
• D-A052 310 MASSACHUSETTS INST OF TECH CAMBRIO E ART IFICIAL INTE—ETC Ff1 9P.
THE FRL MANUAL .(U)
SEP 77 R S ROSERTS. I P GOLDSTEIN N0001Ie—75—Csoole s

UNCLASSIPItO AI—*409 ML.

I
p _________

UNCLASS IFIED
SECURITY CLAS5 IF ICAT IO N OF THIS PAGE (Wh.n 0.1. Ent.r.d)

D ZN CTION

I. REP ORT

REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
NUMBER

Sr T,T LU f - 5. TYPE OF REPORT 6 PERIOD COVERED7~~~~j
AIM 409 v 12.

GOVT ACCESS ION NO. 3. RECIPi ENT’S CATALOG NUMBER

(~~~HE F~~. (~~~ TMEMO r ~ v~ ci u ~ r

~-r
4
~ I— ~~~~~~~~

•. ~~~~~~~~~~~~~ ~.RS. fir renT

?: Au Iuo R(.) I. CONT RACT CR G R A N T NUM8ER(I)

C’? (‘a’
_ _ _ _ _ _~~~~~~~~~~ Bruce/Roberts / ~~ [NO~~

14-75
~

C
~~

643
1

P./Coldstein (

9 ~~~~~ .,A ,4IIATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT , T A SK

Artificial Intelligence Laboratory~j
AREA 6 WORK UNIT NUMBERS

545 Technology Square /
Cambrid ge, Massachusetts 02139 ~ 0~’ 1117

II. CONTROL LI NGOFFICE NAME AND ADDRESS 12. REPO
Advanced Research Projects Agency ($7~~J~~j~ .977/
1400 Wilson Blvd . is . NUMNi~~OFPA GE3

Arlington , Virginia 22209 29
~4. MONITORING AGENCY NAME 6 ADDRESS(It dl tI.ts.i t 14om Controfltng OWe.) IS. SECURITY CLASS. (of (hi. r•port ~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Office of Nava l Research UNCLASSIF IED
0... Information Systems ___________________________

~~~ Arlington , Virginia 22217 Sa. OECLASSI FICATION/D OWNGRAO ING
SCHEDULE• c_)

_ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _

16. DISTRIBUTION STATEMENT (of (hi. R.port~ STATEM~~T
Distribution of this document is unlimited

~ z~thu~o~

~~~~~~~ I?. DISTRIBUTION STATEMENT (of A. .b.t,.cS .n(.,.d In Block 20, Sf diff.r.nS from R.po?t) ~ t: c~E~ 
UrE1~

APR 7 1918 iii
IS . S UPPLEMENTARY NOTES 

l.~ l_6U LI L5{i:!.
None B

IS. KEY WORDS (Conhinu. on r.v.r.. .Sd. II n.c.. ..ry Id id.ntl~ by block 0s b.r)

Frame representation G’onstraints
Knowledge representation language Annotation
Procedural attachment
Inheritance
Defaults

20.4~ BSTRACT (Contiflu. WI r.v .r.. .Id. SI n.c~ o.aty ~~ d ld.nSify by block nu~~b.r)

The Frame Representation Language (FRL) is described . FRL is an adjunct
to LISP which implements several representation techniques suggested by
Minsky ’s concept of a frame: defaults, constraints, inheritance,
procedural attachment, and annotation.

£%~
. FORM

~~tJ I JAN 73 1473 EDITION OF 1 NOV 61 15 OBSOLETE UNCLASS IF I ED
S/N 0~~02 ’014-  660 1 I

SECURITY CLASSIFICATION OF THIS PAGE (PSii.i 0.. ~~~Ii..d)

_ _ _ _ _ _  ~~~~~~~~~~~~~



MASSACHUSETTS INSTITUTE OF TECHNOLOGY
ARTIFICIAL INTELLIGENCE LABORATORY

Memo 409 September 19’??

THE VRL MANUAL

R. Bruce Roberts and Ira P. Goldstein

The Frame Representation Language (FRL) is described. FRL is an
adjunct to LISP which implements several representat ion techniques suggested by
Minsky’s (75] concept of a frame: defaults, constraints, inheritance , procedural
attachment , and annotation.

This report describes research done at the Artific ial Intelligence Laboratory of the
Massachusetts Institute of Technology. It was supported In part by the Advanced Research
Projects Agency of the Department of Defense under Office of Nava l Research contract
N00014-75-C 0643.

D D C

_ _ _  

~~P~~~~
7 1 978

~~~~
DISTRIBUTION S?ATEME NT A

~ 111 t~lT\TGiJ
_ _ _ _ _ _ _ _ _ _I B

The FRL Manual 2 Roberts & Goldstein

Table of Contents

1. WHAT IS A FRAME IN FRL? 3
2. FRAMES AND THEIR NAMES 4
3. ADDING AND REMOVING FRAMES 4
4. THE AKO AND INSTANCE SLOTS 5
5. ADDING AND REMOVING PARTS OF A FRAME 8
6. RETR iEVING PARTS OF A FRAME 8

Evaluation 9
The ~ Special Data Form 9

Indirection 9
The ~ Special Data Form 9
The Non-atomic Slot Convention 10

Inheritance 10
Frame Data retrieval 12
Retrieval Functions in a Frame Environment 13

The ! Special Form 13
The & Special Form 13

7. THE SEVEN (PLUS OR MINUS TWO) FACETS OF KNOWLEDGE 13
The $VALUE facet 13
The $DEFAULT facet 14
The SIF-ADDED and SIF-REMOVED facets 14
The SIF-NEEDED facet IS
The SREQ,JJIRE facet IS

Checking requirements 16
Utility functions for predicates 16

8. ANNOTATING DATA IN FRAMES I’?
9. SAVING FRAMES IN A FILE I’?
Bibliography 19
Appendix A -- The FRL LISP Environment 20
Appendix B -- Frames are built out of FLISTS 23
Appendix C -- Index to FRL Functions 25
Appendix D -- Table of Data Retrieval Functions 26
Appendix E -- The FRL Trace Function 28
Appendix F -- The FRL Frame Editor 29

Acc~sIoN for /NT~ White SeCt ItXI
DOC Buff Section o
I~NANtIOUN CEO 0
JUSTIFICATION _____________

BY _ _ _ _ _ _ _ _ _ _ _

MSTR1MJIIOH/AVAILABIUTY CO~1S
blat. AVAIL and/or SPECIAL

~1L

The FRL Manual 3 Roberts & Goldstein

Figure I shows FRL from the larger perspective of intelli gent support systems.
FRL comprises the two bottom layers: a specialized data structure (the frame) and a
collection of LISP functions for defining frames, storing and retrievin g information. It has
been used to implement NUDGE (Goldstein & Roberts 77], a system for ma in t a in in g a
person ’s schedule of activities in the face of individual preferences , conflictin g constraints ,
and changing plans; PAL, a natural language front end for NUDGE (Bullwink le 77); a
system to assist planning a birthday party (Clemenson 77]; TRIPP ER , a knowledge base for
places and travel around the country (Jeffery 77]; a representation for the discourse
structure of news articles (Rosenberg 77]; and COMEX (Stansfie ld 77], a system for
understandin g discourse about the commodities market.

I scheduling natural language I reasoning I
I time I place I people I plans I ob jects I information I ...I

I defaults I constraints I procedural attachment I inher itance I comments I
L frames I

- Figure I -

The intellectual issues surroundin g the representation techniques provided by FR L
are discussed in (Goldstein & Roberts 77]. A primer (Roberts & Goldstein 77) is available
consisting of an extended example using FRL and an abridged version of this manual.

I. WHAT IS A FRA ME IN FRL?

An FRL frame is implemented as nested association lists with at most f ive level s of
embedding. The respective sub-structures of a frame are ~~~ ~~~~~~~ datum , comment and
message. The overall structure of a frame Is:

(fremel
(slot i (f aceti (datumi (labell messagel message2 ... more Messages . . .)

more Comments . ..)

(datum2 (labell messagel ...))
more Data ...)

(facet2 (datu mi (l a bell messa gel mes sage2 . .

more Facets . . .)

(s l ot2 (faceti (datumi (la be l l messagel .. .) .. .).. .). .

more Slots . ..)

We will refer to the first element in one of these sub-structures as the indicator (said to
name the structure) and the remaining elements collectively as the bucket (in the case of a
slot , the bucket is a list of facets , for example). A path of indicators identif ies a sub-
structure in a frame. The order of sub-structures at any level in a frame is insignificant.
In practice, facet names conventionally have a prefix T; labels, a suffix ~~~~. This is simply
to facilitate their recognition by the programmer.

The FRL Manual 4 Roberts & Goldstein

2. FRAMES AND THEIR NAMES

(FRAME frame)

returns a frame structure of the kind shown on the preceding page. An error if frame
is neither a frame name nor a frame structure.

Unless stated otherwise , a (tame argument to any function can be either the name of a
frame or the frame structure itself.

(FRAME? frame)

is like FRAM E except returns NIL If (tame doesn’t exist.

(FRAME . frame)

is like FRAM E except that if frame is a name for a nonexistent frame , a fra me is
FCREATEd and returned .

(FNAME frame)

returns the name of frame. An error If frame is neither a frame name nor a frame
st ructure.

(FNAME? frame)

is like FNAM E except returns NIL if frame doesn’t exist.

(FSLOTS frame)

returns a list of the slot names in frame.

(FCOPY frame)

returns a copy of frame.

3. ADDIN G AND REMOVING FRAMES

(FASSERT name sloti slot2 slot N)

creates a f rame called name (If it doesn ’t already exist) con t a in in g the slots
slot! sloeN. If the name frame exists , the new information in the slots is merged with
the existing slots. The frame Is stored as the FRAME property of name and name is
added to :FRAM E S~, the list of known frames. FASSERT is a FEXPR.

The FASSERT switch. If FASSERT is nil . FASSERT forms are not interpreted.
This is convenient for selectively reading just the code in a file containin g intermixed
code and frame definitions.

The FRL Manual 5 Roberts & Goldstein

(FERASE frame)

removes frame from the FRAME property of its name and its name from the list
OFRAME O .

FASSERT and FERASE can cause side-effects if the frame be ing added or
removed contains slots with values. These values are added or removed individually using
FPUT and FREMOVE respectively and may trigger the execution of attached procedures.
These issues will be considered in greater detail shortl y. DEFRAME and FDESTROY .
unlike FASSERT and FERASE , ha ve no side-effects.

(DEFRAME name sloti slot2 .., sloiN)

creates a frame name containing precisely the slots sloti .. slotN. If the name frame
already exists, its previous definition is FDESTROYed . DEFRAME is a FEXPR.

The D E F R A M E switch. If DEFRAME is nil , D E F R A M E forms are not
interpreted . This is convenient for selectively reading just the code in a file containing
intermixed code and frame definitions.

(FDESTROY frame)

removes frame from the FRAME property of its name and deletes its name from the
list “FRAMEo .

(PRES ET)

removes all frames from the system. It uses FDESTROY.

(FCREATE (name))

creates an empty frame and returns its name. The name will be uni que. Name, if
given , will be used instead , although it may be modified by FGENAME to guarantee
uniqueness. Frame names must be atomic.

Note: Bracketed expressions — { ... -- are used in this manual to denote
optional arguments. An unbalanced right bracket --) -- denotes the
possible end of the argumen t list for a LEXPR.

(FGENAME name)

returns a guaranteed unique frame name by adding a numerical suff ix to name .

4. THE AKO AND INSTANCE SLOTS

A slot is a generalization of the attribute-value pair in the tradi t i onal LISP
property list representation. $VALUE Is the slot Rfacet which indicates its values Five

- — -- - - ——.~-- ,--.-——~~~. —.- — -——--—---.-—----.—-

The FRL Manual 6 Roberts & Goldstein

other facets indicate other types of knowledge associated with the slot. Data in the
SDEFAULT facet supplies defaults. Data in SIF-ADDED and SIF-REMOVED facets ar ~
procedures triggered whenever a slot value is added or removed. SIF ..NEEDED data are
procedures which may compute a slot value . The SREQU IRE facet holds predicates which
describe and restrict the value.

Two slots are recognized by FRL system functions: AKO (A ~~ind Q~f) and
INSTANCE. These define a relation between frames along which data is inherited. FRL
maintains A KO and INSTANCE as inverses. The AKO relation can be used to establish a
conceptual hierarchy of frames in which general information stored higher in the hierarch y
is inher ited by more specialized concepts lower in the hierarchy. Functions like FGET
implement this inheritance mechanism.

A relation between frames is defined by making the name of one frame the value
of a slot in another frame. The slot names the re lation. A tree of f rame relat ions is
possible since a slot can have many values. Several functions are provided to examine these
relations.

(FCH ILDREN frame slot)

returns a list of the immediate inferiors of frame along the relation named by slot.
This is just a list of values of slot.

(FTREE frame slot)

returns a tree of the form (root subtree l subtree2 . . .) with frame at the root; each
subtree’s root is a child of frame along the relation named by slot.

(FDESCENDAN TS frame slot)

ret urns a list of ~J! inferiors of frame along the relation slo t defines. That is . it
includes all the frames occurring in the tree of FTREE except the root frame.

(FRINGE fra me slot)

returns a list of all leaves on the tree of (FTREE frame slot).

(FLINK? slot fi 12)

returns T only if a path exists from 11 to (2 following only the slo t “li nk” ; i .e., if one
of the values of slot of fi is f2, or PLINK? is true for any of these values.

(AKO’ 1112)

returns T only if 11 is a kind of (2. Equivalent to (FL INK ? ‘AKO (1 12). Similar
definitions are possible for any slot whose value is another frame.

One frame is predefined in FRL: THING . A partial definition of it follows:

The FRL Manual 7 Roberts & Goldstein

(TH ING
(AKO (SIF-ADD ED ((ADD-INSTANCE)))

($IF-REMOVED ((REMOVE-INSTANCE))))
(INSTANCE (SIF-ADDED C (ADD-AKO)))

(SIF-REMOVED ((REMOVE-A~O)))))

(FINSTANTIATE frame (name))

creates an instance of frame (using FCREATE); i.e., it possesses only an AKO link to
frame. Its name is derived from name (using FGENAME) and will be unique. The
newl y created frame is returned.

The existence of the AKO link implies a heritage for a frame (or any part of a
frame) consisting of all information both in that frame and in all the frames accessible
along the AKO link.

(PHERITA GE frame slot) facet) datum) label))

returns a structure formed by merging the structure pointed to by the indicator path --
the arguments to FHER ITAGE -. with all corresponding structures of the frames
accessible along the AKO link.

The IN Comment. Each datum in the heritage will have a comment -- (I N :
frame) -- added by FHERITAGE to record the frame in which the datum actuall y
occurs.

(FHER ITAGE-SLOT5 frame)

returns a list of slot names occurring In (FHERITAGE frame).

By convention , frames in an AKO hierarchy are distinguished as being either
GENERIC or IND IVIDUAL by the value of their CLASSIFICATION slot. Two
predicates test the classification of a frame.

(INDIV IDUAL? frame)

returns T onl y if frame is marked as an individual. INDIVIDUAL? returns NI L if
frame is generic, and ? otherwise.

(GENERIC? frame)

is defined analoguously to INDIVIDUAL?.

_ — — ---

The FRL Manual 8 Roberts & Goldstein

5. ADDING AND REMOV ING PARTS OF A FRAME

(FPUT frame slot) facet) datum) label) message))

adds the last argument at the point in frame named b y the indicator pa th (the
intervenin g arguments) and returns the modified frame. Adding new information to a
f rame is a merging process that retains the uniqueness of each ind icator. FPUT is a
LEXPR and can take from 2 to 6 arguments. It can be used to add an element
anywhere in a frame; to add a slot name to frame or to put a message in a comment
labeled labeL

FPUT has a side-effect: Putting data items into a $VALUE facet triggers the
execution of all procedures in the SIF-ADDED facet of the slot.

(FPUT-STRUCTUR E frame)
(FPUT-STRUCTUR E frame slot-structure)
(FPUT -STRUCTUR E frame slot facet-structur e)
(FPUT-STRUCTUR E frame slo t facet datum-structure)
(FPUT -STRUCTURE frame slot facet datum comment)

This family of FPUT- STRUCTURE functions differs from FPUT onl y in that the
last argument is considered to be an entire sub-structure (rather than an indicator).
The entire structure is merged into frame. Like FPUT , FPUT -STRUCTURE may
tri gger ~IF-ADDED procedures.

(FREMOVE frame slot) facet) datum) label) message))

deletes the sub-structu re of frame indicated by the path slo t — facet — dat ’im It
returns the modifi ed frame. FREMOVE is a LEXPR tak ing from 2 to 6 arguments.
The structure deleted will have had as its indicator the final argument to FR E MOVE.

FREMOVE has a side-effect: If any data in a SVALUE facet is deleted by this
command , all procedures in the SIF-REMOVED facet of the slot are executed .

(FREPLACE frame slot) facet) datum) label) message))

like FREMOVEin g all existing items following by FPUT with the arguments gi ven.
Following a call to this function , the only item present at the terminu s of the ind icator
path is the final argument.

(FDELET E (rime slot) (acet) datum) label) message))

like FREMOVE except never triggers any side-effects. The portion of frame ident i f ied
by the indicator path is simp ly excised.

6. RETRIEVING PARTS OF A FRAM E

The following questions should be kept in mind when retrievin g data from a facet.

The FRL Manual 9 Roberts & Goldstein

‘c” What is the expected form of the data?
:~ How is the data inherited?
‘x~ How does it interact with other facets?
“.~ Are any special comments associated with the data?

But before considering individual facets , three general properties of facets and their data
will be discussed: evaluatio rL indi re ctio,~ and inheritance.

Evaluation

Normally, data in a frame is interpreted literally. The access functions return just
what one sees in a frame if it were printed out. Data can be computed however , a nd to
specify that a datum is to be evaluated whenever accessed , FRL provides:

The ~ Special Data Form. A percent sign prefixed to a datum causes the evaluated
datum to be returned whenever it is accessed.

The implementation of % as a prefix character requires that it be defined as a
readmacro in Lisp. See A ppendix A for other changes to the s tandard
MACLISP environment necessitated by FRL ’s operation.

The data element is evaluated in a particular frame environment , as determined b y the
f r ame , slot , and facet named in the retriev al request. The global variables F R A M E .
SLOT, and :FACET at the time of evaluati on can be assumed to be locally bound to the
na mes of the “current ” frame , slot , and facet. Because of indirection and inheritance , the
frame envi ronment may not be the one in which the datum actually lies. Situations may
arise whe n the user will want to explicitl y establish a frame environment for the evaluat ion
of an expression. A function has been provided to facilitate this.

(FEVA L s—expression frame) slot) facet))

binds FRAME , :SLOT, and :FACET to the values supp li ed. It then evaluates the S-
expression and returns the result. If an argument is missing or nil , the prior (hig her)
bindin g is unaffected.

Indirection

Datum in one frame can be retrieved indirectly by a request for da tum in a
different frame. This indirection Is denoted by:

The e Special Data Form. A datum with a prefix atsign is interpreted as an
i ndirection pointer to all the data in another frame. The pointer is an indicator path:
f r a me, slot , facet. When accessed, the data items pointed to by the indirection are copied
and sp liced together with any other items in the facet (generall y, a facet can have many
data items). The behavior of indirectly accessed items is equivalent to the local items.

_ _ - T~~~~~~~~~~~~

The FRL Manual 10 Roberts & Goldstein
‘¼

A related conventi on allows one to define a slot in a frame to hold information
accessed indirectly by another.

The Non-atomic Slot Convention. If a slot is created whose indica tor is non-
atomic , th e CAR of the slot name is considered to name a frame and th e CADR a slo t in
frame. An indirection pointer is put in each of the existin g facets of the indicated slo t in
frame pointin g back to the corresponding facet of the slot just created .

Comments:

Each indirect datum returned will receive a comment of the form (IN: frame). Fram ’ A s
the name of the target frame lying at the end of the indirection chain.

Evaluation and indirection are mutually exclusive. A datum may be ev,~luated . exp inded
as an indirection pointer , or receive rio special processing.

How does evaluation d i f fer from indirection? Evaluat ion re turn s a sing le d a t u m .
Indirect ion causes a list of data items to be appended to the list of structures returned from
the local frame.

The target of an indirect ion pointer can be another indirection pointer , in which case the
process is repeated. If the target is to be evaluated (i.e., it is a ~ Special Data From) theeval uation is performed in the frame environment established by the original request.

‘:~ :‘ The elements of an indirection pointer are evaluated in the fram e environment of the .
indirection pointer.

Ind irection pointers with less than three elements are extended using the SLOT and
FACET of the current frame.

In heritance

The AKO relat ion can be used to establish a hierarch y of frames in which general
information stored higher in the hierarchy is inherited by more specialized concepts lower
in the hierarch y. These three functions return data inherited along the AKO link of a
frame.

(FINHERIT frame slot facet)

looks first for data in the slot an d facet of frame. If data exists , a list of the datum
structures is returned. If no data is found , the corres ponding facet of the f rame named
in frame ’s A KO slot is inspected for data; and so on until a frame is found containing
data -- which is then returned.

Comments:

~~ Inheritance stops at the first frame along the chain of AKO links whose selected facet

——---, -

~

,.- - -— - - .—.-~~~
— _____________

The FRL Manual Ii Roberts & Goldstein

contains some data. This precedes any processing of special indicators for indirection and
evaluation; he nre , an indirect link and a to-be-evaluated datum are seen as non-em pty dat a
f or the purpose of controlling inheritance. This fact can be used to construct a datum to
“mask ” the existence of data lying further along the AKO chain. The form -- ~N I L -- as
the datum element , being non -nil itself , will stop the inheritance of any data from AKO
fra mes; and, assu min g it is the onl y datum element in the facet , wil l subse quent ly be
evaluated and return NIL.

,:o:, If no data is found , FINHER I T returns NIL.

o~:~ A frame can be A-Kind-Of more than one other frame; i.e., have more than one va lue
in its AKO slot. FINHERIT traces each of the AKO paths , stopp ing at the first data
encountered alon g each , and returns a list of all data thus found appended together.

~~~ The FINHERIT Comment. A comment -- (FINHERIT: CONTINU E) -- on ~~~ datu m
structures in a facet causes the inher itance to proceed further along the AKO link as if no
data had been found; it re turns the local data appended to that found fu r the r  along the
link.

oo The IN Comment. A comment -- (IN: frame) -- is inserted in each datum returned by the
i nheritance process, where frame is the name of the frame which actually held the da tum.

~~~ Subsequent evaluat ion of inherited data is done in the Frame E n v i r o n m e n t  of the
original call to FINHERIT.

The inheritance process defined by FINHERIT is app licable to an y facet. The
following two variations treat the SVALUE facet specially. In both cases, the inheritance
along the SVALUE facet interacts with the SDEFAULT facet.

(F INHER rf l frame slo t facet)

Like FINHER I T except if facet — SVALUE , befo re followin g the AKO path to look
f or a value , it inspects the $DEFAULT facet of slot. This process is repeated at each
step up th e AKO path. If no values are found , but defaults exist , the y are returned
instead.

(F INH ER I T2 frame slo t facet)

Like FINHER I T except if facet — $VALUE , it is equivalent to:
(OR (FINHERIT frame slot ‘SVALUE) (FINHER I T frame slo t ‘SDEFAULT))

Frame Data retrieval

(FGET frame slot facet)

retur ns a list of all the data items in facet of slo t in frame. The data is accessed us in g
the function FINHER IT I . Several data items are possib le , thus a list is re t ur ned An~

The FRL Manual 12 Roberts & Goldstein

~. or ~ Special Forms are converted as described in section 4. Each element in the
retur ned list is a complete data item; i.e., its bucket still contains the comments. FGET
returns a list of all the indicators in the bucket addressed by the path of arguments.
U s u a l l y, t h r e e a r g u m e n t s are g i v e n . The va lue of a slot is r e t r i e v e d b y
(FGET frame slo t ‘SVALUE). FGET looks first in the slot of frame. If data exists , a
list of the ite ms is ret urned. If no data is found , the facet of the fra me named in
frame’s AKO slot is inspected ; and so on until a frame is found containin g data , whi ch
is the n returned.

An important special case is FGETtin g from a SVALUE facet. If still no value is
found , FGET repeats, looking in the SDEFAULT facet instead.

The following questions represent useful distinctions to make in r etrieving data
from a frame database .

~~ How many items of data are expected?

‘:“:‘ Should the data be returned with its Comments?

‘:“.. Should data marked for evaluation be evaluated?

Should indirection pointers be chased and the data thus found be included?

If the fra me and slot specified do not yield any data , should an y attempt be nude to
inherit? And if so, what kind? I.e., NONE , FINHER IT , HER iTAGE , and , in the case
of SVALUE , FINHER ITI or FINH ERI T2.

Should any SIF-NEEDED procedures be attempted? And if so, what kind? I.e. .
NONE , IMMEDIATE , REQUEST, DEFAULT , etc.

The FGET function can be parameterized along these dimensions as follows:

(FGET frame slo t facet (keywords))

returns data from the indicated facet according to the contents of the keywords list.
Allowable keywords are:

A / O All / One
C I -C Comments I NoComments
% I -

~
. Evaluation / NoEva lua ti on (Must be s la shified)

~ 1 -o Indirection / No indirection (Mu st be slashified)
0 I 1 I 2 / H I -H FINHER IT , -1, -2 / Heritage I NoHeritage

The upper case letters in each keyword are useful abbreviati ons. As described , FGET
without a retr ieval key is equivalent to the specification: (A -C ~ o I) . Omit ted
ke ywords will be supplied from this default specification.

The choice of retrieval keys affects the form of the returned data. ONE and ALL
imp l y a single item or a list of items is returned , respectively. COMM Et ’4TS requ ires th at
the retur ned object be in the form of a bucket; whereas the ob ject s returned under
NOCOMMENT S are indicators.

The FRL Manu al IS Roberts & Goldstein

Appendix D lists numerous synonyms for common variations of FGET. Retrievin g
informa t ion from a frame database is also accomplished by matchin g a f rame p at tern
aga ins t the f rames in the database. The func t ion FFIND wil l be presented in a
forthcoming paper (Rosenberg & Roberts 77] which discusses matching frames in FRL.

Retrieval Functions in a Frame Environment

Frequently one writes a value retrieval expression to be evaluated in a f r a m e
envi ronment (i.e., where FRAME , :SLOT, and :FACET are externall y bound); for
example , inside an attached procedure. Two special abbreviation forms are recognized in
th is case to fa c i l i t a t e wr i t in g expressions for re t r ieving the value of a slot us in g
FINH ER IT.

The! Special Form

!(frame slot) — (FGET frame slot ‘(0 -C /% I. 0))
!(slot) — (FGET :FRAME slot ‘(0 -C /% Is 0))
!s/ o t - (FGET :FRAME slot ‘(0 -C /~ I. 0))
~<as above> — (FGET ... ‘(A -C /~ Is 0))

The & Special Form

&(frame slot) — (FGET frame slot ‘(0 C It Is 0))

&& cas above> - (FGET ... ‘(A C /t I. 0))

In both the ! and & special forms, ! forms can be substituted for the slot and
frame. For example , if the MEETING frame has slots WHO and WHERE , an expression
-- !(!WHO OFFICE) -- appearing in the $IF-NEEDED procedure of ~V~fHE R E means the
value of the OFFICE slot in the frame for the participant (WHO) of MEETING.

7. THE SEVEN (PLUS OR MINUS TWO) FACETS OF KNOWLEDGE

Several facets have been mentioned so far as participating in the storage and retrieval
of information in a frame. This section answers in detail the questions raised in section 6.

- The IVALUE facet

Data: The data in a ZVALUE facet is an arbitrary S-expression.

Inheritance: F INHERIT , FINHERIT I or FINHER I T2
-

Interactions: The $VALUE facet Interacts with all other facets.

- .-r-~~~ . - .
. .

The FRL Manual 14 Roberts & Goldstein

The *DEFAULT facet

Data: The data in a SDEFAULT facet is an arbitrary s-expression.

Inheritance: FINHER I T.

Interactions: The SVALUE facet (via FINHERITI and FINHE RI T2).

The SIF-ADDED and SIF-REMOV ED facets

Data in the SIF-ADDED and SIF-REMOVED facets is treated as LISP forms.
The forms in the SIF-ADDED facet will be evaluated whenever a value is added to the slot
(i .e., in the ~VALUE facet) by FASSERT or FPUT. The forms in the SIF-REMOVED
fac et will be evaluated whenever a value is deleted from a slot (i.e., from the SVALUE
facet) by FERASE or FREMOVE.

No SIF-ADDED procedure will be run if the value was already there. This serves to
eliminate loops.

c&~ No SIF -REMOVED procedure will be run if the value was not actually there to be
removed.

o’~ The order in which the procedures are run is not fixed.

The procedures will be run in a frame environment in which the followin g free variables
have been bound:

:FRAME - frame
:SLOT - slot
:FACET - SIF-ADDED or h F-REMOVED (as appropriate).

In addition , the free variable “:VALUE” will be bound to the datum whose addition or
removal caused the execution of the attached procedures.

‘:“:~ IF-ADDED and IF-REMOVED procedures are inherited using FINHERIT.

‘:~‘:‘ The APPLY Convention. Interpreting data in the SIF-ADDED and SI F-REMOVED
facets as procedures permits the convention that if it is atomic , rather than EVAL ’ing it , it
is considered the name of a function of no arguments and APPLY ’ed to N IL.

(FRUN s-expression frame) slot) facet))

l ike FEVAL except for the manner in which it handles atoms. If S—expression is
atomic , (AP PLY atom NIL) is evaluated and the result returned.

The SIF-NEEDED facet

Data: LISP procedures.

The FRI.. Manua l 15 Roberts & Goldstein

Inheritance: FINHERIT.

Interaction s: The SVALUE facet.

No explicit functions are predefined to interact with SVALUE because personal
conventions are so easily established . For example , a h ypothetical:

(FGET-AS-NEEDED frame slot)
is equivalent to

(OR (FGET frame slot) (FNEED frame slot))

where FNEED is predefined :

(. FD frame slot (types))

runs the SIF-NEEDED procedures associated with frame and slot; and if one of them
returns a value, FNEED returns it. Optionall y, only those with a comment of the form
(TYPE: type) are attempted , where type is an element of the types list. Suggested
useful restrictin g comments are: request, immediate, and deduce.

Comments:

“o The APPLY convention. (See SIF-ADDED]

oo Frame Environment. (See SIF-ADDED].

‘:.o The SIF-NEEDED Convention. h F-NEEDED procedures should be written to return nil
if th ey fail to add a value to the slot.

The SRE QU IRE facet

Data items in the IRE QUIRE facet should be a LISP predicates which describe
allowable values for the slot. There is an implicit conjunction between all data items
present. Consistent with the view of specialization as involving additional restrictions on
more general concepts , $REQUIRE data is inherited by taking the Heritage . The predicates
are evalua ted in the appropriate frame environment , as with the other procedura l
k nowledge already discussed.

Checking requirem ents In FRL , requirement checking is done using the following
function to maintain the so-called :VALUE convention.

(FAPPLY-CONSTRA INTS cons t ra ints values)

ret urns a ~~~ (see FPOLL) produced by evaluating each of the constra ints. A
constraint is any S-expression with a Boolean value. FAPPLY-CONSTRAINTS binds

The FRL Manual IS Roberts & Goldstein

the free variables :VALUE and :VALUES , by which constraints can refer to potential
values. If va lues has only one element , it is bound to :VALUE and va lues to
:VALUES; otherwise, :VALUE - NIL.

(FPOLL predicates)

evaluates the predicates and records whether each was T, NIL , or caused an error.
Returns a

(<summary> (1 ... true predicates . ..)

(NIL ... false predicates .. .)

(7 ... error-producing predicates . . .))

where the < summary > is T only if all are true , NIL only if some are false and none
produce errors , and ? otherwise.

(FPOLL-SU MM ARY predicates)

like FPOLL but returns only the Nsummary
_

portion, not the entire poll.

(FCHECK frame slot (values))

returns a ~2li of all constraints in the SREQU IRE facet of slot in frame applied to the
values of the slot. Both local and inherited constraints are included. If optional values
are supplied , they are checked against the constraints instead. Constraints are run in a
Frame Environment with :FRAME , :SLOT and :FACET bound. Moreover , :VALIJ E
and VALUES are bound as described in FAPPLY-CONSTRA INT S.

Utility functions for predicates The treatment of predicates has been extended to
include an explicit value for unknown , ?, as well as T or NIL.

(TRUE? x)

returns T onl y if x is neither NIL nor ?.

(FALSE? x)

returns T only If x is NIL.

(UNKNOWN? x)

returns T only if x is ?. The value o f ? is ?.

8. ANNO TATING DATA IN FRAMES

Any data item can have several comments. Three labels are recognized by FRL:

_ _ _ _ _ _ - —~—---- --- --

The FRL Manual 17 Roberts & Goldstein

IN:
The accompanying message is the name of the frame in which the data is stored. This
comment is added automatically by FRL when the data is first accessed and by
FHER ITAGE.

FINHERIT:
The only recognizable message is CONTINUE. This tells FINHERIT to return data
found further along the AKO chain appended the to data in the current frame.

TYPE:
Recognized by FNEED as the label for a message which is a type of SIF-NEEDED
procedure. FNEED may selectivel y evaluate these procedu res.

Comment Functions. These functions manipulate the comments of a datum object.

(FADD-COMMENT datum comment)

merges the comment specified by label and message into the da t um. FADD-
COMMENT return s the modified dat um.

(FCOMMENT ? datum label (message))

tests whether the datum has a comment matching the label and (optional) message. If
so, it returns the comment. The comment matches if it includes message among its
messages.

9. SAVING FRAMES IN A FILE

Saving the state of a frame in FRL is accomp lished with either of the next two
functions.

(FDUMP frames file)

outputs in file each frame in the list frames in DEF RAME form , ready to be read back
in using the ordinary LISP reader.

(FSAVE frames file)

outputs in fife each frame in the list frames in FASSERT form , ready to be read back
in using the ordinary LISP reader.

~~~~
.. . —-

~~ ~~~~
. - . 

~~.



The FRL Manual 18 Roberts & Goldstein

Bibliography

Bul lwink le, C. “Levels of Complexity in Discourse,” Al Memo 415, MIT , March 1977.

Clemenson , G. “A Birthday Party Frame System,” Al Working Paper 140, MIT , February
‘977.

Jeffery, M. “Representing PLACE in a Frame System,” MS Thesis (forthcoming) . MIT ,
1977.

Goldstein , I.P. and Roberts, RB.  “NUDGE: A Knowledge-based Scheduling Program ,” Al
Memo 405, MIT , February 1977.

Minsk y, M. “A Framework for Representing Knowledge ,” in P. H. Winston (Ed.) The
Psychology of Computer Vision, NY:McGraw-HAl l, 1975.

Moon , D.A. MACLISP Reference Manual. LCS, MIT , December 1975.

Roberts , RB.  and Goldstein , LP. “The FRL Primer ,” Al Memo 408, MIT , June 1977.

Rosenberg, S. “Frames-based Text Processing,” Al Memo 431, MIT , 1977.

Rosenberg, S. and Roberts, R.B. “Frame-based Reference,” Al Memo (forthcoming), MIT ,
1977.

Stansfield , J. “COMEX: A Support System for a Commodities Expert ,” Al Memo 42~,
MIT , 1977.



The FRL Manua l 19 Roberts & Goldstein

~ppendtx A — The FRL LISP Environment

A.l Interrupt Character Definitions.

Edit a function using LEDIT. ft must previously have been read using CLOAD or
FLOAD. See LEDIT documentation for further information. Actually, the val ue of
“ED 1TOR~ is the editor used by AE.
AEfunct ion edits the function.
~E( <tile names> ) edits the file.
AE() re-edits the previou s object.

AF

“Fframe prints frame.
“F(frame slot) prints the slot of frame.
“F(frame slot facet ..,) prints the structure accessed by the path frame, slot,

reuses the previous argument.

Ap

“Pfunct ion prints (unction.
“P(atom indicator) prints the indicator property of atom.

reuses the previous argument.

AA Print a backtrace.

‘
~~ Examine the stack; using (DEBUG).

A
• Step through the next evaluation; (STEP t).

- -_w-  ~~~~~~r —  - - . 

- _ _



The FRL Manual 20 Roberts & Goldstein

A.2 Control Characters in FRL.

(~ —> non-standard LISP definition )

(STEP t)
A’. record the TV screen in a file
B enter breakloop
C CC st~nstics OFF
D CC statistics ON

edit a function
F print a frame
C quit to toplevel
H <backspace>
I <tab >
J ‘clinefeed >
K redisplay input buffer; deletes a line during type-in to ._“ prompter
L erase screen and redisplay input buffer
M <newline> , behaves like space

delet e word during type-in to “...“ prompter
0 unused
P~. print a function

enable file input
R enable file output
S disable terminal output until next READ
T unused

undoes type-in ~urin g “>“ prompted request, then reprompts.
V enable terminal output
W disable terminal output
X quit to errset
V unused
Z quit to DDT
Cv .caltmode>

(DEBUG)
) unused

Print backcrace
unused

A.3 Syntax Table Definitions.

The characters •, ~, !, and & are readmacros which read the next S-expression and
respectively expand into (ATSIGN s-expression), (PERCEN TSIGN s-expression),
(EXCLAMATION s-expression), and (AMPERSAND s-expression).

(FRL-READTABLE) selects this readtabk. (LISP-READTAB LE) selects the standard
LISP readtable.

_ _ _  --- 
- 

-~~~ -~~~~ - ----_-;



The FRL Manual 21 Roberts & Goldstein

A.4 Global System Variables.

The following global variables are used by FRL :
FASSERT , DEFRAME , OFRAMES ~, ~NEW- FRAMES :’, :USER , :FRAME , SLOT .
:FACET , VALUE , :VAL.UES , PAGEPAUSE , *VERSIONo , ~‘FGEN SYM: , ‘:‘REQUEST-
PROMPTER ~, I~DEBUG*, *VERBOSEu .

A.5 How big is FR L?

Binary Program Space 26000 words
LIsts 16324
Fixnum 5323
Symbol 1662

(



The FRL Manual 22 Roberts & Goldstein

App endix B -- Frames are built out of FLISTS

The foundation of FRL consists of a few LISP functions for manipulating fl ist s. An
I list -is a recursive list structure defined as follows:

(list ::— ( indicator , bucket )
indicator ::- s—expression
bucket ::— ( item item ... ) (A bucket can be NIL )
item ::— (list

In FRL , fl ists a re implemented as nested association lists , An embedded f l is t  can be
identified by specifying a path of indicators.

D.l An Flist has two parts -- an INDICATOR and a BUCKET.

(FINDICATOR (lis t)

returns the indicator from (list.

(FRUCKET (list)

returns the bucket from (list.

(FIND ICATOR S (list)

returns a list of the indicators of the items in the bucket of (list.

(FIND ICATORS I bucket)

returns a list of the indicators of the items in bucket.

D.2 Retrieving items from an Flist.

(FLISTGET (lis t m d i  ind2 .~~ indN)

retu rns the f list whose indicator matches indN; reached by first selecting the item in the
bucket of (list whose indicator matches m d i  and then reappl ying FLISTGET to this
item (which is an f list itself) with remainin g arguments ind2 ... indN. Thus , the
indicators define a path leading deeper into the f lists nested as items in (list. The
analogy with LISP’s GET function is not coincidental. NIL is returned if the path
leads nowhere; I.e., either the embedding is less than N or no items at that level match
indN.

D.3 Storing items in an Flist.



The FRL Manua l 23 Roberts & Goldstein

(FLISTPUT (lis t item mdi ind2 ._ indN)

adds item to the bucket pointed to (as in FLISTGET) by the indicator path m d  ... indN.
FLISTPUT then returns the modified (list. If the path formed by m d i  ... indN does
not exist in (list , one is constructed. The order of FLISTPUT ’s ar guments reflects its
similarit y to LISP’s PUTPROP function , b ut with extra indicators specif ying a
complete path. If an item EQ,UAL to item alread y exists in the bucket , FLISTPUT
does nothin g ; i.e., addition to an I list is a merging operation. Items in a bucket are
always assumed to be unordered.

D.4 Deleting items from an Flist.

(FLISTDELETE (list m d i  ind2 .. , indN)

deletes the entire item accessed in (list via the indicator path m d i ... indN; i.e., it will
have had indN as its indicator. FLISTDELETE returns the modified [list.

(FLISTCLEAR (list m d i  ind2 ,,. indN)

empties the bucket under indN, but leaves the indicator. FLISTCLEAR retur ns the
modified (list.

(FLISTREPLACE (list item m d i  ind2 — indN)

Item displaces all existing items in the bucket accessed in (list via the indicator p ath
m d i  ... indN. ft is equiva lent to an FLISTCLEAR followed by an FPUTL IST.
FLISTREPLACE returns the modified (list.



The FRL Manual 24 Roberts & Goldstein

Appendi x C -- Index to FRL Functions

(AKO? fi f2 ) 6
(DEFRAM E name sloti slot2 ... slot N) 5
(FADD-COMMENT datum comment) 17
(FALSE? x) 16
(FAPPLY -CONSTRAINTS constraints valuos) 15
(FASSERT name sloti slot2 ... slo t N) 4
(FBUCKET (list) 22
(FCHECK frame slot (values) ) 16
(FCH I LDREN frame slot) 6
(FCOMMENT? datum label (message) ) I 17
(FCOPY frame)
(FCREATE (name) ) S
(FDELETE frame slot) facet) datum) label) message) ) S
(FDESCENDANTS frame slot) 6
(FDESTROY frame) 5
(FDUMP frames file) 17
(FERASE frame) 5
(FEVAL s—expression frame) slot) facet) ) 9
(FGENAME name) 5
(FGET frame slo t facet ) II
(FGET frame slot facet (keywords) ) 12
(FHER I TAGE frame slot) facet) datum) label) ) 7
(FHERITACE-SLOTS frame) 7
(FIND ICATOR (list) 22
(FIND I CATORS (list) 22
(F INDICATORS I bucket) 22
(FINHERIT frame slo t facet) 10
(F INHER I T I  frame slot facet) II
(F INHERIT2  frame slo t facet ) II
(FINSTANTIATE frame (name) ) 7
(FLINK? slot fi f 2 )  6
(FLI STCLEAR (lis t m d i  ind2 ... indN) 23
(FLI STDELETE (list m d i  ind2 , indN) 23
(FLISTGET (list m d i  ind2 ... indN~ 22
(FLISTPUT (list item m d i  ind2 — indN) 23
(FL 1STREPLACE (lis t item m d i  ind2 indN) 23
(FNAME f rame) 4
(FNAME? frame) 4
(FN EED frame slot (types) ) 15
(FPOLL predicates ) 16
(FPO LL-SUMMARY predicates) 16
(FPUT frame slot) facet) datum) label) message) ) S
(FPUT -STRUCTURE frame) $
(FPUT-STR UCTU RE frame slot-structure) 8

- - - - -. 
- - -



The FRL Manual 25 Roberts & Goldstein

(FPUT-STRUCTURE frame slot (acet-s truc ture) 8
(FPUT-STRIJCTIJRE (tame slot facet datum-structure) 8
(FPUT-STRUCTURE frame slot (acet datum comment) 8
( FRAME frame) 4
(FRAME? frame) 4
(FRAME .  frame) 4
(FRED frame) 29
(FREMOVE frame slot) (ace t) datum) label) message) ) 8
(FREPLACE frame slot) facet) dat umJ label) message) ) 8
(FRESET) 5
(FRINGE frame slot) S
(F R UN s—expression (tame) slot) facet) ) 14
(FSAVE frames (ile) 17
(FSLOTS (rame) 4
(FTREE frame slot) 6
(G ENER iC? frame) 7
(INDIVIDUAL? (tame) 7
(TRUE? x) is
(UNKNOWN? x) 16



The FRL Manual 26 Roberts & Goldstein

Appendix D -- Table of Data Retrieval Functions

Some instances of data retrieval are common enough to justify a unique name. A
popular collection follows in tabular form , grouped according to the type of inheritance
used to retrieve the data. The general form for the following f unctions is:

( <function> frame slo t facet ).

Retrieva l function count comment evaluate Indirect inherit (retur ns)
*fdetum_only ONE NO YES YES NONE indicator
*fdata-only ALL NO YES YES NONE list of indicators
*fd at um ONE YES YES YES NONE bucket
*fdata ALL YES YES YES NONE list of’ buckets

fdatu m-only ONE NO YES YES 0 indicator
fdata’-only ALL NO YES YES 0 li st of indicators
fdatum ONE YES YES YES 0 buc ket
fdata ALL YES YES YES 0 list of buckets

fheritage ALL YES YES YES HERITAGE list of buc kets

The general form of the following functions is:

( <function > frame slot ).

A rv elue_ only ONE NO YES YES none i n d i c a t o r

afv alues_ on ly ALL NO YES YES none l is t  of indicators
*fva lue ONE YES YES YES none bucket
*fvalues ALL YES YES YES none list of buckets

fva l ue-on ly  ONE NO YES YES 0 indicator
f’va l ues-onl y ALL NO YES YES 0 l ist of indicators
f’val ue ONE YES YES YES 0 bucket
fvalues ALL YES YES YES 0 list of buckets

f’va lue-onlyl ONE NO YES YES 1 indicator
f’values -onl yl ALL NO YES YES 1 list of indicators
f’val uel ONE YES YES YES 1 bucket
fv alues l ALL YES YES YES 1 list of buckets

fval ue-only2 ONE NO YES YES 2 indicator
fvalues-on ly2 ALL NO YES YES 2 list of indicato rs
fvalue2 ONE YES YES YES 2 buc ket
f’values2 ALL YES YES YES 2 list of buc kets

Some general naming rules have been observed. “ - ONLY ” si gni f ies  tha t  the
comments have been stripped off . “

*~ denotes no inheritance. Singular and p lural  for ms
disti nguish functions which return a list of all data items from those that  expect to find a



The FRL Manu al 27 Robert s & Goldstein

sin gle datum.

The following predicates return T only if data exists to be retrieved; i.e., if the
corresponding retrieval function (see Table) would return non-nil. The predicate forms ,
however , do not return useable data.

(*FDATUM ~ frame slot facet)
(FOATUM? (tame slot facet)
(FHERITAGE’ frame slot facet)
(*FVALUE? frame slot)
(FVA LLJE? frame slot)
(FVALuE1? frame slot)
(FVALUE2? frame slot)

_ _ _  -. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ . - ~
. ---. . - - - .



The FRL Manu al 28 Roberts & Goldstein

Appendix E -- The FRL Trace Function

FTR ACE is FR L’s trar.er for frame actions. It ’s syntax parallels LISP’s TRACE except
that a predefined set of act!ons are traced rather than functions and a more limited set of
options are available. Traceable actions are IF-ADDED , IF-REMOVED , IF -NEEDED .
CREATE , DESTROY , and INSTANTIATE. Options are COND , BREAK , E N TR Y  and
EXIT. For example ,

(FTRACE IF-ADDED)

causes trace information to be printed out before and after any SIF-ADDED method is
executed.

Add itLonal information can be specified using the ENTRY and EXIT options. The
COND option controls whether anythin g at all is printed ; BR EAK breaks. For examp le .

(FTRACE (IF-ADDED COND (NOT (MEMO :SLOT ‘(AKO INSTANCE)))
BREAK (EQ :SLOT ‘FOO )
ENTRY ( (INDIVIDUAL? :FRAME ) ) ) )

pr ints  the usual stuff about if-added method s run on any slots other than AKO and
INSTANCE , breaks if an if-added method is run for the FOO slot of a frame , and prints
whether or not the frame is an Individual along with the entry information.

(FT RAC E) returns a list of actions currentl y being traced.

(FUP4TRACE) stops trac ing entirel y.

(FUNTRACE actioni actien2 — ) stops tracing selectivel y.

_ _  - -~~~~~—~~-- . .—.-



The FRL Manual 29 Roberts & Goldstein

~ppendix F -_ The FRL Frame Editor

Frames can be modified in place using FRL ’s Frame Editor , FRED. Changes tovalues in a frame have the same side-effects as FASSERT and FERASE.

(FRED frame)

displays frame on the top of the screen while recognizing a few editing commands at
the bott om. (FRED) edits the previousl y edited frame. A cursor (.), whe n present ,
appears just before the sub-structure being edited.

W dis plays the whole frame. Ordinaril y, the f rame is compacted to f it the screen.
J moves the cursor to the beginning of the frame; its name.
F moves the cursor to the first item in the structure.
L moves th e cursor to the last item.
N moves the cursor to the next item.
P moves the cursor to the previous item.
U moves up within structures.
D moves down.
C reads a nam e and goes to that slot.
S prints all the slots in the frame.
H prints the heritage of the current level of the frame.
K kills the next item after the cursor. It is bound to the atom “. .
I inserts a new sub-structure. Prefix your response with “

~~
“ to ret urn the va lue of the

expression.
- reads a name and binds the current value of “

.
“ to it.

V prints the values of the current slot.
C runs a check on the requirements in the current slot.
E reads and evaluates a single form.
Q~ quits.
? prints FRED’s documentati on.


