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P RE FACE

This final technical report was prepared by the Texas A&M Research

Foundation under Grants DAHCO4-74-G-0184 (1 June 1974 - 10 June 1976)

and DAAG29-76-G-02 41 (11 June 1976 - 31 December 1977) . These grants

were the folThw on efforts after Project Themis.

In the sumer of 1968, the U.S. Department of Defense through

the U.S. Army Research Offi ce at Durham sponsored a program of research on

Aircraft Dynamics for Subsonic Flig ht at Texas A&M Univers ity. The work

was funded under Project Themis (Contract DAHCO4-69-C-0015) which had

• been established a year earlier in response to the late Presi dent Johnson ’s

request that each Federal Agency should help to develop new centers of

• excellence in areas relevant to its goals. By means of Project Themi s,

- 
the Department of Defense hoped to meet in part its long-term research

needs , strengthen more of the nat ion 1 s universities , increase the number

• of Instituti ons performing research of high quality and achieve a wi der

distribution of researc h funds . In this~way , it planned to enhance the

United States 1 academi c capabilities In science and technology. 
-

After Project Themis expi red in May 1973, Army Research Office

awarded another Grant DA-ARO-D-31-124-7l Gl53 which was followed by the

present grants. Dr. James J. Murray was the Technical Monitor for Project

Themis efforts. Dr. Robert E. Singleton was the Technical Monitor for the

present effort. Dr. W. P. Jones was the Program Manager for Project Themis,

and later, was one of the Co-Princi pal Investigators along with the senior

author of this report till he retired from Texas A&M University in August

1975. At that ti me , B. M. Rao became the Princi pal Investi gator for the

grants. .

Texas A&M University benefited greatly from this enti re program sponsored
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by the Army Research Office to support our research work wi th a view to

developing a center of excellence for the study of aerodynami c and dynamic

problems of ai rcrafts and helicopters . Before this program, the University

did not have an active research parti cipation in this field. Duri ng this

• period, more than twenty students who worked in these research projects

received their graduate degrees (Master’s and Ph .D. ’s). Several of these

students are presently working for the Aerospace industry and the U. S.

Government. During the same period , s ome of these students won awards for

thei r outstanding research papers in AIM Annual Regional and Nati onal

Paper Competitions. This long—term funding from the Army Research Office has

had a two-fold effect: first, some bas i c aerodynami c, efficient compu-

tational programs have been developed , and are being used by scientists

in the field. Secondly , several students have received excellent edu-

catlonal training and research experience working in the sponsored research

projects under professional engi neers.

The authors grateful ly acknowledge Dr. Robert E. Singleton for his

• sustained interest in the program , and for his encouragement and cooperati on

throughout the present grant period. 
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I. INTRODUCTION

Al though man has been flying aircrafts for many years, a sizeable

range of problems continue to exist. This is due partly to the appearance

of new vehicles such as V/STOL aircraft and partly to the changes in the

aircrafts ’ operational requirements . Hazen ’ emphas ized the need for de-

voting greater effort to the study of subsonic aerodynami cs . He noted

that most current problems are dynami c in nature , and are concerned wi th

ai rcraft maneuverabi lity, response to atmospheri c turbulence , aeroelas ti c

phenomena and non-l inear aerodynamic problems arising from separated

flows. A better understanding of these problems is hinged upon the

availability of efficient and accurate ai rloads predicti on techniques for

lifting surfaces. Comprehensive literature survey for the steady subsonic

li fting line and li ft ing surface theor ies is presented in reference 2, and

a brief s uninary of this survey follows .
• One most bas ic approach in predi cting spanwi se loads on subson i c ,

three-dimensional wings is the lifting line, technique due to Prandtl3

which is applicable to l arge aspect ratio unswept planforms. The wing is

represented by a bound vortex at the quarter chord , and a trailing vortex

sheet extending from the bound vortex to infinity . The analysis is based

on the assumption that at every point along the span the flow is essentially

two-dimensional : the induced angle of attack produced by the trailing

vortex wake is used to correct the two-dimensional lift of the bound vortex

to account for the finite wing. The Prandtl lifting line concept does not

produce the chordwise pressure distributi on and is certainly limited by

restrictions on wing planform. 
•

We lss inger 3 extended Prandtl ’s lifting line concept to swept wings by

modifying the straight bound vortex to a V-shaped vortex at the quarter

—
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chord of the wing. In this technique , known as the Weissinger-L method,

the veloci ty induced at the three-quarter chord by the trailing wake

system and the inclined bound vortex pair is equated to the component of

free stream velocity normal to the wing surface. This specification is

justified by.the fact that in two-dimensional theory this arrangement

yields the correct ci rculation . An interesting variation of the Weissinger-

L approach is a fini te element method by Campbell~ , in which the swept

bound vortex pair and the trailing wake are approximated by a system of

rectangular horseshoe vortices arranged with thei r mi dpoi nts along the

• quarter chord. This approach is extended by Blackwe ll5 to wing-tail

combinati ons and to wings with pylons and end plates.

Although the lifting line methods predi ct the spanwise loading ac-

curately for wings of conventi onal planforms , the extremes of sweep, taper

and aspect ratios encountered in modern li fting surface des ign, along with 
•

a need for a complete descripti on of the surface load distributi on have

resulted in the developmen t of the li fting surface theories . The lifti ng

surface problem has been approached approxi mately by multiple lifting-line

and discrete loading element schemes. The di rect approach6’7’8 employs

a series substitution in the governing integral equations relating the normal

velocities on the surface to the pressure load , or an equi valent quantity

across the surface. The series is deri ved from subsonic thin airfoi l

theory for chordwise loadi ng and from the lifting line approach for spanwise

loading. The series subst itution allows evaluation of the lifting surface

integral equati on at a number of surface points equal to the desired number

of series coefficients , or for a larger number of surface points in ~.i

‘least squares ’ sense. -

Falkner9 conceived the discrete loading element scheme in which the

lifting surface is replaced by a system of concentrated horseshoe vortices ,

L _ _ _ _ _ _ _ _ _ _ _
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and their strengths computed by satisfying the tangential flow condition

at surface points equal in number to the unknown circulations . High

speed digital computers have enabled investi gators to ref ine the discrete

loading element concept to allow so l utions for larger systems of comp lex

geometries. Woodward10 represents an arbitrary wing-body combination in

steady motion by a system of source d’ublet and vortex singularities .

Lift and volume effects of the body are effected by line singularities

along the body axis, while wi ng lift and wing-body interference are rep-

resented by planar singularities over a finite number of quadrilateral

• panels on the wing and interface region of the body. The strengths of

the singularities are approxi mated as constant over each panel and de-

termined so as to satisfy flow tangency.

The problems of unsteady flows have been studied by several in-

vestigators. Analytical/numeri cal sol utions of the governing equations

of motion are obtained by requi ring that these solutions satisfy the

appropriate boundary conditions. A brief literature survey is presented

in reference 11. Recently , discrete or finite element schemes have

been developed for oscillatory subsonic flows with good success , but

• these schemes include several approximati ons to facilitate solution of the

comp lex mathemati cal formulati ons . Al bano and Rodden 12, and Kalman

et al13 have demonstrated a wide variety of applicati ons of the doublet-

latti ce method which is an extension of the vortex-latti ce method of

Falkner for unsteady flows . In thi s technique , the lifting surface to

be ani lyzed is di vi ded into a large number of planar panels. Each pane l
• is then replaced by a horseshoe vortex representing the steady portion

of the flow, and an oscillatory doublet distribUti on representi ng the

unsteady part of the flow . The collocati on method is then used to sol ve

for the vortex and the doublet strengths Incorporating the appropriate

____________________________ • • • •~~~~
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boundary conditions. Refe rence 12 incl udes the analysis of an oscillating

airfoil, an airfoi l in an oscillating flow , and variable geometry wings

wi th and without flaps while in reference 13, the doublet latti ce method

has been used to analyze non-planar configurations such as 1-tail , a wing

with end plates , and annular wings . This method is very restri cted in its

applications to non-planar configurations such as wing-body combinations .

As each doublet panel has associated wi th it a trailing wake which extends

infinitely aftward in a direction parallel to the free stream , the

placement of panels on a body cannot be such as would allow the trailing

wake of any panel to penetrate the body , for this would constitute a

physically unrealisti c sit uati on . Thus a body representation is generally

restricted to being an annular wing of constant cross section without any

inclination to the flow.

The analysis of a cascade of blades in unsteady flows has played an

important role in compressor and turbine blade design . Chang and Chu 1
~

have analyzed a casc ade of b lades in synchroni zed osc illati ons . Thei r

solution involved a modified form of Th~odo~’sen ’ s functi on which reduced

• to Theodorsen ’s function as the gap between two adjacent airfoils became

infinite. Another approach by Schorr and Reddy ’5 has been used to analyze

the oscillatory flow over cascades with varying solidity and stagger angle.

In thei r analys i s , the airfoils in the cascade are replaced by a distribution

of vortices and source-sink pairs whose strengths are determined for the

appropriate boundary conditions . Since the formulation is very complicated ,

they are able to obtain only an approxi mate sol ution by replacing the

kernel function with a polynomial. -

Jones and Moore16 , and Rao and Jones 17 sol ved the prob lems of a

cascade of oscillating airfoils in incompressible flow and oscillating

• 

• 

• ••- • ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ••
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incompressible flow over a cascade of airfoils , respectively. They

used the present lifting surface method based upon the velocity potential

formulation, and were able to develop a very efficient computational

scheme as an alternati ve to the existing lifti ng surface methods based on

acceleration potential formulation .

The problem of wind— tunnel wall interference effects on oscillating

airfoils in subsonic flow constitutes a special case of the blade—row

problem , namely, the case in which stagger angle is zero and adjacent

blade angles are 180° out of phase. Runyan and Wa tkins ’8 treated the

effect of wind-tunnel walls on the aerodynamic forces of an oscillating

airfoi l in a subsonic compressible flow. They simulated the walls by

placing images at appropriate di stances above and below the wings such

that the condition of zero normal vel ocity at the tunnel walls is satisfied.

In their formulation , the integral equati on between the downwash and the

oscillatory doublet strength invol ved a series of Hankel functions . The

solution of this resulting equation yields the oscillatory doublet strength

as a function of chordwise location on the ai rfoi l and these doublet

strengths were used to obtain acceleration potentials and hence the pressure

distribution on the ai rfoil. An important result shown was that, for certain

conditions of frequency , tunnel hei ght, Mach number, the tunnel and wing

• may form a resonant system so that the forces on the wing are greatly

changed from the conditi on of no tunnel walls.

Jones ’9 , independently developed a theory for estimating the effect

of wind-tunnel wal ls on the airforces acting on an airfoi l oscillating i n  a

• subsonic ai rstream. In his formulation , the integral  equation between the

downwash and the doublet strength (modifi ed velocity potential) was es-

sentially similar to the equation developed by Runyan and Watkins. Jones
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sunined the seri es of Hankel functi ons in the integral and developed a numerical

procedure applicable to the low frequency val ues . The results obtained for

a speci al case compared well wi th available experimental results .

Lane and Fri edman 20 developed a method for calculating the aerodynamic

forces experienced by a cascade with arbitrary stagç~er and interb lade

phase-lag angles . Their method utilized Fourier transforms of blade

pressure-jump functions whi ch permi t the kernel functi on , appearing in the

integral equation relating the upwash to the pressure-jump transform, to be

expressed in a closed form, by assuming a commonly used tri gonometric series

expansion involving Bessel functions. However, their solution i nvolved a

very complicated and a tedious computati onal procedure. They demonstrated

• that the resonance condition similar to that of the wind-tunnel wall inter-

ference problem, may occur in staggered cascades with arbitrary interbiade

• phase—lag, the resonance parameter values depending upon Mach number ,

• oscillatory frequency , interbiade phase-lag, gap , stagger, and acous ti c

velocity.

Fleeter21 studied the effects of compressibility on both f uctuating

lift and the fl uctuating moment coefficients for cascaded airfoils due to

an upstream nonuniformi ty. Through the applicati on of Fouri er transform

theory, Fleeter reduced, the time-dependent , compressible , two—dimensional

partial differential equation which describes the perturbation velocity

potential , into an integral sol uti on equation . Al though the details of the

solution were not given in the paper , Fleeter seems to have adopted the

laborious procedure used by Lane and Friedman. 20

Kaji and Okazaki22 investi gated the problem of propagation of sound

waves through a blade row using the acceleration potential method. They

made use of the singular point method in a rigorous and general form, in

which the kernel function of the aerodynamic integra l is expressed by a

• __
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rapi dly convergent series of exponential functions.

Rao and Jones23 adopted the present lifting surface technique for

determining the ai rload and moment coeffi cients on a typi cal airfoil of
a staggered cascade of airfoils in subsonic flow. Ci rcumferential

F distortion due to inflow conditions is expressed as an interbiade phase-

lag , and both oscillatory inflow and the case of oscillating blades are

considered. Results are obtained for several values of frequency , Mach
number, and interblade spacing, stagger , and phase-lags . The results

of the oscillatory flow case compare well wi th those of Fl eeter.21

Runyan and Woolston2~ solved for the aerodynami c loads on oscillating

wings by modifying the ‘concepts of Falkner9 for steady lifting surface

theory. The loading on the wing was determined by solving a set of

• simultaneous equati ons that were generated by representing the loading

wi th a seri es representation compatible wi th boundary conditions . In

another approach , Lawrence and Gerber 25 simplified the governing equations

• by using the assumption of low aspect ratio. They approximated the ve locity

potential equation by using a wei ghting fa~tor in the integral , and then

replacing the integrals wi th approximate functions. Compari son wi th the

results of references 26 and 27 indicated that the Lawrence and Gerber

method was only valid for wings wi th aspect ratio less than 4. The main

disadvantage of the method is that it cannot predict the pressure dis-

tribution. Dengler and Goland28 extended the lifting line formulati on

of Weissinger to the oscillatory case. Their method is much simpler

mathematically than lifti ng-surface methods; however, the chordw i se

pressure dis tribution cannot be predicted.

The pressure distribution measured for pitch ing and vertical osc i llati ons

• of low aspect ratio wings by La idlaw and Halfma n29 were compared to the

-~~~~~~~~~~~~~~~~ ••“ •~~~~~~~~•~~~~~~~ ‘ • • ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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results of Lawrence and Gerber25 . This comparison verified the validi ty

of Lawrence and Gerber method •for low aspect ratio wings .

The references cited above have adopted the kernel function repre-

sentation and have illustrated several disadvantages . First, the com-

plexity of the kernel function involve d in the integral equation

necessitates approximati ons to obtain a solution . Second, the kernel

function method i.s di fficult to use numerically because of the singu-

• larities and rapid vari ations near the leading edge of the airfoil.

On the other hand , the present lifting surface method based on the vel ocity

potential formulation is conceptually very simple , and hence can be

adapted to any arbitrary planar thin surface(s). Also , in the case of

compress ibl e flow , the area integration can be replaced by line integration

wi th the aid of Bi ot-Savart ’s law , thereby reducing the computational

time substantially. Unlike the kernel function method , the present lifting

surface technique deals with the circulation which is more suitable for

numerical sol utions.

The discussion so far has been limi ted to the applicati on of lifting

surface methods to two-dimensional and three-dimensional rectilinear flows.

What follows is a brief account of the unsteady airloads prediction

methods for helicopter rotor blades .

More papers have been published on the subject of unsteady aerodynami cs

of rotor blades during the past few years than in all the earlier years of

the helicopter development. In earlier work , attention was focused on vi-

bration problems wh ich often limi t helicopter performance. Wi th the advent

of high speed helicopters , it has also become i mportant to study the com-

pressibility effects and the blade fl utter problems . Jones et a1 30 gave

a detailed account of signifi cant developments in the field of unsteady

aerodynamics of helicopter rotor blades . Specifically, the latest advances
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in such problem areas as stall fl utter of a retreating rotor blade , flutter

of the advancing b lade , transient effects due to the interaction of the tip-

vortex of one blade with a following blade and wake induced instabilities

in hovering and low-speed flight, were discussed.

Problem areas of blade loading and the transient effects due to blade

interaction wi th the wakes of other blades and the flutter characteristics

of the advancing blade are considered here. It has been found that under

certain operating conditions , rotor blades can fl utter in both hovering

and forward fli ght. This phenomenon has been investigated by several

researchers and their studi es are of particular interest. It has been

known for a long time that the proxi mi ty of the helical wake is a con-

tributing factor to blade fl utter. When the rotor has high infl ow through

the disk , the wake of a blade is removed rapidly away and its effect on

the aerodynami c forces on the blade is approxi mately the same as that of a

rectilinear wake. For the case of low inflow , the wake is closely coiled

under the rotor disk and it can have a strong infl uence on the aerodynamic

forces acting on a b lade . For low infl ow conditi ons , Loewy3’ used a

simplified mathemati cal model of the flow and developed a general theory.

He was able to deri ve formulae for the aerodynamic forces on a typical

b lade sec tion as a function of reduced frequency, the frequency ratio,

and wake spacing. The special function that he obtained was similar to

that of Theodorsen ’s function for a single airfoi l in straight flow.

He has shown that the a irloads are highly oscillatory for the smaller

values of wake spacing. Since the stability of the rotor blade depends

on its aerodynami c coefficients , Loewy also inves tigated the variation in

the pi tching moment damping coefficient of a parti cular blade section as

the frequency rati o, plo, varied for specified positions of axi s of

oscillat ion and a range of values of wake spacing. He found that the damping
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coeffi cient became negati ve whenever plo was slightly greater than an

integer for axis oscillation either forward or aft of quarter—chord.

Similarly, he found that the damping coefficient for a flapping osci l-

lation dropped sharply at integral values of p/0 but did not actually

become negati ve. From these resul ts , he concl uded that at low inflow ,

wake-excited pitching oscillati ons of the blade mi ght occur when the

frequency ratio is approximately an integer and the pi tch-axis is not

at quarter-chord.

Whereas Loewy developed his theory for a multibladed rotor, J. P.

Jones 32 had independently treated the simpler case of a single rotating

blade in hovering fl i ght. He applied a method developed by W. P. Jones 33

to deri ve the appropri ate aerodynami c coefficients for an oscillat ing single

rotor blade for use in his fl utter analysis. He approxi mated the actual

flow condi tions by n•e~lecting curvature effects and assuming a simple two-

dimensional mathematical model consisting of a reference blade and its

wake and an infinite number of wakes lying beneath the reference b lade

extending from -
~~~ to ~~~. He cons idered flapping and pit ching motions and

compared his results with those obtained experi mentally by Daughaday and

Kl i ne 3L~. On the basis of this work , it was conclude d that the wake is

primari ly responsible for some of the vibratory phenomena found on helicopters

in practice.

Timan and Van de Vooren 35 , on the other hand , assumed that there was

no inflow through the rotor disk and developed a theory for calculating the

aerodynamic forces on a blade rotating through its own wake. Thei r results

agree with those obtained by Loewy31 
•and Jones 32 in the limi t when zero

spacing between the wakes is assumed. Fl utter calculations were done for

a two-bladed rotor
S 
model and thei r predi cti ons were compared wi th experimental

observations. They found that wake induced fl utter could occur under
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certain conditions . When the Inerti a axis of the blade is aft of its

pitching axis, wake fl utter is poss ible i f the natural flapping frequency

• is larger than the natural pi tching frequency. Conversely, when the inertia

axis is forward, the pitching frequency has to be higher than the flapping

frequency for flutter to occur. All thi s theoretical work confi rms the

concl usion that the proxi mity of the wake is a contributing factor to

rotor blade fl utter.

All the theoreti cal work descri bed above is based on the assumption

that the flow is incompressible. However, wi th the advent of helicopters

capable of flying wi th blade tip speeds ranging up to and in excess of

the speed of sound, compressibility effects need to be taken into account

when determining aerodynamic coefficients for use in flutter analysis.

Jones and Rao36 were able to do this and have computed aerodynami c

coefficients for a range of Mach numbers , reduced frequenc ies , and wa ke

spacing. Thei r analysis is based on the application of the theory of

Jones 37 , for a sing le airfo i l osc i llating in compress ib le flow , to the

Loewy two—dimensional mathematical model of the helical wake. The val ues

of the aerodynamic coefficients agree with those obtained by Loewy3’

and J. P. Jones 32 for zero Mach number but diffe r appreciably as the Mach

number is varied.

Haninond38 also developed a theory for determining compressibility

effects by usin g a di fferent model of flow from that used in Ref. 36. In

his model , the wake of the qth blade of a Q bladed rotor after n revo-

lutions extends from -27r(n+q/Q) to ~; in Jones and Rao ’s model it extends

from -
~~~ to ~~ . His aerodynami c coefficients for several Mach number and

infl ow ratios are in general agreement with the results of Jones and Rao.

While the aerodynamic derivatives predi cted by two-dimensional stri p
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theory are wi dely used in predi cting the flutter speeds of helicopter

rotor blades, the method does not allow for curvature and finite aspect

ratio effects. For Incompressible flow, Ashley et al in Ref. 39 developed

a three-dimensional model in which they modifi ed Reissner ’s theory~0 for

oscillating wings in rectilinear flow by incl uding the free stream velocity

variations along the span . Thei r results indicate a negligible di fference

between two and three-dimensional solutions up to 95% of the span. Jones

and Rao~’ als~ studied tip-vortex effects in compressible flow and they

also concluded that such effects are negligible except in regions close to

the tip.

The earlier attempts to incl ude the tip vortices in a truly three-

dimensional fashion involved a helical wake representation below the

rotor blade in hover flight and a skewed helical pattern for forward

flight. Mi ller~2 summarized some of the work that has been done at M.I.T.

and elsewhere up to that time on the predi ction of unsteady ai rloa ds on

helicopter rotor blades. He showed that by replacing the curved tip vortex

from the preceding by a straight line vortex which is tangential to the

tip vortex at the point where it crosses under a following blade , he coul d

obtain reasonable estimati ons of its effect. It was pointed out that almost

all the harmonic content of the blade air load of interest in rotor vibration

is that contained in harmonics above the second. By representing the

oscillatory wake of the blade itself in a rel atively simple way and treating

the tip vortex of the preceding blade , he was ab le to obtain reasonab le

res ults .
‘4 3 ‘4 z4

In some of hi s earlier - work , Mi ller ‘ developed a helical wake

model in which the rotor wake was di vi ded into a “near” wake and a “far ”

wake. The near wake incl uded the portion attached to the blade that
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extends approximately one-quarter of a revolution from the blade trailing

edge. The effects of the near wake include an induced chordwise variation

In downwash and were formulated using an adaptation of Loewy’s strIp

theory. The chordwise variation in the velocity over the airfoi l induced

by the far wake was neglected. Miller extended his model to study the

forward flight case and found that the nonuniform downwash induced at the

rotor disk by the wake vortex system could account for the higher harmonic

airloads encountered on rotor blades in forward flight. He also showed

that under certain conditions of low inflow and low speed transi tion fl i ght

the returning wake coul d be sucked up into the leading edge of the rotor

which would account for some of the vibrati on and noise.

Several investi gators used better representations of the helical or

skewed hel ical wake for steady fli ght. Jenney et al’45 reviewed several

simpler conventional methods for computing hover performance and pointed

out that one of the primary reasons for discrepancies in results are due to

the use of ina dequate mathematical wake models in the conventional theori es .

•They attributed the major discrepancies to wake contraction in close

proxi mity to the rotor. They developed a theoretical lifting line Hove r

Performance method representing the wake by a finite number of vortex

filaments. They prescribed the wake geometry in the computer program in

which provisions were made to incl ude a wi de variety of wake geometries

ranging from the classical uncontracted, momentum axial veloci ty geometry

(classical wake) to the more realistic contracted , variable-axial-veloc i ty

geometry .

• Landgrebe’46 ,’47 subsequently, conducted an analyti cal and exper imental

In vesti gation to acqui re systematic model rotor performance and wake

geometry data and to evaluate the accuracy of various analyti cal methods in
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predicting the effects on performance of changes in helicopter rotor design

and operating parameters . A rapid computer analysis was developed for

- computing the distorted wake geometry of a rotor wake. The numerical

procedure Involved two basic steps - the use of the Biot-Savart law . to

compute the wake distorti on velocities produced by a gi ven wake geometry

and the integration of these velociti es over a small time increment to

establish new wake geometry. These steps were successively repeated unti l

a converged periodi c wake geometry resUlted. It was found that analysis

based on a contracted wake geometry generally provi ded si gnifi cantly im-

proved predictions of performance for those rotor operating conditions whc~re

the more cl assical uncontracted wake analyses exhibited major shortcomings .

Through extensive correl ation testing, he validated the general trends

predicted by his numeri cal work . Analysis of the wake data for that portion

of the wake which was stable (i.e. near the rotor) indi cated that the

data could be expressed in relati vely simple generalized equations which

facilitate the rapid estimation of contracted wake geometries for a wide

range of rotor design and operating conditi ons.

In an independent study, Piziali’48 , developed an alternative numerical

method in which the wake of the rotor blade is represented by discrete

straight lines and trailing vortex elements. He satisfi ed the chordwise

boundary conditions , but the rotor blade was limi ted to one degree-of-

freedom in flapping. His method is also limi ted by the use of empiri cal

factors which adjusts the discrete time positioning of the shed vorti ces.

Sadler ’49, using a model similar to that of Piziali , developed a

method for predicting the helicopter wake geometry at a “start up ” confi g-

uration . He represente d the wake by a fine mesh of transverse and trailing

vorti ces starting wi th the fi rs t movement of the rotor blade generating a

boun d vortex , and , to preserve zero total vorticity , a corresponding shed

V
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vortex in the wake. Integrating the mutual intefe rence of the trailing

and shed vortices upon each other over small intervals of time , Sadler

was able to predi ct a wake geometry. Al though his model showed fai r

agreement with the available experi mental data for advance ratios above

one-tenth , Sadler ’ s method is limi ted due to the large computational time

requi red to represent the wake by a finite mesh.

Another important problem is the predi ction of the unsteady ai rloads

in normal forward fl ight and allowing for blade-ti p vortex interaction .

Landgrebe and other investi gators demonstrated that as a gi ven blade

advances the tip vortex from the preceding blade may pass closely under-

neath it and the point of intersection moves inward along the blade as v

increases . Ward and Snyder50 predi cted the extent of the inward movement

as a function of the advance ratio and the number of blades . In their

study, they did not account for the actual induced rAsponse due to the

movement of the tip vortex but instead considered the analogous problem of

the response of the blade to a repetitive moving load. Their results

showed for flight at high advance rati o~ (~>O.25) the main effect of the

moving load was to ampli fy response in the l ower resonan ce modes.

The topi c of the evaluation of appropri ate aerodynami c coeffi cients

for use in the analysis of cl assical bending—torsion fl utter of rotor blades

is of great interest to a helicopter designer in view of the present day

helicopters with high tip speeds. Shipman and Wood5’ considered this

problem but they did not take compressibilit y and finite aspect ratio ef-

fects into account. The two-dimensional mathematical model used was

similar to that employed by other authors except that they assumed that

flutter would fi rst occur when the relative velocity over the rotor blade

reaches its critica l value when ‘v = ir/2. For greater or lowe r values of

‘•-- ~~~~~~~~~~~~~~~~ • - -~~~~~~~~~~~~~
-
~~~~~~~~~~~~~~~~ ~~~~~~~~~~~ —‘~~~~~~~~~~-- ~‘

--‘-
~~
-‘ 

~~~~~~~
- ‘~~~“
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‘V 1 the realtive speed would be reduced below the criti cal speed for flutter

and any Inci pi ent growing flutter oscillati on woul d be damped. This

reasoning led them to represent the blade motion by a series of oscillatory

pulses , where each disturbance occurs over the range, ir/2 - ~~~ v < ¶12 -

Corresponding to each burst of oscillati on , packets of vorti ci ty are assumed

to be shed in the wake. With increasing forward speed , the spacing between

the packets of vorticity also increases and it was found that the fl utter

speed became constant when 
~~, 

the advance ratio, was above 0.2.

The approach used in a study by Rao and Jones 52 di ffe rs from that

adopted by Shipman and Wood in that continuous high frequency small

oscillations are assume d to be s uperimposed on the normal periodi c moti on

of the blade . Rao and Jones developed a simple but general numeri cal

lifting surface method for predicting unsteady airloads on a s ingle-bladed

rotor blade on a full three-di mensional basis. The numeri cal method was

based on the veloci ty ‘potenti al fo rmulati on and was not restricted in any

way as to frequency , mode of oscillati on or aspect ratio when M < 1.

However, in their model they used a cla~siàal wake model and considered

uniform downwas h only. The general theory was developed for a rotor blade

at the ‘V = ir/2 position where fl utter is mos t likely to occur. Calculations

of ae rodynami c coeffi cients for use in fl utter analysis were made for

forward and hovering flight wi th low inflow for Mach numbers 0 and 0.8

and frequency ratios p/o = 1 and 4. The results were compared wi th values

given by two-di mensional stri p theory for a rigid rotor hinged at its root.

The comparisons indi cated the inadequaci es of s trip theory for ai rload

predi ction. One important conclusion drawn from this study was that the

curved wake has a s ubstantial effect on the chordwise load distribution .

The pitching moment aerodynamic coeffi cients diffe red appreci ably from the

resul ts gi ven by stri p theory.

L 

.



-. 
. . , , . ‘.‘ ‘:~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~

—• 
~~.•.‘ — •• ‘ — ••..• — ‘ ‘

17

II. AERODYNAMIC THEORY

Governing Equation of Flow

Cons ider an airfoi l in moti on in a continuous fl uid medi um. A

Cartes ian coordinate system i s chosen such that the ori gin 0 lies at

the mi dchord point of the airfoi l , and the positive x-axi s in the

direction of the free stream relative to the airfoil. The system of

coordinates is show n in the sketch below .

H 
-

. 

~~Free Stream

z

— —~~~~-- -“ - ~~~~~~~~~~~~~--rn -~~---- ’ — ~‘• ‘~~~~~ ‘ .—~~~•‘ ~~—• -~~•~~ “~~~~~-~~~~~~-
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Velocity of a fl ui d particle at any point P(x~1 y~
, z~) in the flow

f ield is

= ~1’~t + ‘t~,r + ‘1~~ (2.1)

In a potential fl ow around the airfoi l, the laws of conservation of

mass and momentum are , respectively,

DP -‘+ PV’~~ = 0  , (2.2)

and
-p

pc~ -~~

+ = 0  • 
(2.3)

Expressing the veloci ty 9, in terms of a potential function 0
the continui ty equation (2.2) reduces to

v,t g2cç ~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
. (2.4)

For a barotropic fl uid, p = p (p )  and , hence

(2 5)t Fc~
a Dt

Along a streamline , the momentum equation yields

- - !- ~~~~
‘ 2 6pt \ 2 ’  4~~~~~~t /°~~~~~ 

.

A lso , from the momentum equati on ,

÷ (2.7)

Equati ons (2.5), (2.6) and (2.7) are combined to obtain the governing

~~~~ _ _ _ _  _ _  _ _ _ _ _  _ _ _ _ _
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potential flow equation ,

%72.Ø + 1 ~j ,.v (5.~)J =0. (2 .8)

This general form of the equation is applicable to unsteady compressible

flows wi th no shock waves . Based on the type of flow , equati on (2.8)

is modi fied as follows .

a. Incompressible Flow (Steady and Unsteady State).

Local speed of sound in an incompressible medi um is infinite and

he1ice the governing differential equation of potential flow becomes

Laplace’s equation ,

V~~~ = 0 . (2.9)

b. Compressible Flow (unsteady State).

Veloci ty of a fl uid particle in the vicinity of the airfoi l can be

written as

= ( U  + u.) � .i. ‘ trj~ + • 

(2.10)

where the perturbati on velocity components u, v, and w are considered

small in comparison to the free stream veloci ty component. Coordinate

transformations •

‘ = Yup

- 

z = (2.11)

where, (
~ ~~Il ML
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and the substitution

~~~~~~~= 
(2. 12)

modify equation (2.8) to

÷ ~~~~ ..g  
, 

(2. 13)

with

v~ .~~~~ ~~~~~~ + 2. ~ _
~~~~~~~~ , (2.14)

~ (2. 15)
and

~ 
(2.16)

c. Compressible Flow (Steady State).

Frequency of external exc itations p ’=O in the steady state resulting

in lea, and the govern ing flow equation becomes Lap lace ’s equation in the

transformed coordinates ,

V~~f  = 0 .  • 
(2.17)

Velocity Potential in Terms of Boundary Values

To obtain a relation for the velocity potential ~ in terms of its

value and the normal derivati ve on known boundari es so as to formulate a

boundary value problem in conjunction with Helmholtz ’s equation (2.13), we

now refer to the sketch .

, — — — — — — a — — — — — — — — — —

$ 
p. 

•

I 
- s~~j_~~ )

- Wake Sheet /
— — — — — — — — — — — — — — — — — —

•~~~~~-~~~~~~~~~~~~ -
• - -

~~
--

~~-
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Fluid region 0 surrounding the airfoil is bounded externally by

the surface z, and encloses an impermeable surface S comprising the

ai rfoil and the attached wa ke surfaces .

With the use of Gauss’ di vergence theorem for the vector B = 4 V~~ ,

a reciprocal theorem can be proved as

~f 4~~ _ 4 S . ~j IS (2.18)

where ~ and both satisfy Helniholtz ’ s equati on (2.13), and i~ rep resents

the unit normal vector at any point on S and ~~, directed toward the fluid.

Assuming ~~
‘ ex p (_ i.1cR)/g. where R is the distance

between a flow point P(X P,Y ~
, .Z~

) and a point ~ (X Y,’Z)
on (S + ~) .  In order to avoid the singulari ty in ~

‘when the points P

and Q coinci de , P is enc losed in a small spher ical surface ~ which , in the

limit, is taken to the point P. Further , as the exteri or boundary is

• extended toward infini ty , contr ibut i ons over E in equation (2.18) approach

zero for point P in the vicinity of th~ airfoi l. Equation (2.18) is now

rewri t ten as

4 (X i, Y~, Z~) = 4~ [4 ( X ,Y ,l) ~~ 
( )

S -4.1C R
— .~_ 4 ( X ,Y~Z)] cIS) (2.19 ?

where X, V , Z are the independent variables in the integrand on the right

side. This equati on provi des a means to express the veloci ty potential

at any point P in the flow in terms of its value 4 (X Y,j )  and

the normal derivative on the surface of the airfoil and its

wake. Wi th the assumption of thin airfoi l , the closed surface of inte-

gration can be divided into two equal and parallel surfaces. Also , the

V
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physical boundary condition on these surfaces requires the relative flow

to follow the airfoil and its wake geometries. That is ,

-, -, 
‘4Q e n  (4. -i. v4 )bn = 0 (2.20 )

whereby

= — n (2.21)x

It is further noted that on the upper surface of integration

~~~~ —~/~Z and on the lower side 
~

Hence , from equation (2.19), the downwash induced at a point P on the

airfoi l in a direction along the positive z-axi s is given by

= 
~ 4= iS (~~~

_ 
~t~~~y2.( ) otS (2.22)

I’ airFoil .i-
w~k.Rewriting ,

-.i.ICR
= Sr K (X , Y ,Z) !.—~~ ( R 

) 4S (2.23)

wake

where K = 4~ — 
~~ 

defines the strength of the doublet distribution

over the airfoi l and wake surfaces.

Equation (2.23) is the most general form of the velocity potential

formulation applicable to unsteady flow of a compressible fl uid past a

thin airfoi l at small angles of attack. It can be suitably modifi ed for

incompressible flow (steady or unsteady), two-dimensional compressible flow

(steady and unsteady) and three-dimensional steady compressible flow.

For all steady cases , and unsteady incompressible flow, ‘~~,
= 0, and

equation (2.23) becomes

= ç ç K ~~~~~~~~~(~~~~~)~~~~~ • (2.24)
a1v4I3 4. 1’

W*kt

L _. - ‘~~~~~•~~~~•-~~~~~~~~~~~~
-
~~~
-

“ 
_ _ _ _
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For two-dimensional subsonic unsteady flow, the velocity potential

formulation reduces to

2X~4 = f ~~K(x ,z) 
~~~~~ 

.~~- ) c A Y d X 
, (2.25)

where P is a point on the Y=O axis , and

R. ~ [ ( x - x 1)2 
~- Y z ÷ Z~ J”2 (2.26)

Equation (2.25) is rearranged as

t ~ —41C R

= 5 K (X ,z){~—~ .1 e dY] cAx 
(2.2 7)

We now let

= ( X — x ~,f÷ Z~~ , 
and (2.28)

• o~
2.
.i. y 2

= .2 ,rt
whereby

or 

2Yi4~ = 2o
2
Tc~’L (2.29)

~Y _ { r c o~/1/~~~ _f’} ~ ‘t . 

‘ 

(2.30)

Therefore , 
~ 1iC t J o c ~

ç~~~
_
~~ 4} ’ ~S

=— !. . ±  (2.31 )
where

k I =  ( (x -x ~) +4. ] / and

Hr ( lckl) , So ( l ck I)— LY ,(lc Ic ,) is f (2.32)

the modified Hankel function of the second kind Use of result (2.31) in

equation 2.27 yields

=_
~~! S K ( X ,z ~~—~~~[H ~~

2)

(1 tk))]  4X . (2.33)
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The function p.c 1) , defined by equation (2.32) satisfies

the Bessel’ s equation

• 

~~~~ 
H~

2)(j 1.) + ~ 
~~ ~‘~?l~r’ + (2.34)

where

(2.35)

Hence it can be show n that If~
2
~(1t lii~I) also satisfies the

two-dimensional wave equation ,

( + •1- a ) U (2) 
= 0 (2.36)

To show this , we consider the following.

, 
( ~~~ 1cI~d)

where (‘ (2.37)

~~ = 
r (X ~,Z~) •

00 — _ _ _- .  , and4r (2.38 )

1. 13.,

~~~~~ ?~~~~~~H0~~~~A ]

~xI,
d 2. 

k
(t.) 

~~~~~ ~~~~ 
_ _ _  _ _ _

~~~~~~ 

. (2.39 )

Also ,

1 = —  
sc~~X-. Xg,) 

• (2 40)

~xI~ IA
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Therefore ,

= 
ic,~ (x- x~) ~ ic~ ( x - 

(2.41 )
‘ I A  r

Substituting equations (2.40) and (2. 41) in equation (2.39),

r H(t)( )1 — 
d ~~(i)~ 

~ 
i~~ (X — X~f

° L

+ ~ ‘~‘ct?~ F~~
_ ic4 (x — x 1~)~j

L I~ J , (2 .42)

Similarly,

(2.43)
and

2. (t)-
~~~~~ r l4~’~~1 — i_ i_ 

_ , I4 0 •. ~~?Z~~
L b 1 J  

~Z~~L dr
= 

d
2

~~~~~~(~~r ) z

÷ ~~~~
U
~~~

L
l4

• 
~~~~~~~~ 

(2.44)

Now ,

(2.45)
- 

~r 
— ~~ / _ _ _az~ r .r ’ ~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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Therefore

fr
Z C H ~

h $

(r )~J =  

~~~~ 
+ L ( & _ !!4j~3 (2.46)

Substituting equations (2.42) an4 (2. 46) in equaticn (2.36), we have ,

~ 
-p 

~~ ~
tkr

= 
c4t H~

t) 
[ ict

~J + 4 ~~~~~ ~~~2 
~~~~~~

r
+

2. (t)

ç~,t [ d N b 
+ i f ~ lJb

l~
(t)~

J

= 0 in view of the equati on (2.34) ,

Hence ,

~~[H~
t)(,~I~I)] _ (

~~~I,
whereby the formulation (2.33) becomes

2~~W~ ~~f K X) { ~~~ t 
~ 1G~J ~~~~~ 

x x )) dX 2.48
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as Z~, Z + 0.

A sli ght modifi cati on to the above form can be achieved by writing

~~ + 1)u~
t?j .~) ~ (2.49)

from Bessel ’ s equation (2.34) . Also as Zr,, Z -*~ 0,

t~ = 1,1(X_ X,,)
Z ,

and

or 

2.rd r =

= — 

n(~-x)~ ~Ix— X~,ITherefore ,

= _ _ _ _  — _ _ _ _  
~~~_ 

1 — 
~~~~~ 

-

~• dX
1~ 4f4 4X 1, L ic cx-x~~ 

(2.50)

_ _ _  

~~ ~~~~~~~~~ dXpJ

~~~~~~~

I el2H~~= i?’ ~~~ ‘ 

( 2 . 5 1)

Hence , equation (2.49) yields

4
2 I X — X~~[ ~~~~~t)

or ~ J4 1C (X- X1,) d

~~. 1’~~JH0 
. 

. (2.52)
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Equation (2.48) thus changes to

2 ~ = ~~~ 
J0 

(X—X ,) ~ 
C ~~ I X.- Xp I )  4X (2.53)

..._~~~f~ K(X ) 
H~~~(1C I ) C — X ~~I )d ,’( (2.54)

Equati ons (2.53) and (2.54) are two convenient forms of the two-

dimensional , unsteady, compressible flow formulation .

For two-di mensional incompressible flow , both stea dy and unsteady

states , we now refer to equation (2.24) and rewrite

= (2.55)

• •
~$ 0

where

R. = [(x -x~)
t
÷ Y

t
+ Z ~~]

l
~

Rearranging equation (2.55), 
-

2XW~, f K(X ,Z)~~-~[ f~~
. (-k)~ Y} dX . (2.56)

Consider

ZI, ‘

= (2.57)

and

Y 
- 1

L [(X...X p)
t
+ Z~JL(x-x~

)t+ y2+ z~
T’2J0

• 

= 
(X— Xp)t+Z ~ 

- 

(2.5 8 )
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Therefore , equation (2.56 ) becomes .

= -1 K~x .z)~~- { 
~~~~ J 4x ~ (2.59)

which reduces to

2~~W~ 
~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~ 

~~ 
) dX 

, 
(2.60)

as Z~, Z 0, and noting at

~ [ --.1 — 
Lt ~ I X— Xp 1Z~-’~o ~~ 

I (x— x 
~ 

÷ z~
- -~ 

— 

Z~-~ 0 53?~ L (x-x~?+ Zj~ 
-J 

. (2.61)
Al ternati vely, equation (2.60) is

2X ~~J _ J
?K/

~~
X d~ (2 62)

~~~~

Three— dimensional incompressible flow, steady and unsteady , formulation

is simplifi ed further as follows . From equation (2.24)

4~1W
p cc K ( X , Y,2) 

~~~~ 
(*)dv~x (2.63)

wakewhere 
‘

• R = [(X.... X1,) + 
( 

Y Y~,)÷ ~ (2.64)

As 

~~C~ ) o  
,

~ r X— X1~-i ? I 
_ _ _— 

~~ L R3 ~ 
+ 

~~J
/ (  

~ 3 J . (2.65)
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There fore , as Z -
~
. 0, and for a thin lifting surface at small an gles of

attach K(Z~ + 0)

= ff K ,y)[~~4~ 
X X ~~~ 

~~~
4- Y (2.66)

wake

Numerical Scheme to Solve Integra l Equations

The integrands of the surface integrals appearing in the veloci ty

potential formulations for various types of flows are functions of the

unknown discontinuity in the modi fied velocity potential , K(X, Y ) ,  and

known functions of the airfoi l and wake geometry in the transformed

coordinates . These also depend upon the angular frequency of external

excitations that are responsible for the unsteady state of the relative

flow past the airfoil. In order to facilitate evaluation of K-distribution ,

the lifting surface is divi ded into a ñumb~er of conveniently shaped boxes

and the value  of K over each box is assumed to be constant. Making use

of the wake boundary condition that there can exist no pressure dis-

continuity in the wake , the value of K at any spanwise location in the

wake can be expressed as a function of the value of K at the trailing

edge box at the same spanwise location . Hence , the wake is divi ded into

a number of trailing strips and K (X ,Y) is considered constant across

each strip but to vary with X downstream. When the downwash contributions

due to all  the boxes an d str ip s are obtai ned , the problem , in general ,

is reduced to solving simultaneously a set of as many linear equations as

the number of boxes on the l i f t i ng  surface . Steady and uns teady load
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calculations are then carried out in terms of the known doublet distribution

and the lifting surface geometry .
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Two-Di mensional Incompressib le Flow

a. Steady State . -

The relation for the downwash at a point X 1 on an airfoil is expressed

as equation (2.60) ,

= Jdx
ZP0

=f ~~~~~ x =?;~~~fK~~ (X
t
x )4x (3 .n

I 
—x. — i 

~~
, J L X . _X~÷,

The airfoi l is divided into N equal strips of wi dth 20 and K is assumed to

be a constant over each strip. Kte is related to KN and is normally taken

as equal to 
~~ 

Equati on (3.1) can be ’written as

z~c{W} = [AJ {K} (3.2)

where

1 1
—

4J 
‘ 

x4. — x~ + D — xJ —

and
I

= 
•

— 
p



, ,

~~~~~~~~~~

33

For a prescribed boundary cond tion , W.~ is known . This is a non-

dimensional downwash veloc ity at a point  X .~ . For a cons tan t angle of
attack case, W1 = cs(1 = 1 , 2, ..., N) and the lift per unit span is

or 
L’ = ,oU ~~ ,o ~~ ~~e ~~ U~ ‘<N

C,~ = = ‘<N . (3.3)

Pitching moment per unit span about the mid-chord axi s is (nose-up positive )

or 

M ’= ~~~~~~~~~~~~~~

C M h/(,Ut
~
l) K~- 2 P Z K ,~ 

(3.4)

The analyti cal solution for K distributi on is gi ven by

K= z .(o  .i- (3.5)

where coi’ (—X) 
-

The computer program based upon the constant K distribution over

each stri p is very simple , especially when the col location points of each

strip are taken at the center of each strip. For this case , the results

are presented below for several values of N and are compared wi th the

exact results .

Exact Lifting Surface Sol utions
Sol ution N=5 N=20 t4=30

CL 6.2832 6.2831 6.2829 6.2818

C,~~ -3.1416 -2.6431 -2.9885 -3.0384
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The computational time on AMDAHL 470 for all three cases (N=5 , 20,

and 30) was less than 0.54 seconds using WATFIV compiler which is only

1/5 th as fast as FORTRAN G or H compiler. As can be seen , the resul ts

for the coefficients are in excellent agreement i ndi cating that the com-

puted KN is close to the exact value even for N=5 case. The moment

coefficient continues to reach the exact value as N is increased. The

K distributi on is plotted in Fig. i and it can be seen , it is substan-

tially different from the exact distribution , especially near the leading

edge region. To improve this situation the collocation point of the

leadi ng edge strip is varied from 10 to 0.750 from the leading edge and

the results of K(K/2irct ) are presented below for a 5 stri p model.

K/2~rc~
X= -0.8 -0.4 0 0.4 0.8

Exact 0.396 0.661 0.818 0.923 0.986

1.000 0.492 0.711 0.852 0.945 1.000

0.950 0.468 0.697 - 0.840 0.935 0.990

0.900 0.443 0.684 0.829 0.925 0.980

0.850 0.418 0.670 0.818 0.914 
‘ 

0.970

0.800 0.394 0.656 0.806 0.904 0.960

0 . 7 50  0.369 0.6 4 3  ‘ 0.795 0.893 0.950

As can be seen from the above Table , the K distributi on has improved

towards the leading edge as the collocation point location is moved toward

the leading edge ; however, the trailing edge values are in error for this

collocation point locati on , resulting in a decrease in the lift coe fficient.

Another scheme is tried to correct this situation . In addi tion to the

leading ed ge stri p collocation poin.t variation,the trailing edge value ,
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FIGURE 1. Comparison of the Present Method with
• Analytical Solution
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Kte~ 
Is expressed by the relation

— 
9~~~~~

_ )
~8

in  place of Kte 
= 

~N’ and the results are tabulated below.

K/271c*

H X = -0.8 -0.4 0 0.4 0.8

Exact 0.396 0.661 0.818 0.923 0.986

1.000 0.499 0.722 0.866 0.964 1.023

0.960 0.480 0.711 0.857 0.955 1.015

0.92D 0.46O 0.700 0.843 0.947 1.007

0.88D 0.440 0.689 0.839 0.939 0.998
• 0.840 0.420 0.678 0.830 0.931 0.990

0.BOD 0.400 0.667 0.821 0.922 0.982

• As can be seen from the above table for the collocati on poi nt lo-

cati on at 0.8000 and the modi fied trail-ing-edge relation resulted in an

excellent agreement wi th the exact result. In a recent paper , Kocurek and

Tangier53 discussed a systematic means of the col location point selection .

b. Unsteady State.

In the case of uns teady flow , a periodi c motion is assumed and the

doublet distribution is assumed to be K’e x p ( i p t  ) = K’ex p~(4w T)
The relation for the downwash (amplitude ) at a point X1 on an airfoi l is

expressed as equation (2.62)

= ~~~~~ cix ’

= 
X~-I ~~~~~~~~~~~~~~~~~~~~~~~

_ _ _
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The boundary condi tion in the wake and at the trailing edge is expressed

as 

_ _  X~~ 1 (3.7)

and K’ in the wake can be expressed in terms of Kte by solving equation (3.7) ,

K’ v ’
w a ke — 8 (3.8)

The airfoi l is divided into N equal stri ps and K’is assumed to be a

constant over each strip. Equations ( 3.6) and (3.8) are combined to yield

/ ~ —A &.i (x.. s) K ’a,i 1~T~1 ~& )K .~~f e  — d X ÷
p4 4,

I 1 1 (3.9)
j..
~ 

J L X . . .-X . 4.. J~ X4 — x ~ — J J
• Making use of the wake boundary conditi on at the traili ng edge several

possib le rela tions can be obta ine d for K
~e 

i n terms of K~. One such

frequen tly used rela ti on i s

K’ — F K ’ ., (3.10)

where

F: l/[e”~~ + a~L~ DJ
Equati ons (3.9) and (3.10 ) are combined to yield

27c~~W} = EAI 1K}
where

I
- —

and 
X4 X~ + X X~ —

• I I
a _ _ _ _ _ _ _

~~~~~~~~~~ 
•~~~~

1
,g1D~~’Z4i )(X-I)

I

_ _ _ _ _  ~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ -.- •~~~~~
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The infinite integrals in the term a IN are evaluated by separating

into real and imaginary parts . These terms are expressed in terms of

infi nite series an d are anal yticall y i ntegra ted. The relati on is given

by
a — 4.~ (X-s ?f e. — 4 ~ = e

+ 
)

2.2! 4.41

(3.12)

The above developed formulation is equally valid for oscillating

airf oi l s  as is for oscillatory flows (like gust). The boundary con-

ditions are usually prescribed in either case. For ai rfoils undergoing

flapping and pitching oscillations (about the mid-chord) the boundary

condi tion is

= ..L~.’Z’ + (i+ i’~X .)o~’ 
‘ 

(3.13)

and for oscillatory flow

(3 14)
W. =4..

where V and a ’ are the flapping and hitching amplitudes , respectively .

The uns teady l ift and moment coefficients are then expressed as
/

~ J ~~~~~cQZ2 + C ~ °( 
, )

and - (3.15)

J
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where

~ K 
(3.16)

and

Cpj( ) ~~~ 4.E(.) +1P~~KJ(.) W 2 PZKj XJ
The parentheses , ( ), in equation (3.16) can be replaced either by Z or a

and the appropriate boundary conditi ons are applied.

The analytical expressions for oscillating airfoils are

C1 = 2~ (C + ~~~~~44)

~~~~~~~~~~~~~~~~~~ / (3.17)

C,1,2 ..Li~~~C
and

.1
and for the gust flow , -

CQ 2X [J O&3) (~)~.+LJ $(C4))J (3.18)

where

~~

‘.Ir?41) +~4..H~~~~J)
.t

=
and

• .~~J.
V1 0 ~:: ;-4# ro 

.

For collocation points located at the centers of each strip results

are presented below for both cases along with the compari s on wi th the

exact results
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Osci llating Ai rfoils

W N 
- 

C~~ C~~ Cmz C~~

0.1 exact 0.077+0.523i 5.281-0.507i O.054+0.261i 2.645-0.568i
0.1 10 0.074+0.525i 5.296-0.5001 O.056+0.279i 2.828-0.588i
0.1 20 0.074+O.524i 5.29 3—0 .49 31 0.055+O.272i 2.750—0 .5821
0.1 30 0.075+0.5241 5.291-0.4931 O.O55+0.269i 2.7l8-O.579i
0.2 exact 0.lll+0.9l4i 4.690-0.lOOi 0.l19+0.457i 2.36 1-0.678i
0.2 10 0.103+0.9221 4.718-0.1021 O.122+0.490i 2.524-O.689i
0.2 20 0.104+0.9201 4.71 3-0.0851 0.121+0.4761 2.454-0.6921
0.2 30 0.l05+0.9l9i 4.710-0.0831 0.121+0.470 1 2.426-O.690i
0.3 exact O.055+l.253i 4 .347+0.443i 0.169+0.6271 2.209-0.72 1i
0.3 10 0.043+1.2691 4.386+0.4281 0.170+0.6721 2.360-0.7l8i
0.3 20 0.044+1.2651 4.378+0.4561 0.l72+O.652i 2.294-0.730 i
0.3 30 0.045+1.2631 4.374+0.459 1 O.l72+O.644i 2.269-0.731 1
0.4 exact -0.088+1.5711 4. l34+l.005i O.20 7+O.785i 2.130-0 .7541
0.4 10 -0.105+1.5951 4.183+0.979i 0.204+0.842 1 2.27 1-0.735i
0.4 20 —0.104+ 1.5901 4.173+ 1.0151 0.210+0.816i 2.210-O .757i
0.4 30 -0.102+1.5871 4.167+1.0221 0.211+0 .8071 2.186-0 .761i
0.5 exact —O .3l 2+l.879i 3.994+l.563i 0.237+0.9391 2.095—0.789 1
0.5 10 -0.332+1.9121 4.053+l.525i 0.225+l.006i 2.230-O.753i
0.5 20 -0.333~1.905i 4.039+l.570i O.237+O.975i 2.171-0.785 1
0.5 30 -0.330+1.9001 4.031+1.579i 0.239+0 .9641 2.l48-0.793i

Evaluation of the above listed results indicate that the numerical

soluti on is reasonably accurate even for 10 strip case. The computer

program is very efficient and the computational time for al l 15 cases

(5 w ’s and 3 N’ s) was 4.58 seconds using WATFIV compiler. For osc i l la tory

flow the numerical results along with the comparison wi th the analytical

results are illustrated below.

_ _ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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Osci llatory Flow

w N C~~/2~

1 exact 0.3687+0.12591

1 5 0.3868+O.l553i

1 9 0.3838+0.14571

1 15 0.3812+0.13941

1 25 0.3790+0.13491

2 exact 0.08l 6+O.2680i

2 5 0.0707+0.28401

2 9 0.0789+0.27l2i

2 15 0.0823+O.2677i

2 25 0.0840+0 .26641

3 exact -0.1452+0.1778 1

.3 5 -0.l705+0.l587i

3 9 -0.1623+0.l5l3i

3 15 -0.1562+O.1559i

3 25 -0.1521+0.16131

4 exact -0.1980-0.02071

4 5 -O.l932-0.0948i

4 9 -0.2053-0.0655i

4 15 -0.2062-0.05091

4 25 -0.2051-0.04101

• 5 exact -0.0812-0.15861

j ..
. 5 5 -O.0415-O.2783 1

5 9 -0.0645-0.19191

5 15 -0.0746-0. 17251

5 
- 

25 -0.0794-0.1650 1

L - • . 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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The values presented in the above Table are for very high reduced

frequencies which are of considerable importance in acousti cs . Also

based on the results , one can concl ude that the numerical lifting surface

technique yields a reasonable soluti on if at least 15 strips are considered.

Several other schemes were attempted varying the l eading edge strip col-

location point location . These schemes improved the results but however ,

the colloca tion poi nt l oca ti on was foun d to be a stron g func ti on of

reduced frequency and th is also i ncrease d the computati onal time due

to the lack of syn~netry.

L -.--- .-•~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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Two-Dimensional Compressible Flow

The relation between the downwash at any point X .~ on a thin airfoi l

- in subsonic flow and the doublet distribution is deri ved in Chapter II,

equation (2.48 ) It is expresse d as

= ~~ J K(X)L 

~ 
i-1~~] Hrk 1~)x ~.x~odX . (3.19)

The wake boundary condi tion is

, X~~ 1 , (3 20)

from which K’in the wake can be expressed in te rms of K
~e~ 

The relation is

.-~~~CX — i )  
~
,

) . (3.21)

Equations (3.19) and (3.21) are combined to yield 
•

2,c~~ ~ 
+ ic~) ‘P c~X

÷ K~~f 
(X_ 1)

(~~~~+~~t) ~~ d X }  ( 3 . 2 2 )

where —

~~~ w ’(~ 1x—x~,1), X = 1c 1x_ x~? .
The ai rfoi l is divi ded into N equal stri ps of wi dth , 20 , and K is

assumed to be a constant over each s trip. Equati on (3.22) is then

reduced to 
x +~i’

2(WJ~. = ~ [?~ ~f 
.
~
.

4. L~
)’f~(R~11)+ øv 

f
~~~~~~~~h ,(X)~Ate} 3 23)



The wake boundary condition is used to express K
~;e in  terms of K~

and the relation is

K~~ =~ FK~ = i~~/[e
’
~~ -a- 2A V DJ ( 3 . 2 4 )

Equations (3.23) and (3.24) are combined to yield a set of N simultaneous

equati ons , 1=1, 2 , ..., N. The Han kel func ti on has a si ngu lar ity when

its argument is zero. The evaluation of the deri vative of v presents no

problem since the point of evaluation is, at the least , separated from the

collocation point by D. The deri vative of the Hankel function is

= ic ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
H~’(~~l x-x~I) (3.25)

The second term in equation (3.23) is obtained by using Simpson ’ s

1/3 rule and it poses a problem since the v (X~ ) term becomes infinite

when X~~ is at the collocation point , X
1
. This situati on is alleviated

• by using the Struve ’s function . At the singulari ty point , the portion

of the surface being integrated over is 
- 

-

X~.a.p
_c 

dx-x~))4X =~ -J’ )1~
t
~~R’34X ’

Xr,D b

= zi ~~~~~~ Ia’) + lc ~[H~ (x?) ~0(r~)-.. H~~~~ Y~ I (D)~J (3.26 )

where

~ c, ( i~’)= ~ (~ ‘_ 
.~~~~~~~~~~ + — 

)

and 

~~~~~~ 
(
~
) 

• 

.

~~~

- 
( ç - _ _ _  _ _ _  • • .7 . 

— •
~~~~~~~~~~ •.. - ,

~~~~~~~~~~~~~~~~
—• - —-

~~~~~
•—.- , - ,- - _ _
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The wake integrat ion involving an infinite integration is simplif ied
and is expressed in the form

~L.v (1_X~) { 2  L (  ‘~P~ +

(3.27)

Equations (3.24) - (3.27) are incorporated in equation (3.23) and the result is
that the problem reduces to a set of simultaneous equations whi ch can be

solved for a given set of boundary conditions.

Boundary Con di t i ons

d4 a ~~— =  - — e- 

• 4Z U (3 ~~~ • (3.28)
where

40 
_ _

— =dz
and~~ is the vertical displacement. -

For an airfoi l undergoing flapping and pitching oscillation s about

mid-chord position
/ .~c%,

~ = 2 € + D( X e 
• (3 . 2 9 )

Equations (3.28) and (3.29) are combined to yield
—~~x

W = ’ +( i+ .L ioX )o ’J e 
(3.30)

where 2’ and a ’ are the amplitudes in flapping and pitching motions,

respectively.

For oscillatory (gust) flow 
-

= e 
• 

( 3 . 3 1)

- - . •
~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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Equations (3.28) and (3.31 ) are combined to yield

/ —~L~ X -~~ X j /e e G< e ( 3 . 3 2 )

Lift and Moment Coefficients

k = 
~~~~

— sz~ = Ui K e / (3.33)

an 
k 

= (

where £(x) is the pressure difference .

Equations (3.33) and (3.34) are combined to yield

÷ ~~~~
g) 

, 
(3.35)

whefe

Then the lift and moment coefficien ts are evaluated using equations

(3.15) and (3.16), respectively . Some results and computational times

are presented below in tabular form for both cases of oscillating airfoils

and oscillatory flows . 
. 

•
~~ 

-

— — •-• --~~—-~~~ • - —~~~~~~~~~~ ••~ -——---.-•— --••- .•-._-__•rn_ -—.-.----- ~~~~ 
.
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Oscillating Ai rfoils

M C~ C2~ Cmz C~~

0.1 0.01 O.073+0.525i 5.297-0.4911 0.058+0.2861 2.888—0.602i
0.1 0.50 0.ll6+0.569i 5.760—0.901 1 0.088+0 .3071 3.114—0.923 1
0.1 0.60 0.141+0.591i 5.996—1 .l44i 0.l07+O.316i 3.219-1.1211
0.1 0.70 0.179+0.6181 6.296-1.519 1 0.136+0.326 1 3.332— 1.433i
0.1 0.80 0.242+0.650i 6.652—2.144i 0.184+0.3301 3.392-1.967i
0.2 0.01 0.102+0 .9241 4.730-0. 0881 0.125+O.50 1i 2.582-0.709 1
0.2 0.50 0.183+0.9771 5.050—O .483i 0.193+0. 51 71 2.695- 1.099i
0.2 0.60 0.225+0.998i 5.189—O .690i 0.231+0.519 1 2.718-1.3231
0.2 0.70 O.288+1.025i 5.372-1.008i O.288+O.512i 2.706-1.669i
0.2 0.80 0.384+1.0461 5.550-1 .522i 0.373+0.4731 2.519-2.2241
0.3 0.01 0.040+1.2771 4.416+O.447i 0.176+0.690i 2.422-O.74 li
0.3 0.50 0.154+l.340i 4.72l+0.073i 0.286+O.695i 2.488-1.197 1
0.3 0.60 0.214+1.3711 4 .879-0 .1351 O.347+0.687i 2.485-1 .4641
0.3 0.70 0.302+1.4031 5.061-0.454i O.435+O.655i 2.396-l .869i
0.3 0.80 0.444+1.4181 5.218-1.0201 O.554+O .548i 1.996-2.484i
0.4 0.01 -0.1l2+l.6Oli 4.201+1.009i 0.2l0+O .862i 2.325-0.757 i
0.4 0.50 0.04l+l.704i 4.602+0.626i 0.374+O .862i 2.394-1.299 1
0.4 0.60 0.125+l .75l i 4.802+0.~ 99i , 0.465+0.8411 2 .366- l.623i
0.4 0.70 0.254+1.7981 5.032+0.Ol6i 0.592+0 .7731 2.196-2.112i
0.4 0.80 0.468+1.7941 5.149-0.7001 O.72 6+O.563i 1.522-2.747i
0.5 0.01 -0.345+l.924i 4.081+1.564 1 0.233+1.033 1 2.288-0.775 i
0.5 0.50 —0.1 42+2 .0891 4.619+1.1551 0.465+1.0281 2.367-1.42 31
0.5 0.60 -0.025+2.1601 4.876+0.8831 0.593+0.9861 2.306- 1.8l7i
0.5 . 0.70 O.17l +2.226i 5.164+0.3831 0.765+0.8611 2.02l-2 .399i
0.5 0.80 O.4 77+2.l7Oi 5.160-O.535i 0.870+0.5231 l.030-2.937i

The computational time for all the above 25 cases was 4 . 3 9 seconds

using FORTRAN G Compiler. In this case, the airfoil is divided

into 11 strips.

~ 

•~~~ 
.•~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -
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Osci llatory Flow

M • C CLa ma

0.10 0.01 5.l88-O.967i 2.812-0.5491
0.10 0.50 5.597-1. 4101 3.007-0.8381
0.10 0.60 5.800—l.668i 3.093-l.OlOi
0.10 0.70 6.049-2.0571 3.177-1.2771
0.10 0.80 6.319-2.6821 3. 196-1. 7111
0.50 0.01 3.391-0.1591 l.794-0.142i
0.50 0.50 3.520-0.526i l.7l6-0.408i
0.50 0.60 3.554-0.7lli l.629—0.526i
0.50 0.70 3.545-0.9731 l.441-0.643i
0.50 0.80 3.367-1.2801 1.095-0.5761
1.00 0.01 2.404+0.924i 1.226+0.451i
1.00 0.50 2.736+0.4591 1.126+0.1661
1.00 0.60 2.742+0.1831 0.974+0.1021
1.00 0.70 2.568-0.0641 0.784+0.2001
1.00 0.80 2.462-0.1101 0.841+0.3541

The computational time for all of the above 15 cases , taking 11

strips over the ai rfoil , was 4.09 seconds . .

.

The presentlifting surface method resulted in the developmen t of

a very efficient computer program for a 2-dimensional compressible flow

case , which in general has one of the most complicated formulations .

L~~~~~~~~~~~~~ . ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
_ _ _ _  _ _ _ __ _ _ _ _
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IV. ROTOR APPLICATIONS

i) Steady State Application to Marine Propellers

• Elchuri5t’ app lied the velocity potential formulation and the as-

sociated numerical technique to the problem of es timating the steady and

unsteady loading distribution on typical ship propellers . In order to

study the response of the method, two B series propellers , B-3.35 and

B-3.50, were examined . Expanded outlines of these two types of blades

are shown in Figs. 2 and 3 . As a first approximati on , b lades were

treated as thin lifting surfaces with no wake. The l i f ti n g surface was

divided into a gri d of 100 boxes wi th ten such boxes along each chord

at an equal number of spanwise locations. To obtain the distribution

of the discontinuity in the velocity potential on the blade surface,

the presence of all the b lades and thei r wakes ~aas cons idered . The doublet
- distri bution obtained as a result of solving a set of simultaneous

equa ti ons as d scusse d earl ier is rela ted to the di fferen ti al pressure

distribution on the blade at any point P as

• 

~~~~~~~~~~~~~~ ~‘~~ .vk -
where the relati ve free stream velocity is 

-

/..

W
~b = + fLy £ — JLXJ + V~ K

The thurst produced by a blade section at a mean radius rm is the component

of the resultan t of lift and drag forces along the direction of propeller

advance. Therefore, per unit span ,

= [~•~ 
‘ k J k

ç1c.nst. -

where the lift per unit span due to a box with P as the collocation point is

t
= ‘~~~ ~~~~ ,[w ~ k~

_ w~3 k, —Sk “~~~~ cIsJ
I S

_ _ _  _ _  
_ _ _ _ _ _ _ _ _ _
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and the prof ile drag per unit span at P- is

- 

.

with the local drag coefficient CD generally stated as an empirical function

of the angle of attack .

Torque necessary to overcome wate r resistance per unit span to turn

the propeller at a constant angular velocity ~i is

~~~= z [{ ,,0~ (i +.;)}~’i ]’i~v~ ~~~~~~~~~~

where 
~~~~~~~~ 

is the position vector of point P wi th reference to origin 0.

It is customary to describe the propeller characteristi cs in terms

of thrust and torque coefficients (aggregated over the enti re span) , and

the propeller efficiency , as functi ons of the advance coeffi ci ent J.

These parameters are defined as ,

Thrust coefficient, K~. ZT/(,D w t
..p4,

Torque coefficient , = ~~~~ 
(#O N D )

_ _ _ _ _ _  

i~-5
• Propeller effi ciency, = =

2~~~, (zxN)

where the advance coefficient is

J~ Va/ (Np)
Thrust and orque coeffi ci ents together with propeller efficiency as

functions of the advance coefficient at a pitch to diameter ratio of 1.0

for B-3.35 and B-3.50 marine propellers are shown in Figs.4 and s .
A good comparison wi th the experi mental results of refe rence 54 reflect

upon the feasibility of the present lifting surface method wi th regard

to its applicability to marine propellers.

L _ _ _  
_ _ _ _ _ _ _ _ _
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ii) Analysis of Unsteady Airloads of Helicopter Rotors in Hover

Schatzle 5 5  applied the present numerical lifting method to

predict the unsteady airloads on a multi-bladed helicopter rotor

in hover using a realistic wake representation . The method

employed a velocity potential formulation and the wake geometry

was prescribed using Landgrebe ’s model. A summary of the results

were presented at the AIAA 15th Aerospace Sciences Meeting (Ref. 56,

also to be published in the Journal of Aircraft). A brief discussion

of the method and the results are presented in this section.

Basic Equations and Numerical Method

The relation between the downwash velocity at a point on a

rotor blade (wing) and distribution of doublets over the blade and

wake surfaces is derived in a previous section (Eq. 2.23) and is

given by -

_ _ _  e~~ <~
- ~~~~~ rf~~~ ~ ~ (4 .1)

÷

tva4(t
where K, the loca l doublet intensity, is equal to the discontinuity

in the transformed potential across the wing or wake. The valñe

of K at a point in the wake may be determined from the value of

K at the trailing edge of the wing in the following manner. From

Euler ’s equa tion , the local pressure di f feren ce across a thin

surface is rela ted to the corresponding discontinuity in

--

~ 

-~~~~~~~ -~~~~~~~~~~~~ - • -- • - - ~~~~~~~~~~



—- ~~~~~~~~ • :  --

56

potential by

2 
•

• .c pu (Lv K+~a e (4 .2 )

Since the wake cannot support a pressure discontinuity, =0 in

eq. (4.2) and thus,

-L3J (X.-~ \
= t~~~~ J ( 4 •3 )

~ 1TW~~ 1[I~~~ (e~~~R) 45
(4 . 4 )

°
~~~~~ (

eT’~~ )4 s .

In the numerical technique developed, it is assumed that

there are M panels along the chord of the blade and N panels

along the span. For a panel mn the local doublet intensity,

Kmn l is constant over the panel and may therefore be removed

from the integration of eq. (4.4) over that panel. Similarly ,

Kte,n may be expressed as K~~ and removed from the integration

of eq. (4.4) over that strip . If the integrations in eq. (4.4)

are carried out over each panel and strip and then combined to

____________ -~~~~~~~~~~ - - —
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form the entire surface integration, eq. (4.4) may be written

in influence coefficient form as

t~~~N . N

41r w 1~ ~~ ~ + 
~~~~~~~~~~ 

( 4 . 5 )

where

if e~~JJ • •R.~ J ~~~~~~~~~~ (4.5a)

and

= if i~~ ~~~~~~~~~~~

‘ 

(e ~~~~) s  5,,

Here Ap, mn represents the downwash velocity induced at P due to

a unit velocity doublet at the panel inn, while B representsp,n

the downwash velocity at P due to a unit intensity doublet in

the wake strip n. For an M x N panel lifting surface, P takes

M x N different values and the problem reduces to a set of

simultaneous, linear algebraic equations

41t~~W S [c]~~K3 ( 4 .6 )

-•-
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where

~I

L ~~P~~~~~~~~~~~~ ry~~~
) r~~~. P/l

The flow tangency condition , as detailed later, requires the

downwash velocity induced by the doublets to equal the downward

velocity of the wing at every point. Consequently, for prescribed

wing motion and geometry, eq. (4.6) may be solved for the doublet

distribution , K.

The proper approach to the solution of eq. (4.6) is to deter-

mine not only the doublet distribution but the wake geometry as

well since it is known a priori. This additional requirement can

increase computational effort appreciably. However , for moderate

to high aspect ratio f ixed wings it has been found su f f iciently

accurate to specify the wake to ?e a planar vortex sheet rather

than to calculate its actual shape. A similar approach is therefore

chosen for the rotor wake. That is, in the interest of reducing

computer time without compromising accuracy , the rotor wake will

be prescribed rather than calculated. The difficulty , however,

lies in choosing the proper wake shape for a given flight con-

dition. The strip theory model is simple but not physically

realistic since it ignores wake curvature. The classical wake

model is an improvement, but it neglects tip vortex effects and

the contraction of the wake of the wake beneath the rotor disc.

Only Landgrebe ’s experimentally determined rotor wake model

L - - - 
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includes all of these important effects. He models the wake as

having a strong tip vortex and a weaker inboard vortex sheet

and gives empirical equations for the radial and axial coordinates

of both as functions of rotor geometry and operating conditions.

The details of the equations were presented in Ref. 55. In this

report these equations were used with some slight modifications.

The first modification was to extend the outer vortex sheet

boundary to the tip vortex, since there is likely a physical

connection between the two. The second was to simulate the roll

up of the the vortex sheet into a tip vortex by gradually combining

the outer vortex sheet wake strips into a single strip with the

combined strength of the composite strips. This process was done

over an arbitrarily chosen one—sixth rotor revolution to insure

that the tip vortex reached full strength before passing beneath

the following blade . The portion of the wake which combined to

form the tip vortex was determined by the spanwise location of

the peak load on the rotor b1ad~ , ~nd since the peak load is gene-

j rally near the 85-90% radius position , all wake strips outboard

of that location were blended into the tip vortex. Furthermore,

the outermost segment of the strips in this region was assigned

tip vortex coordinates, while all others were given vortex sheet

coordinates. It was also assumed that the vortex sheet contracted

radially at the same rate as the tip vortex.

The blade surface is divided into a number of small panels

and the panel size is smaller in regions where K varies most

rapidly, i.e., near the blade edges. The freestream velocity is

assumed to be constant across a panel and equal to the velocity

at the geometric centroid of the panel. This velocity varies with

_ _ _ _
_ _ _ _  
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span due to the nature of the rotor flow field. Extending from

each trailing edge pane l is a wake strip whose coordinates are

determined by Landgrebe ’s equations (Fig. 6 shows the panel

approximation of the rotor blade and the modified wake model).

Calculation of Influence Coefficients

Eq. (4.6) can be solved for K at a discrete number of points

on the surface which , placed at the geometric centroid of each panel.

The influence of a surface panel on a collocation point is given

by eq. (4.5a) , which is evaluated numerically using a two—dimensional

Gaussian quadrature. The influence of a wake strip on a collocation

point is given by eq. (4.5b) with the following modification : implicit

in the use of (4.3) for enforcing the zero—pressure condition in

the wake is the assumption that the local streamlines are in the

direction of the positive X—axis. In a linearized sense this is

true for fixed wings. However, for rotary wings the streamlines

are directed roughly helical paths beneath the rotor disc. To

reflect this difference eq. ( 4 . 3 W )  i~s therefore modi f ied to

K(S te) 
te) (4.7)

where S is the distance measured along the centerline of any

wake strip. Of course, eq. (4-.5b) must be changed in accordance

with eq.(4.7). - The effect that a particular wake strip has on

a collocation point is therefore computed by adding the effect

that each panel in the strip has on that point using the modi-

fied form of eq. (4.5b) . As with the surface panels, the inte-

grations are carried out with a two-dimensional Gaussian quad-

rature. - 

- 

~~~~~~- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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Surface Bounda ry Condition

The vertical displacement of the blade is assumed to have

• a steady—state component due to coning and angle of attack, and

an unsteady component due to flapping and twisting about this

stady position, i.e., 
-

+ (4.8)

It can be seen from Fig. 7 that

(e-.~i) ~~~ (4.9a)

- (4.9b)

= F (s) 
- 

(4.9c)

The relations between the downwash velocity w~ and ~~~, and
— w~ and the transformed downwash velocity W~, are, respectively,

- U (4 .10 )I, 21%

and

• -~~~xx +tvT)~
— 

• 

W I, = •e 
— (4.11)

Ufr I3~,
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Eqs. (4.8) through (4.11) are combined to give

+ W ~~ (4.12)

where 
-

w (4.12a)

(9) Z~~~e ~~•
‘. tj  .1

-
/ -W~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~ 

~ 

j

~

) .  (4.12c)

The solution for steady flow is obtained by setting2’=O and)~=0

in eqs. (4..5a) and (4.5b) and using eqs. ( 4 . 6 )  and ( 4 . l 2 a ) . Simi-

larly , the solutions for flapping and twisting are obtained by

using eqs . (4. 12a) and (4 .l2b) , respectively in e q . ( 4 . 6 ) .  -

Aerodynamic Loads -

Eq.(4.2), the linearized expression for the l i f t in trans-

formed coordinates , is modified to

-~~

(4.13)

By integrating eq. (4.13) along the chord, the local l i f t  and

moment per unit span may be expressed as

4.14

- - ?u~e1 
(*)~~~€~~~~ 

+~WJ~
X
~1e~~

(4.l5 )
where K - ~ Ke.

• 

-
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The unsteady lif t and moment coefficients for flappinf and

twisting motions are expressed as

C L 
L C~~ 2~ ~~ 

CL~~c~~~~ (4.16)

_ _ _ _  - 
) (4.17)

where 
~~~ 

= z’
~~~

. /e. It should be noted that CL~~ 
C~~ , C~~ ,

and CM~~ are complex quantities.

Solution Procedure

For a given rotor geometry and f l ight condition , blade

element theory is used to calculate an initial guess to the rotor

thrust coefficients, CT. Based on this value of CT and the

initial conditions an initial wake shape is prescribed using

the modified Landgrebe model. The resultant steady-state airloads

are then calculated and an improved guess for CT is made. If this

second value di f fers  appreciably from the f i rst, a new wake

geometry exists which is compatible with the steady—state load

distribution, i.e.I
~~

CT4O. The unsteady aerodynamic derivatives

are then calculated based on this converged geometry .

- Results

Steady airloads and unsteady aerodynamic derivatives were

calculated for an XH-51A helicopter rotor in hover. This rotor

was chosen because experimental data 5 7  for the steady-state

load distribution was available for comparison with thecry .

~

- - - -

~

- - - - —---

~

- - - —-- ------ - 
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The blade geometry and flight conditions were :

NB = 4 , R = 17.5’ ,

c = 1.08’ , ye0 = 2 . 3 3 ’

= 5° ‘ e~. = 10.61°

N = 355 (14 . = 0.58) .
- R tip

In the unsteady case the blades were assumed to undergo rigid

f lapping and torsional motion such that

10 , y ~~~~e

f ( y )
( (y— e) ,

UR-e)
and

F(y ) = 1.

Figs . 8 and 9 show the calculated lif t and moment distributions

for the XH-5 1A using the present theory with the classical and

Landgrebe wake models. Both models overpredict the overall blade

lif t although Landgrebe ’s model~ p~edicts the loading , trends

more accurately , specifically the load spike near the tip due to

the tip vortex. The mean value for CT for the classical model

was 0.00577 and that for the Landgrebe model was 0.00584, while

the experimental value was roughly 0 .005 - - a di fference of 15

to 17% between theory and experiment. This difference may be due

to the approximate nature of the present method , i.e., discretizing

the linear spanwise velocity field into constant velocity

segments. No comparison was - made between the theoretical and

experimental moment distributions since the measured data were

referenced to an unspecified axis. It might be expected,
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however, that Landgrebe ’s model would give better results in the

tip region than would be the classical model. The number of wake

revolutions used in this study was varied from one to four with

no appreciable change in the overall thrust or character of the

loading curves, but with a drastic increase in computational time.

The displyed results are therefore those obtained using a single

wake revolution. For lightly loaded rotors (where the rotor wake

is closer to the blade) it may be necessary to include more wake

revolutions to get accurate results. The calculation of the steady

state loads using either wake model required approximately 36

seconds of CPU time- in G-Level FORTRAN on Axndahl 470V/6 computer.

Based on the steady-state results only the Landgrebe model

was used for three frequency ratios shown in Figs.lO through 17.

Evident in each of these figures is the strong tip vortex influence

on the loading over the outer 20% of the blade. In the present

study no attempt is made to explain the variation of these quanti-

ties as a function of frequency x~atio or its signi ficance in f lutter

analysis. However, based on the reasonable correlation between

steady-state theoretical and experimental loading using the Land-

grebe model , it is hoped that the computed unsteady aerodynamic

derivatives will also be reasonably accurate. In the future

these results will be compared with those of strip theory and

classical wake model representations and applied to investigate

their effect on aeroelastic stability boundaries as was done in

Ref. 58. The calculation of the steady-state airloads and wake

geometry and the resulting unsteady aerodynamic derivatives

required approximately 2.8  minutes of CPU time in G-Level FORTRAN 
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on an ~zndah]. 470V/ 6 computer.

Conclusions

A velocity potential lifting surface method has been used

in conjunction with a realistic rotor wake model to compute the

steady airloads and unsteady aerodynamic derivatives for an

arbitrary hovering rotor in compressible subsonic flow . The

theoretical results compare well with experimental data for four—

bladed rotors, suggesting that unsteady loads calculated with the

same wake geometry may also be reasonably accurate. With the

proper choice of flappinf and torsional modes, the present method

could be used to generate aerodynamic derivatives for use in

flutter analysis. In fact the next section deals with this topic.

iii) Aeroelastic Analysis of a Single-Bladed Rotor

The unsteady aerodynamic analysis and the computer program

described in the previous section is applied to predict the flutter

speed of a single-blades rotor in Ref.  59. The results an~ the

discussion of this analysis is presented in this section .

A single—bladed rotor wi th the following geometric and stru-

ctural properties was considered :

Radius — 25.0’

Chord - 2.0’

Y — 2 . 5 ’

— 0.25 (radius of gyration2)

- 0 .50  (bending /torsion f req . ratio)

1~ 
— ‘80.0 (density ratio)

c.g. b c .  0.1 (aft of elastic axis)

- • - _ • _  ._~~~~~~~~~~ --- - -• ~~~~~~~~~
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To assure compatibility between the two and three-dimensional

aerodynamic derivatives, a classical wake was prescribed in the

• three dimensional analysis. The use of classical wake resulted

in no loss in generality of the three—dimensional theory since

it has been shown that there is little difference between the

results obtained from using either Landgrebe ’s wake model or

a classical wake (Ref.  59) .

The principal flutter parameters in this analysis were the

location of the elastic axis (a) and the bending/torsion frequency

ratio (c ) .  The varation of flutter speed is shown in Fig. 18 for

the assumed blade section at 0.75 R , using both two- and three-

dimensional aerodynamics. Using two—dimensional aerodynamics

for locations of the elastic axis ahead of the quater chord, an

analyst could mistakenly conclude that there is no chance for

flutter to occur; for this case the three—dimensional aerodynamics

indicates a lower f lut ter  speed. However , when the elastic

axis is moved aft of a = 0.3, three—dimensional aerodynamics is

less conservative than two—dimensional aerodynamics. Consequently ,

two-dimensional theory should be used.

For the rest of this study, the elastic axis was located at

a = 0.2. Fig. 19 shows the variation of the flutter speed with

the ratio of the bending/torsion frequencies . It is seen that

two—dimensional theory predicts a lower flutter speed than does

the three-dimensional theory for all values of ~~~. Also , for

values of ~ near 1.0 and greater, both aerodynamic theories

predict no flutter for values of reduced frequecy less than 0.5

These same trends are also seen when the flutter frequency is

- - -  - - - --• • _ - - - -~~~•-— - -~~~~ - - - -~~~~~
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plotted against the bending/torsion frequency ratio (Fig . 2 0 ) .

In terms of a rotor system, these results indicate that no

flutter condition will be encountered for the bending -stiffness

greater than the torsional rigidity . Further from these two

figures, one can conclude that the finite aspect ratio effects

are such that they reduce the flutter speeds .

Fig . 21 shows the variation of the flutter speed with the

density ratio. For both cases, the f lutter speed increases with

an increase in the density ratio, and the gradient for the two-

dimensional curve is seen to be decreasing faster than that of the

three—dimensional curve. The trend indicates that the increase

in density ratio has a slightly less stabilizing effect on the

airfoil motion when using two—dimensional airfoil theory. Thus,

for high values of density ratio , a very conservative flutter

speed may be predicted using strip theory .

The varaition of the flutter speed with the square of the

non—dimensional radius of gyration is shown in Fig. 22. Once

again , the flutter speed obtained using strip theory is the

conservative result. The f lutter speed increses as the radius

of gyration increases.

The varaition of c.g. location on the flutter speed is

shown in Fig. 23. Here , using three-dimensional aerodynamic

derivatives, there is insignificant variation in the f lu tter

speed. However, for strip theory , the effect of c.g. location

variation has a much more pronounced effect on the flutter

speed.

The results presented in this section are very preliminary

_ _ _  _ _ _ _ _ _ _ _ _  _____ -~~~~~~~~~~~~--~~~~~ -
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and one has to be very careful before making any general or

conclusive statements. An extensive parametric study is needed. -
•

5
’, 5 
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