



ON THE SECOND MOMENT OF THE REMAINDER TERM APPEARING IN THE INTERMEDIATE ORDER STATISTIC REPRESENTATION

by

Vernon Watts

FSU Statistics Report M457 ONR Technical Report No. 131

February, 1978 Department of Statistics The Florida State University Tallahassee, Florida 32306

Research sponsored by the Office of Naval Research under Contract No. N00014-76-C-0603.

DISTRIBUTION STATEMENT A

Approved for public release; Distribution Unlimited

On the Second Moment of the Remainder Term Appearing in the Intermediate Order Statistic Representation

by

Vernon Watts

ABSTRACT

Under certain conditions a sample intermediate order statistic from a sequence of independent and identically distributed random variables has an almost sure representation involving the empirical distribution and a remainder term of small order. In this paper an asymptotic approximation of the second moment of the remainder term is obtained. It is assumed that the marginal distribution function of the independent and identically distributed sequence has a finite left endpoint.

ACCESS	SION for		
NTIS		White Section	
DDC		Buff Sec	tion 🗖
UNANN	OUNCED		
JUSTIF	ICATION		
		VAILABILITY	
Dist.	AVAIL.	and/or	SPECIAL

1. <u>Introduction</u>. Suppose that $\{X_n\}_{n \ge 1}$ are independent and identically distributed random variables on (Ω, F, P) with marginal distribution function $(d.f.) F(x) = P(X_1 \le x)$. Let $\{k_n\}_{n \ge 1}$ be integers such that $1 \le k_n \le n$ for each n and $k_n \ne \infty$ but $k_n/n \ne 0$ as $n \ne \infty$, and denote by $X_{k_n}^{(n)}$ the k_n th smallest of X_1, \ldots, X_n . Then $\{X_{k_n}^{(n)}\}_{n \ge 1}$ is called a sequence of intermediate order statistics.

Define the left endpoint x_0 of F by $x_0 = \inf\{x: F(x) > 0\}$, which we assume to be finite. Let $F_n(x, \omega) = n^{-1} \sum_{i=1}^n I(X_i \le x)$ be the empirical d.f. of the sample X_1, \ldots, X_n . Then under certain conditions on F, $X_{k_n}^{(n)}$ has the representation

(1.1)
$$X_{k_{n}}^{(n)}(\omega) = x_{n}^{\prime} + \frac{k_{n}^{\prime n} - F_{n}(x_{n}^{\prime}, \omega)}{F^{\prime}(x_{n}^{\prime})} + R_{n}^{\prime}(\omega),$$

where x'_n satisfies $F(x'_n) = k_n/n$ and where $R'_n(\omega) = O(n^{-1}k_n^{-1/4}\log^{3/4}n)$ as $n \neq \infty$ with probability one. (See Watts (1977).) In this paper we develop an asymptotic approximation to the second moment of the remainder term R'_n , retaining the same conditions used to establish (1.1) and imposing some additional restrictions. Our procedure follows that employed by Duttweiler (1973) to approximate the second moment of the remainder term appearing in the Bahadur (1966) representation of sample λ -quantiles.

Since the expected value of the k^{th} smallest order statistic of a sample of n variables uniformly distributed on the unit interval (0, 1) is k/(n + 1)rather than k/n, it turns out that a substantial simplification in the procedure is effected by dealing with a representation for $\chi_{k_n}^{(n)}$ which is slightly different from (1.1). We consider instead

(1.2)
$$X_{k_n}^{(n)}(\omega) = x_n + \frac{k_n/(n+1) - F_n(x_n, \omega)}{F'(x_n)} + R_n(\omega),$$

where x_n is defined by $F(x_n) = k_n/(n + 1)$. Then the methods used to prove (1.1) also show that $R_n(\omega) = O(n^{-1}k_n^{1/4}\log^{3/4}n)$ with probability one.

2. <u>Derivation of the approximation</u>. The following preliminary result, which we state as a lemma, provides an exact expression for the second moment of R_n when F is the uniform (0, 1) distribution. The details of proof are given by Duttweiler (1973).

Lemma. Let $U_k^{(n)}$ be the kth smallest order statistic for the set U_1, \ldots, U_n of n independent random variables uniformly distributed on (0, 1). Define

(2.1)
$$\hat{U}_{k}^{(n)} = k/(n+1) + (\sum_{i=1}^{n} I(U_{i} \ge k/(n+1)) - n(1-k/(n+1)))/n$$

and let $R = U_k^{(n)} - \hat{U}_k^{(n)}$. Then

 $E(R^{2}) = \frac{2k}{n(n+1)} \{I_{k/(n+1)}(k, n+1-k) - I_{k/(n+1)}(k+1, n+1-k)\} - \frac{2k(1-k/(n+1))}{n(n+1)(n+2)} \{I_{k/(n+1)}(k+1, n+1-k)\} - \frac{2k(1-k/(n+1))}{n(n+1)(n+2)} + \frac{2$

where $I_x(a, b)$ is the incomplete beta function, defined by

$$I_{x}(a, b) = \frac{(a + b - 1)!}{(a - 1)!(b - 1)!} \int_{0}^{x} y^{a-1}(1 - y)^{b-1} dy.$$

Now consider a general d.f. F for which $x_0 > -\infty$. Suppose that $F(x_0) = 0$ and in an interval $(x_0, x_0 + 6)$ F is twice differentiable with F" bounded, and such that lim F'(x) exists and is positive. These assumptions insure that $x_n x^+x_0$ is uniquely determined for large n. If $k_n/\log n \neq \infty$ as $n \neq \infty$, then (1.2) holds with the indicated order of R_n . For the following result we make the additional restriction that the $\{X_n\}$ have a finite second moment, that is, that $\int x^2 dF(x) < \infty$, as well as a slightly stronger requirement on $\{k_n\}$.

<u>Theorem</u>. Suppose the $\{X_n\}$ have marginal d.f. F satisfying the above conditions and that $k_n/n^{\theta} \neq \infty$ for some $\theta > 0$. Then for R_n defined by (1.2),

$$E(R_n^2) \sim (2/\pi)^{1/2} k_n^{1/2} / (nF'(x_n))^2$$
, as $n \neq \infty$.

<u>Proof.</u> Let U_1, \ldots, U_n be independent uniform (0, 1) variables with k_n^{th} smallest order statistic $U_{k_n}^{(n)}$. Define the quantile function Q(') by Q(u) = $\sup\{x: F(x) \le u\}$. Then each Q(U_i) has d.f. F, and

$$R_n \stackrel{\sim}{\sim} Q(U_{k_n}^{(n)}) - x_n - \frac{\frac{nk_n}{n+1} - \sum_{i=1}^n I(Q(U_i) \le x_n)}{nF'(x_n)}$$

where $\stackrel{\sim}{\sim}$ indicates having identical distributions.

We may suppose that F'(x) is positive in the interval $A = (x_0, x_0 + \delta)$. Let $B = \{u: u = F(x), x \in A\}$. Then Q restricted to B is the inverse of F restricted to A. Let $p_n = k_n/(n + 1)$. There is an integer N_1 such that $p_n \in B$ if $n \ge N_1$, and we have that

(2.2)
$$Q(p_n) = x_n,$$

(2.3)
$$Q'(p_n)$$
 exists and equals $(F'(x_n))^{-1}$,

and

(2.4)
$$Q(u) \le x_n$$
 if and only if $u \le p_n$.

Also, Q" exists and is bounded in B, and a straightforward derivation shows that

$$\int_0^1 q^2(u) \, du = E x_1^2 < \infty.$$

For $n \ge 1$ and $u \in [0, 1]$ define

$$H_n(u) = Q(u) - Q(p_n) - Q'(p_n)(u - p_n).$$

Then by (2.2)-(2.4) for $n \ge N_1$ we have that

$$R_{n} \stackrel{\sim}{\sim} Q(p_{n}) + Q'(p_{n}) (U_{k_{n}}^{(n)} - p_{n}) + H_{n}(U_{k_{n}}^{(n)}) - x_{n} - \frac{np_{n} - \sum_{i=1}^{n} I(U_{i} \le p_{n})}{n F'(x_{n})}$$

$$(2.5) \quad \stackrel{\sim}{\sim} H_{n}(U_{k_{n}}^{(n)}) + (F'(x_{n}))^{-1}(U_{k_{n}}^{(n)} - \hat{U}_{k_{n}}^{(n)}),$$

where $\hat{U}_{k_n}^{(n)}$ is given by (2.1). Now by Lemma 1,

$$E(U_{k_{n}}^{(n)} - \hat{U}_{k_{n}}^{(n)})^{2} = \frac{2k_{n}}{n(n+1)} \{I_{p_{n}}(k_{n}, n+1-k_{n}) - I_{p_{n}}(k_{n}+1, n+1-k_{n})\} + O(k_{n}/n^{3}).$$

Applying the relation

$$I_{x}(a, b) - I_{x}(a + 1, b) = \frac{(a + b - 1)!}{a!(b - 1)!} x^{a}(1 - x)^{b}$$

for positive integers a and b (see Abramowitz and Stegun (1964, Equation 26.5.16)) and Stirling's formula

$$n! = e^{-n} n^{n+1/2} (2\pi)^{1/2} (1 + 0(n^{-1})),$$

we obtain

(2.6)
$$E(U_{k_n}^{(n)} - \hat{U}_{k_n}^{(n)})^2 = (2/\pi)^{1/2} (k_n^{1/2}/n^2) (1 + o(1)).$$

Therefore to complete the proof of the theorem it is sufficient from (2.5) and (2.6) and by the Schwarz inequality to show that

(2.7)
$$E(H_n^2(U_{k_n}^{(n)})) = o(k_n^{1/2}/n^2).$$

Choose α , $0 < \alpha < 1/8$, and let $\varepsilon_n = k_n^{\alpha}/n^{1/2}$ and $I_n = (\max\{0, p_n - \varepsilon_n\}, p_n + \varepsilon_n)$. We may assume that $I_n \subseteq B$. Denoting the probability density of $U_{k_n}^{(n)}$ by g_n , we have

$$E H_n^2(U_{k_n}^{(n)}) = (\int_{u \in I_n} + \int_{u \notin I_n} H_n^2(u) g_n(u) du.$$

Let $H_{n,max} = \sup_{u \in I_n} |H_n(u)|$ and $g_{n,max} = \sup_{u \notin I_n} g_n(u)$. Then

$$\mathbb{E} \mathbb{H}_{n}^{2}(\mathbb{U}_{k_{n}}^{(n)}) \leq \mathbb{H}_{n,\max}^{2} + g_{n,\max} \int_{0}^{1} \mathbb{H}_{n}^{2}(u) du.$$

Also, it follows from the inequality $(a + b + c)^2/3 \le a^2 + b^2 + c^2$ that

$$(1/3)\int_0^1 H_n^2(u) du \le E X_1^2 + Q^2(p_n) + (Q'(p_n))^2.$$

Since E $X_1^2 < \infty$, by (2.2) and (2.3), and since F'(x_n) tends to a non-zero limit, there is a constant C₁ < ∞ such that for $n \ge N_1$,

$$\int_0^1 H_n^2(u) \, du \leq C_1.$$

Hence for $n \ge N_1$,

(2.8)
$$E H_n^2(U_{k_n}^{(n)}) \le H_{n,max}^2 + C_1 g_{n,max}$$

Then letting $C_2 = \sup_{u \in B} \{|Q''(u)|\} < \infty$, we have by Taylor's expansion that $|H_n(u)| \le C_2(u - p_n)^2/2$ for $u \in I_n$, and therefore

(2.9)
$$H_{n,\max}^2 \leq C_2^2 \varepsilon_n^4/4$$

if $n \ge N_1$.

Next, we observe that the density

$$g_n(u) = \frac{n!}{(k_n - 1)!(n - k_n)!} u^{k_n - 1} (1 - u)^{n - k_n}, 0 < u < 1,$$

has mode $m_n = (k_n - 1)/(n - 1)$ and decreases monotonically on both sides. Since

 $|\mathbf{m}_n - \mathbf{p}_n| = o(\varepsilon_n), \ \mathbf{m}_n \in \mathbf{I}_n \text{ for } n \ge N_2 \ge N_1.$ Let $\kappa \ge 1$. We have

$$E(U_{k_n}^{(n)} - p_n)^{2\kappa} \ge \int_{m_n}^{p_n + \epsilon_n} (u - p_n)^{2\kappa} g_n(u) du$$

 $\geq g_n(p_n + \epsilon_n)(2\kappa + 1)^{-1}(\epsilon_n^{2\kappa+1} - (m_n - p_n)^{2\kappa+1}),$

and since $n\varepsilon_n \to \infty$ whereas $m_n - p_n = O(n^{-1})$, there exists $C_3 < \infty$, depending on κ , such that

$$g_n(p_n + \varepsilon_n) \le C_3 \varepsilon_n^{-(2\kappa+1)} E(U_{k_n}^{(n)} - p_n)^{2\kappa}$$

for $n \ge N_3 \ge N_2$. In a similar manner there exists $C_4 < \infty$ such that

$$g_n(p_n - \epsilon_n) \le C_4 \epsilon_n^{-(2\kappa+1)} E(U_{k_n}^{(n)} - p_n)^{2\kappa}$$

for $n \ge N_3$. Then letting $C_5 = \max\{C_3, C_4\}$ gives

$$g_{n,\max} \leq C_5 \varepsilon_n^{-(2\kappa+1)} E(U_{k_n}^{(n)} - p_n)^{2\kappa}.$$

Since (see Blom (1958, p. 42)) there is a constant $C_6 < \infty$ independent of n, k_n , and κ such that

$$E(U_{k_{n}}^{(n)} - p_{n})^{2\kappa} \leq C_{6} n^{-\kappa},$$

it follows that

(2.10)
$$g_{n,max} \leq C_6 C_5 n^{-\kappa} \epsilon_n^{-(2\kappa+1)}$$

for $n \ge N_3$. Then (2.8), (2.9), and (2.10) lead to

$$E H_n^2(U_{k_n}^{(n)}) \le C_2^2 \varepsilon_n^4/4 + C_1 C_6 C_5 n^{-\kappa} \varepsilon_n^{-(2\kappa+1)}$$

for $n \ge N_3$. Finally we may suppose that $k_n \ge n^{\theta}$ for some $\theta > 0$, so that

$$n^{-\kappa} \epsilon_n^{-(2\kappa+1)} \leq n^{1/2-\theta\alpha(2\kappa+1)}$$

and by choosing κ sufficiently large we obtain (2.7). \Box

REFERENCES

- Abramowitz, M., and Stegun, I. A. (1964). Handbook of Mathematical Functions. New York, Dover Publications.
- Bahadur, R. R. (1966). A note on quantiles in large samples. Ann. Math. Statist. 37 577-580.
- Blom, G. (1958). Statistical Estimates and Transformed Beta-Variables.
 New York, John Wiley and Sons.
- [4] Duttweiler, D. L. (1973). The mean-square error of Bahadur's orderstatistic approximation. Ann. Statist. 1 446-453.
- [5] Watts, V. (1977). An almost sure representation for intermediate order statistics: The finite endpoint case. Inst. of Statist. Mimeo Series No. 1136, University of North Carolina.

	UNCLASSIFIED (14) FSU-STATISTICS-M457)					
	UNCLASSIFTED TR-131-ONR					
SECURITY CLASSIFICATION OF THIS PAGE						
	REPORT DOCUMENTATION PAGE					
1.	REPORT NUMBER 2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER				
	FSU No. M457					
	ONR No-131					
4.	TITLE 6	5. TYPE OF REPORT & PERIOD COVERED				
	On the Second Moment of the Remainder	7 Technical Report				
	Term Appear ///g in the Intermediate	6 PERFORMING ORG. REPORT NUMBER				
	Order Statistic Representation.					
7	AUTHOR(s)	FSU Statistics Report M457				
(.)		8. CONTRACT OR GRANT NUMBER(s)				
	Vernon Watts	ONR N#0014-76-C-0608				
9.	PERFORMING ORGANIZATION NAME & ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK AREA &				
	The Florida State University	WORK UNIT NUMBERS				
	Department of Statistics	(12/11p.)				
	Tallahassee, Florida 32306	1 August 1				
11.	CONTROLLING OFFICE NAME & ADDRESS	12. REPORT DATE				
	Office of Naval Research (February 78				
	Statistics and Probability Program	13. NUMBER OF PAGES				
	Arlington, Virginia 22217	7				
14.	MONITORING AGENCY NAME & ADDRESS (if	15. SECURITY CLASS (of this report)				
	different from Controlling Office)	Unclassified				
		15a. DECLASSIFICATION/DOWNGRADING SCHEDULE				
		13a. DECERSSIFICATION DOWNGRADING SCIEDOLE				
16.	DISTRIBUTION STATEMENT (of this report)					
	Approved for public release; distribution unlimited.					
17.	DISTRIBUTION STATEMENT (of the abstract ent	ered in Block 20, if different from report)				
18.	SUPPLEMENTARY NOTES					
19.	KEY WORDS					
	Almost sure representation, empirical distribution function.					

20. ABSTRACT

Under certain conditions a sample intermediate order statistic from a sequence of independent and identically distributed random variables has an almost sure representation involving the empirical distribution and a remainder term of small order. In this paper an asymptotic approximation of the second moment of the remainder term is obtained. It is assumed that the marginal distribution function of the independent and identically distributed sequence has a finite left endpoint.

400 277 Hue