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Introduction

Data obtained from high altitude satellites have shown that the atmo -.

spheric density has a strong diurnal variation, maximizing near the subsolar

point at around 14 LST. For the most part , atmospheric models which have

been based principally on data gathered above about 250 km, where the diurnal

character is very pronounced, have extrapolated thi s behavior to lower alti-

tudes though with decreasing amplitude. Some indication that such a strai ght-

forward extrapolation may not be correct has been given by the San Marco 3

satellite data presented by Newton et a].. (1975).  These investigators found at

220 km two distinct peaks of equal amplitude at i i  LST and 18. 5 LST. Newton

et al. attributed this behavior to the different phase in the diu rnal response of

individual constituents 0 and N 2 . That the number density of each atmospheric

constituent peak s at a different time of day has also been deducted by Mayr

et al. (1974) from analysis of OGO-6 mass spectrometer data.

We have used density data from a cold cathode gaug e on board the equa-

torial satellite Atmosphere Explorer E to investigat e the diurnal behavior of

the atmosphere from 300 km down to 140 km. The data are used to determine

the phase and relative amplitude of the diurnal and semidiurnal components of

the local time variation as a function of altitude. These parameters are valuable

as an indication of the relative magnitude of energy sources for the lowe r thermo-

sphere since a diurnal component may be expected to result from local heating

while the semidiurnal component would be driven by tides propagating upwards

from the stratosphere and mesosphere (Lindzen, 1976). Assignment of a
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source would also depend , of course , on such details as phase and phase

progression and the altitude-dependence of the wave amplitude.
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Discussion

The data used in this study consist of 5062 density measurements obtained

using the cold cathode ion gauge known as Pressure Sensor A (PSA ) on board

the Atmosphere Explorer E (AE-E) satellite. The instrument has been de-

scribed by Rice et al. (1973), and the data reduction procedure has been pre-

sented by Rice and Sharp (1977).  A E - E  is in a near-equatorial orbit , with an

inclination of 19. 6° . The data used in this study were gathered between

December 1975 and October 1976 when AE-E  was in an eccentric orbit (140 km

x 2757 km). The data set was furthe r limited by including only data obtained

during periods of oriented (non -spinning) operation. Density and ephemeris

data at fixed altitude levels at 5 km intervals ( 140-300 km) we re tabulated for

use in the present study. In order to minimize the complicating and incom-

pletely modeled effects of geomagnetic activity, the data base excludes any

data for which Kp > 5 at any time during the period six hours prior to the time

of measurement.

In order to isolate the local time variation in the lower thermosphere ,

all the othe r known contributions to the variability of the density were sup-

pressed using the Jacchia (1971) model , evaluated using all appropriate input

parameters, but with the local time set arbitrarily at midnight. The ratio R

of the measured density to this model value was then averaged over each two-

hour interval of local time . The results of this analysis are shown in Figure 1.

Each curve represents the average of this r atio over the five altitude levels

in a 20 km band centered at the designated altitude. (For example , the 290 km

- 5 —
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curv e includes data from the 2 80-300 km r a n g e .)  The curve s thus represent

the qualitative altitude dependence of the local time variation which occurs

near the equator. There is a systematic transition from the clearly diurnal

behavior at 290 km with a well -defined maximum near 14 hours local time

and a broader minimum near midnight to the semidiurnal behavior at 140 km.

In the transition region between these altitudes the daily variation is some-

what less well-defined due to the fact that neither the diurnal nor the semi -

diurnal mode is clearly dominant.

In order to study the altitude dependence of the daily density variation in

greater detail , we hav e performed a two-component harmonic analysis of the

ratio R after dividing by the mean value . The amplitude and phase of the di-

urnal and semidiurnal terms were calculated for each 5 km altitude step in

the 140-300 km data base. Initially a three -component fit was made, but the

terdiurnal component showed no phase continuity with altitude, and the ampli-

tude at all points was too small to be statistically significant . Furthermore ,

neg lect of the third harmonic in later analyses did not significantly affect either

the amplitude or phase of the resultant diurnal and semidiurnal terms . A

somewhat similar analysis using data from the San Marco 3 satellite at hi gher

altitudes has been described by Brog lio et al. (1976).

In Figures 2 and 3 we present the amplitude and phase , respectively,

determined in each of these decompositions. The amplitudes and phases of

the two modes are shown as functions of altitude , along with the correspondi .’g

prediction s of two widely used empirical models of the the rmosphere , the

Jacchia (1971)  model and the Mas s Spectrometer-Incoherent Scatter (MS IS)

-7-
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model of Hedin et al. (1977). In calculating the amplitude and phase predic-

tions of the empirical models , model densities are determined for every point

in our AE-E  data set and the resultant values are then handled in the same

manner as with the actual measured data.

Comparison of the amplitudes derived from the data with those of the

empirical models leads to several conclusions. For both the data and the

models , the amplitude of the diurnal mode decreases rapidly with decreasing

altitude. However, at any given altitude the amplitude of the diurnal model

predicted by the Jacchia (1971) model exceeds that actually measured by more

than a factor of two . The altitude dependence of the amplitude of the MSIS

diurnal mode closely resembles that of the AE-E data. Although the ampli-

tude is uniformly less than the measured values, it is only slightly beyond

the uncertainty limits for the fits. The amplitudes of the semidiurnal mode

calculated from the data and both models are comparable at the hi gher alti-

tude s treated here (�24 0 km). However , this overall agreement break s down

below 200 km , where the data and the MSIS model indicate an increase with

decreasing altitude , whereas the semidiurnal mode in the Jacchia ( 1971) model

continues to decrease monotonica].ly . The measured semidiurnal mode sur-

passes the diurnal mode in amplitude at 180 km and is dominant at all lower

altitudes. The essentially identical behavior of the semidiurnal mode in the

MSIS model and in our AE-E data bas e extends to such details as the altitude

at which minimum amplitude is seen (“~Z00 kin). The agreement of model and

data is even more striking in the phase plot , Figure 3. The phase of the semi-

diurnal mode , which at hi gh altitudes is almost constant between 2 and 3 hours

-10-
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LST , makes near 200 km a nearly discontinuous transition to a phase angle

between 8 and 10 hours LST. The Jacchia ( 1971) model extrapolates the be-

havior at hi gher altitudes downward to the lower thermosphere as well.

The measured phase of the diurnal mode shows good agreement with

the models at high altitudes, but considerable disagreement at low altitudes.

The phase in the measured data progresses from near 13 hours LST at 300 km

toward earlie r times, reaching 6 hours LST at 140 km. The phase of the

MSIS model , on the other hand, though starting at a similar point at high alti-

tude , progresses toward later times, reaching 2. 5 hours LST at 140 km. The

Jacchia (197 1) model shows a diurnal phase which remains constant at 14 hours

LST. Thi s divergence can probably be attributed to the manner in which the

data used in constructing the models was obtained. The data base for the

Jacchia (1971) model contained no dat a below an altitude of ‘-‘260 km; the con-

stant phas e results from extrapolating downwards the behavior of the upper

thermosphere and, hence , good agreement in the lower the rmosphere might

not be expected. On the other hand, the low altitude data input to the MSIS

model is almost exclusively from the Atmosphere Exp lorer C satellite . We

believe that the behavior of the phase of the diurnal mode in the MSIS model

may be an artifact arising from the strong coupling in the AE-C data base of

local time with other parameters such as latitude and season . Because the

amplitude of the diurnal mode is small at low thermospheric altitudes, such

behavior has little effect on the density there. To test this hypothesis we

perfo rmed the above analysis using our own ion gauge data from the AE-C

— 1 1 —



satellite and obtained results which were qualitatively similar to the MSIS

predictions with respect to the diurnal  phase progression at low altitude.

The MSIS model semidiurnal mode agrees quite well in phase with the

data showing the sharp phase tran sition associated with the change from EUV

to tidal domination below “~ Z00 km. The Jacchia (1971) model fails to repro-

duce this behavior and disagrees substantially in phase at the lower altitudes

studied here. This suggests that the MSIS model is more reliable for studies

involving lower thermospheric chemistry and dynamics than is the Jacehia

(1971) model . In this connection it should be noted that the MSIS model ex-

hibits the semidiurnal mode as dominant only at low latitude; at 140 km the

diurnal mode is dominant above about 30° latitude. Our data from AE-E

cannot confirm or deny this behavior , however.

The general behavior of a dominant diurnal mode at high altitudes and

semidiurnal mode at low altitudes is consistent with the following picture .

At h igh altitudes the characteristics of thermosphere are determined largely

by the day-night variations in EUV he ating, leading to a diurnal variation whose

amplitude decreases with decreasing altitude becaus e the heating rate per unit

mas s decreases with decreasing altitude . The behavior at low thermosphere

altitudes arises from the propagation of tidal waves from lower regions of the

atmosphere.  These tides are known to be predominantly semidiurnal in char-

acte r ( Lindzen et al. 1976; Wan d, 1976) and their amplitudes decrease with

increasing altitude in the thermosphere.

Although comparison of phas e In density data with that in temperature

must be approached with a good deal of caution, it is worth pointing out the

- 12-



qualitative similarity of the altitud e dependence of the density phas e

measurements reported here and the temperature phase calculated for the

solar semidiurnal tide by Lindzen and Hong (1974 ) for  equinoctial conditions

near the equator , including the nearly 180° phase change seen near 200 km

and the more gradual shift toward later local time evident below 160 km. The

calculations of temperature phase by Lindzen and Hong (their Figure 20) show

this behavior uniformly 40-50 km below the altitudes at which it is seen in our

density measurements. On the other hand, the calculations for solstitial con-

ditions show much more extreme phase changes with altitude (720° ove r the

same altitude band, 125- 175 km), and since our data base encompasses sol-

stitial and equinoctial conditions approximately equally, the previous noted

qualitative agreement may be only fortuitous. Given the general character

of the altitude dependence of the semidiurnal mode, it seems to us reasonable

to ascribe this behavior to the solar semidiurnal tide. With this interpretation,

the transition between the part of the thermosphere dominated by tides and the

EUV -dominated upper thermosphere occurs near the equator in the 200-220 km

altitude range.

-13-



Conclusion

The Atmosphere Explorer E density data suggest that the upward

propagating mesospheric tidal wave dominates the local time behavior near

the equato r in the lower thermosphere up to about 180 km and is important to

at least 200 km. Thus the common assumption of a predominantly diurnal

density variation below 200 km may lead to serious errors in density pre-

dictions and cause errors in any calculation attempting to determine the dynam-

ical behavior of the atmosphere below 200 km. Of those atmospheric models

known to us , only the MSIS model of Hedin et al. (1977) reproduces the mea-

sured data.
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