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Stochastic ifodels for the Random
Location of Individuals in a Habitat

by
Naftali A. Langberg, Roger Johnson, and Ralph A. Bradley

ABSTRACT

Very little had been done in the past to develop coherent stochastic
structures for the location of individuals in a region. Such a structure
can provide sound probabilistic bases for a variety of inference procedures
presented in the literature and clear the way to the development of consis-
tent statistical methodology. Various probabilistic models for the random
locations of individuals in a region are considered.

Models for both infinite and finite regions are developed. In the liter-
ature, certain marginal distributions are used to characterize the numbers
of individuals in subregions. Relationships between these marginal distribu-

tions and our probabilistic models are discussed.

Key words: Stochastic processes, stationarity, independent increments, Poisson
Process, Poisson, Binomial and Negative Binomial distributions.
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1. Introduction and Summary.

Trees in a forest, stars in a galaxy and bacteria on a Petridish are a
few examples wherein there is interest in the spatial distributions of indi-
viduals over regions. In pursuit of better understanding of these distribu-
tions, attempts have been made to use probabilistic and statistical tools
[Eberhardt (1967), Pilou (1969), Pollard (1971), Patil and Stiteler (1974),
Cox (1976), Cox and Lewis (1976)]. Very little effort has been made to develop
coherent statistical structures for the locations of individuals in a region.
The main purpose of this paper is to propose such structures in order to
avoid inconsistencies that can be found in the literature, to provide a sound
probabilistic basis for a variety of inference procedures that are used, and
to permit the development of better and consistent statistical methodology in
the area.

In Sections 2, 3 and 4, we show that, under certain conditions, the
collection of random variables representing the numbers of individuals in
subsets of a region, can be regarded as a stochastic process. All the models

for the stochastic process presented here have a stationarity property defined

in (2.1) below. In Section 2 we present Simple Random Models. The distribu-

tion of the number of individuals in a region is considered to be simple random

if, in addition to stationarity, it has a property of independent increments

defined in (2.2) below. We prove that simple random models are uniquely deter-
mined by a positive number and a sequence of real numbers in [0, 1] summing

to unity. In a number of the references cited above, Poisson and Negative
Binomial distributions have been used to describe the number of individuals in
subsets of a region. We conclude Section 2 by showing that these two distribu-

tions are marginal distributions resulting from particular simple random models.
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In Section 3 we introduce models that are stationary, but do not necessarily
have independent increments. We show that a Negative Binomial distribution
proposed by Patil and Stiteler (1974) to characterize the random behavior of
<he numbers of individuals in subsets of a region is a marginal distribution
resulting from two different stochastic models that do not have independent
increments.

Section 4 is devoted to the development of several different stochastic
models when the region under consideration has finite Lebesgue measure. It
is shown that the Binomial distribution suggested by Eberhardt (1967) can be
derived from -~ i of these models.




2. Simple Random Models.

Some basic notation is needed to define spatial stochastic models. Through-
out the paper, R will denote a Buclidian space or a Bofel subset of a Euclidian
space with finite Lebesgue measure, A will be the Lebesgue measure on R, X(A)
will be the number of individuals in a subset A ¢ R, and | will represent the
set of all Borel subsets of R with finite Lebesgue measures.
Individuals are said to be located in R in a simple random way if defined
propositions (2.1) and (2.2) hold.
Stationdrity: For every set A ¢ Z, the distribution of the random variable X(A)
depends only on A(A). o

Independent increments: If Al’ Selely Am represent any m disjoint sets in Z,

(2.2)
m > 1, the random variables, X(Al), Sisini X(Ah) are independent.

The objective of this section is to show that under conditions (2.1) and (2.2),
the collection, {X(AJ}AeZ is a stochastic process determined by a positive num-
ber and a sequence of numbers in [0, 1] summing to unity.
Let q be an arbitrary point in R, Yq(t), the number of individuals in a
sphere centered at q having Lebesgue measure t, t 2 0, Yq(O) 0, Al, Az, sets
in ), and k;» k, two nonnegative integers. Then
PIX(A)) = ky, %) = k0 = ) PIX(A, n A)) = j, X(A n Z}) =r, xdii nA) = 2].(2.3)

j+r=k1
j+23k2

From (2.1), (2.2) and (2.3) it follows that

PIX(A)) = k;, X(A)) = k)] = ,E,'.’{Yq“l’ = 5] POV (ty) = 7] PIY (t9) = 2],  (2.4)

j#[-kz




where t , t, and t; are A(A; 0 A)), A(A) n Ké) and Adii n A,) respectively.
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Without difficulty, equations (2.3) and (2.4) can be extended to any finite
number of sets in ). The formal proof is omitted but the general result is

stated in the following theorem.

Theorem 2.1. Under conditions (2.1) and (2.2), the joint distribution of any
finite collection of random variables from {X(A)}Aez is determined uniquely by

a joint distribution of a finite collection of random variables from {Yq(t)}

To achieve our objective, it suffices to show that, under (2.1) and (2.2), the

collection {Yq(t)} is a stochastic process determined by a positive number

t20

and a probabilistic sequence.

Conditions (2.1) and (2.2) respectively insure that {Yq(t)}tzo is

stationary and has independent increments. We state formally:

For every two ncnnegative numbers t and s, Yq(t) and Yq(t +s) - Yq(s) are
IStZS...St
the random variables Yq(tl), Yq(tz) - Yq(tl)’ sy Yq(tm) - Yq(tm_l) are inde-

identically distributed. For every m real numbers 0 < t n’

pendent. Applying a well known characterization of stationary processes with

independent increments, [Khintchine (1960), 36.], we obtain the following:

Theorem 2.2. Under conditions (2.1) and (2.2), there exist a Poisson process

{N(t)} on the

£20 and a sequence of i.i.d. random variables {21}1-1,2,..-

positive integers, independent of {N(t)}tzO’ such that the processes {Yq(‘))tzo

N{t
and {i-l zi)tzo are identical.

t20°




It is a consequence of Theorem 2.2 that, the collection {Y (t)} a

tZO
stochastic process, determined by the constant E[N(1)] and the sequence
P@Ey = Do,

Two marginal distributions for X(A), used frequently in the literature,
arise from special cases of simple random models; they are the Poisson and

the Negative Binomial. To show it, we give the two definitions:

X has a Negative Binomial distribution with parameters a and b, (a, b > 0) if

a i
P(X = i) = 3{%;%;%—»[3 8 b} [a L b} i=0,1, 2, ..., where I'(a) =

fe'x *-lyax, a > 0.
0

X has a logarithmic distribution with parameter 6 (0 < 6 < 1), if P(X = i) =
olsima -0), 11, 2, ... .

If Z1 of Theorem 2.2 is a degenerate random variable at 1, or has the logarithmic
distribution defined above, it follows from Theorem 2.2 that, for every set A ¢ f,

the distribution of X(A) is respectively Poisson, with mean A(A) E[N(1)], or

" E[N(1 E[N(1 0
Negative Binomial with parameters a = —én&-_)_-]m- A(A) and b = TH)-JW o |

5 A(A).




3. A Generalization of the Simple Random Models.

In this section we present two methods of developing a geng?al stationary
stochastic structure for the random quantities {X(A)}AeZ' .Thisﬂi§;?9pg ing;wo\
steps. Firstly, we present joint distributions of X(Al), ...,'X(Amj, where
Al, otors A.m are any m disjoint sets of X and m =1, 2, ... . We then show
that this set of finite dimensional distributions determine uniquely the
stochastic structure of {X(A)}AeZ'

For construction purposes only we introduce some notation. {M(t)}tzo to

be a stochastic process on the nonnegative integers, stochastically increasing

in t, that is, M(t) < M(s) for 0 < t < s and {Wi} a sequence of random

=120 0.

variables with positive integer values, independent of {M(t)} We assume

t20°

that {M(t)} and {W.}. depend on parameters 6, and 8, respectively,
i‘i=1,2,... 1 2

t20
ranging in parameter spaces 04 and Py where P is a collection of infinite
senuences, 01 and 9, being probability spaces with F and G the respective
probability measures.

Let Al’ cnuy Am be disjoint sets in Z with respective Lebesgue measures
tl, cees t and let kl’ wiaiey km be nonnegative integers. We define the joint
probability in two ways.

m M§ti)

P[X(A)) = k;, i =1, ..., m] = | | 2P W, = k; 1dF (0,)d6(6,)
QIXQ21=1 j=1

or
ti)

M
PIX(A;) = k;, i =1, ..., m] = | |l f wj = k;, i =1, ..., m]dF(8,)dG(s,).
01%0, J=1

(3.1)

(3.2)




 The consistency of the set of joint distributions of finite collections of
random variables from {X(A)}AEZ’ generated by disjoint sets and defined by
(3.1) or (3.2), follows from the stochastic structure imposed on

< {M(t)}tzo {wi} >. The stationarity condition, stated in (2.1), is

1=} 2, ...
clearly satisfied, since definitions (3.1) and (3.2) vary only with the
Lebesgue measures of the respective sets. The generalization of equation (2.3)
to any finite number of sets in Z provides a way to extend definitions (3.1)
and (3.2) to any finite number of sets in Z. These extensions preserve the

required consistency and stationarity of {X(A)}AeZ' We have proved the

following:

Theorem 3.1. If the joint distributions of every finite number of random
variables in {X(AJ}AEZ are given by the extensions of (3.1) or (3.2), then

{X(A)}Aez is a stationary stochastic process.

It is important to note that (3.1) and (3.2) yield the same marginal distribu-
tions for X(A), A ¢ z, but they define different processes. Statistical
methodologies based on the two models may be quite different and this has been
ignored in the literature.

In Section 2, we proved that simple random models depend on a positive

number say u, and a probabilistic sequence, say {Pi} . Now we show that

inl 2,00
those models are particular cases of the stochastic processes presented by (3.2).

To do so, let {M(t)} be a Poisson process with parameter u, and {W,}.

t20 i‘i=1,2,...

be an i.i.d. sequence of random variables given by P(W1 = i) = Pi’ S I (PR
In addition we take al and 0, to be sets containing only u and :lhie sequence {Pi}i_1 2
respectively. Now the extension of (3.2) reduces directly to a simple random

model.

e — - - IR+ e e e —e - —_— e ———————




Let's assume that the sequence of discrete random variables {wi}i-i 2 is
G ,e & P )
degenerate at 1, 01 is [0, =), 9, is only the sequence (1, 0, 0, ...),

{M(t)}

£20 is Poisson, and F is given by

-8y al
T f dy x>0

F(x) = a, B > 0. (3.3)
0 X

IA
o

Then the marginal distribution of X(A), A ¢ Z, computed by (3.1) or (3.2), is
negative Binomial with a = a and b = % A(A). This marginal distribution for

X(A) was assumed by Eberhardt (1967) and by Patil and Stiteler (1974).




4. Models for finite regions.

In the previous two sections, we presented stochastic models when indi-
viduals were randomly located in an infinite region. In this section, five
different models are developed for situations wherein individuals are located
in a Borel subset Rf of a finite Lebesgue measure in R.

Let Zf be the set of all Borel sets contained in Rf and Xf(A), the
number of individuals in set A, A € Zf. Our objective is to develop a
stochastic structure for the collection {xf(A)}Aer' One way to acheive this
objective is to select a stochastic process developed in Section 3 for the
infinite region R, say {X(A)}AEZ, and condition it by an event related to the
random variable X(Rf). To be more formal, let Al, ooy Am be sets in Zf and

let kl’ P km be nonnegative integers. We define the desired probability
P[Xc(A;) = kj, i=1, ..., m] = P[X(A,) =k, i=1, ..., mIX(Rf)].

The consistency and stationarity of the process {Xf(A)}Aez defined in (4.1)
f
are self-evident.
For the four remaining alternative ways of developing a stochastic

the sequence

structure for {xf(A)}Aer’ we refer to the process {M(t)}tZO’

{w,}. , the sets ©. and ©,, and the probability measures F and G
it IR GRE JE 1 2

which were introduced in Section 3. We define first the joint distributions

of xf(Al)’ oo oy Xf(Am), where A1, sy Am are disjoint sets in Zf and

m=1, 2, ..., then extend these definitions to any finite collection of

sets in zf. Since the extension technique has been used twice, it is omitted

from our present discussion. Now let Al’ vy Am be disjoint subsets of Rf,

(4.1)
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A(R ) = t A(A ) = 1 i=1, ..., m, and let kl, HOB km be nonnegative

integers. We define the desired probability in the following four ways:

m ft ) M§ 0
PIXc(A)) = k;, i=1, =[ [ nmp( = kil W;)dF (6,)dG(6,) . (4.2)
0,%6,i=1 j=1 j=1 I
M(t;) M(t,)
PIXc(A)) =k, i=1, . =[ p(.§ w =k,i=1, ..., n § OW.)dF(el)dG(ez).
01%0, =1 i, 4.3)
1= [ neCl oW k]
P[X.(A,) =k., i=1, ..., m] = IP W, = k, |[M(t.))dF(6,)dG(e.). 4.4
(Xe ;) g0 1 m ko (J_=1 ; 3 1M(t())dF(8,)dG(s,) (4.4)
i)
P[Xg(A;) =k, i=1, ..., = [ [ P( f J Eikis 1=, L., mIM(tO:dF(el)dG(ez)-
3 x9, j=1
: (4.5)

The stochastic processes determined by (4.2)-(4.5) have been constructed to
be both consistent and stationary. Definitions (4.2) and (4.3) or (4.4) and
(4.5), yeild identical marginal distributions for X:(A), A ¢ [, but define
different processes.

If we let {M(t)} be a Poisson process, {Wi}i =1 2 , & sequence
S ’ ’ LN

t20
of random variables degenerate at 1, 0 and OZ singleton sets, then the
marginal distribution of Xf(A), Ace Zf according to each of the last four

definitions are Binomial with X(Rf) corresponding to the number of Bernulli

trials and ;%%lj-corresponding to the probability of succes in a single trial.
f
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5. Concluding Remarks.

The selection of models for stochastic processes for particular appli-
cations and the development of pertinent statistical methodologies have not
been addressed in this paper. Ve have demonstrated that models proposed may
be used to yield marginal distributions assumed in the literature; they may
also be used to avoid unwarranted assumptions and inconsistencies that arise.
We propose in subsequent work to use the general models of this paper to
devise improved statistical methodologies for problems involving the location

of individuals in a habitat.
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