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Let F and C be two distribution functions. Under certain

circumstances there exists a function h:1(O,l) + (0,1) such that C = hF.)

Steck and Zimmer originally proposed the “model” G hF for possible use

in accelerated life testing. ~In that case C and F can be taken to be,

respectively , the distribution functions of an ‘~object”~ under normal

conditions and under conditions causing accelerated aging. Presumably one

would have a fairly good idea of F from testing; an estimate of h would

then provide an estimate of G. It is also possible that h might be

determined from theoretical considerations in which case an estimate of F

would provide an estimate of C. Finally, it is possible that estimates of

h could provide insights into the aging process itself .

The model G = hF is “obviously” not restricted to use in accelerated

life testing but is potentially applicable wherever two distributions are

“naturally” related to one another. It could, for example, be used to

investigate human response times under different sets of conditions (e.g.,

different accelerations), in learning theory, to investigate the effects of

collaboration on the ability to perform tasks or on test score distributions ,

etc.

Suppose F and C are continuous and that they are strictly increasing

on the sets F 1((0 ,l)) and G 1((O ,l ) ) ,  respectively. Then a function h

such that C — hF exists if and only if G~~ ((O ,l)) c F~~ (( O ,l) ) ,  and in

this case h(y) — C[F 1
(y)J for every y in (0,1).

An estimator suggested by Steck and Zimmer for estimating h is obtained

in the following way. Let X
1
,~ ,X ,Yl, ,Y be an independent collection

that
of random variables such

A
the X

i
’s have distribution function F and the Y~ ’s

have distribution function C. Order the combined sample using some “rule” to
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determine order in case of ties. Consider the random walk from (0,0) to

(1,1) which , after i+k steps, is at the point (i/rn, k/n) if i of the

first i+k combined order statistics are X’s and the other k of them

are Y’ s. The j—th step of this random walk goes to the right an amount

1/rn (up an amount 1/n) if the j—th combined order statistic is an X

(a Y). The estimator of Zimmer and Steck, h, is the right continuous

function obtained from the “path” of this random walk and extended so that

h(x) 0 if x < 0 and h(x) 1 if x > 1.

If h exists and F is continuous , then in making probability compu-

tations about h it suffices to assume that the X~’s are uniformly distri-

buted on (0,1) and that G h.

Steck and Zitmuer suggested using confidence regions for h of the form

Sh 
— S

h
(m
~
1,c,

~~ 
— {h(x—~ )—6 < h(x) < h (x+s)+~S for all x}
= {h(x—€)—5 < h(x) < h(x+E)+~5 for all x}.

Unfortunately, the probability of such a region depends on h and , even if

one knows h is not easily computed. Let a~, 
~~~~ 

< > P{SUP
~
F
m
(X)_F(X) <~}

and = P(D < cS) > P{supjG~(x)_G(x) <‘5} be the usual coverage probabilities

of the standard Kolmogorov—Sm.irnov confidence regions. Let 
~h 

denote a

probability computed under the assumption that C = hF is true. Steck and

Zitmuer showed that P
h

(S
h
) 
~ 
a
F
a
G 

for all h. They also pointed out that

this bound is too conservative to be of any practical. use. They conjectured

that

(A) P
h

(S
h
) > 1 — (1 — 

~~~~~ 
— ct

G
) for all h , and

(B) if m~
12 c ~ n1’

~~6 < 1 then Ph (Sh) is minimized when h(x)  x for

all x in (0 ,1).
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We have counterexamples to both of these conjectures . The counterexample to

conjecture (B) is also an example illustrating the “discreteness ef fec t”

whereby a small change in h can produce a fairly sizeable change in the

coverage probability by excluding a large number of sample paths in the second

representation for Sh. We have had no success to date in producing usable

lower bounds for P
h

(S
h
). We know quite a bit more about what won’t work.

Other estimators (besides h) and other confidence regions (besides Sh
)

have been proposed and investigated, mainly in an ef for t  to “ remove corners”

or smoo then things out; these investigations have been of a preliminary nature;

no theoretical results have been obtained and only preliminary simulation wo rk

has been done .

Asymptotic results have been obtained. Under suitable regularity

conditions it has been shown that

B ( h ( t ))  B (t) /
P {Sh (m ,n ,c/~~~,~~/~~

) } - P{-l < { ~~~~~~ + h’ (t) 1/2 ]/[~/~ + h ’ (t ) ~/~~ ] < 1}

converges to zero uniformly as n ,m -
~ . and B2 are independent Brownian

bridges; B
1 
has undergone a time shift. No work has been done on rates of

convergence and no progress has been made on providing a uniform bound on the

probabilities given in terms of the two Brownian bridges . Note that we can

replace in and n by their ratio.

Under suitable regularity conditions , h is concave if and only if

C ’ (t ) /F ’ (t )  is non—decreasing . Thinking of C’ and F’ as the fatality

rates in the C and F populations , respectively, this says that earlier

(in time) the higher fatali ty rate is in the F population , later the higher

fatality rate is in the C population , and as time progresses the fa ta l i ty

rate shifts from the F population to the C population . This seems to be
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a reasonable assumption in some situations. The estimator which goes through

the points (0 ,0) and (1,1), which is concave, and which is (in a sense) the

bes t leas t squares fit to Steck’ s estimator subject to the conditions just men-

tioned, would seem to be a logical choice for estimating concave h’s.

Computing this estimator for specific data is a quadratic programming problem.

Several methods of computation were available but none seemed suitable for a

simulation study in which many estimators must be computed . A class of

estimators has been produced each of which is a “cross ” between Hildreth ’s

procedure and “optimization” holding certain coordinates fixed on “ the

boundary .” It has been proved that each procedure in this class produces

the desired estimator.


