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Introduction

MacLISP is a version of LISP which is used not only as a user
application language but as a systems prograaaing language, supporting such
systems as MCSYM and CONNIVER.’ As such, it has been carefull y designed with
spied as one of Its major goals . Generality , sass of us., and debuggability
have not been neglected , but speed of compiled code has besn the primar y
consideration. This is a departure from the traditional view of L ISP as a
friendl y and general but slow and clumsy language.

Th. representations of data objects in MacLISP have undergone a
continuous evolution towards this goal. When MacLISP was first created, the
data representations were designed for simplicity and compactness at the
expense of speed. Since then there have been at least two major revisions,
each to speed up compiled code and simplify the processing of the data . Here
we discuss the current implementation on the PDP-10 (MacLISP also runs on
Multics, and on the ‘LISP machines’ being constructed at the MIT Artificial
Intelligence Laboratory). We shall contrast it with previous MacLISP
implemantations and implementations of other LISP systems, nd discuss same of
the design decisions involved.

Organization of the PDP-l0

The data representations in MacLISP have been carefully designed to
take full advantage of the PDP-10 architecture. A full understanding of the
design decisions involved requires the following minimal knowledge of the PDP—
10 instruction set.

The PDP-10 operates on 36-bit words. Memory addresses designate
words, not bytes, and are 18 bits wide; thus two addresses can fit in one
word. There is a class of instructions which manipulate half-words; for
example, one can store into half of a memory word and either not affect the
other half or set the other half to all zeros or all ones.

The PDP-l0 has 16 accumulators, each 36 bIts wide. All but one can be
used for indexing; all can be used as stack pointers; all can be used for
arithmetic. The accumulators can also be referenced as the first 16 memory
locations (though they are hardware registers and not actually me.ory
locations ). For reasons explained later, MacLISP devotes certain accumulators
to specific purposes . Accumulator 0 contains the atom NIL. Accumulators 1-5
may contain pointers to data objects ; these are used to pass arguments to
LISP functions and return values from them. Accumulators 6-10 are scratch
registers, and are generally used for arithmetic . Accumulator 11 is reserved
for a future purpose. Accumulators 12-15 are used for stack pointers to the
four stacks.

Every user PDP-l0 instruction has the following format:

[ opcode ac IIIidxI address 
White sectrao~~

Each instruction has a 9-bit operation code and a 4-bit field specifying en
accumulator. The effective memory address (or i ediate operand) is uniformly _____

com puted by adding to the 18-bit address field th. contents of the accumulator
specified by the 4-bit index field (a zero index field means no indexin g). If 

~tA8(1ffY CODES
the indirection bit ‘I’ is set , then a word is fetched usin g the com puted 

~~~~~~~_ _ ~1i~
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address and the process iterated on the address, index, and I fields of the
fetched word. In this way the PDP-10 allows multiple levels of indirection
with indexing at each step.

MacLISP Data Types

HacLI8~ currently provides the user with the following types of data
objects :

FIXNUN Single-precision integers.
FLONUN Single-precision floating-point numbers.
BIGNUM Integers of arbitrary precision. The size of an integer arithmetic

result is limited only by the amount of storage available.
SYMBOL Atomic symbols, which are used in LISP as identifiers but which are

also manipulable data objects . Symbols have value cells, which can
contain LISP objects, and property lists, which are lists used to
store information which can be accessed quickly given the atom .
Symbols are written as strings of letters, digits, and other non-
special characters. The special symbol NIL is used to terminate
lists and to denote the logical value FALSE.

LIST The traditional CONS cell, which has a CAR and a CDR which are each
LISP objects . A chain of such cells strung together by their CDR
fields is called a list ; the CAR fields contain the elements of the
list. The special symbol NIL is in the CDR of the last cell. A
chain of list cells is written by writing the CAR elements, enclosed
in parentheses. A non-NIL non-list CDR field is written preceded by
a dot. An example of a list ii (ONE TWO THREE), which has three
elements which are all symbols. It is made up of three list cells
thus:

lu st call 11 — )[flst cell ii— -)Eiist cell 31
cdr I cdt J cdt

car 4, car
4, 

car
1~

ONE TWO THREE

ARRAY Arrays of one to five dimensions, dynamically allocatable.
HUNK Short vectors, similar to LIST cells except that they have more than

two components. This data type is fairly new and is still
experimental.

Pointers

In MacLISP, as in most LISP systems, the unit of data is th. pointer.
A pointer is typically represented as a memory address , with the components of
the data object pointed to in the memory at that address. Th. reason for this
is that LISP data objects have varying sizes , and it is desirable to
manipulat, them in a uniform manner . Numbers, for example, may occupy varying
numbers of words, and it is not always feasible to put one as such into the
accumulators. A pointer , being only 18 bits, can always fit in one
accumulator regardless of the size of the object pointed to; moreover, it
requires only 15 bits for one data object to contain another, since it need
actually only contain a pointer to the other.
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Given a pointer, it is necessary to be abl. to determine what kind of
object is being pointed to. There are two alternatives: one can either have
a field in every data object specifying what type of object it is, or encode
the type information in the pointer to th. object . Th. latter method entails
an additional choice: one can either adjoin type information to the memory
address (in which case it takes more bits to represent a pointer), or arrange
it so that the type is implied by the memory address itself (in which case the
memory must be partitioned into different areas reserved for the various data
types). MacLISP has generally used this last solution, primarily because of
the half-word manipulation facilities of the PDP-10. Two memory address will
fit in one word with no extra bits l.ft over. (Contrast this with an IBM 370,
which has 32-bit words and 24-bit addresses; on this machine one would use
32—bit pointers, encoding type information in the extra eight bits.) This is
extremely useful because a list cell will fit in one word; the left half can
contain a pointer to the CAR and the right half a pointer to the CDR.

The method MacLISP presently uses for determining the type of a data
object involves using a data type table. The 18-bit address space (256K
words) of the PDP-10 is divided into segments of 512 words. All objects in
the same segment are of the same data type. To find the data type of an
object given its address, one takes the nine high-order bits of the address
and uses them to index the data type table (called IT, for Segment Table).
This table entry contains an encoding of the data type for objects in the
corresponding segment :

Bit 0 0 if atomic, I otherwise.
Bit 1 1 if list cells.
Bit 2 1 if fixnums.
Bit 3 1 if flonu.s.
Bit 4 1 if bignums.
Bit 5 1 if symbols.
Bit 6 1 if arrays (actually, array pointers; see below).
Bit 7 1 if value cells for symbols.
Bit 8 1 if number stack (one of bits 2-3 should also be set).
Bit 9 is currently unused.
Bit 10 1 if memory exists, but is not used for data.
Bit 11 1 if memory does not exist.
Bit 12 1 if memory is pure (read-only).
Bit 13 1 if hunks.
Bits 14-17 are currently unused.
Bits 18-35 (the right half) contain a pointer to the symbol

representing the data type, namely one of LIST,
FIXNU$. etc. Th. symbol RANDOM is used for segments
containing no standard MacLISP data objects .

Th, encoding is redundant to take advantage of the PDP-lO instruction set and
to optimize certain co on operations. There is an instruction which can test
selected bits in a half-word of an accumulator and skip if any are set. Thus ,
one can test for a number by testing bits 2, 3, and 4 together. Bit 0 (the
sign bit) is 1 for list , hunk, and value cell segments (non-atoms ) and 0 for
131 others (atoms). This saves an instruction when making the very co on
test for atom-ness, since one can use the skip-on-memory-sign instruction
instead of having to fetch the table entry into an accumulator. The right( half of a table entry contains a pointer to the symbol which the MacLISP
function TYPEP is supposed to return for objects of that type. Thus, the
TYPEP function need only extract the right half of a table entry~ it doss not
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have to test all the bits individually. Finally, the system arranges for all
the symbols to which a table entry can point to be in consecutive memory
locations in one symbol segment. Sinc, these symbols have consecutive memory
address, the right half of a table entry can be used to index dispatch tables
by type. For example, the EQUAL function, which determines whether two LISP
objects are isomorphic, first compares the data types of its two arguments ;
if the data types match, then it doss an indexed jump, indexed by the right
half of a Segment Table entry, to determine how to compare the two objects .

By way of contrast , let us briefly consider the storage convention
formerly used by MacLISP. Memory was partitioned into several contiguous
regions, not all of the same size. The lowest and highest addresses of each
region were known (usually the low address of one region was one more than the
highest address of the region below it). To determine the data type of a
pointer it was necessary to compare the address to the addresses of all the
boundaries of the regions. This was somewhat faster than the current table
method if only one or two comparisons were needed (as in determining whether a
pointer pointed to a number, since the number regions were contiguous), but
slower in the general case; furthermore, there was no convenient way to
dispatch on the data type. On the other hand, the table method requires space
for the entire 512-word table, even if only a small number of segments are in
use. (There is another 512-word table for use by the garbage collector , the
OC Segment Table (GCST) • which doubles this penalty.) The deciding advantage
of the table method is that it permits dynamic expansion of th. storage used
for each kind of data. The region method requires all list cells, for
example, to be in a contiguous region; once this region is fixed, there is no
easy way to expand it. Under the table method, any currently unused segment
can be pressed into service for list cells merely by changing its table entry.
An additional bonus of the table scheme is that the space required for the
instructions to do a type-check is small, and so it is often worth-while to
compile such type-checks in-line in compiled code rather than calling a type-
checking subroutine.

In practice new data segments are not allocated randomly, but from the
top of memory down. As new pages of memory are needed they are acquired from
the time-sharing system and used for segments (on the ITS system, there are
two segments per page). Compiled programs are loaded starting in low memory
and working up; thus between the highest program loaded and the lowest data
segment allocated there is a big hole in me.ory, which is eaten away from both
ends as required. This hole has been whimsically named •the BIg Bag Of Pages’
from which new ones are drawn as needed; hence the name BIBOP for the
scheme. (The TOPS-b timesharing system provided by DEC does not allow memory
to be grown from th. top down, but only from the bottom up. When running
under this time-sharing system MacLISP has a fixed region for loading
programs, and allocates new data segments from the bottom up.)

Data Representation s

LliL~silt, as mentioned above , are represented as sin gle words . The
CAR pointer is in the left half of the word, and the CDR pointer in the right
half.

Fixnums ar. represented as single words which contain the PDP-10
representatiom of the number. As explained more fully in (Steete3. this
representation permits arithmetic to be performed easily. If a pointer to a
fixnum is in an accumulator , then any arithmetic instruction can access the
valus by indexing off that accumulator wi th a zero base address.
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Flonums are represented as single words in a manner similar to
f ixn ums .

Bignums each have a single word in a bignum segment . The left half of
this word is all zeros or all ones, representing the sign of the number • This
representation of the sign is compatible with that for fixnums and fJonums ;

P thus the sign of any number can be tested with the test-sign-of-memory
instruction. (Bignums were formerly represented as list cells with special
pointers in the CAR; this did not permit the compatibility of sign bits, and
made it difficult to test for either numbers or lists.) The right half points
to a list of positive fixnums, which represent the magnitude of the bignum, 35
bits per fixnum, least significant bits first in the list. A list is used
instead of a contiguous block of storage for both ease of allocation and
generality of use. The least significant bits come first in the list to ease
the addition algorithm.

~~~~~~ are quite complex objects. Each symbol has one word in a
s~~~ol segment and two words in another segment. The right half of the one
word points to the symbol’s property list , which is an ordinary list; the
left half points to the two-word block. These two words in turn are laid out
so:

bits 0 pointer to value cell

‘args property pointer to print name

The ‘bits’ have various specialized purposes. The value cell for the symbol
is in a value cell segment. Notice that bits 13-17 of th. first word are
zero specifying no indexing or indirection • This permits an instruction to
indirect through this word to get the value of the symbol. Getting the
address of the two-word block also takes an instruction; thus one can get the
value of a symbol in two instructions. The ‘args property is used by the
MacLISP interpreter for checking the number of argu.ents to a function (for
s~~ ols are also used to denote the names of functions). The print name is a
list of fixnums containing the charac ters of the s~mbol ’s n~~~, packed five
ascii characters to the word.

The special symbol NIL is not represented in this manner . The address
of NIL is zero. This allows a particularly fast check for NIL; one can use
the jump-if-zero instruction. This is why accumulator 0 (which is also memory
location 0) is reserved for NIL. Accumulator 0 normally contains zero itself;
in this way taking CAR or CDR of NIL yields NIL. This allows one to follow a
list by CDI pointers to a predetermined depth and not have to check at each
step whether one has run of f the end. (This trick was borrowed from
InterLIBP. CTeitelman)) Most functions make special checks for NIL anyway, so
this non-standard representation is not harmful. PRINT, for example, just
checks for NIL specially and just outputs ‘NIL’ without looking for a print
name . NIL does have a property list , but it is not stored where it is in
other symbols; the property list functions must check for NIL (which takes
only one instruction anyway). Nil, has no value cell, and always evaluates to
NIL.

One might wonder why normal s~whols are divided up into two parts , and
why the value cell is not s imply part of the two-word block . The answer is( that once constr ucted the two-word block normally doss not change, and so may
be placed in read.ealy memory and shared between processes. if several
PIACITMA processes are is use , this sharin g may ease core requirements by tens
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of thousands of words.
To save even more memory, symbols are not provided with value cells

until necessary (most symbols are never actually given values). Instead, they
are made to point to a ‘standard unbound’ value cell, which is read-only and
contains the marker specifying that no value is present. When an attempt is
made to write into this value cell, the write is intercepted and a new value
cell created for the symbol in question.

(Besides making parts of sy bols read-only, MacLISP currently allows
for read-only list cells, fixnums, flonums, and bignums . These are useful for
constructing constant data objects which are referred to by compiled code but
never modified, and for properties on property lists whose values are not
expected to change (such as function definitions). In certain cases , such as
the property-list modifying routines, checks are made for read-only objects ,
and such objects are copied into writable memory if necessary to carry out the
operation. This copying causes the old read-only copy to be wasted from then
on, but this is acceptable as such copying is seldom necessary in practice.
This strategy may be contrasted to the approach of InterLISP (Teitelman], in
which an entire page of memory is made writable if an attempt is made to
modify any object on that page. This approach is more general than that of
MacLISP, but in practice tends to reduce the sharing of pages among processes,
increasing the load on the time-sharing system.)

Value cells, though not properly a MacLISP data type, are worthy of
discussion. They are single words, containing a pointer in the right half and
zero in the left half. This apparent waste of 18 bits is motivated by speed
considerations. Compiled code of ten references the value cells of global
variables. Since the left half of a value cell is zero, a test for NIL can be
dons with a single skip-if-memory-zero instruction ; this is useful for
switches. Furthermore, if a value cell is known to contain a list, the CAR or
CDI can be tiken in one instruction, using a half-word instruction with
indirect addressing, because the index and indirection fields are zero,
without having to fetch the value into an accumulator first. Similarly, if a
value cell contains a number, the sign can be tested and the value (except for
bignums) accessed by using indirect addressing. (It should be noted that
compiled code does not keep local vari~tble values in value cells, but useseven more clever techniques involving tacks.)

Arrays have a complicated representation because they can be of
arbitrary size, and must be allocated as a contiguous block for efficient
indexing. The solution chosen is to split it into two parts: a Special ARray
cell (cal led MA, not SAC, for some reason) in an array segment, and the block
of data . The data itself is kept just below the hole in memory, floating
above loaded programs . When new programs are loaded, the array data is
shuffled upward in memor y , and the special array pointers are updated.
Similarly, when allocating a new array or reclaiming an old one it may be
necessa ry to shuffle the array data.

The special array pointer is two words:
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speci&l array
pointer (MA ) ‘

~~ 
for garbage collector

bits 0 code for array access

bits 7 pointer back to M R .

dimension
information

array
data

A complete discussion of the MR contents and array access methods is beyond
the scope of this paper. Notice, however , that the indirection and index
fields are chosen to be 0 and 7 for the two SAR words. The first adeits an
indirection for calling the array as if it were a function, according to
MacLISP convention ; the second allows indexing off accumulator 7 for
accessing the data from compiled code. See (Steele] for a fuller treatment of
this.

Hunks are like list cells, but consist of several contiguous words.
They are always a power of two in size, for convenience of allocation. Hunks
of sizes other than powers of two are created by allocating a hunk of a size
just big enough, and then marking some of the balfwords as being unused by
filling them with a -1 pointer (actually 777777). This was chosen because it
never points to a data object, and because it is easily generated with
instructions that set half- or full-words to all ones. It is time-consuming
to determine the actual size of a hunk, since one must count the number of
unused halfwords, but then hunks were created as an experimental space-saving
representation with properties somewhere between those of lists and arrays.

Garbage Collection

Every so often there comes a point when all the space currently
existing for data objects has been allocated. At this point there are two
alternatives:
(1] allocate a new segment for data objects of the type needed.
(2] attempt to reclaim space used by data objects which are no longer needed
(by the process of garbage collection).
A study by Conrad indicates that the best strategy is to do (Z] only if (1)
fails because one’s address space (256K words, in this case) is completely
allocated, PROVIDED that one has the facility to compact one ’s data storage
and dc-allocate segments . (Conrad] Since MacLISP currently hasn’t the ability
to dc-allocate segments (‘once a ftxnum, always a fixnum’), this strategy must
be modified. One must be cautious about allocating a new segment, since the
allocation cannot be undone; thus MacLISP tries garbage collection first
unless explicitly told otherwise by the programeer, and then allocates a new
segment if garbage collection fails to reclaim enough space for the required
data type.
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Suppose , for example, that it is necessary to allocate a new list
cell. The CONS function checks the freelist for the data type ‘list cell ;
I f  the free list is not empty, then the first cell on that list is used .
(There is a freel ist for each data typ e, which consists of all the currently
unused objects in all the segments for that data type, strung together such
that each object points to the next. This can be done even for objects which
ordinarily do not contain pointers, such as tixnums and flonums, since those
objects are large enough to contain at least a single pointer . There is a set
of fixed locations, one for each data type, which contain pointers to the
first cells on the respective freelists.)

If, in our example, the list cell freelist is empty, then the garbage
collector is invoked. Controlled by user-settable parameters, the garbage
collector may decide simply to allocate a new list segment (which involves
getting a new memory page from the time-sharing system, altering the Segment
Table, and adding the newly allocated objects to the freelist). If it decides
not to do this, or if the attempt fails for any reason, then the actual
garbage collection process is undertaken. This involves finding all the data
objects which are accessible to the user program. An object is accessible if
it is pointed to by compiled code, if pointed to by a global variable or
internal pointer register (such as accumulators 1-5), or if pointed to by
another accessible object. Notice that this definition is recursive, and so
requires a recursive searching of all the data objects to determine which are
accessible. This searching is known as the •ark phase of the garbage
collector.

Associated with each data object is a ‘mark bit’ for use by the
garbage collector. As the garbage collector locates each accessible object,
it sets that object’s mark bit. For list cells, fixnums, flonums, bignums,
and hunks, these bits are stored in a part of memory unrelated to the memory
occupied by the data objects themselves. For each 512-word segment there is a
‘bit block’ of 16 words, each holding 32 mark bits. The location of the bit
block is found by using the top 9 bits of the address of the data object to
index the GC Segment Table. (Bit blocks themselves are allocated in special
•bit block’ segments; thus bit blocks are treated internally as yet another
data type. Occasionally the obscure error message ‘GLEEP - OUT OF BIT BLOCKS’
is printed by LISP in the highly infrequent situation where it cannot allocate
a new bit block after allocating a new segment which needs a bit block.) No
bit blocks are needed for symbols and special array pointers. Recall that the
left half of a symbol word points to a two-word block . Since such a two-word
block is always at an even address, the low bit of the pointer to it is
normally zero. This bit is used during garbage collection as the mark bit for
that symbol. Special array pointers have room in them for a variety of bits,
and one of them is used as a mark bit. Value cells are only reclaimed when
the symbol pointing to them is reclaimed (and not even then, if compiled code
points to the value cell, which fact ii indicated by a bit in the two-word
symbol block pointing to the value cell), and so they require no mark bits .

To aid the garbage collector in the mark phase, the GCST contains some
bits which also encode the data type redundantly, in a form useful to the
marking routine. The bits indicate whether the object must be marked, and if
so the method of marking; they also indicate how many pointers to other
objects are contained in the object now being marked.

After recursively locating and marking all accessible cells, the
garbage collector then performs a sweep phase, in which every data object is
examined, and those which have not been marked are added to the appropriate
freelist. To aid the sweep phase, each GCST entry has a field by which all
entries for segments of the same data typ e are linked together in a list. In
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this way the garbage collector does not need to scan the entire segment table
looking for entries for each type. For each segment, the garbage collector
examines each data object in the segment and iti mark bit, and adds the object
to the appropriate freelist if the mark bit is not set. For symbols and
arrays it also resets the mark bit at this time. (Bit blocks are reset at the
beginning of the mark phase.)

If, in our example, the garbage collection process has not reclaimed
enough list cells (as determined by another programeer-specified parameter),
then it will try to allocate one or more new list cell segments. If, however,
this causes the total number of list cells to exceed yet another programeer-
specified parameter, then a ‘user interrupt’ is signaled, and a function
written by the programeer steps in. In MACSYNA, this function is the one that
typicall y informs you:

YOU HAVE RUN OUT OF LIST SPACE.
DO YOU WANT MORE?
TYPE ALL; NONE; A LEVEL-NO. OR ThE MARE OF A SPACE.

The reason for all these parameters is the necessary caution described above;
if all the available segments get allocated as list cell segments (which can
easily happen due to intermediate expression swell, for example), then they
cannot be used for anything else, including compiled code. This is why, in
MACSYMA , if you use up too much list space , you can ’t load up DEFIPIT
thereafter!

Array data (as opposed to the SPA objects ) is handled by a special
routine that knows how to shuffle them up and down in core as necessary . When
a new array is allocated, the garbage collector has the same decision to make
as to whether to allocate more memory or attempt to reclaim unused arrays.
The decision here is less critical, since memory allocated for arrays CAN be
ds—allocated, and so no prograsmer-specified parameters are used. Array data
only goes away when the corresponding SAR is reclaimed by the normal garbage
collection process (or when the array is explicitly killed by the user, using
the ~REARRAY function).

For the interested reader, the format of a GCST entry is shown here :

Bit 0 1 if data objects in this segment must be marked.
Bit 1 1 if this segment contains value cells.
Bit 2 1 if symbols.
Bit 3 1 if special array pointers.
Bit 4 1 if the right half of this data object contains a

pointer (true of list, bignum, and hunk data objects).
Bit 5 1 if the left half of this data object contains a

pointer (true of list and hunk objects -- note that
symbols and special array pointers get special treatment).
It is always true that bit 4 is set if this one is.

Bit 6 1 if hunks (in this case, the ST entry is used to
determine the size of the hunk).

Bits 1-12 are unused.
Bits 13-21 contain the index into GCST of the next entry with the

same data type, or zero if this is the last such entry.
(Segment 0 never contains data objects, except NIL,
which is treated specially anyway.)

Bits 22-35 contain the high 14 bits of the address of the bit
block for this segment , if any.
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Since bit blocks are 16 words long, the low tour bits of the address of such a
bit block are always zero. Thus the GCST entry only needs to contain the high
14 bits of the address. These 14 bits are right-adjusted in the GCST entry
for the convenience of a clever, tightly-coded marking algorithm. This
algorithm works roughly as follows:
(a] Shift the address of the data object to be marked right by 9 bits, putting
the low 9 bits into the next accumulator.
U’] Use the high 9 address bits to fetch a GCST entry into the accumulator
holding the high 9 address bits, skipping on the sign bit (whether to mark or
not).
(c] Test bits 1, 2, 3 (special treatment), skipping if none are set.
(ci] Shift the two accumulators left by 4 bits. This brings four of the low 9
address bits back into the first accumulator , which together with 14 bits from
the GCST entry yield the address of a word in the bit block. The 5 bits
remaining in the second accumulator indicate the bit within the word to use as
the mark bit. Finally, bit 4 is brought into the sign bit of the first
accumulator.
(e) Rotate the second accumulator , bringing the 5 bits to the low end.
(f] Indexing off the first accumulator, retch the word of mark bits.
(g] Set a mark bit in the word, skipping if it was not already marked. (If
this doesn ’t skip, then we exit the marking algorithm. It is not necessary to
store back the word of mark bits.) The bit is selected by indexing off the
second accumulator into a table of words, each with one bit set.
U’] Store back the word of mark bits.
(1] Test the sign bit of the first accumulator (bit 4 of the GCST entry),
jumping to the exit if not set.
(jJ If bit I is set (bit 5 of the GCST entry), recursively mark the pointer in
the left half. If bit 2 is set (bit 6 of the GCST entry), mark all the
pointers in the hunk .
(k) Iteratively mark the pointer in the right half.

I have taken the trouble to outline these steps carefully because most
of the. are single PDP-1O instructions, carefully designed to perform two or
three useful operations simultaneously. The point is that the careful design
of tables and the use of redundant encoding can greatly increase the speed of
critical inner loops . (It should also be mentioned that such careful thought
about design is usually warranted ~~~ for critical inner loops ’) I should
also mention that most of the constants which have been mentioned in this
paper (bit numbers , sizes of segments , and so on) are represented symbolicall y
in the text of the MacLISP code ; one can change the size of a segment by
changing a single definition , and the sizes of fields in GCST entries ,
positions of bits, and so on will be adjusted by assembly-time computations.
I have used numbers in this paper only for concreteness.

For certain spaces the mark bits are actually used in the inverted
sense : I means not marked, and 0 means marked . This allows the sweep loop to
test for an entire block of 32. words all being marked by testing for a zero
word of mark bits; the loop can then just skip over the block , and avoid
testing the individual bits . The test for a zero word is done while moving
the word into an accumulator , which has to be done anyway, and so is
essentially free.

_ _ _ _  _ _ _ _ _ _ _ _ _ _ _ _  - . --- .
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The Address Space Problem

One of the difficulties currently facing MacLISP is the ‘limited’
address space provided by the PDP-lO. The architecture of the machine
inherently limits addresses to 18 bits; hence a single program cannot address
more than 256K words of memory. Combined with the fact that MacLISP does. not
presently allow for dc-allocation of data segments (or of loaded compiled
cod., for that matter), this severely limits the use of memory. Some PIACSYU
problems, for example, would require much more than 256K of programs and list
data to solve; others require less than 256K at any one time, but cannot be
run because of the dc-allocation difficulty.

It is fairly clear that completely solving the dc-allocation problem
would be more trouble than it is worth , and would not stave off the
fundamental difficulty indefinitely. As both MACSYMA problems and MACSYPIA
itself grow in size, we will feel more and more the address space crunch’.
The only general way to solve this problem is to arrange for a bigger address
space.

There are three solutions which are presently at all realistic. Two
involve continued use of the PDP-10 architecture, but modified in several ways
to allow programs to access more memory. These modifications may or ma~ notbe made available by DEC. and may or may not be retrofittable to the PIACSYMA
Consortium KL1O processor. The difference between the two schemes involves
the decision as to whether MacLISP data pointers should still fit into 18
bits. If not, there is imuediately a factor-of-two memory penalty, since list
cells must be two words instead of one. However, there are also some
technical advantages to such an arrangement, as well as the obvious advantage
that list space can become bigger than 256K. If pointers are kept to 18 bits,
then all LISP data must fit in 256K, but any amount of compiled code and any
number of arrays could be loaded. Both of these schemes have been worked out
on paper to a great extent by Guy 1. Steele Jr. and Jon L. White , to compare
their merits and to prepare for the possibility that one of them •ay be
needed . Either scheme would require a good deal of work (at least one to two
man-years) to implement fully in both the interpreter and the compiler.

The third solution involves moving to another machine architecture
altogether. This leaves open the choice of machine. Few commercially
available machines are as conducive to the support of LISP as the PDP-10, and
it probably would not be practical to undertake a completely new
implementation. MacLISP does presently run on Plultics (on a Honeywell 6180
processor), but is rather slow, and the Multics system is expensize and not
widely available. The best bet in this direction seems to be the LISP
machine , designed by Richard Greenblatt , Tom Knight , et al. at the MIT
Artificial Intelligence Laboratory. The prototype machine has been working
for a number of months now, and the basic software is beginning to show signs
of life . It is not inconceivable that PIACSYPIA may be run experimentally on it
by sumner 1917. The LISP machine has a 24-bit address space, and makes more
efficient use of its memory than even the PDP-10. However, although it is
much less expensive than a KLIO , it is not designed for time-sharing.

The PDP-l0 implementation of MacLISP and of MACSYPIA will certainly be
useful for at least the next five to ten years. After that, only time can
tell.
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Sumeary

MacLISP is designed to be an efficient, high-level systems programing
language, rather than primarily an applications programing language. Its
internal organization is a carefully chosen balance between useful generality
and special-case efficiency tricks . A thoughtful choice of data and table
representations can exploit the architecture of the host machine to gain speed
in critical places without great loss of generality. The use of symbolic
assembly parameters can avoid tying the system to a single rigid format. The
greatest effort has been expended on speeding up type-checking, access to
values in global variables, and garbage collection, since these are among the
most frequent of LISP operations. The address space crunch may eventually
force yet another redesign if the PDP-10 architecture is retained.
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