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ASYMPTOTIC BEHAVIOR OF INTERMEDIATE ORDER STATISTICS:
THE INFINITE ENDPOINT CASE

by

Vernon Watts

ABSTRACT
Suppose Xl, xz, ... is a sequence of independent and identically distributed
random variables with marginal distribution function F(x) = P(X1 < x) satisfying
F(x) > 0 for all real x. Let xi“) denote the knth smallest order statistic of
the sample Xl, SO xn, where kn?n + 0 as n+ «, An almost sure representation
of X{n) in terms of the empirical ~i. bution function is established. The
condi:ions imposed upon F include . .  under which it is known that Xﬁ:) is

asymptotically normal. From the representation the law of the iterated logarithm

for xé“) is obtained. Examples illustrating the general result are presented.
n
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1. Introduction. Suppose {xn}nZi is a;sequencgﬂof.independent and identi-
cally distributed (i.i.d.) raﬁdéﬁ'vgriables on (Q,“F,'P) wiéh marginal distribu-
tion function (d.f.) F(x) = P(X1 < x). Denote the kth smallest order statistic
of the sample Xps eees X by x{“). Let {kn}nzl be a sequence of integers satis-
fying 1 < kn < n for each n and kn/n + 0 as n + =} {kn} is then called an inter-
mediate rank sequence and {Xlgn)}n21 a sequence of intermediate order statistics.

In this paper we study t:e limiting properties of sequences {x{n)}nzl’ Our
consideration is restricted to the case in which F(x) > 0 for all re:1 x, that

is, F has an infinite left endpoint. We first state a known result giving con-

ditions under which x{“) is asymptotically normal. Then our primary interest is
n

(n)
k

n
ical d.€£. of Xl, Siarily Xn, which is analogous to our previous result obtained when

the development of an almost sure representation for X in terms of the empir-

F(xo) = 0 for some s e (Watts (1977)). The procedure for deriving this
essentially follows that used by Bahadur (1966) to establish the corresponding
representation for sample A-quantiles. Furthermore, we obtain the law of the

(n)

iterated logarithm for Xk , and finally we illustrate the general representation
n
with two examples.

2. Asymptotic normality and the almost sure representation. The basis for

our investigation is the follcwing theorem of Cheng (1965) giving sufficient

conditions for the intermediate order statistic X{n) to be asymototically normal.
n

Here and throughout the paper we let X be defined by F(xn) = kn/n. The condi-

tions upon the d.f. F insure that X, is determined uniquely for all large n.

Theorem 1. Suppose for some real number c the two derivatives F' and F" exist

with F'(x) > 0, for x < ¢. Also assume that for some p < 1 and some M < =,




F(x ) |F'(x +y) |
(F' (xn)?

<M

(2.1)

for all large n, where {y } is any sequence such that Y, * o(lxnlp). Then

n F'(xn) (n)
(2.2) P T ()(k - xn) < x| =+ o(x)
n
n

as n + », for all real x, where ¢ is the standard normal d.f.

Proof. For any x, in order that (2.2) hold it is necessary and sufficient that

(2.3) i%'(p(“n) -k /n) +x
n

¥

as n + o, yhere u. . un(x) =X +x kn/n F'(xn). (See Smirnov (1967).) Let

iiarh A % - g #
Yo &K kn/n F'(xn) X F(xn)/kn F'(xn). Since p < 1 and kn + o we have - o(xn)

by (2.1), so that u, > Thus we may write

Fu) = F(x ) + x kﬁ/n ‘¥ yfl Fi(x + 6 y),

where |6n| S 1. Then since y = o(lxnlp) and F(x ) = k_/n, the second condition
in (2.1) leads to (2.3). O
From now on we assume that F satisfies the conditions stated in Theorem 1.
Moreover we impose the mild restriction that knllogsn + o, Let
¥, %
kn log™n

an = co n F'Zx )

n
for some Co > 0 and let {bn} be a sequence of positive integers satisfying

by v (k /log m)¥ + =,




From (2.1) it follows that a = o(xn), so that X, *a, + -, For large n let

I = [xn -a, x ¢+ an] and define

Ln = sup{F'(x): x ¢ In}

and
Mn = inf{F'(x): x ¢ In}'
Assume that
(2.4) Ln/F'(xn) and F'(xn)/Mn are bounded as n + =,

n

-1
Let Fn(x, w) =n Xisl

I(xi < x) denote the empirical d.f. of Xl, e

In the remainder of this section we establish the following result.

Theorem 2. Let {Xn} be an i.i.d. sequence with marginal d.f. F satisfying the
conditions of Theorem 1, and in addition, (2.4), where the intermediate rank

sequence {kn} is such that knllogsn + o, Then

k -n F_(x_,w)
@9 (0 =5, o s n 0,
n n
k: log3/4 n

where Rn(w) =0 —ﬁqTx—n-j— with probability one.

For large n let

Gn(x, w) = Fn(x, w) - F(x) - Pn(xn, w) + kn/n
and

H @) = sup{lGn(x, w)|: xe I}

Most of the steps in the proof of Theorem 2 are contained in the following two

lemmas.




Lemma 2.1. With probability one,
-1 -1 . % 3/4
= ' =
Hnon) O(F (xn) a_ bn ) = 0(n kn log™ "n)

as n + o,

Proof: Let Nl be such that x, is uniquely determined for n 2 Nl' For n 2 N1
" i -1 AT

and any integer r let nr,n =x, +Ta bn . By the monotonicity of F and Fn

we have for x € [nr,n’ nr+1,n] that

Fn(nr,n’ w) - F(n ) SF (x,w) - F(x) <F (n e ) = F(nr’n)-

r+l,n r+l,n
Therefore
H @) < max{|Gn(nr,n,tu)|: b ST<b}
+ max{F(nr+1,n) = Fo]r,n): - bn <Sr< bn -1}
(2.6) = Kn(w) ‘a,

say. We have n n =a b

r+l1,n = 'r,n §oy nbn,n T e A,

(2.7) a = O(F'(x) a_ bn'l).

Now for any n 2 Nl’ and any r,

-1 vn
C Zi=l Iy 5%y & “r,n) “RyprT2 0
G (n. )=

n
nr, -1 on

M lje I("r,n b Ut ™ B Prn T5-L

-1
where Ben® IF(nr’n) - kn/nl. Let t =C, F'(x)a b "™ for some C, > 0.

According to Bernstein's inequality (see Bahadur (1966)) we have




P(l6 (n, .2 2 exp(-h, ),

where

212
n tn

h = :
T,n nt A
2{n pr,n(l'pr,n] + -gn-max{pr,n, 1 pr,n}}

Ye may choose N, 2 N, such that n 2 N, and |x| = b, dimply t <L a and

Pron S L a . Thus for n 2 N, and |r] < b,

PCl6, (0, DI 2 t) s 2 exp(-6)),

where
2 24
c ntn E Co C1 F'(x.)
n  3Liva 3L
n n n

log n(1 + o(1)).

if Co and C1 are chosen sufficiently large, then

P(l6 (. )| 2t) <2 g Si¥E)

for some ¢ > 0 and for all n 2 “3’ say, so that

anNl p(Kn 7 tn) S

Therefore P(Kn 2 tn infinitely often) = 0 by the Borel-Cantelli lemma, and since

1

t =C F'(x)a bn' , the statement of the lemma follows from (2.6) and (2.7). O

Lemma 2.2. With probability one, X(“) € I_ for all large n.
—_ kn n

Proof: We first have
(n) n e o
P(an <x -a)s P(Zi_1 IX; Sx +a)-np 2k -np),

where Pp = F(xn - an). The right side does not exceed 2 exp(-h), where




6

nz(F(xn) A F(xn-an))z P

s n
h = an > K 2 (1 +¢€)logn

for some ¢ > 0, if Co is sufficiently large. Therefore

(2.8) anN P(X, <x -a)<e,

1

Similarly,

P(xéz) Pa ) s P(22=1 IX; > %, +8)) -mp, > 01 - P - k)

< 2 exp(-h),
where now P, 1 - F(xn + an) and
n2 M < a 2
h n n

o 2n(T1pn) +n Ln a ¥

Since F(xn + an) < F(xn) + Ln a, and log n = o(kn), and by (2.4), we have that

n2 M 2 a 2

h 2 52 LY (1 +€) logn
n

for some € > 0 and for all large n. Thus

(2.9) P(xn b an) < o,

1
nZN1

Combining (2.9) with (2.8) and applying the Borel-Cantelli lemma completes the
proof. [

Proof of Theorem 2: From Lemmas 2.1 and 2.2 it follows that

Pl @), ) = POV () - P, ) ¢ K/n = 06 (x) 8, 5,7




with probability one. Also, we have with probability one that for all large n,

Fn(xéz)o»), @) =k /n and

F(xén)o»)) =k /n+ (xé“)o») - x ) F'(x)
n n

S HD ) - x)? Pl v 8y 0,00),

where lencu)l < 1. But a bn F"(xn g 9n@u))/F'(xn) + 0, by (2.1). Therefore

1

(Xéz)ﬁn) ~3) ) -l + Fole, o) = 0F'(E) 8, b, ),

and (2.5) follows. O
It may be noted that the above derivation of (2.5) requires that {kn} only
satisfy knllog n + =, However if knllogsn + o, then (2.5) verifies the
asymptotic normality of Xén), which follows from the usual central limit theory
n

for row sums of triangular arrays of random variables, applied to {Xn i} defined
’

by X = (kn/n - I(Xi < xn))/kn%, i=1, ..., n. Then it is clear that without

n,i
the stronger restriction knllogsn + » the rate of convergence of the remainder
term Rn indicated in Theorem 2 may not be sufficiently rapid to insure that

(2.5) is meaningful.

3. The law of the iterated logarithm. Kiefer (1972, Theorems 5 and 6)

has established the law of the iterated logarithm for the intermediate order

statistic Uén) from an i.i.d. sequence {Un}nzl uniformly distributed on the unit
n
interval. Specifically, in his Theorem 5 he has shown that if kn + « and

kn/n + 0 monotonically, and if kn/log log n + =, then

T -k /n
P(lim sup L L T
nie 2 kn log log n)

=1) =1,




n ;

= * : = . X, i e
where Tn 21=1 I(U1 kn/n) Suppose the mgrglnal d.f. F of the sequence {xn}
satisfies our conditions in the previous section, and moreover, is everywhere
continuous, so that each F(Xn) has the uniform distribution. Then using the

almost sure relation
o=l on
F(x,w=n Zi=1 I(F(X;) <k /n),

valid for large n, along with the representation (2.5) we obtain the following

result.

Theorem 3. Let {Xn} be an i.i.d. sequence with continuous marginal d.f. F
satisfying the conditions of Theorem 2. If {kn} satisfies kn + « and kn/n v 0
as n + », along with the restriction kn(log log n)z/logsn + o, then

n F'(xn)(Xén) - xn)

P(lim sup * .1

n>e (2 kn log log n)%

=1) = 1.

4. Examples. Ve now illustrate the representation (2.5) with two examples.

For each of these the conditions of Theorem 2 can be verified in a straightforward

manner.

ex, x<0
Example 1. F(x) =

Iy X 20,

Let {k } satisfy k n/1og"'n + ®, For (2.1) we take p = 0. Then (2.5) holds, where
log n 3/4
R (u) = 0 —EE—

with probability one.




Example 2. F(x) = ¢o(x).

We have the basic relation F(x) ~ -x-1 F'(x) as x + -=, from which it follows

that

x v -(2 log n/kn)%,

for any {kn}. Moreover, (2.1) is satisfied with p = -1. Then (2.5) hulds,

where

o ff el

n L n

with probability one.




10

REFERENCES

Bahadur, R. R. (1966). A note on quantiles in large samples. Ann. Math.
Statist. 37, 577-580.

Cheng, B. (1965). The limiting distributions of order statistics. Chinese
Math. 6, 84-104.

Kiefer, J. (1972). Iterated logarithm analogues for sample quantiles when
P, ¥ 0. Proc. Sixth Berkeley Symp. Math. Statist. Probabil. 1,

227-244.

Smirnov, N. V. (1967). Some remarks on limit laws for order statistics.
Theory Probabil. Appl. 12, 336-337.

Watts, V. (1977). An almost sure representation for intermediate order statistics:
The finite endpoint case. Inst. of Stat. Mimeo Series No. 1136,
Univ. of N.C.




4 "Zwsz/Tz’STZCu mazt |
UNCLASSIFIED bt bl i R
SECURITY CLASSIFICATION OF THIS PAGE { 7 - _Z as (C)/VIQ J

REPORT DOCUMENTATION PAGE [t
1. REPORT NUMBER | 2. GOVT ACCESSION NO. 3 RECIPIENT'S CATALOG NUMBER

FSU No. M436Y
ONR No. 125V

4. ~JITLE .S. TYPE OF REPOR ERIOD COVERE
q ,

Q0

Technical A{ep.t

Asymptotic Behavior of Intermediate / <
. Order Statistics: The Infinite p=—
| Endpoint Case. e

I' }
‘ 4 FSU Statistics Report M436

7. —AUTHOR (s) 8. C?ACT OR GRANT NUMBER(s)
70 /4
?Vemonhlattij ZW#I4-76-C-ﬂ6ﬂ8,V
9. PERFORMING ORGANIZATION NAME & ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK AREA
§ WORK UNIT NUMBERS

The Florida State University
Department of Statistics
Tallahassee, Florida 32306

11. CONTROLLING OFFICE NAME § ADDRESS

Office of Naval Research
Statistics and Probability Program
Arlington, Virginia 22217

10

14, MONITORING AGENCY NAME & ADDRESS (1 15. SECURITY CLASS (of this report)
different from Controlling Office)
Unclassified

15a. DECLASSIFICATION/DONNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this report)

Approved for public release; distribution unlimited.
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from report)

18. SUPPLEMENTARY NOTES

19. WORDS
Xk sub n) supevsenp’ n

B y { K sub n)*i L eor:s

Suppose x vor 1y/a sequence of independent and identically distributed random
variables with ginal dstribytion function F(x) = P(X, £ x) satisfying F(x) > 0 for all
real x. Letf enote the 1i smallest order stat1stic of the sample xl”, “vey n’ where

bution functi s established. The conditions 1mpos upon F include those under which it

fkn/n-»O as n + @Y An almost sure representation of/ )((n ‘in terms of the empirical distri-
is known that ? Xka';ﬁhasmtotiully normal. From the representation the law of the iterated
\ k

logarithm for‘i_ \ Mis obtained. Examples illustrating the general result are presented. )

.

U e oy

gy gy ——




