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ASYMPTOTIC BEHAVIOR OF INTERMEDIATE ORDER STATISTICS :
ThE INFINITE ENDPOINT CASE

by

Vernon Watts

AB~~RACT

Suppose X1, X2, ... is a sequence of independent and identically distributed

random variables with marginal distribution function F (x) P(X1 ~ x) satisfying

F(x) > 0 for all real x. Let X~ ’~ denote the k~
th smallest order statistic of

the sample X1, ... , X1~, where kn/n 0 as n -
~~ ~~~. An almost sure representation

of ~~n) in terms of the empirical ~~~~ bution function is established . The

conditions imposed upon F include . under which it is known that X~~~ is

asymptotically normal. From the representation the law of the iterated logarithm

for is obtained. Examples illustrating the general result are presented.
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1. Introduction. Suppose {X~}~~j is a, sequence of independent and identi-

cally distributed (i.i.d.) random variables on (~, 
F, P) with marginal distribu-

tion function (d.f.) F(x) = P(X1 
� x). Denote the kth smallest order statistic

of the sample X1, ... , X~ by ~~~~ Let (k
n
}
n�l be a sequence of integers satis-

fying 1 � k~ � n for each 11 and kn/fl + 0 as n -
~~ ~; 

{k~} is then called an inter-

mediate rank sequence and a sequence of intermediate order statistics.

In this paper we study the limiting properties of sequences 
~
‘
~~~~n�l

• OUT

consideration is restricted to the case in which F(x) > 0 for all real x, that

is , F has an infinite left endpoint. We first state a known result giving con-

ditions under which is asymptotically normal. Then our primary interest is

the development of an almost sure representation for in terms of the empir-

ical d .f - of X1, . ., X~, which is analogous to our previous result obtained when

F(x0) = 0 for some x0 
-

~~~ (Watts (1977)). The procedure for deriving this

essentially follows that used by Bahadur (1966) to establish the corresponding

representation for sample X-quantiles. Furthermore, we obtain the law of the

iterated logarithm for 41i), and finally we illustrate the general representation

with two examples.

2. Asymptotic normality and the almost sure representation. The basis for

our investigation is the following theorem of Cheng (1965) giving sufficient

conditions for the intermediate order statistic X~
It) to be asyitmtotically normal.

Here and throughout the paper we let x~ be defined by F(x~) ~ ku/n. The condi-

tions upon the d.f. F insure that x~ is determined uniquely for all large n.

Theorem 1. Suppose for some real number c the two derivatives F’ and F” exist

with F, (x) > 0, for x c c. Also assume that for some p � 1 and some H c
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F(x~) F(x~) IF” (x~+y~)I(2.1) <M and 
2Jx~~

1
~ F’(x ) (F’(x ))

for al l large n, where (~~} is any sequence such that y~ = o(Ix~I~). Then

nF’(x)
(2.2) P ~‘ (X~’~ - x ) � x + 0(x)

k 11

as n -~ ~~, for all real x, where 0 is the standard normal d.f.

Proof. For any x, in order that (2.2) hold it is necessary and sufficient that

(2.3) ~~ (F (u~) - k /n) + x

as n ÷ ~~, where u = u (x) = x~ + x F’(x). (See Smirnov (1967).) Let

= x k~/n F’(x~) x F(x~)/k~ F’(x~). Since p � 1 and k~ ÷ we have y
~ = o(x~)

by (2.1), so that + -
~~~. Thus we may write

F(u ) - F(x ) + x k~/n + 4 y2 F”(x + 0 y),

where l e t  � 1. Then since y1~ = o(Ix~I”) and F(x~) = ku/n. the second condition

in (2.1) leads to (2.3). 0

From now on we as3ume that F satisfies the conditions stated in Theorem 1.

Horeover we impose the mild restriction that k~/1og
3n + ~~~. Let

k4 log4n
a ~~C ~n onF’ (x)

for some C0 > 0 and let {b~} be a sequence of positive integers satisfying

ba ” (ks/log n)~ “
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From (2J) it follows that a~ = o(x~) .  so that x~ + a~ -
~~~. For large n let

- [x1,~ - a , x~ + a~] and define

Ln = sup{F’(x): x c I~ }

and

M~ - inf{F’(x): X £ I~ }.

Assume that

(2.4) L /F’(x~) and F’(x~)/M~ are bounded as n

Let P~(x, c~) = n~~ ~~~ 
I(X

~ 
� x) denote the empirical d.f. of X1, ~~~ 

X~.

In the remainder of this section we establish the following result.

Theorem 2. Let {X~} be an i.i.d. sequence with marginal d.f.  F satisfying the

conditions of Theorem 1, and in addition, (2.4), where the intermediate rank

sequence {k~} is such that k~/log
3n -‘~ ~~. Then

k -n F Cx ,w)
(2.5) 

~~n 
(w) x~ + 

~~~~~~~~~ 

+ R (w),

k4 log3’14 n
where R~(w) 0 

~ F’(x ) 
with probability one.

For large n let

G~ (x . w) - F~ (x~ w) - F(x) - P~ (x~ . t~) + k/n

and

— sup{(G~ (x , w ) l :  x € I~}.

— Most of the steps in the proof of Theorem 2 are contain ed in the following two

leemas.
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Lemma 2.1. With probability one,

_l
) oc -l ¾ 3/4H (w) = 0(F ’(x ) a b = n k log n)n n n n  n

as n + ~~.

Proof: Let N1 be such that X
n is uniquely determined for n � N1. For n � N1

and any integer r let n = x + r a b ~~~
. By the monotonicity of F and F~r,n n n n

we have for x c [n thatr ,n

F (ri , ~) - F(ri ) � F Cx , c*i ) - F(x) � ~~~~~~~~~ ~) 
- F(Tl r n ) •n r,n r+l,n n

Therefore

H(w )�max {IG (,, , w ) l :  -b � r � b }n n r n  n n

+ max{F(n ) - F ( ~ ): - b  � r � b  - l }r+l ,n r ,n n n

(2.6) = K~(w) +

say. We have ~ - = a b~ ~ and = x + a + -
~~~. Then by (2.4),r+1,n r ,n n ,n n n

(2.7) a = 0(F ’ (x ) a bn n n f l

Now for any n � N1, and any r,

St Z I(xn < X i � nr ,n) _ p
r ,n , r � O

G(~ 
) 1 -l

i=l

n r,n 
1-n~~ Z~~ 1 I(n~~ 

< X~ � x~) + r � -1,

where 
~ 

- IF C n~ ,~) - ks/ni. Let t~ = C1 ‘(x~) a~ b~
4 for some C1 > 0.

Accordi ng to Bernstein ’s inequality (see Bahadur (1966) ) we have
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P(iGnCnr n )I•� 2 exp(_h
~~~

) ,

where
-

- 2 2fltn
T~ fl 

- 

2{n 
~r ,n 0

~~ r ,n~ 
+ !!~

11.max{p~~n , 1_P r ,n }}

~~ may choose N2 � N1 such that n � N., and I r l  � b~ imply t~ � L~ a~ and

� L~ an . Thus for n ~ N2 and In  � b~ .

P(IG (~~~) I  t )  � 2 exp (_6~)~

where
nt 2 C C 2 F’(x )

6n 3 L ~~a~ 
= ° 

3 L ~ 
‘~ log n ( 1+ o ( l ) ) .

If C0 and C1 are chosen suff iciently large, then

P( I G n (TI r n ) l  � t~) � 2 -(l+E)

for some c > 0 and for all n � •I3~ say, so that

Zn�N P(K~ � t~ ) < ~~.

Therefore 1’
~~n ~ ~~ infinitely often) - 0 by the Borel-Cantelli lemma, and since

t . C1 F’(x) a b 4, the statement of the lemma follows from (2.6) and (2. 7). 0

Lemma 2.2. With probability one, c I~ for all large n.

Proof: We first have

p(X1~~ < x~ - a~) � p 
~~~ I (X~ � x + a) - np ~ k - np),

wh re p~ = F(x~ - an) .  The right side does not exceed 2 exp(-h) , where
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2 2 2 2 2ii (F (x ) - F(x -a )) n M a
h = 2k 

— 

~ 2k � (1 + C) log n
n n

for some £ > 0, if C is sufficiently large. Therefore

(2.8) Zn�N P(X < x~ - a~) < ~~.

Similarly,

p~4fl) ) X + an) 
� pcr 1 I(X. > x + a) - np~~> n(l - 

~~ 
- k~)

~ 2 exp(-h),

where now p = 1 - F(x~ + an) and

H 2 a 2

h = —  ~2n(l-p~) + n L~ a~

Since F(X + a) � F(x ) + L a~ and log n = 0(k), and by (2.4), we have that
2 2 2n M  a

h � - � (1 + c) log n

for some c > 0 and for all large n. Thus

(2.9) 
~~~~ P(X~ > x~ + a) <

Combining (2.9) with (2.8) and applying the Borel-Cantelli lemma completes the
proof. 0

Proof of Theorem 2: From Lemmas 2.1 and 2.2 it follows that

P (X~”~ (u), w) - P (X~’~ (w)) - P (x~, ~) + ku/n 0 (F’ (x~) a~ b~
4)

- - ---- -
~

--- ——- .-
~~~~~~
.

~~~~~~~~~~~~~~ ~~ —-~~~~~~~~~~
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with probability one. Also, we have with probability one that for all large n,

F~(X~’~(~), w) = ku/n and

F(X~’~~(w)) = ku/n + (X ~~~(~) - x) F’(x~)

+ X~~~(~) - x)
2 F”(x + a O (~)),

where lO~(~) I  � 1. But a~ b~ Ft!(x~ + a~ 8~(~))/F’(x ) + 0, by (2.1). Therefore

- x) F’(x) - k/n + F(x , ~) = O(F’(x~) a~

and (2.5) follows. 0

It may be noted that the above derivation of (2.5) requires that {k ~ ) only

satisfy ku/log n ~~. However if k~/1og
3n + ~, then (2.5) verifies the

asymptotic normality of ~~~~ which follows from the usual central limit theory

for row sums of triangular arrays of random variables, applied to (X
~~i
} defined

by ~~~ = (ku/n - I(X~ � x~)) /k~
4. i = 1, ..., n. Then it is clear that without

the stronger restriction k~/1og
3n + the rate of convergence of the remainder

term indicated in Theorem 2 may not be sufficiently rapid to insure that

(2.5) is meaningful.

3. The law of the iterated logarithm. Kiefer (1972, Theorems S and 6)

has established the law of the iterated logarithm for the intermediate order

statistic from an i.i.d. sequence {U
~
)
~�1 

uniformly distributed on the unit

interval. Specifically, in his Theorem 5 he has shown that if k~ + ~~ and

• ku/n + 0 nonotonically, and if ku/log log n + ~~ , then

• T - k /n
P(lim sup ± ~ - 1) - 1,(2 k~ log log n)
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where T~ = 
~~~ 

I(U 1 
� ku/n). Suppose the marginal d.f. F of the sequence {X~}

satisfies our conditions in the previous section, and moreover, is everywhere

continuous, so that each F(X~) has the uniform distribution. Then using the

alr~ost sure relation

F~ (x~. w) = n4 
~~~l 

I(F (X1) � ku/n) ,

valid for large n, along with the representation (2.5) we obtain the following

result.

Theorem 3. Let {X~} be an i.i.d. sequence with continuous marginal d.f. F

satisfying the conditions of Theorem 2. If {k~} satisfies k~ + and ks/n + 0

as n ~, along with the restriction k~(1og log n)
2/log3n + ~, then

n FI(X )(4n) - x )

P(lim sup ± — = 1) = 1.
(2 k~ log log n)

4. Examples. We now illustrate the representation (2.5) with two examples.

For each of these the conditions of Theorem 2 can be verified in a straightforward

manner.
xe , x <  0

Example 1. F(x)
1 , x � 0.

Let (k~} satisfy k~/log
3n + ~~. For (2.1) we take p = 0. Then (2.5) holds, where

3/4
R~(w) = o[[1~~~nJ J

with probability one.

_ _ _ _ _  • - - • ~~—r- —
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Example 2. F(x) = 0 (x) .

We have the basic relation F(x) ~ -x~~ F’ (x) as x -
~ -

~~~, from which it follows

that

x ‘~. -(2 log n/k~)
4
.

for any {k }. Moreover, (2.1) is satisfied with p = -1. Then (2.5) holds,

where

R~(w) = o[[1o~~1t)
3II4 I:og~~~

.j4J

with probability one.
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