R —— = = e — — T ————————

AD=ADD2 332

UNCLASSIFIED

MASSACHUSETTS INST OF TECH CAMBRIDGE LAB FOR COMPUTE==ETC F/6 9/2

ABSTRACT DATA TYPES IN STACK BASED LANGUAGES.(U)
FEB 78 J E MOSS
MIT/LCS/TR=-190

NOQO14=75=C=0661

i 1] v o
R [o

061-¥.L/SOT/.LIN

ADAQSZ2332

SSONW

- v aUNV L UASYE MOVLS NI SHdAL VILVA LOVALSHV

(o

T

ATy N

LLABORATORY FOR
COMPUTER SCIENCE

INSTITUTE OF
TECHNOLOGY

(7

S /)

MIT/LCS/TR-190

ABSTRACT DATA TYPES
IN STACK BASED LANGUAGES

DDC
e "TH\

DISTRIBUTION STATEMENT A

Approved for public release;
Distribution Unlimited

APR 3 1978 |

J. Eliot B. Moss]‘%:U U
This research was conducted under a graduate fellowship from
the National Science Foundation. Additional support was
provided by the Advanced Research Projects Agency of the
Department of Defense, monitored by the Office of Naval
Research under Contract No. N00014-75-C-0661

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

%

St

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)
' REPORT DOCUN 2
'L, Q ‘— BEFORE COHPLETING FO
i it : BER

' SRR LARR T AL LIRS I 2 oo ar
I
/qg‘ﬁiﬁﬁ)é 24:5555\
. TITLE (and Subtitle) 2 f— % COVERED
S.M. Thesis, Nov.28, 1977

6. PERFORMING ORG. REPORT NUMBER

MIT/LCS/TR-190¥
. ONTRA OR GRANT NUMBER(e)

4-75-c- 661/

0. PROGIAN ELEMENT, P OJ!CT TASK
AREA & WORK UNIT NUMBE

: Abstract Data Types in Stack Based Languaggso

UTHOR?eS

f. J. Eliot B Moss

. PERFORM ORGAN O ND ADDRES
MIT/Laboratory for Computer Sciencev

545 Technology Square

Cambridge, Ma 02139

artment of the Navy/Offize Computing Activitide—fied

S U i s v ,mmﬂ
Tohn £ LIOT BLawKeslee

Office of Naval Research/Associate Program Direc or
Arlington,
‘D ’ % . (of this report)
.(of this Report)

Unclassified
Sa. DECL ASSOFICATION/DOVNG;ADING
SCHEDULE

Approved for public release; distribution unlimited

NT (of the abetract entered in Block 20, if different from Report)

. SUPPLEMENTARY NOTES

. KEY WORDS (Continue on reverse side if y and identify by block number)
Programming languages Garbage collection
CLU
Abstract data types
\ Parameters to types
\\ Pointers
Q. AISTNTCTl(Conumn on reverse elde nnoaoum nm number)

Abstract data types are the basis of an emerging methodology of computer
programming. The only existing languages supporting abstract data types
directly, CLU and Simula, both require compacting garbage collection, and
thus they are not suitable for many applications. This thesis presents the
design of a new language incorporating abstract data types; the language
requires only a run-time stack, and not garbage collection. This new
language, called ASBAL (for YA Stack Based Abstraction’ Language'l), is based

DD . 5i": 1473 eoimion oF 1 Nov 68 is omsoLETE
S/N 0102-014- 6601 |

SECURITY CLASSIFICATION OF THIS PAGE (When Date Bntered)

Lol seees bk

e ——— e~

GECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

20y on CLU, and borrows as many features as possible directly from it.
Virtually every significant feature of CLU is carried over into ASBAL in some
form, and extensions are included when necessary. For example, the maximum
size of objects becomes an issue and is resolved by the addition of size
parameters to types. Also, a limited facility for dynamic storage allocation
is incorporated in ASBAL to compensate for the removal of a garbage collected
heap. This facility allows list and graph structures to be built within the
framework of the stack while preventing dangling references as a "side-effect"
of compile-time type checking.

o

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

R RN S

MIT/LCS/TR-190

Abstract Data Types in Stack Based Languages

by
ACCESSION for
. pNTIS N e t‘c’-};n?/
John Eliot Blakeslee Moss | ooc B ¢ Sestion
: UNANNOUNG D G
JUSTITICATION
February, 1978 BY
DISTRIBETIC/A
;L‘x:: Ay axd

This research was conducted under a graduate fellowship from the National Science
Foundation. Additional support. was provided by the Advanced Research Projects Agency of
the Department of Defense, monitored by the Office of Naval Research under contract no.
N00014-75-C-0661.

DISTRIBUTION STATEMENT A
Approved for public release;
Distribution Unlimited.

Massachusetts Institute of Technology
Laboratory for Computer Science

Cambridge ' ' Massachusetts 02139

e e — .

Abstract Data Types in Stack Based Languages
by
John Eliot Blakeslee Moss

Submitted to the Department of Electrical Engineering and Computer Science
on November 28, 1977 in partial fulfiliment of the requirements

for the degree of Master of Science.
Abstract
Abstract data types are the basis of an emerging methodology of i:omputer programming. The

only existing languages supporting abstract data types directly, CLU and Simula, both require

compacting garbage- collection, and thus they are not suitable for many applications. This

_thesis presents the design of a new. language incorporating abstract data types; the language

requires only a run-time stack, and not garbage collection. This new language, called ASBAL
(for “A Stack Based Abstraction Language”, is based on CLU, and borrows as many features
as possible directly from it. Virtually every significant feature of CLU is carried over into
ASBAL in some form, and extensions are included when necessary. For example, the
maximum size of ob jects becomes an issue and is resolved by the addition of size parameters to :
types. Also, a limited facility for dynamic storage allocation is incorporated in ASBAL to
compensate for the removal of a garbage collected heap. This facility allows list and graph
structures to be built within the framework of the stack while preventing dangling references

as a “"side-effect” of compile-time type checking.

Name and Title of Thesis Supervisor: Barbara H. Liskov
Associate Professor of

Computer Science and Engineering

T S ————

Acknowledgments

‘This is the appropriate pléée to thank some people who were generous to me while I worked on

this thesis. Let me first thank Bob Scheifler for reading many terrible draﬂs, and giving
detailed and helpful comments on them. The thesis’ clarity has been much improved by his
work. 1 also appreciate the drawings and proofreading done by my wife, Hannah Abbott. She
produced excellent figures in a fathér short time. To all members of the Programming
Methodology Group, thank you for your friendship and support, your ideas and dicussions.
Several of you listened patiently to many half-baked ideas and helped me separate the wheat
from the chaff ,» and I appreciate your taking the time to help me. Last, I thank the National
Science Foundation, which has supported me as a Graduate Fellow for the last two and a half

years.

Table of Contents

Abstl'act 000000000000 00FCP0S 2

Acknowledgments "'""”"""“'“""""'"".""""""""'"""" 8
Table of CONteNts .cccccceecceccccesccscesscssesssessssssssssssssssssssssssnse &
Table of FigureSr ..."'..'..'.......'.'....I'.-....'....'.’..'............".. 8

1- IntrOduction 0000000000000 00°00000000 9

BF. MOBRVaRION o e i se e s casosssasnsnsnsesdesesssianosssssassssssnsassiosesconssnossssusssonss 9
12, The €oal ...cc...oiiiiiiiiiciiiisicssroneavotansosonsassssssssssvasessosnsmsassassossmsanssvass 10
1.3. CLU and Garbage Collectioncccceeveeririnnnnncceneennaneenoccannsancscescaeee 1l
L4, Qur APPrOachccivoisinmesrissosssisusssnsssiossstossssosessesorsssssssnn g ks seae 12
1.5, Related WOFKccccovsivivensssessessasmnnsrassssassassassssssnosssssassssesosssassssases 12
1.6. Outline DO O T e T e e Lo ey T SN 13

2. Baslo Conoepls ..ccciisnssssssssenssesnsssssssusssasisssssssssiorsse 14

2.1. Philosophy of Objects and Variablescccoivieiiiiiiiiiiiiiieniennnees 14
2.2. Variables in ASBAL b e e o e L e 15
2.2.1. Declarations and Namesccccceeiruriiuneniernnenrrerinienneiiioiiencsosssonanes 18
2.2.2. Variable Initializationccccociiiiiiiieicniiiaieicntaceitoniieciececersssecnncess 19
2:.2.3. -CONStANS .. iovvmsmvisivsssnonsvivissbesn i ibsassmsseivsess R R TR (N 19
2.2.4. Scope and the Form of ASBAL Modulescccoeiniiiniinniniiinnnnnne. 20
2.3. Procedure Invocation L U ke D D O LR R R 22
2.3.1. The Different Classes of Argumentsco.ccoiiiimiieiiniininiineeineee. 22
2.3.2. A Simple Schemecoovevnviiiiiiiiiniiicaiiniiiincnnies S T 24
2.3.3. Returning Values vs. Passing Variablescocoeiiiiiiiniiiiiinnn. 24
2.3.4. Multiple RetUINScoocuuierririnnritunninierteitnciacrestnesnsrassactosaessesssnsass 26
“ BB AHBBINE ...coiniscmineismrmississornsssnsrrsussosessorsssssssisrensssreinerssvivecossnoes 27
2.4, ASSIgNMENtoccoiiuiiniiiiiirtniiiiiiiieiiteniitiiiiasisttrstsstrsitsteststassssresenes 28
2.4.1. Multiple ASSIgNmMentsccoeviieiiniiiiniiiiiiiiiiiinintiiiiiiiniiiiscsse. 31
2.4.2. Declarations with Initializationc...... P P R 32
2.5. Access to Components of ObjJectsceimiiininiiiiiniiiiiiinein 32
2.5.1. Examples of Selectorsccooctreicercirrncrtncsrncseocssssesssssessncesascesasasanas 38
2.5.2. SUMMALY ...covviiiurininniimenrsssssessesnsssssnsssssessssnssssssarsssnsssssessnssse wvesses 39

2.6. lmplementatioﬁ AT bt G TR I s oS o i Sl o B 10

G A T A D e s one s s s fa s el e e e e e o o e a oiat SRR L 43
DD, DCICCHIONS oo coreosoinnsinaiasnnnivnssansnns ssnssnsnnse dnnnnmnskansnsunanesi R enansssnnsonss 45
2.6.3. NestediBIOCKS . ot s i ors s srentasasssisesshesbostasersesssssusshasttnsnsanossnsse 15
2.6.4. Checking if Variables are Initializedcc.cccovreniriirniiininiiinninnnns 45
2O B ANASING i e deb s s s s ab s s nans S0 sarasactstarytrnsciostoresslonns 46
ZHG SOMMNARY o e oo narsin i dsisss s is e s R s A KA s R bR R R 5k 8wt 47
2.7. Programming EXamPpleccceeeeiiiiiuniiniinnniiirnnsenesnirensssaessssenssassnenns 19
2.7.1. Bounded Queues of TRLEEErsiuveiiessssasssinssnsasssisssssucrassnosossosrensss 19
27.2. The Represemtationcocsssisssersrsssescensesasncasasnsomsnosaonersssnsssseasens 50
278 TR OPORHONE . .ovvioviverinsasnirnnnssseritssosisesmmssssssissnsnss OO0 ST 51
L COMEMERONE & vovnioiiasoninmaiyersdssiminseiathnininegrrs e e R s S s AR ks B e 53

3.' Two Extensions 00000000000 000000000000000000000000000000000C0C00COCOCROOPPOFCTS 54

Fehe MRERLOEE occooarrsiinmnavesrsroaninisisunosensutsrnnsass Penissensanshnnisssesgasssmness 54
3.1.1. Implementing Iterators for ASBALc.covvviiiiiinninnnniniinennnnnnnnn. 57
3.1.2. Summary TP P PO PN SRR SRS 58
3.2. Exception Handling Gonabsunescensasevassonanessoanaseseamsnsansssses 59
3.2.0. Exception Handhing in CLUccconessassssransansosssnsosnsssssnassssvannssansssons 59
3.2.2. Exception Handling in ASBALoouieeee P T ST SUPPPICRO 63
Bk REE L B S o e B R 65
3.3. An Example - Sorted Bags of Stringscccceeeiiiniiinnniiiiinnnnnniinnnen, 65
FHE BRE REPTCINIRUION . iv.oriivunuilecetsisusbsisssaamisshismssssess et sasssisessovsnsss 66
FAL. THEOPEIRUONE .- cvconvsivsmmrisinmmsvismvvsessonvamssssassoismiasuesesissmmussavssssss 67
B8 SUMINEEY . o covsivnsrincrsvasninsmispimmisruotnmeriospusiessaessvessanss roiassnitsshivisorsis 70

4- Pat‘ameters £00 71

4.5 Parammeters in CLU o i iisitonniinssssiisinsiavisossssscsisosssnssssmusteons 71
4.11. Parameters to Type Definitionscccccivrenniinnecereniencseoniacsnnrecnens 71
B.02. RESIICHONY (ovevusrvssvssivecsovvisnvesssnivssonsassisissssnsvesesssnsesstThanesinsssinkess 73
4.1.3. Parameters to Procedures and Iteratorscccoeevvvvnieniiniininniinnnnnn. 74
4.54. Other Kinds of Parameterscicoooincniniorisssssvanisassnsnsesssssesssosvinio 75
4.2, Paranveters For ASBAL ...cicciciiirniiavinvimsnsissossoisnosstscssussssnssnsonesys 75
4.3. The Size Parameter Mechanismcccccceivviirvniiniiniiniiniiniiiineiinennnen. 77
BEL TR BPUEEETIIE 41000neisrconvinrers ShEmibmv A s A ARV S S VS S Vr A SRRSO R A SR 5 78
4.3.2. The Kinds of TYpPespecsccccvciirsmnrssssssssssssvssovssoressossssosansassasess 79
4.3.3. How Type Specifications are Usedccoevvurrnnee T T 80
4.4. An Example Cluster - SEqQUENCeScccovviirincinnienniiansininnenenes TR 88
4.5. Implementationcciciiivinisecnnissenininnnsrnicssssssessssseseses yisissse TR TSN 93
0L RKEBUNE PRFSIICIENSocvviiiiiimsisivivosnisesnostrsinionsionsssssesmsssstosvonsedvpvs 93
4.5.2. Implementing Size Parameterscuuuieiiiinnneiiiinnniieniiennniien, 95
4.6. Analysis of Costs of Size Parameterscooiiiiiiiiiiiiiiiiiiinninn, 95
4.7. Summarycooviiinins U RNRRR PO RO PO 99

5. Areas and Pointers LA A A A L L R R R R R R R D L D R A R L R R R L L] 100

Bl ARCAS ... coeesiennssnsnsnassinssnnssssnnsenensvsanesss tevsssveresesanssnsse vevecene crevererares 100
LA R R R e e R R 102
5.3. Using Pointers and Areascccocevvoeceocconcsensctnoscescseseessasssosoocosassseses 102
5.3.1. Area Creationcocevvveniiennnnns tosssentennsansananassrsteansvenaes ceseresases 103
5.3.2. Pointers and Areas iN REPSccccoceureusmoseccosaaresesconnssssconsasasenssnsanse 104
5.3.3. Closing the Loopholescccccceivirniriininiiiiniiinninnnnncnes yesslssaaasas e 105
SRR SHUMIIRNT .- civiccicnrinnvarsniananinsnntoranahosnntrasassanansadnssnsnanna s s A 107
5.4. Pointers and Aliasing Vesesrertsesatsensessueeteroneseeresessesnsntesesssaseererense 108
5.5. The Copy Problemccevvvuenrnennn. sesvseses sssvesnsesrsersapsarsesoess sevsee 109
5.6. Implementing Areas and Pointerscccooovvviiiiiiiiiiniininniicnninenenee. 110
5.9, EXSpIeOne - (HIBNESccoovioiniussasmrnssmasnsssssrnonesssossmmansansasvnssnansns 112
5.8. Example Two - Sorted Bagscccoreueiniiiiniiniininannnannes SO RO 114
5.9. Example Three - Symbol Tableccccevvnnneen. drsapnebdee g nans ey iy
5.10. Comparison of Area- and Stack-Based Programmingc...eeee. 123
L o e e et et e et oe Jos et ses e Sesls S msoes 123

6- S“mmary and ConcluSions 00000000000 000000000000000000000000000F 124

6.1. Suggestions for Further Researchc.cooecveiinieninncnnnes vosouvenusevansiaise 125
A T R ey S e e e e S N 126

Appendix I. synt“x of ABBAL 0000000050000 000000000080PROROIOGOIOPOOIOPRTY 128

LI Formal SYmaxcccccvireveicrmnnsessssoverssessossonrssssssrvnsssasosssesassessess - 129
L e T o e o D T o g e e 129
L1.2. Parameters and Restrictionscccocceveivinnnenncennnnn, sSsmevsvaaasean s el 129
1.1.3. Arguments, Returns, Yields, and Signalsococoiiniiiniiiiiininn, 130
LA STBUEIMEINES .o oo auvissrosnsssusenssumsasssnnsvrnsssissesssssisusssiesnsessssovisnsassbssiavis 130
BB EXPPESSIONS . . oo cicisvavevicnusossnissrsioviinsssisosavosssussensusesesssisssinsossenssssos 133
AT e e e e o 0O R U e e reseeseses 135
LY. SUSE YD - ivironmmnmisivsssvmsbarsseesissvsnessssemininss RN SoR— 136
1.1.8. Question Mark or Star TYPescc.ccoevuviuiiiniiiiiniiiiiiiiieciiiecrnrcecncnes 136
2. Syntactic SUEMSconvuimcommsvimersssssseveresvssassasuass (et ke vst L sks e e 138
B3 RESErved WORHEiorncavvacmveotosisossnsonpsssssvoasnosinsiisseussssvusesissvsusssssnss 138
1.4. Terminal Symbols ARSI o LS e R A S 139

Appendix II. Basic Data Types of ASBAL JR— 140

BEE NI .ol snevssvinnvstsmstsnissasssnsasecs N T T o . 140
FRE DODBE ..cocivicivusrssibinvsrvorbtarserspriss By S PN 141
RED. IRTOPOES i..ioviiivomuinsimmiiorsorssonsmnsvisinesvonsnsins FEUTNS PSSR L 141
BEA. CREEREIEEY ooovisiviviirsisvvmissivsoivoverotverssossivvsvveisvises SRS SR YRS TEVRR e S S 142
IL5. Strings H s erse R PSS 143

1 T A O S S SO TR oL e M SIS SCRC S L AT S 145

|} Bl LT 1 S P et LA G e W R S WA e T T T O S R 148
I1L.8. Oneofs A s aes o oete e s SRR Ssseen s se s e s e e R 150
TL9. POINLELS .. .oviivinnenesanssnsssnnsasnasansesos A B OO O T e P O e e OO 151
R0 AGCES v ionavieviisesmninsiiemings e BT HOaO P 151

11.11. Procedures, Iterators, and Selectorsocuveueueeennenenserenenensnnenennns 152

References 000NN 0000URRORR0000000000000000000000R000PPNR00000000000000ROe 153

Table of Figures

Figure 1. Scenario of Simple Allocation Scheme

.. 42
Figure 2. Scenario of the Two Stack Methodcccccssceasonsecsnasosncossssonasses 44
Figure 3. A Possible Layout for Stack Frames in ASBALcccccvvennen.n. 48
Figure 4. Size COmMParisonccccceeveeuiiinnirieciiuscnnceneianeecceeseacnosecsnne o 96
Figure 5. The QUeue CIISIOrcicesoniesivinssmenssssnnpssssnsantssvisnssnssnsonsssmues 113
Figure 6. The Sorted Bag Clustercccooveiiiiiiiiiiiiiiiiiiiiiiiicennieenne. 115
Figure 7. A Snapshot of a Symbol Tablecccoeevviiiiiiiriiniiniinieinnniennnen. 19

e e e . A A e e ——

1. Introduction

In recent years the correctness of computer programs has become a topic of growing
interest. One approach taken to enhancing correctness is the formulation of design and
programming methodologies. It is hoped that correctness will be achieved by using appropriate
structure and discipline in the programming process. The use of abstract data lypesl is one of
the techniques being developed. Abstract data types appear promising for simplifying proofs
of program correctness, and seem to be natural for people to use in programming and in

communicating among themselves about programs.

1.1. Motivation

To date only two programming languages have been implemented that provide and
enforce the abstract data type discipline directly in the language: CLU [Liskov77]), and
extensions to Simula (Dahi66]. However, both languages require compacting garbage
collection. The main difficulty with garbage collection is the “embarrassing pause”™ which
occurs whenever the garbage collector is invoked. Such a pause is intolerable in real-time
systems such as operating systems, process control programs, etc. One way to eliminate the
pause is to use parallel [Steele75] or incremental [Baker77, Deutsch76, Barth77] garbage
collection techniques. These methods have the effect of spreading the pause out uniformly
over the normal processing time. Unfortunately, efficient parallel garbage collection probably
requires special hardware, and is therefore not suitable for most applications, especially those
relying on existing hardware. Incremental garbage collection appears to be more promising,
but both parallel and incremental techniques for ob jects of different sizes (we say variable size
objects) copy from one ob ject space to another. Each space is one half of the total free memory;
thus the maximum amount of memory usable with the parallel or incremental techniques is half
of the actual memory provided. This severely restricts the applications possible on most

machines, particularly mini- and micro-computers, which have small address spaces to begin

1. We assume the reader is familiar with abstract data types. For those less well versed in the
recent literature the following papers may be helpful: [Liskov77, Wulf76a, Liskov75, Guttag75).

10

with. Another drawback to garbage collection is that the memory management system might be
a prime candidate for using abstract data types. Clearly the garbage collector is part of the
memory management system. If the language which allows one to use abstract data types
requires garbage collection, then that language cannot be used to write the garbage collector !
One might hope that a useful subset of the language that does not require garbage collection
could be used to write the garbage collector. However there is no such subset of either CLU or
Simula: they depend on garbage collection entirely.

We feel that the wltimate solution to the garbage collection problem is building parzliel
garbage collection into computer hardware. As the cost of hardware continues to drop, and the
cost of of software predominates, it may pay to double the memory.required to have parallel or
incremental garbage collection, and thus make available elegant and powerful >programming
languages that ease software development. However, in the interim, and for applications where
the added hardware cost cannot be justified or address space is at a premium, we feel another
solution is in order. In this thesis we present a new programming language incorporating

abstract data types in a manner that does not require garbage collection.

1.2. The Goal

We have designed a new language with abstract data types that will run with only a
run-time stack. This stack is similar to those used by other high level languages such as Algol,
Pascal, and PL/12 Rather than designing this new language from scratch, we have used CLU
as a basis and have concentrated on retaining as many of its features as possible. To

understand what we have done first requires a grasp of why garbage collection is necessary in
CLU.

1. Without special tricks, that is. We feel that tricks of this sort should be avoided and an
elegant solution found that does not involves tricks or special cases.

2. For some applications static aliocation might be appropriate; we did not investigate that
approach. However, see the suggestions for further research in the last chapter for more
comments about it.

v ¢

11

1.3. CLU and Garbage Collection -

The coincidence of several parts of the semantics of CLU makes garbage collection a
necessity. The basic unit of information in CLU is an object. Every object has a type, and may
be manipulated only by the operations of its type: this is the key to abstract data types.
Conceptually, ob jects exist independently of programs, and once created are never destroyed. A
variable is simply a reference to an ob ject, that is, a name for it. It is important to realize that
variables do not contain objects, but rather object references, implemented by pointers or
capabilities. Two variables may refer to the same object - we say they share that ob ject.
Ob jects may refer to other ob jects, so ob jects can be shared by objects as well as by variables.
This is useful in building hierarchical, graph, and list data structures. Furthermore, cyclic data
structures can be built, thus implying that reference counting will not suffice to reclaim all
unused storage. Because variable size ob jects are used, compacting garbage collection is needed
to prevent fragmentation of storége.

In CLU, assignment, argument passing, and the return of results are all accomplished
by transmitting ob ject references; no ob jects are affected. For example, in

X :=y; .
the variable x is made to refer to the same ob ject as that referred to by 9. The ob ject referred
to by y is not affected in any way. In the case of argument passing a similar thing happens.
The called routine is given references to the arguments being passed to it. This is not the same
as call by reference: the called routine does not have access to the variables of its caller.
However, the ob jects passed are shared between the caller and the called procedure. Therefore
any modifications to the ob jects will be visible to the caller.

Any procedure can create new ob jects at will, and these ob jects are stored in the heap.l
References to ob jects can be stored in other ob jects and also returned to the caller directly. We
will call the ob ject semantics of CLU the object-oriented approach.

In sum, CLU objects must be allocated in a heap because (a) they can be of

unpredictable size, (b) their size can grow over time without bound, and (c) their lifetime is

1. A heap is a global, garbage collected storage area, like that of Algol 68 [Wijngaarden77).

12

indefinite. Garbage collection is required because cyclic structures can be built. Compacting

garbage collection must be used to prevent fragmentation of memory, because variable size

ob jects are used.

1.4. Our Approach

CLU's major contribution is the abstract data type facility, not the ob ject-oriented
view. [t appears that the ob ject-oriented view is the source of the requirement for garbage
collection, as outlined above. Perhaps we can get the abstract data type facilities without the
ob ject-oriented view. As will be explained in more detail in Chapter 2, the semantics we arrive
at is a synthesis of the traditional use of variables and CLU's use of ob jects. Sharing of
ob jects is eliminated, and the lifetime of objects is tied to procedure activations by storing
ob jects in variables. Further discipline is introduced byv restricting the ways in which variables
may be manipulated. Our purpose is to approximate the ob ject-oriented view as closely as
possible. We call our resulting design “A Stack-Based Abstraction Language”, and refer to it as
ASBAL. We have not attempted to design an entire language suitable for use, but have
concentrated on the semantics.” The syntax and some of the data tfpes we use could be

improved for a production language, but they serve us well in exposition.

1.5. Related Work

The goals of the Alphard language design group [Wulf76a) appear to be very similar
to ours: Alphard has abstract data types and runs with only a stack. However, Alphard is still
under. development and it is not clear how similar Alphard and ASBAL really are. We suspect
there will be significant differences because of our adherence to a more ob ject-oriented
approach. Furthermore, Alphard seems to concentrate more on provability (see [Wulf76a,
Wulf76b, Wulf76c)).

The language Euclid [Lampson77] is also somewhat related to our work. We are
especially indebted to Euclid for the concepts of aliasing prevention and collections. Like
Alphard, Euclid is not ob ject-oriented. Furthermore, Euclid was not specifically designed to
provide abstract data types, although they can be modelled in Euclid to a great extent. Euclid

13

places more emphasis on provability than we do, and on systems implementation features.
Euclid is a more complete language than ASBAL, but our intention was not to design a
complete ready-to-use language.

The language Simula is also somewhat related to ASBAL. Simula could be described
as CLU's ancestor, and CLU is ASBAL's ancestor, so the relationship is one of progressive
development. No specific feature was consciously taken directly from Simula in the design of
ASBAL, but much was taken from CLU.

The language most closely related to ASBAL is of course CLU, since it was the

starting point of our design.

1.6. Outline

This introductory chapter is followed by five chapters. Chapter 2 introduces the basic
semantics of ASBAL, laying the philosophical and semantic foundations for the rest of the
design. The third chapter extends the basic features with two mechanisms taken from CLU:
iterators and exception handling. Chapter 4 further extends ASBAL by adding parameters to
abstractions. The parameter mechanism of CLU is copied, but a significant new feature is
added - size parameters. The fifth chapter investigates a topic foreign to CLU: dynamic
allocation of ob jects without requiring garbage collection. In Chapter 6 we summarize our
research, draw conclusions,- and make suggestions on how our work can be extended,
mentioning other approaches to our problem deserving investigation.

There are two appendices, which more completely define our ASBAL. The first
appendix gives a context-free grammar with explanations of the various productions. The

second appendix outlines the basic data types and their operations.

14

2. Basic Concepts

This chapter presents many fundamental ideas of ASBAL. We begin with a
discussion of the philosophy behind ob jects and variables in programming languages, po.im out
particular aspects of this philosophy that directly impact our decisions in the design of ASBAL,
and arrive at the basic semantics of variables for ASBAL. From this we develop the semantics
of procedure invocation, assignment, and selection of components of objects. After a discussion

of implementation techniques, we present an example type definition to illustrate the material

introduced.
2.1. Philosophy of Objects and Variables

Variables in traditional programming languages serve two major functions: they
provide a naming capability, and they provide containers for information (i.e., storage space).
CLU, with its ob ject-ariented view, separates these functions. Objects are the information
containers of CLU. CLU variables hold only the names of objects. (We generally say the
variable denotes or refers to the object) Objects have an indefinite lifetime, and may be
referred to by many variables at once. Hence, ob jects are implefnented as storage allocated in a
heap, with variables being pointers to the object they denote. Ob jects may refer to other
ob jects, and general graph structures of ob jects are allowed.

Some ob jects have time-varying properties; we say such ob jects are mutable. The state
of a mutable object is the set of properties it has at some point in time. For example, the
abstract type stack is mutable. The state of a stack is the ordered sequence of objects in it. A
push or a pop mutates a stack, ie., gives it a new state. On the other hand, a test for emptiness
will not change the state of a stack.

Immutable objects are those whose properties do not vary over time. Most
mathematical values are immutable, as are their computer language models. (The values not
the variables in which they are stored!) For example, integers, real numbers, characters, strings,
and boolean values are all immutable. The integer 2’ is an immutable object. 2’ is 2' no
matter how you slice it, and 2’.can never be changed to any other integer.

The separation of the naming and storage functions of variables achieved by the

e e e —————————————— — . e,

15

ob ject-oriented view leads to a clean semantics. But probably the most important reason CLU'’s
ob ject-oriented semantics is attractive is that people seem to think in terms of objects. The
very structure of language, with nouns (naming ob jects), ad jectives (describing the properties
of ob jects), and verbs (describing the use of ob jects or their behavior) seems based on this view
of the world. If it is indeed true that people think in terms of ob jects, then linguistic forms
that enable people to program directly in terms of ob jects could lead to better software design
and implementation by being more natural for people to use.

Of course, the kind of objects to be found in programming concepts are highly
abstract, often mathematical in nature. So, there remains much structure to be built to model
real world objects and systems. This lack of structure allows the freedom necessary in a
general-purpose language. For domain specific systerﬁs (e.g., medical diagnosis), more structure
may be desirable because it embodies useful assumptions and prevents “reinventing the wheel”
for every specific task. However, ASBAL is to be general-purpose. The abstract data type
facilities allow one to build specialized systems by accumulating a library of type definitions
and procedures relevant to the application. Our modeling of ob jects must extend to abstract
data types to be useful. For this reason ASBAL is designed from a very general point of view
with respect to types. This may make our descriptions of semantic concepts seem very vague.

It is hoped that the many small examples we give will help offset the abstract descriptions.

2.2. Variables in ASBAL

As was discussed in the first chapter, our basic constraint in the design of ASBAL is to
obviate the need for garbage collection. This, we argued, implies either static- or
stack-allocation of storage. We expiained that our investigation is restricted to stack allocation.
CLU-style objects cannot be stack-allocated in any reasonable way, because they are very
general structures. .We have decided that the best approach for ASBAL is to store ob jects in
variables similar to traditional variables. The simplicity of the method directed our choice. All
other mechanisms we considered were intricate and complex. Storing ob jects in variables is not
as nice as the full-blown ob ject-oriented approach of CLU, but it appears to be the best we
can do. The assignment, procedure call, and component selection mechanisms were designed

very carefully to help offset the limitations imposed by working in a stack. Here is a summary

16

of the ob ject interpretation.

A variable contains an object. An ob ject has a type, and so does a variable; a variable
may only contain an ob ject whose type is the same as its own. Assignment will be used only to
change which ob ject is stored in a variable. An assignment effectively destroys whatever ob ject
previously existed in a variable, and creates a new object in its place. To change the state of
an object, the object must be passed (using the procedure invocation mechanism) to an
operation of its type.l An operation that changes an ob ject’s state is said to mutate the ob ject.2

We emphasize that assigning to a variable is not the same as mutating the ob ject it
contains. This is because mutable ob jects may have properties defined by their creation which
may never be changed later. Fo.r example, consider an abstraction car that models automobiles.
At creation the make, model, and serial number are specified; these properties of a car may
never be changed after _it is created. On the other hand, the number of passengers in a car
and location of a car can change quite frequently. Although all the properties of a car are part
of its state, only some of these properties can be changed by mutation. Howevey, if a car
variable is assigned a new car, all the properties might be different from those of the previous
car. ,

Ob jects may have other objects as components. Components of an ob ject are stored
within it, and hence within the variable containing it. This is quite different from CLU,
where only references to components are stored in an ob ject.

Several consequences of this ob ject interpretation of variables should be mentioned. In
CLU, assignment is system-defined: it is an implicit operation. This is because a CLU
assignment entails only copying an ob ject reference, rather like copying a pointer or capability.
On the other hand we must construct an entire object in each assignment; this new ob ject
replaces the one previously residing in the assigned variable. The consequences of this fact will

be explored in the section on assignment.

1. Recall that the abstract data type methodology allows only the operations of a type to access
or update the representation of ob jects of that type.

2. The only mutable ob jects are records and arrays, and ob jects containing them. All mutation
is accomplished by mutation of records or arrays. Mutation is in a sense magical, since the
mutating operations are atomic. . That is, the fundamental mutating operations cannot be
broken down into other, more basic operations.

o —— e o et I T A e

17

Another consequence of the object interpretation is that sharing of components is
disallowed, because components are directly contained in their *parent” objects, rather than
being referred to (pointed to) as in CLU. For example, in CLU two elements of the same array
may be the same exact object, and any modification to this shared component ob ject via one
access path will be visible via the other access path. Our ob jects cannot share components in
this way. (The addition of pointers to ASBAL restores the ability to share, so we are not
giving sharing up completely.) '

A rather obvious result of our semantics is that the lifetime of an ob ject is bounded by
the lifetime of the variable containing it, rather than being unbounded as in CLU. The ma jor
implication of this is that ASBAL routines will not be able to return ob jects in the sense that
CLU procedures do. In CLU, procedures return references to ob jects; hence, previously existing
ob jects may be returned by just copying references to them. In ASBAL we are restricted to
constructing new ob jects to be returned. -

The binding of an object’s lifetime to that of its .comaining variable, along with the

storing of components within ob jects rather than separately, requires a new mechanism for
: selecting components. In CLU, components-can be selected by just returning them since only a
reference is returned. On the other hand, our returns always create new ob jects, so returning a
component cannot be done in the same sense as in CLU: we can only construct a copy of the
component. Therefore, without a new mechanism, component ob jects may never be mutated,
although new component ob jects may be substituted by operations on the containing ob ject.
Since we should be able to do anything with component objects that we can do with entire
ob jects, a new mechanism is required to allow mutation of components. A new kind of module,
the selector, is intraduced for this purpose; it will be described in a later section of this chapter.

A last consequence of our semantic model is that ob jects cannot grow dynamically, at
least not without bound, because they are restricted to the storage allocated for the variable
containing them. This leads to difficulties when trying to implement abstractions that are
conceptually unbounded. The parameter and area mechanisms to be presented later are largely
devoted to splving this problem. '

To sum up, variables in ASBAL are containers for objects. Objects have a type,

which indicates how they may be manipulated, ie, what operations are allowed on them.

— — e

18

Variables are also given a type, indicating what type of objects they may contain. Variables
will be implemented as storage allocated in a stack; the ob ject interpretation we espouse only
puts limitations on how that storage may be manipulated. The ma jor differences between our

ob jects and heap aliocated ob jects are:

(1) our objects are stored within variables, so assignment is different - the old ob ject in
the variable assigned to is destroyed and a new'ob ject created in the old one’s place;

(2) because objects are stored in variables, an assignment always involves creating an
ob ject; .

(3) there can be no sharing of objects among variables, or components of ob jects among
ob jects and variables;

(4) the lifetime of an ob ject is bounded by the lifetime of the variable containing it;

(5) and, the size of an ob ject is bounded by the size of the variable containing it.

The next few sections of this chapter explore the consequences of these differences in more

detail, and present ASBAL’s mechanisms for the manjpulation of ob jects.
2.2.1. Declarations and Names

Programs must be able to refer to ob jects in order to manipulate them. Hence, (some)
variables in ASBAL will be given names in programs. These names are called variable names

to distinguish them from names used for other purposes such as naming types and procedures.

- It is generally convenient to create a new variable of some type and give it a name at the same

time. In ASBAL a declaration statement such as

var x: foo;
1s used to do this. In the example, a new variable of type foo is created and given the name x.
A newly created variable, as constructed by a declaration, contains no ob ject; it is an error to
attempt to use it. (We have more to say about initialization of variables below.) One can easily

extend the form of the declaration statement to allow declarations of several variables at once:

19

var x: int, y: bool;
or
var x.y: int;

2.2.2. Variable Initialization

We define our declarations to create new variables, that is, ones never before known or
used. This definition prevents confusion over whether a “new"” variable contains an old ob ject.
It does raise two problems, however. The first is that memory allocation is required - this is
discussed in the section on implementation later in this chapter. The second problem is that the
bits initially in the storage allocated for the variable may not represent a legal ob ject of the
type of the variable. There are two solutions to this problem. One is to store a default ob ject
of the declared type in the variable as part of the actions taken for the declaration. This can
be done for user defined types as well as system-provided ones by requiring each type
definition to have a routine of a particular name (init, say) which will store an initial ob ject in
a variable given to it by the system. This solution guarantees that variables always contain
legal ob jects (assuming users do not write crazy init routines). But unfortunately, it cannot
guarantee that the ob jects are sensible, since sensibility depends on how a variable is used.

The better solution is to consider attempts to use an uninitialized variable as illegal,
and to detect such attempts with a combination of compile-time and run-time checks. Exactly

what checks are required is discussed in the section on implementation later in this chapter.

2.2.3. Constants

It is sometimes convenient to have a holder for an object that cannot be assigned to
after initialization, and that does not allow the ob ject to be modified. We call such holders
constants to contrast them with variables; they are similar to- constant objects in CLU.
However, we allow constants of mutable types, such as constant arrays. Since a constant
physically contains the ob ject stored in it, modifications can easily be prevented by disallowing
any write operations to the storage allocated to a constant. We will see later that we can pass a
variable to a procedure but have the procedure consider it to be a constant. This is the real

motivation for constants - prevention of undesired modification to ob jects.

20

A constant definition is similar-to a variable declaration, except that the ob ject to be
stored in the constant must be specified. Thus, in a constant definition we give the desired
name, type, and the ob ject to be stored in the constant: '

const n: int = 53;
const i: int = jx k;
const a: arraylint] = array$create(0);
In an implementation there is little difference between a constant and a variable: a constant is

essentially a write-once variable.
2.2.4. Scope and the Form of ASBAL Modules

To gain an understanding of the scope of variable and constant names, we must
consider the general form of modules in ASBAL. The two basic modules of ASBAL are the
cluster, which implements a data ab#traction, and the procedure, which implements a procedural
abstraction.

A cluster defines a data abstraction, by giving a representation (often shortened to rep)
for the abstraction being defined, and implementations of the operations. The operation
implerﬁentations take the form of procedures, but have the added ability to convert ob jects of
the abstract type to and from the rep type. Internal operations may be used; the cluster lists
which of the operations may be used outside the cluster.

A procedure has a header and a body, the body being a list of statements. The header
gives the types, and names of the arguments, the types of any results returned, and other
information to be'described later.

Each abstraction is implemented in terms of lower level abstractions. The overall
structure is a hierarchical decomposition, with the highest level abstractions at the top, and the
lowest level abstractions being types and procedures built into the language. A module is an

implementation of an abstraction.] Because an abstraction is entire unto itself ,» a free standing

1. A module may implement a class of related abstractions, rather than a single abstraction (see
the chapter on parameters).

21

mathematical ob ject, modules are conceptually separate and Independent.2 For example, there
are no free variables in ASBAL modules, because this would represent a dependence on
another module to supply those variables.

This model is somewhat contrary to the more common block-structured view of
programs in at least two ways. First, the block-structured view leads to large monolithic
programs, and the whole goal of modularity is to prevent such large programs. Second, we
allow only local variables, not global variables. This supports modularity by making module
relationships more explicit: any data that a module wishes to access must be passed as
arguments to that module. Since each procedure defines a distinct abstraction, and every
abstraction is implemented by distinct modules, nothing is gained by defining procedures
within procedures. In the interest of simplicity procedure definitions in procedures are
forbidden. However, hierarchical nesting of statement groups within a procedure is quite
desirable, so it is allowed and encouraged.

What scoping of names is proper for this modular viewpoint? Without local
procedures there is little reason to allow variable names and constant names to be obscured
(reused in nested blocks), especially since procedures are not expected to be very large.
However, it is often helpful to restrict the scope of certain variable (or constant) names to an
inner block, such as a loop, rather than an entire procedure; this helps indicate the purpose of
the variable.

- Our no-global-variables policy makes programs more modular, but makes some
programs a little more awkward when global data is necessary. The main advantage of global
data is not having to explicitly pass it to every procedure that might use it. An example of an
ob ject normally made global is the symbol table of a compiler. Assume we must implement a
compiler in a language forbidding global data. Let us say the compiler parses by recursive
descent. Only a few routines directly access the symbol table; however, the symbol table must be
created at the highest level and passed explicitly through many routines that never use it at all.

These intermediate routines only pass the symbol table down for the lowest levels to use. We

2. This has nothing to do with separate compilation, however. Modules may or may not be
separately compiled: we do not wish to pin this aspect down.

22

feel the modularity gained by forbidding global data more than offsets the inconvenience of
requiring extra writing for some programs. Removing glabal data is essential to eliminating
implicit module interdependencies. Block structure is not bad in itself; global data is. However,
once all data is local, there is little point to block structure for module definitions.

Even though all data should be local, we argue that module names should be global.
It is not useful to restrict the scope of modules, and in fact it can be counterproductive - it may
force abstractions to be re-implemented needlessly. Therefore we assume that module names
are global. We neither require nor prohibit other information regarding the relationships of

modules - such module jnterconnection information is beyond the scope of - this thesis.

2.3. Procedure Invocation

The previous section discussed variables and constants, the mechanisms for storing
and holding ob jects. We now continue with procedure invocation, which allows the creation of

new ob jects and the manipulation of old ones. The next section will deal with assignment.

2.3.1. The Different Classes of Arguments

The whole point of procedures is to gain abstraction in actions. A set of actions that
form a logical whole is grouped together and viewed as a single abstract action. The basic
actions are mutation of ob jects and assignment to variables. Since all data is local in ASBAL,
the key to procedural abstraction will be the argumentl passing mechanism; that is, the
mechanism by which procedures are given access to data to operate upon it.

We can imagine as many as four different classes.of arguments in ASBAL. The first
class is constant arguments. A constant argument to a routine is an input which cannot be
directly modified by the routine. We will see later that a procedure cannot count on an
constant ob ject’s not changing state, because there may be an access path from some other
argument to the object that allows it to be mutated. However, in the absence of pointers, a

constant argument cannot be mutated by the called procedure in ASBAL. Furthermore, if all

1. We reserve the word parameter for a future use, and carefully distinguish between
arguments and parameters.

23

arguments to a procedure are constant arguments or result arguments (see below), then the
procedure is functional; that is, it does not modify any of its arguments.

The second class of arguments is object arguments. An ob ject argument gives access to
a particular ob ject, allowing observation and mutation of it. However, the variable containing
the ob ject may not be accessed, and therefore may not be assigned to.

The third class of arguments is variable arguments. A variable argument is a variable
passed by reference. Therefore, assignment to it is allowed, as well as access to (and mutation
of) the ob ject it contains. The difference between variable arguments and ob ject arguments is
exactly the difference between assignment to a variable and mutation of the ob ject it contains.

The last class of arguments is result arguments. A result argument is a variable which
may only be assigned to. The purpose of result arguments is the construction of new ob jects in
variables, that is, assignment. This includes initialization as well as assignment.

Object and variable arguments (the second and third classes described) are not very
much different from each other in implementation. Both would be imple.mented by passing by
reference. The only difference is that a variable argument may be assigned to, and an ob ject
argument may not be. This slight distinction is not worth the complexity of two separate
argument passing modes. Therefore, we chose to dispense with one and keep the other: we
retained ob ject arguments, and eliminated variable arguments, for two reasons. First, this is the
more conservative choice in that less access is given to arguments. Second, ob ject arguments
more like CLU’s argument passing mechanism. In CLU, ob ject references are passed, by value.
The effect is as if immutable ob jects were passed by value, and mutable ones by reference;
except, the variables of the calling procedure cannot be affected by the called procedure in any
way However, the ob ject passed is shared between the procedures, and hence mutations of it
performed by the called procedure will be visible to the calling procedure. The decision of
which class of arguments to keep is not all that important in the long run, but has affected
later decisions such as the selector mechanism and aliasing detection.

Now that we have settled on the classes of arguments'- constant, ob ject, and result - we
need to devise a syntax for expressing procedure definitions and invocations. Let us first

describe a simple scheme which we will improve upon in a moment.

24

2.3.2. A Simple Schene

The simplest approach to defining procedures is to have a header in each definition,
much like the procedure headers of Pascal. In the header we state the local name, type, and
class of each argument. For example: .

p = proc (const wx: int, var y: arraylint], res z: bool);

The above header says that procedure p takes four arguments: two constant arguments, w and
x; one ob ject argument, y; and one result argument.1 The procedure p is not allowed to mutate
or assign to w and x (integers are not mutable ob jects anyway); p may matate y, but not assign
to it; and p must assign to z, but may not access it beforehand. Call by reference is used to
implement all three kinds of arguments; the difference between them is in what the called
procedure may do with an argument - not how the argument is passed.

: Procedure invocations take the usual form: the name of the procedure followed by a
parenthesized list of arguments. For example, a call of the procedure p used above might look
like this:

p (1, i+5, a, b);

The types of the arguments must match those declared by p. Furthermore, access constraints

may not be violated. Thus constants may not be passed as var arguments, or expressions as res

arguments‘
2.3.3. Returning Values vs. Passing Variables

The simple scheme outlined above is perfectly workable, but can easily be improved
upon. The main thing to notice is that there is no explicit assignment. All assignments are
‘accomplished by passing a variable by res. (Presumably the built-in types have operations to
assign to a variable of their type. In a sense these operations are magical, since all other
assignments rely on them.) However, the procedure invocations necessary for each assignment

are tedious to write out in the simple scheme, and they obscure what is happening since resuit

1. We admit the use of var for object arguments is not the best, but var was used to parallel
Pascal. Anyway, we do not wish to get involved in purely syntactic issues.

25

arguments do not stand out.
It is possible to separate result arguments by writing them on the left-hand side of a
“=' symbol, to signify assignment. For example, we would write:

var b: foo, c: bar;

b :=q(x,y)
c:=r (2);
a:=p(b,c)

where in the simple scheme we would have written:

var b: foo, c: bar;
q (x,y,b)
r (z, o,
p (b, c a);
assuming these to be the types of p, ¢, and r:

p: proctype (var foo, bar, res T1)

q: proctype (var T2, T3, res foo)

r: proctype (var T4, res bar)

The use of “=" shows more clearly what is going on.

We can make a further improvement, however. If we had to declare a variable for
every temporary result, our programs would become quite cluttered with extraneous variables
and declarations. We can get around this problem by having the compiler allocate temporary
variables. Adding this feature allows us to rewrite the above example and eliminate the
temporary variables b and c:

a:=p (qx,y), r(2));

Further, if some procedure returns a result we never use, we need not assign the result to a
variable; the compiler will allocate a temporary variable for the procedure to write into, and
then the temporary will be thrown away (i, never accessed again). So, if the variable a were
never used again in the example, we could eliminate it, giving:

p (qxy, r(a));

The end result of putting res arguments on the left, and having the compiler allocate
temporaries, is syntax quite similar in appearance to CLU. In fact, we encourage the
programmer to think of procedures as returning ob jects instead of being passed variables to

write into. The overall picture of this final scheme is that the calling procedure gets the effect

e o« ————————

26

of objects being returned, and the called procedure sees variables which must be assigned to.
This is a good compromise between abstraction and efficiency. The only constraint is that the
size (or at least an upper bound on it) of all ob jects to bé returned must be known before the
call, so that the actual variable used can be created. How we deal with this constraint will
become clear later.

To encourage thinking in terms of returning ob jects, we put the description of what a
procedure returns in a separate part of the procedure header, as in

p = proc (const wx: int, var y: arraylint)) returns (z: booD;

The ob jects to be returned are given names because the procedure being defined views them as
variables. Therefore, we now call the result arguments of a procedure return variables. Notice
that ef fectively all we have done is segregate the res arguments.

Now let us consider how to express the returning of objects in ASBAL. In principle
we could use a return statement like CLU’s, which gives a list of ob jects to return. This would
be implemented by implicitly doing assignments to the return variables. However, these
implicit assignments might involve the copying of large objects into the return variables.
Instead, we allow ob jects to be built incrementally in the return variables, and simply say

return;
to return from a procedure. We view the return variables as being uninitialized on procedure
entry, and any return statement in the procedure is considered to be a use of all the return
variables. This allows us to use whatever mechanism already exists for detecting the use of
uninitialized variables to handle return variables as well. In sum then, the underlying
mechanism of returning is the passing of variables (whether they be programmer declared or
compiler created). However, we arrange the syntax so that people can think of returning

ob jects, a' view we feel is more natural.
2.3.4. Multiple Returns

In most languages, procedures may return only zero or one things. We remove this
restriction because it is arbitrary and sometimes counterproductive, in that some procedures
most naturally return more than one ob ject. Of course, we provide suitable syntactic forms for

using this feature. The return statement itself need not be extended since we are depending on

27

assignments to get the return objects into the return variables, as previously explained.
However, some syntactic form is necessary to designate the variables to receive the return
ob jects. The multiple assignment statement, which will be discussed in detail in the section on
assignment, is used for this purpose. Its general form is

var;, vary, .., var, = invocation;

The header for a procedure returning more than one ob ject would have a returns clause of the
form

returns (varI: typey, .., vary: typen)
where the types may be factored. For example:

returns (x,y: int, z: char) ;

The order of the variables on the left side in the multiple assignment statement is the
same as in the returns clause of the procedure header. This parallels the standard
correspondence of actual and formal arguments to procedures.. The returns clause may be
omitted for a .procedure returning no ob jects, or

returns()

may be used.
2.3.5. Aliasing

We have not dealt with the problem that arises when the same ob ject is passed to a
procedure in two different var positions, or in both a const and a var position. The problem
is that not all procedures are prepared to deal with overlapping variables. The problem is
compounded by the fact that there are variables that (effectively) have subvariables (eg.,
records and arrays), and overlapping subvariables present the same difficulty. .Furthermore,
the fact that each argument has a different name in the called procedure tends to make people
forget that two names might refer to the same object (or overlapping objects). We call the
problem aliasing (after Euclid [Lampson77]). We believe that aliasing should be illegal. One
very good reason for prohibiting aliasing is that it can cause an argument to mysteriously

change into an entirely different ob ject from that passed. Consider the following procedure:

28

p = proc(a: array(t], x: t);
;[10] = |
;[i] = x;.

;nd P

1t is reasonable to think that (a) p has no effect on x since it does not assign to it in the body,
and (b) that after the second assignment, ali] equals the argument passed in. However, one
could call p in this way:

p (b, bl10));
Assuming that both arguments are passed by reference, we see that the assignment to al/0] in
the body of p can destroy x. See [Lampson77] for more arguments as to why aliasing should
be prohibited.1] .

Most cases of aiiasing can be detected at compile-time, but some require simple
run-time checks, e.g., that two array indexes are different for the call

f (alil, aljD);
and so on. We will explain what must be done to prevent aliasing in the section on
implementation, and will expand the rules to cover features that impact on aliasing as we

encounter them.
2.4. Assignment

Here we describe how to change which object is stored in a variable - the operation
commonly called assignment. As mentioned in the discussion of argument passing and
procedure invocation, return variables (which were previously result arguments) are the only
assignment mechanism. It is easy to see how this works for assignments of the form

var := invocation;
that is, variables being assigned a computed expression: the variable is passed to the outermost

procedure called. (It will be demonstrated that virtually all expressions are really invocations,

1. There are no implicit arguments in ASBAL, unlike Euclid. This should reduce the number
of checks required to prevent aliasing.

29

even if they are not explicitly written out. For example,

X +y
really means

T$add (x, y)
where T is the type of x) What about assignments of the form

var; := vary; ?

There is no invocation there to pass var to! This problem can be handled in three ways.

First, there could be a system-defined, automatic copy operation performed. This is
what happens in most languages. Ignoring differing storage formats, etc, the implicit copy
performed is essentially a bit-for-bit copy of the contents of the storage allocated to var, into
the storage of var;. We call this operation a bit-copy. A bit-copy works fine in the absence of
abstract data types, but with their introduction a problem arises. Any assignment creates a new
ob ject; a bit-copy creates one with the same state as the one in the right-hand variable. The
problem is that not all types should be copied in this way. For example, some types may require
all the existing objects of the type to have different states, so that each object is detectably
unique. In the presence of pointers, it is not clear whether a pointer which is a component of
an object to be copied should itself be copied, or whether the object pointed to should be
copied.l Thus, an automatic copy primitive is not feasible.

The second solution is to have all assignments

var := exp,
mean

var := T$copy(exp);

(where T is the type of both exp and var), whether exp is a variable or an invocation. This
has the unfortunate effect of doing a redundant copy whenever exp is not a variable.
Furthermore, the redundant copy operation is hard to optimize away 'beéause users write the
copy operations, and are not constrained to make them easily optimized.

We feel the best solution is to insert no extra copy in assignments of the form

1. This is called the copy problem and will be further discussed when pointers are added to
ASBAL.

g e g < S S —————— ————— e ——

30

var := invocation;
and to take

var; := vary;
to mean

var; := T$copy (var,);

T he type of T $copy is assumed to be

proctype (const T) returns (T);

If an assignment of one variable to another is written, and the appropriate copy operation does
not exist, then the program is in error.

Let us point out a few consequences of the solution we have ad'opted. First, every
operation must provide a copy operation if objects of the type are to be assigned from one
variable to another. There is no getting around this; the second solution had it also, and we
demonstrated the first solution to be infeasible. Second, the “=’ symbol has a non-uniform
meaning. While we sympathize with those that believe symbols should have clearly defined
unique meanings, we feel we must compromise that principle in this case. What is gained is a
savings in effort at optimization, or computer time in program execution.

There is one more problem with assignments: consider the statement

x:=px,vy);

Here p receives x as an argument in two positions; one is readable, and one is write-only.
Things could get 'really messed up when p starts to write into its return variable. One way to
solve this problem is to translate it to

x := T$copy (p (x, Y));
similar to the solution of the previous problem. Inserting a copy here is a bad idea, though,
because it is nowhere near as obvious as before when an extra copy will be inserted and when
it will not. The better solution is to allocate a temporary variable and pass it to p. Then after
p returns, a bit-copy is performed from the temporary into x. A bit-copy works because the
state of the object in p is exactly the state desired for the new object in x; furthermore, the

ob ject in the temporary is never accessed again.

31

2.4.1. Multiple Assignments

In a previous section we introduced the idea of returning more than one ob ject from a
procedure. We need to be able to assign those ob jects to variables. The form of assignment
statement for this is

vary, varp, .., var, := invocation;

To extend this to its logical (and useful) conclusion, we also allow simultaneous multiple
assignments of the form

var, vary, .., var, = expy, expy, .., Xpy; ,

Each variable var; is to be assigned the corresponding expression exp; and all these
assignments are to take place simultaneously. To prevent confusion we require that each
expression either be a variable or return only one object. In case of aliasing, the same trick of
using temporaries works fine. For example, in

X,y :=q (z, ry), x);

a temporary would be allocated for the result destined for x. On the other hand, one is not
needed for y, because y is not an argument to q.

One particularly nice construct the multiple assignment statement allows is

X, V=Y, X; '

It is hard to decide if this should just swap the bits of the ob jects stored in x and y, using

bit-copies, which is both efficient and semantically correct, or whether it should invoke t$copy

tWIce,l

which is more consistent with our above rule about assignments between variables. We
believe it is better to be consistent (i.e, to call t$copy). A new operator could be used to swap

the ob jects in variables, but we will not explore such possibilities here.

1. For “x, y := y, x;" two temporaries might be required; however, it is not difficult to have a
compiler notice that one of them is not needed.

32

2.4.2. Declarations with Initialization

One last useful assignment statement is a declaration with initialization (or assignment
with declaration). This form of statement allows one to declare and assign to a variable in one
step. Here are two examples:

var x: foo := p (2);
var x: foo, y: bar := q(t), r(u);

A declaration with initialization is et‘fectivelyl a shorthand for a declaration followed by an
assignment. Thus the second declaration above is equivalent to

var x: foo, y: bar; '

X,y := q(b), r(u);
which is in this case equivalent to

var x: foo, y: bar;

x = q(b);

y := r(u);

Constant definitions, which were introduced in a previous section, have the same effect

as declarations with initialization. The only difference is that constants can never be assigned

to again.
2.5. Access to Componehts of Ob jects

The previous sections of this chapter have dealt with mechanisms for manipulating
objects as a whole; here we discuss the additional mechanisms necessary for manipulating
components of objects. There are three actions that can be performed on ob jects: ob jects may
be created, they may be observed (read), and they may be mutated. We desire to be able to do
all three to components of objects as well as to entire objects. Creation is no problem. A

component of an object is either created when the object is created, or is created by a

1. In Chapter 4 we will see that there can be an important difference between a declaration
with initialization and one without. However, for now, consider the declaration with
initialization to be equivalent to a declaration followed by an initialization.

i — S —— ——

33

(mutating) operation on the object. Records are an example of ob jects whose components are
created with the ob jects themsélves; Arrays exhibit the other behavior: the addh and add!
operations allow new array elements to be created dynamically. (Records and arrays will be
described in more detail in a moment) Abstract data types may display either or both
component creation behaviors; they may always possess some components, but create (and
possibly destroy) other components dynamically. |

Reading components is already taken care of as well. Since all objects having
components are built from records and arrays, and records and arrays have operations to read
their components, any type can provide operations to read any components it may have. Of
course a type may not make all components available externally, and may return information
derived from the components rather than the components themselves. However, reading
components is always done by returning ob jects. This is unfortunate, because returned ob jects
are always copies - always new objects. (Remember that return variables must always be
assigned to) Thus, returning does not allow components of ob jects to be mutated; only copies of
the components may be manipulated.

It may seem that storing a mutated copy back into a data structure is equivalent to
mutating a component of the data structure, and this is often true. However, many data
structures do not allow components to be replaced at will in this fashion. As an example,
consider queues; perhaps we can observe the member at the front of the queue, but we can only
insert new members at the end of the queue. An even better example is items that must be
mutated atomically rather than by separate reading then writing; semaphores and other
synchronizing data. types fall into this category. Copies are sufficient for observing
components, but a special mechanism is needed to allow mutation of components.

In a previous section of this chapter we indicated that the operations of an abstract
data type are procedures. We now design a new kind of module, the selector, which is also
allowed as an operation of a type. Here is what a selector does. A selector is given an ob ject
from which to select a component, and possibly some auxiliary arguments to describe which
component is desired. The selector then proceeds to calculate whatever array indexes, etc., are
required, and eventually executes a select statement. The select statement indicates the

component ob ject to be made available for use. What is returned to the caller of a selector is

not a new object, but rather a descriptor of the component selected. (That is, an ob ject
reference is returned.) The selected component may be used as a var argument to a procedure,
and can thereby be mutated. However, what is selected is an object, and hence may not be
assigned to; only variables may be assigned to.

Since a reference to (descriptor of) an object is returned by a selector, we must guard
against any dangling references. Potentially, a selector could select one of its local variables
rather than a component of the object it is supposed to select from, giving rise to a dangling
reference when the descriptor is returned. We prevent this by requiring that selectors never
select any of their local variables (or components thereof). Notice that procedure returns
cannot create dangling references of this sort. A procedure always creates a new ob ject in its
return variables; procedures can never store ob ject references in return variables.

There are two minor points to mention regarding mutability. First, components
selected from var's should be var, ie, mutable, and components of const’s should be const.
Therefore, a selector does not designate whether its ob ject to select from is const or var; that
property is automatically inherited from the incoming object. Furthermore, a selector may not
mutate the ob ject being selected from; hence the ob ject is treated as a const inside the selector
for checking purposes. The second point is that a selector should not mutate any auxiliary
argument. Therefore, all auxiliary arguments are taken to be const.

The form of a selector definition is:

name = selector (name;: type;, name,: type,, .., name,: type,) of type from namey: typey,

statemgnts;

end name;
The name; for i >0 are the auxiliary arguments; name, is the ob ject to select from. The ‘of
type’ part indicates the type of the ob ject to be selected. A select statement (which is only legal

in a selector) takes this form:
select expression;
The expression cannot designate a local variable or auxiliary argument of the selector.

It is harder to decide on the exact form of a selection, the construct that invokes a

selector. We could use

selector_name(object to select from, auxiliary arguments)

35

to be like procedure invocation, but we feel it is better to write

object.selector_namelauxiliary arguments)
to be analogous to records. The latter form also has the advantage of making the ob ject being
selected from stand out. If the selector takes no auxiliary arguments, the parentheses may be
omitted, leaving

object.selector_name
which is just like a record component selection.

In many cases computing a selection can be expensive. Therefore, we provide a
mechanism for saving a selection; it is the with statement:

with class name == exp do

statements

end with;
where class is const or var. If the class is. var, then the selection must be from a var. The
name stands for the selected object within the body of the with statement, and is treated
according to the declared class. A scope is used because extra checking must be done for safety.
To prevent mutations of the containing object from destroying the selected ob ject, all
arguments to invocations in the body of the with statement are checked for overlap with the
selection.

For example, say (bounded) queues are implemented as arrays. If the front member of
a queue is held in a saved selection, then the queue may not be modified until the scope of the
with statement is exited. This is because an element of an array (the front member) overlaps
with the array itself (the queue). The checking to prevent this aliasing is done using the
normal aliasing detection techniques. (The checking may be difficult to accomplish at
compile-time, however.) The with statement is similar to the bind operation in Euclid.

Now that we have described the essential nature of selectors and selection, let us discuss
where selectors are appropriate and where they are not. Selectors are to be used to mutate
ob jects stored in a surrounding data structure without disturbing that structure. The types
having selectors will usually be ones that store data items and relationships between them, but
do not manipulate the data items directly. Good examples are lists, stacks, queues, trees, graphs,

etc. Selectors should definitely not be used to access components that cannot or should not be

~

36

mutated. Furthermore, selectors should not be used merely to make access more efficient,! for
this can lead to (effectively) exposing the representation and thus limit the range of
implementations of a data type. For example, consider the functions real, imag, abs, and arg on
complex numbers. Implementing any of these functions as a selector forces that component of
complex numbers to be represented explicitly in the representation. Hence, selectors threaten
the uniform reference principle [Geschke75, Ross69). Thus, the specifier of a type must use
caution when deciding whether particular operations should be procedures or selectors.

We now describe records and arrays. It is important to understand their semantics, for
they are the principal types used in defining representations of abstract data types. A record
type has named fields, each specifying a type. For example,

recordla: int,

b: bool,
c¢: ralph]
Each field name defines a selector with the specified name; the type of the selector is

seltype O of type of field from record type
Record components may be changed. The operation ‘put_field_name’ is used to update the
named field of the record. The type of ‘put_field_name’ is

proctype (var record_type, const field_type); '

The new object is constructed using the field_typeScopy operation, which must exist for
field_type to be usable in a record. For convenience, record put operations have a sugar; one
may write f

exp,field_name := exp,;
instead of

record_type$put_field_name (exp;, expy);

Notice that record put operations are “magical” atomic mutating operations. Records also have
copy and equal operations; records are more fully described in Appendix II.
The only other operation on records is creation. This cannot be written out without

giving an order to the fields. We feel it is better to think of the fields as being unordered, and

1. Selectors do save a copy operation over procedures returning an ob ject.

37

so the user may not invoke the record create operation directly. Instead there is a special form
called a record constructor which allows creation of record ob jects in an order-independent way.
A record constructor takes this form:

record_type$ifield_name;: exp,
field_namey: exp,,

field_name,: exp,}

The field names must all be present exactly once, but in any order. The fields are computed in

the order listed.! Several fields may be initialized to (copies of) the same ob ject by writing
field_name,, field_namey, .., field_name,: exp

The record constructor invokes the appropriate copy operations for each expression which is a

variable, and for each expression which is stored in more than one field.

An array object is a sequence of objects, of a single type, indexed sequentially. The
sequence may be empty, and can grow and shrink in size dynamically. Arrays have a selector to
index them; it is called fetch, but there is a shorthand for indexing arrays. If an element with
index i currently exists in the array a, then ali] selects that element, as does the unsugared form
afetch (i).

' An array variable can hold only certain array objects of its type. More specifically,
each array varrable has associated with it an interval of the integers, and only arrays whose
indexes are all in that interval may be stored in the array variable. (We emphasize that the
indexes of an array ob ject and those allowed for an array variable are both sets of consecutive
integers) The allowed indexes for an array variable are set when it is declared, and never
change thereafter. Thus, an array variable of type array[foo;low,high] can be assigned any
array ob ject whose elements are foo's, and whose indexes are all greater than or equal to low
and less than or equal to Aigh. The type of the array ob ject is array[fool. (This difference in
the number of parameters and the % notation will be explained in the chapter on parameters.)

There are operations on arrays that allow adding and removing elements from the

high or low end (ie, growing or shrinking the array one element at a time at either end) (addh

1. For ASBAL to be well-defined, the order of evaluation is always specified. Unless explicitly
mentioned, that order is left to right.

and addl), trimming to a particular range of indexes (trim), querying the size (size), low index
(low), and high index (Aigh), shifting the elements (sef_low), and replacing the elements (store).
This last operation, store, has a sugar similar to that for the record put operations. We may
write

explexpy) = exps;
in place of

array_type$store (exp;, exp,, exps);
Both forms mean “replace the component at index number exp, in the array exp; with a copy
of exp;". See the appendix for a complete list of array and record operations.

Arrays were designed in this (somewhat unusuall way to be convenient for use as
representations of abstract data types, and to prevent access to uninitialized elements. However,

they are a bit more expensive than arrays found in most programming languages, in space, and

in time.
2.5.1. Examples of Selectors

Suppose we had an abstract type associative_memory, which associates pairs of integers.
We represent an associative memory as an array of records; each record has two components,
one for each integer of the pair. Thus the representation type of the associative_memory
cluster is

arraylrecord(first, second: int]; 1, 100]
assuming a maximum of 100 elements is allowed. The associative memory is to have an
operation update which will change the second element of a pair, based on the first element.
U pdate will have in it a statement like

alindex].second := new;
which is a sugared form of

RT%$put_second(a fetch(index), new);
where RT is ‘record(first, second: int). Thus, we have shown how a selector may be used.

Let us now consider an example of a type providing a selector itself: a bank account
record file. It is convenient to design the structure used to access the individual account records

of a bank independent of designing the records themselves. Of course the two designs

39

interface in the area of the keys used to search for the records; but except for the keys (and the
size of the records), no properties of the records affect the design' of the access structure.
Likewise, the access structure has no real effect on the properties of the records. Let us suppose
the file of all account records is a (rather large) ob ject of type account_file, and that the type of
the individual records is account_record. Since account records are mutable, we design
account_file with a selector of type

seltype (key_type) of account_record from account_file
This allows us to realize the separation of access from use. This separation contributes to
abstraction by reducing dependencies among different types. In the absence of selectors, we
would be forced to implement all update actions on account records as operations on account
files, and present the appropriate key every time. Furthermore, the access would have to be
recomputed every time. Thus not only are more type dependencies created (by making all
record updates go through file operations), but performance is reduced as well. (Remember,
though, that performance arguments alone do not justify using a selector.)

On the other hand, if a selector is used to access the records, then a restriction is being
placed on every implementation, namely, that account records must be represented explicitly in
account files, and that it must be possible for programs to access account records directly once

the records have been selected.l
2.5.2. Summary

We have presented a new module, the selector, designed specifically for ASBAL's
ob ject interpretation semantics. Selectorsv aliow components of ab jects to be selected dynamically
and passed to procedures to be mutated. A type has the ultimate control over the components
of its ob jects, and need not aliow them to be selected. Furthermore, only the ob ject can change
the identity of its components, since selected components may not be assigned to. (Selections

produce ob jects, not variables) Records and arrays were introduced as prime examples of types

1. Notice that selectors do not solve any of the problems associated with accessing ob jects on
external storage, ASBAL assumes all objects exist in a single, uniformly accessible address
space.

40

providing selectors. We argued that selectors are necessary, but are to be used sparingly so as

to avoid having types depend on having a particular representation.
2.6. Implementation

Now we come to the question of how to implement all of these f eatures! First, we are
going to allow recursive (and mutually recursive) procedures, so a stack of procedure activation
records is required. These frames (as we also call the activation records) are very much like
those used to implement languages such as Algol and PL/1. Each frame contains the storage
for the (local) variables and temporaries of the procedure activation to which it corresponds.
Since a finite (and usually small) number of variables are used in a procedure, it is possible to
give each variable a fixed offset from the beginning of the frame, which can be very efficient
on many machines. As for-arguments and return variables, they will be passed by address.
The slots for these addresses can also be at fixed (possibly negative) offsets from the start of
the frame, since the argument addresses may be put on the top of the stack by the calling
procedure lbefore the frame is created. »

Using fixed offsets in this way fails only for local variables and temporaries whose
size is not known at compile-time. (However, descriptors with slots for pointers to those parts
of a variable that are allocated at run-time, can still be stored at fixed offsets from the start of
the frame) Most types have a fixed size, and we will not discuss the mechanisms for using
types of varying size until the chapter on parameters. On the other hand, we present the
implementation now since it affects other parts of the design of ASBAL.

Most cases can be handled by simply allocating the required amount of storage on the
top of the stack as soon as the size is known. (This storage is accessed through a pointer at a
fixed offset in the frame) There are only two situations where this does not work perfectly:
declarations with initialization, and temporaries in the middle of expressions. As we will see

later, the size of these variables may not be known until just before the procedure which is to

1. We assume the reader is fairly familiar with implementation tectiniques for stack based
programming languages, so we often gloss over details that are not novel and do not present
special problems of implementation.

41

initialize them is invoked. Unfortunately this is after all the arguments to the invocation have

been computed; if any of those arguments are themselves temporaries, then allocating the space

for the return variables at the top of the stack will result in a “hole” when the temporary is

freed. Let us present a simple example to demonstrate the creation of these holes in the stack:
var x: foo := p (q(y), r(2));

where the size of the foo is not known until just before p is called.

() The stack starts as in part (a) of Figure 1, with y and z in the current stack frame.

(2) A temporary variable t_q is allocated, and ¢ is called (1b).

(3) Another temporary t_r is allocated and r is called (1c).

(4) Space for x is allocated and p is called (1d).

(5 The stack is left as in part (e) of Figure 1, with a hole between x and the rest of the

variables.

Thus we see that the simple scheme will leave holes in the stack. There are three solutions to
this problem. The first is to ignare it; this is not a good idea for more and more holes could
accumulate (e.g., in recursive calls) and cause considerable waste of storage. Still, it is not clear
just how much storage is wasted, and it may not pay to prevent this particular waste. The
second solution is to bit-copy the new variable after it is created, moving it to the beginning of
the hole, and thus eliminate the hole. This need not be inefficient in terms of code because
many machines have a suitable block transfer instruction; however, the copying might use up
considerable processor time and memory cycles.

The third solution is to use two stacks rather than one. The basic idea is to allocate
temporary variables on one or the other of the two stacks so that neither ends up with holes.
Let us call the stack with the usual frames and local variables the variable stack, and the other
one the auxiliary stack.} It is clear that in order to end up with no holes on the variable stack

the temporaries used for a call must be on the auxiliary stack. A symmetric argument leads to

1. The auxiliary stack will have to be set up into frames as well, but its frame pointers and
stack pointer can be saved in the variable stack. Thus all housekeeping information is kept in
the variable stack with the auxiliary stack used only for storing temporary variables.

142

Figure 1. Scenario of Simple Allocation Scheme
Execution of ‘var x: foo := p (q(y), r(2));’

(a)

N

l Initial Stack
(stack grows downward)

(b) z l Stack during call of g

(c) 4 \L Stack during call of r

(d) z l Stack during call of p

(e) Z l Final Stack

hole {

B L ——— —

43

the converse fact: that to avoid holes on the auxiliary stack, temporaries needed during the
computation of intermediate temporary values must be put on the variable stack. What
happens is that we alternate between the stacks according to the nesting depth of a particular
temporary in an expression. Let us examine another scenario to illustrate this scheme. We will
go through the execution of

var a: foo := p (q(r0, s(tO))), u(v());

The evaluation is strictly left to right. Figure 2 shows a sequence of relevant snapshots of the
stacks. It is not at all hard to figure out which temporaries should be put on which stack if one
works backwards from the desired final configuration. Note also that the use of the two stacks
Is purely for the evaluation of expressions within a procedure. Any procedure that is called
during the expression evaluation can put its local variables and temporaries on top of either
stack so long as it cuts both stacks back to their previous state before returning. Notice also
that bath the one-stack and two-stack schemes handle multiple returns easily, by allocating
more than one variable at once.

It is not too hard to see how to implement two stacks on a computer: one starts at low
addresses and grows upward, and the other starts at high addresses and grows down. There is
some time and space overhead involved in keepirg two stack pointers and frame pointers
instead of one each, but there are no severe technical problems. So, we have seen that two

stacks are better than one.l

2.6.1. Variables

In either scheme (one stack or two stacks), a variable is a contiguous block of storage,
at least conceptually. For variables whose size is known, storage is allocated at fixed offsets

from the beginning of the frame (in the variable stack). For those whose size is not known,

1. Implementations of Algol 68 have many of the same difficulties found in ASBAL. (See
[Branquart70] for a description of the problems and their solution.) For example, some space
reserved by loc generators in Algol 68 is more easily put in the heap than on the stack. It is
possible to put all space from loc generators in the stack, but in ASBAL we must resort to a
heap, second stack, or copying the space. However, ASBAL does have an advantage over Algol
in that it does not need a display, since it has no local procedures.

14

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(1)

Initial Stacks

Just

Just

Just

Just

Just

Just

Just

Final

before

before

before

before

before

before

before

Stacks

call

call

call

call

call

call

call

Figure 2. Scenario of the Two Stack Method
Execution of ‘var a: foo := p(q(r0), st0)), utv));

of s

of g

of v

of u

empty

empty

tt

1l

ts

e

ts

tq

tq

tu

tg

A1

empty

15

space is reserved at a fixed offset for whatever information is necessary once the variable is
created. This can all the variable’s fixed size parts, and slots for the sizes and addresses of its
variable size parts, which are filled in when the variable is allocated. The figure at the end of

this section shows a possible layout for stack frames.

2.6.2. Selections

A selection can be implemented as a pointer to (or descriptor of) the ob ject it denotes.
Slots for these pointers are easily allocated at compile-time because they have a fixed size and
are of finite number. Even better, the number of selections is apparent from the text of the
program. Thus, allocation for selections is no problem.

Checking that selectors do not select a local item, etc., is more challenging. A compiler
can perform the checks by analysis of the expression given in the select statement of the
selector. The expression must be the ob ject to select from, or (more usually) a selection from
that object. The other checks (eg., that the auxiliary arguments are not mutated) are handled
by other checking mechanisms with no special casing. Saved selections (in the with statement)

present no more problems than regular ones, and are implemented the same way.
2.6.3. Nested Blocks

Instead of using a full frame for nested blocks, it is probably easiest to append their
fixed size space to that of the enclosing blocks, making one large fixed size block. Of.course
blocks at the same nesting depth can use the storage in different ways since only one of them
can be active at once. The part of their storage that is unknown in size can be managed in
stack fashion: allocated beyond the space for the enclosing block, and cut back when the nested

block is exited. These are well known techniques.
2.6.4. Checking if Variables are Initialized

Now we describe the checks necessary for insuring variables are always initialized
before use. First, let us see how much a compiler can check. It is clear that truly sophisticated

checking might involve complicated analysis of the control flow of a program. However, we

46

would like to keep the analysis to a minimum. Exclusive use of so called “structured
programming” control-flow statements greatly simplifies the analysis. The critical feature of
such statements is that the number of paths through a procedure is kept to a manageable size.
The compiler can keep a record of which variables are assigned to in every block. From this it

is fairly easy to combine the information, separating variables into three classes:

(1) those definitely initialized at every use;
(2) those definitely uninitialized at some use;

(3) and those possibly uninitialized at some uses, and definitely initialized at the rest.

The first class is all right; the second indicates an incorrect program; and the last class requires
the insertion of run-time checks. For each variable of the last class, the compiler allocates one
bit of memory in the run-time stack frame to be used as an indicator of whether that variable
has been initialized. These bits all start in the no state. At the appropriate places on the
questionable paths, code will be generated to set the bit to the yes state, or to test it. Even if a
variable is used and assigned to in many places, this extra code will be inserted in only a few.
This, along with the fact that the code is short (one or two instructions on most machines),
means that there is little run-time overhead. We feel that the overhead is well worth it,
particularly when debugging programs. Notice that this same scheme checks for initialization
of return variables; all we need do is consider those variables to start uninitialized, and view

the return statement as a use of all of the return variables.
2.6.5. Aliasing

The checks required to prevent aliasing are straightforward. They depend on a simple
inductive principle: if there is no aliasing when procedure p .is called, (ie, none of its
arguments or return variables overlap), and all local variables of p are disjoint (none of them
overlap), then we can guarantee that p introduces no aliasing in the invocations it makes. The
compiler does this by making sure that no variables subvariables are aliased in the calls p
makes. ‘ ‘

To implement aliasing "detection we need a description of which components of

47

variables overlap, and which do not. The Euclid report [Lampson77] gives a very detailed
definition of which variables overlap in that language. We will be content ‘with a less formal,
more intuitive desc.ription. First, it is obvious that a variable overlaps with itself. It is also
clear that a record overlaps with any of its components, and an array with any of its elements.
This carries down through all levels, so an array of records overlaps with any component of
any of its element records. On the other hand, if two variables do not overlap, such as two
local variables with different names, then none of their subcomponents overlap either. When
two variables overlap, one must contain the other; hence, when two variables do not overlap,
they are completely dis joint.

How do we extend aliasing detection to general selections? First of all, any selection
comes from a particular ob ject in a particular variable. We need only check selections from the
same ob ject. An ob ject and any selection from it are considered to overlap. Selections from the
same object generally require a run-time check. This check ascertains whether the two
selections overlap physically in storage. The starting address for each selection is always
available at run-time, but the length of each must be provided in zddition to the starting
addresses.

In a later chapter we will extend aliasing prevention to cover the use of pointers. Our

aliasing detection methods are based on those of Euclid [Lampson77).
2.6.6. Summary

ASBAL requires one stack to be maintained by its run-time system (but may do better
with two). The stack frame for a procedure activation contains the local variables references to
the arguments and result variables, and housekeeping information (return address, old frame
pointer, etc). For most variables, fixed offsets into the current frame can be used. Some
variables require a certain amount of descriptive information (descriptors or dope vectors),
mainly those whose size is not known at compile-time. Figure 3 shows a possible layout for
stack frames. :

Argument passing is by reference, i.e, the addresses (or descriptors) of arguments are
passed to a procedure when it is invoked. Returned results are simply extra argument

variables; the addresses of the variables are passed. Most of the checking for aliasing and

48

Start of frame —3i

Figure 3. A Possible Layout for Stack Frames in ASBAL

Top of Stack

Descriptors for Arguments

Descriptors for Return Variables

Return Address and Other Housekeeping
Information

Static Part of Local Vvariables and
Temporaries

Dynamic Part of Local variables

Dynamic Part of Temporaries

>

49

uninitialized variables is handled easily at compile-time, and the run-time checks do not
amount to much code. We conclude that our scheme is about as efficient as possible given the

level of safety we require and the features we want in the language.
2.7. Programming Example

In this section we will present a programming example to help illustrate the
fundamental ideas introduced in this chapter. The example is a type definition, but since
clusters (the form of type definitions) have procedure and selector definitions inside them, all
three module types will be illustrated. Later we will see that using more advanced features
allows us to write better definitions for the type we now present, but at this point we are
restricted to the most basic of features.

There are two essential parts to a type definition in ASBAL: the rep (representation)
type, and definitions for the operations. As in CLU, we group these together in a single
module called the cluster. The syntactic form is:

type_name = cluster is names_of_operations_exported;
rep = rep_type,

operation_name = proc ... ;
operation_name = selector ... ;

end type_name;

The procedures and selectors may be mixed. There also may be internal procedures and
selectors; an internal operation is one that can be called only from within the type definition.
Internal operations are distinguished by the fact that they do not appear in the list of exported

operations.
2.7.1. Bounded Queues of Integers

In this first example, the task is to define and implement a new data type, a bounded

queue of integers. The operations of this type and their functionality are listed below.

create:

insert:

remove:

is_empty:

is_full:

size:

proctype (O returns (queue)
(creates a new, eropty queue)

proctype (var queue, const int)
(inserts the integer at the end of the queue)

proctype (var queue) returns (int)
(removes the front member of the queue)

proctype (const queue) returns (bool)
(returns true if and only if the queue is empty)

proctype (corst queue) returns (bool)
(returns true if and only if the queue is full)

proctype (const queue) returns (int)
(returns the number of members in the queue)

These queues will be bounded in size, and the maximum size will be 100.

2.7.2. The Representation

It is easy to decide what representation to use for this type. An array of 100 integers

will hold the members of the queue, and will be managed in circular buffer fashion. One

index will be maintained: the position of the first member of the queue. The members will be

stored in order of increasing indexes in the array, modulo 100. The size will be kept explicitly.

Thus our type definition will begin:

queue = cluster is create, insert, remove, is_empty, is_full, size;
rep = record [first: int,

size: int,
q at];

at = array lint; 0, 99];

end queue;

51

2.7.3. The Operations

We will write the create operation first. We set the first component of the rep to be
zero, the size to be zero, and fill the whole array with zeros. (The array is filled for efficiency;
it does not matter what it is filled with in this case) The entire create operation is presented
below:

create = proc () returns (q: cvt);
q := rep.{first: 0,
size: 0,
q: at$fill (0, 0, 100)};
end create;
The notation cvt (from convert) indicates a variable or constant whose type is viewed as the
abstract type (ie, the type being defined) outside the module, and the rep type inside. Of
course it is only allowed in a module defining a type, and always means that type by context.
The expression ar$filllilow,num) denotes an array ob ject, all of whose elements are copies of i
(made by using t3copy), for all indexes in the range low to low+num-1 inclusive, provided num
is not negative. (Calling at$fil/ with a negative third argument is an error, and what happens
will be explained in the next chapter) Notice that there is no return statement in the procedure
above; for convenience, the end statement of a procedure does an implicit return.
Let us move on to size, is_empty, and is_full.

size = proc (const q: cvt) returns (s: int);
s = q.size;
end size; .

is_empty = proc (const q: cvt) returns (e: bool);
e := (qsize = 0);
end is_empty;

is_full = proc (const q: cvt) returns (f: bool);
f := (qsize = 100);
end is_full;

Our integers and booleans are like those of any other language; details are in the appendix on
data types. The use of ‘=’ in g.size = 0 actually indicates a call of ‘int$equal (q.size, 0. This

use of syntactic sugar allows us to extend symbols such as ‘«', ‘+’, -, ¢’, '/, etc,, to abstract types.

52

Full information on these sugars can also be found in the appendices.
Now let us write the insert operation.

insert = proc (var g: cvt, const val: int) returns ();

if q.size = 100 then error end if;

var index: int := (q.first + q.size) // 100;

q.qlindex] := val;

qsize := qsize + |,

end insert;
The *//" is a sugar for typeSmod, that is, the modulo (or remainder) operation of the type.
Notice the use of sugared array and record component replacement operations. The next
chapter will present a mechanism for signalling and handling exceptions, but for now we will
write error to indicate that appropriate code has been omitted.

The remove operation should now be easy for the reader:

remove = proc (var q: cvt) returns (member: int);

if qsize = 0 then error end if;

member := q.qlq.first];

q.first := (qfirst + 1) // 100;

q.size := q.size - |;

end remove;
Finally, here are example calls of the operations: (The symbol ‘~’ is prefix not, a sugar for
typednot (expr)). :

var q: queue := queue$create();

if ~ queuedis_full (g) then queueSinsert (q, foo); end if;

if ~ queue$is_empty (q) then bar := queue$remove (q); end if;
var s: int := queue$size (q);

This data type (queue) just happens not to use any selectors. However, there will be several

examples of selector definitions in later chapters.

53

2.8. Conclusions

This chapter has dealt with the fundamental semantics of ASBAL, a language
intended to preserve as many of the abstraction features of CLU as is possible under the
constraint of a stack-oriented semantics and implementation. We started with the notions of
variables and ob jects. We then went into the semantics and the syntax for procedure call and
return. Aliasing was discussed, and rules formed to prevent its occurrence. A satisfactory
solution to the problem of uninitialized variables was presented, and an implementation
outlined. Next, the mechanism of assignment was explained, followed by a discussion of
component selection. After discussing implementation, we presented an example to illustrate
these concepts. The groundwork has been laid for presenting more advanced features of

ASBAL. The next chapter will introduce two new features: iterators and exception handling.

3. Two Extensions

In this chapter we extend ASBAL by the addition of two new features - iterators and
exception handling. [terators introduce a new kind of abstraction, and are implemented by a
new kind of module. On the other hand, exception handling just completes the previously seen
modules; it changes them from partial functions to total ones by allowing them to specify and
deal with exceptional cases. We will present each feature as it is in CLU, and then modify it as

necessary for ASBAL.

3.1. Iterators

A ma jor goal of abstraction in programming is to move the programmer away from
details and into working at a high conceptual level. Procedures provide functional (or
procedural) abstraction, and .clusters provide data abstraction. Another useful kind of
abstraction has been identified, the control abstraction [Liskov77, Wulf76b]. The only sort of
control abstraction we will offer is a generalization of looping called an iterator, based on the

iterators of CLU. A loop has three basic parts:

() generation of the sequence of data items to be operated on,
(2) operating on the data, and '

(3) testing for completion.

Iterators provide a modular way of generating the sequence of ob jects to be operated on. In
CLU, an iterator generates a sequence of ob jects that are passed to the body of a loop. The
crucial point is that an iterator generates the sequence of items incrementally: one ob ject at a
time. This will be easier to understand by following through an example.

Let us say we have an abstract type binary_tree. Further suppose that many of our
programs that use binary_tree's need to examine all the leaves of a tree in left to right order. If
we are given operations to fetch the left and right subtrees of a tree, we can look at the leaves

in the desired order by keeping a stack of trees. A loop to do this might look like (in CLU)

55

t: tree := tree of interest;
st: treestack := treestack$create ();
more: bool := true
while more do
if tis aleaf
then
loop body
if treestack$empty (st)
then more := false;
else t := treestack$pop (st);
end;
else
treestack$push (st, right subtree of t);
t := left subtree of t;
end;
end;

Thus, the stack of trees is used to remember the subtrees the leaves of which have not been
generated. Writing this code out for every loop is somewhat prone to errors and relies on many
details. If the type binary_tree offered an iterator called leaves, we could write the above loop
this way:

for I: leaf in binary_tree$Sleaves (t) do
loop body
end,;
The variable / is called a loop variable, and is local to the for statement.
The for loop is more to the point, and depends on less detail than does the while loop.
In short, iterators provide better abstraction. Iterators can also be more efficient than loops
written ‘out, because they can be operations of a cluster and thus have access to the

representation of ob jects of the type. The definition of the iterator leaves might look like this:

leaves = iter (b: binary_tree) yields (leaf);
if bis aleaf
then yield (b);

else
for |: leaf in binary_tree$leaves (left subtree of b) do
yield (I);
end;
for I: leaf in binary_tree$leaves (right subtree of b) do
yield (D),
end;
end;

end leaves;

The recursive iterator makes our intent more obvious, and shows a symmetry to the generation
algorithm that was obscured iﬁ the while loop.. There is a possibility that the recursive version
is less efficient than the iterative version, but it is not immediately obvious, and may depend
upon implementation details.

Let us turn to the semantics underlying CLU iterators. The basic actions involved in

using an iterator in a for loop are:

(D the for loop calls the iterator;

(2) the iterator yields ob jects to the body of the for loop;

(3) the loop body is executed with the loop variables set to the objects yielded by the
iterator; |

(4) the iterator is resumed, whereupon it either continues to yield items, or

(5) the iterator returns, terminating the loop.

Note that the loop body is executed once per yield, as the‘ example would seem to imply. Also,
the iterator is always resumed just after its last yield statement, with all local variables intact.
Thus iterators are a form of coroutine. General coroutines require one stack per coroutine to
run, but iterators are sufficiently restricted that they can be implemented with a single stack.
(Iterators run in a single stack because of the particular pattern of resuming they use) Let us

detail the transformations made to the stack for each of the basic actions listed above.

57

(I} Tterator call - the arguments are passed and a new frame is set up for the iterator, just
as in a procedure call;

(2) Yield - the loop variables, which are created at this point unless they are of fixed size,
are set to the ob jects being yielded, the iterator’s resume address and frame pointer are
pushed on the stack, and the for loop body is entered with the environment reset to
that of the iterator’s caller; (notice that this is similar to a call even though yielding is
semantically the same as returning); ‘

(3 Loop body - the loop body executes normally, pushing any temporary information on
the top of the stack, beyond the iterator’s frame;

(4) Resume - the stack is popped back down to the iterator’s frame, and execution of the
iterator begins again at its resume address, with its environment restored;

(5) Iterator return - the iterator returns to its caller; execution continues after the for loop.

Thus, a yield is a kind of call, and a resume is a kind of return; both are a special case of
coroutine resumption.

As the example demonstrates, iterators may contain for loops, even ones that call the
iterator recursively. This is useful for walking recursive data structures. Although we did not
show it, it should be clear that for loops can be nested with no difficulty.

Another feature we did not mention is that a for loop can be terminated in other ways
than by the iterator returning. The loop body can execute a special statement called break,
which terminates both the body and the iterator, continuing execution after the for loop. The
body may also execute a return statement, which terminates the body, the iterator, and the

routine with the for loop, all at once.
3.1.1. Implementing Iterators for ASBAL

~ The description above has been of iterators as they appear in CLU; here we will see
what form iterators take in ASBAL. First of all, our call mechanism can be trivially extended
to include calling iterators. Iterator returns are also trivial, being the same as procedure returns.
Yielding is a little more complicated. Semantically a yield is like a return. However, it cannot

be implemented as a return in ASBAL because returning in ASBAL always create new ob jects;

58

an iterator should be able to generate a sequence of existing ob jects, such as the elements of an
array. This suggests that a yield statement should give a list of expressions, which will be
evaluated to ob jects, as is done for selections:

yield (exp);

yield (exp;, exp,, .., exp,);
We also need a yields clause for iterator headers (the rest of the header can take the same form
as procedure headers), which defines the order of the items and their types. It is useful for the
iterator to control whether the ob jects it yields will be const or var in the loop body, so the
yields clause includes that information as well. Here are some examples:

i = iter (const a, b: int) yields (const int);
or

i = iter (const f: foo, var b: bar) yields (var foobar, const char);
or even

i = iter (const count: int) yields ();
Now, let us consider the form of the for loop itself. The general form may as well follow
CLU’s. The only part that needs to be different from CLU is the declaration of the loop
variables; the declaration will state whether the loop will use the yielded ob jects as const’s or
var’s. Here are some examples:

for const x: int in ... do ... end for;

for var x,y: int in ... do ... end for;

for const x,y: int, var z: bool in ... do ... end for;
The forms of the break and return statements are:

break

and

relurn

3.1.2. Summary

We introduced the notion of an iterator as it appears in CLU, and we looked at the
semantics of CLU iterators to help us design iterators for ASBAL. We then designed a form
for iterator definitions and for loops in ASBAL. There will be more examples of iterator

definition and use at the end of the chapter.

59

3.2. Exception Handling

In our earlier discussion of procedures we omitted one important aspect of procedural
abstractions. A procedute, iterator, or selector might notify its caller of an unusual or error
condition. We unify the terms unusual and error in the term exception (or exceptional), after
Goodenough [Goodenough?5). In this section, we first examine CLU’s éxception handling
mechanism! and then proceed to modify it for ASBAL, in much the same spirit as we did with

iterators in the previous section.
3.2.1. Exception Handling in CLU

Any procedure or iteratar (we say routine for short) in CLU may signal exceptional
conditions to its caller. The CLU viewpoint on the meaning of such signals is this: a module
signals to indicate that it cannot perform its duty as a good abstraction. This might be due to
an inconsisten! state of an ob ject, because of bad arguments, because of a hardware failure, or
because of a system limitation (e.g., out of memory). Of course, it may less odiously indicate an
unusual but predictable situation, such as end_of_file. The simplest semantic view of what a
procedure does when it signals an exception is that it returns a different and distinguishable
kind of ob ject to its caller. Each exception the procedure might want to signal can be given a
different name, and a list of objects can be sent along with the signal to further describe the
condition.

The procedure’s caller has the option of handling exceptions signalled by the
procedure. If the caller has a handler for the exception, then it is executed, and execution
continues after the statement to which the handler was attached. If the caller does not have a
handler for the exception, then the caller signals a special exception called failure, sending

along the string

1. We note that this aspect of CLU has been sub ject to change, so do not consider what we say
here to be definitive about CLU. However, the essence of the mechanism is expected to remain
the same. We trust that any further work with ASBAL would adopt any improvements made
by the designers of CLU.

60

“uncaught exception: name_of_original_exception” 1

Here is the format of a statement with a handler block attached:

statement,
except
when exception_name;: handler;

when exception_name,: handler,;

;hell exception_name,,: Izandlern;
end;
A handler block handles only exceptions arising from invocations in the statement to which it
is attached. Handler blocks may be nested, since a statement with a handler block is considered
to be a statement. If more than one handler is available for an exception when handler blocks
are nested, the innermost one takes precedence.
T his exception handling mechanism is different from that of PL/1 [IBM70] in several

ways:

(1) Handlers are textually associated with blocks of code, rather than being enabled by
something like an on statement.

(2) Executing a signal statement always exits the current procedure, and it may not be
resumed.

(3) The entire call stack is not searched for active handlers; rather, a procedure must be

prepared to handle all signals that might come from any procedures it calls directly.2

Having handlers statically associated with blocks of code was chosen over dynamic
mechanisms because it is cheaper and easier to implement, less confusing, and sufficient in all
cases. Signalling always exits the current procedure because this is the only thing consistent

with CLU's viewpoint that a signal indicates an inability to continue to perform as asked.

1. To help in debugging, if a procedure does not handle failure, then it signals failure, sending
the same string as it received, instead of “uncaught exception: failure”

2. It is safe not to handle an exception only when it is certain that the invocation in question
will not raise that exception. For example, in ‘if z~=0 then x := y/z end if;’ it is reasonable not
to handle the exception for division by zero.

61

Thus a procedure is saying “I give up!” when it signals.

Let us go through an ex'ample. Suppose we have a type queue with an operation
called next which returns the member at the front of the queue and removes it at the same
time. Clearly, queue$next cannot work when applied to an empty queue.1 Let us say queue$next
can signal an exception empty. The definition of queue$next might look like (in CLU)

next = proc (q: queue) returns (element) signals (empty);
if ¢ is empty then signal empty; end;
fix up g;
return (old head of ¢);
end next;

Thus, we see that a signals clause is required in the procedure header. Here are some

examples of such clauses:

signals (foo, bar (int))
signals (bletch (int, int, bool))

~The first one states that the procedure can signal two exceptions: foo, with no ob jects, and bar
with an integer. (Factoring is disallowed here because it leads to ambiguity) To send ob jects
along with a signal, they are listed as in the yield statement:

signal bar (7);
signal foo (i + 5,z % 2, x > b);

A call of queueSnext and handling of the exception empty might look like this (again in CLU):
begin

X := queuenext (q);

end,

except
when foo: ..;
when empty: .
when bar: ..;
end,

1. We are not considering parallel processing situations where such a request might hang until
another process puts an item into the queue.,

62

If a signal sends ob jects, the handler declares variables by which to name these ob jects.l The
following example shows how this is done.
begin
end,

except
when oh_foo (x,y: int, z: bool): body of handler;

end;

In CLU, the semantics of sending ob jects with a signal is the same as that of returning ob jects.
If an iterator signals, the for loop that invoked it is terminated, and a handler
executed just as if a procedure invocation had signalled. Naturally, the locus of the signal is
the call of the iterator at the top of the for statement. For example:
for .. in iterate (x) do
;nd;

except
when iterate_signal (stuff): handler;

end;

If a signal statement is executed in the for loop body, the body, the iterator, and the routine
containing the for loop are terminated all at once. Notice that this is different from the body's
catching an exception, as in
for .. do
statement;
except
when oh_foo: ..;
end;

end;

If oA_foo is signalled by some routine invoked in statement, then the handler will be executed

L. Actually, the handler may choose to ignore the ob jects entirely; the ambitious reader can
peruse the syntax in the appendix.

63

and the execution of the body will continue. Assuming we have shown all handlers, if oh_bar
is signalled by some routine called in statement, the body and the iterator will be exited, and a

more global handler executed (if there is one).
3.2.2. Exception Handling in ASBAL

To transfer CLU’s exception handling features to ASBAL, we need forms and
semantics for signals clauses of routines’ headers, signal statements, and handlers. Signalling is
basically like returning, but the items sent along with the signal will probably not be handled
the same way as return variables. For one thing, it is wasteful to allocate space for ob jects that
might only be signalled once in a while. Anotﬁer point is that these ob jects are always the
initial values of some new variables and constants: those declared for the handler of the signal.
The best apﬁroach to sending the ob jects appears to be to leave them on the top of the stack.

Unfortunately, the space at the top of the stack overlaps with the variables of the
signalling routine. The objects will have to be computed first and then copied to that area.
Unlike the case of returning, we will probably be willing to pay the price of copying items
down onto the top of the caller’s frame when they are to be signalied, since exceptions are
generally rare compared to returns. This leads us to a signal statement like CLU's, except that
ours always creates new ob jects, just as our returns do. Thus we write:

signal foo (10, b(3));_

signal bar;

The signals clause in procedure and iterator headers gives a list of types, with no names, just
as in CLU:

signals (foo, bar (int, array[bool]))

signals (bletch (int, int, bool))

Once the calling routine has the signalled ob jects at the top of the stack, the transfer to the
handler is semantically a jump, but ob jects are sent to plug into the handler's variables. The
handler’s variable list will take the same form as that of a procedure header's argument list

part. For example:

64

except when foo (const i: int, b: bool, var c: char): ...
end,

Thus the sequence of actions for a signal in ASBAL is as follows:

(1) the expressions in the signal statement (if any) are computed, leaving ob jects in
temporary variables of the signalling procedure;

(2) a run-time system routine examines a data base detailing the handlers of the calling
routine;

(3) it proceeds to adjust the stack appropriately and copies down the signalied ob jects
(using bit-copies); then

(4) it makes the handler’s variables contain the ob jects and transfers to the handler.!

This is a bit complex, but the run-time system routine is written only once so it is not
too painful. The information that must be kept around is not all that bad either. Basically it
consists of which range of addresses in the procedure corresponds to which handler block, a list
of the exceptions handled, and the addresses for each handler block. If the information is
ordered correctly, the run-time routine need only find the first handler in a linear search of a
table. The copying of ob jects does not lead to problems because space either already exists at
fixed offset slots for the ob jects, or space at a fixed offset was saved for a pointer. The
ob jects that really go on top of the stack can be put there in any order since they are referred
to through pointers, and popped off all at once because they all have the same scope. Thus,
there are no overwhelming implementation problems for our proposed exception handling

mechanism, though it does of course incur some overhead.

1. This last ad justment may be done as part of the bit-copy of the previous step (i.e., copying
into space previously allocated for the handler variable), or may be the setting of a pointer in a

fixed offset slot to point to the signalled object. (Thus the pointer provides the address of the
handler variable)

65

3.2.3. Summary

We have examined CLU’s exception handling mechanism in detail. Based on this
examination, we designed parts of ASBAL to perform the same function: the structured
notification and handling of exceptions. Fortunately, few changeS were needed in the
mechanism borrowed from CLU, and little additional mechanism was required. Again we feel

we have been successful in transferring a good feature from CLU to ASBAL.
3.3. An Example - Sorted Bags of Strings

This section presents another data type definition: a sorted bag of strings. This data
type might be used for computing the frequency of occurrence of different words in a sample
of text, and printing them out in alphabetical order. (Our presentation is based on the

example in [Liskov77]). Here is a descriptioﬁ of the operations:

create: proctype() returns(bag);
(create a new empty bag)

insert: proctype(var bag, const string(;20]) signals (full)
(insert the string into the bag; signal full if there is no more room)

count: proctype(const bag) returns(int)
(total number of items in the bag, counting repetitions)

size: proctype(const bag) returns(int)
(total number of distinct items in the bag, i.e., not counting repetitions)

increasing: itertype(const bag) yields(const string(;20], int)
(generate each distinct string in the bag, with its repetition count, in
alphabetical order)
The type string in ASBAL is a sequence of characters. Of course, string variables must put a
limit on the maximum size string they can store. That is the reason for the parameter ‘20’ to
the string types above. (The ' in 'string[;20)’ will be explained in the next chapter.) A string is
different from an array of characters in that its contents cannot be changed, i.e, strings are
immutable. Strings are whole values even though their individual characters can be accessed.

The usual operations on strings, such as substring and index, are provided in ASBAL. A full

66

list of string operations is in Appendix II.
3.3.1. The Representation

The representation we will use for bags is a binary tree. Each node will contain a
string with a count of the number of times that string has been inserted in the bag. All nodes
to left of a given node contain strings which alphabetically precede the string associated with
the given node. Of course we need to keep a count of the number of items in the entire tree in
order to compute size and count efficiently. This “top level rep” is then something like this:

record [count: int,

size: int,

t: treel
We will maintain the tree in an array, using array indexes as “pointers” to the subtrees in the
nodes. (We must put a limit on the number of distinct items in a bag. We will use 500 in this
example) This adds stuff to the rep type. (To be really clean about it we would define the tree
part as another type, but we desired to keep the example short) The result is:

rep = record [count: int,

size: int,
root: mbranch,
tree: anl;

an = array [node; 1, 500];

node = record (s: string(;20],
left: mbranch,
right: mbranch,
number: intl;

mbranch = oneof [empty: null,

branch: intl;
The type mbranch is short for “maybe branch™ it is either empty, or designates a branch, by an
index into the array. A oneof type is a discriminated union, somewhat like the variant records
of Pascal [(Wirth71]. A oneof object is a tag (one of the field names! along with an ob ject of
the corresponding type. (There are operations that convert an ob ject of some type to a oneof

object with an appropriate tag. They and the tagcase statement will be presented below.)

67

Allocating space for a oneof variable is easy: Just allocate the maximum of the sizes of the

various possible types in its fields, plus room for the tag.

3.3.2. The Operations

Let us start with the create operation for bags. We must set all the counts to 0, and
initialize the array.

create = proc () returns (b: cvt);
none: mbranch := mbranch.make_empty (null);

n: node := node$({s: g
left: none,
right: none
number: 0};

b := rep${count: 0,

size: 0,
root: none,

tree: an$fill (n, 1, 500)};
end create;
The ™ means the empty (or nulD string. The create operation shows how to make a oneof
value from a non-tagged value of the right type: use the ‘make_tag’ operation, in this case the
make_empty operation. (This operation calls the copy operation of the type.)
Here is the insert operation on bags:

insert = proc (var b: cvt, const s: string[;20]) signals (full);
b.root := insertl (b, s, b.root) except when full: signal full; end;
end insert;

insertl = proc (var b: rep, const s: string(;20], root: mbranch) returns (m: mbranch) signals (full)
tagcase root in
tag empty:
m := add_node (b, s);

68

tag branch (const i: int):
m := root;
with var n == b.tree(}) do
if s=ns
then
n.number := n.number + I;
b.count := b.count + 1;
elseif s < ns
then n.left := insertl (b, s, n.left);
else n.right := insertl (b, s, n.right);
end if;
end with;
end tagcase,
except when full: signal full; end;
end insertl;

add_node = proc (var b: rep, const s: string(;20]) returns (br: mbranch) signals (fulb;
if b.size = 500 then signal full; end if;
b.size := b.size + 1;
b.count := b.count + I;
none: mbranch := mbranch$make_empty (nil);

b.tree(b.size) := node${s: s,
number: 1,
left: none,

right: none};

br := mbranch$make_branch (b.size);

end add_node;
This operation illustrates the use of internal procedures (that is, procedures not exported by a
cluster); it also demonstrates how to use the tagcase statement to discriminate with a oneof
object. Each case starts with ‘tag tag’ and allows a name to be given to the ob ject so that the
name has the discriminated type. This is the only way an object in a oneof can be mutated.
We also see a real use of exception handling and signalling, although not a very fancy one.

The count and size operations are easy to write:

69

count = proc (b: cvt) returns (c: int);
¢ := b.count;
end count;

size = proc (b: cvt) returns (s: int);
s := bsize;
end size;

The last operation to write is the iterator increasing:

increasing = iter (const b: cvt) yields (const string, int);
for const s: string, i: int in increasingl (b, b.root) do
yield (s, i);
end for,;
end increasing;

increasingl = iter (const b: rep, br: mbranch) yields (const string, int);
tagcase br in
tag empty:
tag branch (i: int):
with const node == b.tree(i) do
for const s: string, §: int in increasingl (b, node.left) do
yield (s, j); :
end for;
yield (node.s, node.number);
for const s: string, | int in increasingl (b, node.right) do
yield (s, j);
end for;
end with;
end tagcase;
end increasingl;

Again we see a recursive internal operation and use of the tagcase statement. At the top level

our entire type definition looks like this:

70

bag = cluster is create, insert, count, size, increasing;
rep = ...;

create = .. ;
insert = .. ;
insertl = ... ;
add_node = ... ;
count = .. ;
stze = .. ;
increasing = ... ;
increasingl = ... ;
end bag;
Here are some example uses of the bag abstraction (the ‘/* means division):

b: bag := bag$create ();
bag$insert (b, "a string"); except when full: signal oh_foo; end;
avg: int := bag$count (b) / bag$size (b);

n: int := bag$count (b);

for const s: string, i: int in bag$increasing (b) do
print (s, i, i/n);
end for;

3.4. Summary

This chapter has presented iterators and exception handling for ASBAL. These two
features were borrowed with little change from CLU, and the transfer to ASBAL was quite
successful. Al the central features of ASBAL have now been presented, coming mainly from
CLU with alterations to accomodate our object interpretation of variables. The next two
chapters consider two additions to the language. The first is parameterization of abstractions.
We will explore adding CLU's parameter mechanism to ASBAL, and will end up augmenting
it with an original feature for handling types with ob jects of dynamically varying size. The
following chapter investigates adding limited list-processing capabilities to the language. The

features designed allow the construction of general graph structures without garbage collection

- in the stack.

!

4. Parameters

This chapter presents the ASBAL mechanism for paraméterlzlng abstractions. We
begin with an examination of parameters in CLU. We then borrow and extend CLU's
mechanism, modifying it to suit our needs. The ma jor extension made is for parameters
relating to the sizes of objects in ASBAL. We have seveial goals in extending CLU'’s
mechanism for ASBAL:

(1) to make programs as independent of the sizes of their data ob jects as possible, and to
allow sizes to be determined at run-time;

(2) to relieve the programmer of the burden of keeping track of the sizes of variables, and
to transfer this burden to the compiler and run-time system; but,

(3) to allow the programmer ultimate control over the sizes of variables.

After presenting our parameter mechanism, we give an extended example using it. We close

the chapter with a discussion of possible implementation techniques.
4.1. Parameters in CLU

Here we discuss the parameter mechanism used in CLU. We start with the simplest
and most strongly motivated case - parameters to clusters. We present a full example of a

parameterized cluster, and then move on to parameterizing other abstractions.

4.1.1. Parameters to Type Definitions

Let us say we have written a cluster to implement queues of integers. A while later we
find a need for queues of strings, so we write a new cluster to Implement them, borrowing from
the previous cluster. Some more time passes, and we find we need queues of customers for a
simulation program, so we again adapt the queue-of-integers cluster. This copying and
modification could go on forever. What is worse, if some subtle bug is found in the original
cluster, a lot of effort is necessary to find and correct all the other clusters that copied its code.

One might imagine using a fancy text editor or macro processor to help in this

72

correction and updating process. However, we can do much better if we use the idea of an
abstraction generator: a parameterized module providing one abstraction per set of parameters.
For example, we would like to write a definition of queues using a dummy name for the type,
and to allow any type to be filled in later to get the kind of queue required. This groups the
information for all classes of queues together, so updates affect all versions, etc. A
parameterized type definition is the implementation of an abstraction generator called a type
generator, sinces the abstractions generated are types. It will be easier to explain the semantics
with an example (in CLU):

queue = cluster [t: type] is create, enq, deq, empty;
rep = array(t];

create = proc () returns (cvt);
return (rep$new());
end create;

enq = proc (q: cvt, x: t);
rep$addh (q, x);
end eng;

deq = proc (q: cvt) returns (t) signals (empty);
if rep$size (q) = 0
then signal empty;
else return (repSremi(q));
end;
end deg;

empty = proc (q: cvt) returns (bool);
return (rep$size(q) = 0);
end empty;

end queue;

The first thing to notice is the Tt: typel’ after cluster, which signifies that queue takes a single
parameter, called ¢, and that the actual parameterl must be a type. Thus, for every type (foo,

say) there exists a queue of that type (written queuelfoo)). Even queuelqueuelqueuelintll] is

L. The term actual is in contrast to formal. These terms indicate the usual distinction between a
template (formal), and an instance of it (actual).

73

legal because queuelint] is a type, so it is a legal parameter to queue, etc. The representation is
chosen to be arraylr] - this demonstrates that ¢ is interpreted as if it were an actual type
specif ication! inside the cluster definition. The create operation simply returns an empty array
(representing an empty queue). The eng operation adds a new element to the high end of the
array. Notice that ¢ by itself is a valid type specification in the header of the enq operation. It
is also legal to declare variables to be of type ¢ inside the cluster; we mention this to drive home
the point that ¢ really is taken to be a type specification within the definition of queue. The
deq operation is symmetrical to eng, except that it may signal empty, indicating that its caller
tried to remove an element from an empty queue. The empty operation is just a test to see if a

queue has no members.
4.1.2. Restrictions

In order to demonstrate further features, we will add some new operations to the queue
cluster. One nice operation to have is copy. We would like copy to call t$copy on each element
of the queue. Of course, this means that we can only copy queuelt] if ¢t has a copy operation
(which it need not have). For this reason restrictions were added to CLU. A restriction defines
a set of types possessing certain operations with particular functionalities. Restrictions are used
to limit the legal actual type parameters, and they insure that each actual type parameter has
the specified operations. Let us look at queueScopy for an example:

copy = proc {(q: cvt) returns (cvt);
where t has copy: proctype(t) returns(t) end;

return (rep$copy(q);

end copy;
The call of arrayls]$copy (implicit in repScopy) results in calls of ‘t$copy; since arraylt]Scopy
requires a copy operation of f, we must require that operation of our caller. Restrictions
complicate type checking, but are necessary. The where clause can also require a parameter to
have several operations, and can put restrictions on any number of type parameters. ‘The

keywords proctype, itertype, and seltype are used to declare procedure, iterator, and selector

1. A type specification is the syntactic description of a type.

74

types. (The keywords proc, iter, and selector are not used for this purpose because syntactic
ambiguities result.)

The above example puts a restriction on a single queue operation. If ¢ does not have a
copy operation then all the other operations of queuelt] can be used - just not queueltl$copy. In
some cases it is desirable to put a restriction on all the operations. For example, consider
extending our sorted bag abstraction of the previous chapter to a type generator. That is, we
define a type generator sorted_bag, which can be instantiated to produce sorted bags of any
ordered type. In terms of operatioris. the type parameter is required to provide a less than (/t)
and an equal (equal) operatlon.l Such a restriction is stated like this:

sorted_bag = cluster [t: typel is ... ;

where t has It, equal: proctype(t,t) returns(bool) end;

end sorted_bag;

We can still put further restrictions on the type parameter within individual operations if
needed. Thus, a copy operation for the sorted bag cluster would require ¢ to have a copy

operation.
4.1.3. Parameters to Procedures and Iterators

Just as clusters can be parameterized, so can procedures and iterators. Consider a
bubble sort routine that takes an array of any appropriate type and sorts it. The same
reasoning that lead to cluster parameters is effective here. Here is the procedure header for the

sort routine:

1. We would really like to say that !t and equal order the ob jects of type ¢, but all we can
require in a restriction is the correct functionality. Naturally, the fact that !t orders the ob jects
would be included in the specifications of the sorted bag abstraction, but we do not expect a
compiler to check such specifications, and so do not include them in the source text.

75

sort = proc [t: type] (a: at);
where t has equal, It: proctype(tt) returns(bool) end;
at = array(t];

end sort;

Operations of a type may be parameterized just as regular routines can; this leads to the
following general form for operation specifications:

type_namel parameters to typelSoperation_namel parameters to operation)

4.1.4. Other Kinds of Parameters

In CLU, most compile-time constants are allowed as parameters. This includes
integers, characters, strings, reals, booleans, and nulls. Not all of these are very useful (there is
only one value of type null, so null is useless as a parameter type). Every distinct set of
parameters to a parameterized abstraction results in a distinct abstraction. This means that
queuelint] is different from queuelbool), etc. Also, if we are given the definition-.

foo = cluster [x, y: int] ... ;
then fooll,2] is different from fool2,2). In like fashion, different sets of parameters to
procedures and iterators produce different procedures and iterators.

There is a goal that type checking be possible at compile-time, which requires
instantiation to be possible at compile-time. Therefore, parameters may not be computed at
run-time. However, it turns out that even if all parameters are compile-time knowable,
instantiation is not always possible at compile-time. This difficulty will be discussed in the

section on implementation. Still, run-time computed expressions are not allowed as parameters.
4.2. Parameters for ASBAL

ASBAL can borrow all of CLU’s parameter mechanism with no significant changes.
However, even though that mechanism works fine, it is not convenient for what will be the
most widespread use of parameters in ASBAL: sizes. To handle sizes reasonably we must allow
size parameters to be computed at run-time. This extension can be made without too much

trouble, but it is not sufficient. Using CLU’s mechanism for sizes will still be inconvenient

76

because every size must be specified explicitly, and each set of size parameters will result in a
distinct type. This results in a distinct set of cluster operations for each size (although most of
the physical code for the operations can be shared among all instances of the type gene}ator).
The ma jor difficulty is that binary (and higher order) operations on ob jects of different sizes
become hard to express, because a cluster may convert only objects of its own specific type to
and from the representation. Therefore, there is no way to access the representations of ob jects
of different sizes simultaneously, because ob jects of different sizes are of different types.

With the proliferation of parameters, expressions become quite complicated. Consider
strings as an example. We could not write

s;=slg
(The ' is a sugar for concat) We would be forced to say

s := string(100)$copy(string(100]$concat(501(s, t));
to get the types to match if s had size 100 and ¢ had size 50. Just imagine how obscure this
statement would look if written out like the one above:

s := s |l string$substr(t, i, j) Il string$rest(u, 4);
Of course it is possible to extend the notation for infix operators (eg. 1[10050)), but the
information still obscures the computation.

Having each set of size parameters define a different type (or procedure, etc) separates
types too finely. First of all, it conflicts with abstraction. The ob jects of many types come in a
variety of sizes, in many cases infinite. Variables have fixed sizes (because they correspond to
storage allocated in the stack) - objects are conceptually of unbounded size. For example, there
are strings of any length greater than or equal to zero. Size is not part of the conceptual type
of ob jects, but size information must somehow be provided for allocating storage for variables.
If we require every abstraction to be baunded, we are putting an artificial restriction on the
abstractions just to make the implementation work out. One way to resolve this conflict is to
consider ob jects to be unbounded, and variables to be imperfect models of the ob jects they
contain. This leads to attributing size bounds only to variables. The effect is that variables
cannot hold all ob jects of their type, but only the ones that will fit in the variable.

In sum, size will be declared only for variables. We find that the most convenient way

to state the size information is as part of the type specifications (typespecs) for variables. Our

77

task is to design convenient syntactic forms for expressing size information where it is
appropriate, and to allow such information to be omitted where it is not necessary. The exact
technique is to introduce a new class of parameters to types, size parameters. These parameters
are distinguished from CLU-style parameters (which we call regular parameters) by being listed
after a 7' in the parameter list. Size parameters are used only with types; routines take only
regular parameters. Also, size parameters are always integers; no other types seem useful
enough to justify the additional mechanism their incorporation would require.

- Two examples of size parameters have already been used in previous chapters. Array
takes two size parameters, indicating the minimum lower bound and maximum upper bound of
ob jects storable in an array variable; string takes one size parameter, indicating the maximum
length ob ject a string variable can hold. Arrays and strings are the only basic types of varying
size; all other types of varying size incorporate them in their representation, although possibly
through many levels of data abstraction.! The implementations of both arrays and strings
insure that objects too large for a variable of their type to hold are not assigned to the
variable. Attempts to make such illegal assignments cause an exception, failure(*variable
overflow™), to be signalled. Furthermore, the implementation of arrays insures that the ob jects
in array variables are not grown beyond the limits of their containing variables; if such an
attempt is made, the variable overflow exception is signalled. To make such exceptions
avoidable, we will provide a mechanism for querying the size parameters of a variable. This

mechanism can be used to check sizes before assignments or growing operations.2
4.3. The Size Parameter Mechanism

Having introduced some of the basic concepts and features of size parameters, we now
go into detail about their use. This is more easily done by going through the syntactic forms
used for specifying size in typespecs, and the restrictions imposed on which forms may be used

with typespecs in different positions.

1. That arrays and strings are the only sources of ob jects of different sizes is similar to the fact
that all mutation is accomplished via records and arrays.

2. Of course, one can just attempt the operation and then handle the exception, but it is often
better style to prevent the exception’s occurrence.

78

4.3.1. Size Specifiers

A size specifier (sizespec) is the syntactic form representing a size parameter. There
are three forms of sizespecs. First we have the exact sizespec, which is an expression evaluating
to an integer. In some situations the expression is further restricted (e.g., to be compile-time
known), but it can usually be any run-time-computable expression.

The next form of sizespec is ‘', and it is called a ¥-sizespec. A star is used as a
sizespec to indicate that any value is allowed for that size parameter, or that the size is
immaterial. For example, a routine may take a string as an argument without needing to know
or restrict the size of string variable in which the string ob ject happens to be stored. In fact,
we expect the size of arguments to be irrelevant to most routines.

The other form of sizespec is ?%id’, where id is an identifier.] These sizespecs are called
?-sizespecs. The ?-sizespec form is equivalent to ‘s’, except that a ?-sizespec permits the size of
a particular variable to be queried. For example, a procedure p may be written to take one
argument, an array. To be flexible, ¢ will accept an array of any size, but it must know the
size so as not to cause an overflow in growing the array. The code for p might look like

p = proc (var a: arraylint; Plow, Phighl);
if x > a?high then ...
end p;

The expression a?high evaluates to the second size parameter of the actual argument to p at
run-time. (The result of a?Aigh is not necessarily the same as arraylint]}$high(a): the first is

the size of the variable, and the second is the current high bound of the array object in the

variable)

1. This notation was suggested by the use of ?’ in Alphard [Wulf76a).

79

4.3.2. The Kinds of Typespecs

There are three forms of typespecs in ASBAL. The first form is called the variable
typespec (v-typespec) because it is used mainly in variable declarations. All the sizespecs of a
v-typespec must be exact sizespecs, so that the actual space required for a variable can be
computed and allocated. We will detail all places where each form of typespec is used below.
Here are examples of v-typespecs:

string(;15]

stringl;u(x)+v(x)]

arraylint; 1, 100]

arraylint; 1, 10% j+5)

arrayling; f(x), 3]

arraylint; foo(x, y), bar(y, 2)+2]

The second form of typespec allows exact or s-sizespecs to be used, and is called a
vi-typespec (for variable or + typespec) for short. It is used where any size is allowed or size is
irrelevant, but where querying is not allowed. V-typespecs are a subset of vs-typespecs; here

are some vx-typespecs that are not v-typespecs:

stringl;+]

arraylint; %, 10}

arraylint; £, v(x)]

arraylint; 1, *]

arraylint; u(x), #]

arrayling; +, #]

We allow an abbreviation for typespecs all of whose sizespecs are ‘s": the size

parameter part of the parameter list may be omitted, including the *’. Furthermore, if such
omission results in TJ', the brackets can be dropped as well. Hence

arraylint; #, #] and stringl;+]
become
arraylint] and string
respectively.
The third form of typespec is the most general: any of the three sizespecs may be used
in it. This form is called the v:?-typespec (for variable, #, or ?id typespec). Ve-typespecs are a

subset of vs?-typespecs (and hence v-typespecs are also a subset of va?-typespecs); here are

80

some vs?-typespecs that are not vs-typespecs:

string(;?len]
arrayling; 1, ?high]
arraylint; Plow,]
arraylint; ?low, ?high]

(There are many more combinations of legal sizespecs in v?-typespecs for arrays.)
4.3.3. How Type Specifications are Used

Now we discuss which form of typespec is used in each syntactic position, and the
meaning attached to it in that position. We will do this separately for different groups of

syntactic positions.
4.3.3.1. Arguments to Routines

The typespecs for arguments to routines are v¢?-typespecs, so that routines can handle
ob jects of any size conveniently. If a size parameter of an argument type is specified exactly
(and in this case only a compile-time constant! is allowed), then that size parameter must match
that of the actual argument exactly. In the case of - and P-sizespecs, any size parameter is
acceptable. The use of a ?-sizespec allows that size parameter to be queried. Let us consider an
example:

p = proc (var a, b: arraylint; 1, ?highl);
end p;

In this case, both @ and b must be arrays of integers with a lower bound of 12 Their upper
bounds are not restricted, and need not be the same. The actual upper bounds can be obtained
via the expressions a?high and b.’lu‘glz.3 As another example use of argument typespecs, consider

the following program, which adds the elements of one array to the end of the another:

. However, side-effect free expressions involving parameters to routines, and using only
built-in operations, are considered to be compile-time constants. _

2. These bounds are the bounds of the variables, not the current bounds of the array objects.

3 7" shou'd be thought of as a special binary operator, similar to *’ in selections.

81

p = proclttypel(var al: at, const a2: at) signals(overflow());
where t has copy: proctype(const t) returns(t);
at = arraylt; , ?highl; :
if (al?’high - at$high(al) < at$size(a2)
then signal overflow;
end if;
for const x: t in at$elements(a2) do
at¥addh(al, x);
end for;
end p;
The test in the if statement is: “Does al have enough room for a copy of each element of a2?"
The elements iterator for arrays produces each element in the array from the lowest to the

highest.
4.3.3.2. Return Variables

Arguments are the most obvious and strongly motivated use for size parameters
because size parameters in arguments allow single procedures to handle objects of any size
conveniently. However, there are also some situations where flexibility in the size of ob jects
returned by a procedure is helpful. For this reason we allow the size parameters of return
variables to be determined dynamically; specifically, these size parameters may be computed
from the arguments to the procedure being called. For comprehensibility of ASBAL programs,
we require that any size computation for return variables not mutate arguments of the
procedure being called. This is done by permitting only const uses of the arguments in these
size expressions.

Consider a procedure that appends the contents of two arrays together to form a new
array. If it is known that the new array will never be enlarged, it is reasonable to create the
smallest possible array that will contain the desired result, so as to avoid any wasted storage.
Here is the skeleton of such a procedure:

q = proc (const al, a2: aint) returns (a3: arraylint;Laint$size(al+aint$size(a2)));
aint = arraylint];

c-nd Qs

Determining the size of return variables on the fly has some complications, however.

82

Recall that return variables are really specifications for variables passed in by the caller. If the
variable passed in is a temporary, then there is no problem because the mechanisms presented
in Chapter 2 allow for determination of size temporaries after computation of arguments to the
invocation “creating” the temporaries. In fact, that mechanism was designed with flexible
return variables in mind. On the other hand, if the variable passed in as the return variable is
not a temporary we may have a conflict of size. A check must be done, often at run-time, to
compare the size of the variable being passed in with the size declared in the procedure header.

At this juncture we have an option: we may require that the sizes match exactly, or just
that the variable passed in is at least as big as the one we would get from the return variable
specification. We have chosen to be flexible and allow any variable of sufficient size. We
delay discussion of the basis for this decision until the entire size parameter mechanism has
been presented.

Two questions remain: what do we do if the size of a return variable fails the
run-time check outlined above? Our solution to this problem is to have the invocation being
attempted signal failure(“variable overflow™. The other question is: what do we do if a return
variable size computation signals? To this problem we have a solution similar to the one above
- signal failure(“size expression signalled”).

Because of the run-time checks often required, flexible return variables may be
expensive. However, we believe that the common uses of flexiblel return variables will be
handled at compile-time. The reason why compile-time checks will often suffice is that most
types taking size parameters have sizes which vary; if a return variable of such a type were
constructed using the minimal amount memory, it could not be grown thereafter. Therefore, we
believe it will be more common for the user to specify the size of the variable to be returned by
passing an argument (or perhaps a parameter) to the procedure, rather than having the
procedure compute the size itself. We believe that the expressions used to convey the size
information may be comparable at compile-time even if they are symbolic; that is, it may be
possible to perform the checks even if the size is a parameter or an argument of the procedure

making the call. Here is an example:

83

p = proc (const n: int, ..) ...;

var x: fool;n];
X=qn,.)
end p;

q = proc (const i: int, ...) returns (a: fool;i);
.end g;

We grant that it may not be at all easy to design a compiler “smart” enough to perform this sort

of optimization - we are merely pointing out that the optimization may be possible in many

cases.
4.3.3.3. Declarations

There are two sorts of declarations: those with initialization and those without. A
declaration without initialization must use a v-typespec so that storage can be allocated for the
variable being declared. Any expression evaluating to an integer is allowed for computing the
size parameters.)

Declarations with initialization are more complicated, because we have the opportunity
to reduce storage requirements: we can permit the variable to be the exact size returned by the
procedure being invoked to initialize the variable. Thus we allow *- and ?-sizespecs in the
typespecs for declarations with initialization. Any parameter specified by a #- or ?-sizespec
takes the value computed by the invocation for its return variable; any exact sizespecs in the
declaration with initialization are kept as is. Therefore, the normal check necessary for flexible
return variables in assignment may have to be performed in declarations with initialization as
well; the check can be omitted if all sizespecs are - or ?-sizespecs. Constant definitions follow
the same scheme as declarations with initialization.

Here are some examples of declarations and constant definitions:

84

var n: int := 100;

var a: arraylint; 1, n);

var b: arraylint] := arraylint]$fil (0, 1, 50);

var c: arraylint; 1, ?high] := foo();

const d: arraylint] = b;

const e: arraylint; 1, 100] = ¢;
The low and high bounds of a will be 1 and 100; those of b, 1 and 50. The low bound of the
array returned by foo must be one, but the high bound may be anything, and can be queried by
writing c?high. The bounds of d will be 1 and 50, just like b. The definition of e will fail

unless ¢ has at most 100 elements.
4.3.3.4. Representation Types

The typespec for the representation type (rep type) of a cluster must be a v-typespec so
variables of the type being defined can be allocated. Clearly all size parameters in the rep
typespec must be determinable given all parameters to the abstract type. However, arbitrary
expressions are allowed in computing the size parameters for the rep type from the parameters
of the abstract type. As with return variables, these expressions must be side-effect free,
because they may be evaluated to compute the size of a return variable. Also, if an exception is
signalled when a rep's size expression is evaluated, failure(“size expression signalled™ is
signalled to the creator of the variable. :

The header for a cluster with size parameters takes this form:

idy = cluster [regular_parameter_list ; idy, ..., Idn] is ..;
The id; for i >0 are the names of the size parameters. These names are only used in defining
the rep type and other equates; unlike regular parameters, they are not available to the cluster
operations as specific values. Furthermore, types and expression using those names are not
available to the operations. This is because the values associated with the abstract size
parameter names are not per cluster instantiation, but rather per ob ject; hence it does not make
sense to use those names in cluster operations.

Let us introduce an example we will use throughout our discussion of size parameters
and rep types. Assume for the moment that ASBAL does not have strings, and we need to

implement them using arrays of characters. Here is a skeleton of part of the string cluster:

85

string = cluster(;len] is ... ;
rep = arraylchar; 1, len];
size = proc (const s: cvt) returns (n: int);
n := rep$size(s);
end size;

end string;
Notice that the :Size ogperation returns the size of the object, not the size of the variable.

Now we come to the question of what ¢- and ?-sizespecs mean when written in
typespecs for the abstract type. For example, what does stringls] or string(?] mean? They
merely mean that those abstract size parameters are not being specified, and in the case of
’-sizespecs, that those abstract size parameters may be queried, eg., x% if x were declared as
stringl?]. In every case where the size of the rep must be known, all abstract size parameters
will be available, so the rép size parameters can be computed and space allocated.

The only potential confusion left is the meaning of the typespecs rep and cvt. Rep
takes the size parameters of the abstract type; the meaning is “the rep typespec obtained from
giving the abstract type those size parameters”. As in CLU, cvt is just a shorthand for the
abstract or rep typespec at the interface of a routine, with a conversion applied at the
appropriate time: down for incoming'objects, and up for outgoing ones. Therefore, cvt takes
the same size parameters as the abstract and rep typespecs do. Notice that neither rep nor cvt
requires statement of regular type parameters; the regular type parameters are implicit in the
instantiation of the cluster. The conversions up and down have the same semantics and
implementation as in CLU - they cause little or no run-time action, but are used merely to
change the compiler’s “point of view" on the type of an ob ject.

To illustrate the use of cvt, consider the procedure below as part of our example string

cluster:

concat = proc (const s, s2: cvt) returns (s3: cvtl;repS$size(s))+rep$size(s2)));

end concat;

Notice that the arguments (s/ and s2) have been down'ed before the computation of the s}ze of
s3. If we had occasion to create a temporary variable of type rep. in the string cluster, we
might write

var x: rep(;n) ... ;

86

which would be equivalent to

var x: arraylchar; 1, nJ;
except that the latter cannot be up’ed. It cannot be up'ed because doing so involves inversion
of arbitrary functions in the general case; this is so because there are no restrictions on the way
in which the rep type depends on the abstract type’s size parameters. However, any arraylchar]
can be assigned to a rep variable (provided the sizes match; hence, it is always possible to up a
capy of an ob ject if the types match, ignoring size parameters.

If the sizes of the string variables input to the concat operation were needed in the
operations procedure body, the header could have started as

concat = proc (const sl, s2: cvtl;length)) ... ;

The lengths of s/ and 52 could then be obtained by sI?length and s2?length, respectively.

4.3.3.5. Other Positions in Routine Headers

There are a few other positions in routine headers that require typespecs. First, there
are the types of parameters to routines; however, these are all simple typespecs such as int, char,
bool, and type, which have no size parameters, so there is no problem. The typespecs for
ob jects yielded by an iterator are vs-typespecs: a size is explicitly given and enforced, or any
size is allowed, but there is no use for ?-sizespecs here. The same arguments hold for the types
of ob jects signalled by routines, and the of-type in selector headers. Here are some examples
of clauses from routine headers:

... signals (foo(arraylint;l £)), bar(string)) ...
.. yields (string, arraylchar;l,£)) ..

... of string ... :

bletch = proclx: int] ...

ralph = iterlz: char] ...

edgar = selector(flag: booll ...

87

4.3.3.6. Types of Routines

A situation slightly different from routine headers is the expression of typespecs for
the arguments, etc, in the typespecs of routines (ie., proctype’s, itertype's, and seltype’s). The
typespecs for routine types should allow full type checking, so typespecs for arguments, returns,
yields, etc, must all be given. The argument typespecs are vs-typespecs, there being no use for
?-sizespecs in that position. (A routine accepts either a particular size, or any size) Likewise,
return variables are given vs-typespecs, but computed sizes are given as #s, not expressions:
only compile-time expressions are allowed so that as much tfpe checking can be done at
compile-time as possible. Thus the type of string$concat is written as

proctype (const string, string) returns (string)
which is short for

proctype (const stringl;s], stringl;2]) returns (string[;¢))

Yields, signals, and of - typespecs are all handled Just like return variable typespecs. That takes
care of all the special items in typespecs of routines. Here are some more example routine
typespecs:

proctypelvar arraylbooll,+], const string(;10)
itertype(const arraylint)) yields (string[;15])
seltype() of string from string

4.3.3.7. Actual Type Parameters

Now we come to the writing of typespecs for actual type parameters of abstractions,
eg. the ¢ in arraylt]. These are always v-typespecs (with one exception), so that variables of
the type can be declared. The exception is the type parameter to ptr. The type ptr has to do
with pointers, which are discussed in the next chapter, however, let us explain here how ptr is
different. The type generator ptr is used for typed pointers, and it takes as a parameter the
type of ob ject pointed to. Since the size of a pointer is independent of the size of the ob ject
pointed to, #- and ?-sizespecs are allowed in typespecs used as parameters to ptr. After reading
Chapter 5 it should be clear why this will work,

Here are some examples of typespecs used as parameters:

88

arraylarraylint;1,100]]
recordla, b: stringl;201]
ptrla, arraylint;1,?high])
ptrla, record(a, b: string]]
Please ignore the first parameter to ptr for now; the second parameter is the one discussed

above.
4.3.3.8. Operation Names

There is bne last position where typespecs are needed: in the names of cluster
operations. In this position all kinds of typespecs are allowed, since size parameters are
completely irrelevant. However, it is common to write the short form of s-sizespecs in cluster
operations, omitting the size parameter part completely. This gives programs a nicer
appearance, but is not essential. It is also common to use a short name that is equated to a
va?-typespec; for example, at for array(z]. All of these are legal names for the concat operation
on strings:

string(;20]$concat
stringl;+J$concat
stringl;?len]J$concat
string$concat
(T his operation also has an infix form: ') In clusters, rep is also legal as a type for forming

operation names.
4.4. An Example Cluster - Sequences

The header for the sequence cluster is
seq = cluster [t: type; n] is null, addh, addl, concat, remh, reml, trim,
first, last, fetch, elements, copy, equal, length;
where t has copy: proctype (const t) returns (t) end;
Sequences have many of the same operations as arrays, except that sequences are not mutable
(their state cannot be changed). It is easiest to explain how sequences work by presenting the
operations a few at a time. But first, the representation: ,

rep = arraylt; 1, n;

89

Thus, sequences will be modelled by arrays. This is convenient because they are similar in

many respects.

null = proc () returns (s: cvt[;0));
s := rep$create (1);
end nuli;

The array create operation returns an empty array; its argument specifies the low bound of the
array ob ject returned. Notice that it is probably not useful write

var x: seq(t] := seq(t]$null();
because all x could ever hold is the empty sequence. (All other sequences are too big to fit in x.)

addh = proc (const s: cvt, e:) returns (new: cvtl;rep$size(s)+1));
new := rep$create (1);
for const x: t in repSelements (s) do
rep$addh (new, x);
end for;
rep$addh (new, e);
end addh;

The addh Operation returns a new sequence with one more element at the end than the one
passed in, therefore the size of the returned object is one bigger than the actual size of the
argument sequence. (Notice that this is not necessarily the same as ‘s>n + 1') The elements
operation is an iterator that generates the elements of an array in order from the first to the

last. The addl and concat operations are similar to addh.

addl = proc (const s: cvt, e: 1) returns (new: cvtl;rep$size(s)+1));
new := rep$create (1);
rep$addh (new, e);
for const x: t in rep$elements (s) do
rep$addh (new, x);
end for;
end addl;

90

concat = proc (const r, s: cvt) returns (new: cvtl;repS$size(r)+rep$size(s)));
new := rep$create (1);
for const x: t in rep$elements (r) do
rep$addh (new, x);
end for;
for const x: t in rep$elements (s) do
rep$addh (new, x);
end for; -
end concat;

Now we present the operations that produce shorter sequences from their inputs: remh, reml,
and trim.

remh = proc (const s: cvt) returns (new: cvt(;max(0,rep$size(s)-1))) signals (empty);
n: int := rep$size(s);
ifn<l '
then signal empty;
else
new := rep$create (1);
index: int := |,
while index < n do
rep$addh (new, slindex]);
end while;
end if;
end remh;

rem| = proc (const s: cvt) returns (new: cvt;max(0,rep$size(s)-1]) signals (empty)
n: int := rep$size(s);
if n <1
then signal empty;
else
new := rep$create (1);
index: int := 2;
while index <= n do
rep$addh (new, slindex));
end while;
end if;
end remi;

(Max is used to prevent a ‘-1’ from messing things up when an empty sequence is passed to
reml) Trim is given bounds between which elements in the argument sequence are to be

retained. Trim returns whatever portion of the argument overlaps with the range between the

bounds.

91

trim = proc (s: cvt, low, high: int) returns (new: cvt[;max(0high-low+D);

start: int := max (1, low);

n: int := rep$size (s);

end: int := min (n, high);

new := rep$create (1);

for const j: int in int$from_to_by (start, end, 1) do
rep$addh (new, si j));
end for;

end trim;

The from_to_by iterator generates the integers from its first argument through to its second

argument incrementing by the third argument; it is like an Algol for loop.
' Here are the selection operations: first, last, fetch, and elements.

first = selector O of t from s: cvt signals (empty);
if rep$size (s) =0
then signal empty;
else select s(1);
end if;
end firsy;

last = selector () of t from s: cvt signals (empty);
n: int := rep$size (s);
ifn=0
then signal empty;
else select s(nl;
end if;
end last;

fetch = proc (i: int) of t from s: cvt signals (range);
if G <DIG>rep$size(s))
then signal range;
else select slil;
end if;
end fetch;

The vertical bar is a sugar for the or operation, in this case ‘bool$or’.

elements = iter (const s: cvt) yields (const t);
for const e: t in repSelements(s) do
yield (e);
end for;
end elements;

Notice the use of the array iterator elements to implement our own iterator.

It would be nice to

be able to assign sequences, so we define a copy operation.

copy = proc (const s: cvt) returns (new: cvtl;rep$size(s)));
new := s;
end copy;

The copy operation will often be this simple, but there are a few types where more must be
done. We also provide another very useful operation, equal. We note that equal needs an
extra restriction on 1.

equal = proc (const r, s: cvt) returns (eq: bool)
where t has equal: proctype(const t, t) returns(bool) end;
eq = (r =s);
return;
end equal;

Notice that we use the underlying array equal operation, which calls the equal operation of ¢ to
compare the arrays element by element. Now we write the length operation.

length = proc (const s: cvt) returns (I: int);
| := rep$size(s); :
end length;

It will be helpful to see some example uses of sequences.

First we define a few types:
sil00 = seqlint; 100];’
si_ = seqlint; =J;
silen = seqlint; ?len);

Now some declarations:
a: 51100,
b: 51100 := sil00$null ();
c si_:=b;
d: silen = c;
if d?len = 0 then ...

First, a is uninitialized and has room for sequences up to 100 integers long. The next variable,
b. is the same size, but has been assigned the null sequence. Since the size of ¢ was determined
dynamically, it can hold only the null sequence! (This is not very useful - it illustrates why size

should normally be specified in declarations) The same is true of d, however its size can be

queried by using d?/en as shown in the if statement. Here are a few more examples:

93

a:=alldg;

b := si_$addh (a, 5

if si_$last (b) =5 then ...

var j int :=0;

for const i: int in si_$elements(b) do

Ji= gk
end for;
Notice that the first line calls the si/00$concat operation.

We have defined a complete type generator for sequences. This example is atypical in
that it has no mutating operations. We chose this over a mutable type because it demonstrates
more of the parameter mechanism, since it returns more things, and tends to allocate the
minimum storage possible. (Allocating the minimum for mutable types is not always desirable,

since they may need to grow later. Furthermore, even if the ob jects are immutable, larger ones

may be assigned to a variable later. Of course the style of use is up to the programmer.)

4.5. Implementation

Here we discuss how to implement ASBAL's parameter mechanism. We first explore
techniques for the regular parameters; these methods are borrowed directly from CLU. We

then consider the additions necessary for size parameters.
4.5.1. Regular Parameters

The most straightforward idea is to pass parameters as extra arguments in calls. This
works fairly well, except when: proceaures and iterators are passed around as ob jects. When an
instance of a parameterized procedure or iterator is passed around, its parameters must be
stored in the ob ject, since they are not available when it is called. Likewise, an operation of a
parameterized type must carry the parameters of the type around.

This difficulty suggests what we call the macro implementation of parameters. T his
implementation actually substitutes the actual parameters in and comes up with separate
procedures (iterators, selectors, clusters) for each distinct set of parameters. This would seem to
be inefficient in terms of memory use, but can be good In some situations. Its main advantages

are simplicity, and the ability to do better optimization of code once the substitutions have been

AD=A052 332 MASSACHUSETTS INST OF TECH CAMBRIDGE LAB FOR COMPUTE==ETC F/6 9/2

UNCLASSIFIED

ABSTRACT DATA TYPES IN STACK BASED LANGUAGES.(U)
FEB 78 J E MOSS
MIT/LCS/TR=190

NOOO14=75=C=0661

NL

Al

~J

94

made. Of course, the entire module does not have to be duplicated. One can have a small
parameter dependent section which contains the information relevant to parameters, and a
pointer to a large parameter independent section. This idea is somewhat like that of using
linkage sections to hold per process data in an operating system, with large sections of sharable
pure code.

There is still one problem however. It is possible to write programs which generate an
unbounded number of different parameters at run-time.! Here is a simple procedure (in CLU)
that has that property:A | .

nasty_a = proc [t: typel (n: int) returns (proctype(int));
at = array(t); '
ifn=0
then return (nasty_b(t));
else return (nasty_alat] (n - 1);
end;
end nasty;

nasty_b = proc [t: typel (n: int);
end nasty;

It should be easy to see that this generates ¢, arrayl(t), .., array™(r). Since new types can be
generated at run-time, some kind 'of run<time data structure must be maintained for types.
Maintaining the data structure is not too hard, but if it is kept in a fixed-size table then it can
potentially overflow. However, the sort of recursion shown above does not appear to be very
useful. Therefore we avoid the problem by ruling it out in ASBAL. (Recursions in size
parameters are harmless, since different size parameters do not result in different abstractions.)
There is a similar problem with restrictions: infinitely recursive restrictions can be
written. We must deal with them in ASBAL. A compiler must check for recursive restrictions,

and prevent the infinite recursion. For details see (Scheifler77).

1. Gries and Gehani appear to have been the first to identify this problem [Gries77), although
there is a footnote (number 13) in (Wulf76al, a paper from the Alphard group, that could be
referring to the same difficulty. Our examples are based on the Gries and Gehani article,
however. .

95

4.5.2. Implementing Size Parameters

Now we turn to the question of implementing ASBAL's size parameters. First of all,
they are not true parameters to the type, and appear only as dummies, or in positions to allow
allocation of memory for variables. The basic technique for handling size parameters is to
store the size information in the variables. This method leads to a nice implementation of x?y:
Just fetching a component at a fixed offset from the beginning of x, 'very similar to records.
Because the sizes are stored with the variables there are no problems of allocating space for
size parameters dynamically - the space has already been reserved in each variable. (The next
section will discuss storage formats for variable size ob jects in more detail) In the case of
abstract data types defined by users, the underlying sizes of arrays and strings must be kept for
the use of procedures receiving the components as arguments, etc. However, the abstract size
parameters must also be kept, for querying and for the size checks required in passing

pre-existing variables as return variables (see the next section and Section 4.3.3.2).
4.6. Analysis of Costs of Size Parameters

There are two major costs associated with size parameters: storage overhead and
processor time, and both are somewhat dependent on the actual storage representation used.
Therefore, let us consider the storage efficiency of possible representations, and the extra
processor time required by size parameters. Part (b) of Figure 4. shows the most general
storage format, one using pbinters. This format is simple to use since items are always at
compile-time known offsets within substructures, although considerable indexing and
indirection may be required to access a deeply nested item. More efficient forms such as the
linear format of part (c) of the figure are possible in many cases. Such a linear format saves
memory and cuts access time because the pointers do not have to be stored or followed.
However, the linear representation is not sufficient for all cases. It ls better to adopt a general
representation using pointers - we believe that a single storage format should be used
throughout the system. Having multiple formats in the system would be bad for the f ollowing

reasons:

g

Figure 4. Size Comparison
a) Let this be part of the foo cluster:
foo = cluster [;sizel, size2] is ... ;
rep = recordla: string(;100-sizel],
' b: stringl;size2+101];

end foo;

b) Let x be declared as fool;10,20], and y as fool;20,30); a pointer representation produces:

X X.A Y Y.A
10 90 20 80
20 = 30 -
_J Brecmen]
.—N S
Y.8
X.B 40
¢ An optimized representation for x and y is linear:
X Y
10 1st abstract size parameter 20
20 2ndabstract size parameter 30
90 Maximum length of a 80
- Actual length of a -—
Storage for characters of a
40
) Maximum length of b
Actual length of a
Storage for characters of b

e —— - ———————————— e T S

Bt L

97

(1) code generation would be made more complicated;

(2) if multiple copies of modules were made, each handling one storage format, modularity
would be threatened;

(3 if, on the other hand, modules could handle any storage format, the code would be
larger, or interpretive execution would slow processing;

(4) the entire run-time.system would be more complex, while the payoff might be small.

Thus, the optimization to 5. format more compact than the pointer format may not be worth the
complications it introduces. :

Given that we will use the pointer storage format, let us examine the cost of size
parameters in detail. First, let us see how much storage overhead is introduced by having size
parameters. The storage overhead for size parameters consists of one integer per abstract size
parameter per object of an abstract data type, plus one pointer for each array or string
component. Ikt is hard to assess just how much impact this overhead will have, because it
entirely depends on how often varigblc size objects are used, and whether the arrays and
strings in them tend to be large or small. Dope vectors have been accepted in many languages,
and size parameters are only a generalization of dope vectors. We believe that the storage
overhead for size parameters is acceptable. Besides, this overhead is unavoidable because size
parameters can be determined at run-time. Therefore, we suggest that storage overhead is, less
of a problem than processor time.

In examining processing overhead, we consider the bit-copy operation first. For fixed
size types a bit-copy can be accomplished with a block move, provided pointers to components
are represented as relative offsets, and all components are: packed together linearly. (Both
provisos are possible, and the offsets can be determined at compile-time) With care, the
components of an object of a variable size type can be packed together in a similar way,
although the offsets will generally be computed at run-time, and the order of the parts accessed
through pointers (ie., offsets) may not always be the same. The time when care must be
exercised is in the initial construction of the object, because the components will never be
moved later. The only information that should be stored at a fixed offset in the stack frame
for variables of a variable size type is a pointer to the object itself in the dynamic part of the

98

frame; in that way a single, uniform storage format is achieved.
Run-time size checks comprise the remaining overhead. In Section 43 we made a

decision regarding how closely return variables size specifications must match the sizes of

© pre-existing variables; namely, we decided to allow any pre-existing variable to be used so long

as each of its arrays and strings were at least as large as those specified for the return variable.
Thus if x were a pre-existing variable in Figure 4., and fool;20,30] were a specification for a
return variable intended to be x, the size match would fail. It would not fail because the
abstract size parameters ((10, 20) and (20, 30)) are different, but because the b component of x is
too small. In general, this size comparison requires a tree-walk of the abstract type tree for the
return variable specification and the pre-existing variable; that is, array and string sizes must
be compared pairwise.l For example, for x and y in Figure 4., the sizes of the a components
would be compared, and the sizes of the b components.

Requiring size parameters to match exactly would reduce the processor time spent
doing size checks, because if the sizes match exactly at the abstract level, all lower levels match,
too, so they need not be checked. We opted for f.lexlbility rather than efficiency largely just to
investigate a new idea more deeply: we should see whether programmers feel they need the
extra flexibility before we eliminate it. _

In sum, the major costs of size parameters are storage overhead and run-time size
checks. The storage overhead is not exorbitant, and is of a sort people have come to accept.
On the other hand, run-time checks are much less acceptable. Requiring sizes to match exactly
on assignments reduces the overhead significantly, but it is not known whether the flexibility
of non-exact size parameter matching is required.

It appears that optimizing run-time size checks will b. difficult, though we can always
hope some simple techniques will be developed for the cases most commonly encountered in
practice. Optimizations of storage representations may often be possible, but will be
undesirable since such optimizations will tend to expand code, reduce modularity, increase

execution time, and generally increase complexity of the run-time system.

1. Note that only one pair of strings in an array of strings need be compared; this generalizes
to arrays of any type.

LRGN,

e a— et

4.7. Summary

The flexibility gained with size parameters can be expensive. However, size

parameters are really just a generalization of the bounds of arrays, and many of the same

implementation techniques apply. Notice that if size parameters are required to match exactly

In assignments, we have a scheme very close to those where size is part of the type. However,

we have avoided several difficulties associated with having size be part of the type of ob jects:

(1)
(2)
3

4)

(5)

We do not have different operations for ob jects of different sizes;

and thus we have prevented an explosion of parameters to operations.

We know explicitly which parameters must be compile-time known, and which may be
computed at run-time;

and because types (as opposed to sizes) must be compile-time known, we avoid having
run-time type ob jects (ie, objects of type type) at run-time, although we do require
run-time size information;

and, again because types are compile-time known, we can perform all the difficult type

checking at compile-time.

~ Although it is a matter of opinion, we feel that separating size information results in a cleaner

notion of type and helps to separate abstract concerns from implementation details. Overall, we

are certain of the usefulness of regular parameters, and believe that size parameters are also

helpful in programming.

100

6. Areas and Pointers

In this chapter we present a mechanism for dynamic storage allocation. It allows
programs to build general graph-like data structures without requiring garbage collection or
much run-time overhead. Furthermore, the use of dangling references can be prevented at
compile-time. Our presentation begins with areas, the ob jects that perform storage allocation.
The discussion of areas is followed by a description of pointers, the objects used to name
ob jects allocated in areas. We then present details of using areas and pointers; it is here that
the techniques used to prevent dangling references are developed.

After presenting the area and pointer mechanisms, we discuss the impact of the
mechanisms on aliasing, comment on the copy problem, and present a variety of methods that
might be used to implement areas. Lastly we have three examples to illustrate the use of the

mechanisms.
5.1. Areas

An area; in its simplest implementatlon,l is a block of storage in a stack frame,
somewhat like an array. The idea is that the area parcels out this block dynamically, on
request. Areas are based on the collections of Euclid [Lampson77], but there are several
important differences. The major difference is that a collection allocates objects of a single
type, whereas ob jects of different types can coexist in the same area. Thus an area bounds
only the total amount of storage used rather than bounding the number of ob jects of each type
separately, as collections would. This can lead to better storage utilization.

The simplest allocation method is to allocate ob jects linearly from one end of the area
to the other. No reclamation is done; because areas are in the stack, the space for an entire area
can be reclaimed when the frame it is in is released.2 When the size of a requested allocation is
larger than the remaining space, the allocation operation will fail. This allocation technique

brings out the similarity between areas and arrays: arrays can grow dynamically using the addh

1. We will discuss more sophisticated implementation schemes for areas later in this chapter.
However, the general properties of areas will hold true for any implementation.
2. Again, we will outline implementation schemes that do more (e.g., reclamation) later.

101

or add!l operations; areas. allocate new components dynamically in like fashion. The similarity
ends there, however, because arrays are homogeneous aggregates and areas are heterogeneous.
Pointers are used to access ob jects allocated in areas. Following a pointer is not unlike
indexing an array, but a pointer's typé includes the area in which the ob ject pointed to resides,
and the type of the object, for safety.' Thus the type generator ptr (for pointer) takes two
parameters: an area and'a type; ptrla,) means a pointer to an object of type ¢ in the area a.
(The type generator ptr and the use of areas as parameters will be discussed in more detail
below.) The allocation of ob jects in areas is performed by the operation ptria,fJ$alloc. It takes
one argurﬁem, an ob ject that is copied to produce the newly allocated object. The new ob ject is
created using t$copy. The type of ptrla,t$alloc is
proctype (const t) returns (ptr{a,t))
where a is an area and ¢ is-a type. Alloc signals fatlure(*area out of memory™ when there is not
enough memory left in the area to allocate an ob ject of th‘e requested type. If a is an area, then
var p: ptela,int] := pte(aintd$alioc(s);
is a legal declaration with initialization. Its effect is to allocate an integer in the area a, and set
the pointer variable p to point to that newly allocated integer. In this case the new integer is 5.
Corresponding to alloc, there is a selector, deref, used to access objects allocated in
areas; the type of ptrla,r)$deref is
seltype O of t from ptrla,t] signals (bad_pointer)
where a is an area, and ¢ is a type. Deref signals bad_pointer when given a null pointer to
follow. (The null pointer will be discussed below.) An unsugared use of deref is
ptrla,intl$deref(p)
The standard selection sugar allows this to be written as
p.deref
However, there is a special sugar for deref which is more convenient than either of the
previous forms:
pt
There is no free operation to release previously allocated storage. Free would be unsafe, or if
safe, prohibitively expensive. Having free and requiring safety would amount to requiring

ob jects to be reference counted, and still one could not truly free cyclic structures without first

102

breaking the cycles. We feel that reference counting is too expensive to justify requiring it for
all areas. However, particular areas can do reference counting with some assistance from the
compiler; there would still be no explicit free operation, but setting a pointer to nilptr might

cause the ob ject previously referred to by the pointer to be freed.
5.2. Pointers

For each area a and each type ¢ there is a pointer type ptrlat). The ob jects of that
pointer type are pointers to ob jects of type ¢ in area a. There are five operations of the type

ptrla,]; in addition to alloc and deref, which were previously introduced), we have:

(3) equal: proctype(const ptrla,r], ptrla,]) returns (bool) - returns true if and only if the
two pointers point to the same ob ject (i.e,, the same location in the same area);

(4) copy: proctype(const ptria,t)) returns (ptrla,)) - copies its argument (the pointer, not
the ob ject pointed to); ptria,t}$equal(p, ptria,rI$copy(p)) will return true;

(8 null: proctype () returns (ptrla,t]) - always returns the null pointer, a pointer which
points to no object. (Remember that following the null pointer fails and signals an

exception.)

There is a sugar for ptrla,t1$null(); it is nilptr. Notice that nilptr carries no designation of
pointer type - the correct type can be obtained from context except in the case of nilptrT,

which will always signal bad_pointer anyway. The only sources of pointers are alloc and nilptr.
5.3. Using Pointers and Areas

Up to this point we. have described some features of areas and pointers, but have
omitted several crucial points. A goal in the design of the area mechanism is safety. In
particular, we desire to prevent dangling references with only compile-time checks. Prevention
of dangling references depends equally on several different parts of the desigh: it is the
synthesis of these parts that achieves our goal of safety, and not the individual parts.

' The technique used to prevent dangling references is basically the following. We use

the syntactic scope of each area ob ject to define a dynamic, semantic scope of the area ob ject at

103

run-time, i.e, we arrange things such that the area is only nameable where it will exist when
the program is run. We also arrange for any ob ject that might contain (or try to construct)
references to ob jects in an area, to have the area’s name as part of its type. This “trick” allows
standard type checking to prevent dangling references at compile-time. Thus, we use the

standard type checking restrictions of the language to get as much of the checking as we can. -

5.3.1. Area Creation

Area is a type, and areas are objects of the type area. The only operation of the type
area is area$new, which is used to create new areas. This operation takes two arguments: a
string (describing what sort of area management scheme is'to be used,) eg. “simple” or
“ref_counted”), and an integer (describing the size of the area to be created, eg. in words, or
bytes, or some other standard unit such as the size of an int). Thus the type of area$new is

proctype(const string, int) returns (area) signals (bad_arguments(string))

The exact meaning of both of the arguments is system dependent: the number and kinds of
area r.nanagement schemes, and their names are determined by the language implementation;
the unit storage size is determined by the impiementation, and the meaning of the size
argument may depend on the area management scheme chosen, as well. Of course area$new
may signal if its arguments are improper (eg., the size is negative).

Although area is a type, we do not allow variables of type area; in f act, only two things
can be done with areas: they may be created, and they may be used as actual parameters. Area
variables are a bad idea because area assignment is dangerous - area assignment could result in
dangling references to the are.a written over by the assignment.

Since there are no area variables, a special statement is used to create new areas, the
new statement. For example,

new a: area = area$new ("simple”, 500);
creates a new area a, of the “simple” variety and of size 500 units. The new statement is
intended to parallel constant definitions, and the scope of the area introduced in a new

statement is the same as the scope an identifier in a constant definition would have in the same

1. See Section 56, which is about implementing areas, for several area management schemes.

104

position. However, the right-hand side of the ‘=’ in a new statement must be a call of

areatnew. Furthermore, the new statement is the only construct that may call area$new.
5.3.2. Pointers and Areas in Reps

It is desirable to allow pointers in the representations of abstract data types. Having
pointers in reps permits dynamic data structures to be built and referred to, one of the goals of
the area mechanism. However, any type using pointers in its representation is relying on the
area which contains the ob jects pointed to. Let us make explicit the notion of a type relying on
an area: a type is said to depend on an area if that area might possibly be accessed via ob jects
of the type. Thus the types arraylptria]] and ptribptric,)) both depend on area a, and the
second type depends on area b as well.

We mentioned our method of preventing dangling references above; we make types
depending on an area unwritable outside the scope of the area. We make the types unwritable
by requiring any type depending on an area to take that area as a parameter. Thus, areas are
not global and dependence on them must be explicitly stated. For example, a type list that
allocates its elements in area @ must take a as a parameter. Recall that, oﬁce created, the only
‘way an area may be used is as a parameter. We see that this use is allowed so that area
dependent tlypes (and other abstractions) can be syntactically associated with the areas on which
they depend. :

An example type definition using pointers in its representation is given below:

binary_tree = cluster [a: area, t: typel is ... ;

rep = ptrla, nodel;
node = record [left, right: rep);

end binary_tree;

Notice that the type node is recursive. CLU does not allow such directly recursive definitions,

but we find them useful, and hence allow them. Two types are defined to be equal if and only

105

if their (possibly infinite) specifications are the same.l A procedure that used a binary tree as a
temporary data structure might look like this:
foo = proc ...
begin
const a: area = area$new("simple”, n);

bintree = binary_tree [a, int];
... bintree$... ...

end;
end foo;

The other thing to notice about binary_tree is that it takes a as a parameter; it must do so to use

a in its representation.

Why are no other uses of areas other than as parameters allowed? As was argued

.before, area variables are dangerous because assignment of areas is an uncontrollable source of

dangling references. Other uses of areas, such as storing them in data structures, or passing
them as arguments, tend to destroy the static scoping required so that the compile-time checks
to prevent dangling references will work. Besides, since such dynamic po'sitions may not be
used as parameters, and ptr takes the area pointed into as a parameter, these dynamic uses of
areas would not be helpful: the usefulness of areas depends on pointer types, and if in some
context the type of pointers into an area cannot -be expressed, nothing .can be done with the
area. In sum, there is no way for dangling references to arise from data structures because the

type of the data structure depending on an area cannot be expressed anywhere the area does

not exist.
5.3.3. Closing the Loopholes

As demonstrated above, dangling references cannot arise from data structures.
However, there are more possible sources of dangling references. For example, the procedure

ptrla.t]$alloc is clearly bound to the area a, and we would not like that procedure to be usable

L. This rule is the same as that used in Algol 68. See [Wijngaarden77] for an algorithm for
checking type (mode) equivalence. '

106

where a does not exist. One might think, “The area a is named in writing out ptrla,()$alloc, so
there is no danger." However, there is a potential danger. Consider the following procedure

definition:

foo = procla: areal(const i: int) returns (int);
end foo;

The assignment statement below is presumably legal:
p := foolal;

where a is an area, and the type of p is
proctype(const int) returns (int)

Therefore, we can write

var p: proctype(const int) returns (int);
begin :
const a: area = area$new("simple”, 100);
p = foo[a];
end;
p(5);
The code pictured above may follow a dangling reference to the area a; that reference is
hidden in the procedure ob ject assigned to p. We say that any routine that might access an
area depends on that area; if a routine creates an area it does not depend on that area. jJust as
with other ob jects, we would like the type of routine ob jects to reflect any dependence on areas.
Most routines’ types do refer to the areas they use. For example, the type of ptria,ti$alloc is
proctype(const) returns(ptria,t})
and that of ptrlat)$deref is .
seltype() of ¢ from ptria,] signals(bad_pointer)
and both types refer to a. To prevent dangling references of the sort exhibited by foo above,
we prohibit routines from taking an area as a parameter without having that area as part of
their type. Thus the procedure foo above is illegal. Since a routine must take an area as a
parameter to be able to access it, this guarantees that the type of any routine that might access
.an area names that area.

We are not ruling out anything useful by prohibiting routines like foo. If the type of a

routine does not refer to any areas, then no objects depending on the areas can be passed

107

through the routine’s interface. And if no objects depending on an area are passed through a
routine’s interface, then there is no point in the routine’s taking the area as a parameter in the
first place: if the area is to be used only locally, the routine may as well create an area for its
own private use.

Another loophole is the use of area as an actual parameter in a position requiring a
type. For example, if an abstraction has a type parameter ¢, it may declare variables of ‘type f,
arrays of type arraylt], etc. Previous restrictions we have made prohibit the use of areas as
variables and their storage in data structures. Therefore, we must make an additional

restriction that area may not be used as an actual type parameter.

5.3.4. Summary
Here are the restrictions we made to prevent dangling references:

(I} areas, once created, may only be used as actual parameters;

(2) if a routine takes an area as a parameter, then that area must appear in the type of the

routine.

(3) area may not be used as an actual type parameter.

In addition, pointers may not be used as parameters, though pointer types may be. Thus
array(ptrla,r]] is a legal type, but barl p) where p is of type ptria,t) iS not. (It is not clear what
meaning ‘can be attached to pointers as parameters anyway.)

With the restrictions stated above there is no possible way of following a dangling

reference in ASBAL. However, it is possible to create a dangling reference that can never be

followed. Consider this fragment of code:

108

new a: area = area$new("simple”, 100);

begin
new b: area = area$new("simple”, 100);
ptype = ptrlb, int];

qtype = ptrla, ptypel;
var p: ptype := ptrlb,int]$alloc(5);
var q: qtype := ptr{a,ptypel$alioc(p);

end; .

After the begin block is exited, the pointer constructed in area a by the initialization of ¢ will
remain. That pointer will be dangling because it points into area b, which has been destroyed.
However that pointer can never be accessed because its type (namely ptria, ptrlb, int])) cannot
be written outside the begin block (the scope of b). Even if the begin block were in a loop,
there is no way to “remember” such a dangling pointer and use it again when it would be

invalid.
5.4. Pointers and Aliasing

With the addition of pointers, we arrive at a universe of ob Jjects very similar to CLU'’s.
We gain many advantages: sharing, the ability to build general data structures, etc; but we gain
the same disadvantages present in CLU. For one thing, sharing is a double-edged sword. We
must accept that a dereferenced pointer may overlap with almost anything of the same type. It
may overlap with an argument, with a selection, or with any other dereferenced pointer of the
same type. What kind of aliasing rule should we have in this situation? Our approach is
based on Euclid [Lampson77). Aliasing rules are used to prevent unexpected sharing, not all
sharing. The sharing possible when pointers are dereferenced is considered to be expected, so
no checks are made necessary at a dereferencing. However, var arguments still cannot overlap,
so if two dereferenced pointers are passed as arguments there may be a run-time check; but no
checks are necessary if the pointers themselves are passed. Note that only (dereferenced)
pointers of the same type need be checked; no others can possibly overlap. The sharing
possible through pointers is not quite as bad as the sharing potentially possible in selections: an

ob ject in an area is never destroyed by having another ob ject written over it; ob jects in areas

109

may only be mutated. (This is because p1 is a selection and cannot. be assigned to.)

Another problem, whicﬁ was mentioned when selections and aliasing were first
discussed in Chapter 2, is that having an object as a const does not guarantee that the ob ject's
state will not change. This is because the object may be accessible via another path as a var,
for example, by following a chain of pointers. However, even though a const may be mutated
under some conditions, there is a simple condition under which it can be guaranteed not to be
mutated: the object is not allocated in an area. Tests for aliasing always catch overlapplng.
objects residing in the same variable, so if an object that is physically part of a variable is
accessible as a const, then we can be sure it will not be mutated. The aliasing detection checks
performed before procedure calls guarantee this. On the other hand, if the ob ject in question
is in an area, it might be mutated via pointers other than the one used to access it, but its
identity can never change because the implicit variable it resides in can never be assigned to.
This is an advantage of dereferencing to ob jects instead of to variables.

Note that if an object has components that are stored in an area, then its components
can always be replaced by replacing the pointers to them; we lose no useful ability through
dereferencing pointers to ob jects instead of to variables. The ma Jor disadvantage of sharing
in ASBAL is the same as its major disadvantage in CLU: sharing makes verification and
proofs about programs difficult, by requiring more complex axioms and proof rules. The
complication of proofs resulting from sharing is an as yet unsolved problem common to all

languages having pointers or sharing.
5.5. The Copy Problem

When presented with an ob ject to copy that contains pointers, should we copy just the
pointers, or the ob jects pointed to as well? The problem is that some types require copying the
ob jects pointed to, and other types forbid it. As discussed in the second chapter, the only
solution to the problem is to have each type provide a copy operation, which does the
appropriate thing for that type.

In CLU, a copy operation will usually copy the objects referred to instead of the
ref ere.n.ces, but both sorts of copying are provided in many cases. For example, CLU has two

copy operations for ‘arrays, called copy and copyl; copy does a full, recursive copy while copyl

R

110

copies only ob ject references. However, references are always implicit in CLU, whereas they are
always explicit in ASBAL. Because we have explicit references, and because our ob jects can
physically contain components, copy operations in ASBAL will usually copy only what is
physically contained in an object. For example, the copy operation of records and arrays is of
this sort. This gives us the following recursive definition of copying for records and arrays:
each component is copied using the copy operation of its type. A recursive copying of this sort
is usually desired, but the implementer of a type has ;:omplete freedom in writing the copy
operation of that type. ;

The copy problem is closely related to another problem which we call the equivalence
problem. In general there is a hierarchy of equivalence relations on the ob jects-of a type, and it
is not at all obvious which one to use when the question is asked “Are these two ob jects equal
(equivalent) ?" For some types the strongest useful equivalence relation is that of identity: two
objects are equivalent if and only if they are the same identical object. For other types,

equivalence of the states of ob jects is used; this is often what is meant in an equality test in a

program, and is the usual definition of equal in ASBAL. In some cases even looser equivalence -

relations are useful. At any rate, equivalence testing must be an dperation of a type just as

copying must be. For example, consider sets represented by a linked list. Two sets are

- considered equal if and only if they have the same members - the order of the members in the

linked list does not matter. Therefore, equality of linked lists is not the appropriate equivalence
relation for sets; it is too strong. However, equal is generally defined recursively on data

structures, so each type should provide it.
5.6. Implementing Areas and Pointers

Our original notion of an area was a block of storage allocated in a stack frame, and
that of a pointer was a machine address (or possibly an offset from the beginning of the area).
However, many other implementations of areas are possible. Areas could be blocks of memory
taken from a storage pool separate from the stack. This implementation requires more
run-time support code, ‘buf has more flexibility. For example, areas could grab more blocks of
storage automatically if their original amount was used up. Fixed size blocks would be
allocated, and the blocks used by an area would be returned to a pool of free blocks when the

111

area was destroyed. Thus, very efficient storage management would be possible. One could
even go so far as to copy currently inaccessible-areas out to on-line mass storage devices to get
an effective increase in address space. An somewhat different approach is to implement a
single heap in which all areas allocate their ob jects. The ob jects of each area could be chained
together to be freed when the area is destroyed.

Somewhat orthogonal to the ssource of the storage is its management. The simplest

- scheme has been mentioned before: linear allocation with no reclamation. However, areas could

reference count their ob jects; alloc and the pointer copy operation could have code to maintain
the counts. (The compiler would have to help in noting pointers that are destroyed, however.)
With more sophisticated run-time support, various garbage collection schemes could be
implemented.! Our goal has been to avoid the necessity of garbage collection, but that does not
mean that we cannot provide it when asked. |

One merit of areas is that they allow many different storage management schemes to
coexist, if care is taken. Hence, storage management facilities can be tailored to the
programmer’s needs in each problem, even within different parts of the same program.

We believe areas are a flexible and potentially efficient alternative to global garbage
collection. Pointers can be as efficient as machine addresses, and allocation within areas need
not be slow - area Iroutines will most likely be hand coded in assembly language. Arguments to
the routines will be in terms of maéhine addresses, of fsets, and numbers rather than types, etc.,
because they will be called by object code and not directly by users. The ability to tailor storage
management to the task is probably the biggest advantage of areas over a global storage

management scheme.

1. The main difficulty is supplying the information required for tracing. See Bishop
[Bishop77] for applicable partial garbage collection techniques. Perhaps these techniques could
be combined with Baker's ideas on incremental garbage collection [Baker77), or with the
transaction file methods [Deutsch76, Barth77) to provide areas that do local, incremental
garbage collection.

112

5.7. Example One - Queues

We now present the first of our three examples using pointers and areas - queues.
Here we essentially re-work the example in Chapter 2, adding appropriate features we have
presented since then. Here is the new representation:

quéue = cluster [a: area, t: typel is ... ;

rep = recordlfirst: ptype,
last: ptype);

" ptype = ptr (a, element);

element = record(next: ptype,
member: t];
We use a linked list as the representation of a queue. The first pointer is null if and only if
the queue is empty; the next pointer of the last element is always null. See Figu.rc 5 for the
entire queue cluster. Pointers are a lot more convenient than the oneof values we used before,l -
because the pointer object nilptr can be used as a place holder. Therefore we do not have to
write (the rather verbose) tagcase statements as Iwe did when using oneof’s. Notice that we

have generalized queues of integers to queues of any type.

Figure 5. The Queue Cluster

queue = cluster(a: area, t: type] is create, insert, remove, members;
where t has copy: proctype(const t) returns(t) end;

rep = record(first, last: ptypel;
ptype = ptr (a, element];
element = record(next: ptype, member: tJ;

create = proc () returns (q: cvt);
q := rep${first, last: nilptr});
end create;

insert = proc (var q: cvt, const x: t);

var p: ptype := ptrla, element)$alloc(element${next: nilptr, member: x});
if qfirst = nilptr ,

then q-first := p;

else q.lastt.next := p;

" end if; :

q.last := p;

end insert;

remove = proc (var q: cvt) returns (x: t) signals (empty);
if qfirst = nilptr
then signal empty;
else
X := qfirstt.member;
qfirst := q.firstt.next;
end if;
end remove;

members = iter (const q: cvt) yields (const t);
var p: ptype := q.first;
while p ~= nilptr do
yield (pT.member);
p := pT.next;
end while;
end members;

end queue;

13

P ——r e

114

5.8. Example Two - Sorted Bags

This example is a re-working of the example in Chapter 3. As with queues, we have
improved bags by parameterizing them. The new representation for bagla, t] is:

rep = record(count: int,
size: int,
" root: pnode);

pnode = ptria, node);

node = recordelement: t,

count: - int,

left: pnode,

right: pnodel;
This representation is essentially the same as the previous one with the array replaced by an
area, and array indexes replaced by pointers. Figure 6 presents the entire cluster. We feel the
new implementation is much more elegant than the previous one. In-the previous cluster, the
array containing the nodes had to be passed in any recursive calls in the previous cluster,

wheteas here the “passing” of the area is implicit.

115

Figure 6. The Sorted Bag Cluster

bag = cluster(a: area, t: type] is create, insert, count, size, increasing;

where t has copy: proctype(const t) returns(t),
equal, It: proctype(const t, t) returns(bool) end;

rep = recordlcount: int,
size: int,
root: pnodel;
pnode = ptrla, nodel;
node = recordlelement: t,
count: int,
left: pnode,
right: pnode);

create = proc () returns (b: cvt);
b := rep${count: 0, size: 0, root: nilptr}
end create;

insert = proc (var b: cvt, const x: t);
b.count := b.count + I; ,
const new_ptr: pnode, allocated: bool = insertl (b.root, x);
b.root := new_ptr; :
if allocated then b.ize := b.size + 1; end if;
end insert;

insertl = pfbe (const p: pnode, x: t) returns (q: pnode, allocated:bool);
if p = nilptr
then
q := ptrla, nodel$alloc(node${element: x, count: 1, left, right: nilptr}));
allocated := true; '
elseif pf.element = x
then pt.count := pt.count + |;
elseif pT.element < x
then q, allocated := insertl (pf.left, x);
else g, allocated := insertl (pt.right, x);
end if;
end insertl;

116

Figure 6. (continued)
size = proc (const b: cvt) returns (s: int);
s := b.size;
end size;

count = proc (const b: cvt) returns (c: int);
¢ := b.count;
end count;

§

increasing = iter (const b: cvt) yields (const t, int);

for const e: t, c: int in increasingl (b.root) do
yield (e, ©);
end for;

end increasing;

increasingl = iter (const p: pnode) yields (const t, int)

if p = nilptr then return; end if;

for const e: t, c: int in increasingl(pt.left) do
yield (e, c);
end for;

yield (pt.element, pt.count);

for const e: t, c: int in increasingl(pt. right) do
yield (e, o);
end for;

end increasingl;

end bag;

e ——————

17

5.9. .Example Three - Symbol Table

Our last example is a new one. The abstraction is taken from [Wulf76c), and is
presented to allow comparison with Alphard. A symbol table performs a mapping from strings
(representing identifiers) to attribute objects in block-structured fashion. Here is the cluster
header: .

symtab = cluster(a: area, attr: typel is create, insert, is_defined,
enter_block, leave_block, lookup;
where attr has copy: proctype(const attr) returns(attr) end;
and a description of the operations:

create: proctype () returns (symtab)
creates a new, empty, symbol table

insert: proctype (var symtab, const string, attr) signals (defined)
inserts a new symbol with initial attributes; signals defined if the symbol
is already defined at this block level

is_defined: proctype (const symtab, string) returns(bool)
returns true if and only if the symbol is defined at this block level

enter_block: proctype (var symtab) '
performs whatever housekeeping is necessary for a new block level

leave_block: proctype (var symtab) signals (underfiow)
flushes symbols of top level and drops back a level; signals underflow if
an attempt is made to leave the outermost block level

lookup: seltype (string) of attr from symtab signals (not_present)
selects the attribute ob ject for the symbol (if any); signals not_present if
there the symbol is not in the table
A hash table will be used to look up the symbols in the table. We will use a linked list
for symbols hashing to the same bucket; the hash table will be used to fetch such a list. Each
entry in one of these lists will be a pointer to the data structure for one symbol. This data
structure consists of the name of the symbol (a string), and the stack of entries made for that
symbol. Each block is represented by the list of the symbols defined in it, and the blocks are

stored in a stack. An actual statement of the representation should make this more clear:

118

rep = record(level: int,
blocks: blk _stk,
hash_table: hashtab];

blk_stk = stackla, block];
block = recordlsymbols: symlist);
symlist = list{a, p_sym_entl];

hashtab = arraylbucket; 1, n];
n = some integer,

bucket = listla, p_sym_ent];
p-_sym_ent = ptr{a, sym_entry);

sym_entry = recordlsymbol: string,
stack: attr_stk];

attr_stk = stackla, attr_entry];
attr_entry = record(level: int,
attributes: attrl;
See Figure 7 for an example of a symbol table representation after some operations have been
performed. Here are brief summaries of the operations of stack and list.

Operations of stackla,t):

(1) create: proctype() returns(stackla,t)
creates a new, empty stack

(2) push: proctype(vir stack[a,t], const t)
pushes a new ob ject on the stack

- (3) pop: proctype(var stackla,t]) returns(t) signals(underflow)
pops the top element of f the stack;
signals underflow if given an empty stack

(4) top: seltype() of t from stackla,t] signals(empty)
selects the top element of the stack;
signals empty if given an empty stack

(5 empty: proctype(cohst stack(a,t]) returns(bool)
returns true if and only if the stack is empty

The operations of listla,t] that we use:

Figure 7. A Snapshot of a Symbol Table

119

Below is a drawing of the representation of a symbol table after the following operations have

been performed on it:

Create

insert: a, x1
insert: b, x2
insert: d, x3
enter_block
enter_block
insert: a, x4
insert: ¢, x5
enter_block
insert: f, x6
leave_block

(Assume that a, ¢, and f hash to the same bucket, and list and stack are implemented with

linked lists))

level 3

blocks

hash_table

==

:

et

et

e e e e ——— e e

x1

120

(1) create: proctype() returns(list(a,tl)
returns a new, empty list

(2) cons: proctype(const t, list{a,t]) returns (list{a,t))
returns a new list consisting of its argument plus a new element at the front
of the list;
the new element is made with t$copy

(3) members: itertype(listla,t]) yields(t)
yields the elements of the list in order

Now we present the operations of the symtab cluster, one at a time.

create = proc () returns (s: cvt);
s := rep${level: 1,
blocks: blk_stk$create(),
hash_table: hashtab$fill(bucket$create(), 1, n)}; -
blk_stk$push(s.blocks, block${symbols: symlist$create()});
end create,
Thus create returns a symbol table at block level 1, the outermost block, with an empty hash
table, and a single block with no symbols.
The insert operation is fairly complex, but breaks down into several simple cases. It

works as follows:

(1) the input string is hashed and the bucket searched to see if it is present;

(2) if the symbal is present, and is not defined at the current block level, then a new
attr_entry is created and pushed onto the stack of entries for the symbol;

(3) if the sﬁnbol is defined at the current block level, then defined is signalled;

(4) if the symbol is not present, a new attr_entry is created for the attributes, a sym_entry
is constructed for the symbol, and it is entered in the bucket list;

(5) lastly, the symbol is entered on the list of defined symbols for the current block.

121

insert = proc (var s: cvt, const sym: string, attrib: attr) signals (defined);
const bkt_num: int = hash(sym);
var p: p_sym_ent := nilptr;
for p in bucket$members(s.hash_tablelbkt_num)) do
if pt.symbol = sym '
then
if attr_stk$empty(pt.stack) cor pt.stack.top.levelv=s.level
then ;
attr_stk$push(p?.stack,
attr_entry${level: s.level,
attributes: attrib});
break;
else signal defined;
end if;
end if;
end for;
if p = nilptr
then
p := ptria, sym_entry)$alioc(
sym_entry${symbol: sym, .
stack: attr_stk$create()});
attr_stk$push(p1.stack, attr_entry${level: slevel,
attributes: attrib});
s.hash_table(bkt_num] := bucket$cons(p, s.hash_tablelbkt_num»;
end if;
const newblk: symlist = symlist$cons(p, bik_stk$top(s.blocks).symbols);
blk _stk$top(s.blocks).symbols := block${symbols: new olk};
end insert;

T he operator cor (for conditional or) evaluates its second argument only if the first argument is
false; its value is the logical or of its arguments. There is also a cand operator: conditional and,
and it evaluates its second argument only if the first argument is true. The regular and and or
operators are sugars for calls, and therefore always evaluate both arguments. The cor used
above prevents our following a null pointer.

The rest of the operations, is_defined, enter_block, leave_block, and lookup, are
straightforward. Notice that leave_block must throw away all symbol definitions for the block
being exited. However, it does not throw away an empty sym_stk; in this sense a symbol, once

entered, is never deleted.

122

is_defined = proc (const s: cvt, sym: string) returns (d: bool);
for const p: p_sym_ent in bucketSmembers(s.hash_tablel hash(sym))) do
if pt.symbol = sym
then
d := (~attr_stkSempty(pt.stack) cand pt.stack.top.level=s.level);
return;
end if;
end for;
d := false;
end is_defined;

enter_block = proc (var s: cvt);
blk _stk$push(s.blocks, block${symbols: symlistScreate()));
s.level := s.level + |;
end enter_block;

leave_block = proc (var s: cvt) signals (underflow);
if s.level = 1 then signal underfiow; end if;
s.level := s.level - |;
for var q: p_sym_ent in symlistSmembers(blk_stk$pop(s.blocks).symbols) do
attr_stkSpop(_qT.stack);
end for,
end leave_block;

lookup = selector (sym: string) of attr from s: cvt signals (not_present);
for const p: p_sym_ent in bucket$members(s.hash_tablel hash(sym))) do
if pT.symbol = sym
then
if sym_stkSempty(pt.stack)
then signal not_present;
else select pT.stack.top.attributes;
. end if;
end if;
end for;
signal not_present;
end lookup;

end symtab;

123

5.10. Comparison of Area- and Stack-Based Programming

There are considerable differences between designing clusters for ob jects in the stack
and ones for ob jects to be allocated in areas. Unfortunately the user must plan ahead because
abstractions designed for the one storage mode will rarely be conve}tible to operate in the other.
The reason is that stack- and area-based abstractions take different parameters: stack-based
abstractions will use size parameters, and area-based ébstractions will take at least one area as a
parameter, but not usually any size parameters. However, if the situation is examined more
closely, it appears that stack- and area-based abstraction will always be different abstractions,
so interchangeability of them'is not really desirable. For example, stack-based abstractions will
always be bounded, whereas area-based types will.usually be unbounded. Often just this
difference is enough to cause the functionalities of operations to be defined dif ferently for
stacks as opposed to areas. Another difference is that arrays will be used to represent lists in
stack-based abstractions, but true linked lists with pointers will be used in areas. This matter

of bounded vs. unbounded abstractions needs further research.

5.11. Summary

We have presented areas and pointers, features that add dynamic storage allocation
and list processing capabilities to ASBAL without requiring garbage collection or great
run-time overhead. Our pointers are safe: they may never point to garbagé. Pointer safety is
guaranteed by compile-time checking which prevents following any dangling references. We
extended our aliasing detection and parameter mechanisms for areas, and discussed a variety of
possible implementations for areas. Lastly, we presented three programming examples; two
were new implementations of previous examples, and one was a new cluster. We believe that

the concepts behind our areas may be useful in other languages besides ASBAL.

124

6. Summary and Conoclusions

We have designed a programming language incorporating abstract data types that
does not require garbage collection. Our approach was to use CLU as a basis and change or
extend it as needed. The major changes were to the underlying semantic model of
computation. We formulated a new ob ject-oriented semantics that preserves many of the
ob ject-oriented concepts of CLU, although not in their ideal form. These changes were
necessary to obviate the need for garbage collection.)

The ma jor extensions were:

(1> Selectors - a mechanism for accessing ob jects contained within other ob jects;

(2) Size parameters - a feature allowing control over the size of variables, but handling
size automatically where control is not needed; size parameters are essential where
ob ject sizes must be bounded at creation;

(3 Areas and pointers - a mechanism for dynamic storage allocation and manipulation of

list structures withjn the framework of the stack.

Of the three extensions, two are just generalizations of commonly accepted ideas, from their
present use to the realm of abstract data types. Selectors generalize record and array component
access, and size parameters generalize array bounds and dope vectors.

Areas extend the language in quite a different direction. They are an orthogonal
addition to the basic ASBAL presented in Chapters 2 to 4, However, areas were added so easily
because the ob ject-oriented semantics of the earlier chapters was designed taking areas into
account. For example, if we were to delete areas from ASBAL, the copy problem would not
arise. Without the copy problem we might be able to have a system defined copy for all types.
In the absence of areas the whole semantic model might be significantly different. The area

mechanism was largely inspired by the collections of Euclid (LampsonT7].

125

6.1. Suggestions for Further Research

There are rﬁany areas of possible further investigation related to the design of
languages supporting abstract data types. Flrst,. let us describe a few concerning ASBAL
directly. One obvious extension of our work is to implement the language we have designed.
An implementation would give direct evidence of whetﬁer features we claim are good really are
worthwhile and efficient enough in practice. We believe that the mechanisms for returning
and size parameters are the most questionable. These two mechanisms were the hardest to
design, and are still not completely satisfactory. A redesign of these parts by other researchers
might be worthwhile. ‘

A more ambitious undertaking would be extensions to ASBAL for systems
programming, altrﬁugh any implementation would need to extend the language some. Here

are some systems programming features that might be added to ASBAL.

(" machine-oriented-types (such as words, bytes, bit strings, addresses, et;:.);

(2) typé checking loopholes to allow certain unsafe operations to be perf ormed;!

(3) controlled excursions into assembly language for other unsafe operations, such as
control of input/output devices and special hardware (eg. cache memory), process
swapping, and other features for building higher level parallel programming
constructs;

(4) user-written storage management packages, possibly in the form of new

implementations of the area type.

Another suggestion for further investigation is incorporation of our area and pointer

mechanism in other languages. We believe our scheme has merit independent of ASBAL, and

1. For example, memory allocation. involves the unsafe and type-incorrect conversion of a block
of memory words to an arbitrary type. Much work remains to be done on the question of how
often and how locally such type-checking loopholes must be used, if at all. See Euclid
(Lampson77] for one technique of bypassing type checking. The mechanism presented there is
simple but inadequate, because there is not enough control over which programs may use it,
and how they use it.

126

it would be interesting to see if it did have applications elsewhere. Comparison of our area
mechanism with its parent, Euclid’s collection mechanism, might also be worthwhile. The size
parameter scheme could also be used in other language designs, since it is a fairly
straightforward generalization of the dope vector concept.

A different line of research is to design a language with the same goals as ASBAL,
but using static rather than stack allocation of storage for objects. This might involve a
synthesis of the CLU cluster and the operating system concept of type managers. Each type
manager would statically possess storage and would allocate and free its own ob jects within that
storage.l The user's variables in the stack would contain only typed object references, which
would. be interpreted only by the appropriate type manager. Hence each type manager would
distribute only references to its objects; the objects would be kept in its private storage.
Because the references would be interpreted only by the type manager distributing them, they
could take any form convenient for the type manager. :

A static allocation scheme might work very well, particularly for systems programming
languages, and could be simpler than ASBAL. It would also ook more like CLU since ob ject
references are used, and sharing could easily be alliowed. A major problem is freeing the
storage used by inaccessible objects. Another difficulty would be parameterizing type
managers.2 Still, we believe the type manager approach is quite promising, and might be

developed into a simpler and more practical language than ASBAL.

6.2. Conclusions

We believe we were successful in designing a language with abstract data types that
does not require garbage collection. And we believe the language is built on a firm

philosophical basis, which leads to a consistent design.

1. The allocation of storage to. the type managers might not be completely static, but would be
simple; the type managers would have complete responslbllity for the allocation and
management of ob jects of their type.

2. It might be hard to devise a scheme in which the type manager for queues (say) could deal

with queues of any type. Likewise, it might be hard, or inefficient, to use a separate type
manager for queues of each type.

——————.

127

ASBAL does not have the elegance of CLU. But we did not expect it would. There
appears to be a trade-off between elegance on the one hand and efficiency on the other.
CLU's semantics achieve elegance through the use of a simple and powerful semantic model,
which unfortunately requires fairly complex run-time support. We héve traded away some of
that elegance for a more efficient run-time mechanism. However, we have tried not to
compromise some more important aspects of CLU. Our prejudice has been toward a
completely type-safe language, type-safety being a key to the abstract data type methodology.

If ASBAL does not have CLU's elegance, neltherl does it have the simplicity of
traditional languages, for example Pascal. In fact, CLU is more complex than Pascal (and
similar languages), but more because it has a parameter mechanism than because of abstract
data types.l Yet ASBAL is more complex than CLU. We believe the source of ASBAL's
complexity is the constraint of running within a stack, and not using an automatically managed
heap. In a sense, we have built ASBAL on an inappropriate foundation, but one forced on us
by our requirements.

ASBAL represents a synthesis of ideas from several languages, and several semantic
models. We feel the synthesis was profitable, and hope that our work may suggest and

encourage more investigation in the area.

1. Pascal has been criticized on the grounds that it is too simple in this respect: no Pascal
program can deal with arrays of any size.

o —— T —

128

I. Byntax of ASBAL

Here we present the full, context-free syntax of ASBAL. The metalanguage used is an

extension of the usual Backus-Naur form. It has several special symbols, and their meaning is as
follows:

[] - enclose optional parts of a productjon;

{ } - enclose an item which may be repeated any number of times, including zero;

| - separates choices, thus ® a | b ’ generates either “a’or ‘b %
() - are used to group items and eliminate ambiguity;
=> - used to separate the left-hand side of each production (a nonterminal) from the

right-hand side (the string it generates).

Nonterminal symbols are represented by lower case identifiers. All other symbols are terminal
(excepting the special metalanguage symbols).

129

I.l. Formal Syntax

I1.1.1. Modules

program
module

cluster

clustermodule

procdef

iterdef

seldef

=> module ;‘{ module ; }

=> cluster | procdef | iterdef | seldef

=> id = cluster [fcparms] is ids ; [restrictions ;]
{'equate $ } rep = type ; { equate ; } :
clustermodule { clustermodule } end'[id] ;

=> procdef | iterdef | seldef
=> id = proc [fparms] fargs [fretsl] [fsigs] P
[restrictions ;] body end [id] }
=> id = iter [fparms] fargs [fylds] [fsigs] c
[restrictions ;] body end [id] 3
=> id = selector [fparms] ([ids : qtype { , ids : qtype }])

- of stype from id : qtype [fsigs] ; [restrictions ;] body end [id] H

1.1.2. Parameters and Restrictions

fparms

fcparms

fparmitem

=> [fparmitem‘{ , fparmitem }]

- [fparmitem { , fparmitem }] [3 ids]]
=> ids :(int | bool | char | type | area)

The above three productions are for formal parameters (to all definitions
except clusiers), formal parameters to clusters, and the items in formal

parameter lists.

130

aparms

aparm

restrictions

restriction

restrict

| ->[[;parm{ ,lplrm}][';exp‘{ .exp}]]

=> exp | qtype

The produc!io_ns for aparms and aparm are for actual parameters, which may

be expressions, or type specifications (with ?id’s and #’s in them).

=> where restriction { and restriction } end [where]

=> id has restrict { , restrict }

=> ids : (ptype | itype | seltype)

1.1.3. Arguments, Returns, Yields, and Signals

fargs

faitem

frets

fylds

fylditem

fsigs

fsigitem

I.1.4. Statements
body
equate

statement

=> ([taitem { , taitem }])

=> (var | const) ids : atype { , ids :qt).fpe.}
=> returns ([ids : stype { ,ids :stype } |
=> yietds ([tylditem { , tytditem } |

=> ((var | const) stype { , stype }

-> signals (‘fsigitem { , Isigitem })

=>id [(stype { , stype })]

The above productions are for formal argument lists, returns lists, yields lists,
and signals lists. They are used mainly in module definitions.

<> { eauate ; } { statement 3

=> id = exp ;

=> decl|

| assign

decl

assign

while

for

131

| if

| while

| for

| with

| except
| begin
| return
| yield

| select
| signal
| invoke
| tagcase
| break

l new
=> var ids : qtype { , ids : qtype } = exp {) €Xp }
| var ids : type { , ids : type }

l const ids : qtype { , ids : qtype } = exp { » €Xp }

In the first and third productions for dec/, the number of identifiers on the left

must equal the number of expressions on the right.

=> ids := exp { , eXp }

There must be either one expression, or as many expressions as there are
identifiers. A

=> if exp then body { elseif exp then body } [else body]_end [if] -
=> while exp do body end [while]
=> for fordec! { , fordec| } in invoke do body end [for]

| for [ids] in invoke do body end [for]

132

fordecl

with

except

whenarm

othersarm

begin

return

yield

select

signal

invoke

tagcase

tagarm

-> (var | const) ids : qtype
=> with (var | const) id == exp do body end [with]

=> statement except { whenarm ; } [othersarm ;] end
There must be at least one whenarm or othersarm present.

=> when ids [fargs] : statement

| when ids (#) : statement

In the first production, all the exceptions named must send exactly the same
types of objects in the same order. The second production is used for
throwing away the objects sent along, and the number and types of the

objects need not be the same for all exceptions listed.

=> others (const id : gtype) : statement
| others () : statement

The first production’s object is a string (so the qtype must resolve to string),

and is the name of the exception signalled.
=> begin body end

=> return

->yield[([exp{ ,exp}])]

=> select exp

= signalid [([exe { ,exp })]
—exp([exn{ e}]

=> tagcase exp in tagarm ; { tagarm ; } end [tagcase]

=> tag ids [((var | const) id : qtype)] : statement

| others : statement

break

new

I.L5. Expressions

exp

selexp

5 I selexp

133

There may be only one others arm per tagcase statement. All tags must be
accounted for in each tagcase statement. All tags named on the same arm
must be for the same type, and the type of the locally declared identifier must
match that type.

=> break
=> new id : area = exp
The expression must be an invocation of area$new.

Several of the above statements are allowed only in particular contexts. The
return statement is legal only in procedures and iterators; yield.is legal only
in iterators; select is legal only in selectors; and break is allowed only in for

and while loops.

=> exp bop exp
| vop exp

| Cexp)

| literal

| invoke

| atype 8 id [aparms]

| up
| down

The last four productions of exp need explaining; they are for routines. The
special routines up and down are allowed only in clusters and convert

between the abstract and rep types.

=> id
|exp.id[(exp{ .exp})]
| exp [exp]

| exp 1

134

bop

uop

literal

boollit
nulllit

ptriit

These forms are (in order): a variable, selection, array indexing, and pointer
following.

=>?

| 2+

1711

F+1-10

<l = om [< m [m [m | >
| & | cand

| 1] cor

The operators on each line have the same precedence. The operators in the
first line bind most tightly, those in the second less tightly, etc., so the last
line binds least tightly. For all operators drawn from the same line, except =2,

‘x oOp y op 2’ means ‘(x Op y) Op 2’; ‘x ¢ y ¢ 2’ means ‘x 2% (y sx z)’.
=> - I ~

=> intlit | charlit | strlit | boollit | nulllit | ptrlit

i}

|qtype$[exp:exp{ ,exp}]

l atype 8 [exp .. exp : exp]

|qtype8{ids:exp{ ,ids:exp} }

The second and third lines are for the array constructor, which has two forms.
The ‘[expg : expy , €xpp , ., exp, J' form means an array with low bound
expg, and n elements, exp; through exp,, in increasing order. The
‘[expg - expj : expy T form means an array with lower bound expg, upper

bound max(expo- l,expl), and all elements 'copies of expy. The last
production is for record constructors.

=> true | false
=> nil

=> nilptr

1.1.6. Types

type

ptype
itype

seltype

fpargs
fpargitem
fprets

ids

135

=> jint

| bool -

| char

| nun

| area i

| string [; exp]

| array [type ; exp , exp]

| record [ids : type { , ids : type }]
| oneof [ids : type { , ids : type }]

| id [aparms]

| ptype

litype

| seltype
|evt[;exp]

| pte [id, atype]

=> proctype fpargs [fprets] [fsigs]
=> itertype fpargs fylds [fsigs]

=> Seltype [fpargs] of stype from qtyp§ [fsigs]

=> ([fpargitem { , fpargitem }])
= (var | const) qtype
=> returns ([stype { , stype }])

->id{,id}

The productions of type are for those positions where a v-typespec is

required.

136

L.1.7. Star Types

stype => int
| bool
| char
| nun
| area

| string [[; sparm]]

. | array [stype [; sparm , sparm]]
| record [ids : stype { , ids : stype }]
| oneof. [ids : stype { , ids : stype }]

| id [sparms]

| ptype
| itype
| seltype

|¢Vt[[:sparm}.smr'n{]]

lf'-'P[[zs:;arm } . sparm §]]

| ptr [id , qtype]
sparms => [[aparm { , aparm }][sperm vsparm 3]
sparm > wpife

An stype is used for ve-typespecs.
I.L8. Question Mark or Star Types

qtype => int
' | bool

| char

| nuli

| area

137

| string [[qparm]]

| array [qtype [i qparm , qparm]]

| record [ids : qtype { , ids :qtype }]
| oneof [ids : qtype { , ids : qtype }]

|id [qparms]

| ptype
| itype
| seltype

| vt [[;qparm{ aparm }]]
: |f°P[[;qparm{ .qparM}]]
| ptr [id , qtype]
qparms = [[aparm { , aparm }] [saparm { , qparm }]]
aparm =>exp |?id |+

The nonterminal qtype expands to vs?-typespecs.+’s and ?id’s.

138

1.2. Syntactic Sugars

There are quite a few syntactic forms which are ‘sugars’ for normal invocations. These

forms are cataloged below; x, y, and z are expressions, n is an identifier, and T is the syntactic

type of x (i.e., its type as declared in a program or determined by the compiler).

Sugar

xX.Nn

X.n =2
x[y)
x[y) =2z
% y
*y
ly
/'y
+y
8%
<y
S=iy
=Y
Sy
>y
~<'y
~lm y

~u y
D= y

X X X X X X X X X X X X X X X X

x

~>y
x&y
x|y
- x
~ X

1.3. Reserved Words

and char else from
area cluster elseif has
array const end if
begin cor except in
bool cvit false int
break do for is

cand down

Expansion

T8n(x)
T8put_n(x, 2)
T8element(x, y)
T8store(x, y, 2)
T8power(x, y)
T8mul(x, y)
T8divix, y)
T8mod(x, y)
T8add(x, y)
T8sub(x, y)
T8concat(x, y)
T8It(x, y)
T8le(x, y)
T8equal(x, y)
T8ge(x, y)
Tgt(x, 1)

~x <y)

~x <= y)

Mx = y)

~x >= y)

Mx > y)
T8and(x, y)
T8or(x, y)
T8minus(x)
Ténot(x)

record seltype then

oneof rep signal to
others return signals true
proc returns string type
proctype select tag up
ptr selector tagcase var

when
where
while
with
yield
yields

I.4. Terminal Symbols

id

alpha
letter
digit
intlit
charlit
striit
char_rep
print‘ing

special

octal

=> aipha { _alpha | digit }
=> letter | _
=>Al.|z]a]..]z
=0|..]9

-> digit { digit }

- (char_rep | ") 3
=" { char_rep |’ } s
=> printing | \ special

=> any ASCII character such that 37g < octal value < 177g

- % represents *

| - % represents "

| \ % represents \

| n % reprasents NL (newline)

K % represents HT (horizontal tab)
lp % represents FF (form feed)

|b % represents BS (backspace)

| r % represents CR (carriage return)
|v % represents VT (vertical tab)

| octal octal octal

=>0|..|7

139

140

II. Basic Data Types of ASBAL

Here we detail the operations of the basic types of ASBAL. Let us first describe the
special notations used. The arguments to operations (the actual objects, not the syntactic
expressions) are called ‘argl’, ‘arg?’, etc, or just ‘the argument’ if there is only one. If an
operation signals ‘foo’, we say that foo occurs. The ‘type$’ part of operation names is dropped
where there is no ambiguity. Arithmetic expressions and comparisons contained in the text are to
be computed over the domain of all integers, not just the domain of the type int.

Some definitions involve restrictions. If a definition has a restriction, it is either a
standard where clause, or of the form

where each T; has oper_decl;
which is an abbreviation for

where T has oper_decly, .., T, has oper_decl,

Several definitions will involve tuples. A tuple is written <ajy ., 8,>. The a; are called the
components of the tuple, and a, is called the ith component. A tuple with n components is called
an n-tuple. We also define the following operations on tuples: ;

Size(<ay, .., a>) = n

A = B iff (Size(A) = Size(B)) A (Vill <i < n)a; = b;]

<a, .., b> || <, .., d> = <a, .., b, c, ..., d>

Front(<a, .., b, ¢>) £ <a, ..., b>

Tail(<a, b, .., ¢>) & <b, ..., c>

Tail%A) & A and Tailk*1(A) = Tail(Tailk(A)

Occurs(A, B, i) = (3C, D) [(B = C || A || D) A (Size(C) = i - 1))

Lastly, we say tuple A occurs at index i in tuple B if Occurs(A, B, i) holds.
I1.1. Nulls

There is only one; immutable object of type null, denoted by nil.
equal: proctype(const null, null) returns (bool)

Always returns true.
copy: proctype(const null) returns (null)

The obvious copy.

141

11.2. Booleans

There are two, immutable objects of type bool, denoted by true and false. They represent the
logical truth values.

and: proctype(const bool, bool) returns (bool)
or: proctype(const bool, bool) returns (bool)
not: proctype(const bool) returns (bool)

The standard logical functions.
equal: proctype(const bool, bool) returns (bool)

Equal returns true iff its arguments are the same.
copy: proctype(const bool) returns (bool)

Copy simply copies its argument.

IL3. Integers

Objects of the type int are immutable and represent a subrange of,the mathematical
integers. The subrange (which may differ with each implementation) is a closed interval
[Int_Min, Int_Max], where lnt_Mins-215+1 and lnt_Max?.le-l. An overflow exception is
signalled by an operation if the result would lie outside this interval.

add: proctype(const int, int) returns (int) signals (overflow)
sub: proctype(const int, int) returns (int) signals (overflow)
mul: proctype(const int, int) returns (int) signals (overflow)

The standard integer operations.
minus: proctype(const int) returns (int) signals (overfiow)
Minus returns the negative of its argument.
div: proctype(const int, int) returns (int) signals (zero_divide, overflow)

Div computes the quotient of argl and arg2, ie., the integer q such that
(3r|0 s r < |arg2|) [arg]l = q # arg2 + r]. Zero_divide occurs if arg2 = 0.

142

power: proctype(const int, int) returns (int) signals (negative_exponent, overflow)

This computes argl raised to the arg2 power. Power(0,0) = 1. Negative_exponent
occurs if arg2 < 0.

mod: proctype(const int, int) returns (int) signals (zero_divide, overfiow)

This computes the integer remainder of dividing argl by arg2; ie., the result is
argl - arg2sdiv(argl, arg2). Zero_divide occurs if arg2 = 0.

from_to_by: itertype(const int, int, int) yields (const int) signals (zero_step)

This iterator yields, in succession, argl, argl + arg3, argl + 2 * arg3, etc., until the next
value to be vyielded, x, satisties (x> arg2 A arg3>0)v (x < arg2 A arg3 < 0).
Zero_step occurs if arg3 = 0.

1t: proctype(const int, int) returns (bool)
le: proctype(const int, int) returns (bool)
equal: proctype(const int, int) returns (bool)
ge: proctype(const int, int) returns (bool)
gt: proctlype(const int, int) returns (bool)

The standard ordering relations.
copy: proctype(const int) returns (int)
The obvious copy operation.

11.4. ‘Characters

The objects of type char are immutable, and represent characters. Every
implementation is assumed to provide at least 128 characters, but no more than 512. Character
are numbered from O to some Char_Top, and the numbering defines the ordering for the character
type. The first' 128 characters are the ASCII characters in their standard order.

i2c: proctype(const int) returns (char) signals (illegal_char)

I2¢ returns the character numbered argl in the numbering of characters. Illegal_char
occurs iff the argument is not in the range [0, Char_Top]

e et . P A A e e ——

c2i:

copy:

143

proctype(const char) returns (int)
Returns the number corresponding to its argument.

proctype(const char, char) returns (bool)
proctype(const char, char) returns (bool)
proctype(const char, char) returns (bool)
proctype(const char, char) returns (bool)
proctype(const char, char) returns (bool)

The ordering relations consistent with the numbering ot characters.
proctype(const char) returns (char)

The obvious copy.

1L.5. Strings

Strings are immutable objects. Each string represents a tuple of characters. The ith

character of the string is the ith component of the tuple. The Size of a string must be a legal

integer; if it is not, then a failure exception is signalled. Furthermore, a variable declared

string([;n] must be able to store strings whose size does not exceed n, and may possibly store

larger strings.

size:

indexs:

indexc:

c2s:

proctype(const string) returns (int)
Returns the size of the tuple representing its argument.
proctype(const string, string) returns (int)

The operation returns the least index st which arg2 occurs in argl. (Notice that this
means 1 is returned if argl is the O-tuple.) If arg2 does not occur in argl, then O is

returned.
proctype(const string, char) returns (int)

Indexc returns the least index at which the 1-tuple <arg2> occurs in argl. If <arg2>
does not occur in argl, then O is returned.

proctype(const char) returns (string)

— et A

e

144

concat:

append:

fetch:

substr:

rest:

s2ac:

ac2s:

chars:

Returns the string represented by the 1-tuple <argl>.
proctype(const string, string) returns (string)

Concat returns the string for which argl || arg2 is the representation.
proctype(const string, char) returns (string)

This operation returns the string represented by argl || <arg2>.
proctype(const string, int) returns (char) signals (bounds)

Fetch returns the argZ"' character of argl. Bounds occurs if (arg2 <1)v
(arg2 > size(argl)).

proctype(const string, int, int) returns (string) signals (bounds, negative_size)

Substr returns the string represented by the tuple of size
min(arg3, size(argl) - arg2 + 1) which occurs at index arg2 in argl. Bounds occurs if
(arg2 < 1) v (arg2 > size(argl) + 1). Negative_size occurs if arg3 < 0.

proctype(const string, int) returns (string) signals (bounds)

Equivalent to substr(argl, arg2, size(argl)), i.e., the result is Tail*'82-1(arg1).
proctype(const string) returns (array[char])

This operation creates a new array, the elements of which are the characters of the

argument. The low bound of the array is 1, and the size of the array is size(argl). The
ith element of the array is the ith character of the string.
proctype(const array[char]) returns (string)

Ac2s is the inverse of s2ac. The result is the string with characters in the same order
as in its argument. Thus the ith character of the result is the (i + low(argl) - nth
element of the argument.

itertype (const string) yields (const char)

This iterator yields, in order, each cha_ncter of its argument.

S e e ————— e

145

i proctype(const string, string) returns (bool)
le: proctype(const string, string) returns (bool)
equal: proctype(const string, string) returns (bool)
ge: proctype(const string, string) returns (bool)
gt: - proctype(const string, string) returns (bool)

These use the usual lexicographic ordering based on the ordering for characters. The It
operation is equivalent to the following procedure:
It = proc(const x, y: string) returns (less: bool);
const size_x, size_y: int = string$size(x), string$size(y);
var min: int;
if size_x <= size_y
then min := size_x;
else min := size_y;
end if;
for const i: int in int$from_to_by (1, min, 1) do
if xli} < ylil ‘
then less := true; return;
end if;
end for,;
less := (size_x < size_y);
end It;

copy: . proctype(const string) returns (string)
The obvious copy.

[L.6. Arrays

The array type generator defines an infinite class of types. For every type T there is a
type array(T]. Array objects are mutable. The state of an array object consists of:

1. an integer Low; called the low bound, and
2. a tuple Elts of objects of type T, called the elements.

We also define Size = Size(Elts), and High = Low + Size - 1. We want to think of the components
of Eits as being numbered lrogn Low, so we define the array_jndex of the ith component to be
(i - Low + 1). Each array object is of bounded size, in two ways. First, its Size, Low, and High
must all be legal integers. Secondly, Low and High sre bounded by the size of the variable
containing the array object. Any attempts to violate these restrictions result in a failure
exception: failure(“illegal_array™) in the first case, and failure(“variable overflow™) in the other. A
variable (or object component) of type array([T; |, h) must be able to contain array objects with

PR —

146

Low 2 | and High < h; it may be able to contain larger arrays. If an array is assigned to a variable,

grown with addh or addl, or shifted with set_low, such that the limits of the variable would be

exceeded, then failure(*variable overflow”) is signalled, as mentioned above.

For an array A, we should write Lowp, etc, to refer to the state of that object, but

subscripts will be dropped where the association is clear.

Note that for all array operations, if an exception occurs, (other than failure), then the

states of the arguments are unchanged from those at the time of invocation.

create:

new:

low:
high:

size:

set_low:

trim:

We use the abbreviation AT for the type array[T]
proctype(const int) returns (AT)

This returns an array for which Low is argl and Elts is the O-tuple.
proctype() returns (AT)

Equivalent to create{1).

proctype(const AT') returns (int)
proctype(const AT) returns (int)
proctype(const AT) returns (int)

These operations return Low, High, and Size, respectively.
proctype(var AT, const int)

Set_low makes Low equal to arg2. This operation may involve physically shifting the
elements of the array in storage. However, block move instructions available on many

machines can be used to help implement set_low.
proctype(var AT, const int, int) signals (bounds, negative_size)

This operation makes Low equal to arg2, and makes Elts equal to the tuple of size
min(arg3, High’ - arg2 + 1) which occurs in Elts’ at index arg2 - Low’ + 1.! That is, every
element with array_index less than arg2, or greater than or equal to arg2 + arg3, is
removed. Bounds occurs if (arg2 < Low’) v (arg2 > High’ + 1). Negative_size occurs if
arg3 < 0.

1. Elts’, Low’, etc,, refer to the state prior to invoking the operation.

fill:

fetch:

bottom:

.top: !

store:

addh:

add!:

remh:

147

proctype(const int, int, T) returns (AT) signals (negative_size)
where T has copy: proctype(const T) returns (T)

Fill returns an array for which Low is argl, and Elts is a (max(0, arg2))-tuple in which
every component is a copy of arg3. It calls T8copy max(0, arg2) times to get the

elements, in order. Negative_size occurs if arg2 < 0.
seltype(int) of T from AT signals (bounds)

Fetch selects the element of argl "with array_index arg2. Bounds occurs if
(arg2 < Low) v (arg2 > High).

seltype() of T from AT signals (bounds)
seltype() of T from AT signals (bounds)

These operations select the elements with array_index’s Low and High, respectively.

Bounds occurs if Size = 0.

proctype(var AT, const int, T) signals-(bounds)
where T has copy: proctype(const T) returns (T)

Store makes Elts a new tuple which differs from the. old in that arg3 is the element with
array_index arg2. T8copy is used to copy the argument. Bounds occurs if
(arg2 < Low) v (arg2 > High).

proctype(var AT, const T)
where T has copy: proctype(const T) returns (T)

This operation makes Elts the new tuple Elts’ # <arg2>. T8copy is used to create the

new component

proctype(var AT, const T)
where T has copy: proctype(const T) returns (T)

This operation makes Low equal to Low’ - 1, and Elts the tuple <arg2> # Eits’. T8copy is
used to create the new component. (Decrementing Low keeps the array_index’s of the

previous elements the same.)

proctype(var AT) returns (T) signals {bounds)

ts equal ! W{EIts") A bit-copy of tc argl’) is returned. Bound
P
q i
€ v eq Low’ + 1, and Eils equal tail(Elts’). (Incrementing Low keep:
of the elements the same.}) A bit-copy of bottom(argl
-
ar AT) vields (var T) signals (bounds)
Y | e i (ch ar elded in Ord r, | a elf
a y \ | ied ibl 1f. after ' g SO ele >
t g anced | the call t possible that whe ¢ iterator 1s 2
5 ; a ndex. Bounds occur Such a case
9 fertv pe (con \T) y! lds (const i
arator quivalenl to int8from_to_by(Low’, High’, 1)
onst AT, AT) returns (bool)
here T has equal proctyg e(const ¥, T) returns (bool)
: R Yiadna { Nb) o i M - - the W
Retu false if (Lov argl ¥ LOW,ea0) V H«qha,g} * “ghargﬁ)' Otherwise, { v

tuples are compared element by elevﬁent using T8equal. If any test is false, then the

result is false; otherwise the result is true.

copy: proctype(const AT) returns (AT)
where T has copy: proctype(const T) returns (T)

Returns an array whose Low is the same as that of argl, and whose Elts is a copy of
the Eits of argl. That is, the i'h component of the resulting Elts is T8copy of the Ith
component of the Elts of argl.

I11.7. Records

The record type generator defines an infinite class of types. For every tuple of
1d/Type pairs <(id, Ty) oy (Idy, Ty)>, where all the Id’s are distinct and in Iexicogriphic order,
there is a type record[id;: Ty, .., Id;: T,] (The user may write such types with the pairs

149

permuted.) Records are mutable objects. The state of a record of type record[ld;: T, .., Id,: 1)

is an n-tuple. The i

th component of the tuple is of type T;. The ith component is also called the

Id;-component. We abbreviate record[ld: T, .., Id,: T,] by RT below.

create:

Put_Id;:

equal:

copy:

proctype(const Ty, .., T,) returns (RT)
where each T; has copy: proctype(const T;) returns (T;)

This operation returns a new record with the tuple <a.rgl, ., argN> as its state. It uses
T;8copy to copy arg;. Create is not available to the user, but its use is implicit in the

record constructor.
seltype() of T, from RT

This operation selects the Id;~component of its argument. There is an Id; operation for
each Id,.

proctypé(var RT, const T;)
where T, has copy: proctype(const T;) returns (T;)

This operation makes the state of argl a new tuple which differes from the old in that
its Id;-component is a copy of arg2 made using T;8copy. There is a put_ld; operation
for each Id;.

proctype(const RT, RT) returns (bool)
where each T; has equal: proctype(const T;, T;) returns (bool)

This operation compares the tuples of.argl and arg2 component by component using
TiSequal for the 1d;-component. If all the comparisons return return true, the result is

true; otherwise the result is false.

proctype(const RT) returns (RT)
where each T; has copy: proctype(const T;) returns (t;)

This operation returns a record whose state is a copy of the state of the argument.

This copy is made using T;8copy for the Id;-component.

150

I11.8. Oneofs

The oneof type generator defines an infinite class of types. For every tuple of id/type

pairs <(ldy, T), .., (Id,, T,))>, where all the id’s are distinct and in lexicographic order, there is a

type oneof(ld;: Ty, .., Id,: T} (The user may write this type with the pairs permuted.) Oneof

objects are immutable. Each oneof object is represented by a pair (id;, X), where X is of type T;-

The Id; part of the pair is called the tag, and X is called the value. We abbreviate

oneof(id,

make_Id;:

iS_ldi:

value_ld;:

equal:

copy:

: Tl' w Idp: Tn] to OT below.

proctype(const T;) returns (OT)
where T; has copy: proctype(const T;) returns (T;)

This operation returns the oneof object for the pair (Id;, argl), using T;8copy. There is
a make_Id; operation for each Id;.

proctype(const OT) returns (bool)

This operation returns true iff the tag of argl is Id;. Its use is implicit in the iagcase

statement. There is an is_ld; operation for each ld;.
seltype() of T; from OT signals (wrong_tag)

If the argument has tag Id;, this selects the value part of the argument. Wrong_tag
occurs if the tag is not Id;,. .This operation is used implicitly by the tagcase statement.

There is a value_Id; for each Id;.

proctype(const OT, OT) returns (bool) _
where each T; has equal: proctype(const T;, T;) returns (bool)

If the tags of the arguments are different, then false is returned. If the tags are both
Id;, then the result is T 8equal applied to the value parts of the arguments.

proctype(const OT) returns (OT)
where each T, has copy: proctype(const T;) returns (T;)

This operations returns a oneof object with the same tag as its argument, and a value
part a copy of the value part of the argument. If the tag is Id;, then the copy is made
using T;8copy.

151

11.9. Pointers

The pointer type generator defines an infinite class of types. For each area A, and each

type T, ptr(A, T] is a type. The representation of pointers is not defined explicitly, but implicitly
through the behavior of pointer objects. Pointer objects are immutable. We abbreviate ptr[A, T)
to PT below.

nilptr:

alloc:

deref:

equal:

copy:

proctype() returns (PT)

This operation returns a pointer that points to no object. Therefore, it is equal only to

other null pointers of the same type, and cannot be dereferenced.

proctype(const T) returns (PT) signals (failure(string))
where T has copy: proctype(const T) returns (T)

This operation creates a copy of argl in area A, returning a pointer to the newly
created object. The copy is made using T8copy. Failure occurs if the area cannot

contain the new object; the string signalled is “area out of memory™.
seltype() of T from PT signals (bad_pointer)

This operation “follows™ a pointer to the object pointed at. Bad_pointer occurs if the

null pointer is dereferenced.
proctype(const PT, PT) returns (bool)

This operation returns false unless argl and arg2 point to the same object, or argl and
arg?2 are both null pointers.

proctype(const PT) returns (PT)

This operation relurns a pointer equal to its argument. That is, the result points to the
same object as the argument.

11.10. Areas

new:

An area object is used for the dynamic allocation of other objects.

proctype(const string, int) returns (area) signals (bad_arguments)

152

This operation returns a new area. Argl is used to describe what sort of area
management scheme is desired, and arg2 is for size. The meaning of both arguments is

implementation dependent.
1L.11. Procedures, Iterators, and Selectors

: For each procedure, iterator, and selector type there are three operations: create, copy,
and equal. Create is not available to the user; its use is implicit in the. compiler and run-time
system. Copy presumably does not copy the object code of a routine, but merely a descriptor.
Equal does not mean “computationally equivalent”. Two routines derived from the same module
with the same parameters (if any) are considered equal; for this purpose different operations of a

cluster are considered to be different modules.

153

References

Baker77. Baker, Henry G., Jr., “List Processing in Real Time on a Serial
Computer”, MIT AI Lab. Working Paper 139, February 2, 1977.

Barth77. Barth, Jeffrey M., “Shifting Garbage Collection Overhead to Compile
Time", pp. 513-518, CACM, Vol. 20, No. 7, _]uly 1977.

Bishop77. Bishop, Peter B., “Computer Systems with a Very Large Address
Space and Garbage Collection”, Mass. Inst. of Tech., Lab. for Comp. Sci.,
TR-178, May 1977.

Branquart70. Branquart, P, and Lewi,], “A Scheme of Storage Allocation and
Garbage Collection for Algol 68", in Algol 68 Implementation, Proc. IFIP
Working Conf. on Algol 68 Impl., Munich, July 1970.

Dahl66. Dahl, O. J,, and Nygaard, K., “Simula - an Algol-based simulation
language”, pp. 671-678, CACM, Vol. 9, No. 9, September 1966.

Deutsch76. Deutsch, L. Peter, and Bobrow, Daniel G., “An Efficient,

Incremental, Automatic Garbage Collector pp. 522-526, CACM, Vol. 19, No. 9,
Sept. 1976,

Geschke?5. Geschke, Charles M., and Mitchell, James G., “On the Problem of
Uniform References to Data Structures”, pp. 207-217, IEEE Trans. on Soft. Eng,,
Vol. SE-], No. 2, June, 1975.

Goodenough?5. Goodenough, John B., “Exception Handling: Issues and a
Proposed Notation”, publication 530-1, Sof - Tech, Inc, Waltham, MA, April 1975.

Gries77. Gries, David, and Gehani, Narain, “Some Ideas on Data Types in
High-Level Languages", pp. 414-420, CACM, Vol. 20, No. 6, June 1977.

Guttag?5. Guttag, John V., “The Specification and Application to
Programming of Abstract Data Types", Computer Systems Research Group TR
CSRG-59,-Univ. of Toronto, Sept. 1975.

IBM70. IBM, PL/1 Language Specifications, IBM Order No. GY33-6003-2,
1970.

Lampson77. Lampson, B. W, et. al., Report on the programming language
Euclid, ACM SIGPLAN Notices, Vol. 12, No. 2, February, 1977.

154

Liskov77. Liskov, B, et. al, “Abstraction Mechanisms in CLU", pp. 564-576,
CACM, Vol. 20, No. 8, August 1977. :

Liskov75. Liskov, B, and Zilles, S., “Specification Techniques for Abstract Data
Types", pp. 7-19, IEEE Trans. on Soft. Eng., Vol SE-1, No. 1, March 1975.

Ross69. Ross, D. T., “Uniform Referents: An Essential Property for a Software
Engineering Language”, pp. 91-101, Software Engineering, J. T. Tou, ed, vol. 1,
Academic Press, New York.

Scheifler77. Scheifler, Robert W., “Type Parameters and Infinite Recursion”,
CLU Design Note No. 65, MIT Lab. for Comp. Sci., Sept. 15, 1977.

Steele75. Steele, Guy L., Jr, “Multiprocessing Compactifying Garbage
Collection”, pp. 495-508, CACM, Vol. 18, No. 9, Sept. 1975. (See also
Corrigendum, p. 354, CACM, Vol. 19, No. 6, June 1976.)

Wi jngaarden77. van Wijngaarden, A, et. al,, “Revised Report on the
Algorithmic Language Algol 68", ACM Sigplan Notices, Vol. 12, No. 5, May
1977, pp. 1-70. ‘

Wirth7]. Wirth, N., "The Programming Language 'Pascal‘. Acta Informatica 1,
pp. 35-63, 1971.

Wulf76a. Wulf, W. A, London, Ralph L., Shaw, Mary, “Abstraction and
Verification in Alphard: Introduction to Language and Methodology”,
Carnegie-Mellon Technical Report, june 14, 1976.

Wulf76b. Wulf, W. A, London, Ralph L., Shaw, Mary, “Abstraction and
Verification in Alphard: Iteration and Generators”, Carnegie-Mellon Technical
Report, August 20, 1976.

Wulf76c. Wulf, W. A, London, Ralph L., Shaw, Mary, “Abstraction and
Verification in Alphard: A Symbol Table Example”, Carnegie-Mellon
Technical Report, December 29, 1976.

Official Distribution List

Defense Documentation Center
Cameron Station
Alexandria, Va 22314 12

Office of Naval Research
Information Systems Program
Code 437

Arlington, Va 22217 2

Office of Naval Research
Code 102IP
Arlington, Va 22217 6

Office of Naval Research
Code 200
Arlington, Va 22217 1

Office of Naval Research
Code 455
Arlington, Va 22217 1

Office of Naval Research
Code 458
Arlington, Va 22217 1

Office of Naval Research

Branch Office, Boston

495 Summer Street

Boston, Ma 02210 1

Office of Naval Research
Branch Office, Chicago

536 South Clark Street

Chicago, I1 60605 1

Office of Naval Research
Branch Office, Pasadena

1030 East Green Street
Pasadena, Ca 91106 1

copies

copies

copies

copy

copy

copy

copy

copy

copy

————————————

o — ——— e e e —————

New York Area Office
715 Broadway - 5th floor
New York, N. Y. 10003 1 copy

Naval Research Laboratory

Technical Information Division

Code 2627

Washington, D. C. 20375 6 copies

Dr. A. L. Slafkosky

Scientific Advisor

Commandant of the Marine Corps

(Code RD-1)

Washington, D. C. 20380 1 copy

Naval Electronics Laboratory Center
Advanced Software Technology Division
Code 5200

San Diego, Ca 92152 1 copy

Mr. E. H. Gleissner
Naval Ship Research & Development Center
Computation & Mathematics Department

Bethesda, Md 20084 1 copy

Captain Grace M. Hopper

NAICOM/MIS Planning Branch (OP-916D)
Office of Chief of Naval Operations
Washington, D. C. 20350 1 copy

Mr. Kin B. Thompson

Technical Director

Information Systems Division (OP-91T)
Office of Chief of Naval Operations
Washington, D. C. 20350 1 copy

