THE FRL MANUAL.(U)
SEP 77 R b ROBERTS: 1 P GOLDSTEIN
UNCLASSIFIED Al=M=409

= T = e mr——

nD=A052 310 MASSACHUSETTS !NS? OF TECH CAHBRID.E ART!FIC!AL !NT!-!TC FIC e

NO0O14=75=C=0643
NL

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Enund) &\C
;/'"f REPORT DOCUMENTATION PAGE e
: 1. REPORT NUMBER

2. GOVY ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER

-N\-A#J(Ai/ IAIM 409V

5. TYPE OF REPORT & PERIOD COVERED
L=

C ’MEMOranc,uw- rQ{?‘l,

6. PERPORMINT OROT-REPORT-NSMEER]

=i
m 7 AUTHOR(s) . CONTRACT CR GRANT NUMBER(s)
<:<l (jﬁ% R. Bruce/Roberts . /3 I N0¢014-75-Cjﬂ543r
m Goldstein i
9. N NAME AND ADDRESS 10. PROGR.Ag ERLEMENT. PROJECT, TASK
o Artificial Intelligence Laboratoryy e N
o

545 Technology Square vaY/ 3 ¢P y
=T Cambridge, Massachusetts 02139
Q 11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPO TE
< Advanced Research Projects Agency | |/ | Septamisee=2977

1400 Wilson Blvd

13. NUMBER OF

Arlington, Virginia 22209

2
e T4. MONITORING AGENCY NAME & ADDRESS(I{ different from Controlling Office) | 15. s:cum?v CLASS. (of this report)
- Office of Naval Research UNCLASSIFIED
(a8 Information Systems
8 Arlington, Virginia 22217 Sa. 25§E6\3t|{|cA'noufoowucmomc
16. DISTRIBUTICN STATEMENT (of this Report)
ot R DISTRIBUTION STATEMENT A
-E-"—' Distribution of this document is unlimited. for public release;
by W Distribution Unlimited \
;‘; 17. DISTRIBUTION STATEMENT (of the abatract entered in Block 20, i different from Report) U U b
| (200 12y

APR 7 1978

]
el
(' B

18. SUPPLEMENTARY NOTES

None
o i

19. KEY WORDS (Continue on reverae elde if necessary and Identity by block number)
Frame representation

Knowledge representation language
Procedural attachment
Inheritance

Defaults
20JABSTRACT (Continue on reverae elde If necessary and identity by block number)

The Frame Representation Language (FRL) is described.

Constraints
Annotation

F ; FRL is an adjunct
to LISP which implements several representation techniques suggested by

Minsky's concept of a frame: defaults, constrfints, inheritance,
procedural attachment, and annotation.

|
FORM
DD , jan 73 1473 EDITION OF 1 NOV 65 1S OBSOLETE

UNCLASSIFIED
S/N 0102014~ 6601 |

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

R e e T T

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
ARTIFICIAL INTELLIGENCE LABORATORY

Memo 409 September 1977
THE FRL MANUAL

R. Bruce Roberts and Ira P. Goldstein

The Frame Representation Language (FRL) is described. FRL is an
adjunct to LISP which implements several representation techniques suggested by
Minsky's [75] concept of a frame: defaults, constraints, inheritance, procedural
attachment, and annotation.

This report describes research done at the Artificial Intelligence Laboratory of the
Massachusetts Institute of Technology. It was supported in part by the Advanced Research
Projects Agency of the Department of Defense under Office of Naval Research contract

NO0OOI4-75-C-0643.
DDC
e
D APR 7 1978
Tmmon STATEMINT A | GLIU G

and for public release; B
Distribution Unlimited

The FRL Manual 2 Roberts & Goldstein

Table of Contents

l. WHAT IS A FRAME IN FRL?
2. FRAMES AND THEIR NAMES
3. ADDING AND REMOVING FRAMES
THE AKO AND INSTANCE SLOTS
ADDING AND REMOVING PARTS OF A FRAME
RETRIEVING PARTS OF A FRAME
Evaluation
The % Special Data Form
Indirection :
The @ Special Data Form
The Non-atomic Slot Convention
Inheritance
Frame Data retrieval
Retrieval Functions in a Frame Environment
The ! Special Form
The & Special Form
7. THE SEVEN (PLUS OR MINUS TWO) FACETS OF KNOWLEDGE
The 8VALUE facet
The $DEFAULT facet
The $IF-ADDED and $IF-REMOVED facets
The $IF-NEEDED facet
The §REQUIRE facet
Checking requirements
Utility functions for predicates
8. ANNOTATING DATA IN FRAMES
9. SAVING FRAMES IN A FILE
Bibliography
Appendix A -- The FRL LISP Environment
Appendix B -- Frames are built out of FLISTS
Appendix C -- Index to FRL Functions
Appendix D -- Table of Data Retrieval Functions
Appendix E -- The FRL Trace Function
Appendix F -- The FRL Frame Editor

@ o

ACCESSION for /
L White Sectton
0DC Buff Section 3
UNANNOUNCED O

JUSTIFICATION

BY -
DISTRIBUTION/AVAILABILITY CODES

Dist. AVAIL. and /or SPECIAL

O WO WO U s W

The FRL Manual 3 Roberts & Goldstein

Figure | shows FRL from the larger perspective of intelligent support systems.
FRL comprises the two bottom layers: a specialized data structure (the frame) and a
collection of LISP functions for defining frames, storing and retrieving information. It has
been used to implement NUDGE [Goldstein & Roberts 77], a system for maintaining a
person’s schedule of activities in the face of individual preferences, conflicting constraints,
and changing plans; PAL, a natural language front end for NUDGE [Bullwinkle 77}, a
system to assist planning a birthday party [Clemenson 77}, TRIPPER, a knowledge base for
Places and travel around the country [Jeffery 77); a representation for the discourse
structure of news articles (Rosenberg 77}, and COMEX [Stansfield 77], a system for
understanding discourse about the commodities market. '

scheduling	natural language	reasoning	..			
time	place	people	plans	ob jects	information	..
defaults	constraints	procedural attachment	inheritance	comments		

L frames |
- Figure | -

The intellectual issues surrounding the representation techniques provided by FRL
are discussed in [Goldstein & Roberts 77). A primer [Roberts & Goldstein 77] is available
consisting of an extended example using FRL and an abridged version of this manual.

.. WHAT IS A FRAME IN FRL?

An FRL frame is implemented as nested association lists with at most five levels of
embedding. The respective sub-structures of a frame are slot, facet, datum, comment and
message. The overall structure of a frame is:

(framel
(slotl (facetl (datuml (labell messagel message2 ... more Messages ...)
... more Comments ...)
(datum2 (labell messagel ...))
... more Data ...)
(facet2 (datuml (iabell messagel message2 ...)))
... more Facets ...)
(slot2 (facetl (datuml (labell messagel ...) ...)...)...)
... more Slots ...)

We will refer to the first element in one of these sub-structures as the indicator (said to
name the structure) and the remaining elements collectively as the bucket (in the case of a
slot, the bucket is a list of facets, for example). A path of indicators identifies a sub-
structure in a frame. The order of sub-structures at any level in a frame is insignificant.
In practice, facet names conventionally have a prefix 8" labels, a suffix ":". This is simply
to facilitate their recognition by the programmer.

The FRL Manual 4 Roberts & Goldstein

2. FRAMES AND THEIR NAMES

(FRAME (rame)

returns a frame structure of the kind shown on the preceding page. An error if frame
is neither a frame name nor a frame structure.

Unless stated otherwise, a frame argument to any function can be either the name of a
frame or the frame structure itself.

(FRAME? frame)
is like FRAME except returns NIL if frame doesn't exist.

(FRAME:+ frame)

is like FRAME except that if frame is a name for a nonexistent frame, a frame is
FCREATEd and returned.

(FNAME (rame)

returns the name of frame. An error if frame is neither a frame name nor a frame
structure.

(FNAME? (rame)

is like FNAME except returns NIL if frame doesn't exist.
(FSLOTS (rame)

returns a list of the slot names in /rame.
(FCOPY frame)

returns a copy of frame.

3. ADDING AND REMOVING FRAMES

(FASSERT name slotl slot2 ... slotN)

creates a frame called name (if it doesn't already exist) containing the slots
slotl ... slotN. If the name frame exists, the new information in the slots is merged with
the existing slots. The frame is stored as the FRAME property of name and name is
added to «<FRAMES«, the list of known frames. FASSERT is a FEXPR.

The FASSERT switch. If FASSERT is nil, FASSERT forms are not interpreted.
This is convenient for selectively reading just the code in a file containing intermixed
code and frame definitions.

The FRL Manual 5 Roberts & Goldstein

(FERASE frame)

removes frame from the FRAME property of its name and its name from the list
*FRAME:.

FASSERT and FERASE can cause side-effects if the frame being added or
removed contains slots with values. These values are added or removed individually using
FPUT and FREMOVE respectively and may trigger the execution of attached procedures.
These issues will be considered in greater detail shortly. DEFRAME and FDESTROY,
unlike FASSERT and FERASE, have no side-effects.

(DEFRAME name slotl slot2 .. slotN)

Creates a frame name containing precisely the slots slotl .. slotN. If the name frame
already exists, its previous definition is FDESTROYed. DEFRAME is a FEXPR.

The DEFRAME switch. If DEFRAME is nil, DEFRAME forms are not
interpreted. This is convenient for selectively reading just the code in a file containing
intermixed code and frame definitions.

(FDESTROY (rame)

removes (rame from the FRAME property of its name and deletes its name from the
list tFRAME-=.

(FRESET)
removes all frames from the system. It uses FDESTROY.
(FCREATE {name})
creates an empty frame and returns its name. The name will be unique. Name, if
given, will be used instead, although it may be modified by FGENAME to guarantee
uniqueness. Frame names must be atomic.
Note: Bracketed expressions -- { .. } -- are used in this manual to denote
optional arguments. An unbalanced right bracket -- } -- denotes the

possible end of the argument list for a LEXPR.

(FGENAME name)

returns a guaranteed unique frame name by adding a numerical suffix to name.

4 _THE AKO AND INSTANCE SLOTS

A slot is a generalization of the attribute-value pair in the traditional LISP
property list representation. $VALUE is the slot “facet” which indicates its values. Five

The FRL Manual 6 Roberts & Goidstein

other facets indicate other types of knowledge associated with the slot. Data in the
$DEFAULT facet supplies defaults. Data in $IF-ADDED and $IF-REMOVED facets arc
procedures triggered whenever a slot value is added or removed. $IF-NEEDED data are
procedures which may compute a slot value. The REQUIRE facet holds predicates which
describe and restrict the value.

Two slots are recognized by FRL system functions: AKO (A Kind Of) and
INSTANCE. These define a relation between frames along which data is inherited. FRL
maintains AKO and INSTANCE as inverses. The AKO relation can be used to establish a
conceptual hierarchy of frames in which general information stored higher in the hierarchy
is inherited by more specialized concepts lower in the hierarchy. Functions like FGET
implement this inheritance mechanism.

A relation between frames is defined by making the name of one frame the value
of a slot in another frame. The slot names the relation. A tree of frame relations is
possible since a slot can have many values. Several functions are provided to examine these
relations.

(FCHILDREN f{rame slot)

returns a list of the immediate inferiors of frame along the relation named by slot.
This is just a list of values of slot.

(FTREE frame slot)

returns a tree of the form (root subtreel subtree2 ...) with frame at the root; each
subtree’s root is a child of frame along the relation named by slot.

(FDESCENDANTS frame slot)

returns a list of all inferiors of frame along the relation slot defines. That is, it
includes all the frames occurring in the “tree” of FTREE except the root frame.

(FRINGE frame slot)
returns a list of all "leaves” on the tree of (FTREE frame slot).
(FLINK? slot 1 (2)

returns T only if a path exists from (1 to /2 following only the slot "link";, ie, if one
of the values of slot of /1 is /2, or FLINK? is true for any of these values.

(AKO? 11 12)

returns T only if /I is a kind of /2 Equivalent to (FLINK? 'AKO 1 {2). Similar
definitions are possible for any slot whose value is another frame.

One frame is predefined in FRL: THING. A partial definition of it follows:

The FRL Manual 7 Roberts & Goldstein

(THING
(AKO (SIF-ADDED ((ADD-INSTANCE)))
($IF-REMOVED ((REMOVE-INSTANCE))))
(INSTANCE ($IF-ADDED ((ADD-AKO)))
($IF-REMOVED ((REMOVE-AKO)))))

(FINSTANTIATE frame {name})

creates an instance of frame (using FCREATE), ie, it possesses only an AKO link to
frame. Its name is derived from name (using FGENAME) and will be unique. The
newly created frame is returned.

The existence of the AKO link implies a heritage for a frame (or any part of a
frame) consisting of all information both in that frame and in all the frames accessible
along the AKO link.

(FHERITAGE frame slot} facet} datum} label})

returns a structure formed by merging the structure pointed to by the indicator path --
the arguments to FHERITAGE -- with all corresponding structures of the frames
accessible along the AKO link.

The IN Comment. Each datum in the heritage will have a comment -- (IN:
frame) -- added by FHERITAGE to record the frame in which the datum actually
occurs.

(FHERITAGE-SLOTS (rame)
returns a list of slot names occurring in (FHERITAGE frame).
By convention, frames in an AKO hierarchy are distinguished as being either
GENERIC or INDIVIDUAL by the value of their CLASSIFICATION slot. Two
predicates test the classification of a frame.

(INDIVIDUAL? frame)

returns T only if frame is marked as an individual. INDIVIDUAL? returns NIL if
frame is generic, and ? otherwise.

(GENERIC? frame)

is defined analoguously to INDIVIDUAL?.

The FRL Manual 8 Roberts & Goldstein

5. ADDING AND REMOVING PARTS OF A FRAME

(FPUT f(rame slot} facet} datum) label} message})

adds the last argument at the point in frame named by the indicator path (the
intervening arguments) and returns the modified frame. Adding new information to a
frame is a merging process that retains the uniqueness of each indicator. FPUT is a
LEXPR and can take from 2 to 6 arguments. It can be used to add an element
anywhere in a frame; to add a slot name to frame or to put a message in a comment
labeled label.

FPUT has a side-effect: Putting data items into a $VALUE facet triggers the
execution of all procedures in the $IF-ADDED facet of the slot.

(FPUT-STRUCTURE frame)

(FPUT-STRUCTURE (rame slot-structure)
(FPUT-STRUCTURE frame slot facet-structure)
(FPUT-STRUCTURE frame slot facet datum-structure)
(FPUT-STRUCTURE frame slot facet datum comment)

This family of FPUT-STRUCTURE functions differs from FPUT only in that the
last argument is considered to be an entire sub-structure (rather than an indicator).
The entire structure is merged into frame. Like FPUT, FPUT-STRUCTURE may
trigger $IF-ADDED procedures.

(FREMOVE frame slot} facet} datum} label} message})

deletes the sub-structure of frame indicated by the path slot - facet - datum ... It
returns the modified frame. FREMOVE is a LEXPR taking from 2 to 6 arguments.
The structure deleted will have had as its indicator the final argument to FREMOVE.
FREMOVE has a side-effect: If any data in a 8VALUE facet is deleted by this
command, all procedures in the 8IF-REMOVED facet of the slot are executed.

(FREPLACE frame slot} facet} datum} label} message})
like FREMOVEing all existing items following by FPUT with the arguments given.
Following a call to this function, the only item present at the terminus of the indicator
path is the final argument.

(FDELETE (rame slot} facet} datum} label} message})
like FREMOVE except never triggers any side-cffects. The portion of frame identif ied

by the indicator path is simply excised.

6. RETRIEVING PARTS OF A FRAME

The following questions should be kept in mind when retrieving data from a facet.

— e e e A —

The FRL Manual 9 Roberts & Goldstein

w What is the expected form of the data?

w« How is the data inherited?

w How does it interact with other facets?

w« Are any special comments associated with the data?

But before considering individual facets, three general properties of facets and their data
will be discussed: evaluation, indirection, and inheritance.

Evaluation

Normally, data in a frame is interpreted literally. The access functions return just
what one sees in a frame if it were printed out. Data can be computed however, and to
specify that a datum is to be evaluated whenever accessed, FRL provides:

The 7 Special Data Form. A percent sign prefixed to a datum causes the evaluated
datum to be returned whenever it is accessed.

The implementation of % as a prefix character requires that it be defined as a
readmacro in Lisp. See Appendix A for other changes to the standard
MACLISP environment necessitated by FRL'’s operation.

The data element is evaluated in a particular frame environment, as determined by the
frame, slot, and facet named in the retrieval request. The global variables :FRAME,
:SLOT, and :FACET at the time of evaluation can be assumed to be locally bound to the
names of the “current” frame, slot, and facet. Because of indirection and inheritance, the
frame environment may not be the one in which the datum actually lies. Situations may
arise when the user will want to explicitly establish a frame environment for the evaluation
of an expression. A function has been provided to facilitate this.

(FEV AL s-expression (rame} slot] facet})

binds :FRAME, :SLOT, and :FACET to the values supplied. It then evaluates the S-
expression and returns the result. If an argument is missing or nil, the prior (higher)
binding is unaffected.

Indirection

Datum in one frame can be retrieved indirectly by a request for datum in a
different frame. This indirection is denoted by:

The @ Special Data Form. A datum with a prefix atsign is interpreted as an
indirection pointer to all the data in another frame. The pointer is an indicator path:
frame, slot, facet. When accessed, the data items pointed to by the indirection are copied
and spliced together with any other items in the facet (generally, a facet can have many
data items). The behavior of indirectly accessed items is equivalent to the local items.

e e e —— e —

The FRL Manual 10 Roberts & Goldstein

~

A related convention allows one to define a slot in a frame to hold information
accessed indirectly by another.

The Non-atomic Slot Convention. If a slot is created whose indicator is non-
atomic, the CAR of the slot name is considered to name a frame and the CADR a slot in
frame. An indirection pointer is put in each of the existing facets of the indicated slot in
frame pointing back to the corresponding facet of the slot just created.

Comments:

v+ Each indirect datum returned will receive a comment of the form (IN: frame). Frame is
the name of the target frame lying at the end of the indirection chain.

w: Evaluation and indirection are mutually exclusive. A datum may be evaluated, expanded
as an indirection pointer, or receive no special processing.

«: How does evaluation differ from indirection? Evaluation returns a single datum.
Indirection causes a list of data items to be appended to the list of structures returned from
the local frame.

w+ The target of an indirection pointer can be another indirection pointer, in which case the
process is repeated. If the target is to be evaluated (ie, it is a % Special Data From) the
evaluation is performed in the frame environment established by the original request.

w: The elements of an indirection pointer are evaluated in the frame environment of the-

indirection pointer.

v Indirection pointers with less than three elements are extended using the :SLCT and
:FACET of the current frame.

Inheritance

The AKO relation can be used to establish a hierarchy of frames in which general
information stored higher in the hierarchy is inherited by more specialized concepts lower

in the hierarchy. These three functions return data inherited along the AKO link of a
frame.

(FINHERIT frame slot facet)
looks first for data in the slot and facet of frame. If data exists, a list of the datum
structures is returned. If no data is found, the corresponding facet of the frame named
in frame's AKO slot is inspected for data; and so on until a frame is found containing
data -- which is then returned.

Comments:

w Inheritance stops at the first frame along the chain of AKO links whose selected facet

The FRL Manual 1l Roberts & Goldstein

contains some data. This precedes any processing of special indicators for indirection and
evaluation; hence, an indirect link and a to-be-evaluated datum are seen as non-empty data
for the purpose of controlling inheritance. This fact can be used to construct a datum to
"mask” the existence of data lying further along the AKO chain. The form -- ZNIL - as
the datum element, being non-nil itself, will stop the inheritance of any data from AKO
frames; and, assuming it is the only datum element in the facet, will subsequently be
evaluated and return NIL.

we If no data is found, FINHERIT returns NIL.

we A frame can be A-Kind-Of more than one other frame; ie., have more than one value
in its AKO slot. FINHERIT traces each of the AKO paths, stopping at the first data
encountered along each, and returns a list of all data thus found appended together.

w« The FINHERIT Comment. A comment -- (FINHERIT: CONTINUE) -- on any datum
structures in a facet causes the inheritance to proceed further along the AKO link as if no
data had been found; it returns the local data appended to that found further along the
link.

@ The IN Comment. A comment -- (IN: frame) -- is inserted in each datum returned by the
inheritance process, where frame is the name of the frame which actually held the datum.

w: Subsequent evaluation of inherited data is done in the Frame Environment of the
original call to FINHERIT.

The inheritance process defined by FINHERIT is applicable to any facet. The
following two variations treat the §V ALUE facet specially. In both cases, the inheritance
along the §VALUE facet interacts with the $DEFAULT facet.

(FINHERIT!I frame slot facet)
Like FINHERIT except if facet = 8VALUE, before following the AKO path to look
for a value, it inspects the $DEFAULT facet of slot. This process is repeated at each
step up the AKO path. If no values are found, but defaults exist, they are returned
instead. :
(FINHERITZ2 frame slot facet)
Like FINHERIT except if facet = $VALUE, it is equivalent to:
(OR (FINHERIT frame slot '$V ALUE) (FINHERIT frame slot $DEFAULT))

Frame Data retrieval

(FGET frame slot facet)

returns a list of all the data items in facet of slot in frame. The data is accessed using
the function FINHERITI. Several data items are possible, thus a list 1s returned Any

The FRL Manual 12 Roberts & Goldstein

% or @ Special Forms are converted as described in section 4. Each element in the
returned list is a complete data item; i.e., its bucket still contains the comments. FGET
returns a list of all the indicators in the bucket addressed by the path of arguments.
Usually, three arguments are given. The value of a slot is retrieved by
(FGET frame slot '$V ALUE). FGET looks first in the slot of frame. If data exists, a
list of the items is returned. If no data is found, the facet of the frame named in
frame’s AKO slot is inspected; and so on until a frame is found containing data, which
is then returned.

An important special case is FGETting from a §VALUE facet. If still no value is
found, FGET repeats, looking in the $DEFAULT facet instead.

The following questions represent useful distinctions to make in retrieving data
from a frame database.

w» How many items of data are expected?

s Should the data be returned with its Comments?

v« Should data marked for evaluation be evaluated?

“ Should indirection pointers be chased and the data thus found be included?

If the frame and slot specified do not yield any data, should any attempt be made to
inherit? And if so, what kind? Le, NONE, FINHERIT, HERITAGE, and, in the case
of 8VALUE, FINHERITI or FINHERIT2.

w« Should any $IF-NEEDED procedures be attempted? And if so, what kind? le,
NONE, IMMEDIATE, REQUEST, DEFAULT, etc.

The FGET function can be parameterized along these dimensions as follows:
(FGET (rame slot facet {keywords})

returns data from the indicated facet according to the contents of the keywords list.
Allowable keywords are:

AlO All / One

Cc/-C Comments /| NoComments

%% Evaluation / NoEvaluation (Must be slashified)
e/ -e Indirection / Nolndirection (Must be slashified)
0/1/2/H/-H FINHERIT, -I, -2 / Heritage /| NoHeritage

The upper case letters in each keyword are useful abbreviations. As described, FGET
without a retrieval key is equivalent to the specification: (A -C % @ 1). Omitted
keywords will be supplied from this default specification.

The choice of retrieval keys affects the form of the returned data. ONE and ALL
imply a single item or a list of items is returned, respectively. COMMENTS requires that
the returned ob ject be in the form of a bucket; whereas the objects returned under
NOCOMMENTS are indicators.

The FRL Manual 13 Roberts & Goldstein

Appendix D lists numerous synonyms for common variations of FGET. Retrieving
information from a frame database is also accomplished by matching a frame pattern
against the frames in the database. The function FFIND will be presented in a
forthcoming paper [Rosenberg & Roberts 77] which discusses matching frames in FRL.

Retrieval Functions in a Frame Environment

Frequently one writes a value retrieval expression to be evaluated in a frame
environment (i.e, where :FRAME, :SLOT, and :FACET are externally bound); for
example, inside an attached procedure. Two special abbreviation forms are recognized in
this case to facilitate writing expressions for retrieving the value of a slot using
FINHERIT.

The! Special Form

(frame slot) = (FGET frame slot (O -C /% [@ 0))
(slot) = (FGET :FRAME slot (O -C /% /a 0))
!slot = (FGET :FRAME slot (O -C /% /a 0))
'<as above> = (FGET .. (A -C /% /a 0))

The & Special Form

&(frame slot) = (FGET frame slot (O C /% [@ 0))
&&=<as above> = (FGET ..'(A C /% /e 0))

In both the ! and & special forms, ! forms can be substituted for the slot and
frame. For example, if the MEETING frame has slots WHO and WHERE, an expression

- ('WHO OFFICE) -- appearing in the $IF-NEEDED procedure of WHERE means the
value of the OFFICE slot in the frame for the participant (WHO) of MEETING.

7. THE SEVEN (PLUS OR MINUS TWO) FACETS OF KNOWLEDGE

Several facets have been mentioned so far as participating in the storage and retrieval
of information in a frame. This section answers in detail the questions raised in section 6.

- The 8VALUE facet

Data: The data in a 8V ALUE facet is an arbitrary S-expression.
Inheritance: FINHERIT, FINHERITI or FINHERIT?2

Interactions: The 8V ALUE facet interacts with all other facets.

< e = v ———

The FRL Manual 14 Roberts & Goldstein

The SDEFAULT facet

Data: The data in a $DEFAULT facet is an arbitrary s-expression.
Inheritance: FINHERIT.

Interactions: The §VALUE facet (via FINHERITI and FINHERIT?2).

The $1F-ADDED and $§IF-REMOVED facets

Data in the $IF-ADDED and $IF-REMOVED facets is treated as LISP forms.
The forms in the $IF-ADDED facet will be evaluated whenever a value is added to the slot
(i.e, in the §VALUE facet) by FASSERT or FPUT. The forms in the $IF-REMOVED
facet will be evaluated whenever a value is deleted from a slot (i.e., from the §$VALUE
facet) by FERASE or FREMOVE.

vs No $IF-ADDED procedure will be run if the value was already there. This serves to
eliminate loops.

«: No $IF-REMOVED procedure will be run if the value was not actually there to be
removed.

v» The order in which the procedures are run is not fixed.

«x The procedures will be run in a frame environment in which the following free variables
have been bound:

:FRAME = frame

SLOT = slot

‘FACET = $IF-ADDED or $IF-REMOVED (as appropriate).
In addition, the free variable "“VALUE" will be bound to the datum whose addition or
removal caused the execution of the attached procedures.

w: IF~ADDED and IF-REMOYVED procedures are inherited using FINHERIT.
« The APPLY Convention. Interpreting data in the $IF-ADDED and $IF-REMOVED
facets as procedures permits the convention that if it is atomic, rather than EVAL'ing 1it, it
is considered the name of a function of no arguments and APPLY'ed to NIL.
(FRUN s-expression frame) slot} facet})

like FEV AL except for the manner in which it handles atoms. If S-expression is

atomic, (APPLY atom NIL) is evaluated and the result returned.

The 8IF-NEEDED facet

Data: LISP procedures.

-— e~ . i v

The FRL Manual 15 Roberts & Goldstein

Inheritance: FINHERIT.
Interactions: The §VALUE facet.

No explicit functions are predefined to interact with §VALUE because personal
conventions are so easily established. For example, a hypothetical:

(FGET-AS-NEEDED (rame slot)
is equivalent to
(OR (FGET frame slot) (FNEED frame slot))
where FNEED is predefined:
(i =+ FD frame slot {types})
runs the $IF-NEEDED procedures associated with frame and slot; and if one of them
returns a value, FNEED returns it. Optionally, only those with a comment of the form
(TYPE: type) are attempted, where type is an element of the types list. Suggested
useful restricting comments are: request, immediate, and deduce.
Comments:
w The APPLY convention. [See $IF-ADDED)
v Frame Environment. [See $IF-ADDED).
wr The $IF-NEEDED Convention. $IF-NEEDED procedures should be written to return nil

if they fail to add a value to the slot.

The SREQUIRE facet

Data items in the REQUIRE facet should be a LISP predicates which describe
allowable values for the slot. There is an implicit con junction between all data items
present. Consistent with the view of specialization as involving additional restrictions on
more general concepts, SREQUIRE data is inherited by taking the Heritage. The predicates
are evaluated in the appropriate frame environment, as with the other procedural
knowledge already discussed.

Checking requirements In FRL, requirement checking is done using the following
function to maintain the so-called :V ALUE convention.

(FAPPLY-CONSTRAINTS constraints values)

returns a poll (see FPOLL) produced by evaluating each of the constraints. A
constraint is any S-expression with a Boolean value. FAPPLY-CONSTRAINTS binds

The FRL Manual 16 Roberts & Goldstein

the free variables :VALUE and :VALUES, by which constraints can refer to potential
values. If values has only one element, it is bound to :VALUE and values to
:VALUES; otherwise, :\VALUE = NIL.

(FPOLL predicates)

evaluates the predicates and records whether each was T, NIL, or caused an error.
Returns a poll:

(<summary> (T ... true predicates ...)
(NIL ... false predicates ...)
(? ... error-producing predicates ...))

where the <summary> is T only if all are true, NIL only if some are false and none
produce errors, and ? otherwise.

(FPOLL-SUMMARY predicates)

like FPOLL but returns only the "summary” portion, not the entire poll.

(FCHECK frame slot {values})

returns a poll of all constraints in the SREQUIRE facet of slot in frame applied to the
values of the slot. Both local and inherited constraints are included. If optional values
are supplied, they are checked against the constraints instead. Constraints are run in a
Frame Environment with :FRAME, :SLOT and :FACET bound. Moreover, :VALUE
and :VALUES are bound as described in FAPPLY-CONSTRAINTS.

Utility functions for predicates The treatment of predicates has been extended to
include an explicit value for unknown, ?, as well as T or NIL.

(TRUE? x)

returns T only if x is neither NIL nor ?.
(FALSE? x)

returns T only if xis NIL.
(UNKNOWN? x)

returns T only if xis ?. The value of ? is ?.

8. ANNOTATING DATA IN FRAMES

Any data item can have several comments. Three labels are recognized by FRL:

The FRL Manual 17 Roberts & Goldstein

IN:
The accompanying message is the name of the frame in which the data is stored. This
comment is added automatically by FRL when the data is first accessed and by
FHERITAGE.

FINHERIT:
The only recognizable message is CONTINUE. This tells FINHERIT to return data
found further along the AKO chain appended the to data in the current frame.

TYPE:

Recognized by FNEED as the label for a message which is a type of $IF-NEEDED
procedure. FNEED may selectively evaluate these procedures.

Comment Functions. These functions manipulate the comments of a datum ob ject.

(FADD-COMMENT datum comment)

merges the comment specified by label and message into the datum. FADD-
COMMENT returns the modified datum.

(FCOMMENT? datum label {message})
tests whether the datum has a comment matching the label and (optional) message. If

$0, it returns the comment. The comment matches if it includes message among its
messages.

9. SAVING FRAMES IN A FILE

Saving the state of a frame in FRL is accomplished with either of the next two
functions.

(FDUMP (rames file)

outputs in file each frame in the list frames in DEFRAME form, ready to be read back
in using the ordinary LISP reader.

(FSAVE f(rames file)

outputs in file each frame in the list frames in FASSERT form, ready to be read back
in using the ordinary LISP reader.

e e s e S S S v—

The FRL Manual 18 Roberts & Goldstein

Bibliograph
Bullwinkle, C. "Levels of Complexity in Discourse,” Al Memo 413, MIT, March 1977.

Clemenson, G. "A Birthday Party Frame System,” Al Working Paper 140, MIT, February
1977.

Jeffery, M. "Representing PLACE in a Frame System,” MS Thesis (forthcoming), MIT,
1977.

Goldstein, LP. and Roberts, R.B. "NUDGE: A Knowledge-based Scheduling Program,” Al
Memo 405, MIT, February 1977.

Minsky, M. "A Framework for Representing Knowledge,” in P. H. Winston (Ed.) The
Psychology of Computer Vision, NY:McGraw-Hill, 1975.

Moon, D.A. MACLISP Relerence Manual. LCS, MIT, December 1975.
Roberts, R.B. and Goldstein, L.P. "The FRL Primer,” Al Memo 408, MIT, June 1977.
Rosenberg, S. "Frames-based Text Processing,” Al Memo 431, MIT, 1977.

Rosenberg, S. and Roberts, R.B. "Frame-based Reference,” Al Memo (forthcoming), MIT,
1977.

Stansfield, J. "COMEX: A Support System for a Commodities Expert,” Al Memo 423,
MIT, 1977.

The FRL Manual 19 Roberts & Goldstein

Appendix A - The FRL LISP Environment

A.l Interrupt Character Definitions.

“3
Edit a function using LEDIT. It must previously have been read using CLOAD or
FLOAD. See LEDIT documentation for further information. Actually, the value of
*EDITOR?® is the editor used by “E.
“Elunction edits the function.
“E(<file names>) edits the file.
~E() re-edits the previous ob ject.

“F
“Fframe prints frame.
“F(frame slot) prints the slot of frame.

“F(frame slot facet ..) prints the structure accessed by the path frame, slot
“F() reuses the previous argument.

§ v

~
P
“Plunction prints function.

“P(atom indicator) prints the indicator property of atom.
“P() reuses the previous argument.

~% Print a backtrace.
~\ Examine the stack; using (DEBUG).

“@ Step through the next evaluation; (STEP t).

The FRL Manual 20 Roberts & Goldstein

A.2 Control Characters in FRL.

(= => non-standard LISP definition)

@ (STEP t)

An record the TV screen in a file

B enter breakloop

C GC statistics OFF

D GC statistics ON

Ex edit a function

Fa print a frame

G quit to toplevel

H <backspace>

| <tab>

J <linefeed>

K redisplay input buffer; deletes a line during type-in to "_" prompter
L erase screen and redisplay input buffer
M <newline>, behaves like space

N delete word during type-in to "_" prompter
o unused

P print a function

Q enable file input

R enable file output

S disable terminal output until next READ
T unused

Us undoes type-in \iuring ">" prompted request, then reprompts.
v enable terminal output

w disable terminal output

X quit to errset

Y unused

Z quit to DDT

(e <altmode>

\is (DEBUG)

] unused

"o Print backtrace

- unused

A.3 Syntax Table Definitions.

The characters o, %, !, and & are readmacros which read the next S-expression and
respectively expand into (ATSIGN s-expression), (PERCENTSIGN s-expression),
(EXCLAMATION s-expression), and (AMPERSAND s-expression).

(FRL-READTABLE) selects this readtable. (LISP-READTABLE) selects the standard
LISP readtable.

The FRL Manual 2 Roberts & Goldstein

A.4 Global System Variables.

The following global variables are used by FRL:
FASSERT, DEFRAME, »FRAMES#, «NEW-FRAMES:, :USER, :FRAME, SLOT,
:FACET, :VALUE, :VALUES, PAGEPAUSE, »VERSION#, «FGENSYM:, “REQUEST-
PROMPTER¢, sDEBUG#, sVERBOSE-.

A5 How big is FRL?

Binary Program Space 26000 words
Lists 16324
F ixnum : 5323
Symbol 1662
e I g e e e S

The FRL Manual 22 Roberts & Goldstein

Appendix B -- Frames are built out of FLISTS

The foundation of FRL consists of a few LISP functions for manipulating flists. An
flist.is a recursive list structure defined as follows:

flist == (indicator . bucket)

indicator := s-expression

bucket ::= (item item ..) [A bucket can be NIL]
item := [list

In FRL, flists are implemented as nested association lists. An embedded flist can be
identified by specifying a path of indicators.

D.l An Flist has two parts -- an INDICATOR and a BUCKET.

(FINDICATOR [list)
returns the indicator from flist.
(FBUCKET [list)
returns the bucket from flist.
(FINDICATORS flist)
returns a list of the indicators of the items in the bucket of flist.

(FINDICATORSI bucket)

returns a list of the indicators of the items in bucket.

D.2 Retrieving items from an Flist.

(FLISTGET flis¢ ind! ind2 .. indN)

returns the flist whose indicator matches indN; reached by first selecting the item in the
bucket of flist whose indicator matches indl and then reapplying FLISTGET to this
item (which is an flist itself) with remaining arguments ind? ... indN. Thus, the
indicators define a path leading deeper into the flists nested as items in flist. The
analogy with LISP's GET function is not coincidental. NIL is returned if the path
leads nowhere; i.e., either the embedding is less than N or no items at that level match
indN.

D.3 Storing items in an Flist.

The FRL Manual 23 Roberts & Goldstein

(FLISTPUT (list item ind! ind? .. indN)

adds item to the bucket pointed to (as in FLISTGET) by the indicator path ind ... indN.
FLISTPUT then returns the modified flist. If the path formed by ind! ... indN does
not exist in flist, one is constructed. The order of FLISTPUT's arguments reflects its
similarity to LISP’s PUTPROP function, but with extra indicators specifying a
complete path. If an item EQUAL to item already exists in the bucket, FLISTPUT
does nothing; i.e, addition to an flist is a merging operation. Items in a bucket are
always assumed to be unordered.

D.4 Deleting items from an Flist.

(FLISTDELETE (list indl ind2 ... indN)

deletes the entire item accessed in flist via the indicator path indl ... indN. ie., it will
have had indN as its indicator. FLISTDELETE returns the modified list.

(FLISTCLEAR (list ind! ind2 .. indN)

empties the bucket under indN, but leaves the indicator. FLISTCLEAR returns the
modified flist.

(FLISTREPLACE flist item indl ind2 .. indN)
Item displaces all existing items in the bucket accessed in flist via the indicator path

indl ... indN. Tt is equivalent to an FLISTCLEAR followed by an FPUTLIST.
FLISTREPLACE returns the modified flist.

The FRL Manual 24 Roberts & Goldstein

Appendix C -- Index to FRL Functions

(AKO? (1 12)

(DEFRAME name slotl slot2 ... slotN)
(FADD-COMMENT datum comment)
(FALSE? x)

(FAPPLY-CONSTRAINTS constraints valuos)
(FASSERT name slotl slot2 ... slotN)
(FBUCKET /[list)

(FCHECK frame slot {values})
(FCHILDREN frame slot)

(FCOMMENT? datum label {message}) ,
(FCOPY (rame)

(FCREATE {name})

(FDELETE frame slot} facet) datum} label} message})
(FDESCENDANTS frame slot)

(FDESTROY (rame)

(FDUMP (rames file)

(FERASE (rame)

(FEV AL s-expression frame} slot} facet})
(FGENAME name)

(FGET frame slot facet)

(FGET frame slot facet {keywords})
(FHERITAGE frame slot} facet} datum} label})
(FHERITAGE-SLOTS frame)
(FINDICATOR (list)

(FINDICATORS flist)

(FINDICATORSI bucket)

(FINHERIT frame slot facet)

(FINHERIT! frame slot facet)

(FINHERIT?2 frame slot facet)
(FINSTANTIATE frame {name})

(FLINK? slot f1 2)

(FLISTCLEAR (list indl ind2 ... indN)
(FLISTDELETE flist indl ind?2 ... indN)
(FLISTGET /[list indl ind? ... indN)
(FLISTPUT [list item indl ind2 ... indN)
(FLISTREPLACE flist item indl ind2 ... indN)
(FNAME frame)

(FNAME? frame)

(FNEED frame slot {types})

(FPOLL predicates)

(FPOLL-SUMMARY predicates)

(FPUT frame slot} facet] datum) label] message})
(FPUT-STRUCTURE frame)
(FPUT-STRUCTURE frame slot-structure)

T — A e —

[SIRT-JT TR BT I NN IE

e, i
~ 30 =

2
2

r
r

2
5,

r
r

J
2

r
'

13 13 e
W WOET I ==0

n
ro

r
“w

23

JD——

The FRL Manual 25

(FPUT-STRUCTURE (rame slot facet-structure)
(FPUT-STRUCTURE [frame slot lacet datum-structure)
(FPUT-STRUCTURE frame slot facet datum comment)
(FRAME f(rame)

(FRAME? frame)

(FRAME-+ frame)

(FRED frame)

(FREMOVE frame slot} facet} datum} label} message})
(FREPLACE frame slot} facet} datum] label} message})
(FRESET)

(FRINGE frame slot)

(FRUN s-expression frame} slot} facet})

(FSAVE frames file)

(FSLOTS frame)

(FTREE frame slot)

(GENERIC? frame)

(INDIVIDUAL? frame)

(TRUE? x)

(UNKNOWN? x)

g g e

Roberts & Goldstein

2 s s 00 00 OO

o

The FRL Manual

26

Roberts & Goldstein

Appendix D -- Table of Data Retrieval Functions

Some instances of data retrieval are common enough to justify a unique name. A
popular collection feollows in tabular form, grouped according to the type of inheritance
used to retrieve the data. The general form for the foliowing functions is:

Retrieval function

(<function> frame slot facet).

count comment evaluate indirect inherit

xfdatum-only
xfdata-only
xfdatum
xfdata

fdatum-only
fdata-only
fdatum
fdata

fheritage

ONE
ALL
ONE
ALL

ONE
ALL
ONE
ALL

ALL

NO
NO
YES
YES

NO
NO
YES
YES

YES

YES
YES
YES
YES

YES
YES
YES
YES

YES

YES
YES
YES
YES

YES
YES
YES
YES

YES

The general form of the following functions is:

xfvalue-only
xfvalues-only
xfvalue
xfvalues

fvalue-only
fvalues-only
fvalue
fvalues

fvalue-onlyl
fvalues-onlyl
fvaluel
fvaluesl

fvalue-only?2
fvalues-only2
fvalue2
fvalues?2

ONE
ALL
ONE
ALL

ONE
ALL
ONE
ALL

ONE
ALL
ONE
ALL

ONE
ALL
ONE
ALL

NO
NO
YES
YES

NO
NO
YES
YES

NO
NO
YES
YES

NO
NO
YES
YES

YES
YES
YES
YES

YES
YES
YES
YES

YES
YES
YES
YES

YES
YES
YES
YES

(<function> frame slot).

YES
YES
YES
YES

YES
YES
YES
YES

YES
YES
YES
YES

YES
YES
YES
YES

NONE
NONE
NONE
NONE

o O O o

(returns)
indicator

1ist of 1indicators
bucket

Tist of buckets

indicator

1ist of 1indicators
bucket

1ist of buckets

HERITAGE 1ist of buckets

none
none
none
none

e e o O o o

N N NN

indicator

1ist of ndicators
bucket

1ist of buckets

indicator

1ist of indicators
bucket

1ist of buckets

indicator

11st of 1indicators
bucket

1ist of buckets

indicator

11st of indicators
bucket

11st of buckets

Some general naming rules have been observed. "-ONLY" signifies that the
comments have been stripped off. "x" denotes no inheritance. Singular and plural forms
distinguish functions which return a list of all data items from those that expect to find a

The FRL Manual 27 Roberts & Goldstein

single datum.

The following predicates return T only if data exists to be retrieved; ie., if the
corresponding retrieval function (see Table) would return non-nil. The predicate forms,
however, do not return useable data.

(xFDATUM? frame slot facet)
(FDATUM? frame slot facet)
(FHERITAGE? frame slot facet)
(xFVALUE? frame slot)
(FVALUE? frame slot)
(FVALUEL? frame slot)
(FVALUE2? frame slot)

T ————

— A (g ————— e

The FRL Manual 28 Roberts & Goldstein

Appendix E -- The FRL Trace Function

FTRACE is FRL's tracer for frame actions. It's syntax parallels LISP's TRACE except
that a predefined set of actions are traced rather than functions and a more limited set of
options are available. Traceable actions are IF-ADDED, IF-REMOVED, IF-NEEDED,
CREATE, DESTROY, and INSTANTIATE. Options are COND, BREAK, ENTRY and
EXIT. For example,

(FTRACE IF-ADDED)

causes trace information to be printed out before and after any $IF-ADDED method s
executed.

Additional information can be specified using the ENTRY and EXIT options. The
COND option controls whether anything at all is printed; BREAK breaks. For example,

(FTRACE (IF-ADDED COND (NOT (MEMQ :SLOT “(AKO INSTANCE)))
BREAK (EQ :SLOT “F00)
ENTRY ((INDIVIDUAL? :FRAME))))
prints the usual stuff about if-added methods run on any slots other than AKO and
INSTANCE, breaks if an if-added method is run for the FOO slot of a frame, and prints
whether or not the frame is an Individual along with the entry information.
(FTRACE) returns a list of actions currently being traced.

(FUNTRACE) stops tracing entirely.

(FUNTRACE actionl action2 ..) stops tracing selectively.

The FRL Manual 29 Roberts & Goldstein

Appendix F -- The FRL Frame Editor

Frames can be modified in place using FRL's Frame Editor, FRED. Changes to
values in a frame have the same side-effects as FASSERT and FERASE.

(FRED (rame)

displays frame on the top of the screen while recognizing a few editing commands at
the bottom. (FRED) edits the previously edited frame. A cursor (), when present,
appears just before the sub-structure being edited.

W displays the whole frame. Ordinarily, the frame is compacted to fit the screen.

J moves the cursor to the beginning of the frame; its name.

F moves the cursor to the first item in the structure.

L moves the cursor to the last item.

N moves the cursor to the next item.

P moves the cursor to the previous item.

U moves up within structures.

D moves down.

G reads a name and goes to that slot.

S prints ali the slots in the frame.

H prints the heritage of the current level of the frame.

K kills the next item after the cursor. It is bound to the atom "".

I inserts a new sub-structure. Prefix your response with "%" to return the value of the
expression.

- reads a name and binds the current value of "." to it.

V prints the values of the current slot.

C runs a check on the requirements in the current slot.

E reads and evaluates a single form.

Q quits.

? prints FRED’s documentation.

