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On the Second Moment of the Remainder Term Appearing
in the Intermediate Order Statistic Representation

by

Vernon Vatts

ABSTRACT
Under certain conditions a sample intermediate order statistic from a sequence
of independent and identically distributed random variables has an almost sure

representation involving the empirical distribution and a remainder term of small

order. In this paper an asymptotic approximation of the second moment of the

remainder term is obtained. It is assumed that the marginal distribution function

of the independent and identically distributed sequence has a finite left endpoint.
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1. Introduction. Suppose that {Xn}nzl are independent and identically
distributed random variables on (2, F, P) with marginal distribution function

(d.£f.) F(x) = P(x1 < x). Let {kn}nZI be integers such that 1 < kn < n for each

h smallest of

n and kn + = but kn/n + 0 as n + », and denote by Xén) the knt
Xy» ++es X . Then {Xlgn)}n21 is called a sequence of intermediate order statistics.
n
Define the left endpoint Xy of F by Xq = inf{x: F(x) > 0}, which we assume

n

to be finite. Let Fn(x, w) = n-1 Zi=1 I(Xi < x) be the empirical d.f. of the

sample Xl, Salels xn. Then under certain conditions on F, X(n) has the representation

kn
k. /n - F_ (x', w)
(n) 2 n n''n’
(1.1) xk (w) = X!" it Fi(x)) + Rr"(m)’
n n
where xa satisfies F(x&) = kn/n and where Rﬁ(m) = o(n-lkn1/4log3/4n) as n + »

with probability one. (See latts (1977).) In this paper we develop an asymptotic
approximation to the second moment of the remainder term Rﬁ, retaining the same
conditions used to establish (1.1) and imposing some additional restrictions.
Our procedure follows that employed by Duttweiler (1973) to approximate the
second moment of the remainder term appearing in the Bahadur (1966) representation
of sample A-quantiles.

Since the expected value of the kth smallest order statistic of a sample
of n variables uniformly distributed on the unit interval (0, 1) is k/(n + 1)
rather than k/n, it turns out that a substantial simplification in the procedure
is effected by dealing with a representation for x{“) vhich is slightly different

n
from (1.1). Ve consider instead

k/(a+1) - F (x, w)
(1.2) ) = x, + 2 e B WER

n F'(x)

? < ook = i
i




where X is defined by F(x ) =k /(n + 1). Then the methods used to prove (1.1)

1/4 3/4

also show tHat R’ (u) = O(n log™ 'n) with probability one.

2. Derivation of the approximation. The following preliminary result,

which we state as a lemma, provides an exact expression for the second moment
of Rn when F is the uniform (0, 1) distribution. The details of proof are

given by Duttweiler (1973).

th

Lemma. Let Uén) be the k= smallest order statistic for the set U s Un of

1, LR ]
n independent random variables uniformly distributed on (0, 1). Define

21 0™ k@ + QL 10 2 K@+ D) -0l - K@+ 1D)/n

and let R = U{n) - ﬁﬁn). Then

2 2k 2k(1 - k/(n + 1
M) ey cwienth BRLS DG eaan® 1202 0 S S B D 2

where Ix(a, b) is the incomplete beta function, defined by

a + : x _a-1 b-1
Ix(a, b) = Ta—(-_-m_)—lvf a-y dy.

Now consider a general d.f. F for which Xy > == Suppose that P(xo) =0
and in an interval (xo, X, + 8) F is twice differentiable with F" bounded, and

such that lim F'(x) exists and is positive. These assumptions insure that X
X+x
0

is uniquely determined for large n. If knllog n-+®asn-+o then (1.2) holds
with the indicated order of Rn. For the following result we make the additional
restriction that the {xn} have a finite second moment, that is, that fxz dF(x) < =,

as well as a slightly stronger requirement on {kn}.




Theorem. Suppose the {Xn} have marginal d.f. F satisfying the above conditions

and that kn/ne + » for some 6 > 0. Then for Rn defined by (1.2),
BRD) ~ /0% V2@ (x))?, asn » e

h

Proof. Let U, ..., Un be independent uniform (0, 1) variables with knt

1’

smallest order statistic U{n). Define the quantile function Q(°) by Q(u) =
n
sup{x: F(x) < u}. Then each Q(Ui) has d.f. F, and

nkp n

—_— - ), I(0(U,) < x)
n (n) n+1l i=1 i | n
TN o) ’

& oy s : . s e 4
where " indicates having identical distributions.

We may suppose that F'(x) is positive in the interval A = (xo, x, + §). Let

0
B ={u: u=F(x), x € A}. Then Q restricted to B is the inverse of F restricted

to A. Let P kn/(n + 1). There is an integer N, such that P, € Bifn2N

1 1 B

and we have that

2.2) A, = x

(2.3) Q'(p,) exists and equals (F-(xn))‘l,
and

(2.4) N(u) < X if and only if u < Py

Also, Q" exists and is bounded in B, and a straightforward derivation shows that
fé Qz(u) du = Exf < o,
For n 21 and u ¢ [0, 1] define

Hi(u) = Q(w) - Qlp,) - Q(p)u - p).




Then by (2.2)-(2.4) for n 2 N1 we have that
np_ - Z?= I(U, <p)
Rn ~ Q(pn) + Q' (pn) (UIE:) - pn) + Hn(UlE:)) - Xn S ; ::o(xn; =
(2.5)
™ e @™ - o),
n n n
where Gin) is given by (2.1). Now by Lemma 1,
n
g™ ﬁ(“))z-———zﬁ‘——{r . p+il-%k}-1 (k +1,n+%1-%)}+ 00k /n)
k. ;. k. “nln+ 1) DL n* T p, N £ e /")

Applying the relation

I(a, b) - L(a+1,b) = Bl dg - qP

for positive integers a and b (see Abramowitz and Stegun (1964, Equation

26.5.16)) and Stirling's formula

nt = e n™20912( Lo lyy,

we obtain

(2.6) ™ - 4% = @020 B a e o)),
n n

Therefore to complete the proof of the theorem it is sufficient from (2.5) and

(2.6) and by the Schwarz inequality to show that

1/2
n

2.7 E(H;‘:(Ul((“))) = o(k%/n?y.
n

1/2

Choose a, 0 < a < 1/8, and let ¢, * k:/n and In = (max{O0, A en}, Pn +¢e).

e may assume that In < B. Denoting the probability density of U{") by gy We
n

have




v — —

2,.(n) 2
EHO(UM™M) = (f + ) HS(u) g _(u) du.
" kn ueIn u{In ¥ s

Let H 1oy = SUP |Hn(u)| and g oo0= szg g (u). Then

uel u
n

sy st .
n kn

2
o e Hn(u) du.

1
n,max IO

Also, it follows from the inequality (a + b + c)2/3 2" 5B + e dhon
} .2 o2l 3 i
/3) [ B i) du s EX] + Q7(p) + (@' (@ ))".

Since E xf < o, by (2.2) and (2.3), and since F'(xn) tends to a non-zero limit,

there is a constant C, < «» such that for n 2 N

1 1 184
1 .2
fo H () du < C,.
Hence for n 2 Nl’
2 .,(n) .2
(2.8) EH (U™) sH oo+ C % e’

n

Then letting C, = sup {|Q"(u)|} < =, we have by Taylor's expansion that

IHn(u)| s C,(u - pn)z/z for u e I, and therefore

2 2 &
(2.9) H) nax % C3 €,/4

if n 2 Hl'
Next, we observe that the density
k -1 n-k
n! n n
gn(u) = (kn-l)!(n-kn)!u 1-u) y 0<uc<l,

has nodemn = (kn = 1)/(n - 1) and decreases monotonically on both sides. Since




= h N, o
Imn pnl = o(en), m € In for n 2 12 P Nl Let « 2 1 Ye have

P _+e

(n) 2k n n 2¢
E( ~ -p)” 2 [0 T -p )% g (w) du
n n
2 g, *+ e ) + )7 e 2L @m - p )2,

and since pe, + @ whereas W P ® O(n-l), there exists C3 < =, depending on

n
Kk, such that

-(2c+1) (n) 2¢
g.(p, * ) <Cg € E(Ukn Eig]

IA

for n 2 N3 2 Nz. In a similar manner there exists C4 < » such that

3y -(2x+1) (n) _ 2
gn(pn en) = c4 €n E(Ukn pn)

for n 2 NS' Then letting C5 = max{Cs, C4} gives

e-(2K+1) E(UlEn) « P )ZK.

gn,max - 5 ™n n

n

Since (see Blom (1953, p. 42)) there is a constant C6 < » jndependent of n, kn’
and ¢ such that

(n) 2k -K
E(Uk - pn) < C6 n ,

n
it follows that

(2.10) g < C6 C. n

Kk -(2x+1)
5 €n

n,max

for n 2 N3. Then (2.8), (2.9), and (2.10) lead to

2 ,.,(n)
E hn(uk ) B o

n

2 4 -k _=-(2x+1)
2 Ep/4 * CiCCsn ™ €

for n 2 NS' Finally we may suppose that kn 2 ne for some 6 > 0, so that

-K e;(Zml) < n1/2-90(2&*1)

and by choosing x sufficiently large we obtain (2.7). [

n
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