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On the Second Moment of the Remainder Term Appearing
in the Intermediate Order Statistic Representation

by

Vernon Watts

ABSTRACT

Under certain conditions a sample intermediate order statistic from a sequence

of independen t and identically dis tribu ted random variables has an almos t sur e

representation involving the empirical distribution and a remainder term of small

order. In this paper an asymptotic approximation of the second moment of the

remainder term is obtained . it is assumed that the marginal distribution funct ion

of the independent and identically distributed sequence has a finite left endpoint.
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1. Introduction. Suppose that are independent and identically

distributed random variables on (~2, F, P) with marginal distribution function

(d.f.) F(x) = P(X1 ~ x). Let be integers such that 1 � k~ � n for each

n and k~~-i but ks/n -
~ 0 as n -

~ ~~, and denote by XJ~
T1) the k~th smallest of

X1, . . .,  X~. Then is called a sequence of intermediate order statistics.

Define the left endpoint x0 of F by x0 = inf{x: F(x) > O}, which we assume

to be finite. Let F(x, w) = n~~ ~~~~ 
I(X~ � x) be the empirical d.f. of the

sample X1, . . .,  X~. Then under certain conditions on F, X~’~ has the representation

( )  k / n - F  (x’,w)
(1.1) X1,~ (w) = X~ + 

F’(x’) + R’(w),

where x~ satisfies F(x1) = ku/n and where R~(w) = o(n~~k~
1’4log3”4n) as n +“

with probability one. (See tiatts (1977).) In this paper we develop an asymptotic

approximation to the second moment of the remainder term R~, retaining the same

conditions used to establish (1.1) and imposing some additional restrictions.

Our procedure follows that employed by Duttweiler (1973) to approximate the

second moment of the remainder term appearing in the Bahadur (1966) reiresentat ion

of sample A-quantiles.

Since the expected value of the kt~ smallest order statistic of a sample

of n variables uniformly distributed on the unit interval (0, 1) is k/(n + 1)

rather than k/n, it turns out that a substantial simplification in the procedure

is effected by dealing with a representation for which is slightly different

from (1.1). We consider instead

k~/(n + 1) - F (x,~ w)
(1.2) X~ ‘(w) x + + R~(w)~n
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where x~ is defined by F(x~) = k~/(n + 1). Then the methods used to prove (1.1)

also shoW that R~(w)= O~n
4k~L~4log3~’4n) with probability one.

2. Derivation of the approximation. The following preliminary result,

which we state as a lenm~a, provides an exact expression for the second moment

of R when F is the uniform (0, 1) distribution. The details of proo f are

given by Duttweiler (1973).

Lenina. Let ~~~ be the kth smallest order statistic for the set U1, . . . ,  U~ of

n independent random variables uniformly distributed on (0, 1). Define

(2.1) 0(n) 
= k/ (n + 1) + (

~ i l  I(U. � k/ (n + 1)) - n(l - k/ (n + l)))/n

and let R - 14n) - 11~
) . Then

E(R2) — 
2k 

1) 
{Ik,cn+l)(k~ n + 1 - k) 1k/(n+l)~

1
~ 

+ 1, n + 1 - k)} - 
2k(l 

~~~

where I
~

(a, b) is the incomplete beta function, defined by

Ix(a, b) - (a- )‘(b 
l) fX ~a_l~1 - y)

b_l 
dy.

Now consider a general d.f. F for which x0 > -
~~~ . Suppose that F(x0) — 0

and in an interval (x0, x0 + 6) F is twice differentiable with F” bounded, and

such that lini F’(x) exists and is positive. These assumptions insure that
x+xO

is uniquely determined for large n. If ku/ log n as n +~~~~, then (1.2) holds

with the indica ted order of R~. For the following result we make the additional

restric tion that the (X~} have a finite second moment, that is, that fx
2 dF(x) <

as well as a sli ghtly stronger requirement on { k~}.
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Theorem. Suppose the (X~} have marginal d.f. F satisfying the above conditions

and that k/n0 + for some 8 > 0. Then for R defined by (1.2) ,

E(R~) ~‘. (2/~)
U2k l1’2/(nF1(x~))2, as n -

~~ ~~~~.

Proof. Let U1, . . .,  U~ be independent uniform (0, 1) variab les with k~tl~
smallest order statistic UJ~’~. Define the quantile function Q(.) by Q(u) =

sup{x: F(x) � u}. Then each Q(U~) has d.f. F, and

R~ ~ Q(U1~
”~) - - n~~~l 

- ~~ _1 I(Q(U1) � x )

where indicates having identical distributions.

We may suppose that F’(x) is positive in the interval A = (x0, x0 + 6). Let

B = {u: u — F(x) , x c A}. Then Q restricted to B is the inverse of F restricted
to A. Let p~ = k~/(n + I). There is an integer N1 such that £ B if n ~ N1,

and we have that

(2.2) Q(~~) x~,

(2.3) Q’(~~) exists and equals

and

(2.4) 0(u) � x~ if and only if u � p~.

Also , Q” exis ts and is bounded in B, and a straightforward derivation shows that

f~ Q
2(u) du = EX~

For n � 1 and u c (0, 1] define

H~(u) = Q(u) - Q(~~
) - Q’(p~)(u - pa).
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Then by (2.2)-(2.4) for n � N1 we have that

r I(U. � p )
Rn ~~ Q(~~) + Q’~~n Ul~~ 

- p ) + H (U~”~) 
- 

i=l 1 fl
ii n k ~~~~~ nP’(x )n n n

(2.5)
•
~1

~~ + (F’(x ))4(U~’~ -
k k ~~

‘
TI n n

where Ô~
) 
is given by (2.1). Now by Lemma 1,

n

ECU (n) 
- ~(n) 2 2k

k k ~ 
= ~ U (k , ii + 1 - k ) - I (k + 1, n + 1 - k~)} + O(k /n3).n+ l )  p n n p itn n n n

Applying the relation

I
~
(a, b) - I

~
(a + 1 b) = (~~~~

+ b - l)~ a bx ( l x)

for positive integers a and b (see Abramowitz and Stegun (1964, Equation

26.5.16)) and Stirling’s formula

-n n+l/2(2.,T)l/2(l + 0(n 1)),n. = e  n

we obtain

(n) ~(n) 2(2.6) ECU - Uk ) = (2/n~
V2(k~~’2/n2)(1 + o(l)).k~

Therefore to complete the proof of the theorem it is sufficient from (2.5) and

(2.6) and by the Sch’warz inequality to show that

(2.7) E(H~(U~~~)) — o(k~’~
2/n2).

TI

Choose ~~ , 0 c ~ < 1/8, and let — k~/nL’2 and I~ = (max{0, p~ - e~}, ~~ •

re nay assume that I c B. Denoting the probability density of by g
~, weU —

have
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E H~(I4~
)) = 

~~~~ 

+ 

4I~~ 

H~(u) g~(u) du.

Let Hnmax = sui lh~(u) and i,max ~~ g~(u). Then

E H2(U~~~) � H2 + g •~
l 112(u) du.

it k~ n,max n,max 0 it

Also, it follows from the inequality (a + b + c)2/3 � a2 + b2 + c2 that

(l/ 3)f ~ 11
2 (u) du � E X~ + Q

2(p ) + (Q’(Pn~~
2
~

Since E < ~~ , by (2.2) and (2.3), and since F’(x ) tends to a non-zero limit,

there is a constant C1 
< such that for ~ ~ N1,

f ~ 11
2(u) du � C

1.

Hence for n � N1,

(2.8) E H2(U~~~) � + c gn k~ n,max 1 n max

Then letting C2 = ~~~~~ {I Q”(u)IJ < ~~, we have by Taylor ’s expansion that

IH~(u) I � C2(u - p~)
2/2 for u £ ~~ and therefore

(2.9) H
~~max � C~ e~/4

if it � U1.

Next, we observe that the density

g~(u) - (k~ - l)!(n - ku)! ~~~~ 
(1 - u)~~~~, 0 < ~~ < 1,

has mode m~ - (k~ - l)/(n - 1) and decreases monotonically on both sides. Since
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- o(c~) ,  m~ c I~ for n � N 2 � N1. Let K � 1. !Ye have

- )
2K 

� J Cu - 1~n)
2K g~ (u) du

� g~(p~ + £~~) (2ic + l)4(c 2K
~~ - Cm - )

2K4.l
)

and since nc~ ~ whereas m~ - = O(n~~), there exists C3 
< ~~, depending on

K , such that

+ c ) � C3 ~
_ (2K+1) E (U k~~~ 

- )
2K

for it � N3 � N2. In a similar manner there exists C4 < such that

- c~) � C4 ~ 
(2ic+1) E(U~~ - )

2K

for n � N3. Then letting C5 = niax(C3, C4
} gives

� c5 6;
(2K+l) E(U~~ - )

2K

Since (see Blom (1958, p. 42)) there is a constant C6 
< independent of n, k~.

and K such that

E ~~~ - p ) 2K 
~ C6

it follows that

(2.10) 
~n max ~ C6 C5 

~ -K

for n � N3. Then (2.8), (2.9), and (2.10) lead to

E H~(U1~
’
~) � C~ c~/4 + c1c6c5 

K

for n � N3. Finally we may suppose that k~ � it
8 for some 8 ‘ 0, so that

K 
~
_ (2Ic+l) ~ ~l/2-Oce(2ic+l)n

and by choosing K sufficiently large we obtain (2.7). El
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