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Stochastic ~1odels for the Random
Location of Individuals in a Habitat

by

Naftali A. Langberg, Roger Johnson, and Ralph A. Bradley

ABSTRACT

Very little had been done in the past to develop coherent stochastic

structures for the location of individuals in a region . Such a structure

can provide sound probabilistic bases for a variety of inference procedures

presented in the literature and clear the way to the development of consis-

tent statistical methodology. Various probabilistic models for the random

locations of individuals in a region are considered.

Models for both infinite and finite regions are developed. In the liter-

ature, certain marginal distributions are used to characterize the numbers

of individuals in subregions. Relationships between these marginal distribu-

tions and our probabilistic models are discussed.

Key words: Stochastic processes, stationarity, independent increments, Poisson
Process, Poisson, Binomial and Negative Binomial distributions.
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1. Introduction and Summary.

Trees in a forest, stars in a galaxy and bacteria On a Petridish are a

few examples wherein there is interest in the spatial distributions of indi-

viduals over regions. In pursuit of better understanding of these distribu-

tions, attempts have been made to use probabilistic and statistical tools

(Eberhardt (1967), Pilou (1969), Pollard (1971), Patil and Stiteler (1974),

Cox (1976), Cox and Lewis (1976)]. Very little effort has been made to develop

coherent statistical structures for the locations of individuals in a region.

The main purpose of this paper is to propose such structures in order to

avoid inconsistencies that can be found in the literature, to provide a sound

probabilistic basis for a variety of inference procedures that are used, and

to permit the development of better and consistent statistical methodology in

the area .

In Sections 2 , 3 and 4 , we show that , under certain conditions , the

collection of random variables representing the numbers of individuals in

subsets of a region, can be regarded as a stochastic process. All the models

for the stochastic process presented here have a stationarity property defined

in (2.1) below. In Section 2 we present Simple Random Models. The distribu-

tion of the number of individuals in a region is considered to be simple random

if, in addition to stationarity, it has a property of independent increments

defined in (2.2) below. We prove that simple random models are uniquely deter-

mined by a positive number and a sequence of real numbers in (0, 1] suim~ing

to unity. In a number of the references cited above, Poisson and Negative

Binomial distributions have been used to describe the number of individuals in

subsets of a region . We conclude Section 2 by showing that these two distribu-

tions are marginal distributions resulting from particular siiçle random models.

_ _ _ _ _  .- _ _

~
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In Section 3 we introduce models that are stationary, but do not necessarily

have independent increments. We show that a Negative Binomial distribution

proposed by Patil and Stiteler (1974) to characterize the random behavior of

the numbers of individuals in subsets of a region is a marginal distribution

resulting from two different stochastic models that do not have independent

increments.

Section 4 is devoted to the development of several different stochastic

models when the region under consideration has finite Lebesgue measure. It

is shown that the Binomial distribution suggested by Eberhardt (1967) can be

•lerived from of these models.
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2. Simple Random Models.

Some basic notation is needed to define spatial stochastic models. Through-

out the paper, R will denote a Euclidian space or a Borel subset of a Euclidian

space with finite Lebesgue measure, A will be the Lebesgue measure on R , X (A)

will be the number of individuals in a subset A c R, and ~ will represent the

set of all Borel subsets of R with finite Lebesgue measures.

Individuals are said to be located in R in a simple random way if defined

propositions (2.1) and (2.2) hold.

Stationgrity: For every set A ~ }, the distribution of the random variable X(A)
(2.1)

depends only on A(A) .

Independent increments: If A1, ~~~ Am represent any m disjoint sets in Z~ (2.2)
m > 1, the random variables, X (A1), •

~~~~
•
~~~ 

X(A~) are independent.

The objective of this section is to show that under conditions (2.1) and (2.2),

the collection, {X(A) }
A I  

is a stochastic process determined by a positive num-

ber and a sequence of numbers in [0, 1] summing to unity.

Let q be an arbitrary point in It, Yq(t)~ the number of individuals in a

sphere centered at q having Lebesgue measure t, t � 0, Yq(O) 0, A1, A2, sets

in ~, and k1, k2 two nonnegative integers. Then

P(X(A1) k1, X(i.~) Z 1:2. 
j~r:

(A1 
A2) i~ 

X(A~ ~~ 
= r , X(~1 A2) =

j+t.k~

From (2.1), (2.2) and (2.3) it follows that

P(X(A1) 
. k1, x(A2) — Ic2] 

. 

j
~~~~Yq(ti) fl P[Y~(t2) — r] P(Yq(t3) — £3 , (2.4)

3+ ti.t14
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where t
1, t2 

and t3 are A (A1 n A2), A(A1 a and A (~1 a A2) respectively.

Without difficulty, equations (2.3) and (2.4) can be extended to any finite

number of sets in ~~~. The formal proof is omitted but the general result is

stated in the following theorem.

Theorem 2.1. Under conditions (2.1) and (2.2), the joint distribution of any

finite collection of random variables from {X(A)}A~~ 
is determined uniquely by

a joint distribution of a finite collection of random variables from {Y
q(t)}t�o•

To achieve our objective, it suffices to show that, under (2.1) and (2.2), the

collection {Yq(t)
}t�o is a stochastic process determined by a positive number

and a probabilistic sequence.

Conditions (2.1) and (2.2) respectively insure that {Yq(t)}
t�o is

stationary and has independent increments. We state formally:

For every two nonnegative numbers t and s, Yq(t) and Yq(t + s) - Yq(5) are
identically distributed. For every m real numbers 0 � t1 � t2 � ~~~~~~ � t~,

the random variables Yq(t1)~ Yq(t2) - Yq(t1)a ...
~~ 
Yq(tm) - Yq(tm_i) are inde-

pendent. Applying a well known characterization of stationary processes with

independent increments, [Khintchine (1960), 36.], we obtain the following:

Theorem 2.2. Under conditions (2.1) and (2.2), there exist a Poisson process

(N(t)}t�o and a sequence of i.i.d. random variables {Zi}i111 2 on the

positive integers, independent of {N(t)}
~�o, 

such that the processes (Y (t) }
~�oNt ) q

and { Z
i
}
t�o are identical.

is 1
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It is a consequence of Theorem 2.2 that, the collection {Yq (t) }t�o is a

stochastic process, determined by the constant E(N(l)] and the sequence

{P(Z
1 — i)}~.12~~•~ .

Two marginal distributions for X(A), used frequently in the literature,

arise from special cases of simple random models; they are the Poisson and

the Negative Binomial. To show it, we give the two definitions:

X has a Negative Binomial distribution with parameters a and b, (a, b > 0) if

P(X i) ~ r~a + i )  
[a + bJ [a ~. b J ’  i = 0, 1, 2, ... , where rca)

fe~~x
°1dx, a > 0.

X has a logarithmic distribution with parameter 8 (0 c ~ < 1), if P(X — i) —
—O~/itn(1 — 0), i 1, 2 , ...
If Z1 of Theorem 2.2 is a degenerate random variable at 1, or has the logarithmic

distribution defined above, it follows from Theorem 2.2 that, for every set A €

the distribution of X(A) is respectively Poisson, with mean A (A) E(N(l)], or

Negative Binomial with parameters a -1,~ f 0 ~ 
X (A) and b ~~~

1)]
e) i p 1(A).

_______ _____ —- - - --- —
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3. A Generalization of the Simple Random Models.

In t~his section we present two methods of developing a general stationary

stochasti~ structure for the random quantities {X(A)}A~~. This is done in ~wc~
steps. Firstly, we present joint distributions of X(A1), ••~~~

, X(A~), where

A1, ~~~~~~~ 
Am are any m disjoint sets of ~ and m = 1, 2 We then show

that this set of finite dimensional distributions determine uniquely the

stochastic structure of {X(A)

For construction purposes only we introduce some notation . {M(t) )
~ �o to

be a stochastic process on the nonnegative integers, stochastically increasing

in t, that is, M(t) � M(s) for 0 � t � s and {W
~
}
~_ i 2  a sequence of random

variables with positive integer values, independent of {M(t)}
~�o. 

We assume

that (M(t).}
~�o 

and {W
~
}
~~12 

depend on parameters Oi and e2 respectively,

ranging in parameter spaces 0 1 and O 2~ 
where 0 2 is a collection of infinite

se-~uences, 01 and °2 being probability spaces with F and G the respective

probability measures.

Let A1, ~~~~~~ 
Am be disjoint sets in ~ with respective Lebesgue measures

t1~ ~~~ 
tm and let k1, ~~ 

km be nonnegative integers. We define the joint

probability in two ways.

m M(ti)
P[X(A i) — ki, i — 1, ... , m] = I I ii P[ ~ W. = k

~
1dr (O1)dG(02) (3.1)

01
X0

2
i1 j 1  ~

or

M t.)
P[X(A~) - ku i - 1, ... , ml • f J P( f 1W = ki, i - 1, ... , m]dF(0 1)dG(0 2). (3.2)

® 1x02 j=l
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The consistency of the set of joint distributions of finite collections of

random variables from {X(A) }AC~, generated by disjoint sets and defined by

(3.1) or (3.2), follows from the stochastic structure imposed on

c 04(t)) {w.) ~~. The stationarity condition , stated in (2.1), ist�0, ~ i—l ,2,...
clearly satisfied, since definitions (3.1) and (3.2) vary only with the

Lebesgue measures of the respective sets. The generalization of equation (2.3)

to any finite number of sets in ~ provides a way to extend definitions (3.1)

and (3.2) to any finite number of sets in ~~. These extensions preserve the

required consistency and stationarity of {X(A)}A~~
. We have proved the

following:

Theorem 3.1. If the joint distributions of every finite number of random

variables in {X(A) 1A ~ are given by the extensions of (3.1) or (3.2), then

is a stationary stochastic process.

It is important to note that (3.1) and (3.2) yield the same marginal distribu-

tions for X (A) , A c 
~~
, but they define different processes. Statistical

methodologies based on the two models may be quite different and this has been

ignored in the literature.

In Section 2, we proved that simple random models depend on a positive

number say ~~, and a probabilistic sequence, say 
~~~~~~~~~~~ 

Now we show that

those models are particular cases of the stochastic processes presented by (3.2).

To do so, let {M(t)}
~�o 

be a Poisson process with parameter ~ and {Wi
}i.12. ..

be an i.i.d. sequence of random variables given by P(W1 - i) = i — 1, 2 

In addition we take 
~l 

and 02 to be sets containing only u and ‘~:ie sequence ~~~~~~~
respectively. Now the extension of (3.2) reduces directly to a simple random

model.

_ _ _
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Let’s assume that the sequence of discrete random variables is

degenerate at 1, 0~ is [0, ~), 0~ is only the sequence (1, 0, 0, ... ),

{M(t)}t~o 
is Poisson, and F is given by

r(:) f e~~~ y°’~~dy x > 0
F (x) = a, 8 > 0. (3.3)

0 x � 0

Then the marginal distribution of X(A), A c ~~, computed by (3.1) or (3.2), is

negative Binomial with a = ci and b 1(A). This marginal distribution for

X(A) was assumed by Eberhardt (1967) and by Patil and Stiteler (1974).
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4. Nodels for finite regions.

In the previous two sections, we presented stochastic models when indi-

viduals were randomly located in an infinite region. In this section, five

different models are developed for situations wherein individuals are located

in a Borel subset Rf of a finite Lebesgue measure in R.

Let be the set of all Borel sets contained in Rf and Xf (A) , the

number of indiv iduals in set A , A 
~ 

Our objective is to develop a

stochastic structure for the collection {X f (A) }A ~
. . One way to acheive thisCLf

objective is to select a stochastic process developed in Sect ion 3 for the

infinite region R , say {X(A) )A~~, and condition it by an event related to the

random variable X(R f ). To be moi~e formal, let A1, ~~~ Am be sets in and

let k1, km be nonnegative integers. We define the desired probability

P[Xf(A1) = k 1, i = 1, . .. , in] = P [X(A .) = k~
, i = 1, ..., inIX(Rf)]. (4.1)

The consistency and stat ionarity of the process {X f (A) )A ç defined in (4.1)CLf
are self-evident .

For the four remaining alternative ways of developing a stochastic

structure for {X f (A) }A v ~ we refer to the process {M(t)}
~�o, 

the sequence£Lf
— 1, 2 , ...~ the sets 0

~ and 02, and the probability measures F and C

which were introduced in Section 3. We define first the joint distributions

of Xf (A1) ,  
~~~~~~ 

X~ (A~) , where A1, ... , A~ are disjoint sets in and

m a 1, 2, ... , then extend these definitions to any finite collection of

sets in Since the extension technique has been used twice, it is omitted

from our present discussion. Now let A1, ~~~~~~ 
A~ be disjoint subsets of Rf,
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A (Rf) = t0, A (A.) = t~ , i = 1, . . . ,  in , and let k1, ~~~ km be nonnegative

integers . We define the desired probability in the following four ways :

in in(t.) Mft0)
P1X f (A~) = k .,  i = 1, ... , m} = f f fl P( ~ ‘W. = k . j  

~ W4 )dF(0 1)dG(0 2). (4 .2)
01x(

2i=1 3= 1 ~ j = 1
M(t .)  M(t 0)

P E X f (Ai) = k ., i = 1, ..., ni] = f P ( Z ’W . = k., i = 1, ... , m I Z  W .)dF(0 1)dG(0 2) .
1 2 ~~ (4. 3)

m M~t1)
P [X f (Ai) = k. ,  i = 1, ... , in] = f f ii P( ~ W . = k .j M ( t 0))dF (01)dG(0 2). (4 .4)

~) 1xe2i 1  j = 1 ~
M(t .)

P[X f (Ai) = k1, i = 1, .. ., m] = f = k1. i. = 1, ...
~~ m I M Ct 0~d F e 1 d G o 2 .

1 
(4 5)

The stochastic processes determined by (4 .2) - (4.5) have been constructed to

be both consistent and stationary. Definitions (4.2) and (4.3) or (4.4) and

(4.5) , yeild identical marginal distributions for Xf (A) , A e Zf’ but define

different processes .

If we let {M(t)}
~�o 

be a Poisson process, {w1}~ = 1 2, , a sequence

of random variables degenerate at 1, Oi and 
~2 singleton sets , then the

marginal distribution of X
f

(A) I A c 
~~ 

according to each of the last four

definition s are Binomial with X(R f ) corresponding to the number of Bernulli

trials and )~ R) corresponding to the probability of succes in a single trial .

_  - - 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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S. Concluding Remarks.

The selection of models for stochastic processes for particular appli-

cations and the development of pertinent statistical methodologies have not

been addressed in this paper. lie have demonstrated that models proposed may

be used to yield marginal distributions assumed in the literature; they may

also be used to avoid unwarranted assumptions and inconsistencies that arise.

We propose in subsequent work to use the general models of this paper to

devise improved statistical methodologies for problems involving the location

of individuals in a habitat.

_ _ _  - -  -~~~-- --. - 
. --- - -- ~~~~- - ~~~- - - -~~~~~--~~~~~ --
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