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PREFACE

This final technical report was prepared by the Texas A&M Research
Foundation under Grants DAHC04-74-G-0184 (1 June 1974 - 10 June 1976)
and DAAG29-76-G-0241 (11 June 1976 - 31 December 1977). These grants
were the follow on efforts after Project Themis.

In the summer of 1968, the U.S. Department of Defense through
the U.S. Army Research Office at Durham sponsored a program of research on
Aircraft Dynamics for Subsonic Flight at Texas A&M University. The work
was funded under Project Themis (Contract DAHC04-69-C-0015) which had
been established a year earlier in response to the late President Johnson's
request that each Feder#] Agency should help to develop new centers of
excellence in areas relevant to its goals. By means of Project Themis,
the Department of Defense hoped to meet in part its long-term research
needs, strengthen more of the nation's universities, increase the number
of institutions performing research of high quality and achieve a wider
distribution of research funds. In this_wax, it planned to enhance the
United States' academic capabilities in science and technology.

After Project Themis expired in May 1973, Army Research Office
awarded another Grant DA-AR0-D-31-124-71 G153 which was followed by the
present grants. Dr. James J. Murray was the Technical Monitor for Project
Themis efforts. Dr. Robert E. Singleton was the Technical Monitor for the
present effort. Dr. W. P. Jones was the Program Manager for Project Themis,
and later, was one of the Co-Principal Investigators along with the senior
author of this report till he retired from Texas A&M University in August
1975. At that time, B. M. Rao became‘the Principal Investigator for the
grants.

Texas A&M University benefited greatly from this entire program sponsored
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by‘the Army Research Office to support our research work with a view to
developing a center of éxce]]ence for the study of aerodynamic and dynamic
problems of aircrafts and helicopters. Before this program, the University
did not have an active research participation in this field. During this
period, moré than twenty students who worked in these research projects
received their graduate degrees (Master's and Ph.D.'s). Several of these
students are presently working for the Aerospace industry and the U. S.
Government. During the same period, some of these students won awards for
their outstanding research papers in AIAA Annual Regional and National
Paper Competitions. This long-term funding from the Army Research Office has
had a two-fold effect: first, some basic aerodynamic, efficient compu-
tational programs have been developed, and are being used by scientists
in the field. Secondly, several students have received excellent edu-
cational training and research experiénce working in the sponsored research
projects under professional engineers.

The authors gratefully acknowledge Dr. Robert E. Singleton for his

sustained interest in the program, and for his encouragement and cooperation

throughout the present grant period.
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I. INTRODUCTION

Although man has been flying aircrafts for many years, a sizeable
range of problems continue to exist. This is due partly to the appearance
of new vehicles such as V/STOL aircraft and partly to the changes in the
aircrafts' operational requiremenés. Hazen! emphasized the need for de-
voting greater effort to the study of subsonic aerodynamics. He noted
that most current problems are dynamic in nature, and are concerned with
aircraft maneuverability, response to atmospheric turbulence, aercelastic
phenomena and non-linear aerodynamic problems arising from separated
flows. A better understanding of these problems is hinged upon the
availability of efficient and accurate airloads prediction techniques for
lifting surfaces. Comprehensive literature survey for the steady subsonic
lifting line and lifting surface theories is presented in reference 2, and
a brief summary of this survey follows.

One most basic approach in predicting spanwise loads on subsonic,
three-dimensional wings is the lifting line technique due to Prandt13
which is applicable to large aspect ratio uﬁswept planforms. The.wing is
represented by a bound vortex at the quarter chord, and a trailing vortex
sheet extending from the bound vortex to infinity. The analysis is based
on the assumption that at every point along the span the flow is essentially
two-dimensional: the induced angle of attack produced by the trailing
vortex wake is used to correct the two-dimensional 1ift of the bound vortex
to account for the finite wing. The Prandtl 1ifting line concept does not
produce the chordwise pressure distribution and is certainly limited by
restrictions on wing planform. '

Weissinger3 extended Prandtl's 1ifting line concept to swept wings by

modi fying the straight bound vortex to a V-shaped vortex at the quarter




chord of the wing. In this technique, known as the Weissinger-L method,
the velocity induced at the three-quarter chord by the trailing wake
system and the inclined bound vortex pair is equated to the component of
free stream velocity normal to the wing surface. This specification is i
Jjustified by the fact that in two-dimensional theory this arrangement

yields the correct circulation. An interesting variation of the Weissinger-
L approach is a finite element method by Campbell*, in which the swept

bound vortex pair and the trailing wake are approximated by a system of
rectangular horseshoe vortices arranged with their midpoints along the
quarter chord. This approach is extended by Blackwell® to wing-tail
combinations and to wings with pylons and end plates.

Although the lifting line methods predict the spanwise loading ac-
curately for wings of conventional planforms, the extremes of sweep, taper
and aspect ratios encountered in modérn lifting surface design, along with
a need for a complete description of the surface load distribution have
resulted in the development of the lifting surface theories. The lifting
surface problem has been approached approxi;ate]y by multiple 1lifting-line
and discrete loading element schemes. The direct approach®’7°8 employs
a series substitution in the governing integral equations relating the normal

velocities on the surface to the pressure load, or an equivalent quantity

across the surface. The series is derived from subson{c thin airfoil |
theory for chordwiselloading and from the 1ifting line approach for spanwise
loading. The series substitution allows evaluation of the lifting surface
integral equation at a number of surface points equal to the desired number
of series coefficients, or for a larger number of surface points in a
'"least squares' sense.

Falkner?® conceived the discrete_loading element scheme in which the

lifting surface is replabed by a system of concentrated horseshoe vortices,




and their strengths computed by satisfying the tangential flow condition
at surface points equal in number to the unknown circulations. High
speed digital computers have enabled investigators to refine the discrete
loading element concept to allow solutions for larger systems of complex
geometries. Woodward!® represents an arbitrary wing-body combination in
steady motion by a system of source doublet and vortex singularities.
Lift and volume effects of the body are effected by 1line singularities
along the body axis, while wing 1ift and wing-body interference are rep-
resented by planar singularities over a finite number of quadrilateral
panels on the wing and interface region of the body. The strengths of
the singularities are approximated as constant over each panel and de-
termined so as to satisfy flow tangency. '

The problems of unsteady flows have been studied by several in-
vestigators. Analytical/numerical solutions of the governing equations
of motion are obtained by requiring that these solutions satisfy the
appropriate boundafy conditions. A brief literature survey is presented
in reference 11. Recently, discrete or ¥in%te element schemes have
been developed for oscillatory subsonic flows with good success, but
these schemes include several approximations to facilitate solution of the
complex mathematical formulations. Albano and Roddenl2, and Kalman
et all3 have demonstrated a wide variety of applicatiohs of the doublet-
lattice method which is an extension of the vortex-lattice method of
Falkner for unsteady flows. In this technique, thé lifting surface to
be analyzed is divided into a large number of planar panels. Each panel
is then replaced by a horseshoe vortéx representing the steady portion
of the flow, and an osci]]afory,doub]et distribution representing the
unsteady part of the flow. The collocation method is then used to solve

for the vortex and the doublet strengths incorporating the appropriate
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boundary conditions. Reference 12 includes the analysis of an oscillating
airfoil, an airfo%] in an oscillating flow, and variable geometry wings
with and without flaps while in reference 13, the doublet lattice method
has been used to analyze non-planar configurations such as T-tail, a wing
with end plates, and annular wings. This method is very restricted in its
applications to non-planar configurations such as wing-body combinations.
As each doublet panel has associated with it a trailing wake which extends
infinitely aftward in a direction parallel to the free stream, the
placement of panels on a body cannot be such as would allow the trailing
wake of any panel to penetrate the body, for, this would constitute a
physically unrealistic situation. Thus a body representation is generally
restricted to being an annular wing of constant cross section without any
inclination to the flow.

The analysis of a cascade of blades in unsteady flows has played an
important role in compressor and turbine blade design. Chang and Chul“
have analyzed a cascade of blades in synchronized oscillations. Their
solution involved a modified form of Theodorsen's function which reduced
to Theodorsen's function as the gap between two adjacent airfoils became
infinite. Another approach by Schorr and Reddy!S has been uséd to analyze
the oscillatory flow over cascades with varying solidity and stagger angle.
In their analysis, the airfoils in the cascade are replaced by a distribution
of vortices and source-sink pairs whose strengths are determined for the
appropriate boundary conditions. Since the formulation is very complicated,
they are able to obtain only an approximate solution by replacing the
kernel function with a polynomial.

Jones and Moorel®, and Rao and Jones!? solved the problems of a

cascade of oscillating airfoils in incompressible flow and oscillating




incompressible flow over a cascade of airfoils, respectively. They

used the present 1iftihg surface method based upon the velocity potential
formulation, and were able to develop a very efficient computational
scheme as an alternative to the exisfing 1ifting surface methods based on
acceleration potential formulation.

The problem of wind-tunnel wall interference effects on oscillating
airfoils in subsonic flow constitutes a special case of the blade-row
problem, namely, the case in which stagger angle is zero and adjacent
blade angles are 180° out of phase. Runyan and Watkins!® treated the
effect of wind-tunnel walls on the aerodynamic forces of an oscillating
airfoil in a subsonic compressible flow. They simulated the walls by
placing images at appropriate distances above and below the wings such
that the condition of zero normal velocity at the tunnel walls is satisfied.
In their formulation, the integral eqﬁatibn between the downwash and the
oscillatory doublet strength involved a series of Hankel functions. The
solution of this resulting equation yields the oscillatory doublet strength
as a function of chordwise location on the airfoil and these doublet
strengths were used to obtain acceleration potentials and hence the pressure
distribution on the airfoil. An important result shown was that, for certain
conditions of frequency, tunnel height, Mach number, the tunnel and wing
may form a resonant system so that the forces on the wing are greatly
changed from the condition of no tunnel walls.

Jones !9, independently developed a theory for estimating the effect
of wind-tunnel walls on the airforces acting on an airfoil oscillating in a
subsonic airstream. In his formulation, the integral equation between the
downwash and the doublet strength (modified velocity potential) was es-

sentially similar to the equation developed by Runyan and Watkins. Jones
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summed the series of Hankel functions in the integral and developed a numerical

procedure applicable to the low frequency values. The results obtained for
a special case compared well with available experimental results.

Lane and Friedman2? developed a method for calculating the aerodynamic
forces experienced by a cascade w{th arbitrary stagger and interblade
phase-lag angles. Their method utilized Fourier transforms of blade
pressure-jump functions which permit the kernel function, appearing in the
integral equation relating the upwash to the pressure-jump transform, to be
expressed in a closed form, by assuming a commonly used trigonometric series
expansion involving Bessel functions. However, their solution involved a
very complicated and a tedious computational procedure. They demonstrated
th&t the resonance condition similar to that of the wind-tunnei wall inter-
ference problem, may occur in staggered cascades with arbitrary interblade
phase-lag, the resonance parameter values depending upon Mach number,
oscillatory frequency, interblade phase-lag, gap, stagger, and acoustic
velocity. |

Fleeter?! studied the effects of compressibility on both f?u;tuating~
1ift and the fluctuating moment coefficients for cascaded airfoils due to
an upstream nonuniformity. Through the application of Fourier transform
theory, Fleeter reduced, the time-dependent, compressible, two-dimensional
partial differential equation which describes the perturbation velocity /
potenfial, into an integral solution equation. Although the details of the
solution were not given in the paper, Fleeter seems to have adopted the
laborious procedure used by Lane and Friedman.20

Kaji and Okazaki22 investigated the problem of propagation of sound
waves through a blade row using the acceleration potential method. They
made use of the singular point method in a rigorous and general form, in

which the kernel function of the aerodynamic integral is expressed by a




rapidly convergent series of exponential functions.

Rao and Jones2?3 adopted the present 1ifting surface technique for
determining the airload and moment coefficients on a typical airfoil of
a staggered cascade of airfoils in subsonic flow. Circumferential
distortion dge to inflow conditions is expressed as an interblade phase-
lag, and both oscillatory inflow and the case of oscillating blades are
considered. Results are obtained for several values of frequency, Mach
number, and interblade spacing, stagger, and phase-lags. The results
of the oscillatory flow case compare well with those of Fleeter.2!

Runyan and Woolston2“ solved for the aerodynamic loads on oscillating
wings by modifying the concepts of Falkner® for steady lifting surface
theory. The loading on the wing was determined by solving a set of
simultaneous equations that were generated by representing the loading
with a series representation compatible with boundary conditions. 1In
another approach, Lawrence and Gerber2?> simplified the governing equations
by using the assumption of low aspect ratio. They approximated the velocity
potential equation by using a weighting factor in the integral, and then
replacing the integrals with approximate functions. Comparison with the
results of references 26 and 27 indicated that the Lawrence aﬁd Gerber
method was only valid for wings with aspect ratio lass than 4. The main
disadvantage of the method is that it cannot predict the pressure dis-
tribution. Dengler and Goland?® extended the lifting line formulation
of Weissinger to the oscillatory case. Their method is much simpler
mathematically than lifting-surface methods; however, the chordwise
pressure disfribution cannot be predicted.

The preésure distribution measured for pitching and vertical oscillations

of low aspect ratio wings by Laidlaw and Halfman2°® were compared to the




results of Lawrence and Gerber23. This comparison verified the validity
‘of Lawrence and Gerber method for low aspect ratio wings.

The references cited above have adopted the kernel function repre-
sentation and have illustrated severé] disadvantages. First, the com-
plexity of the kernel function involved in the integral equation
necessitates approximations to obtain a solution. Second, the kernel
function method is difficult to use numerically because of the singu-
larities and rapid variations near the leading edge of the airfoil.

On the other hand, the present lifting surface method based on the velocity
potential formulation i1s conceptually very simple, and hence can be

adapted to any arbitrary planar thin surface(s). Also, in the case of
compressible flow, the area integration can be replaced by line integration
with the aid of Biot-Savart's law, thereby reducing the computational

time substantially. Unlike the kernel function method, the present lifting
surface technique deals with the circulation which is more suitable for
numerical solutions.

The discussion so far has been limited to the application of lifting
surface methods to two-dimensional and three-dimensional rectilinear flows.
What follows is a brief account of the unsteady airloads predfction
methods for helicopter rotor blades.

More papers have been published on the subject of unsteady aerodynamics
of rotor blades during the past few years than in all the earlier years of
the helicopter development. In earlier work, attention was focused on vi-
bration problems which often 1imit helicopter performance. With the advent
of high speed helicopters, it has also become important to study the com-
pressibility effects and the b]ade flutter problems. Jones et al30 gave
a detailed account of significant developments in the field of unsteady

aerodynamics of helicopter rotor blades. Specifically, the latest advances
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in such problem areas as stall flutter of a retreating rotor blade, flutter
. of the advancing blade, transient effects due to the interaction of the tip-

vortex of one blade with a following blade and wake induced instabilities

in hovering and low-speed flight, wefe discussed.

Problem areas of blade loading and the transient effects due to blade
interaction with the wakes of other blades and the flutter characteristics
of the advancing blade are considered here. It has been found that under
certain operating conditions, rotor blades can flutter in both hovering
and forward flight. This phenomenon has been investigated by several
researchers and their studies are of particular interest. It has been
known for a long time that the proximity of the helical wake is a con-
tributing factor to blade flutter. When the rotor has high inflow through

the disk, the wake of a blade is removed rapidly away and its effect on

the aerodynamic forces on the blade is approximately the same as that of a
rectilinear wake. For the case of low inflow, the wake is closely coiled
under the rotor disk and it can have a strong influence on the aerodynamic

forces acting on a blade. For low inflow conditions, Loewy3! used a

simplified mathematical model of the flow and developed a general theory. %
He was able to derive formulae for the aerodynamic forces on a typical |
blade section as a function of reduced frequency, the frequency ratio,

and wake spacing. The special function that he obtained was similar to

that of Theodorsen's function for a single airfoil in straight flow.

He has shown that the airloads are highly oscillatory for the smaller

values of wake spacing. Since the stability of the rotor blade depends

on its aerodynamic coefficients, Loewy also investigated the variation in

the pitching moment damping coefficient of a particular blade section as

the frequency ratio, p/Q, varied for specified positions of axis of

oscillation and a range of values of wake spacing. He found that the damping

|
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coefficient became negative whenever p/Q was slightly greater than an
integer for axis oscillation either forward or aft of quarter-chord.
Similarly, he found that the damping coefficient for a flapping oscil-
lation dropped sharply at integral values of p/e but did not actually
become negative. From these results, he concluded that at low inflow,
wake-eXCitEdlpitching oscillations of the blade might occur when the
frequency ratio is approximately an integer and the pitch-axis is not
at quarter-chord.

Whereas Loewy developed his theory for a multibladed rotor, J. P.
Jones 32 had independently treated the simpler case of a single rotating
blade in hovering flight. He applied a method developed by W. P. Jones 33
to derive the appropriate aerodynamic coefficients for an oscillating single
rotor blade for use in his flutter analysis. He approximated the actual
flow conditions by neglecting curvature effects and assuming a simple two-
dimensional mathematical model consisting of a reference blade and its
wake and an infinite number of wakes lying beneath the reference blade
extending from - to «. He considered flapping and pitching motions and
compared his results with those obtained experimentally by Daughaday and
Kline3*. On the basis of this work, it was concluded that the wake is
primarily responsible for some of the vibratery phenomena found on helicopters
in practice.

Timman and Van de Vooren35, on the other hand, assumed that there was
no inflow through the rotor disk and developed a theory for calculating the
aerodynamic forces on a blade rotating through its own wake. Their results
agree with those obtained by Loewy3! and Jones32 in the limit when zero
spacing between the wakes is assumed. Flutter calculations were done for
a two-bladed rotor model and their predictions were compared with experimental

observations. They found that wake induced flutter could occur under
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certain conditions. When the inertia axis of the blade is aft of its
pitching axis, wake flutter is possible if the natural flapping frequency

is larger than the natural pitching frequency. Conversely, when the inertia
axis is forward, the pitching frequehcy has to be higher than the flapping
frequency for flutter to occur. A1l this theoretical work confirms the
conclusion that the proximity of the wake is a contributing factor to

rotor blade flutter.

A1l the theoretical work described above is based on the assumption
that the flow is incompressible. However, with the advent of helicopters
capable of flying with blade tip speeds ranging up to and in excess of
the speed of sound, compressibility effects need to be taken into account
when determining aerodynamic coefficients for use in flutter analysis.
Jones and Rao3® were able to do this and have computed aerodynamic
coefficients for a range of Mach numbers, reduced frequencies, and wake
spacing. Their analysis is based on the application of the theory of
Jones37, for a single airfoil oscillating in compressible flow, to the
Loewy two-dimensional mathematical modei of the helical wake. The values
of the aerodynamic coefficients agree with those obtained by Loewy3!
and J. P. Jones32 for zero Mach number but differ appreciably as the Mach
number is varied.

Hammond3® also developed a theory for determining compressibility
effects by using a different model of flow from that used in Ref. 36. In
his model, the wake of the qth blade of a Q bladed rotor after n revo-
lutions extends from -2n(n+q/Q) to =; in Jones and Rao's model it extends
from -» to «». His aerodynamic coefficients for several Mach number and
inflow ratios are in general agreement with the results of Jones and Rao.

While the aerodynamic derivatives predicted by two-dimensional strip
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theory are widely used in predicting the flutter speeds of helicopter
rotor blades, the method does not allow for curvature and finite aspect
ratio effects. For incompressible flow, Ashley et al in Ref. 39 developed
a three-dimensional model in which tﬁey modified Reissner's theory*? for
oscillating wings in rectilinear flow by including the free stream velocity
variations along the span. Their results indicate a negligible difference
between two and three-dimensional solutions up to 95% of the span. Jones
and Rao“! alsc studied tip-vortex effects in compressible flow and they
also concluded that such effects are negligible except in regions close to
the tip.

The earlier attempts to include the tip vortices in a truly three-
dimensional fashion involved a helical wake representation below the
rotor blade in hover flight and a skewed helical pattern for forward
flight. Miller*2 summarized some of the work that has been done at M.I.T.
and elsewhere up to that time on the prediction of unsteady airloads on
helicopter rotor blades. He showed that by replacing the curved tip vortex
from the preceding by a straight line vbrtéx which is tangential to the
tip vortex at the point where it crosses under a following blade, he could
obtain reasonable estimations of its effect. It was pointed out that almost
all the harmonic content of the blade air load of interest in rotor vibration
ijs that contained in harmonics above'the second. By representing the
oscillatory wake of the blade itself in a felative]y simple way and treating
the tip vortex of the preceding blade, he was able to obtain reasonable
results.

In some of his earlier work, Miller e developed a helical wake
model in which the rotor wake was divided into a "near" wake and a "far"

wake. The near wake included the portion attached to the blade that




extends approximately one-quarter of a revolution from the blade trailing
edge. The effects of the near wake include an induced chordwise variation
in downwash and were formulated using an adaptation of Loewy's strip
theory. The chordwise variation in fhe velocity over the airfoil induced
by the far wake was neglected. Miller extended his model to study the
forward flight case and found that the nonuniform downwash induced at the
rotor disk by the wake vortex system could account for the higher harmonic
airloads encountered on rotor blades in forward flight. He also showed
that under certain conditions of low inflow and low speed transition flight
the returning wake could be sucked up into the leading edge of the rotor
which would account for some of the vibration and noise.

Several investigators used better representations of the helical or
skewed helical wake for steady flight. Jenney et al“> reviewed several
simpler conventional methods for computing hover performance and pointed

out that one of the primary reasons for discrepancies in results are due to

the use of inadequate mathematical wake models in the conventional theories.

They attributéd the major discrepancies to wake contraction in close

proximity to the rotor. They developed a theoretical liftingiline Hover
Performance method representing the wake by a finite number of vortex
filaments. They prescribed the wake geometry in the computer program in
which provisions were made to include a wide variety of wake geometries
ranging from the classical uncontracted, momentum axial velocity geometry :
(classical wake) to the more realistic contracted, variable-axial-velocity
geometry.

Landgrebe”s,“7 subsequently, conducted an analytical and experimental
investigation to acquire systematic model rotor performance and wake

geometry data and to evaluate the accuracy of various analytical methods in

S
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predicting the effects on performance of chan@es in helicopter rotor design
and operating parﬁmeters. A rapid computer analysis was developed for
computing the distorted wake geometry of a rotor wake. The numerical
procedure involved two basic steps - the use of the Biot-Savart law. to
compute the wake distortion velocities produced by a given wake geometry

and the integration of these velocities over a small time increment to
establish new wake geometry. These steps were successively repeated until

a converged periodic wake geometry resulted. It was found that analysis
based on a contracted wake geometry generally provided significantly im-
proved predictions of performance for those rotor operating conditions where
the more classical uncontracted wake analyses exhibited major shortcomings.
Through extensive correlation testing, he validated the general trends
predicted by his numerical work. Analysis of the wake data for that portion
of the wake which was stable (i.e. near the rotor) indicated that the

data could be expressed in relatively simple generalized equations which
facilitate the rapid estimation of contracted wake geometries for a wide
range of rotor design and operating conditions.

In an independent study, Piziali*8, developed an alternative numerical
method in which the wake of the rotor blade is represented by discrete
straight lines and trailing vortex elements. He satisfied the chordwise
boundary conditions, but the rotor blade was limited to one degree-of-
freedom in flapping. His method is also limited by the use of empirical
factors which adjusts the discrete time positioning of the shed vortices.

Sadler*d, using a model similar to that of Piziali, developed a
method for predicting the helicopter wake geometry at a "start up" config-
uration. He represented the wake by a fine mesh of transverse and trailing
vortices starting with the first movement of the rotor blade generating a

bound vortex, and, to preserve zero total vorticity, a corresponding shed
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vortex in the wake. Integrating the mutual inteference of the trailing

and shed vortices upon each other over small intervals of time, Sadler
was able to predict a wake geometry. Although his model showed fair
agreement with the available experimental data for advance ratios above
one-tenth, Sadler's method is limited due to the large computational time
required to fepresent the wake by a finite mesh.

Another important problem is the prediction of the unsteady airloads
in normal forward flight and allowing for blade-tip vortex interaction.
Landgrebe and other investigators demonstrated that as a given blade
advances the tip vortex from the preceding blade may pass closely under-
neath it and the point of intersection moves inward along the blade as v
increases. Ward and Snyder3? predicted the extent of the inward movement
as a function of the advance ratio and the number of blades. In their
study, they did not account for the actual induced response due to the
movement of the tip vortex but instead considered the analogous problem of
the response of the blade to a repetitive moving Toad. Their results
showed for flight at highadvance ratios (1i>0.25) the main effect of the
moving load was to amplify response in the lower resonance modes.

The topic of the evaluation of appropriate aerodynamic cbefficients
for use in the analysis of classical bending-torsion flutter of rotor blades
is of great interest to a helicopter designer in view of the present day
helicopters with high tip speeds. Shipman and Wood>! considered this
problem but they did not take compressibility and finite aspect ratio ef-
fects into account. The two-dimensional mathematical model used was
similar to tﬁat employed by other authors except that they assumed that

flutter would first occur when the relative velocity over the rotor blade

reaches its critical value when ¥ = n/2. For greater or lower values of
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¥, the realtive speed would be reduced below the critical speed for flutter
and any incipient growing flutter oscillation would be damped. This

reasoning led them to represent the blade motion by a series of oscillatory
pulses, where each disturbance occurs over the range, w/2 - AT]< ¥ < /2 - AY,.
Corresponding to each burst of oscillation, packets of vorticity are assumed
to be shed in the wake. With increasing forward speed, the spacing between

the packets of vorticity also increases and it was found that the flutter

speed became constant when p, the advance ratio, was above 0.2.

The approach used in a study by Rao and Jones>2 differs from that
adopted by Shipman and Wood in that continuous high frequency small
oscillations are assumed to be superimposed on the normal periodic motion
of the blade. Rao and Jones developed a simple but general numerical
lifting surface method for predicting unsteady airloads on a single-bladed
rotor blade on a full three-dimensional basis. The numerical method was
based on the velocity potential formulation and was not restricted in any
way as to frequency, mode of oscillation or aspect ratio when M < 1.
However, in their model they used a classical wake model and considered

uniform downwash only. The general theory was developed for a rotor blade

at the v = 7/2 position where flutter is most likely to occuf. Calculations
of aerodynamic coefficients for use in flutter analysis were made for
forward and hovering flight with Tow inflow for Mach numbers O and 0.8

and frequency ratios p/9 = 1 and 4. The results were compared with values ;
given by two-dimen;iona] strip theory for a rigid rotor hinged at its root;

The comparisons indicated the inadequacies of strip theory for airload

prediction. One important conclusion drawn from this study was that the

curved wake has a substantial effect on the chordwise load distribution.

The pitching moment aerodynamic.coefficients differed appreciably from the

results given by strip theory.




II. AERODYNAMIC THEORY

Governing Equation of Flow

Consider an airfoil in motion in a continuous fluid medium. A
Cartesian coordinate system is chosen such that the origin 0 lies at
the midchord point of the airfoﬂ; and the positive x-axis in the
direction of the free stream relative to the airfoil. The system of

coordinates is shown in the sketch below.

st ——lin
R e

—t= Free Stream

[N N - X

e e




Velocity of a fluid particle at any point P(xp, yp, zp) in the flow

field is

In a potential flow around the airfoil, the laws of conservation of

mass and momentum are, respectively,

Y = 9,4 +,‘1/,3\ + q:z?z : (2.

1)

DA >
—_— . = 2.2
= & £YVY 9 (2.2)
and
DY
— 1. ==-5 2.3)
3% T VP - !
o 7 .
Expressing the velocity 9, in terms of a potential function gi 2
the continuity equation (2.2) reduces to
2 D/’
v = =L 2 %
g ,o Dt < (5-4)
For a barotropic fluid, p = p(p) and, hence
2 1 Dp
v ? = _— CEE—— . 2.5
b T pa Dt V)
Along a streamline, the momentum equation yields
2
=(L)-L3E LD (2.6)
Dt £ ot £ Dt :
Also, from the momentum equation,
) i
+ +

Equations (2.5), (2.6) and (2.7) are combined to obtain the governing




i

potential flow equation,

2
t a - at?
This general form of the equation is applicable to unsteady compressible
flows with no shock waves. Based on the type of flow, equation (2.8)
is modified as follows.
a. Incompressible Flow (Steady and Unsteady State)-
Local speed of sound in an incompressible medium is infinite and
heace the governing differential equation of potential flow becomes

Laplace's equation,

2

b. Compressible Flow (Unsteady State)-
Velocity of a fluid particle in the vicinity of the airfoil can be

written as
- ) AR E A A
¢ = (U+u)d + vy + wk, (o

where the perturbation velocity components u, v, and w are considered
small in comparison to the free stream velocity component, Coordinate

transformations

X =X2
Y =Y£/(3

ZL/p &
t=TL/U

where, (5:-_ /‘_.",- . 3 |

z
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2 = 2
g - 5[2% +2(¢) + 3.v(E)] =0 co

(2.11)

e e
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and the substitution

P = ULECX,Y,Z) X FT) e

modify equation (2.8) to

V:é + K% =0 , (2.13)
with 5

2 a a’- 32

Vy 2 — + + — , 2.14

" axz aY,_ azz ( )

K = Mu/(b" 3 (2.15)
and

A = MK . (2.16)

c. Compressible Flow (Steady State).
Frequency of external excitations p'=0 in the steady state resulting
in 1('30, and the governing flow equation becomes Laplace's equation in the

transformed coordinates,

V:'§ =0 . b

Velocity Potential in Terms of Boundary Values

To obtain a relation for the velocity potential @ in terms of its
value and the normal derivative on known boundaries so as to formulate a
boundary value problem in conjunction with Helmholtz's equation (2.13), we

now refer to the sketch.

T it it s - — = v v —— — -

, e e
N7
| : \

\. P e o \‘
| : ] /
‘\ of Wake Sheet ,’

-~
T e, G — — — — — — —— o G—
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Fluid region D surrodnding the airfoil is bounded externally by
the surface £, and encloses an impermeable surface S comprising the
airfoil and the attached wake surfaces.
With the use of Gauss' divergence theorem for the vector E =3 VQ',

a reciprocal theorem can be proved as

ﬁ ‘13‘: a2 = g ‘I’ 34 s , (2.18)
S+%

where @ and Q' both satisfy Helmholtz's equation (2.13), and n represents
the unit normal vector at any point on S and I, directed toward the fluid.
Assuming 3’ = exp (-iXx R)/R where R is the distance
between a flow point chl”Yf Zl’) and a point Q (XY 'Z)

on (S+ z). In order to avoid the singularity in Q when the points P
and Q coincide, P is enclosed in a small spherical surface ¢ which, in the
1imit, is taken to the point P. Further, as the exterior boundary is
extended toward infinity, contributions over I in equation (2.18) approach
zero for point P in the vicinity of the airfoil. Equation (2.18) is now

rewritten as

-A.‘K‘,R
= 3(X,%, ) =G (2 V )2 (F)
) -A.KR
- &2 ey, Z)]4s, (i

where X, Y, Z are the independent variables in the integrand on the right
side. This equation provides a means to express the velocity potential QP
at any point P in the flow in terms of its value ¢ (X‘Y,Z) and
the normal derivative 98 /9n on the surface of the airfoil and its
wake. With the assumption of thin airfoil, the closed surface of inte-

gration can be divided into two equal and parallel surfaces. Also, the

—




physical boundary condition on these surfaces requires the relative flow

to follow the airfoil and its wake geometries. That is,

-3
QO-; = (7‘:/U)°: = (:‘l' v$ )‘: = 0" (2.20)
whereby
?.2 = ==t (2.21)
5 on S :

It is further noted that on the upper surface of integration
3/3nuf.*'. -93/937Z and on the lower side 3/37]2 ~ 9/97

e Hence, from equation (2.19), the downwash induced at a point P on the

airfoil in a direction along the positive z-axis is given by

-4KR
94 e&
4*—3‘2- 4xw = Ij Cé Ql azl( )As. (2.22)
4 airfoil +

b wake

Rewriting,
—AKR
4x W) = i k(x,y Z) a ( Jds (2.23)
:::F»\q-

where K=& — él defines the strength of the doublet distribution

over the airfoil and wake surfaces.

Equation (2.23) is the most general form of the velocity potential
formulation applicable to unsteady flow of a compressible fluid past a
| thin airfoil at small angles of attack. It can be suitably modified for
incompressible flow (steady or unsteady), two-dimensional compressible flow
(steady and unsteady) and three-dimensional steady compressible flow.

For aﬁ steady cases, and unsteady incompressible flow, %= 0, and

equation (2 .23) becomes

. ' 4;\'W|? = “ K —ll'i)ds . (2.24)

airfoi) +
wake
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For two-dimensional subsonic unsteady flow, the velocity potential j
formulation reduces to
“k‘.
25 W, = .‘.(!K(X 2) ;2,_( = ) dYdX | (2.25)
where P is a point on the Y=0 axis, and
2 2 2 qY2 (2.26)
R=[(X-%) + Y'+2Z, ] |
Equation (2.25) is rearranged as
2z W, = K(XZ lr — —_— :] dX
4 J; (x,2) 32;0 R (2.27)
We now let
2 2
3 z(x"xp7 + Z,, , and } (2.28)
o+ Y= at gt
whereby
2YdY = 24*TdT (2.29)
or
dY = {t«//z7-1"} 4% . ' (2.30)
Therefore, o —iKR @ 511‘37-"“!
§ & 4 = dt
o R 1 JT2-1 |
— _ X4 (@)
- N (K'.l“l) ; (2.31)
where Vh

MO (K 1at) = T, (K l) —"-Yo (m«;) g (2.3

the modified Hankel function of the second kind Use of result (2.31) in

equation 2.27 yields

2.xW =—5_S (x Z)

[Hw(nhq)_] aX . (2.3

- c
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The function Hfz)(K Jet]) , defined By equation (2.32) satisfies

the Bessel's equation

2

(2 ¢
d_ WP + ‘F j—r (p + H:)(l‘) =0 , (2.34)
where :
p=K 1l . il

2
Hence it can be shown that Hﬁ )(K,laﬂ) also satisfies the

two-dimensional wave equation,

2
8
3)(', -3_'2_" & s )H (K %12 = (2.36) .
To show this, we consider the following.
g = W2Cpr  , (p=Klxt)
where (2.37)
:
-: ; Lo Hm = ‘“f:) oF and
| L) ax o = y . SX > (2.38)
;. b 2 b
f s WO { AW’ 3] |
o T ax‘,
t) w
; dln,‘ ?_t) L AH Py A
dpt \ox,/ — dp ok i
Also,
K. g X- XP)
DXP . (2.40)




Therefore,

I k*(x-x) = n"(X—Xﬂ} %>
ax; cd b ; i P

Substituting equations (2. 40) and (2.41) in equation (2.39),

4 2
[Hm(l‘)] g d* H C\‘) [ K Q‘{"XIJ]

OXP dr r
+ H(z) [ z g K«4<§—Xk2,-]
| T )
Similarly,
2 [“?) (l"] i dH:n. ;; ;
: BZ‘, dp b
2 g (v
d 2y P ﬂo_ p)
;{;[ H, C)"’]" azr [ dp azl’
d’H m( ) + ﬂv, i l"
dp* \dz7 dap 272
Now, ‘ b ' r‘ ”
oL B :
o), 5
[
P K K'Zy f K°Z
— = — - K4Hr¥K 7,
az; E ; K ( 3 ) J

25

(2.41)

(2.42)

(2.43)

(2.44)

(2.45)
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Therefore
2) 4& ) A
> (W)= e R PR e R
P YA r .
b
Substituting equations (2.42) and (2.46) in equaticn (2.36), we have,
2 2
o & ()
(3X;' +az;+1c)n (p
= dz [sz + a“-l‘z 7:_1_(:2__ Kl:o(z
dp* dpe ™ P Kt
+ K n®

= 0 . in view of the equation (2.34),

g_"; [H2Ck 1] = (;-;-; r 1) [ 1)) e

whereby the formulation (2.33) becomes

28 W, :_-17_.[.4()()[ B +k‘.]n (% 1x-%,]) dX @9
- %
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as Zp, Z->0.

A slight modification to the above form can be achieved by writing

T
dp* +1) "o(f‘) STF ;" ’ (2.49)
from Bessel's equation (2.34). Also as Zp, Z~+0,

1 = 12 (X-Xp)*

and
2pdp = -Z‘K.?'(X-X’,)JXP ,
K (X-Xp)
IX—-X‘,I
Therefore,

AN AW axy _ ang? L xIJ

L "t* dXp K (X-Xp) 7
2 z
dH” - d [ du é.’frj
t)
- 11@_ tj&z . ‘ | (2.51)

Hence, equation (2.49) yields

[42 ]HE - IX-Xp]  an®
Ay rk(x Xp) dXp

a2 L 9.0 _ AN
[—"1. + K ]H ) - —-_—(x._xr) d)(}’ X (2.52)

?

or




Equation (2.48) thus'changes to

V. k(X) 4 =
23V, = ICX-'XP) i n CrIX Xp 1) dX
T [T ROD ) x-xp)) dX

25 (X-Xp

Equations (2.53) and (2.54) are two convenient forms of the two-

dimensional, unsteady, compressible flow formulation.

For two-dimensional incompressible flow, both steady and unsteady

states, we now refer to equation (2.24) and rewrite

2z W, = J' fK(X Z)

where

9()yax

pe [Nl s ez )"

Rearranging equation (2.55),

2x W, = J"“K(X,Z) 53?1» |

Consider

5 (k) -

!“aér( R) AY]

-——-
>

og“ Y [ Y

[(X—X',) +Z|,

1
(X— X p)z + Z;‘

‘1 (x-x).7"+ Y+ Z,f]"z]o

28

(2.53)

(2.54)

(2.55)

(2.56)

(2.57)

(2.58)

i PN

|
|
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Therefore, equation (2.56) becomes ¢

2J(°ur = - :!r
IKC Z)azr[<x_x7 Z ]dx ’ (2.59)
which reduces to P
o
2xWp, = | g(x) 2 | Ydx (2.60)
g _[ (X X X - Xp /
as Zp, Z ~ 0, and noting at
It 2 [ Zp ]__ £t 5 [ X=Xp ]
o 2 2 =
Z” y DZI’ (X"X)») "‘Zp Z,’—ra o X (X—X),7+Z}, (2.61)

Alternatively, equation (2.60) is

® oK/ oX |
“Wl"':".( = ax . (2.62)

Three-dimensional incompressible flow, steady and unsteady, formulation

is simplified further as follows. From equation (2.24) ,

W, = [ k(xy,2) 2 ( )avax L e
Z'a'f:"’
where

= [ e (-1 i e
As Ve ($)=0

( )"‘"(gxr 211)(’!72)

P
Y-
B XPJ BY[ }] . (2.65)
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Therefore, as Z + 0, and for a thin 1ifting surface at small angles of

attach K(Zp + 0)

4z, = ([ k(x, \r)[.r>X x.x,,} {y YP}] dxdy.

airfoll + (2.66)
wake

Numerical Scheme to Solve Integral Equations

The integrands of the surface integrals appearing in the velocity
potential formulations for various types of flows are functions of the
unknown discontinuity in the modified velocity potential, K(X,Y), and
known functions of the airfoil and wake geometry in the transformed
coordinates. These also depend upon the angular frequency of external
excitations that are responsible for the unsteady state of the relative
flow past the airfoil. In order to facilitate evaluation of K-distribution,
the lifting surface is divided into a riumber of conveniently shaped boxes
and the value of K over each box is assumed to be constant. Making use
of the wake boundary condition that there can exist no pressure dis-
continuity in the wake, the value of K at any spanwise location in the
wake can be expressed as a function of the value of K at the trailing
edge box at the same spanwise location. Hence, the wake is divided into
a number of trailing strips and K(X,Y) is considered constant across
each strip but to vary with X downstream. When the downwash contributions
due to all the boxes and strips are obtained, the problem, in general,
is reduced to solving simultaneously a set of as many linear equations as

the number of boxes on the 1ifting surface. Steady and unsteady load

. s acs
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calculations are then carried out in terms of the known doublet distribution

and the lifting surface geometry.
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Two-Dimensional Incompressible Flow

a. Steady State.

The relation for the downwash at a point X; on an airfoil is expressed

as equation (2.60),

f ak/ax dX = 1

|
XX X‘.—i -.{K'J??(Xi—)()dx (3.1)

The airfoil is divided into N equal strips of width 2D and K is assumed to
be a constant over each strip. Kte is related to KN and is normally taken

as equal to K. Equation (3.1) can be written as

2% {W} = [A]{K} : ' (3.2)

where
a.. ' o ! > JEN
‘J X"‘Xj"'D X,—XJ—D
and
a— - .)..;]
X. =1+ 2D s




For a prescribed boundary condition, N_i is known. This is a non-

dimensional downwash velocity at a point X; . For a constant angle of

attack case, W, = a(i =1, 2, ..., N) and the 1ift per unit span is

‘ 2 2
L = pUk, = PURK, = PULRK,

or

¢ =L/CrPUR) = K, . (3.3)

Pitching moment per unit span about the mid-chord axis is (nose-up positive)

!
M= ,rUL f --aXXalx

or
'/ 2,2 N e
C, = M (ﬂu,¢)=|<~-zp:z_l|<” .
The analytical solution for K distribution is given by
K= 2.(9 + sine)o( _ (3.5)

where 0 = cos™ (..X )

The computer program based upon the constant K distribution over
each strip is very simple, especially when the collocation points of each
strip are taken at the center of each strip. For this case, the results
are presented below for several values of N and are compared with the

exact results.

Exact Lifting Surface Solutions
Solution N=5 N=20 N=30
Con 6.2832 6.2831  6.2829  6.2818
c

Mo -3.1416 -2.6431 -2.9885 -3.0384

Lt AR N ek

|
o
3
g
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The computational tihe on AMDAHL 470 for all three cases (N=5, 20,

and 30) wasbless than 0.54 seconds using WATFIV compiler which is only

1/5 th as fast as FORTRAN G or H compiler. As can be seen, the results
for the coefficients are in excel]eﬁt agreement indicating that the com-
puted KN is\c]ose to the exact value even for N=5 case. The moment
coefficient continues to reach the exact value as N is increased. The

K distribution is plotted in Fig. 1 and it can be seen, it is substan-
tially different from the exact distribution, especially near the leading
edge region. To improve this situation the collocation point of the
leading edge strip is varied from 1D to 0.75D from the leading edge and

the results of K(K/2ma) are presented below for a 5 strip model.

K/2ma

X= -0.8 -0.4 0 0.4 0.8
Exact 0.396 0.661 0.818 0.923 0.986
1.00D 10.492 0.711 0.852 0.945 -1.000
0.95D 0.468 0.697 - 0.840 0.935 0.990
0.90D 0.443 0.684 0.829 0.925 0.980
0.85D 0.418 0.670 0.818 0.914  0.970
0.80D 0.394 0.656 0.806 0.904 0.960
0.75D 0.369 0.643 - 0.795 0.893 0.950

As can be seen from the above Table, the K distribution has improved
towards the leading edge as the collocation point location is moved toward
the leading. edge; however, the trailing edge values are in error for this
collocation point location, resulting in a decrease in the 1ift coefficient.
Another scheme is tried to correct this situation. In addition to the

leading edge strip collocation point variation, the trailing edge value,
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Kte’ is expressed by the relation

: 9K, — K.
F;te. = .‘53 bt

? in place of Kte = Ky» and the results are tabulated below.

| K/2ra
| X=-0.8 -0.4 0 0.4 0.8

k Exact  0.39 0.661 0.818 0.923 0.986
g 1.00D  0.499 0.722 0.866 0.964 1.023
0.96D0  0.480 0.711 0.857 0.955 1.015
0.920  0.460 0.700 0.843 0.947 1.007
0.880  0.440 0.689 0.839 0.939 0.998
F : _ 0.84D  0.420 0.678 0.830 0.931 0.990
: 0.80D  0.400 0.667 0.821 0.922 0.982

As can be seen from the above table for the collocation point lo-
cation at 0.800D and the modified trailing.edge relation resulted in an
excellent agreement with the exact result. In a recent paper, Kocurek and

TanglerS?® discussed a systematic means of the collocation point selection.

b. Unsteady State.

-In the case of unsteady flow, avperiodic motion is assumed and the
doublet distribution is assumed to be K'exp(ipt)= K'exp(in) :
The relation for the downwash (amplitude; at a point Xi on an airfoil is
expressed as equation (2.62)

znw‘, 5 aK'/ax X

& ,
Ku, ; () X+ S 2K ax
. 4 4

- el

it bR e i e il




e ]

37
The boundary condition in the wake and at the trailing edge is expressed
as : ;)p('
iK'+ = =0 , X1 | (3.7)

oX

and K' in the wake can be expressed in terms of Kte by solving equation (3.7),

—iw(X-1)

/ /
Kwake " Kte e . (3.8)

The airfoil is divided into N equal strips and K’is assumed to be a

constant over each strip. Equations (3.6) and (3.8) are combined to yield

2.7\”;-".-_-. ‘“dK I —LD(X-—I)
: |

Kie
x_X. dx + X‘:_'

1
+ ZK [ < e
J X—X "‘:D X‘--—Xj -D
Making use of the wake boundary cond1t1on at the trailing edge several
possible relations can be obtained for K;e in terms of K&. One such
frequently used relation is
EARRLS g~ (3.10)
where LoD
-4 ,
1/[e + u»DJ
Equations (3.9) and (3.10) are combined to yield
2x{w} = [AT{K}
where
a ! : )3
< 4'.’ = x - + J¥N
and X;~X;+D X;=X;-D
O..J..-_-, : - :
Xl-— Xj "'D xi— XJ"‘"D
F o —diw(X-1
i Tl i dX =N
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The infinite integrals in the term a;y are evaluated by separating
into real and imaginary parts. These terms are expressed in terms of

infinite series and are analytically integrated. The relation is given

by

. —iu(x—l) i |_x..'
I ex'x AX::e”( )[{—7-2nw(hxo
| -X; 5 .
+ 2 0-%)" *G-x) A
2.2} 4.4)

3 3
_L{-:_:- ~(1-X.) + "_’_3('%&2_}] (3.12)

The above developed formulation is equally valid for oscillating
airfoils as is for oscillatory flows (like gust). The boundary con-
ditions are usually prescribed in either case. For airfoils undergoing

flapping and pitching oscillations (about the mid-chord) the boundary
condition is

! ;= LR -
Wi. = i/l + (1+ L“X-)o(’ (3.13)
A ’
and for oscillatory flow ¥
-LwX; (3.14
/ %
W' = e ; ;
4 P4

where Z' and o' are the flapping and hitching amplitudes, respectively.

The unsteady 1ift and moment coefficients are then expressed as

L ’
;;II’EE = (alzgz + (ala<°< ,
- . (3.15)
/
fuﬂ-lﬂ - cmzz' t CMOI°< / 3




where

O
il

K ~ w2 E’.K
L(-) te (.) i D.i=l Je.) ? (3.16)
and '

. N > N
; €y = ~Kuec) + DT K0 ZK)X;

The parentheses, ( ), in equation (3.16) can be replaced either by Z or «
and the appropriate boundary conditions are applied.

The analytical expressions for oscillating airfoils are

Clz=zx(C+ %‘-‘-’)Lw, '*

Cpu = zx[C(H ‘%)+ ‘-’%‘_—’] )

and

r (3.17)

Cuu= 5[0+ T)= L1 Y] |

ﬁ ; and for the gust flow,

Cy, =22 €] T,() =i T (=)} +4:J,(w)]’ (3.18)

where

W{P(w)

H,‘ W) vz Hf'%u)
WY J,- 4,

and |
(&%) . v |

S |

For collocation points located at the centers of each strip results |

are presented below for both cases along with the comparison with the §

exact results

B - i " ' . i PRRIPRUREROR i "‘uﬁJ




e ————— A <,

W N Cu

1 exact 0.077+0.523i
1 10 0.074+0.525i
1 20 0.074+0.524i
1 0 0.075+0.524i
2 exact 0.111+0.914i
2 10 0.103+0.922i
2 20 0.104+0.920i
2 30 0.105+0.919i
3 exact 0.055+1.253i
3 10 0.043+1.269i
3 20 0.044+1.265i
3 30 0.045+1.263i
4 exact -0.088+1.571i
4 10 -0.105+1.5951
4 20 -0.104+1.5901
4 30 -0.102+1.587i
5 exact -0.312+1.879i
5 10 -0.332+1.912i
& 20 -0.333+1.9051
5 30 -0.330+1.900i

Oscillating Airfoils

c

20t

. 134+1

17341
L167+1

B e N N N N N Y N S S S,

3.994+1.
5251

4.053+1

4.039+1.
5791

4.031+1

.281-0.
.296-0.
.293-0.
.291-0.
.690-0.
.718-0.
.713-0.
. 710-0.
. 347+0.
. 386+0.
. 378+0.
.374+0.
.005i
.183+0.
.01514
.022i

507i
5001
493i
493i
100i
1021
0851
083i
443i
428i
4561
4591

979i

563i

5701

O O O O 0O O 0O 0O OO OO oo oo o o o o o

cmz

.054+0.
.056+0.
.055+0.
.055+0.
.119+0.
.122+0.
.121+0.
.121+40.
.169+0.
.170+0.
« 17240
.172+0.
.207+0.
.204+0.
.210+0.
.211+0.
.23740.
.225+1
<e37+¥(.
.239+0.

261i
279i
272i
2691
457i
4901
4761
4701
6271
672i
6521
6441
7851
842i
8161
807i
939i

.0061

975i
9641

NN N NN NN N NN NN N N NN NN NN NN NN NN

Cma

.645-0.
.828-0.
.750-0.
.718-0.
.361-0
.524-0.
.454-0.
.426-0.
.209-0.
.360-0.
.294-0.
.269-0.
.130-0.
.271-0.
.210-0.
.186-0.
.095-0.
.230-0.
.171-0.
.148-0.

Evaluation of the above listed results indicate that the numerical

solution is reasonably accurate even for 10 strip case.

The computer

program is very efficient and the computational time for all 15 cases

(5 w's and 3 N's) was 4.58 seconds using WATFIV compiler.

568i
588i
582i
579i

.678i

689i
692i
6901
721i
718i
7301
731
754i
7351
7571
7611
7891
753i
7851
793i

For oscillatory

flow the numerical results along with the comparison with the analytical

results are illustrated below.
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Oscillatory Flow

exact

15
25

exact

15
25

exact

15
25

exact

15
25

exact

15
25

o O o o o O o o o o

-0

Coa/2n

.3687+0.
. 3868+0.
. 3838+0.
381240,
.3790%0.
.0816+0.
.0707+0
.0789+0.
.0823+0.
.0840+0.
. 1452+0.
.1705+0.
.1§Z3+0.
.]562;0.
.1521+0.
.1980-0.
.1932-0.
.2053-0.
.2062-0.
.2051-0.
.0812-0.
.0415-0.
.0645-0.
.0746-0.
.0794-0.

1259i
1553i
1457i
13944
1349i
26801

.2840i

2712i
26771
26641
1778i
15871
1513i
15591
16131
0207i
0948i
0655i
05091
0410i
15861
2783i
19191
17251
16501

41




——

42

The values presented in the above Table are for very high reduced
frequencies which are of considerable importance in acoustics. Also
based on the results, one can conclude that the numerical lifting surface
technique yields a reasonable solution if at least 15 strips are considered.
Several other schemes were attempted varying the leading edge strip col-
location point location. These schemes improved the results but however,
the collocation point location was found to be a strong function of
reduced frequency and this also increased the computational time due

to the lack of symmetry.
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Two-Dimensional Compressible Flow
The relation between the downwash at any point Xi on a thin airfoil
in subsonic flow and the doublet distribution is derived in Chapter II, ;
equation (2.48) It is expressed as : J

g 2z 2
QKWL = %:“K(X)[ ‘gs("z ""K/z] Hﬁ)(K.]X—XPDdX_ (3.19)

The wake boundary condition is
/
: / K
LK+ & =0
dX

from which K’ in the wake can be expressed in terms of K, . The relation is
te

wake > 71 : ' (3.21)

= (3.20)

" Equations (3.19) and (3.21) are combined to yield

2;:\3;— [ jK(axz_-g-K,’-)\y d X

m_lw(x-ﬂ' ?_'f_ 2 y
+K;e_|[e (;xznc)\ya!x]’
v(X) = KPR 1x-X1) , X=11x-xe] .

The airfoil is divided into N equal strips of width, 2D, and K is

(3.22)

where

assumed to be a constant over each strip. Equation (3.22) is then

reduced to

. i -
2aW; = 7 [ = {5 %‘E(y’(xf;?
+4¢ (%) +\y(x —»))} X I

= w‘t’(i Y4 ‘w[ -w(x-l)y,(x)a\ }] T
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The wake boundary condition is used to express Kte in terms of KN

- and the relation is

K"l:e:' l'-'K'N = N/[e +z,«.yD] -

Equations (3.23) and (3.24) are combined to yield a set of N simultaneous
equations, i=1, 2, ..., N. The Hankel function has a singularity when

its argument is zero. The evaluation of the derivative of ¥ presents no
problem since the point of evaluation is, at the least, separated from the

collocation point by D. The derivative of the Hankel function is

oY (X'—-X)
= =K H K| X-X¢|
oX lX—X;' ! ( )

The second term in equation (3.23) is obtained by using Simpson's

(3.25)

e i

1/3 rule and it poses a problem since the w(xj)tenn becomes infinite
when Xj is at the collocation point, X, This situation is alleviated
by using the Struve's function. At the singularity point, the portion

of the surface being integrated over is R : i

X;+D 1,9
[ ek Ix-x])dx = k4 H(RHAx]
XJ".D
5 ’ (2 I\ ! (D) 1\ T Y '
- 2DH§ )(_D )+ KD[H,( )(D) H (D)~ H ®)w (D)J’(s.ze) 1
where
and
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The wake integration involving an infinite integration is simplified

and is expressed in the form

ek el Y O

\ 4.:)(1-—)( )l‘ L (__E) I A»JJXH()Oc’x,Ddx]

(3.27)

vKP

Equations (3.24) - (3.27) are incorporated in equation (3.23) and the result is
that the problem reduces to a set of simultaneous equations which can be

solved for a given set of boundary conditions.

Boundary Conditions

d¢ _ 1 dg i(AX+wT)

d7Z URP dz T T (3.28)
42 e

:;:; =W = ¢’1: >

and b is the vertical displacement.

o

where

For an airfoil undergoing flapping and pitching oscillations about

mid-chord position , iwT y 0T
e =2z'e + X xe . (3.29)

Equations (3.28) and (3.29) are combined to yield
, o iaX
W= [LcoZ + (1+i0X)" ]

where Z' and o' are the amplitudes in flapping and pitching motions,

’ (3.30)

respectively.

For oscillatory (gust) flow

o = & e‘ (wT'_. i (3.31)

-

e ' e ST
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Equations (3.28) and (3.31) are combined to yield
, —iwX -L2X , —vX
W=o'e e f =x'e A . (3.32) |

Lift and Moment Coefficients

t OX + T |
k = ﬁu_-ﬂfe = UIKGL( ftty (3.33) |

/7
and ] A7

where 2(x) is the pressure difference.

) (3.34)

Equations (3.33) and (3.34) are combined to yield

z/(x) = ,ouz'(g_li_ + .{,wE) ! (3.35)

wheire "Z - K éi—zx

Then the 1ift and moment coefficients are evaluated using equatfons
(3.15) and (3.16), respectively. Some results and computational times ]

are presented below in tabular form for both cases of osci]]ating airfoils :

and oscillatory flows.




TN NS ¢ NPT e TR ey

.
=
o
O O 0 N O 0 © 00 NN OO o ©
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D o © ® N
o O = O O

.70

OOQOOOOQPOOOOOOQOOOOOOOOO
L I . T . I . i o F % R 0¥ o K s ® 8 e B

. . . . . . © . . . . . . . . . 3 . . . .
(o)}
o

c

2z

.288+1
. 384+1
.040+1

. 302+1
.444+1
11241

O O O O O O O O 0O o o o o o o

]
o o

-0.345+1

-0.142+2.
-0.025+2.
0.171+2.

0.477+2

into 11 strips.

.073+0.
.116+0.
.141+0.
.179+0.
.242+0.
.102+0.
.183+0.
-225+0.
.025i
.046i
211
.154+1.
21441,

.041+1.
0.125+1.
0.254+1.
0.468+1.

5251
5691
5911
618i
6501
9243
977i
998i

3401
3714
.403i
.418i
.6011
704i
7511
798i
7941
.9244
0891
1601
226i
L1701

using FORTRAN G Compiler.

Oscillating

Airfoils

(S I S e e A T & 2 T T N — S S L NS 2 B T~ DY Y S 5 B S ) B & ) B S 5 B — S« ) B AU S A I & IS ) |

Cza

.297-0.
.760-0.
.996-1
.296-1.
.652-2.
.730-0.
.050-0.
.189-0.
.372-1
.550-1
.416+0.
«221+0.
.879-0.
.061-0.
.218-1
.201+1
.602+0.
.802+0.
.032+0.
.149-0.
.081+1.
«“G19%]) .
.876+0.
.164+0.
.160-0.

4911
9011

L1444

519i
1441
0881
483i
690i

.008i
5221

447
073i
135i
4545

.0201
.009i

6261
3991,
0161
7001
5641
1554
8831
383i
5351

In this case,

00O O O & 0 O o 0 O 0 O b O OO0 O 0 0O 0O 0 6 O O

sz

.058+0.
.088+0.
= 107+0,
.136+0.
.184+0,
.125+0.
.193+0.
.23140.
.288+0.
<3P0,
< 176+0.
. 286+0.
.34740.
.435+0.
.554+0.
.210+0.
.374+0.
.465+0.
«092+0.
.726%0.
.233+1
.465+1
«093+0.
. 765+0.
. 870+0.

2861
307i
316i
326i
330i
5011
517i
5191
512i
473i
6901
6951
6871
6551
5481
8621
862i
8411
773i
5631

.033i
.028i

9861
8611
523i

= NN NN = PN NN NN = NN N NN NN NN NN N W W WwMN

the airfoil is divided ;

.888-0.6021
.114-0.923i
.219-1.121i
.332-1.433i
.392-1.967i
.582-0.709i
.695-1.099i
.718-1.323i
.706-1.669i
.519-2.224i
.422-0.74114
.488-1.197i
.485-1.4641
. 396-1.8691
.996-2.484i
.325-0.757i
.394-1.299i
.366-1.623i
.196-2.112i
.522-2.747i
.288-0.7751
.367-1.423i
.306-1.817i
.021-2.399i
.030-2.937i
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The computational time for all the above 25 cases was 4.39 seconds :




The computational time for all of the above 15 cases, taking 11

_— et - —_— 0 O O O O O O O O O

.10
.10
.10
.10
.10
.50
.50
.50
.50
.50
.00
.00
.00
.00
.00

O O O OO OO0 O O O oo o o o

.01
.50
.60
.70
.80
.01
.50
.60
.70
.80
.01
.50
.60
.70
.80

Oscillatory Flow

8.
.597-1.410i
.800-1.668i
.049-2.057i
.319-2.682i
.391-0.159i
.520-0.5261
.554-0.711i
.545-0.973i
.367-1.2801
.404+0.924i
.736+0.459i
.742+0.183i
.568-0.0641
.462-0.110i

RN D D DD W W Wwwo oo o :;

cla

188-0.967i

strips over the airfoil, was 4.09 seconds.

The present 1ifting surface method resulted in the developmenf of
a very efficient computer program for a 2-dimensional compressible flow

case, which in general has one of the most complicated formulations.

O O O = =t e emd e e o ) W

2
3
3

cmu

.812-0.
.007-0.

.093-1
177-1

.716-0

549i
838i

.010i
2T
.196-1.
.794-0.
.408i
.629-0.
.441-0.
.095-0.
.226+0.
.126+0.
.974+0.
.784+0.
.841+0.

7111
142i

5261
643i
5761
4511
1661
102i
2001
354
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Iv. ROTOﬁ APPLICATIONS 4 |
, i) Steady State Application to Marine Propellers
k - Elchuri“app'lied the velocity potential formulation and the as-
sociated numerical technique to the problem of estimating the steady and
unsteady loading distribution on typiﬁal ship propellers. In order to {
study the response of the method, two B series propellers, B-3.35 and i
B-3.50, were examined. Expanded outlines of these two types of blades {

are shown in Figs. 2 and 3. As a first approximation, blades were
treated as thin lifting surfaces with nowake. The lifting surface was |
divided into a grid of 100 boxes with ten such boxes along each chord

at an equal number of spanwise locations. To obtain the distribution

of the discontinuity in the velocity potential on the blade surface,

E the presence of all the blades and their wakes was considered. The doublet
distribution obtained as a result of solving a set of simultaneous
equations as d scussed earlier is re]afed to the differential pressure

distribution on the b]ade at any point P as

-’
il . vk
Gof =7%"Y

v 2
. where the relative free stream velocity is
{ A
1 - - A Lo
| W = Yy + ALyt - LX) +Vak ;

The thurst produced by a blade section at a mean radius r_ is the component

m
of the resultant of 1ift and drag forces along the direction of propeller

advance. Therefore, per unit span,
-y

T =, [CL+1>>k]k

COnst
where the 11ft per un1t span due to a box with P as the collocation point is

2 S(P,p P)ds .
- (" 3)5 P Waa'kt"' Vo.k, "Sk dwa
ln -(nos)sl !

-y

.h" B — A : » ~ﬁ-un-n-unnun-nunnu-a-u-_-u--n--‘i"
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Figure 2. Expanded Outline, B-3.35 Marine Propeller
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Figure 3. Expanded Outline, B-3.50 Marine Propeller
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and the profile drag per unit span at P is
-’

D = gcp(‘%ﬂw:;ﬂ) »

with the local drag coefficient CD generally stated as an empirical function
of the angle of attack.
Torque necessary to overcome v\;ater resistance per unit span to turn
the propeller at a constant angular velocity @ is A
§= [{-Tpx(T+Bo}k]k |
Y., const.

where T is the position vector of point P with reference to origin 0.

p/o

It is customary to describe the propeller characteristics in terms
of thrust and torque coefficients (aggregated over the entire span), and
the propeller efficiency, as functions of the advance coefficient J.

These parameters are defined as,

Thrust coefficient, KT= ZT/CION?-.D4)

Torque coefficient, KQ, = ZQ/ (,o N"DS') . r

Propeller efficiency, v = ZT'(Vﬂ ) - K‘I‘.J
ZQ (2xN 2% K ]
Q

where the advance coefficient is

J= V, / (ND) .

Thrust and orque coefficients together with propeller efficiency as
functions of the advance coefficient at a pitch to diameter ratio of 1.0
for B-3.35 and B-3.50 marine propellers are shown in Figs.4 and 5.

A good comparison with the experimental results of reference 54 reflect
upon the feasibility of the present 1ifting surface method with regard

to its applicability to marine propellers.

acachion
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Figure 5. B-3.50 Characteristics P/D = 1.0
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ii) Analysis of Unsteady Airloads of Helicopter Rotors in Hover

Schatzle’® applied the present numerical lifting method to
predict the unsteady airloads on a multi-bladed helicopter rotor
in hover using a realistic waké representation. The method
employed a velocity potential formulation and the wake geometry
was prescribed using Landgrebe's model. A summary of the results
were presented at the AIAA 15th Aerospace Sciences Meeting (Ref. 56,
also to be published in the Journal of Aircraft). A brief discussion
of the method and the results are presented in this section.

Basic Equations and Numerical Method

The relation between the downwash velocity at a point on a
rotor blade (wing) and distribution of doublets over the blade and

wake surfaces is derived in a previous section (Eqg. 2.23) and is

ﬁ“ 2 (25 us e

2 4.1
9w ]
‘mF

given by

4T W, =
w

wun

4=
waekKe

where K, the local doublet intensity, is equal to the discontinuity
in the transformed potential across the wing or wake. The value
of K at a point in the wake may be determined from the value of
K at the trailing edge of the wing in the following manner. From
Euler's equation, the local pressure difference across a thin

surface is related to the corresponding discontinuity in
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potential by

S e ((AX+wT)
{ = FUz(th'l'?a—é e (4.2)

Since the wake cannot support a pressure discontinuity, =0 in

eq. (4.2) and thus,

K(x,Y) = K(xh)Y) e-cu(x-xt')‘u.a)

4TW, = ffK-gjzz-; E-_L_S.E dS
g

(4.4)

- iV (x-X,,) T
= I Kbee > Ef‘xa dsS.
Lol az* \ R

In the numerical technique developed, it is assumed that
there are M panels along the chord of the blade and N panels
along the span. For a panel mn the local doublet intensity,
Kmn' is constant over the panel and may therefore be removed
from the integration of eq. (4.4) over that panel. Similarly,
Kte,n may be expressed as KMn.and removed from the integration

of eq. (4.4) over that strip. If the integrations in eq. (4.4)

are carried out over each panel and strip and then combined to

e i

PR
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form the entire surface integration, eq. (4.4) may be written

in influence coefficient form as

M N : N
4“- wP: :\‘:.\E-\ RP’M“K““ A M&:\BH‘V\KM"\’ e

where

= -(KR
A > e dS
?,NV\M - az —R "Mm (4.5a)

and

B = H e G TR T il T
p,m 222 \ R ” :))

Here Ap,mn represents the downwash velocity induced at P due to
a unit velocity doublet at the panel mn, while B ’5 represents
the downwash velocity at P due to a unit intensity doublet in
the wake strip n. For an M x N panel lifting surface, P takes

M x N different values and the problem reduces to a set of

simultaneous, linear algebraic equations

AiTT{LW} = [cé]{K'ﬁ : (4.6)

e L e
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where

The flow tangency condition, as detailed later, requires the
downwash velocity induced by the doublets to equal the downward
velocity of the wing at every point. Consequently, for prescribed
wing motion and geometry, eq. (4.6) may be solved for the doublet
distribution, K.

The proper approach to the solution of eq. (4.6) is to deter-
mine not only the doublet distributioh but the wake geometry as
well since it is known a priori. This additional requirement can
increase computational effort appreciably. However, fofvmoderate
to high aspect ratio fixed wings it has been found sufficiently
accurate to specify the wake to pe a planar vortex sheet rather
than to calculate its actual shapef A similar approach is therefore
chosen for the rotor wake. That is, in the interest of reducing
computer time without compromising accuracy, the rotor wake will
be prescribed rather than calculated. The difficulty, however,
lies in choosing the proper wake shape for a given flight con-
dition. The strip theory model is simple but not physically
realistic since it ignores wake curvature. The classical wake
model is an improvement, but it neglects tip vortex effects and
the contraction of the wake of the wake beneath the rotor disc.

Only Landgrebe's experimentally determined rotor wake model
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includes all of these important effects. He models the wake as
having a strong tip vortex and a weaker inboard vortex sheet

and gives empirical equations for the radial and axial coordinates
of both as functions of rotor geometry and operating conditions.
The details of the equations were presented in Ref. 55. 1In this
report these equations weré used with some slight modifications.
The first modification was to extend the outer vortex sheet
boundary to the tip vortex, since there is likely a physical
connection between the two. The second was to simulate the roll
up of the the vortex sheet into a tip vortex by gradually combining
the outer vortex sheet wake strips into a single strip with the
combined strength of the composite strips. This process was done
over an arbitrarily chosen one-sixth rotor revolution to insure
that the tip vortex reached full strength before passing beneath
the following blade. The portion of the wake which combined to
form the tip vortex was determined by the spanwise location of

the peak load on the rotor blade, gnd since the peak load is gene-
rally near the 85-90% radius position, all wake stripé outboard

of that location were blended into the tip vortex. Furthermore,
the outermost segment of the strips in this region was assigned
tip vortex coordinates, while all others were given vortex sheet
coordinates. It was also assumed that the vortex sheet contracted
radially at the same rate as the tip vortex.

The blade surface is divided into a number of small panels
and the panel size is smaller in regions where K varies most
rapidly, i.e., near the blade'edges. The freestream velocity is
assumed to be constant across a panel and equal to the velocity

at the geometric centroid of the panel. This velocity varies with

|
|
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span dque to the nature of the rotor flow field. Extending from
each trailing edge panel is a wake strip whose coordinates are
determined by Landgrebe's equations (Fig. 6 shows the panel
approximation of the rotor blade aﬁd the modified wake model).

Calculation of Influence Coefficients

Eq. (4.6) can be solved for K at a discrete number of points
on the surface which, placed at the geometric centroid of each‘panel.
The influence of a surface panel on a collocation point is given
by eq. (4.5a), which is evaluated numerically using a two-dimensional
Gaussian quadrature. The influence of a wake strip on a collocation
point is given by eq. (4.5b) with the following modification: implicit

in the use of (4.3) for enforcing the zero-pressure condition in

the wake is the assumption that the local streamlines are in the
direction of the positive X-axis. 1In a linearized sense this is
true for fixed wings. However, for rotary wings the streamlines
are directed roughly helical paths beneath the rotor disc. To

reflect this difference eq. (4.3) is therefore modified to

K(S) = K(S.) e"”(s‘sce),

where S is the distance measured along the centerline of any

(4.7)

wake strip. Of course, eq. (4.5b) must be changed in accordance

with eq.(4.7). The effect that a particular wake strip has on

a collocation point is therefore computed by adding the effect

that each panel in the strip has on that point using the modi-
fied form of eq.(4.5b). As with the surface panels, the inte-
grations are carried out with a two-dimensional Gaussian quad-

rature.




Vortex Sheet

Tip Vortex

Figure 6. Rotor and Wake Model




62

Surface Boundary Condition

The vertical displacement of the blade is assumed to have
a steady-state component due to coning and angle of attack, and
an unsteady component due to flapping and twisting about this
stady position, i.e.,

C =T+ ?Le + 5. e (4.8)

It can be seen from Fig. 7 that

B, = le-w) B+ 2al (4.9a)
Zb" = §(y) Zl:,;,, - (4.9b)

' | : g :
C Fly) oy, o (4.9¢)

\.

The relations between the downwash velocity wp and ¥, and

w_ and the transformed downwash velocity Wp are, respectively,

p
e BE + U =11 (4.10)
P ot 5%
and
-((Ax+wT),
Wp = W € (4.11)

Uy By
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____Steady-state
\%e Position of

Mid-chord Axis

{
Q.

View from Trailing Edge

! ’Og/ 5 :
Steady-state == wid-chord Axis
Angle of Attack==
’,/f:;,,'/ , ‘

View from Blade Tip

Figure 7. Components of Rotor Blade Motion
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Egs. (4.8) through (4.11) are combined to give

We = Wep + Wazp + Wap (4.12)
where
b

Wg,p“ R Bp Ap (4.12a)

Wap = b(Y) Zup & (ie) (4.12b)
RR;

Wy = FWliipe i ) - (a.12¢)

oAp b 3

R B

The solution for steady flow is obtained by settingl=0 and X =0
in egs.(4.5a) and (4.5b) and using eqgs. (4.6) and (4.12a). Simi-
larly, the solutions for flapping and twisting are obtained by

using egs.(4.12a) and (4.12b), respectively in eq. (4.6).

Aerodynamic Loads

. A
Eq. {4.2), the linearized expression for the lift 'in trans-
formed coordinates, is modified to ;
;3K;) LCXX—#UJT)
e

(XX, T) = Puu, (v k+2K

3% (4.13)

By integrating eq. (4.13) along the chord, thé local lift and

moment per unit span may be expressed as !

' wT
LI o < 2 R - - . Jp’ c£€]
M%_ = -PU ¢ (_g_){\(be-gmlx +ww | KX € L4185
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The unsteady lift and moment coefficients for flappinf and

twisting motions are expressed as

: L :

3‘

gl L O
PoLp®

' = [ ly
where z i z tip‘z' It should be noted that CLz’ C

C

)
" - C11!¢£ ‘
'W\C/z 7 Mz -Zb(,\‘ + tck , (4.17)

I"(l CMZ'
and CMd~are complex quantities.

Solution Procedure

For a given rotor geometry and flight condition, blade
element theory is used to calculate an initial guess to the rotor
thrust coefficients, CT' Based on this value of CT and the
initial conditions an initial wake shape is preécribed using
the modified Landgrebe model. The resultant steady-state airloads

are then calculated and an improved guess for C, is made. If this

T
second value differs appreciably.ffom the first, a new wake
geometry exists which is compatible with the steady-state load
distribution, i.e.,z&Cf*O. The unsteady aerodynamic derivatives
are then calculated based on this converged geometry.

Results :

Steady airloads and unsteady aerodynamic derivatives were
calculated for an XH-51A helicopter rotor in hover. This rotor

was chosen because experimental data®’ for the steady-state

load distribution was available for comparison with thecry.
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The blade geometry and flight conditions were:

BB = & ; R owmYE.E:
e = L.08, ¥y . = 2,33
g1 = *5°, @, =10.61°,
Np =355 (M; = 0.58).

In the unsteady case the blades were assumed to undergo rigid

flapping and torsional motion such that

0 y Yy s e
f(y) =
(!"e) r Y Z €
(R-e)
and
F(y) = 1.

Figs. 8 and 9 show the calculated lift and moment distributions
for the XH-51A using the present theory with the classical and
Landgrebe wake models. Both models overpredict the overall blade
lift although Landgrebe's model predicts the loading.ﬁrends

more accurately, specifically the load spike near the tip due to
the tip vortex. The mean value for CT for the cléssical model
was 0.00577 and that for the Landgrebe model was 0.00584, while
the experimental value was roughly 0.005 - - a difference of 15
to 17% between theory and experiment. This difference may be due
to the approximate nature of the present method, i.e., discretizing
the linear spanwise velocity field into constant velocity
segments; No comparison was .made between the theoretical and
experimehtal moment distributions since the measured data were

referenced to an unspecified axis. It might be expected,
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however, that Landgrebe's model would give better results in the
tip region than would be the classical model. The number of wake
revolutions used in this study was yaried from one to four with
no appreciable change in the overall thrust or character of the
loading curves, but with a drastic increase in computational time.
The displYed results are therefore those obtained using a single
wake revolution. For lightly loaded rotors (where the rotor wake
is closer to the blade) it may be necessary to include more wake
revolutions to get accurate results. The calculation of the steady
state loads using either wake model required approximately 36
seconds of CPU time in G-Level FORTRAN on Amdahl 470V/6 computer.
Based on the steady-state results only the Landgrebe model
was used for three frequency ratios shown in Figs.1l0 through 17.
Evident in each of these figures is the strong tip vortex influence
on the loading over the outer 20% of the blade. In the present
study no attempt is made to explain the variation of these quanti-
ties as a function of frequency ratio or its significance in flutter
analysis. However, based on the reasonable correlation between
steady-state theoretical and experimental loading uéing the Land-
grebe model, it is hoped that the computed unsteady aerodynamic
derivatives will also be reasonably accurate. In the future
these results will be compared with those of strip theory and
classical wake model representations and applied to investigate
their effect on aeroelastic stability boundaries as was done in
Ref. 58. fhe calculation of the steady-state airloads and wake
geometry and the resulting unsteady aerodynamic derivatives

required approiimately 2.8 minutes of CPU time in G-Level FORTRAN
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" Figure 13. 1Imaginary Part of Lift Due to Torsion
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‘Figure 14. Real Part of Moment Due to Flapping
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on an Amdahl 470V/6 computer.

Conclusions

A velocity potential lifting surface method has been used
in conjunction with a realistic rotor wake model to compute the
steady airloads and unsteadx aerodynamic derivatives for an
arbitrary hovering rotor in compressible subsonic flow. The
theoretical results compare well with experimental data for four-
bladed rotors, suggesting that unsteady loads calculated with the
same wake geometry may also be reasonably accurate. With the
proper choice of flappinf and torsional modes, the present method
could be used to generate aerodynamic derivatives for use in

flutter analysis. In fact the next section deals with this topic.

iii) Aerocelastic Analysis of a Single-Bladed Rotor

The unsteady aerodynamic analysis and the computer program

described in the previous section is applied to predict the flutter

speed of a single-blades rotor in Ref. 59. The results ani the
i
discussion of this analysis is presented in this section.
A single-bladed rotor with the following geometric and stru-

ctural properties was considered:

Radius - 25.0'

Chord - 2.0'
Y - 2.5"

co

fEi - 0.25 (radius of gyrationz)

(Ob/a%k - 0.50 (bending/torsion freq. ratio)

%

c.g. loc. - 0.1 (aft of elastic axis)

1

"80.0 (density ratio)

0.0sw<0.5
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To assure compatibility between the two and three-dimensional
aerodynamic derivatives, a classical wake was prescribed in the
three dimensional analysis. The use of classical wake resulted
in no loss in generality of the three-dimensional theory since
it has been shown that there is little difference between the
results obtained from using either Landgrebe's wake model or
a classical wake (Ref. 59).

The principal flutter parameters in this analysis were the
location of the elastic axis (a) and the bending/torsion frequency
ratio (z). The varation of flutter speed is shown in Fig. 18 for
the assumed blade section at 0.75 R, using both two- and three-
dimensional aerodynamics. Using two-dimensional aerodynamics
for locations of the elastic axis ahead of the quater chord, an
analyst could mistakenly conclude that there isvno chance for
flutter to occur; for this case the three-dimensional aerodynamics
indicates a lower flutter speed. However, when the elastic
axis is moved aft of a = 0.3, thieéldimensional aerodynamics is
less conservative than two-dimensional aerodynamics. Consequently,
two-dimensional theory should be used.

For the rest of this study, the elastic axis was located at
a = 0.2. Fig. 19 shows the variation of the flutter speed with
the ratio of the bending/torsion frequencies. It is seen that
two-dimensional theory predicts a lower flutter speed than does
the three-dimensional theory for all values of . Also, for
values of T near 1.0 and greater, both aerodynamic theories
predict no flutter for values of reduced frequecy less than 0.5

These same trends are also seen when the flutter frequency is

s sl i e e i i A e e " SRR
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plotted against the bending/tofsion frequency ratio (Fig. 20).
In terms of a rotor system, these results indicate that no
flutter condition will be encountered for the bending .stiffness
greater than the torsional rigidity. Further from these two
figures, one can conclude that the finite aspect ratio effects
are such that they reduce the flutter speeds.

Fig. 21 shows the variation of the flutter speed with the
density ratio. For both cases, the flutter speed increases with
an increase in the density ratio, and the gradient for the two-
dimensional curve is seen to be decreasing faster than that of the
three-dimensional curve. The trend indicates that the increase
in density ratio has a slightly less stabilizing effect on the
airfoil motion when using two-dimensional airfoil theory. Thus,
for high values of density ratio, a very conservative flutter
speed may be predicted using strip theory.

The varaition of the flutter gPeed with the squére of the
non-dimensional radius of gyration is shown in Fig. 22. Once
again, the flutter speed obtained using strip theory is the
conservative result. The flutter speed increses as the radius
of gyration increases.

The varaition of c.g. location on the flutter speed is
shown in Fig. 23. Here, using three-dimensional aerodynamic
derivatives, there is insignificant variation in the flutter
speed. However, for strip theory, the effect of c.g. location
variation has a much more proﬁounced effect on the flutter
spéed.

The results presented in this section are very preliminary
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and one has to be very careful before making any general or
- conclusive statements. An extensive parametric study is needed.
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