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Abstract:
Many procedurally-oriented problem solving systems can be viewed as performing

a mixture of computation and deduction, with much of the computation serving to decide
what deductions should be made. This results In bits and pieces of deductions being strewn
throughout the program text and execution. This paper describes a problem solver
subsystem called a truth maintenance system which collects and maintains these bits of
deductions. Automatic functions of the truth maintenance system then use these pieces of
“proofs” to consistently update a data base of program beliefs and to perform a powerful
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I
Introduction

Many procedurally-oriented problem solving systems can be viewed as performing
a mixture of computation and deduction, with much of the computation serving to decide
what deductLons should be made. This results In bits and pieces of deductions being strewn
throughout the program text and execution. (I am indebted to Drew McDermott for this
imagery.) This paper describes a problem solver subsystem called a ~~ maintenance

system which collects and maintains these bits of deductions. Automatic functions of the
truth maintenance system then use these pieces of TMproofs” to consistently update a data base
of program beliefs and to perform a powerful form of backtracking called dependency-
directed backtracking.

Truth maintenance systems record and maintain proofs. The proofs are made up
of j~stifications connecting data structures called nodes. Nodes will typically represent
assertions , rules, or other program beliefs. Nodes may have several justif ications, each of

which represents a different method of deriving belief In the node. Some nodes may be
designated to be hypotheses. For each node, the truth maintenance system computes
whether or not belief in the node is justified by the existence of a non-circular proof from
the basic hypotheses and the set of recorded justifications. The set of such non-circular
proofs is recorded as the well-founded support of the believed nodes.

When the truth maintenance system is given a new justification to record, it
checks to see if the new justification can be used to provide well-founded support for some
currently unsupported node. If so, the node is marked as believed, and the new justification
is attached to the node as its well-founded support. Previously existing justifications which
connect the newly justified node to other nodes may now allow well-founded support for
some of these other nodes to be derived. To do this, the process of ~~~ maintenance Is
Invoked. This consists of scanning from the newly justified node through the recorded
justif ications to check for any other nodes which can be supplied with proofs.

Because their knowledge Is incomplete, problem solvers must frequently make
assumptions for the sake of argument In order to proceed. Such assumptions take the form
of non-monotonic ~ustifications In the truth maintenance system. This type of just ification Is
used to make a proof of a node which is based In part on the nonexistence of proofs for

_ _ _ _ _  - -- ~~~~~~~—-- --
--~~~~

----
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some other node. The term “non-monotonic” means that new proofs can invalidate previous
proofs. This is in contrast to the normal property of systems of mathematical logic in which
the validity of a proof is not affected by the addition of new axioms. For example, non-
monotonic just ifications can be used in a way analogous to the use of the THNOT
primitive of Micro-PLANNER by basing belief in a node representing a statement P on the
lack of a proof for the node representing the statement “P. If a proof of “P is subsequently
discovered, the process of truth maintenance will be Invoked to undo the existing proof of P
and of any nodes based on belief in P.

Re~reseiitatio,i of Knowledge about Belief

A node may have several justifications for belIef. Each of these justification may
be considered a predicate of other nodes. The node Is believed if at least one of these
justifications is valid. The conditions for validity of Justifications are described below. We
say that a node which is believed is ~~ , and that a node without a valid justification Is 

~~The distinction between En and out Is not that of true and false. The former denote
conditions of knowledge about reasons for belief; the latter, belief In a piece of knowledge
or its negation.

Two basic forms of Justifications suffice. The first is the support-list justification.
which is of the form

(AND (IN <Enlist> ) (OUT cout l ist>)) .
A support-list justification is valid if each node In Its Enlist Is In, and each node in its outlist
is out. A support-list justification can be used to represent several types of deductions.
When both the Enli st and outllst are empty, the Justification forms a premise justification. A
premise justification Is always valid, and so the node It Justifies will always be believed.
Normal deductions are represented by support-list Justifications with empty outlists. These
represent monotonic deductions of the justified node from the belief In the nodes of the
Enlist . Assumptions are nodes whose well-founded support Is a support-list Justification with
a nonempty outlist. These justifications can be Interpreted by viewing the nodes of the
Enlist as the reasons for making the assumption; the nodes of the osulist represent the
specific incompleteness of knowledge authoilsing the assumption.
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The second form of justification is the conditional-proof justification, which is of

the form-
(CP <consequent> cinhypotheses> <outhypotheses>).

A node justif ied by such a justificat ion represents an Implication, which is derived by a
conditional proof of the consequent node from the hypothesis nodes. A justification of this
form is valid if the consequent node is En whenever each node of the Enhypotheses is En and
each node of the outhypotheses Is out. Except in a few esoteric uses, the set of outhypotheses
is empty. Standard conditional proofs in natural deduction systems specify a single set of
hypotheses, which correspond to our tnhypotheses. The truth maintenance system requires
that the set of hypotheses be divided Into two disjoint subsets, since nodes may be derived
both from some nodes being in and other nodes being out. Some natural deduction systems
also allow a set of consequents in a conditional proof. For efficiency, conditional proofs are
restricted in a truth maintenance system to a single consequent node.

Default Assumptions

Support-list and conditional proof justifications can be employed to represent
more complex relationships between beliefs. The relationships presented below describe
choice structures, which are usefu l in explicitly programming parts of the control structure
of the problem solver into dependency relationships between control assertions. In these, the
justifications are arranged to select one default or alternative from a set of alternatives.
This choice is backtrackable. That is, If a contradiction is derived which depends on the
choice, the dependency-directed backtracking mechanism will cause a new alternative to be
chosen from the set of alternatives. Other choice structures (for example, equivalence class
representative selectors) which are not backtrackable will not be descrIbed here. (See (Doyle
I9~8].)

One very common technique used In problem solvIng systems is to specify a
default choice for the value of some quantity. This choice Is made with the intent of
overriding it if either a good reason is found for using some other value, or if making the
default choice leads to an InconsIstency. In the case of a binary choice, such a default
assumption can be represented by believing a node if the node representIng its negation Is
out. When the default Is chosen from a set of akernatives, the following generalization of
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the binary case is used. Let {F 1, ... , F ,~ be the set of the nodes which represent each of
the possible values of the choice, Let 0 be the node which represents the reason for makIng
the default assumption. Then F~ may be made the default choice by providing It with the
justification

(ANO (IN C) (OUT F 1 ... F1..1 F141 Fe)) .
If no information about the choice exists, there will be no reasons for believing any of the
alternatives except F

~. Thus F1 will be in and each of the other alternatives will be out. If
some other alternative receives a valid justification from- other sources, that alternative will
become in. This will invalidate the support of F1, and F1 will become out. If a
contradiction is derived from F1, the dependency-directed backtracking mechanism will
recognize that FL is an assumption by means of its dependence on the ocher alternatives
being out. (See the section on dependency-directed backtracking for an explanation of this.)
The backtracker may then justify one of the other alternatives at random , causing F1 to go
out. In effect, backtracking will cause the removal of the default choice from the set of
alternatives, and will set up a new default assumption structure from the remaining
alternatives .

If the complete set of alternatives from which the default assumption Is selected Is

not known a p rior i, but Is to be discovered piecemeal, a slightly different structure Is
necessary. The following structure allows an extensible set of alternatives underlying the
default assumption. Such extensibility Is necessary, for example, when specifying a number

as a default due to the large set of possible alternatives. For cases like this the following
structure may be used instead. Retaining the above notation, let “F1 be a new node which
will represent the negation of F1. We will arrange for F1 to be believed if “F1 cannot be

proven, and will set up Justifications so that if F1 Is distinct from F1, F1 will Imply “F1.
This is done by giving F1 the justifIcation

(AND (IN C) (OUT ‘F1) ) ,
and by giving “F1 a justification of the form

(AND (Iti F,) (OUT))
for each alternative F, distinct from F1. As before, P1 will be assumed If no reasons for
using any other alternative exist. Furthermore, new alternatives can be added to the set
simply by giving “F1 a new Justification corresponding to the new alternative. This
structure for default assumptions wIll behave as did the fixed structure In the case of an
unselected alternative receiving Independent support. Backtracking, however, has a

_ __ - — -~~~~~ --- - - - .~~~~~~~~~~~~-
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different effect. If a contradiction is derived from the default assumption supported by this
structure, “-F1 will be justified so as to make F1 become out. If this happens, no alternative
will be selected to take the place of the default assumption. The extensible structure
requ ires an external mechanism to construct a new default assumption whenever the default
is ruled out.

Sets of Alter native s

The default assumption structures allow a choice from a set of alternatives, but do
not specify the order in which new alternatives are to be tried if the initial choice is wrong.
Such advice can be embedded in a linear ordering on the set of alternatives. Linearly
ordered sets of alternatives are useful whenever heuristic Information is available for
making a choice. One way such situations arise is by using recommendation lists in Micro-

- 
PLANNER. Another use is in heuristically choosing the value of some quantity, such as
the state of a transistor or the day of the week for a meeting.

If it is certain that rejected alternatives are rejected permanently and will never
again be believed, the linear ordering on the set of alternatives can be . specified by a
controlled sequence of default assumptions. This can be implemented in a ladder-like
structure of justifications by justifying each F1 with

(AND (IN 0 ,F11
) (OUT

where C is the reason for the set of alternatives. The first alternative F, will be selected
initially. As alternatives are ruled out by their negations being justified, the next
alternative in the list will be assumed. -

If previously rejected alternatives can be independently rejustifled, a more
complicated structure Is necessary. This type of set of alternatIves can be described by the
following justifications. For each alternative A1, three new nodes should be created. These
new nodes are PA1 (meanin g “A1 is a possible alternative”), NSA1 (meaning “A1 is not the
selected alternative”), and ROA1 (mean ing “A~ is a ruled-out alternative”). Each PA1 should
be justified with the reason for includIng A1 In the set of alternatives. Each ROA1 Is left
unjustified. Each A1 and NSA1 should be given Justifications as follows:
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A1: (AND (IN PA 1 NSA1 ... N541) (OUT RO~41) )

(or: (AND <is alternative> <no better is selected> <is not ruled out>))
N SA 1: (ANO (IN) (OUT PA1) )  , (AND (IN R041) (OUT))

(or: (OR <is not a valid alternative> <is ruled out>))

With this structure, processes can independently rule in or rule out an alternative by
justifying the appropriate alternative node or ruled-out-alternative node.

This structure is also extensible. New alternatives may be added simply by
constructing the appropriate Justifications as above. These additions are restricted to
appearing at the end of the order. That is, new alternatives cannot be spliced into the
linear order between two previously inserted alternatives.

Dependency-Directed Backtracking

The truth maintenance system supports a powerful form of backtracking called
dependency-directed backtrack ing. This method of backtracking is used to restore
consistency of beliefs when assumptions based on Incomplete knowledge lead to
contradictions . Consistency is restored by using the contradiction to derive new knowledge.
This new knowledge then fills in some of the incompletenesses which previously supported
one or more assumed beliefs. This causes the truth maintenance system to retract belief In
those assumptions.

To signal the existence of an inconsistency, nodes may be declared to be
contradictions. Contradictions, as beliefs, have the semantics of false. During truth
maintenance, nodes for which support is derived are checked to see if they are marked as
contradictions. The derivation of belief In a contradiction indicates the inconsistency of the
set of beliefs used in deriving the contradiction. To restore the (apparent) consistency of the
set of beliefs, the truth maintenance system notifies the dependency-directed backtracker of
the contradiction.

The backtracking process consists of tracing backwards through the well-founded
support of the contradiction node to find the causes of the contradiction. The backtracker

_ _ _ _ _ _  TIT~~ 
- - -

~~~~~~~ -~~



9

I
presumes that all inconsistencies are due to the presence of assumptions based on Incomplete
knowledge. It therefore expects that all monotonically justified beliefs are correct, and
searches only for the set of assumptions underlying the contradiction.

Belief in at least one of the assumptions underlying the contradiction must be
retracted to remove the contradiction. This is accomp lished by adding knowledge where
knowledge was lacking before; that Is, by providing a new justification for belief in one of
the nodes that supported the assumption by being out. The justification used is that the
assumption, when combined with the other assumptions, provides support for the
contradiction. Since other beliefs besides the assumptions may have played a role in
deriving the contradiction, the inconsistency of the set of assumptions is valid only under
certain circumstances -- those in which the combination of the set of assumptions together
with those other beliefs provides support for the contradiction. This is the statement of a
conditional proof. That is, the justification for not believing a particular assumption Is that
the other assumptions are believed, and that if all the assumptions are believed, the
contradiction follows. Thus the justification used to retract an assumption Is the conditional
proof of the contradiction from the complete set of assumptions, together with belief in the
other assumptions.

In more detail, the first step of the backtracking process is the recognition of an
inconsistency through derivation of well-founded support for a contradiction node. The
well-founded support of the contradiction node is traced backwards to collect the set of
assumptions supporting the contradiction. The third step of backtracking is the
summarization of the inconsistency of the set of assumptions underlying the contradiction.
Suppose that S — (A, B, ... . ZJ is the set of inconsistent assumptions. The backtracker then
creates a nogood, a new node signifying that S is inconsistent. The nogood represents the
fact that

A A . . .A Z D f als e, -

or alter natively, that

S is called the nogood-set of the nogood. The summarization is accomplished by justifying
the nogood with a conditional proof of the contradiction relative to the set of assumptions.
In this way, the inconsistency of the set of assumptions is recorded as a node which will be
believed even after the contradiction has been disposed of by the retraction of some

_  -
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hypothesis.

The last step of backtracking uses the summarized cause of the contradiction,
represented by the nogood , to both retract one of the inconsistent assumptions and to
prevent future contradictions for the same reasons. This is accomplished by deriving new
justifications for the out nodes underlying the inconsistent assumptions. The new
justifications wdl cause one of these out facts to become I n , thereby causing one of the
offensive assumptions to become out. This step Is reminiscent of the Justification of results
on the basis of the occurrence of contradictions in reasoning by reducito ad absurdum.

These new just ifications are constructed as follows. Let the inconsistent
assumptions be A~, ... , A,~. Let S~ , ... , S1~ be the out nodes of the Justification supporting
belief in the assumption A~. To effect the retraction of one of the assumptions, A~, Justify

with the predicate
(AND (IN N G A 1 •. .  A1..1A1~1 ~~••  An) (OUT 

~12 “ 31kb’that is ,
(AND (IN <nogood> <other assumptions involved>)

(OUT <other denials of this assumption>))

This will ensure that the justification supporting A1 by means of this set of out nodes will
no longer be valid whenever the nogood (NO) and the other assumptions are believed.
This process is repeated for each assumption in the inconsistent set. If the assumptions and
the contradiction are still believed following this, the backtracking process is repeated.
Backtrackin g halts when the contradiction becomes out , or when no assumptions can be
found underlying the contradiction.

Dependency-directed backtracking improves on traditional backtracking
mechanisms in two ways; irrelevant assumptions are ignored, since the set of inconsistent
beliefs is determined by tracing dependencies; and the cause of the contradiction is
summarized in terms of this set of inconsistent assumptions as a conditional proof which
remains valid after the contradiction itself has been removed.
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Truth Maintenance Mechanisms

Consider the situation In which the node F represents the assertion
“ ( —  (÷ X V)  4) ”,

O represents
“ ( .  X 1)”,

and H represents
N (— v 3) ” .

If both F and G are In , then belief in H can be justified by (AND (IN F 0) (OUT)). This
justification will cause H to become I n. If 0 subsequently becomes out due to changing
hypotheses , and if H becomes in by some other justification, then 0 can be justified by (AND
(IN F H)  (OUT)) . Suppose the justification supporting belief in H then becomes invalid.
If the decision to believe a node is based on a simple evaluation of each of the Justifications
of the node, then both 0 and H will be left In. This happens because the two Justifications
form circular proofs for 0 and H In terms of each other. These Justifications are mutually
satisfactor y if F, C and H are in.

This example points out one of the major concerns in truth maintenance
processing; the avoidance of using circular proofs to support beliefs. This is the reason
why well-founded support is maintained.

Essentially three different kinds of circularities which can arise in purported
proofs . The first and most common is a circularity in which all nodes involved can be
considered out consistently with their Justifications. Such circularities arise routinely
through equivalences and simultaneous constraints. The above algebra example falls Into
this class of circularity.

The second type of circularity is one in which at least one of the nodes involved
must be in. An examp le is that of two nodes F and 0, such that F has an justification of
the form (AND (IN) (OUT 0)) , and C has an Justification of the form (AND ( IN) (OUT
F ) ) .  Here either F must be in and 0 out , or C must be In and F out. This type of
circularity arises in defining some types of sets of alternatives. Other types of ordered
a lternative structures avoid such clrcularities.
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The third form of circularity which can arise Is the unsatisfiable circularity. In
this type of circularit y, no assignment of support-statuses to nodes is consistent with their
justifications. An example of such a circularity is a node F wIth the justification (AND
(IN) (OUT F ) ) .  This justification implies that F is in If and only if F is out .
Unsatisfiable circularities are bugs, indicating a misorganization of the knowledge of the
program using the truth maintenance system. Unsatisfiable circularities are violations of
the semantics of in and out , which can be interpreted as meaning that the lack of reasons
for belief in a node i~ equivalent to the existence of reasons for belief in the node. (It has
been my experience that such circularities are most commonly caused by confusing the
concepts of in and out with those of true and false. For instance, the above example could
be produced by this misinterpretation as an attempt to assume belief in the node F by
giving it the justification (AND (IN) (OUT F) ).)

The details of the truth maintenance process will not be pursued here. Many
details of this, and of several other processes such as the procedure for dealing with
conditional proofs are discussed in (Doyle 1978]. David McAllester (1977) has developed an
attractive alternate data structure for the proofs maintained by the truth maintenance
system. This allows several algorithms to be combined Into one simplified process.

A pplications

There are several applications of truth maintenance systems in problem solving
systems. The most immediate application is that of maintaining the consistency of a data
base in the presence of assumptions based on incomplete knowledge. (See (Stallman and
Sussman 1971].) 

- .

Truth maintenance systems also apply to systems which generate explanations.
Problem solvers which record the reasons for their beliefs can use these records to Justify
their actions and beliefs to a human (or otherwise) user. (See (Sussman and Stallman 1975,
Stallman and Sussman 1977, Doyle 1978].)

A crucial aspect of the problem of explanation is that levels of detail must be
separated in the explanations produced by hierarchical systems. A truth maintenance

-
~~~~~~~~~~~~~~

—- - . - ---
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I
system can be used to automatically perform such a structuring of arguments. The method
used for this is that of applying conditional proofs to factor unwanted low-level details from
explanations. When such factoring is done at each level, a hierarchical structure emerges in
explanations. (See (Doyle 1978] for more details.)

Another application -of truth maintenance systems is in modelling. Most
modelling systems specify the effects of actions only in terms of the primary effects of the
actions. Many secondary or derived effects remain unspecified. By recording the reasons
for derived knowledge, a modelling system can employ a truth maintenance system In
updating the derived portions of its model. (See (Pikes 1975, Hayes 1975, McDermott 1977,
London 1977].)

The final a pplication we mention is that of control. A truth maintenance system
supp lies the powerful method of dependency-directed backtracking for use in controlling the
actions taken by a problem solver. Another use is in separating the reasons for control
decisions from the reasons for beliefs derived in response to those control decisions. (See
[Stailman and Sussman 1977, Doyle 1978, de Kleer, Doyle, Steele and Sussman 1977, de Kleer,
Doyle, Rich , Steele and Sussman 19781)
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