and Lindh, D. V., Development of the Technology for the Fabrication of
Reliable Laminar Flow Control Panels, NASA CR-145124, Feb. 1976.

Swinford. G.

R.. A Preliminary Design Study of a Laminar Flow Control Wing of

Composite Materials for Long Range Transport Aircraft, NASA CR-144950, April

1976.

Sturgeon, R. F., et al, Study of the Application of Advanced Technologies to Laminar
Flow Control Systems for Subsonic Transports, NASA CR-133949, May 1976.
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Figure 3 Design Development Method
The initial step was to define preliminary configuration characteristics, including such
general items as:
®  Wing planform, size, and thickness
L Number of engines, engine cycle, size, and location
®  Tail planform, thickness, and size
®  Estimated maximum takeoff gross weight
These characteristics were derived from results of past related studies or from specially con-
ducted trade studies. These estimated configuration characteristics were used to develop
preliminary configuration sketches. These sketches, along with supporting aerodynamic

design optimization studies, weight and balance analyses, stability and control analyses, and
structural layouts provided inputs for developing a detailed configuration layout (step 2




The detailed design layout defined the uncycled baseline configuration. The baseline config-
uration then was analyzed in depth to determine basic weight, lift and drag, thrust, and
noise characteristics. Additional analyses were made to determine the effects of varying
gross weight, engine size, and wing area to establish scaling rules that account for these
changes (step 3).

The results of the baseline configuration evaluation and the scaling rules form the inputs to
a parametric performance analysis program that was used to size the airplane by determining
the minimum gross weight, wing area, engine size, and tail size necessary to achieve the mis-
sion objective (step 4).

If the design objectives were not met, or if obvious deficiencies were identified, this process
was repeated. The parametric trade, sensitivity, and optimization investigations required
repeating this design development method a number of times for each particular study.

2.2 STUDY PLAN

The approach used to achieve study objectives is summarized in Figure 4. The initial task
was to develop the reference turbulent airplane configuration. The baseline turbulent con-
figuration, model 767-766a, arrangement was guided by results of Boeing in-house large
freighter trade and optimization studies. The configuration features reflect the design mis-
sion objectives and _the incorporation of the advanced technology concepts. The baseline
turbulent configuration was sized to meet the mission objectives. The definition of the final
sized turbulent airplane configuration model 767-768 was then completed.

The initial baseline LFC arrangement, model 767-769, was defined by modifying the refer-
ence turbulent airplane with the minimum changes necessary to incorporate the LFC
systems. The LFC systems and structural concepts were derived from previous LFC studies.
Boeing in-house LFC studies, and specially conducted LFC system design studies. The initial
baseline LFC configuration was sized with different levels of LFC structural and system
weight increments.

A braced-wing LFC configuration, model 767-767, was derived from the initial baseline LFC
configuration model 767-769 that has a cantilever wing. The definition of the braced-wing
geometry was guided by the results of Boeing large freighter braced-wing studies. The braced-
wing LFC configuration was sized to meet mission objectives and was compared with the
corresponding sized cantilever wing LFC configuration. Because of the large number of
design variations that would be necessary to fully optimize a braced-wing configuration, the
remainder of the study effort was concentrated on the development of the LFC cantilever
wing configuration.
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A wing geometry/cruise speed parametric optimization study was conducted to optimize the
LFC cantilever wing configuration. The final uncycled LFC configuration model 767-770
was developed using the best wing planform identified in the planform optimization study.
Model 767-770 then was sized to achieve the design mission objectives. The airplane was
sized with different levels of LFC structural and system weight increments. The final LFC
configuration arrangement definition then was completed.

The final turbulent airplane configuration, model 767-768, and the final LFC configuration,
model 767-773. were used in design trade and sensitivity studies to determine the impact of
the following on the fuel, weight, and cost of LFC and turbulent airplanes:

L Design takeoff field length

e  Extent of laminarization

®  Body drag reduction

° LFC maintenance costs

L LFC technology complexity costs

° Fuel prices

Additionally, the performance effects of in-flight loss of LFC were investigated.

Characteristics of the final LFC and turbulent configurations are discussed in Section 3.0.




3.0 CONFIGURATION DESCRIPTIONS

This section contains a description of the final LFC configuration and of the reference tur-
bulent flow configuration. The reference turbulent flow configuration was developed from
Boeing commercial large freighter study configurations that had approximately the same
payload requirements but smaller design ranges. Considerations that led to the final configu-
ration arrangements are dic assed below. The performance and economic evaluastions of the
final configurations are dic 1ssed in Section 4.0.

3.1 REFERENCE TURBULENT FLOW CONFIGURATION, MODEL 767-768
The general arrangement of the reference turbulent flow configuration is shown in Figure 5.

Selection of a three-bay oval fuselage was strongly dictated by the design payload require-
ments. As shown in Figure 6, this configuration provides space tor the required lower den-
sity payload of 75 military cargo containers without requiring excessive cargo floor length.
The four-bay double-lobe body arrangement, also shown in Figure 6. would offer the advan-
tage of an even shorter body length, and would require a lower pressurization weight
penalty. Because the dense payload of three M-60 tanks would require substantially differ-
ent loading in each of the lobes. this type of arrangement would have encountered a signif-
icant weight penalty. The kneeling landing gear results in a cargo floor loading height of 84
inches. The body has front and aft load capability for the cargo containers and for light
vehicles. The tanks require front loading and unloading.

lhe design of the forebody cab can contribute significantly to the drag of a fuselage. Exten-
sive investigations (7) of the aerodynamic effects of forebody cab design (Figure 7) indicate
that sudden changes in curvature, particularly near the windshield, produce patches of
supercritical flow. and areas of local flow separation that result in the formation of trailing
vortices. Consequently, the fuselage of the turbulent airplane features an advanced one-piece
windshield design shown conceptually in Figure 8. This design provides direct viewing and
incorporates a conventional flight deck with state-of-the-art displays and controls for the
1965 time period. The seamless windshield assembly results in reduced body drag. This
design is compatible and desirable for body drag reduction techniques such as boundary
layer control (BLC), body LFC, or the use of compliant skins. This design requires the
development of an optically corrected smooth structural windshield and a seamless seal
assembly.

Wing planform charactersitics were selected for efficient long-range cruise considerations
incorporating the benefits of active controls and advanced composite structural materials.
The high-lift system includes 747 SP-type single-slotted trailing-edge (TE) flaps and variable
camber leading-edge (LE) flaps. The TE flap has a chord ratio (Cp/C) of 0.225 and a Fowler
motion (C'/C) of 1.08.

The canted 7™ tail empennage arrangement is a structurally efficient design that provides

the desired drive-through and air-drop capability. The use of active controls, together with
the double-hinge rudder, results in minimum *ail areas.

7. George-Falvy, D., An Investigation of the Flow Around the Cab of Boeing Jet
Transports, Boeing Document D6-15006, 1966.

8




89/-/97 19pOyy ‘aue|dily 1us|nqin aoualayey G 84nbi4

(LNIOd

B AL NSRRI T sclalb v wk e
3dvuos aNv avarnR@ 0zosz vis .. IS o 00T VIS ] e
H 0'350 3NIT GNNOYS JILVLS S
== .‘nlynllv‘\‘.‘..o‘:-. e |AVII‘b|
: d ¥ ! 0 © !
g = e i T i ==%
| Nouwis
Mald

|

v
,_ —————— LUy ———
_
SLUEYEL |
86'920Z V1S [ vis
szes0z vis- | | geee
(zizsz 18 71
V-V NOILD3S
] ANIT ANNOYD JILVLS
0°00L V1S gork oSt
1
— S9NIGVOT =
om L3 | ¢ = ,
| sz 54 | 4
00Z TM T * C,bJL
ZLY'990€ VIS s <
£89°SLZE VIS - 1 Zr'voe oort - !
(ZLU'69EE VIS —, | £8'9€01 18 6Ll € SEEL ot
8LL'90¥E V1S - | A \ /| Tl
(95'€89 78 — 0'9sz 7 degz \
S0Z'08LE V1S — _ﬁUFZ W e/ g ! aue.v o !
9LZ'9re 18 — L. T O9eE e {
anviguiv 3L L |
il = 018
L + s ,
== 79°'805L V1S r( Sezy {
6E'LBEL VIS | - —19'098 V1S |

Y1'986 V1S




SU0i)BIBPISUOY JUBwWdo)araq ubisag aberasny 9 ainbi4

SLNIW3HIND3Y 311 HV3IHS ANV
ONIN3LSVH 0300V 0L 3NA ¥3LV3H9 (1)

Bisd ‘3YNSSIYUd TVILNIHILHIA
SINIWIHINDIY HLONIT HOO14 0DYHVD
0 © = 8 B v
v - a0 .5 T T 0
SH3N | \w.\\\..l
- -34411S
e ANV NINS “ 10!
1 SAVH1S
oot dvalL “ 4oz
o e e
bbbl vl ca s e ===~ Host SIWVH4 \A
i »mon_\ g
@@ AVE € ~00¢ 4000
—ANEas—— Hov
(D[351
@ Hjose Bisd gL =dV Sy
AVE Z // Hos
=00e 7/ INV1d¥IV/SHINIVINGD
/ ¥-0L A8-8 09
‘Y ‘HLONI / Jdoo
40014 91 0001
g 094vd ‘LHOI3M
SHNVLO9N € e IVHNLONY LS
S13717Vd 1€9Y GL e TVLINIWIHONI
G_ 000°0SE = n<o._><,__ S3ILTVYN3d LHDIIM NOILYZIHNSSIHd TVIIdAL

10




ubisa@ qed Apoqeio O $198443F J1eUApOlay 4 a4nblH

715 1N312144300 1410
LD 90 S0 ¥»0 €0 20 10 0

OvHa 3I9VvI3IsSnd dgy
[8vD 3H1 01 INA INIWIHONI OVHQ |

V3dv
JHNSSIUL-HOIH ER

(0'1< 90Ty,
MO TVOILINOE3dNS Wl

0z'0
(0] 30)

[ suvaosI AG083H04 1vIIdAL |

SS3INMNIIHL
HIAVT
AdVANNOS8

Q3Y81Vd 7 8 STIvHdl X31HOA

avd TVNIDIHO

1IN3WNdOT3IA3A HIAVT
AHVANNOSY 3H1 NO 8VJ 3H1 40 103443

MOT4SSOHD

V3V
3HNSSIH4-HOIH

SvyL .\.
X3LHOA :

MO7T4 TVIILIHOE3dNS

8V 3JH1 A8 d3SNVYI S3IONVEHNLSIA MO1d _

11




-

PLAN VIEW
SIDE VIEW
CA: Fs oYs sYs o7s oYe o) GROUND (REF)

ADVANCED ONE-PIECE
PLASTIC WINDSHIELD

SEAMLESS SEAL

AIRFRAME OVERHEAD

CONSOLE

ADVANCED ONE-PIECE
PLASTIC WINDSHIELD

: o HUD ATTITUDE
WINDSHIELD/AIRFRAME DETAIL DRELAY

—

SEAMLESS SEAL
ATTACHMENT

AIRFRAME

PILOT/COPILOT
COMMAND SEATS
CONTROL/DISPLAY
WRAP AROUND PANEL

FLIGHT DECK

Figure 8 Advanced One-Piece Windshield
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The propulsion system includes four 1985 technology high bypass ratio (BPR) engines. The
engines are located on the wing primarily because of the airplane balance requirements and
the engine design constraints (TSLS <90,000 ]b) that require a minimum of four engines for
the study airplanes. Airplane balance is the correct relationship of the center of gravity (cg)
of the airplane to aerodynamic stability limits for different loading conditions. This relation-
ship is more difficult to achieve when the engines are on the aft fuselage, especially for air-
craft with heavy payloads and large high bypass ratio engines. Because of the difference
between the position of the payload cg and the propulsion system cg, large shifts in the air-
plane cg would occur from one operating condition to the next. The spanwise locations
were set by flutter considerations and provide wing bending relief.

3.2 LAMINAR FLOW CONTROL CONFIGURATION, MODEL 767-773
The general arrangement of the final laminar flow control configuration is shown in Figure 9.

Fuselage and empennage arrangements are similar to the turbulent airplane configuration.
The wing planform has a higher aspect ratio (AR) and lower sweep than the reference tur-
bulent airplane wing. The geometry characteristics were determined by the wing geometry,
cruise speed optimization study discussed in Section 6.0. The high-lift system consists of a
single-slotted 747 SP-type trailing edge flap with a flap chord ratio (Cp/C) of 0.225 and a
flap Fowler action (C’/C) of 1.08. Additionally. the inboard and outboard ailerons can be
dropped to 10 deg. This configuration has no LE devices to avoid the anticipated difficulties
of maintaining smoothness tolerances necessary to retain laminar flow over leading-edge
junctions.

The wing and tail surfaces are slotted to provide laminarization to 70-percent chord. Suction
is provided by ram-air turboshaft engine/compression uniws. Four of these units are located
on the wing and two units are located on the empennage. The LFC design considerations
affecting development of this configuration arrangement are discussed in Section 5.0. The
location of the main propulsion engines on the wing was necessary to balance the airplane
This is an extremely important consideration for very large LFC airplanes. The engine,
nacelle, and strut must be designed to avoid acoustic and pressure field disturbances that
could prohibit the achievement of laminar flow.

3.3 CONFIGURATION COMPARISONS

The structural and systems weight associated with laminar flow control is very dependent on
the configuration arrangement and the structural design concept. Innovative detailed LFC
system design studies, such as those currently underway in the NASA LFC Techi logy and
System Development program, (3) gre necessary to identify the weight implications of LFC.
Consequently, the final LFC configuration has been sized with various levels of LFC struc-
tural and system weight increments. Tne results therefore show the sensitivity of the LFC
performance benefits to the LEFC system and weight increments.

The geometrical characteristics of the final LFC and the reference turbulent configurations

are summarized in Table 1. Group weight statements are shown in Table 2.
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Table 1

Configuration Design Characteristics

TURBULENT FINALILFC CONFIGUR‘ATION
DESIGN ITEM LUEIGRA TR
IMODEL 767-768]
00 | 225 | 3.0

Payload, |b 350,000

Major Range. nmi 10,000

design Cruise Mach no. 0.78 0.79

BargImeters TOFL, ft 9,000 8650 | 8950 [ 9,050
Turb, climb alt, ft w2 35,000
TOGW, Ib 1,665,800 1,408,980 1,551,560 1,607,650
OEW, Ib 608,600 576,080 725,160
Fuel, Ib 668,600 455,960 502,650
Reserves, Ib 43,300 30,870 34,160
Length, ft 252

Fuselage Max diameter, in. 4265
Wetted area, ft2 21,927

Landing Nose 4 (49 x 17)

gear Main 40 (49 x 17)
Area, ft2 14,785 13,420 15,310
Wetted area, ft2 25,849 23,555 26,108 27,105
Laminar treated area. ft2 /;;/// 15,839 17,5658 18,229
ARQ 12
A¢jg deg 20 10
Span, ft 4212 4334 | 4548 | 4630
A 0.30
MAC, ft 385 | 340 [ 366 | 36.3
t/c, root/tip 0.14/0.08
Area, ft2 2,562 2,290 2,460 2,510
Wetted area, f12 5118 4,574 4,914 5,014
Laminar treated area, ft2 //W/ 3.013 3,237 3,303
AR 5.07 6.42

:‘I’I”"’m‘" A, /4 deg, inbd/outbd 0.0/22.5
A inbd/outbd 0.0/0.63
t/c N
MAC, ft 229 19.2 19.9 20.1
Tail vol coeff 0.655 0.72 0.67 0.65
Area, ft2 (2 tails) 2.392 1,820 2,055 2,150
Wetted area, ft2 4,784 3,640 4,110 4.300
Laminar treated area, f12 //////// 2,237 2,526 2,643

Vertical AR 1.00

tail ‘\C/4' deg 54
A 0.52
t/c 0.12
MAC, ft 38.2 31.2 33.1 33.9
Tail vol coeft 0.045 0.038 0.037 0.037
Type/BPR STF 482/7.5
No./LOC 4/Wing mounted

Propulsion
SLST, b 77,200 63,400 67,850 69,600
Wetted area, ft2 3,120 2,562 2,742

Suction units | No./LOC ///////// 4/Wing mount + 2/Tail mount

13




Table 2 Configuration Weight Comparisons

TURBULENT FINAL LFC CONFIGURATION
CONFIGURATION 5 B
(AWT)LFC Ib/ft4
MODEL 767-768 0.0 T 2.25 3.0

ITEM POUND POUND POUND POUND

Wing 211 000 211 860 289 180 (a) 320 140 (a)

Horizontal tail 11 900 10 730 19 620 (a) 22 830 (a)

Vertical tail 15430 10 720 18 920 (a) 22 180 (a)
Body 186 630 180 910 183 890 185 060
Main gear 37 600 34 720 36 820 37 630
Nose gear 5 760 5320 5 650 5770
Nacelle and strut 23 800 19 550 20 920 21 460
Total structure 492 210 473 810 575 000 615070
Engine 50 030 3¢S 780 :3 060 44 360
Engine accessories 1330 1330 1330 1330
Fuel system 6 740 5980 6 400 6 570
Engine controls 320 320 320 320
Starting system 320 320 320 320
Thrust reverser 6770 5570 5 960 6110
Total propulsion group 65510 53 300 57 390 59 010
Auxiliary power unit 2 000 2 000 2 000 2 000
Instruments and nav equip 1270 1270 1270 1270
Surface controls 21 310 19 660 20 820 27 280
Hydraulic/pneumatic 4 680 4420 4770 4910
Electrical 3120 3120 3120 3120
Avionics 3 140 3 140 3140 3 140
Furnishings and equipment 6710 6710 6710 6 710
Air cond and anti-icing 3620 3620 3620 3620
Auxiliary gear 270 270 270 270
Total fixed equipment 46 120 44 210 45 720 46 320
Manufacturer’s empty weight 603 840 571 320 678 100 720 420
Crew 1290 1290 1290 1290
Crew provisions 320 320 320 320
Oil and trapped oil 600 600 600 600
Unavailable fuel 800 800 800 800
Payload provisions 1750 1750 1 750 1750
Total non exp useful load 4760 4760 4760 4760
Operational empty weight 608 600 576 080 682 870 725 160
Payload 350 000 350 000 350 000 350 000
Fuel 668 600 455 960 489 640 502 650
Reserves 43 300 30870 33 250 34 160
Takeoff gross weight 1 665 800 1408 9€0 1551 560 1607 650

(a)  Includes total LFC systems plus structural weight increment as (AWT)LFC x treated

wetted area (defined in Table 1).

18




Cruise drag comparisons of the turbulent flow and LFC contigurations are shown in Figure
10. The reference turbulent airplane model 767-768 has a relatively high lift/drag ratio
(L/D = 27.9). This is because of its large wing span/wetted area ratio. The profile drag of the
wing and empennage is a large portion of the total cruise drag. Reduction of this drag ele-
ment by LFC increased the cruise lift/drag ratio significantly (L/D = 40.1).

Gross weight comparisons of the study configurations are shown in Figure 11. The reference
turbulent configuration is a large airplane (TOGW = 1,665,800 Ib). Th> block fuel required
to meet the mission objectives constitutes 40 percent of the gross weight. Hence. it might be
expected that a large fuel savings by LFC would also reduce the takeoft gross weight
(TOGW) if the associated system and structural weight increments are not signiticant. The
relative fuel and gross weight savings with LFC are discussed in more detail in Section 4.0.

17
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4.0 CONFIGURATION PERFORMANCE AND ECONOMICS

The turbulent flow and laminar flow control configurations discussed in Section 3.0 were
used to identify the potential impact on LFC on the fuel consumption, weight, life-cycle
costs, and operating costs. Sensitivity studies also were conducted to determine the impact
of the LFC weight increment, fuel price, LFC maintenanee, and technology complexity
costs. Additional performance and sensitivity studies included:

Payload-range capability
L Design takeoff field length study
®  Effect of loss of LFC
° Extent of laminarization study
L] Body drag reduction study
4.1 MISSION RULES AND PERFORMANCE OBJECTIVES

The flight profile and mission rules used in developing the study configurations are shown in
Figure 12. The following performance objectives and constraints have been used to size air-
plane configurations:
L] Objectives:

®  Payload = 350,000 Ib

® Range = 10,000 nmi

e  Cruise Mach: determined by tradeoff studies
®  (onstraints:

L Field length: 9,000 ft maximum

° Minimum climb altitude: 35,000 ft with turbulent drag levels for LEC airplane
The range and payload objectives were the defined goals of the study to meet the long-range
military airlift requirements. The 9,000-ft military critical field length requirements will
allow operation off existing runways. The LFC configurations additionally were required to

climb to 35,000 ft with fully turbulent flow drag levels. This would allow the LFC airplanes
to climb above typical snow or rain storms to establish laminar flow.




@
e PAYLOAD = 350,000 Ib
@ @ Q 75 463L CARGO CONTAINERS
® 3 M-60 TANKS
MISSION RANGE . I
| 10,000 nmi i
MISSION ELEMENT ALLOWANCES
(j) START, TAXI, TAKEOFF e 5MINUTES AT MAXIMUM CRUISE THRUST AT SEA LEVEL
e 1 MINUTE AT MAXiMUM TAKEOF~ THRUST AT SEA LEVEL
@ CLIMB e CLIMB FROMSEA LEVEL TO BEST CRUISE ALTITUDE AT
MAXIMUM CLIMB POWER
@ CRUISE-CLIMB e CRUISE-CLIMB AT BEST CRUISE ALTITUDE
@ DESCENT e NO ALLOWANCE FOR FUEL, TIME, OR DISTANCE
RESERVES
@ LOITER e 30-MINUTE LOITER AT MAXIMUM ENDURANCE SPEED AT
SEA LEVEL
@ LANDING e LAND WITH 5% OF INITIAL MISSION FUEL

NOTES: ) SFC IS INCREASED BY 5% THROUGHOUT THE MISSION
@ TAKEOFF DISTANCE ISBASED ON ALL ENGINES OPERATING
e TAKEOFF SPEED = 1.2 Vs
e DISTANCE TO 50 ft OBSTACLE <9000 ft, SEA LEVEL, 90°F

e ONE ENGINE-OUT CLIMB REQUIREMENT =100 FPM
INITIAL CRUISE ALTITUDE =>30,000 ft FOR TURBULENT AIRPLANE
CLIMB TO 35,000 ft WITH TURBULENT DRAGS FOR LFC AIRPLANE
ENROUTE CRUISE SPEED =300 KEAS

GICI®

Figure 12  Flight Profile and Mission Rules
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4.2 ENGINE-AIRFRAME MATCHING

The procedure used to size the airplane configurations is indicated by steps 3 and 4 of

Figure 3. The detailed design layout of each configuration was evaluated to provide base
point thrust, weight, aerodynamic, and flight control data. In addition. scaling relations
were derived by further analyses to account for changes in wing size, engine size. and gross
weight variations in the resizing cycle. A parametric engine-airframe matching method
described in Reterence 8 was used to determine the best combination of engine size. wing
size, fuel requirements. and gross weight necessary to achieve the design mission objectives.

The design selection chart for the reference turbulent airplanc is shown in Figure 13. This
type of design chart parametrically shows the effect of thrust/weight ratio (T/W) and wing
loading (W/S) on the airplane gross weight and block fuel requirements. Performance factors,
such as takeoff field length (TOFL), initial cruise altitude capability (ICAC), and the ratio
of the initial cruise lift coefficient capability to the lift coefficient for maximum lift/drag
ratio (CLR) also are identified.

The minimum gross weight for the turbulent airplane requires a high wing loading of approx-
imately 160 Ib/ft:. With the high wing loading, the configuration could not meet the TOFL
requirement. The minimum fuel burned arrangenient requires a lower wing loading (110 Ib,
ft2). This configuration does meet the takeoff field requirements of 9.000 ft. The final
design for the turbulent airplane was selected by considering the trade between fuel burned
and gross weight along the TOFL = 9,000-ft constraint line (Figure 14). The sclected design.
which has a wing loading of 112.7 lb/t‘tz. has almost the minimum fuel requircments. and
has a gross weight within approximately 2 percent of the minimum gross weight tor this
configuration. This selected wing loading corresponds to a span loading (W/b2 )of 9.3 1b/ft=.

The corresponding design selection chart for the LFC configuration is shown in Figure 13.
T'he minimum gross weight configuration would require a wing loading in excess of 120 Ib/
D : 3 . T - . " 55
ft=. The design wing loading for minimum fuel is approximately 95 Ib/ft-.

The LFC configuration is required to climb to 35.000 ft with fully turbulent drag levels and
also has the TOFL limit of 9,000 ft. The 35,000-ft turbulent climb altitude limit is equiva-
lent to an initial climb altitude capability of 41,000 ft with the laminarized flow drag levels.
These two design constraints limit the acceptable design region. Neither the minimum fuel
nor the minimum TOGW configuration meets the design constraints.

The LFC configuration was sized with different levels of LFC system and structural weight
penalties by considering the trade between gross weight and fuel burned as shown in Figure
. . ¥ ~ on ) < .
16. The selected design has a wing loading of 105 Ib/ft=. This corresponds to a span loading
- 9 ~ o . o o ~ .
of 7.5 Ib/ft=. Because of performance constraints, the selected designs for the LFC configu-
ration have a gross weight approximately 7 percent greater than the minimum gross weight
arrangement and require approximately 5 percent more fuel than the minimum fuel LFC
configuration.

8. Wallace, R. E., Parametric and Optimization Techniques for Airplane Design Synthesis,
Paper No. 7 in AGARD-LS-56, April 1972.
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T R N o s g A s i

FUEL
103 1b

720 +

TOGW
108 1b

1.75

1.70

1.65

1.60

i

RANGE = 10,000 nmi WING GEOMETRY
PAYLOAD = 350,000 Ib AR =12
e MACH =0.78 Ae/ L 200
L D
DESIGN MIL TOFL = 9000 ft t/e = 0.14/0.08
TOGW 3(.
1% 1%
0
2 — LIMITED BY
FUEL % 2% I TOFL
N A 2.3%
1% A~ 1%
MIN FUEL —L— @ MIN TOGW
]
100 110 120 130 140 150 160 170
WING LOADING, W/S, Ib/ft2
8 9 10 1 12 13 14

SPAN LOADING, W/b2, Ib/ft2

Figure 14 Reference Turbulent Airplane Design Selection
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4.3 LFC FUEL AND WEIGHT SAVINGS

Weight and performance characteristics of the reference turbulent airplane and the LFC
configuration sized for different LFC system weight increments are summarized in Table 3.

The uncycled operating empty weight (OEW) buildup for the LFC configuration is shown in
Figure 17. The wing and tails comprise a significant portion of the OEW. Therefore, the
LFC structure and the systems weight increment per unit laminarized area, (AW pc»
can significantly affect the OEW.

The final LFC configuration model 767-733 was sized with an LFC weight penalty of 2.25
Ib/ft2. The LFC systems, which include the suction pumps, suction engines, main collector
ducts. and manifolds, and installation penalties to surrounding structure contribute about
half of this weight increment. The other portion of the LFEC weight increment is the impact
on wing and empennage structural material weight.

Ongoing LFC systems development studies may result in integrated structural concepts, and
systems load sharing/management techniques that may well reduce both the LFC structural
and LFC system weight penalties.

An important objective of this study was to identify the sensitivity of the LFC benefits to
the total LFC structural and system weight. Most of the performance and trade studies
described in this section assumed an LFC total weight penalty of 2.25 Ib/ft2. LEC structural

and system weight considerations are discussed further in Section 7.5.

Ihe fuel saving, TOGW reduction, and OEW change of the LEFC airplane sized with different
(AWT) g relative to the reference airplane also are shown in Figure 17.

5 . . - i) ~ < . . ~ .
For a LFEC weight increment of 2.25 1b/ft= of laminarized arca, the impact of laminar flow
on fuel and weight is:

® Fuel savings of 27 percent

L Reduction in TOGW of 7 percent

® Increase in OEW of 12.2 percent

Nearly all of the increase in OEW is due to the higher wing aspect ratio for the LFC configu-
ration. This is shown in Section 4.7. Figure 17 also shows that a further reduction of the
total L FC systems and structural weight penalty of 0.5 Ib/ft= produces the following addi-
nonai effects:

@ Fuel savings of | percent

®  (ross weight reduction of 2 percent

® OFW reduction of 4 percent
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Table 3 Airplane Performance Characteristics Summary
REFERENCE FINAL LFC CONFIGURATION
TURBULENT 2
AIRPLANE (AW | g Ib/ft
MODEL
ITEM 767-768 0.0 2.25 3.0
: iy Payload, Ib 350,000
Design mission Range, nmi 10,000
TOGW 1,665,800 1,408,980 1,651,560 1,607,650
Weights, Ib OEW 608,600 576,080 682,870 725,160
J Block fuel 668,600 455,960 489,640 502,650
Reserves 43,300 30,870 33,250 34,160
Area, ft2 14,785 13,420 14,780 16,310
AR 12 14 14 14
Wing t/c Inboard/Outboard 0.14/0.08 0.14/0.08 0.14/0.08 0.14/0.08
Ac/4, deg 20 10 10 10
W/s, Ib/ft? 112.7 105 105 105
Engine type/no./BPR STF 482/4/7 .5
Engine TSLS, Ib 77,200 63,400 67,850 69,600
T/W, Ib/lb 0.185 0.180 0.175 0.173
Mach 0.78 0.79 0.79 0.79
ICAC, ft 35,900 41,000 41,000 41,000
hAVE, CRU, ft 40,500 41,000 40,100 39,820
Parlorminie L/Dcru 27.9 (b) 38.9 (b) 40.1 (b) 40.5
SFCCRU. Ib/hr/lb (a) 0.603 (c) 0.643 (c) 0.642 (c) 0.641
VAPP' keas 106.7 111.6 112.2 112.5
TOFL (Mil), ft 9,000 8,650 8,950 9,050
{a) Includes 5% military mission fuel allowance
(b) Does not include suction drag
(c) Includes suction engine fuel flow plus 5 % military fuel allowance

- e r——
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4.4 PAYLOAD-RANGE CAPABILITY

The payload-range capabilities of the LEFC and turbulent configurations are shown in Figure
18. The LFC and turbulent configurations were designed for a 10.000-nmi range with a pay-
load of 350.000 Ib. With the payload reduced to 200,000 Ib. the LFC configuration would
have a cruise range approximately 1,200 nmi greater than the turbulent airplane. With zero
payload, the LIFFC configuration range would be in excess of 20,000 nmi.

4.5 IMPACT OF DESIGN TAKEOFF FIELD LENGTH

The effect of design range on the gross weight and fuel requirements tor the LHFC and turbu-
lent configurations is shown in Figure 19. The LEFC configuration is slightly more sensitive
to the design TOFL because the lack of leading-edge devices reduces its low-speed aero-
dynamic lift capability. Reducing the design TOFL to 8.000 ft would not affect the LFC
fuel saving. The TOGW weight reduction due to LFC would. however. be decreased by
approximately 1 percent.

Increasing the design TOFL would not produce any additional LEC benefits because the
LEC configuration would still be limited by the turbulent flow climb to 35.000-ft design
constraint.

4.6 IN-FLIGHT LOSS OF LFC

The effects of in-flight loss of LEFC or of failure to establish laminar flow were investigated
to determine the impact on the mission performance of the LFC configuration. The results

are shown in Figures 20 through 22.

I'he drag polar and the cruise drag buildup for the design condition having the wing and tail
laminarized to 70-percent chord are compared in Figure 20 with the drag levels for 25 per-
cent. SO percent, and full loss of LEC. With full loss of LFC the cruise lift/drag ratio is
reduced from 40 to 28. This is principally the result of the increase in the wing and tail pro-
file drag.

The cruise distance as fuel is burned is also shown in Figure 20. With no loss of LFC. normal
reserves would allow the airplane to cruise 11,000 nmi. The reserves include S percent of
total mission fuel plus 30 minutes loiter at sea level.

The range capability with design payload and the payload capability with design range are
shown in Figure 21. Normal reserves are adequate to allow the configuration to meet the
design mission objectives with a 25-percent loss of LFC over the entirc mission.

Figure 22 shows the distance of flight and time of flight with LFC loss that can be used to
achieve full laminar flow and meet the design range. |'he reserves will allow the airplane to
cruise 2,000 nmi or will allow 5 hours of flight with full loss of laminar flow to achiceve the
design laminarization and meet the 10.000-nmi mission objectives. This is considered suf-
ficient to fly out of a typical storm area. As previously stated. the loss of LFC performance
calculations assume that the suction engines remain running while attempting to establish
laminar flow. Turning the suction engines off during complete loss of LFC would save fuel
that could be used to further increase the allowable distance of flight or time of flight with
loss of LFC.

30




PAYLOAD
400 - DESIGN POINT
350,000 MAXIMUM PAYLOAD
LFC AIRPLANE, MODEL 767-773 |
300 -
(AWp)| g = 2.25 Ib/ft?
TURBULENT
ad AIRPLANE
MODEL 767-768
" (AW g = 3.0 Ib/ft?
~
~
0 1 1 1 ]
0 5,000 10,000 15,000 20,000
RANGE, nmi
Figure 18 Payload-Range Capability
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Figure 19 Effect of Design Takeoff Field Length on Fuel and Weight
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These results indicate that normal reserves are adequate to meet the mission objectives with
reasonable losses in LEC.

4.7 EXTENT OF LAMINARIZATION

The basic LFC configuration model 767-773 had the wing and empennage laminarized to
70-percent chord. The laminarized areas and some of the considerations that led to the
selection of the laminarized areas are discussed in Section 5.2.

The results of a recent study‘S) of a composite LFC wing indicate that full chord laminari-
ization of a wing with TE controls is technically feasible. The practical solution of the chal-
lenging design problems associated with full chord laminarization was well beyond the scope
of the study reported herein. Additionally, detailed design studies that will be necessary to
understand the compatibility of full chord LFC with emergency descent devices (e.g., spoil-
ers) and moving active controls have yet to be conducted.

The extent of laminarization investigation discussed in this section did not address the solu-
tion of these design problems. The objective was to assess potential performance benefits by
increasing the amount of laminarization on the wing and empennage.

The effects of the extent of laminarization on the cruise drag. cruise lift/drag ratio. and on
the fuel flow requirements for the suction engines are shown in Figure 23. The cruise lift to
drag ratio increases from 40 to 46 as the amount of laminarization increases from 70-percent
to 95-percent chord. Increasing the amount of laminarization results in additional LFC
structural and systems weight. The suction mass flow requirements (Figure 24) more than
double as the amount of laminarization increases from 75-percent to 90-percent chord.
Consequently. the compressor and suction engines increase in size accordingly and burn
more fuel. The suction engine fuel requirements in Figure 23 indicate that increasing the
amount of laminarization from 70-percent chord to 95-percent chord increases the suction
engine fuel from 5 percent to over 13 percent of the fuel used by the main propulsion
engines.

Figure 25 is a comparison of the gross weight of the LFC configuration, sized with different
chordwise extents of laminar flow, and the gross weight of the reference turbulent airplane.

The LFC configuration arrangement without laminar flow has a gross weight that is higher
than that of the reference turbulent airplane. Tnis implies that the optimum planform for
the LFC configuration is not an optimum for a fully turbulent flow configuration. As the
configuration is laminarized, the gross weight decreases because of the reduced fuel
requirements.

The effect of the extent of laminarization on LFC fuel saving, gross weight reduction, and

OEW change is shown in Figure 25. The effect of laminarizing only the wing to 70-percent
chord also is shown.
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Tne increase in OEW s primarily due to the wing plantorm change Increasing the percent
chord of laminarization beyond 70-percent chord continues to save fuel. However. the gross
weight remains approximately constant.

Results of the extent of laminarization study suggest the following order for achieving maxi-
mum LFC benefits:

I. Laminarize the wing back to the TE control surfaces. The nested chord length of the
control surfaces should be minimized without compromising the low-speed
performance.

5

2. Laminarize the empennage back to minimum chord TE control< on the tails.

(o5]

Conduct the necessary trade and detailed design studies to identify the practical bene-
fits and technical risks of laminarizing over TE surface.

4.8 POTENTIAL BENEFITS OF BODY DRAG REDUCTION

The LFEC airplane. model 767-773 has a cruise lift/drag ratio of 40. The LFC configuration
and the reference turbulent configuration have relatively low induced drag because of the
large wing spans. The major aerodynamic effect of LFC was to dramatically reduce the pro-
file drag of the wing and empennage. Consequently. as shown in Figure 26, the body profile
drag, which amounts to approximately 30 percent of the cruise drag, becomes a significant
drag item. It might be anticipated that reducing the profile drag of the fuselage would be
particularly attractive on a LFC airplane.

Various experimental and theoretical investigations(?-12) have explored a number of aero-
dynamic concepts that offer the possibility of significant drag reduction on fuselage type
bodies. These techniques include body laminar flow control. body boundary layer control.
low energy air slot injection, and compliant skins. Additional experimental. analytical,
detailed design and systems trade studies are necessary to identify the technical and practi-
cal feasibility of these potential fuselage drag reduction techniques.

A study was made to identify the potential performance benefits of achieving a reduction in
the fuselage drag of the LFC configuration, model 767-773. The effects of body drag reduc-
tions up to 40 percent for weight increments of 0, 1.5 and 3.0 Ih,'l't2 of treated area on the
sized airplane characteristics were calculated. Results are shown in Figure 26.

A 25-percent body drag reduction would result in an additional 4-percent gross weight reduc-
tion and an 8-percent saving in fuel for the LFC configuration. As shown in Figure 27, this
is approximately equivalent to benefits achieved by laiinarizing the empennage.

9. Fischer, M. G. and Ash, R. L., 4 General Review of Concepts for Reducing Skin Fric-
tion, Including Recommendations for Future Studies, NASA TMS-2894. March 1974.

10. Ash, R. L., On the Theory of Compliant Wall Drag Reduction in Turbulent Boundary
Layers, NASA CR-2387, April 1974.

I'l. Howard, F. G. and Hefner, J. N., “Multiple Slot Skin Friction Reduction.” Journal of
Aircraft, Vol. 12, No. 9, Sept. 1975, pp753-754.

2. Pfenninger, W., Studies of Laminarized Underwater Suction Bodies. Boeing Document
D6-40283, March 1972, 40
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4.9 LIFE-CYCLE AND OPERATING COST COMPARISONS

Economic analyses were made to compare the 20-year life-cycle costs and surge condition
operating costs of the LFC and turbulent configurations. Additional analyses were made to
identify the sensitivity of the relative costs of the LFC configuration to the following:

o Fuel price

®  Total LFC structural and systems weight penalty
® LFC technology complexity costs

®  [FC maintenance costs

Ground rules for life-cycle cost calculations are summarized in Figure 20. The low utiliza-
tion rate of 1080 flying hours per airplane used for the life-cycle cost calculations is about
one-third to one-quarter that of the annual usage of commercial transports.

Results of the life-cycle calculations are shown in Figure 28. Fuel costs of the turbulent con-
figuration make up a relatively small portion of the total life-cycle costs because of the low
utilization rate. Production costs are the low utilization rate. Production costs are the major
cost items. Although LFC reduced the fuel costs significantly, the estimated production
costs increased such that the refative life-cycle costs of the LEC configuration exceed those
of the reference turtulent airplane.

Operating costs were determined for a surge condition with a higher utilization rate of 10
flying hours per day per airplane for a 60-day period. Ground rules and results are shown in
Figure 29. Fuel costs comprise a major portion of the operating costs. Consequently, operat-
ing costs of the LFC are less than those of the turbulent airplane.

The life-cycle and operating costs of the LFC configuration are shown in Figure 30 as per-
cent changes relative to the corresponding costs of the turbulent airplane at the same fuel
price. The fuel price and the LFC systems and structural weight penalty have a significant
effect on the relative life-cycle and operating costs of the LFC airplane.

For an LFC weight penalty of 2.25 Ib/ft2, and with a fuel price of 40¢/gal, the life-cycle
costs of the LFC configuration are 16.5 percent greater than the life-cycle costs of the
turbulent airplane. The LFC airplane surge condition operating costs are, however, 9 percent

less than those of the turbulent airplane.

At 80¢/gal the relative life-cycle costs and operating costs of the LFC airplane are. respec-
tively, 13 percent more and 14 percent less than for the turbulent airplane.

These results also show that a reduction in the LFC systems and structural weight penalty of
"R | s v
0.5 Ib/ft= will result in:

o Reduction in the LFC life-cycle costs of 2.5 percent
L] Reduction in the LFC surge condition operating costs of 1 percent
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The aforementioned economic assessments of the LFC configuration assumed a 3.5-percent
increase in maintenance costs over a conventional turbulent airplane. The effect of varia-
tions in the maintenance costs on the economics of the LEC configuration is shown in Fig-
ure 31. This figure also shows the impact of LFC technology complexity cost variations
relative to the current study esiimates. The LFC technology complexity costs reflect the
estimated impact of LFC on engineering hours, development hours, tooling hours, and pro-
duction hours.

A 50-percent variation in the technology complexity costs would change the life-cycle costs
by 5 percent, and has a negligible effect on the operating costs of the LFC airplane. An
increase in maintenance cost factor from 3.5 percent to 10 percent increases the life-cycle
costs by 1.5 percent and the operating costs by 4 percent.

The relative life-cycle costs of the LFC configuration are shown in Figure 32 for no increase
in technology complexity costs over that of a turbulent airplane. This can be considered as a
design objective for an LFC airplane. With no increase in technology complexity costs on
the laminarized components. the life-cycle costs of the LFC airplane could be less than
those of the turbulent airplane provided the LFC system and structural weight penalty is
less than 1.5 Ib/ft2.

Results of these economic evaluations indicate that the life-cycle costs of the LFC airplane
will probably be higher than the life-cycle costs of the turbulent airplane because of the low
utilization. The life-cycle costs, however, are very dependent on the LFC systems and struc-
tural weight penalty, and on the technology complexity costs. Operating costs of the LFC
airplane are less than those of the turbulent airplane. The additional maintenance costs of
the LFC airplane can have a powerful effect on operating costs.

4.10 TOTAL LFC FUEL SAVINGS

Fuel savings that would be achieved through the use of laminar flow control are shown in
Figure 33. The 20-year peacetime low-utilization rate would result in a fuel saving of over 2
billion gallons of fuel. Additionally, for every 60-day surge cendition. the LFC configura-
tion would save nearly 60 million gallons of fuel, which is equivalent to the total fuel
burned by 104,000 cars operating for 1 year.
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5.0 LFC DESIGN CONSIDERATIONS

Some considerations that led to the design and assessment of the study LFC configurations
are discussed in this section.

5.1 FACTORS AFFECTING LAMINARIZATION

Figure 34 illustrates some design and operational factors that can affect the achievement or
maintenance of laminar flow. The Northrop X-21 flight test program demonstrated the tech-
nical feasibility of laminar flow control and established the suitability of existing LFC
design criteria to address these factors.

To identify the practical and economic feasibility of LFC in either a military or commercial
aircraft operational environment, additional LFC wind tunnel, flight test, analytical and
system studies are required. An important objective of these investigations would be to
develop such areas as design guidelines, system and structural concepts, and manufacturing
techniques that will permit development of an LFC airplane with minimum weight penal-
ties, devefopment and production costs, and maintenance requirements.

Current NASA-sponsored LFC development studies are directed at providing this necessary
information for smaller commercial transport aircraft.

5.2 LAMINARIZED FLOW AREAS

The study final LFC configuration Model 767-773 has wing and tail surfaces laminarized to
70-percent chord, which corresponds to the start of the trailing-edge control surfaces.
Laminarized areas are shown in Figure 35. Some design considerations for selecting this
extent of laminarization instead of full chord laminarization also are summarized in this
figure.

Laminarization to 70-percent chord on the study configurations was selected primarily
because of reduced design complexity and lower technical risk. The potential performance
benefits from increasing the extent of laminarization were explored. (Results were discussed
in Section 4.7.)

5.3 SUCTION SURFACES

To achieve laminar flow control, a surface and an internal ducting system must be designed
and developed with internal aerodynamics and controls that permit a desired inflow through
the suction surface over a specified range of operating conditions. A continuously porous
surface might be ideal. However, both theory and experiment have shown that 2 laminar
boundary layer can be kept stable by applying suction at suitable discrete intervals.
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Porous, perforated, and slotted surfaces have been considered in past(13) and recent(3.4.5)
LFC investigations. Porous-surface material is generally believed to have poor clogging char-
acteristics because of irregular and twisting air passages. Because of the potential difficulty
of maintaining a porous surface, the present emphasis on suction surfaces is being placed on
slotted or perforated surfaces. Distributed suction has been closely approached by removing
the slowest boundary layer particles close to the surface through a large number of fine suc-
tion slots(!4). This was the approach used in the Northrop X-21 test program.

The LFC configurations defined in this study incorporated the slotted surtace concept.
Design definition of the necessary slot geometry is discussed in Section 7.4.

5.4 STRUCTURAL CONCEPTS

During recent Boeing in-house LFC studies, the NASA/Boeing composite LFC study. and
the ongoing NASA sponsored LFC systems studies, a number of structural concept designs
have been investigated. These included:

®  Skin-stringer concept
° LFC glove concept
° Integrated ducting load-carrying concepts: e.g., integrally bonded honeycomb

Sketches of these concepts are shown in Figure 36 along with a relative evaluation of each
concept.

The skin-stringer concept has the principal advantage of being a proven state-of-the-art struc-
tural concept. Suction slots should be along isobars to allow uniform suction distribution
along the slot and to minimize inflow/outflow problems. For structural efficiency, the
stringers should be equally spaced and parallel to the rear spar. Because of these conflicting
requirements, a design compromise would be necessary. The spanwise ducts in the skin-
stringer concept shown in Figure 36 are exposed to fuel, thereby increasing the chances of
leakage. This could impact the technical risk, inspectability. and structural integrity associ-
ated with this concept.

The LFC glove concept was used successfully in the F-94A LFC flight test program“S).
Ideally, the glove would be made removable and segmented for repair, replacement, and
inspection. The glove, however, is not considered as a viable, practical concept because of a

13. Gregory, N., “Research on Suction Surfaces for Laminar Flow.” Boundary Layver and
Flow Control, edited by Lachmann, G. V., Pergamon Press, 1961, pp924-960.

14. Pfenninger, W., Studies to Verify Laminar Flow at Verv High Length Reynolds Num-
bers by Means of Distributed Suction in the Presence of Minimum Disturbances,
Boeing Document D6-40281, Feb. 1971.

15. Pfenninger, W. and Groth, E., “Low Drag Boundary Layer Suction Experimcnts in
Flight on a Wing Glove of an F-94A Airplane with Suction through a Layer Number of
Fine Slots,”” Boundary Layer and Flow Control, edited by Lachmann, G. V., Pergamon
Press, 1961, pp961-999.
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Figure 36 Laminar Flow Control Structural Concept Considerations

53




number of technical and operational concerns. The glove weight 1s parasitic and results in a
heavier structure. Manufacturing costs would probably be high because different manufac-
turing techniques and additional tooling would be required for the basic wing structure and
the glove.

Maintenance costs also would be relatively high. A glove designed to reduce the inherent
weight penalty would be susceptible to damage. Additionally, a large inventory of expensive
and noninterchangeable replaceable panels would be required at cach maintenance station.
A nonload-carrying glove must allow for wing flexing. This offers structural concerns such as
fatigue effects and scrubbing of the panels against each other, and the problem of water
ingestion later turning to ice. Routine inspection of a glove would be difficult because the
basic load-carrying structure is hidden from view. This fact, together with the possible loss
of one or more panels in flight. could also make certification difficult and greatly increase
the technical risk.

The X-21 LFC wing was an early version of an integrated duct load-carrying structure.
Current NASA-sponsored LFC studies include an effort to develop integrated duct load-
carrying structural concepts that will effectively utilize existing and projected advanced
technology, materials, design, and manufacturing techniques. This concept promises a
lightweight aerodynamically smooth structure with low technical risk through design
innovation.

An integrated duct load-carrying structure was assumed for the large military configurations
of this study. Extensive design and development studies would be necessary to identify
weight characteristics and production/development costs. Hence, the emphasis in this study
has been on identifying relative benefits and sensitivity data rather than on calculating
specific values.

5.5 SUCTION SYSTEM

The suction system design was based on location of two suction pump compressors on each
wing. two suction engines in the empennage, and 0 to 70-percent chord laminarization of
the wing, and vertical and horizontal stabilizer. This is shown schematically for the wing in
Figure 37.

Specific design criteria applied to the wing duct system included: two separate levels of suc-
tion (upper surface and lower surface); duct airflow velocity of Mach=0.2 maximum; slot
Reynolds number of from 50 to 80; slot velocity of 75 to 100 ft/sec: and suction duct pres-
sure level equal to minimum surface pressure minus 15-percent free-stream dynamic pressure.
Spanwise collection ducts provide for collection of air from 0 to 70 percent of wing chord
tor both upper and lower surfaces. Mixing of local chord suction air is accomplished at the
suction engine location for each surface.

The same duct and slot design velocities and pressure level considerations were used for the
horizontal and vertical stabilizers. The horizontal stabilizer pressure level and suction distri-
butions are similar to the wing. The vertical stabilizer system operates at a different pressure
level.

Therefore, each aft unit has three levels of suction and three compressor sections.
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The suction system geometry used for slots, plenums. and ducts is also shown in Figure 37.
Typical duct system diameters are shown in Figure 38.

Four different suction pump drive systems were considered: Two systems integrated with
the primary engines and two independent systems.

Systems integrated with primary engines include a direct drive system and a bleed-burn Sys-
tem. The suction compressor with a direct drive system is driven by shaft power extraction
from the main engine. The bleed-burn system consists of a turbine using heated high-
pressure bleed air from the main engine to drive the suction compressor.

The independent systems use a separate turboshaft engine to drive each suction compressor
unit. The two independent systems that were considered differed in the source of the engine
airflow. Both free-stream ram-air and suction-air sources were examined.

A relative comparison of these different suction pump drive systems is shown in Figure 39.
The ram-air turboshaft drive engine concept was selected for this study. The suction unit
design for the wing installation is shown in Figure 40. The basic design requirements and the
compressor design operation also are summarized in this figure.

The compressor was sized by the required suction airflow. the compressor inlet total pres-
sure and the design exit total pressure. The wing compressor has two stages. The tirst stage
compresses upper surface air to match the pressure level of lower surface air. The second
stage compressor increases the pressure of the discharged air to the free-stream total pressure.
The tail suction compressors have an additional stage to handle air sucked from the vertical
tail. The tail turboshaft drive engines are, however, identical to the wing units.

5.6 LFC THRUST-DRAG-WEIGHT BOOKKEEPING SYSTEM

Suction engines on the LFC contiguration drive pumps that provide suction to remove the
slowest boundary layer particles close to the surface. This process retains a laminar bound-
ary layer and results in significant drag reduction relative to the turbulent airplane. Because
of the removal of boundary layer air and the additional suction engines, some care must be
exercised in properly accounting for the impact of the suction engines on thrust, drag,
weight. and fuel flow of the entire airplane system. The thrust-drag-weight bookkeeping sys-
tem used in the study is shown in Figure 41.

Suction airflow removed from laminarized areas is pumped to free-stream conditions. The
suction compressor. therefore. produces a gross thrust that exactly cancels the suction or
sink drag of air drawn through the surface plus the internal flow losses. The turboshaft
engines’ primary function is to supply the shaft power necessary to drive the compressor. A
negligible residual thrust is, however, produced by these engines. The main engines provide
the primary thrust to propel the aircraft.
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® SYSTEMS INTEGRATED WITH PRIMARY ENGINES

e DIRECT DRIVE: SHAFT POWER EXTRACTION FROM THE MAIN ENGINE DRIVING
A SUCTION COMPRESSOR

e BLEED AND BURN: TURBINE USING HEATED HIGH-PRESSURE BLEED AIR FROM
THE MAIN ENGINE TO DRIVE A SUCTION COMPRESSOR

@ INDEPENDENT SYSTEMS

® RAM-AIR TURBOSHAFT ENGINE DRIVING A SUCTION

COMPRESSOR RELATIVE RATING |

e SUCTION-AIR TURBOSHAFT ENGINE DRIVING A SUCTION é ggﬁf

COMPRESSOR Beans
INTEGRATED SYSTEMS | SEPARATE SYSTEMS |
DESIGN ITEM BLEED AND DIRECT |RaM AIR| sucTion AIR i

® DESIGN/LOCATION FLEXIBILITY - O ® o

e CONTROL FOR OFF-DESIGN OPERATION = O [ o :
® AFFECTS/DEPENDS ON ENGINE OPERATION D) ] o o a
e NET SYSTEM FUEL CONSUMPTION @) o (<) - é
® SYSTEM WEIGHT ® - O O 2
® DESIGN COMPLEXITY (= O [ O ‘
» DESIGN HAZARD POTENTIAL w - o O :
® DISTURBANCE TO BOUNDARY LAYER o o - =] 1

*SELECTED FOR THIS STUDY

Figure 39 Suction Pump Drive System Selection
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In cruise, thrust produced by the main engines balances airplane drag. Airplane drag includes
the wake drag of the laminarized surfaces: the profile drag of the nacelles, struts, and fuse-
lage; and the airplane compressibility drag, trim drag, and induced drag.

In airplane sizing calculations, the LFC-related weight items including the weight of the
turboshaft engines and compressors, internal ducting, and structural weight increment all
varied with the laminarized areas. Fuel flow of the main engines depends on the previously
defined airplane drag. Size of the main engines was determined by the TOFL and turbulent
climb requirements. The suction engine fuel flow varies with the laminarized area. The total
fuel flow includes the suction engine plus main engine fuel flow.

The standard convention in discussing the aerodynamic efficiency of an LFC airplane is to
define total drag as the sum of the airplane drag plus an equivalent suction drag. Equivalent
suction drag is defined in terms of the power, Pi, required to drive the pumps in the absence
of internal duct losses. This is a convenient way to identify the net acrodynamic benefits of
an LFC configuration. However, to be consistent with the previously defined bookkeeping
system, the aerodynamic drag buildup of the LFC configurations does not include the
equivalent suction drag. The suction engines and compressors are, however, sized to balance
momentum loss of the suction airflow including the internal duct losses.

5.7 TAKEOFF-CLIMB-CRUISE THRUST MATCHING

An LFC airplane has varied thrust demands because of low cruise thrust requirements.
Engines for the study LFC configurations were required to have a TOFL not to exceed 9000
ft. Additionally, the engines also were required to allow the configurations to climb to
35.000 ft with fully turbulent flow drag levels. The turbulent climb to altitude condition
generally determined the size of the engines.

The lift/drag ratios, thrust characteristics, and fuel consumption of the final LFC configura-
tion Model 767-773 are shown in Figure 42. The turbulent climb lift/drag ratio, L/D, is 26
percent less than the LFC cruise L/D. Climb thrust at 35,000 ft of the sized engine is 28
percent greater than cruise thrust at 40.000 ft. Characteristics of the STF 482 engine allow
the engine in cruise to be throttled up to 17 percent with less than a 1/2-percent penalty in
SFC.

These data show that takeoff and turbulent climb thrust demands result in an engine larger
than would be required for cruise. However, the impact on fuel consumption is negligible.
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6.0 LFC CONFIGURATION EVOLUTION

This section summarizes studies and results that led to the evolution of the final LFC
configuration. The initial baseline LFC configuration was derived from the reference turbu-
lent airplane by incorporating only the minimum design changes necessary to laminarize the
wing and tails. A praced-wing LFC configuration was then developed from the initial base-
line LFC configuration. Additionally, LFC wing geometry/cruise speed optimization study
was conducted to select the wing planform for the final LFC configuration.

6.1 INITIAL BASELINE LFC CONFIGURATION

The initial baseline uncycled LFC configuration, Model 767-769. that was derived from the
reference turbulent airplane is shown in Figure 43. This configuration was derived from the
reference turbulent airplane Model 767-768 by removing leading-edge devices and adding six
separate turboshaft-driven suction pump units. Four of these suction units are located on
the wing, and two units are located on the empennage. The wing and tails are slotted to pro-
vide laminar flow over 70 percent of the surfaces. The LFC suction ducts are integral with
the primary structure. Internal suction duct design permits low duct Mach numbers.

The initial baseline LFC configuration was sized to achieve design mission objectives. The
design selection, which was constrained by both the TOFL and iurbulent climb altitude. is
shown in Figure 44. A wing loading of 90 Ib/ft2, which corresponds to a span loading of 7.5
Ib/ft2. was selected. The selected design is within approximately | percent of the minimum
fuel burned and 2 percent of the constrained minimum gross weight configuration

arrangements.

I'he initial baseline configuration was sized for a wide range of LFC structural and system
weight penalties. Results are shown in Figure 45. The unit LFC structural and systems
weight impact on laminar flow control fuel savings and gross weight reduction is significant.
For this inital LFC configuration, a 1 Ib/ft2 LFC weight penalty change results in a 2.5-
percent change in fuel savings and a S-percent change in the TOGW reduction.

6.2 LFC BRACED WING STUDY

Previous LFC configuration studies and recent work by Dr. W. Pfenninger have indicated
that a strut-braced wing might be a desirable arrangement for an LFC configuration. The
strut-braced wing could atlow use of a large wing span. Additionally, maximum wing chords
that normally occur near the side of the fusclage are reduced by using an untapered plan-
form inboard of the strut-attachment station. The shorter chords reduce the maximum
chord Reynolds number and, thereby, ease the task of laminarization.
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Figure 44 Baseline Laminar Flow Control Airplane Design Selection
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Previous Northrop studies shown in Figure 46, and recent unpublished Boeing wind tunnel
test results, indicate that aerodynamic interference between wing and strut can be made
negligible by proper tailoring of the wing and/or strut, particularly near the strut-wing inter-
section. Results of recent Boeing large freighter braced-wing studies, were used to provide
design guidance for defining an LFC braced-wing arrangement. Strut-attachment studies
shown in Figure 46 indicate that the spanwise extent ot a simple single-strut brace is limited
by a minimum attachment angle of 13 to 15 deg. The optimum strut spanwise extent could
perhaps be increased with use of a more sophisticated jury strut arrangement, or a modified
body with increased depth between wing-body intersection and the strut-body intersection.

The strut-braced wing LFC configuration developed for this study is shown in Figure 47.
The strut is unswept to allow achievement of natural laminar flow on the relatively short
chords. The wing planform has an aspect ratio of 15. The wing inboard of the strut attach-
ment is untapered. The minimum strut attachment angle for this simple strut arrangement
resulted in an attachment station at approximately 33 percent of the wing semispan.

Results of the braced-wing study are shown in Figure 48. The selected design has a wing
loading of 113 Ib/ft2 and a span loading of 7.5 Ib/ft2. Gross weights of the sized LFC
braced-wing configuration and the initial LFC cantilever wing configurations are compared
in Figure 48. Both configurations were sized with an early assessment of the total LFC
structural and systems weight penalty. As previously mentioned in Section 4.3, the ongoing
NASA-sponsored LFC systems studies may result in integrated LFC structural and systems
concepts with a significantly lower LFC weight penalty.

Gross weight for the strut-braced wing LFC configuration Model 767-767 is slightly less
than the cantilever configuration. This reduction is the result of a lower OEW associated
with a higher wing loading and consequently lower wing area.

The strut-braced wing concept offers a number of design variables, such as strut chord,
spanwise attachment, strut thickness, sweep. and strut concept (jury or simple struts), in
addition to the usual wing planform parameters. that must be considered to fully optimize
the configuration arrangement. Consequently, the study effort was directed at optimizing
the cantilever wing arrangement.

6.3 LFC WING GEOMETRY/CRUISE SPEED OPTIMIZATION STUDY

A wing geometry/cruise speed parametric study was conducted to optimize the LFC canti-
lever wing configuration. The technique used! 16) consists of the five sequential steps shown
in Figure 49. The first step involves the definition of the study variables. Primary variables
included:

®  Wing inboard/outboard thickness ratios: 0.14/0.08:0.15/0.10:0.16/0.12:0.17/0.14
®  Wing aspect ratio: 8,10,12, 14

®  Wing quarter chord sweep: 102 202 H25%, 30

16. Healy, M. J.; Kawalik, J. S.; and Ramsay, J. W., *"Airplane Engine Selection by Optimi-
zation on Surface Fit Approximations,” Journal of Aircraft, Vol. 12, No. 7, July 1975,

593-599.
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Secondary variables included:

®  Wing loading: W/S = 60-1201b/ft2
®  Thrust/weight ratio: T/W =0.10-0.30
®  Mach number: M = 0.70-0.85

®  Optimum cruise altitude

Design constraints included:

° Range = 10,000 nmi

L Payload = 350,000 1b

e  Turbulent climb altitude > 35,000 ft

®  Takeoff field length < 9,000 ft

Principal design figures of merit included:

L4 Fuel burned

®  Takeoff gross weight

° Productivity

In the second step, the method of orthogonal latin squares was used to select 16 ‘wing
designs out of the possible 64 combinations of primary design variables. This design selec-
tion procedure provides an unbiased choice of the primary variables and is a uniform
representation of the design space.

Each of the 16 selected designs was evaluated and sized by the engine/airframe matching
technique described in Section 4.2. This step provides specific values of the optimized sec-
ondary variables and figures of merit.

A forward step regression analysis method was then used to construct approximating func-
tions to represent the relationship between the primary independent variables and each

dependent variable including the constraints and the figures of merit. The generalized form
of the regression equations is:

Dependent variable =  Cj + C2(AR) + C3(t/c) + C4 (AC/4) (Linear)
+Cs5(AR x t/c) + Cg(AR x A C/4) +Cy(t/ex A c/a) (Cross
Products)
+C8(AR)2 + Cg (t/c)? + Cyg (A ¢/a)? (Squares)

The stepwise regression analysis retains only the significant terms in the equation. The
resulting equations are not laws of nature, but rather represent a statistically derived data
enrichment procedure.
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The approximating functions can then be used in a powerful nonlinear optimizer to conduct
constrained or unconstrained optimization, sensitivity, and trade studies. This parametric
optimization process is described in Reference 16.

The design selections for each of the sixteen configurations that were analyzed are shown in
Figures 50 through 53. The selected designs all have a span loading of W/b2 =175 lb/t‘tz.
These designs were close to the constrained minimum fuel configuration and generally with-
in 2 percent of the constrained minimum gross weight configurations. The corresponding
wing loadings vary from W/S = 60 to 105 lb/ft2. These results imply that the LFC configu-
rations tend to optimize with approximately the same span length irrespective of aspect
ratio, sweep, or thickness.

6.3.1 PERFORMANCE OPTIMIZATION

Results of the wing planform/cruise speed optimization study are shown in Figures 54
through 57. These results illustrate the impact of the wing planform geometry on the cruise
Mach number, fuel requirements, TOGW, and productivity of the LFC cantilever wing
configurations. The surface fit equations are shown to be a good representation of the
initial baseline LFC configuration and the additional 15 LFC study configurations.

The spanwise variation of thickness/chord ratio is shown in Figure 54. The thickness/chord
ratio referred to in the subsequent figures corresponds to the thickness/chord ratio on the
outboard portion of the wing. In all cases the inboard thickness/chord is greater than that
outboard on the wing.

Characteristics of the optimum LFC wing planform geometry are summarized in Figure 58.

The optimum planform for minimum fuel as the figure of merit has the highest aspect ratio,
lowest thickness/chord ratio, and a quarter chord sweep of approximately 12 degrees. This
resuits in a cruise Mach number M = 0.78. The sensitivity data show that achieving a high
aspect ratio is most important for minimum fuel consumption. Reducing the aspect ratio
from 14 to 8 would increase the fuel consumption by nearly 13 percent. Increasing the wing
thickness from 8 percent to 14 percent would increase fuel consumption by 4 percent. Wing
sweep is seen to be a rather unimportant parameter.

The minimum gross weight configuration has the same high aspect ratio and a slightly lower
sweep angle than the minimum fuel-burned configuration. The minimum gross weight con-
figuradon favors a higher thickness ratio (11 percent). The corresponding optimum cruise
Mach number M = 0.75. The sensitivity data show that a low sweep angle and high aspect
ratio are most important for gross weight as a figure of merit. Wing thickness ratio is an
insignificant design variable in this case.

The maximum productivity configuration favors a high aspect ratio. Because cruise speed is
important for productivity, the optimum configuration desires a high sweep, and low wing
thickness. This results in a cruise Mach number M = 0.85. The sensitivity data indicate that
having a low t/c wing with a high aspect ratio is most important. Wing sweep is seen to have
only a small effect on productivity.
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OPTIMUM CONFIGURATIONS
FIGURE OF MERIT AR t/c Ay MACH
MINIMUM FUEL 14 (MAX) 0.08 (MIN) 11.6° 0.78
MINIMUM TOGW 14 (MAX) 0.1 10° (MIN) 0.75
MPL o
MAXIMUM oo 14 (MAX) 0.08 (MIN) 30° (MAX) 0.84
DESIGN SPACE: 8<ARK 14
0.08<t/c<.14
(o] (¢]
10°< ACI‘ <0
DESIGN SENSITIVITIES
PRIMARY FIGURE
CONFIGURATION OF MERIT: CHANGE (%) DESIGN VARIABLE RANGE
12.9 AR =814
MINIMUM FUEL A/P FUEL: 4.0 t/c = 0.08 +0.14 f
i
AN
1.6 A= 10°—+30 |
3
1
4.0 AR =8-*14
MINIMUM TOGW A/P TOGW: 0.6 t/c = 0.08 +0.14 !
5.1 Ajq = 10°+30°
3.6 AR=8-14
MPL MPL . 2
MAXIMUM $oo TOGW 6.6 t/c = 0.08 +0.14
14 Ay = 10°+20°
Figure 58 Laminar Flow Control/ Wing Optimization Study Results
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6.3.2 EASE OF LAMINARIZATION

A low chord Reynolds number and a low unit Reynolds number are desirable to ease the
task of laminarization. All of the LFC wing parametric study configurations represented by
the regression analysis equations have average cruise maximum chord length Reynolds num-
bers and average unit Reynolds number contained in the shaded bands of data in Figure 59.

The maximum chord Reynolds number achieved by the X-21 flight test program was 47.3 x
106 (17 18), Reynolds numbers of approximately 60 x 106 have been achieved in wind
tunnel tests(!19 20). Results in Figure 59 show that a high aspect ratio is necessary to limit
the maximum chord Reynolds number.

Study results also indicate that all configurations cruised at a Mach number and cruise alti-
tude combination such that the unit Reynolds was 1.5 x 106. To cruise at a higher altitude
without incurring a significant performance penalty would probably require a different
engine-cycle selection.

Another important parameter that affects the ease of laminarization is the attachment line
momentum thickness Reynolds numoer, Ry L If the attachment line momentum thick-
ness Reynolds number exceeds approximateﬁ/ 100, disturbances may propagate spanwise
along the wing LE, destroying laminar flow over a significant portion of the wing(z() 21),
Exceeding this limit would require special treatment, such as suction around the LE with
chordwise slots, or locally reduced LE radii(20 21). The effect of typical values of LE suc-
tion on the allowable equivalent unsucked momentum thickness Reynolds number is shown
in Figure 60. Low wing sweep is seen to be most important to achieve low values of ROAL'
Low thickness ratios and high aspect ratio are also desirable. Low sweep also is desirable to
eliminate boundary layer crossflow instability concerns.

17. Wheldon. W. G. and Whites, R. C., Flight Testing of the X-21A Laminar Flow Control
Airplane, AIAA Paper No. 66-734, Sept. 1966.

18. Kosin, R. E., Laminar Flow Control by Suction as Applied to the X-21 Airplane, AIAA
Paper No. 64-284, July 1964.

19. Gross, L. W., Experimental and Theoretical Investigation of a Reichardt Body of
Revolution with Low Drag Suction in the NASA Ames 12 ft Pressure Tunnel,
Northrop Report NOR-63-46, BLC-148, July 1963.

20. Gross, L. W.. Investigation of a Reichardt Body of Revolution with Low Drag Suction
in the Norair 7 x 10 ft Wind Tunnel, Northrop Report BLC-143, NOR 62-126, 1962.

21. Pfenninger. W. and Reed, V. D., “Laminar Flow Research and Experiments,” Astro-
nautics and Aeronautics, July 1966, pp44-50.
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6.4 FINAL LFC CONFIGURATION SELECTION

The results of the wing planform/cruise speed optimization study, as shown in Figure 61,
indicate the desirable planform characteristics for optimum performance are compatible
with the characteristics that ease the task of laminarization. A wing planform having a high
aspect ratio, low thickness/chord ratio, and low sweep results in approximately the opti-
mum arrangement that minimizes both fuel and gross weight, and maximizes productivity.
The same geometry results in low chord Reynolds number, crossflow, and attachment line
Reynolds numbers. Consequently, the wing planform for the final study LFC configuration
was selected to have:

L] AR = 14
® t/c=0.14/0.08 (inboard/outboard)
® AC/4=10°

This is the planform for the LFC configuration Model 767-773.
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WING DESIGN PARAMETER

-
FIGURE OF MERIT ASPECT | THICKNESS
RATIO RATIO SWEEP
MINIMUM FUEL HIGH Low NMC
PERFORMANCE MINIMUM TOGW HIGH NMC LOW
MAXIMUM MPL HIGH LOwW NMC
TOGW
LOW CHORD REYNOLDS NUMBER HIGH NMC NMC
LOW UNIT REYNOLDS NUMBER NMC NMC NMC
EASE OF
LAMINARIZATION
MINIMIZE CROSS FLOW NMC LOW LOW
MINIMIZE LE CONTAMINATION HIGH LOW LOW

Figure 67

e NMC: NOT A MAJOR CONSIDERATION
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7.0 CONFIGURATION ANALYSIS AND METHODS

This section contains a description of design and analysis methods used in the study. Tech-
nology levels assumed in development of the configurations are identified. Some of the con-
figuration analyses also are presented.

7.1 AERODYNAMICS
Aerodynamic tasks included the following:
®  Definition of advanced aerodynamic technology levels for the study configurations
° Development of necessary aerodynamic design definitions of the study configurations
®  Definition and evaluation of the high lift systems

®  (alculation of suction flow requirements for laminarization of the wing and tail
surfaces

®  (Calculation of the aerodynamic characteristics of study configurations to provide
necessary data for performance and economic evaluations in addition to trade. sensi-
tivity and optimization studies.

7.1.1 AERODYNAMICS TECHNOLOGY

Advanced aerodynamic technology assumptions included in the study configurations are
summarized in Figure 62. This figure shows drag divergence boundaries for airfoils having
different technology levels. The indicated progress in achieving higher Mach capability has
been accomplished by the design of upper surface shapes with extensive supersonic regions
at cruise condition with negligible wave drag, and by the distribution of lift towards the rear
of the airfoil.

The maximum level of local Mach number on the upper surface is limited by the onset of
significant wave drag. The chordwise extent of supersonic flow is limited by the ability of
the airfoil to retain attached flow through the steep recovery pressure gradients near the
trailing edge. Progress beyond the current level of airfoil technology will probably require
the use of boundary layer control by suction or blowing to prevent separation in the closure
regions of the airfoil. Hence, improvements in critical Mach number might be achievable
with a properly designed LFC system. A critical Mach improvement of Mach = 0.01 was
assumed for the LFC configurations. The LFC configurations also incur an indirect improve-
ment in critical Mach number because the cruise lift coefficient, and, therefore, the design
lift coefficient of an LFC wing, is less than that of an equal aspect ratio turbulent flow wing.
A reduced design Cg allows either an increase in speed for the same thickness or an increase
in thickness at the same speed.

The study configurations have high aspect ratio wings, and low trim drag through an aft cg

location permitted by the augmented stability system. These are aerodynamic benefits
derived from advances in structures, materials, and flight control technology.
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® ADVANCED HIGH-SPEED AIRFOILS
® ADVANCED AERODYNAMIC DESIGN METHODOLOGY
® WING-BODY-NACELLE DESIGN INTEGRATION

® AFT-BODY AND FORE-BODY SHAPE

AIRFOIL TECHNO

t/c =0.10

® LOW TRiIM DRAG (AFT CG)
® HIGH ASPECT RATIO WING
® (BOUNDARY LAYER CONTROL)

® (LAMINAR FLOW CONTROL)

LOGY ENVELOPES

FUTURE TECHNOLOGY

1.5
ML LOF% %
05

- [ == o
1.0
~o ® BOUNDARY LAYER CONTROL
osl L . 79)5 ® LAMINAR FLOW CONTROL
- e /"s ® VARIABLE CAMBER
6,
NS 0, 9@ \
7 6 /lz
LIFT T S ’9>0 o "/y,"’ ?
CAPABILITY N>, N2 Ss,\~
\/ \ o},
0.4} I
%x % M. o% E%
o621 L 1.0 L
| EXISTING AlRPLAr‘\lE ANE TECHNOLOGY ~ CURRENT TECHNOLOGY ™

0.70 0.75 0.80

0.85 0.90

DRAG DIVERGENCE MACH NUMBER,MDD

Figure 62 Advanced Aerodyn
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The reference turbulent and the LFC configurations have engines located on the wing. This
locaticn of the engines, as previously mentioned in Section 3, was required to balance the
airplane. It has been assumed that advanced aerodynamic design methodology would allow
the development of an integrated wing-body-nacelle design with minimum interference drag.
Furthermore it has been assumed that aerodynamic design methods together with the
development of a suitable quiet engine would allow locating the engines on the wing with-
out destroying laminar flow.

7.1.2 CRUISE AERODYNAMIC ANALYSES

The flaps-up climb and cruise acrodynamic characteristics of the study configurations were
calculated by standard preliminary design evaluation techniques used by the contractor for
large freighter studies. Modifications were made to account for effects of LFC on various
drag components.

Total drag of the turbulent configuration was calculated as the sum of the profile drag and
compressibility drag, plus the induced drag. The profile drag is calculated from the wetted
area friction drag by applying form drag factors to account for sweep. thickness, lift, and
interference effects. The profile drag also includes roughness and miscellaneous drag items.
The compressibility drag calculations are based on experimental airfoil drag rise characteris-
tics with corrections to account for sweep. thickness. and design or cruise lift coefficient
differences. The induced drag, which depends on the spanwise load distribution, includes
corrections for body-wing carryover effects.

Drag calculations of the LFC configurations differed from the turbulent flow analyses
mainly in the profile drag and compressibility drag evaluations. Because of the reduction in
boundary layer growth, the critical Mach number was assumed to be increased by 0.01 for
the LFC airplane.

Procedures for calculating the profile drag of the laminarized surfaces are summarized in
Figure 63. Two methods that differed only in the initial step were used initially. In both
methods, transition was assumed to occur immediately downstream of the last suction slot.
In method A, the effective origin of the downstream turbulent boundary layer was deter-
mined using the LFC wake drag coefticient data in Figure 64 obtained from Reference 23.

In Method B. a piecewise laminar boundary layer calculation procedure similar to the
method of Reference 24 is used to calculate boundary layer growth along the slotted sur-
face. The suction flow for each slot is determined from the boundary layer suction calcu-
lations in Section 7.1.4. Downstream laminar boundary layer growth matches the momen-
tum remaining in the boundary layer passing over the slot after the lower portion is sucked
off. At the last slot, the downstream turbulent boundary layer growth match is the remain-
ing momentum of the flow over the last slot. This method also provides an evaluation of the
suction drag that equals the sum of the momentum of the flow sucked through each slot.
The calculated suction drag and wake drag coefficients agree well with corresponding drag
curves in Figure 64. Because of its simplicity. method A was used for most of the drag
evaluations.

23. Boyd. B. B., et al. A Comparison of Medium Range Laminar Flow Control and Turbu-
lent Airplane Designs, Boeing Document D6-E10251-1, May 1974,

24  Smith, A. M. O., **Rapid Laminar Boundary-Layer Calculations by Piecewise Applica-
tion of Similar Solutions.” Journal of Aeronautical Sciences, Vol. 23, No. 10, Oct.
1956, pp901-912. 90
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LFC PROFILE DRAG = Cpy_ [1+ KeKyy + K, (C

STEP1:  CALCULATE “Xgpg”
TURB

METHOD A

TURBULENT

I FLOW

XTRANS

XEFF

® USE CDW, (FIGURE 64) TO DETERMINE

XEFF
ACe_ Xegrr XTRANS Cp,,
e —— o e Sy
2 OrraNs 2
fL-x A
STEP2:  Cp_=Cp \ EFF) =l
F TURB L AWET

XEFF

) Kyr] +C
LT T DP'.URB

WNEDGE
METHOD B
WAKE
TURBULENT DRAG
FLOW

(& I
XTRANS
— XEFF

c
DsucTion

® PIECEWISE LAMINAR BOUNDARY LAYER
CALCULATION

® SUCK OFF LOWER PORTION OF -
BOUNDARY LAYER

® START DOWNSTREAM GROWTH MATCHING
REMAINING MOMENTUM THICKNESS TO
DETERMINE EFFECTIVE ORIGIN FOR EACH
SLOT

® AT LAST SLOT, MATCH REMAINING MOMENTUN

THICKNESS TO DETERMINE TURBULENT
EFFECTIVE ORIGIN

CALCULATE C FROM X
i Frurs EFF

XEFF

STEP3: CALCULATE “Kg”, TURBULENT FLOW THICKNESS, SWEEP FORM FACTOR

STEP4: CALCULATE “K| (C|)” TURBULENT FLOW LIFT EFFECT FORM FACTOR,
THIS VARIES WITH THE LIFT COEFFICIENT

STEPS5: CALCULATE “Ky1" PARTLY LAMINAR FLOW FACTOR (FIGURE 65)

STEP6: CALCULATE Cp eee PROFILE DRAG OF TURBULENT WEDGE AREAS

Prurs
WEDGE

Figure 63 Laminar Flow Control Profile Drag Calculation Procedure
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0.0020 F
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Figure 65 Profile Drag Factor for Transition Location
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The second step of the calculation procedure is to compute the friction drag coefficient
using the effective origin of the turbulent boundary layer.

Turbulent flow correction factors are then determined to account for airfoil shape, sweep,
and thickness effects, and for lift coefficient variations.

In Step S (Figure 63), the partly laminar flow factor is determined using the data from Ref-
erence 25, (shown in Figure 65). The final step involves the calculation of the profile drag
of the wedge areas of turbulent flow near the wing-body intersection, wing tip, and wing-
nacelle strut intersections on the lower surface.

The calculated climb and cruise drag polars for the turbulent flow airplane Model 767-768
and the LFC Model 767-773 are shown in Figure 66.

7.1.3 LOW-SPEED AERODYNAMIC ANALYSES

The low-speed aerodynamic characteristics of the study configurations were estimated by
methods used by the contractor for preliminary design configurations on which wind tunnel
data do not exist. In general, the procedures are based on theoretical considerations, but are
tempered by flight test and wind tunnel data wherever applicable. For rapid evaluation of
low-speed characteristics, the procedures described briefly below have been programmed for
processing by the CDC 6600 computer.

The basic flaps-up lift curve was constructed from a zero angle of attack intercept and a lift
curve slope that is a function of aspect ratio, thickness ratio, and quarter-chord sweep angle.
The slope was adjusted for the effect of the body and for the addition to wing planform
area affected by the extension of leading- and trailing-edge flaps. The maximum lift coeffi-
cient of the basic, flaps-up wing was determined according to aspect ratio and quarter-chord
sweep angle.

Leading-edge devices reduce the lift coefficient in the linear lift range, and this effect was
computed using a theoretical value for flap effectiveness and part span eftects. The lift incre-
ments due to trailing-edge flaps were determined from empirical section flap effectiveness
data. Adjustments were made to account for three-dimensional effects and the geometry of
the flap system.

The maximum lift increments due to leading-edge and trailing-edge flaps were determined
from empirical data that have been correlated in terms of the ratio of leading-edge-device
area to wing area, ratio of trailing-edge-device area to wing arca. and ratio of wing area sub-
tended by flaps to total wing area.

Drag polars were constructed by estimating the minimum parasite drag of the flaps-up con-
figuration at typical takeoff and landing Reynolds numbers at sea level. Increments to mini-
mum parasite drag for leading- and trailing-edge devices were added from test data corre-
lated on the basis of flap-to-wing area ratios, flap-chord ratios, type of flaps, and flap
deflection. Slotted, trailing-edge-flap parameters were evaluated in terms of the extended
flap-chord ratios.

25. R. A. S. Aerodynamic Data Sheets, WINGS 02.04.02. Profile Drag of Smooth Wings.
May 1969.
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Figure 66 Laminar Flow Control and Turbulent Configurations Cruise Aerodynamic Data
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Drag due to lift was added as CLz/nAR then modified by additional drag terms. Additional
parasite drag, ACpp. was applied as a function of CL‘CLp~ necessitating the determination
of an increment to C| ,, for leading- and trailing-edge devices. Again, this was evaluated from
empirical data as a function of planform area to wing area for the leading-edge flap and as a
function of lift increment for the trailing-edge flap. An additional drag due to lift, ACD]TE’
term was added to account for the discontinuous span loading due to the part-span flaps.
This term was evaluated using constants obtained from Royal Aeronautical Society data
sheets.

Pitching moments were evaluated by first estimating the zero lift pitching moment, CM()
and aerodynamic center of the basic flaps-up configuration, then adding the increment pro-
duced by the flap lift acting at its estimated center-of-lift position.

T'he high-lift system of the reference turbulent configuration, Model 767-768, includes
Boeing 747 SP-type single-slotted trailing-edge flaps and variable camber leading-edge flaps.
The trailing-edge flap has a chord ratio, (CF/C), of 0.225 and a flap Fowler motion, (C'/C),
of 1.08. Figure 67 summarizes the low speed aerodynamic data of this configuration. A 1-g
stall was assumed in the generation of these data along with a 1.1 scale factor for correction
from wind tunnel to full-scale C,, , 4 values.

The high lift systems of the LFC configurations considered in this study had the same
trailing- but no leading-edge devices. The inboard and outboard ailerons of the LFC configu-
rations can be dropped to 10 deg.

The low-speed lift and drag characteristics of the final LFC configuration, Model 767-773,
are shown in Figure 68. This figure also includes estimiated takeoff and landing speeds. The
LFC configurations were assumed to have fully turbulent flow drag levels for takeoff and
landing.

7.1.4 LAMINAR BOUNDARY LAYER ANALYSES

Boundary layer suction requirements for the laminarized surfaces of the study LFC configu-
rations were calculated by the iteration procedure shown in Figure 69. Three types of
boundary layer instabilities were considered:

®  Tollmien-Schlichting tangential instability

e  (rossflew instability

L Leading edge spanwise flow contamination

I'he method used is a mixture of empirical transition criteria and analytical boundary layer
growth calculations.

The first step of the calculation procedure is to define airfoil and planform geometry and
generate surface pressure distribution. An initial suction distribution is then selected.
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Figure 67 Low-Speed Aerodynamic Data for Turbulent Airplane, Model 767-768
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A finite difference compressible laminar boundary layer program is used to calculate the
tangential and crossflow velocity profiles. The displacement thickness, 6*, momentum
thickness, 0, and shape factor also are computed over the surface.

Boundary layer flow over the wing is evaluated for Tollmien-Schlichting stability following
the method of Reference 26. The boundary layer program provides the incompressible
shape factor, Hyyc. and the displacement thickness Reynolds number Rg«ync as a function
of arc-length normal to the leading edge. Calculated values of Hync are matched with the
Falkner-Skan shape factor, Hg, to obtain the pressure gradient parameter along the surface.
The location of the neutral stability point is determined by comparing the computed values
of Ra*lNC with critical Reynolds numbers R *CRIT that depend on Hg.

Spatial amplification rate calculations then are started at the neutrul stability point. A num-
ber of disturbance frequencies are selected. For each of the frequencies considered the
amplification rate is determimed using the Falkner-Skan profile stability data of Smith(27)
corresponding to the appropriate value of Bpg on the surface. The amplification rate is inte-
grated for each frequency along the surface distance. The disturbance frequency that
produces the maximum integrated amplification factor is used. If the amplification factor
exceeds el 2, transition is assumed to occur.

The crossflow velocity profiles calculated at various stations along the surface are used for
crossflow stability calculations. The crossflow Reynolds number, Re n0.1° based on the
maximum crossflow velocity and the boundary-layer thickness to the upper point at which
one-tenth the maximum velocity occurs, is calculated along the surface. A minimum critical
stability limit Reynolds number, Y CR|T. is calculated using Brown’s(28) estimate YCRIT =
57-0.722 Nz7 where N7 is the nondimensional second derivative of the crossflow velocity
profile at the surface and is obtained from the boundary layer calculation program. The
criteria used for cross-stability was that Rg must be less than 2.5 ¢y RT and less than
4 YCRyT near the leading and trailing edge. respectively.

To prevent any extensive spanwise contamination at the attachment line in the presence of
leading edge disturbances, the attachment line Reynolds number, Rg AL’ should be less than
100(29). The attachment line momentum thickness Reynolds number was approximated by
using a least-squares fit procedure to replace the leading edge region and the front part of
the wing or tail surface by an equivalent ellipse of the same leading edge raalus and geom-
etry. The values of ROA along the leading edge were then Ld]tuldtbd( 31 in terms of
the geometry of the equivalent ellipse, the leading-edge sweep angle, and the leading-edge
suction distribution if leading-edge suction was found to be necessary.

26. Jaffe. N. A.: Okamura, T. T.: and Smith, A. M. O., “Determination of Spatial Amplifi-
cation Factors and Their Application to Predicting Transition,” AIAA Journal, Feb.
1970, pp301-308.

27. Wazzan, A. R.: Okamura, T. T.; and Smith, A. M. O., Spatial and Temporal Stability
Charts for the Falkner-Skan Boundary-Layer Profiles, McDonnell Douglas Corp.,
DAC 67086. Sept. 1, 1968.

28. Brown, W. B.. “*A Stability Criterion for Three-Dimensional Boundary Layers,” Vol. 2,
Boundary Layer and Flow Control, edited by Lachmann, G. V., Pergamon Press, 1961.
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The forementioned stability criteria were based on the recommendations and experimental
work by Dr. Pfcnningcr(30 3132) f stability criteria were not satisfied, the selected suc-,
tion distribution was modified and stability evaluation procedure was repeated until a suit-
able suction distribution was defined.

An example of the results of this calculation procedure is shown in Figure 70. This figure
contains pressure distribution, suction distribution, and boundary layer stability evaluation
data for the wing of the final LFC configuration Model 767-773.

7.2 FLIGHT CONTROLS
Flight control tasks included:
®  Definition of advanced flight controls technology levels for the study configurations

° Estimation of horizontal and vertical tail sizes and center of gravity (cg) limits that
satisfy critical stability and control criteria

L Provision of tail sizing information for airplane sizing, trade, and optimization studies.
7.2.1 FLIGHT CONTROL TECHNOLOGY

The turbulent baseline and the laminar flow airplanes were analyzed assuming 1985 active
controls technology. Active cont.ol technology (ACT) functions include:

® Augmented stability (AS)

®  Maneuver load control (MLC)
®  Gust load alleviation (GLA)
®  Flutter mode control (FMC)

The projections shown in Figure 71 indicate that large freighter airplanes with long range
capability will benefit with increased performance and weight reduction by incorporating
ACT into the control system. Use of active controls in conjunction with the application of
advanced structural concepts and materials will permit the use of large-span high-aspect-ratio
wings that are desirable for long-range airplanes.

29. Nenni, J. P. and Gluyas, G. W., “Aerodynamic Design and Analysis of an LFC
Surface,” Astronautics and Aeronautics, July 1966, pp52-57.

30. Pfenninger. W.. “Flow Phenomena at the Leading Edge of Swept Wings,”
AGARDograph 97, May 1965.

31. Pfenninger. W.. “Flow Problems of Swept Low-Drag Suction Wings of Practical Con-
struction at High Reynolds Numbers,”” Annals of the New York Academy of Sciences,
Vol. 154, Article 2, Nov. 22, 1968, pp672-703.

32. Pfenninger, W., “About the Development of Swept Laminar Suction Wings with Full
Chord Laminar Flow.,” Vol. 2, Boundary Laver and Flow Control, edited by
Lachmann, G. V.. Pergamon Press, 1961,
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The ACT functions employ a digital fly-by-wire (FBW) electrical command system with an
analog backup and direct electrical link for the primary control system similar to the NASA
digital FBW F8C test airplane. Except for flap tabs, all the ACT functions will drive normal
airplane control surfaces. The ACT usage of the control surfaces is shown in Table 4.

7.2.2 AIRPLANE BALANCE AND TAIL SIZING
Longitudinal

The study airplanes have a fixed stabilizer with a single hinged elevator for longitudinal trim
and control. The airplanes use a “handling qualities” stability augmentation system (SAS) to
reduce tail size and trim drag by relaxing the aft flight cg limit. Because the SAS is not a
flight-critical aircraft component, airplane stability must meet unaugmented minimum
requirements at the aft flight limit. These include:

® Time to double amplitude, t> = 6 seconds at dive

o A S-percent static margin at cruise and approach

Forward cg control requirements were considered for takeoff rotation and approach trim

. . s . G )
and flare. The airplane must meet pitch acceleration requirements. 6, 3 deg/sec= for flare
2 < ‘. - & = < e

and 2 deg/sec= for takeoff rotation. Figure 72 is an example of the horizontal tail sizing
procedure for the turbulent baseline and laminar flow airplanes. Only design conditions,

dive stability, and takeoff rotation are shown.

Lateral-Directional

Both configurations have a “7”’ configuration vertical tail with double-hinged rudders.

The turbulent and laminar flow airplanes also have a handling qualitites SAS in the lateral-

directional axes that is assumed to provide satisfactory flying qualities throughout the flight

envelope. The airplane will require an estimated minimum unaugmented static directional

stability at least (‘NB =0.0015/deg at the aft-most flight limit.

Directional control requirement was calculated using a static engine failure analysis at take-

off. From the engine failure speed, VMC(‘ROUNI)' and the asymmetric thrust balance
. ~ J .

speed, V. the airplanes, with full rudder, are assumed to deviate no more than 30 ft

from the runway centerline while accelerating 10 kts:i.e.. Va1 = VMCorounp * 10 kts.
7.3 PROPULSION AND NOISE

Propulsion-related tasks included:

®  Definition of propulsion advanced technology levels for the study configuration

L Selection of main propulsion engine cycle characteristics

®  Sclection of suction engines

®  Generation of installed performance data for main engines and suction engines

L Definition and sizing of suction pump compressors
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Table 4 Active Control Technology Usage

ACTIVE CONTROL TECHNOLOGY USAGE

CONTROL SURFACE MANEUVER |GUST FLUTTER
AUGMENTED | LOAD LOAD MODE
STABILITY CONTROL ALLEVIATION CONTROL
Elevator X X
Ovutboard aileron X
Spoilers X
Flap tabs X X
104
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7.3.1 PROPULSION TECHNOLOGY

The propulsion system for the LFC airplane includes the main propulsion engine with
acoustical treatment and the LFC suction pump system. These propulsion systems incorpo-
rated in the study configurations reflect an assessment of estimated technology levels for
1990 entry into service.

The main propulsion engine for the turbulent and LFC airplanes was selected by utilizing
the propulsion data base of engine cycles generated by engine manufacturers for technology
level projections to the 1990 in-service time period.(33) Study engines for that time period
that have been prepared by engine manufacturers as a result of the above NASA-Lewis
study have been considered along with Boeing cycle studies performed in support of the
NASA-Langley contract(34) “Technical and Economic Assessment of Span-Distributed
Loading Cargo Aircraft Concept.” The engine cycle selected for the study reported herein is
an advanced high bypass ratio engine with a low SFC.

An advanced technology study engine designated the P&WA STF-482 turbofan engine(35).
with a proposed entry into service date in the 1988-1990 time period, was selected for the
main propulsion engine and reflects an assessment oi the most probable technology
advances that will be available for that time period.

The assessment assumed a high level of research and development effort from now until
start of engine design about 1983 through 1985. The SFC reductions are associated with
improved compressor and turbine aerodynamic performance, close control of rotating seals,
and reduced turbine cooling airflows. Increased cycle efficiency will result from higii overall
pressure ratios that are made possible with high-temperature blade materials, and film and
impingement cooling of turbine blades. The potential TSFC improvement during cruise for
advanced technology engines is shown in Figure 73. The JT9D engine is used as a baseline
with the advanced engine STF-482 improvement in TSFC shown relative to the JTOD
engine.

The suction pump compressor and drive engine are an advanced design for proposed entry
into service in the 1990 time period. A suction pump drive engine of the General Electric
T64 type was selected and updated to the 1990 time period. This update assumes advanced
turbine cooling to increase the turbine inlet temperature, and composite material to reduce
the engine weight. The SFC reduction is expected to result from advances in compressor and
turbine aerodynamic performance.

7.3.2 ENGINE CYCLE SELECTION

The selected main propulsion engine for the study airplanes. designated the P&WA STF-482
turbofan engine, has pertinent characteristics as follows:

33. Gray. D. E., Study of Unconventional Aircraft Engines Desigre Low-Energy
Consumption, NASA CR-135065, June 1976.

34. Whitlow, D. H. and Whitener, P. C., Technical and Economic Assessment of Span-
Distributed Loading Cargo Aircraft Concepts, NASA CR-144963, June 1976.

35. Goodrich, R. W.: Gaffin, W. O.: and Witherspoon. S. W.. Preliminary Performance and
Installation Data for the STF-482 Turbofan Fngine, Pratt & Whitney Aircraft Report
CDS-8. Nov. 1975. 106
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Figure 73 Potential Turbofan Fuel Consumption TSFC Improvement
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Thrust, SLS T.O. to 84°9F 60,000 1b
FPR 1.65

BPR 7.8

OPR 40

Max combustor exit temp OF 2700
Weight 9100 1b
Max diameter 106.8 in.
Length 154.9 in.

Scaling range

50,000 to 90,000 Ib

Installed performance data for a nominal size 60,000-b thrust engine (uninstalled sea level-
static) are shown in Figure 74. Included are cruise, takeoff and climb performance. Installed
losses include (1) inlet recover, (2) engine manufacturers fan and primary nozzle flow losses,
(3) fan duct acoustical duct treatment loss of 50 percent greater flow loss than hardwall fan
duct losses, (4) midcompressor bleed of 2.2 1b/sec, (5) fan bleed of 0.6 1b/sec, and (6) 220
horsepower extraction (HPX).

Weight and dimension data for the nominal size STF 482 engine are given below.

THRUST SIZE POUNDS

60,000 Scaling Factor
Ao : o 1.165
Bare engine weight (1b) 9,100 (TSF)
Fan diameter (in.) 106.8 (TSF) 0-5
LP turbine diameter (in.) 58.70 (TSF) 0.5
Engine length (in.) 155.0 (TSF) 0433

Weight and dimension data for scaled engines from 50,000- to 90,0004b thrust (uninstalled
sea level static) engines can be calculated with the scaling factor from the thrust scale factor
(TSF).
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INSTALLED TAKEOFF
THRUST
58,000 - e STANDARD DAY
56,000 | ® SEA LEVEL ® INSTALLATION LOSSES
® NO BLEED 220 HPX
54,000 - 2.2 Ib/sec MID-COMPRESSOR BLEED
52,000 | 0.6 Ib/sec FAN BLEED
FAN DUCT ACOUSTICAL
50,000 | TREATMENT LOSSES
3 FAN AND PRIMARY NOZZLE
48,080 LLOSSES
46,000 }
44,000 }
42,000L INSTALLED CLIMB SPECIFIC
O v FUEL CONSUMPTION
0 0.1 02 03 04 05
MACH NUMBER ALTITUDE, ft
0.60 10,000
INSTALLED CLIMB
30,000 THRUST 15,000
0.55 }
ALTITUDE, ft SFC
Ib/hr/Ib
25,000 }
NOOO 0.50 ¢+
20,000+ 15,000
045 L
A A i = L A '3 e
0.4 0.5 0.6 0.7 0.4 0.5 0.6 0.7
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16,000}
L § - \T_
- 0.60 0.8
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¥ MACH ibMeAb 058
- 0.7
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L A A A J [ s N A ) - Ny
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ALTITUDE, ft ALTITUDE, ft

Figure 74 STF 482 Installed Engine Performance, TSLS = 60,000 Pounds
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7.3.3 SUCTION ENGINE/COMPRESSOR DESIGN

Each of the study LFC configurations have six suction pump compressors and drive units.
Four of the suction units are located on the wing and two units are located on the empen-
nage as shown in Figure 9. The four wing sunction units are identical. The empennage units
have the same suction drive engines as those on the wing. The suction pump compressors,
however, differ from those on the wing.

Each wing suction unit consists of two compressors, a low-pressure (LP) compressor and a
high-pressure (HP) compressor that are driven by an adjacent turboshaft engine. The low-
pressure compressor is used to increase the lower suction pressure from the top surface of
the wing to the higher suction pressure from the bottom surface of the wing. The high-
pressure compressor is then used to increase this higher pressure to free-stream total pres-
sure. The LP compressor design pressure ratio and corrected airflow are 1.42 and 51.93 1b/
sec respectively. The HP compressor design pressure ratio and corrected airflow are 1.78 and
72.96 pounds per second respectively. Because of the low-pressure ratio, an axial compres-
sor design was selected with one axial stage for the LP compressor and two axial stages for
the HP compressor. The tail suction compressors have an additional stage with a design pres-
sure ratio and corrected airflow of 2.39 and 27.88 Ib/sec respectively.

An adiabatic compressor efficiency of 0.80 was assumed for sizing the compressor drive
turboshaft engine. Adiabatic mixing of the LP compressor discharge and the higher pressure
suction flow was assumed without pressure loss. A mass average temperature was used for
the HP compressor inlet temperature. Design point required shaft horsepower for the suc-
tion pump was increased by 20 percent in sizing the drive engine. This results in increased
engine weight and engine envelope dimensions. The drive engine horsepower was oversized
to account for mechanical and thermodynamic losses such as: (1) off-design operation and
its resulting shift in compressor efficiency, (2) drive engine nozzle losses, (3) suction pump
nozzle losses: (4) suction pump inlet face loading, (5) mixing efficiency of first-stage dis-
charge and second-stage inlet (lower surface suction) airflow, and (6) angle drive and shaft-
ing losses.

The size and weight of the suction pump units were based on operational design point of
44 ,000-ft altitude and Mach = 0.79. This corresponds to the largest corrected airflow
requirement of the operation envelope. The suction pump nozzle discharges at free-stream
total velocity. This results in zero net thrust.

7.3.4 ACOUSTICAL TREATMENT
The main propulsion engine has inlet, fan, and primary nozzle acoustical treatment. Inlet
treatment consists of internal surface acoustical perforated honeycomb treatment prior to

the compressor face, fan treatment consists of exhaust nozzle external surface and nozzle
core surface and acoustical treatment.
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7.4 SYSTEMS
Systems-related tasks included:
®  Defining slot spacing and geometry characteristics
®  Establishing LFC collection duct sizes and internal duct 10sses
L] Defining the airplane systems

Conventional techriology levels were assumed for all airplane systems other than the laminar
flow control systems.

7.4.1 SUCTION SYSTEM ANALYSIS

The suction system was sized to provide suction requirements determined for each laminar-
ized surface by boundary layer stability calculations described in Section 7.1. Necessary
flow requirements for the LFC configuration Model 767-773 are shown in Table 5.

Slot spacing on the laminarized surfaces was obtained by limiting the slot Reynolds number
to values less then 100. This should keep the flow viscous through the slots and avoid the
possibility that internal duct flow fluctuations will cause boundary layer transition31). The
maximum slot Reynolds number on the wing of Model /67-773 was approximately 85 at
the side of body and decreased outboard to permit continuous slots from root to tip. The
wing slot spacing from Model 767-773 is shown in Figure 75.

Calculated slot spacings were used together with airflow characteristics, (including surface
pressure, temperature and airflow) to establish collection duct sizes. Collection ducts were
then analyzed to determine the internal system losses necessary to size the suction pumps.
The procedure used is shown in Figure 76.

7.4.2 ICE PROTECTION

Wing thermal anti-icing represents both an operational and performance consideration. Ice
formation on the leading edge can cause transition to turbulent flow and, therefore, must
not be allowed to accumulate. In addition, any water runback that could result in ice
buildup in the surface flow areas must be prevented. This problem also is related to surface
contamination that could build up such that transition would occur. Contamination and
erosion problems are being explored for NASA under the current LFC Systems Study con-
tract (3) and currently under Boeing IR&D programs. Significant research and development
work is required to determine a satisfactory solution to wing thermal anti-icing and surface
cleanliness problems.
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Table 5 Suction Flow Requirements for Model 767-773 (0 to 70 Percent of Chord)

HORIZONTAL
> wing STABILIZER CERTEAL
GONRITIU OUTBOARD | MIDDLE | INBOARD| OUTBOARD| CENTER Fin
— L —— D———ﬁ
41,000 ft, 0.79 M, std day
Section airflow, Ib/sec
Upper 8.27 14.59 9.97
Lower 5.67 9.84 6.73 S 10.99 4
Suction pressure level, psia
Upper 1.47 1.47 1.47
Lower 2.07 2.07 2.07 el L £
36,000 ft, 0.79 M, std day
Section airflow, Ib/sec
Lower 6.32 11.16 7.63 o0 i
Suction pressure level, psia
Lower 2.60 2.60 2.60 .
44,000 ft, 0.79 M, std day
Section airflow, Ib/sec
Upper 7.74 13.66 9.34 .
Lower 5.22 9.22 6.30 o T i
Suction pressure level, psia 4 §.58
Upper 1. 2 1.26
Lower 1.79 1.79 1.79 Lo L e
E) One side of airplane
@ Full center section
@ One fin
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Wing thermal anti-icing may be accomplished by backflowing hot air through the LE suction
system with appropraite valving. Use of buried electrical heating elements, icephobic coat-
ings, or a combination of these methods may be possible for future studies.

7.4.3 LIGHTNING PROTECTION

The problem of lightning protection on advanced composites has been recognized. There are
many programs underway to establish the optimum solution. Proposed solutions produce
weight penalties ranging from 0.03 to 0.08 1b/ft2. This falls within the tolerance band of
parametric weight studies used on this program.

Extensive work on defining lightning protection systems has been done under contract by
Boeing for the AFFDL/FBC study. (36) This study will provide a basis on which ultimate
lightning protection systems can be defined.

7.4.4 INTEGRATED SYSTEMS

The LFC system integration considerations that have been incorporated were limited to
those directly related to the study such as wing anti-icing. However, the time/use cycle of
LFC is such that consideration should be given to utilizing capability of the LFC engines
for added takeoff and/or climb thrust, thus shortening the takeoft distance or allowing
potentially smaller engines.

Use of the LFC engines as the source of cabin air for air conditioning was considered.
However, the quantity of air and pressure levels required is not compatible with a single
design drive unit, and added compressor stages would be needed. In addition, the maximum
design power capability of the suction engines is required during cruise. Any power required
to meet cabin air pressure and flow demands would be over and above that needed for LFC
and would have a significant size effect on the suction engines.

7.5 WEIGHT AND BALANCE
Weight and balance tasks included:

®  Defining the weight benefits through application of advanced technology materals and
active controls

e (Conducting configuration weight analyses to support airplane sizing exercises and the
LFC planform optimization study.

e Providing LFC total systems and structural weight data for the sensitivity studies

36. Vulnerability/Survivability of Composite Structures—Lightning Strike. AFFDL/FBC
Contract F33615-76-C-5255.
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7.5.1 ADVANCED TECHNOLOGY WEIGHT BENEFITS

Advanced technology definitions were identified similar to those of the NASA funded
Advanced Transport Technology Studies.(37) ATT, with resulting weight improvement that

-

would be available in the 1985-1990 time period. Figure 77 shows estimated weight benefits

from using advanced structural materials. The weight benefits are typical for the use of

graphite-epoxy honeycomb primary structure and PRD-49 honeycomb secondary structure.
The configuration weights also included benefits through the use of the advanced flight con-
trols described in Section 7.2 following the methods of Reference 38.

7.5.2 WEIGHT ANALYSIS APPROACH

Preliminary design type weight and balance analyses were made for evaluations of the turbu-
lent and LFC configurations. Advanced technology effects were applied as percentage bene-
fits to the applicable weight categories.

Weight and balance analyses for the advanced technology turbulent baseline (767-768) con-
figuration were performed by extrapolating known parametric/statistical methods to the
higher gross weight and size regimes necessary. Boeing in-house studies of very large
freighters were helpful in guiding this extrapolation. Figure 77 shows the degree of extrapo-
lation that was necessary to evaluate the large aircraft of this study.

7.5.3 LFC SYSTEMS AND STRUCTURAL WEIGHT ESTIMATION

Weight evaluations of the initial LFC study configurations were derived from the turbulent
airplane analyses by accounting for the LFC systems and structural differences. These differ-
ences included:

o Suction engines

L Suction pumps

L Suction engine structural integration

L Distribution ducting

L LFC surface structural integration

®  Fuel system aft tank and manifold

In addition, LFC wing weights include a weight reduction to account for removal of leading-
edge devices and associated flap controls.

37. NASA Contracts NAS1-1071, NASA-1072. NASA-1073, Study of the Application of
Advanced Technologies to Long-Range Transport Aircraft.

38. Anderson, R. D.. et al., Development of Weight and Cost Estimates for Lifting Surfaces
with Active Controls. NASA CR-144937, March 1976.
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The total LFC systems and structural weight penalty is very dependent on the structural
design concept and on the material usage. Development of LFC design integration concepts
in the current NASA sponsored LFC systems studies is still proceeding with varying weight
effects. Because of the uncertainty of the total LFC weight penalty, the emphasis of the
study presented in this report has been to identify the sensitivity of the LFC configuration
over a probable range of weight effects. Total LFC system plus structural integration weight
penalties of 0, 2.25. and 3.0 Ib/ft2 of treated wetted area were considered. Ongoing Boeing-
and NASA-funded studies of LFC concepts indicate that weight penalties in the lower end
of the above range may be achieved.

Many of the trade and performance studies discussed in Section 4.0 assumed a total LFC
weight penalty of 2.25 Ib/ft2 for treated wetted area. This is not a validated weight level but
was considered reasonable for conducting the various studies. In order to determine a mean-
ingful LFC weight penalty, a great deal of innovative design effort will be necessary to
develop a LFC structural concept and integrated systems design that will minimize weight
without unfavorably affecting production or maintenance costs.

7.6 COST AND ECONOMICS

Cost analyses have been made to promote a quantitative measure of the economic character-
istics of a laminar flow control military transport relative to a conventional turbulent air-
craft developed to a comparable mission design requirement. Economic and cost analyses
tasks included:

] Estimating costs of developing, producing and operating the reference turbulent and
the LFC aircraft configurations

o Evaluating 20-year life-cycle costs
® Evaluating surge-condition operating costs

e Determining life-cycle and operating cost sensitivities to fuel price, LFC total weight
penalty, LFC technology complexity, and maintenance costs.

7.6.1 COST ESTIMATION GROUND RULES

Life-cycle and operational cost estimates were measured in 1976 doliars. Costs reflect peace-
time low-utilization rates. One development airplane was assumed, with the remainder of
the flight test fleet being refurbished as production articles. A 125-airplane buy was assumed
including 112 unit equipped (UE) 12 command support (CS) and one developmental vehicle.
Attrition would come out of the command support complement. The 112 UE airplanes
consist of seven squadrons each having 16 airplanes.

One configuration of each model was assumed. The flight test program was based on 1500
flight-hours. The time from go-ahead to certification was assumed at 53 months with an
additional product development phase of 12 to 24 months preceding go-ahead. A 1500-hour
flight test program was also assumed.
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Life-cycle costs assumed a peacetime utilization rate of 1080 hours per year. This is less
than one-third the utilization of a commercial transport. The surge condition operating cost
analyses assumed 10 flying hours per UE per day.

7.6.2 COST ANALYSIS APPROACH

Life-cycle cost estimates include the cost of developing, producing, and operating each fleet
of airplanes. Airframe, engine, and avionics costs were estimated using a Boeing cost model.
The Air Force CACE model from AFR173-10 was used for operations and support analyses.
The C-141 was used as the base for operations and support costs.

Manufacturing costs of the advanced technology turbulent and LFC designs were appraised
on a comparative basis, using a conventional wide-body wing design and associated systems
as a baseline.

The cost assessment followed the evaluation of Reference 5 in which a number of individ-
uals from different manufacturing areas collectively established manhour complexity factors
for each major structural component of the advanced technology turbulent and LFC config-
urations. The baseline having complexity factors of 1.0 was an equivalent size conventional
technology airplane. Overall complexity factors for the advanced technology turbulent wing
and empennage, and for the advanced technology LFC wing and empennage, were estimated
to be 1.5 and 2.1 respectively.

In addition to the complexity assessment, the cost estimation model as shown in Table 6
requires a description of the airplane, a three-view drawing, airplane weight breakdown, part
card estimate, development and production schedule, and commonality assessment. The air-
plane cost-estimating elements summarized in Table 7 include engineering hours, deve'op-
mental hours. tooling hours, production hours, production material, purchased material,
flight test, engines, labor, and overhead costs. This table also includes a breakdown between
recurring and nonrecurring costs.

7.6.3 LFC COST FACTORS

Cost of an LFC airplane differs from the cost of a comparable turbulent airplane because of
the design. development, production, and maintenance associated with the suction surfaces,
internal ducting, the suction units, and the special LFC systems. Additional cost considera-
tions include differences in airplane weight, engine size, high-lift systems, and fuel
requirements.

Many of these cost items are strongly dependent on detailed design features of the LFC

structural and systems concepts. These in turn can be quite dependent on the gross char-
acteristics of the airplane dictated by the mission objectives.
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Table 6 Airplane Cost Estimating Input Requirements

AIRPLANE DESCRIPTION

® Speed
® Materials technology
® Systems technology
® Engine technology
® Unique features
e Laminar flow control

PART CARD ESTIMATE

® Structure section
* Wing
 Fuselage
» Empennage
e Gear
* Propulsion

® Nonstructure
¢ By system

THREE-VIEW DRAWING

® Size
o Number of landing gear
® Number and location of engines
® Sweep and aspect ratio
® Wing and empennage areas
® Unique features
* Empennage configuration
* Fuselage configuration

DEVELOPMENT/PRODUCTION
SCHEDULE

@ Development schedule
* Months from go-ahead to
rollout no. 1 airplane
* Months from go-ahead to
certification

® Production schedule
« Airplane rollouts by month
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AIRPLANE WEIGHT

® Structure section
* Wing
» Fuselage
* Empennage
* Gear
» Propulsion

® Systems and equipment
« By system

® Engine thrust
® Material type

COMMONALITY/COMPLEXITY
ASSESSMENT

® Commonality assessment

« Ccmmonal’*y to existing models
* Commonality within configuration

® Complexity assessment
* Material
* Speed
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Hence, a valid cost assessment of an LFC airplane must be preceded by an extensive design,
development, and flight test program. This was clearly beyond the scope of this study. How-
ever, the ongoing NASA LFC program is directly addressing this task.

Cost estimates of this study strongly relied on engineering judgment supported by existing
data. The economic assessments were, therefore, focused on relative costs and on sensitiv-
ities of these relative costs to the major LFC uncertainty items. These uncertainty items
included the total LFC systems and weight penalty; the LFC technology complexity factor
that affects design, development, and production costs; and maintenance costs.
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8.0 RECOMMENDED RESEARCH AND DEVELOPMENT

The technical feasibility of LFC has been demonstrated in research carried out by Dr. W.
Pfenninger and associates. The Northrop X-21 flight test program succeeded because of the
technical knowledge they developed. In addition. a great deal of perseverance, intuition, and
careful attention to detail were required. The successful application of LFC to either com-
mercial or military transport aircraft will require similar excellence of effort. To develop an
economically viable LFC airplane, one must treau the delicate path of designing with great
care without penalizing the airplane weight, or cost of development, production, operation,
or maintenance.

As part of the Aircraft Energy Efficient (ACEE) program, NASA is conducting, promoting,
and funding extensive LFC studies that will possibly lead to a successful flight test program

that will substantiate the operational and economic feasibility of LFC.

The LFC research and development items for this study have been grouped into two main
categories:

®  General LFC R&D items
] Specific items for large military transport aircraft
The general LFC R&D items will provide necessary information for either commercial or
military transport LFC applications. The specific items for large military transport aircraft
identify some areas of greatest concern for this type of LFC application.

8.1 GENERAL LFC R&D ITEMS
Many of the general LFC R&D items listed below are now underway or are planned for the
immediate future as part of the NASA ACEE program. General R&D items can be grouped
into four major categories:
1. Basic LFC technology
2. Configuration/detailed design studies

3.  Flight operations

4. Manufacturing/quality control studies
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Recommended basic LFC technology items include:

Aerodynamic LFC design tools

® Improve potential flow, viscous flow and boundary layer stability methods
development

L Refine and/or establish new empirical stability criteria

] Improve suction rate prediction/optimization methods

Aerodynamic design criteria

®  Slot design criteria refinements

®  Over-suction/under-suction limits

L] Aerodynamic smoothness refinements

L LEC treatment to possibly ease smoothness requirements

° Interference pressure field disturbance guidelines

LFC airfoil/wing analytical and experimental studies

Noise technology

° Develop external cruise noise prediction techniques

° Develop internal duct noise prediction techniques

L Develop noise attenuation technology

Structure/material technology

®  Develop efficient integrated LFC structural concepts—configuration dependent
®  Select/develop smooth resistant surface materials

®  Develop surface refurbishment procedures

®  Develop structural inspection techniques

° Understand/minimize aeroelastic effects on suction surfaces and flow rates
Environmental studies

®  Operational design criteria (e.g., desired climb, cruise altitudes)
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Recommended configuration/design studies that are size- and mission-dependent include:
®  Propulsion/suction systems optimization studies
L Engine cycle/cruise altitude studies
L] Engine location studies
®  Percent laminar flow design studies
® Feasibility of laminarizing over control surfaces and rapid descent devices
®  LFC/active control compatibility
o LFC braced wing design studies
° Body drag reduction studies
Recommended flight operation studies include:
L LFC surface maintenance requirements
®  Flight test small suction panels
° Flight test LFC suction surface
®  Develop techniques to prevent icing of slots and leading edges
L Develop efficient and reliable surface cleaning tcclm.iqucs (ground and in-flight)

Manufacturing and Quality Control studies include the development of suction materials
and reliable, but cost effective, manufacturing/construction techniques.

8.2 SPECIFIC R&D ITEMS FOR LARGE MILITARY TRANSPORT AIRPLANES

Some specific R&D items were identified during the study as a result of the large size of the
airplane configurations. These specific items include the most important general LFC items
necessary for the study configurations, and recommendations for some very large airplane
detailed design studies.
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Airplane balance considerations together with the desire to provide wing-bending-moment
relief, dictated the location of the engines on the wing. For this type of LFC configuration,
it is essential to validate the design of the engine, and the wing/nacelle/strut that will allow
the achievement of laminar flow with minimal suction penalties. Hence, the development of
acoustic and aerodynamic-interference LFC design criteria and prediction methods is
essential.

The very large wings are a large portion of the OEW. Hence, the wing structural weight and
the systems weight associated with LFC must be minimized. Slot design guideline refine-
ments are desirable to minimize the number of slots and provide for slot termination, if

necessary.

The large-span wings deflect appreciably in flight. Studies will be necessary to validate suc-
tion system effectiveness for large aeroelastic deflections.

The turbulent and LFC configurations, by virtue of their large size, require detailed design
studies to validate their characteristics. The large span wings of the study configurations
have large ground and ftlight detlections that might require significant configuration modifi-
cations or wing-span limitations.

Recommended system studies related to the current contract configurations include:

®  Detailed design studies to determine the LFC structural weight penalty for the most
promising concept (S) being developed in the ACEE study

° Engine cycle/cruise altitude optimization studies
([} Wing geometry/cruise speed optimization studies for the reference turbulent airplane

®  More detailed braced-wing studies for the LFC and turbulent configurations.
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9.0 CONCLUSIONS

Purpose of the study was to conduct a preliminary design investigation of a large subsonic
military transport to identify the impact of laminar flow control on performance and
economics of the airplane. A valid assessment of an LFC airplane must be preceded by an
extensive design, development, and flight test program. Consequently, this study focused on
relative benefits from applying LFC, and the sensitivities of these relative benefits to major
LFC uncertainty items.

Major conclusions of this study that apply specifically to very long-range, high-payload mili-
tary transport airplanes of relatively low utilization are:

LFC can provide large reductions in fuel usage (27 to 30 percent).

LFC also results in lower gross weights (7 to 10 percent). The gross weights are very
dependent upon the total LFC structural and systems weight increments (AMW)LFC)-

Life-cycle costs will probably be higher because of low design utilization rates. Life-
cycle costs are very dependent on (AW) Fc and on the technology complexity costs
associated with the design, development, and production of an LFC surface.

Sixty-day surge condition operational costs will be less with an LFC airplane (10 to {5
percent) depending on the fuel price and the special LFC maintenance costs.

Normal military reserves are adequate to meet the mission objectives with reasonable
losses in LFC.

Reserves allow the LFC airplane to fly 2000 nmi or 5 hours with full loss of laminar
flow and still achieve the mission range by establishing the design laminarization foi
the remainder of the flight.

The LFC wing planform characteristics for optimum performance are compatible with
characteristics that ease the task of laminarization. A wing planform having a high
aspect ratio. low thickness/chord ratio and low sweep is the optimum arrangement that
minimizes both fuel and gross weight, and maximizes productivity. The same geometry
results in low chord Reynolds number, low crossflow, and low attachment lint
Reynolds number.

Results of the extent of laminarization study suggest the following order for achieving
LFC benefits with minimum technical risk:
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Laminarize the wing back to the TE control surfaces. The nested chord length of

the control surfaces should be minimized without compromising the low-speed
performance.

Laminarize the empennage back to minimum chord TE controls on the tails.

Conduct the necessary trade and detailed design studies to identify the practical
benefits and technical risks of laminarizing over TE surface.

The fuselage drag on an LFC airplane is a significant drag item. A 25-percent reduction

in the body drag of the LFC airplane results in fuel and gross weight reductions of

approximately 8 percent and 4 percent respectively.
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