AD=A05S2 266 MASSACHUSETTS INST OF TECH CAMBRIDGE LAB FOR COMPUTE==ETC F/@ 9/2
ACTORS AND CONTINUOUS FUNCTIONALS: (U) :
DEC 77 C HEWITT» H BAKER N00014=75=C=0522

UNCLASSIFIED MIT=LCS/TR=194% NL

Al
AL (s}

END

DATE
FILMED

S =78

poc

MASSACHUSETTS
INSTITUTE OF

LLABORATORY FOR ﬁ
TECHNOLOGY

COMPUTER SCIENCE
(7 \

MIT/LCS/TR-194

Nej
Ne)
Y
A\
Tg
-
=T
=
<<

ACTORS AND
CONTINUOUS FUNCTIONALS

Carl Hewitt
Henry Baker, Jr.

i This research was supported by the Advanced Research
Projects Agency of the Department of Defense
and was monitored by the Office of Naval Research
under contract no. N00014-75-C-0522

= >

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

N e=d saloy; it
; uei : 2 18
gtribvtion is unlimited,

’ Thjﬂ document h :
fOr pubvi‘: g as bocn cppmvﬁ

— - vore - — e . ———

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)
e T S O A S s S ey
“ READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
2. GOVT ACCESSION NOJ 3. RECIPIENT'S CATALOG NUMBER
MIT/LCS/TR-= 194 /
4 ul e S. TYPE OF REPORT & PERIOD COVERED

. Aczé;s and Continuous Functional ’l //

o s

QQCarl./{iewitt d;Henry[ﬁaker, J:l QQ@WU‘_”_C.gﬁﬂ S

B

6. PERFORMING ORG. REPORT NUMBER
MIT/LCS/TR-194
(e) 8. CONTRACT OR GRANT NUMBER(s)

3 N N N AN RESS . PROGRAM ELEMENT, PROJECT, TASK
MIT/Laboratory for Computer Science AREAS WORKIUNITENUMBE s
545 Technology Square 7
Cambridge, Ma 02139 ; L
11. CONTROLLING OFFICE NAME AND ADDRESS
Advanced Reseascf Projects Agency (:
P %8BT a5 BonESRE

T NORITONING ACENCY NAME 8 lBBI!!WI dlflersnt Trom Eoncrolmu Office)

T B TR BT ION SV AT EWMENR T (of this Report)

17. DISTRIBUTION !?ATEMENT (of the abetract entered In Block 20, if ditferent from Report)

Arlington, Va 22209

Office of Naval Research

Department of the Navy Unclassified
Information Systems Program [78e. DECLASSIFICATION/ DOWNGRADING
Arlington, Va 22217 SCHEDULE

Approved for public release; distribution unlimited

18.

SUPPLEMENTARY NOTES

19.

KEY WORDS (Continue on reverse side If necessary and {dentily by block number)

parallelism networks

concurrency interprocess communication
actors message passing systems
distributed computation

multiprocessors

20

ABSTRACT (Continue on reverse side If necessary and Identily by block number) :

This paper presents precise versions of some 'laws'" that must be
satisfied by computations involving communicating parallel processes. The
laws take the form of stating restrictions on the histories of computations !
that are physically realizable. We generalize the usual notion of the
history of a computation as a sequence of events to the notion of a partial
order of events. Partial orders of events seem better suited to the causality
involved in parallel computations than totally ordered sequences of events

” 11

DD , 5%, 1473 eoiTion OF 1 NOV 68 1S OBSOLETE

S/N 0102-014- 6601 |

o4 _(;«_&/V

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

20. various parallel processes. The utility of partial orders is
demonstrated by using them to express our laws for distributed computation.
These laws in turn can be used to prove the usual induction rules for
proving properties of procedures.

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

MIT/LCS/TR -194

Actors and Continuous Functionals

by

Carl Hewitt
and

Henry Baker Jr.

December 1977

This research was supported by the Advanced Research Projects
Agency of the Department of Defense and was monitored by the
Office of Naval Research under contract no. N00014-75-C-0522.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
LABORATORY FOR COMPUTER SCIENCE

CAMBRIDGE MASSACHUSETTS

-{

ACTORS Hewitt and Baker

Actors and Continuous Functionals

Carl Hewitt and Henry Baker
M.LT. Artificial Intelligence Laboratory
Cambridge, Mass. 02139
(617) 253-5873

SECTION I --- ABSTRACT

This paper presents precise versions of some “laws* that must be satisfied by computations involving
communicating parallel processes. The laws take the form of stating plausible restrictions on the
histories of computations that are physically realizable. The laws are very general in that they are
obeyed by parallel processes executing on a time varying number of distributed physical processors. For
example, some of the processors might be in orbiting satellites. The laws are justified by appeal to
physical intuition and are to be regarded as falsifiable assertions about the kinds of computations that
occur in nature rather than as proved theorems in mathematics. The laws are intended to be used to

analyze the mechanisms by which multiple processes can communicate to work effectively together to
solve difficult problems.

The laws presented in this paper are intended to be applied to the design and analysis of systems
consisting of large numbers of physical processors. The development of such systems is becoming
economical because of rapid progress in the development of large scale integrated circuits. "
We generalize the usual notion of the history of a computation as a sequence of events to the notion of
a partial order of events. Partial orders of events seem better suited to expressing the causality
involved in parallel computations than totally ordered sequences of events obtained by “considering all
shuffles® of the elementary steps of the various parallel processes [25,22}“The utility of partial orders is
demonstrated by using them to express our laws for distributed . computation. These laws in turn can be
used to prove the usual induction rules for proving properties of procedures. They can also be used to
derive the continuity criterion for graphs of functions studied in the Scott-Strachey model of
computation. The graph of a function is simply the set of all input output pairs for the function, We
can prove that the graph of any physically realizable procedure p that behaves like a mathemayjcal
function is the limit of a continuous functional F such that

graph(p) = Uien Fi(“)

In other words the graph of p is the limit of the n-fold compositions of F with itself beginning with the
empty graph.

ACTORS Hewitt and Baker 1

SECTION II --- INTRODUCTION

In programming languages such as SIMULA-67 (17), SMALLTALK [18], and CLU [20], the emphasis
has changed (compared to Algol-60) from that of procedures acting on passive data to that of active
data processing messages. The actor model is a formalization of these ideas that is independent of any
particular programming language. Instances of SIMULA and SMALLTALK classes and CLU clusters
are actors. However, actors have been designed to include the added effects of parallelism so that
instances of monitors(42,41], envelopes[43], and serializers[34] are also actors.

The actor message passing theory can be used to model networks of communicating processes which
may be as close together as on the same LSI chip or as far apart as on different planets. It can be used
to model processes which communicate via shared memoryli2], packet-switched networks[13,24],
ring-networks[23), boolean n-cube networks[44), or Batcher sorting nets[25].

SECTION III --- ACTORS and EVENTS

The theory presented in this paper attempts to characterize the behavior of procedural ob jects called
actors [active ob jects] in parallel processing systems. Actors and events are the fundamental concepts in
the theory. Actors interact with each other through one actor sending a messenger to another actor
called the target. The arrival of a messenger at a target is an event, and these events are the basic
steps in this model of computation. A key point in the actor model of computation is that messengers
are themselves actors. The actor model is therefore an un-typed theory which is a generalization of the
A-calculus of Church.

Actors can be created by another actor as part of the second actor’s behavior. Indeed, almost every
messenger is newly created before being sent to a target actor.

Events mark the steps in actor computations; they are the fundamental interactions of actor theory.
Each event is instantaneous and indivisible taking no duration in time. Every event E consists of the
arrival of a messenger actor, called messenger(E), at a target actor, called target(E).

We will often use the notation:

E: [T ¢~ M]
to indicate that E has messenger M and target T.
The time of an event is the arrival of the messenger of the event rather than the sending of the
messenger because a messenger cannot affect the behavior of another actor until that actor receives it.
If the sender wishes a reply, an actor (called the continuation) to whom any reply should be sent should

also be carried by (as a component of) the messenger.

Intuitively, the arrival of the messenger M at the target T makes M's information available to the target

ACTORS Hewitt and Baker 2

for the purpose of activating additional events. The arrival of M at T does not in itself cause any
change to either M or T.

For each event E we define acquaintancesg(T) and acquaintancesg(M) to be the vector of immediate
acquaintances of T and M, respectively. The immediate acquaintances of an actor x are the other actors
x directly "knows about” at a given instant. The relation is asymmetric in the sense that it is possible
for an actor x to know about an actor y without it being the case that y knows about x. An actor may or
may not "know about” itself; if it does, it can directly send itself messages!

Law of Finite Acquaintances: For all actors x and events E such that x is the target or messenger of E,
the vector acquaintancesg(x) has finite length.

The above law states that an ob ject can only be directly connected to finitely many other ob jects.

All of the actors which are definable within the lamhda calculus of Church have the property that their
acquaintances cannot change with time; ie. if x is defined by a lambda expressnon. then for all events
Ey and Ey in which x is the target or messenger, it will be the case that

acquaintancesg 4 (x) = acquaintancesg(x)
In order to implement interprocess communication between parallel processors it is necessary to use

actors whose vector of acquaintances changes over time. The purpose of this paper is to axiomatize the
fundamental laws which govern the behavior of such actors.

An important example of an actor whose immediate acquaintances change with time is a cell. A cell is
an actor which at any given time has exactly one immediate acquaintance--its contents. When the cell
is sent a messenger which consists of the message, "what is your contents?”, and a continuation--another
actor which will receive the contents--the cell is guaranteed to deliver its contents to that continuation
(while also continuing to remember them). All this might be very boring if the contents of the cell were
constant. However, upon arrival of a messenger which has the message "update your contents to be x"
and a continuation, the cell is guaranteed to update its contents to be the actor x (whatever that may be)
and inform the continuation that the update has been performed. The behavior of cells will be
axitomatized later in this paper after we have presented enough of the actor model to make this
possible.

The target(E) and the messenger(E) and their immediate acquaintances will be called (immediate)
participants of an event E. The immediate participants of an event are exactly those actors which can
be accessed without sending any messages.

participants(E) = {targe!(E), messenger(E)} U acquaintancesg(target(E)) U acquaintancesg(messenger(E))

Finite Interaction Law: For each event E, the immediate participanis in E are finite.

The above law, which is intended to capture the physical intuition that only finitely many ob jects can
interact in a single event, is an immediate corollary of the Law of Finite Acquaintances.

ACTORS Hewitt and Baker 3

SECTION IV --- PARTIAL ORDERINGS on EVENTS

In order to develop a useful model of parallel computation, we have found it desirable to generalize the
usual notion of the history of a computation as a sequence of events. In this paper a history of a
computation will be expressed as a partial order which records the causal and incidental relations
between events. The partial orders constrain the maximum amount of parallelism that can be used in
an implementation. Any two events which are unordered can be executed concurrently using separate
processors. However, there is no requirement that an implementation do this. Events can be executed
in any time sequence that is consistent with the partial order.

1Iv.i --- ACTIVATION ORDERING

One important strict partial ordering on events in the history of a computation is derived from how
events activate one another. Suppose an actor xq receives a messenger my in an event E; and as a
result sends a messenger my to another actor xp. Then the event Ep, which is the arrival of the
messenger my at xp, is said to be activated by E;. We call the transitive closure of this "activates”
relation the activation ordering and if E4 precedes Ep in this ordering then we write:

El =act=> Ez

In general -act=> is only a partial ordering because an event E might activate several distinct events
Ej...E, thereby causing a "fork™.

IV.la --- Primitive Actors

Labeled sequences are one of the most important kinds of primitive actors. An example of a labeled
sequence is [real: 3, imaginary: x] which is a sequence with two acquaintances 3 and x which are labeled
real: and imaginary: respectively. We allow labeled sequences with numerical labels to be abbreviated
using positional notation so that [I: 3, 2: y] can be abbreviated as [3 y].

A simple example which illustrates the use of -act=> is a computation in which integers 3 and 4 are
added to produce 7. We suppose the existence of a primitive actor called + which takes in pairs of
numbers and produces the sum. In this case + receives a messenger of the following form:

[request: [3 4), reply-to: c]
which specifies that the message in the request is the argument tuple [3 4] and the reply which is the

sum should be sent to the continuation ¢ when it has been computed. Thus the history of the
computation contains two events:

ACTORS Hewitt and Baker 4

I: a request event with target + and messenger that specifies the numbers to be added and
an actor ¢ to which the sum should be sent;
2: a reply event with target ¢ and messenger that specifies the sum of the numbers.
These two events are related as follows in the activation ordering:
[+ <~~ [request: [3 &), reply-to: c]]
act
I
v
Le <~ [reply: 710

The activation ordering can be used to define the notion of a simple primitive actor as follows:

Definition: An actor x will be said to be a simple1 primitive actor if whenever an event E; of the form

Eq: [x <~~ [request: m, reply-to:)]
appears in the history of a computation then there is a unique event Ez of the form
Ep: [<vw [reply: r]]

such that E4 -act=> E; and there are no events E such that Eq -act=> E =act=> E;. Simple primitive actors
are one-in one-out pl’OCCdUI’eS.

Complaint processing can easily be incorporated into the scheme. The history that results from
divide[3 0] which attempts to divide 3 by 0 is shown below:

[divide <~~ [request: [3 0], reply-to: c]]

act

l
v

[¢ <~~ [complaint: [zero-divide: 3]]]

Since complaint processing does not have any profound implications for the results in this paper, we
will not say anything more about the matter.

1: Later in this paper we will see examples of primitive actors such as fork and join primitives which are not
simple.

ACTORS Hewitt and Baker b

The history of the computation of factorial[3] using an iterative implementation of factorial illustrates
how the activation ordering can be used to‘illustrate properties of control structures. We will suppose
that factorial knows about an actor called loop which is sent tuples of the form [index product] where the
initial index is 3 and the initial product is 1. Whenever loop receives a tuple [index product], where index
1s not 1, then it sends itself the tuple [(index - 1) (index * product)].

[tactorial <~~ [request: [3), reply-to: c]]

act

l
v

[loop <~~ [request: [3 1], reply-to: c]]

act

I
v

Lioop <~~ [request: [2 3], reply-to: c]]
|

act

l
v

[loop <~~ [request: [1 6], reply-to: ¢]]

act

|
v

[c K~ [reply: 5]]

The actor loop is iterative because it only requires the amount of working store? needed to store the

index and product. Note that only one reply is sent to the continuation ¢ even though ¢ appears as the
continuation in several request events.

IV.Lb --- Laws for the Activation Ordering

It 1s not possible for there to be an infinite number of events in a chain3 of activation between two

given events in the activation ordering of the history of a computation. This law implies the existence
of primitive actors. Stated more formally,

Law of Finite Activation Chains between two Events: If C is a chain of events in the activation ordering from
Ey to Ep, then C is finite.

2: The careful treatment of the storage required for this example is given in [26).

3 A cham is a totally ordered sequence of events

ACTORS Hewitt and Baker 6

The law of finite activation chains between events is intended to express the fact that "Zeno
machines”--i.e. machines which compute infinitely fast--cannot be physically constructed. For example,
consider a computer with your favorite instruction set which executes its first instruction in |
microsecond, its second in 1/2 microsecond, its third in 1/4 microsecond, and so on. This machine not
only could compute everything normally computable in less than 2 microseconds, but could aiso solve the
"halting problem”. It could do this by simulating a normal computer running on some input, and if the

simulation were still running after 2 microseconds, it could conclude that the simulated machine does
not halt on that input.

Intuitively each event can directly activate only a finite number of other events. The events directly
activated by an event E are called immediate successors of E (under the activation ordering -act=>). The
immediate successor set of E in the -act-> ordering, written immediate-succ -)(E), can be defined
formally:

=act

immediate=succ_, ;. (E) = {Eﬂ E -act=> E{ and -3 Ep such that E -act=> Ep -act=> El}

Then we have the following law:

Law of Finite Immediate Successors in the -Activation Ordering:
For all events E, the set immediate-succ (E) is finite.

=act=>

We define immediate predecessors in the activation ordering in a manner similar to that used for
immediate successors. We postulate that an event is either an initial event, in which case it has no
predecessors, or it is activated by a unique predecessor event.

Law of Uniqueness of Immediate Predecessors in the Activation Ordering:
For all events E, the set immediate-pred _)(E) has at most one element

=act

This law is based on the physical intuition that two distinct events cannot both be the immediate cause
of another event. This is because an event which immediately activates another event must have been

the sender of the messenger for that second event. Thus each event E has at most one activator?
which if it exists will be denoted as activator(E).

Note that the activation ordering analyzes the causality of the classical "fork-join” structure of parallel
computations in an asymmetric manner. The reason is that the last event to arrive at the join is the one
which activates the remainder of the computation. Later in this paper we will introduce another partial

order on events [called the continuation order] which treats "fork-join" control structures in a symmetric
fashion.

4: This usage of the term "activator” is somewhat in conflict with the usage of the term in Greif and

Hewitt[40). The usage here has the advantage that it is more firmly grounded in the physics of
computatnon.

ACTORS Hewitt and Baker ' 7

1Iv2 --- ARRIVAL ORDERINGS

Intuitively, the activation ordering can be identified with "causality” in which each event is "caused” by
its activator. However, the activation ordering is not enough to specify the actions of actors with
“side-effects”, such as cells. For this reason, we introduce the arrival ordering -arr->, for an actor x
whose behavior depends on the order of arrival of the messengers sent to x. The physical basis for
defining the order of arrival is a hardware device called an arbiter. Note that there are only a few
primitive actors such as cells and synchronization primitives whose behavior actually depends on the
order in which messengers arrive. Such actors are called order dependent. All other actors are order
independent and do not need to use an arbiter since they can be freely copied to make as many
instances as desired.

Due to the totality of the order of arrival of messengers at an order dependent actor x (which will be
discussed in more detail below), the notion of a "local time" for x is well-defined. Therefore, when

talking about a single actor, we can talk rigorously about the changes in its vector of acquaintances over
time.

IV.2a --- Laws for Arrival Orderings

The arrival ordering for each order dependent actor x is required to be a total ordering on all events
which have x as their target. This policy is enforced by arbitration in actors such as synchronization
primitives which need to observe the order in which their messages arrive.

Arrival Ordering Law: If Ey#E, and target(Eq)=target(Ex)=x,
then either E4 ~arr->, E; or Ep =arr=>, Eq

This law says that the messenger of Ey arrives at x before the messenger of Ez or vice-versa. The
arrival ordering is defined by the arbiter for x

Note in connection with arrival orderings that there is no necessary relation between the arrivals of two
messengers at a target and the ordering of their activator events. Suppose that events Ey and E; have
the same target x. Then, in general, the circumstance that Ey -arr=>, E2 does not imply that
Ey =act=> E; since Eq and E, might be distinct events of two asynchronous processes that both happen
to send messengers to the same actor. Furthermore, the fact that adivator(EI) -act=> activalor(Ez) 1S No

guarantee that Ey -arr=>, E,; ie. the messenger of E; might still arrive at the target actor before the
messenger of Ey.

Each actor is created at some point in time. This fact is embodied in the following law:
Law of Finite Predecessors in an arrival ordering:

For all events E’
{E| E '""')target(E') E'} is finite.

ACTORS ! Hewitt and Baker 8

Given an event Eq of the form [T ¢<~v~ M;] and an event E; of the form [T <~~ M,]}, there are only a
finite number of events between these two events in the arrival ordering =arr=>1. Stated more formally:

Corollary: Law of Finite Chains between two Events in an Arrival Ordering:
For all events E4 and E; such that target(E;) = target(Ey) = x,
{E| Ey -arr=>, E -arr=>, Ez} is finitg.

The above law implies that anomalous behavior like the following is not physicaly realizable: a cell
receives the infinite sequence of “store” messages: [store: 1], [store: 1/2), [store: 1/4), [store: 1/8), etc. and
then receiving a “"contents?” message. What is it to reply? Zero? But zero was never explicitly stored
into the cell!

The law of Finite Chains in the Arrival Ordering allows us to define immediate predecessors and
immediate’ successors for the arrival ordering in a manner similar (o the one used for the activation
ordering. It guarantee that the arrival ordering for each actor is total over its domain, successors and
predecessors are unique when they exist. If an event E has an immediate predecessor in -arr=>1,..g¢(E)
then it will be called the precursor of E and will be denoted by precursor(E). The law guarantees that
the process of repeatedly taking the precursor of an event with target t will find the creation event for t
in a finite number of steps.

SECTION V_--- CREATION of ACTORS

The actor message passing model differs from most other theories of computation in that it explicitly
deals with the issues involved in creating new ob jects.

Intuitively the creation of an actor x must precede any use of x. In order to precisely state the above
intuition as a law we must be more precise about when actors are created. For each actor x which is
created in the course of a computation, we shall require that there is a unique event creation(x) which
caused x to be created.

Let created(E) be the set (possibly empty) of actors created by the event E--i.e. the set of actors which
claim E as their creation event. Note that x is not a participant in creation(x) because x does not come
into existence until after creation(x) has occurred.

Definition: created(E) = {x| creation(x)=E}

T he intuition that a single event can only create finitely many ob jects is formalized as follows:

Law of Finite Creation: For each event E, created(E) is finite.

Note that the elements of created(E) rnight be mutual acquaintances of one another and that mutually
recursive procedures can be created in this way.

ACTORS Hewitt and Baker

SECTION VI --- CELLS

VIl --- Axiom for Cells

The axiom for cells has two parts: involving their creation and use which can be stated as follows:

Creation: There is a simple primitive actor, called create-cell, such that
whenever it is sent a tuple of the form [i], it creates an actor s which is a new
storage ceil with initial contents the actor i. More formally, for each event Eq
of the form Eq: [create-cell <v~ [request: [i], reply-to: ¢]] there is a unique

event E; of the form Ey: [¢ <v~ [reply: s]] such that s is a newly created
simple primitive actor and Eq = activator(E;). Furthermore created(E) = {s}
which says that the only acter created by the event E; is the storage cell s.
Thus each storage cell that is returned by create-cell differs from all previously
created cells. The storage cell s always has exactly one acquaintance which is
mitally i. If E is an event which has s as its target, we will use the notation
contentsg(s) to denote this acquaintance at the time of the event E.

Use: A storage cell s can only be sent messages of the form [contents?] which

requests the "current” contents and [update: x] which updates the contents to be
X.

The contents of s when it receives one of these messages in an event E can be
axiomatized using the arrival ordering for s as follows:

conlenisE(s) =
if E has an immediate predecessor in the arrival ordering for s
then
if precursor(E) is of the form [s <~~ [request: [update: x], reply-to: ..J]
then x

else contents, gcyrsor(£)(s)
else i which is the actor sent to create=cell to create s

If E is an event of the form [s <v~ [request: [contents?] reply-to: ¢]] then there
isa unique event E' of the form E": [¢ <v~ [reply: contentsg(s)]] such that
E = activator(E’).

e e ————— e - S——

ACTORS Hewitt and Baker 10

V12 --- Busy Waiting

Busy waiting is the kind of waiting used in some multi-processing systems. In this kind of waiting, the
contents of a cell is continually checked and, if it is unchanged, the processor branches back to check it
agamn. This kind of waiting is used when one processor cannot depend upon another to "wake it up”
when the contents change. Busy waiting depends upon the property of Finite Chains between Events in
the arrival orderings of cells.

For example suppose that a new storage cell s is created whose initial contents are 0. Furthermore
suppose that the contents of s are updated exactly once by a process which sends s the message
[update: 1]. Now another process might busy wait until the contents of the cell ¢ change to 1 by
executing a procedure of the following form:

loop: if contents(s) = 0
then goto loop
else ..proceed...

The property of Finite Chains between Events in the arrival ordering for s, guarantees that the code
..proceed.. will eventually be executed since otherwise there would be an infinite number of “contents?
messages before the [update: 1) message in the arrival ordering of s.

The use of the arrival ordering in the actor model of computation seems to help overcome one of the
ma jor limitations of other theories of the semantics of communicating parallel processes based on the
Scott-Strachey model of computation [56). The Scott-Strachey model is a deep mathematical study of
functions that are minimal fixed points of "continuous” functionals. As currently developed the
Scott-Strachey model seems to be a special case of the actor model in that it only deals with actors which
behave like mathematical functions to the exclusion of actors such as cells and synchronization
primitives whose behavior depends on the arrival ordering of messages sent to the actor.

SECTION VII --- LAWS of LOCALITY

We would like to formalize the physical intuition that computation is local and there can be no "action
at a distance”. The laws of locality presented in this section are intended to capture these intuitions.

The initial acquaintances of an actor are a subset of the participants in its creation event and the actors
created by its creation event:

Initial Acquaintances Law: If an actor z is the target of an event E
such that E is the first event in the arrival ordering of z then,
acquaintancesg(z) c participants(creation(z)) U created(creation(z))

The acquaintances of an actor can increase over its previous acquaintances only by the acquaintances of
the messengers which it receives and the actors which it creates.

——— S— - - - o - - ——

ACTORS Hewitt and Baker 11

Precursor Acquaintances Law: If an actor z is the target of an event E
such that E has a precursor in the arrival ordering of z then,
acquaintancesg(z) ¢ pgrticipants(procursor(E)) U created(precursor(E))

An actor x can only be the target or messenger in an event E if x is newly created or is an immediate
participant in activator(E).

Activator Acquaintances Law: For each event E which is not an initial event
target(E) € participants(activator(E)) U created(activator(E))
messenger(E) ¢ participants(activator(E)) U created(activator(E))

These laws of locality can be used as the foundation on which to build theories of information flow in
computer systems. Using the formalism, a theory can be developed to show how the imposition of
inttial constraints can be used to eliminate undesirable information paths. In this way, protection
problems, such as the Confinement Problem may be solved. The actor message passing model can be
used as the foundation for formalisms (such as Strong Dependency [45)) for describing information
transmission in computational systems and for proving that information is not transmitted over certain
paths.

SECTION VIII --- COMBINED ORDERING

To make sense out of the activation and arrival orderings, and to relate them to a notion of “"time”, we
introduce the precedes relation "==>"

Definition: ==> is a binary relation on events which is the transitive closure of the union of the
activation ordering =act=> and the arrival orderings -arr=>, for every actor x.

In order for ==> to function as a notion of precedence, we require that the activation and arrival
orderings be consistent. This is guaranteed by the Law of Strict Causality for actor systems which
states that there are no cycles allowed in causal chains; i.e. it is never the case that there is an event E in
the history of an actor system which precedes itself. Stated more formally the law of causality is that
the combined ordering is also a strict partial ordering:

Law of Strict Causality: For no event E does E -=> E.

Suppose that we have events in a computation described as follows:

ACTORS Hewitt and Baker 12

Eq: [x <vvmy]
Ex: [y <vv my]
Eg: [y <v~v m3]
Eq: [x <v~ my]

Eq -aci=> E; ;arrival of my at x causes the arrival of mp aty
Es -nrr-)Y E3 3;mj arrives at y before m3
E3 -act=> E4 ;arrival of my at y causes the arrival of my at x
Eq -arr=>, Eq ;mg4 arrives at x before my

The Law of Strict Causality states that the history of the computation given above is physically
impossible to realize even though it is locally reasonable in the sense that any proper subset of the
orderings can be realized. The above example of an impossible computation is due to Guy Steele.

Now we can define immediate predecessors and successors of an event E under ==>. Note that an event
E of the form [t <~~ m]] has at most two immediate predecessors in the relation ==> one of which is the
activator of E and the other is the precursor of E in the arrival ordering -arr=>;.

We would like to formalize the intuition, that between any two events which are causally related, that

there are only finitely many events in a causal chain that connects the events. This intuition is
formalized in the following law:

The Law of Finite Chains between events in the Combined Ordering:5
There are no infinite chains of events between two events in the strict partial ordering ==>.

Actually we can express a much stronger property about the activity that can occur between two events:

Corollary: Law of Finitely Many Events between two events in the Combined Ordering:
For all event E4 and E; the set {E| E{ ==> E == Ep} is finite.

The above law is easily proved using Konig’s Infinity Lemma and the law that there are no infinite
chains between two events. Note that the Law of Finite Chains between two Events in the Activation
Ordering and any Arrival Ordering are immediate corollaries of the above law.

The above law has important consequences for models of actor systems. It implies that for each history
of a computation that there exist "time” functions that map events onto integers. In general there are
many time functions that correspond to one history which are obtained by considering all the possible
total orders that observers might see. Such time functions have the following properties:

5: This law is a strict generalization of the other laws in this paper. We originally conjectured that it could be
proved using the Laws of Locality together with the rest of the laws. However Will Clinger [47] found a
counterexample. Subsequently Valdis Berzins [48) independently found a very beautiful symmetric form of the
counterexample as the solution to a class exercise in MIT class 6.835.

T e ————— e e

ACTORS Hewitt and Baker 13

VE] Ez if El - Ez then tlm@(El) < tlm.(Ez)
VEI Ez l'f time(E1)=timo(E2) then E1=Ez

We can use the combined ordering --> to express an important law about created actors.
Law of Creation before Use:

If an actor x is created in the course of a computation and E is an event with participant x then
creation(x) ==> E

viill - NESTED ACTIVITIES

Since one of the aims of actor theory is to study patterns of passing messages, we must identify several
common patterns. The twe' most common types of messengers are requests and repiies to requests. A
request has two acquaintances: the request message itself, and a continuation actor which is to receive
the reply. A reply to a request consists of a message sent to the continuation; this reply usually contains
an answer to the request, but may contain a complaint or excuse for why an answer is not forthcoming.

We define the nested activity corresponding to a request event RQ in a computation to be the set of
events which follow RQ in the combined order but precede any reply RP to the request. More formally,
let E--2 denote the set of events which follow E (including E itself) and --)E denote the set of events
which precede E (including E) in the computation. In other words

E-=2
-=3E

{E'| E=E’ or E -=> E'}
{E'| E=E’ or E' -~> E}

Definition:
If an event E is of the form [.. <~~ [request: .., reply-to: c]] then any event E' of the form
[c <~~ [reply: ..]] such that € =act~> E' will be said to be a reply to E.

We can now define an activity to be a set of events as follows:
activity(RQ) = RQ==2 N U{==2RP | RP is a reply to RQ}

Activities embody the notion of the nesting of activities that is produced by conventional programming
languages, since we only include those events in an activity which contribute to a reply to that request.
Note that if no reply is ever made to the request RQ in the computation, then the activity corresponding
to RQ is incomplete and therefore vacuous.

If we let concurrent activities be those whose request events are unordered, then concurrent activities may
overlap--i.e. share some events. However, this can only happen if the activities involve some shared
actor which is called upon by both; if two concurrent activities involve only "pure” actors which by
definition have no arrival ordering and can be freely copied to avoid arbitration bottlenecks, then
activities are properly nested, meaning that two activities are either disjoint, or one is a subset of the
other.

ACTORS Hewitt and Baker 14

The notion of activities allows one to vary the level of detail in using actors to model a real system. Let
us define a primitive activity as the activity of a request which activates exactly one immediate reply,
with no events intervening. Thus, a primitive activity always consists of exactly two events. A crude
model for a system might represent an actor as primitive, i.e. one whose receipt events are all primitive.
However, at a finer level of detail, one might model the internal workings of the actor as an activity in
which a group of "sub"-actors participate.

SECTION IX --- CONTINUATION ORDERING

The notion of nested activities can be used to help explicate several of the various notions of “process”
that have been used in computer science. In particular it can be used to define an ordering on events
that is important to defining the semantics of programming languages for parallel processing. This
new ordering is the continuation order and will be denoted by =cont=>. The continuation ordering is
important because it captures the usual operating system notion of "process” in terms of partial orders
on events. Later in this paper we will show how to use the continuation ordering to provide a precise
characterization of the relationship between the Scott-Strachey model and the actor message-passing
model.

Definition: If E and E' are events then E =-cont=> E' if
1: There is some activity a such that E, E’' ¢
and
2: E-->F

Note that each event has only finitely many predecessors and finitely many immediate successors in the
continuation ordering because =cont=> is a sub-ordering of ==>.

1X1 --- Fork-Join Behavior

In programming languages for parallel processing, it is'quite common to provide primitives by which
processing can "fork” creating more paralielism which can later join together. Parallel evaluation of the
arguments of a procedure provides a good example of fork-join behavior. All fork-join primitives have
basically the same structure. Consider for example, the behavior of a procedure f which computes
(x2 +y2) given arguments x and y. Below are the two possible histories for an activity of f which
produces these results where ==> is used for the combined ordering:

ACTORS Hewitt and Baker 16

Ey: [t <v~ [request: [x y), reply-to: c]]

—————————— act---=-=-=e ceccee--gct----mmmeeeo
I I
v \
Ep: [* <~~ [request: [x x], reply-to: c1]] E3: [* <~~ [request: [y y), reply-to: c2]]
I I
act j act
I I
v v
Eq: [Ley <~~ [reply: x2]] Eg: [cp <o~ [reply: y21l
I I
---------------------- act----=ee--
I I
\ v
Eg: [+ <~~ [request: [)(2 y2], reply-to: c]]
I
act
|
\

Ey: [<vw [reply: x2 + Yz)]]

Note that in the history given above that Eg -act=> Eg whereas in the history given below that
Eq -act=> Eg.

Eq: [t <v~ [request: {x y), reply-to: ¢]]

---------- act--~------ ceccce-cacte-cecmceeaa-
I I
v v
Ep: [* <~~ [request: [x x), reply-to: ;11 E3: [% <~ [request: [y y], reply-to: ¢31]
|
act act
I I
v v
Eq: [y <v~ [reply: x21] Eg: [cg <v~ [reply: vl
I |
————— act------ e ———
I I
v v
Eg: [+ <~~ [request: [xz y2], reply-to: ¢]]
I
act
I
v

€zt [<vw [reply: x2 + y2)]]

i —— e e - - - - -— T ——

ACTORS Hewitt and Baker 16

We shall say that E; is a fork event and that Eg is a join event. In the above computation it will
necessarily be the case that'Eq -act=> Eg since this is the only way that Eg can be activated. Therefore it
will be the case that either E4 -act~> Eg or Eg -act=> Eg. The continuation ordering -cont-> enables us
to present the history of the computation without having to be concerned as to * hich of the above
possibilities actually occured. Using the continuation ordering the symmetry of the above fork-join

computation is demonstrated by the fact that the continuation ordering is the same for both of the
above histories:

Eq: L[t <~~ [request: [x y), reply-to: c]]

---------- cont----=cee ccceccec--cont---=------
I l
v v
Ep: [* <~~ [request: [x x], reply-to: ¢1]] Ezt [* <w~ [request: [y y), reply-to: 23]
l |
- cont cont
| |
v v
EA4: [cl v [reply: le] ES5: [cz <~~ [reply: yzm
| |
----cont------ = ceccece-- cont---===--
l |
v v
€6: [+ <v~ [request: [x2 y2), reply-to:]}
cont
|
\

E7: [c <v~ [reply: x2 + yz)]]

1X2 --- Synchronization Between Processes

The behavior of semaphores provides a simple example to illustrate the relationship hciween the
activation and continuation orderings. Suppose that s is a newly created semaphore whose capacity
(count) 1s initially 0 so that the first attempt to perform a P operation will wait until a V operation is
performed on the semaphore. In order to model the behavior of semaphores using message passing, we
will suppose that P and V operations are implemented by sending [P:] and [V:] requests respectively.
Suppose that E is the first event in the arrival ordering of s in which s receives a [P:] request and E,

is the next event in which s receives a [V:] request. The activation and continuation relations between
these events is shown below:

ACTORS Hewitt and Baker 17

Ep: [s <~~ [request: [P:], reply-to: cﬂ]

cont
|
\)
E: [eg <~ [reply: ..1] <-act- Eyt [s <vw~ [request: [V:], reply-to: c3]]
|
cont

|
v

[cz (v~ [reply: ... 1]

Note that E,, ==> E since E,, =act=> E but it is not the case that E, -cont=> E because there is no activity in
which they are both elements.

SECTION X --- PROCEDURES

X.| --- Behavior of Procedures

In this section we would like to characterize the behaviors of actors which behave like procedures. In
order to do this we would like to use the notion of an activity.

To make our discussion more concrete we will consider the behavior of an implementation of the
Fibonacct function defined as follows:

(fib n) =
Gif
(n=1)then 1
(n=2)then 1
(n> 2) then ((fib (n = 1)) + (fib (n = 2)))

The following history is a partial order of some of the events that might result from evaluating (fib 4).

ACTORS Hewitt and Baker 18

Eq: [fib <~~ [request: (8], reply-to: ¢]]

---------- cont--=—===ee —-eeeee—cont---=cee—-u-
| - |
= l
\% v
Ep: [fib <v~ [request: [3], reply-to: c1]] Eg: [fib <~~ [request: [2), reply-to: c2]]
I |
cont cont
l |
v v
Eq: [[cl v [reply: 21] Eg: [cz <~ [reply: 11]
| l
l |
-=—=—=coNt~==e== = ceca-- cont--——===--
| |
| |
v v
Eg: [+ <~~ [request: [2 1]}, reply-to: c]]
|
cont
|
\%

Ey: [c <~~ [reply: 3]]

We will use the notation {|(p <= m) ==> y|} to partially describe an activity which starts with an event of
the form [p <~~ [request: m, reply-to: ¢]] and finishes with an event of the form [¢ <~~ [reply: y1].

All of the events shown in the above diagram are contained in one activity (which we will name a) of
fib whose starting event is E; and whose finishing event is E;. Thus the activity a is of the form

{Itfib <= [4]) ==> 3]}. The diagram above shows two sub-activities of & which we will call 8 and ¥ such
that the following relationships hold.

B: {I(fib <= 3) ~=> 2]} start(8) = E, finish(8) = E4
y: {|(fib <= 2) ==> 1]} start(y) = E3 finish(y) = Eg

The activity § has events which are not shown in the above diagram. Some of these events are shown
in the diagram below:

ACTORS Hewitt and Baker ' 19

Ep: [fib <~~ [request: [3], reply-to: ¢4]]

---------- cont--==-=-=e —cecececee—cont----------
I |
l |
\' \'}
Eg: [fio <~~ [requesi: [2], reply-to: c3]] Eg: [fib <~~ [request: [1], reply-to: c4]]
I |
cont cont
i |
v : v
Eqo: [Leg <v~ [reply: 1]] Eyq: Leg <o~ [reply: 1]]

l |
l |
—————— cont---- ——mmeme——cONt-~=mm-

l I

l |

v v

Ey2: [+ <|~~ [request: [1 1), reply-to: c1]]
cont
|
v

Eq: [‘1 (v [reply: 2]]
Thus we see that 8 in turn has sub-activities 4’ and § such that

s {|(fib <= [2]) ==> 1]} start(y') = Eg finish(y') = Eq¢
& {Itfib <= [1]) ==> 1)} start(3") = Eg finish(8") = Ey

Notice that both 4 and 4’ both satisfy the partial description {|(fib <= [2]) -=> 1]} even though they are
distinct activities which share no events in common. Uniquely identifying activities has the same
problems as uniquely identifying ob jects and events: no finite local description will serve as a unique
identification.

T e e e - — v) N

ACTORS Hewitt and Baker 20

An actor f will be said to behave like a procedure if the following conditions hold for ali the histories
of f:

1: All of the messengers of - events in the history are either of the form
[.. <v~ [request: .., reply-to: ..J] or of the form [... <v~ [reply:]].

2: If E is a request of the form [.. <v~ [request: .., reply-to: c]] there there is at most one
event E’ in which c is the target of E and such an E’ must be a reply to E.

3: The activities of { are proparly nested. 1E. for sny two activities of { it is the cese that either
one activity is a proper subset of the other or the two activities are disjoint.

An actor f will be said to behave like a function if it is order independent and behaves like a
procedure.

X2 --- Limits of Continuous Functionals

The actor model of computation is based on axiomatizing the causal and incidental relations among
computational events. The Scott-Strachey model of computation is based on the mathematical analysis
of continuous function spaces. Superficially these two models might seem to have little in common. In
this section we will analyze the relationship between these models of computation. Our main result is
that if an actor behaves like a mathematical function then it is the limit of a continuous functional in
the sense of Scott. This result follows from the law that each event has only finitely many immediate
successors, in the continnation ordering and the law of finite chains between two events in the
continuation ordering.

Once again we will make the discussion concrete by considering the behavior of an implementation of
the Fibonacci function defined by the following procedure:

(fib n) =
(if
(n=1)th.. 1
(n=2)then 1

(n> 2) then {({fib (n = 1)) + {fib n - 2))))

Definition: Suppose an actor f behaves like a mathematical function and that <x y>¢graph(f) end <x' y">¢€graph(f).
Then <x' y"> will be said fo be an immediate f-descendant of <x y> if
there is some history of { whjch has events E and E' of the form
E: [t <o~ [request: x, reply-to: ..]]
E': [t <~~ [request: X', reply-to: ..]]
such that E -act=> E'
and it is nol the case that there is an event E of the form
E: [t <~~ [request: .., reply-to: ..]]
such that E =cont=> E =cont=> E’

ACTORS Hewitt and Baker 21

For example <2 1> is an immediate fib-descendant of <3 2>.

Definition: Suppose that <x y>¢graph(f)
immediate-descendantsg{<x y>) = {<x' y"| <x' y> is an immediate f-descendant of <x y>}

immediate-descendants; (<1 1)) = {}
immediate-descendants;p (<2 1>) = {}
immediate-descendants; (<3 2>) = {<1 1> <2 1>}
immediate-descendantsg;p (<5 5>) = {<3 2> <4 3>}

Lemma: If an actor f behaves like a mathematical function and <x y>¢graph(f) then
immediate-descendantsy(<x y>) is finite.

Proof: Follows from the Law of Finitely Many Immediate Successors in the Activation Ordering.

Definition: If G is a set of input-output pairs then
D4(G) = {<x y>| <x y>¢graph(f) and immediate-descendants(<x y>) € G}

Intuitively D4(G) 1s the set of all input-output pairs of graph(f) that can be computed "immediately” from
the input-output pairs in G. For example we have the following results for our implementation of the
fibonacci function

Dfipt}) = {<1 1> <2 1}

Diip <1 1> <2 1)) = {<1 1> <2 1> B 23}

Dyip (<1 1> <2 1> <0 #}) = {<1 1> <2 1> 3 2>}

Dip (143 2> <4 3>}) = {<1 1> <2 1> <5 5}

Lemma: If an actor f behaves like a mathematical function, then Dy is a continuous functional.

Proof: From its definition Dy is clearly monotonic. We will use N to denote the natural numbers [i.e. the

non-negative integers]. Suppose that {X;| i€N} is a chain of sets of ordered pairs so that X; C Xj,1. To
prove that Dy is continuous we shall prove that

Uien BfX)) = DyU;en X))
Clearly
Uien DiXi) < Dy(Uien Xp)
by the monotonicity of Dy. To prove the set inclusion the other way around suppose
<xy> € D(Uien X))
It follows from the definition of Dy that <x,y>¢graph(f) and

immediate-descendants(<x,y>) € U;eN X;

ACTORS Hewitt and Baker 22

Therefore there exists a natural number n such that immodiato-doscondants,((x,y>) an since the
immediate f-descendants of <x,y> are finite. Thus <x,y>€D¢(X) and

xy> € UieN D'(Xi)

Definition: A sequence <x; y;> such that each <x; yp¢€graph(f) will be said to be a descending f-chain if
each <xj41 y;4+1> is an immediate f-descendant of <x; y;>.

Example: The following are descending fib-chains

[<6 8> <4 3> <3 2> <1 1))
[<7 13> <5 5> 3 2> <2 D]

Lemma: If <x y>¢graph(f) then there are only finitely many descending f-chains begining with <x y>.

Proof: Follows from the fact that there are only finitely many events between two events of the form
[t <~~ [request: x, reply-to:)] and [¢ <~~ [reply: y]] in the continuation ordering.

Definition: If <x y>¢graph(f) then height(f,<x y>) will be defined as the maximum length of the descending
f-chains beginning with <x y>.

Lemma: If <x y>¢graph(f) then <x y)(th“gh“'-(" Y’)({}) where D" is the n-fold composition of Dy with
itself.

Theorem: If an actor f behaves like a mathematical function then Dy is a continuous functional in the
sense of Scott and graph(f) is the limit of Dy beginning with the empty graph {} i.e.

graph(f) = Uien D'i({})

where graph(f) is the set of input-output pairs of {. It immediately follows that graph(f) is the minimal
fixed point of Dy since

graph(f) = Dy(graph(f))

The above theorem makes precise the physical basis for believing that the graph of every physically
realizable mathematical function is the limit of a continuous functional: the Law of Finitely Many
Immediate Successors and the Law of Finite Chains between two Events in the Continuation Ordering.
As currently developed the Scott-Strachey theory does not account for the the properties of the arrival
orderings of actors such as synchronization primitives and shared data bases. An interesting topic that
1s left open for future research is how the Scott-Strachey theory can be extended in a natural way to
encompass the physical constraints imposed by the arrival orderings of actors.

ACTORS Hewitt and Baker 23

SECTION XI --- FUTURE WORK

When we first began our investigation into message-passing system we developed the intuitively
appealing idea of "actors” as agents which communicate by passing messages. This intuitive notion
proved to be too naive a basis for precise technical work in the same way that the intuitive notion of a
“set” as a collection of ob jects proved to be too naive a basis in mathematics. The solution has been the
development of the axioms in this paper which are intended to serve as the first step in developing

axioms which capture the intuitive notion of actors as agents which communicate by sending and
rc(elvmg messages.

There remains a great deal of work to be done in the development of the theory presented in this
paper. The "completeness” of the axioms presented here needs to be intensively studied to determine if
they can be significantly strengthened.

A mathematical characterization of the models which satisfy the axioms needs to be developed. The
characterization should include a description of a standard model obtained by a constructive method for
enumerating all the computation histories of a system that satisfy the axioms in this paper. Eliot Moss
and Henry Baker [50] have developed one such model which proves the consistency of the axioms in
this paper as well as providing a standard model in which the axioms can be interpreted.

We would like to apply the semantic theory developed in this paper in several directions. The
semantics of programming languages for multi-processing problem solving languages such as KRL,
OWL, PLASMA, SIMULA, SMALLTALK, AMORD, and the quantificational calculus need to be
rigorously developed. In this way we hope to be able to make precise technical contributions to the
“declarative-procedural” controversy.

There are a number of questions concerned with how efficiently actor systems can be implemented on
networks of machines. In terms of the physical transport of information there are several ways in
which an event can be implemented. The information in the messenger can be physically transported to
the target; the target can be transported to the messenger, or the two can rendezvous at some other
location. Under differing circumstances any one of the above possibilities might be more efficient. For
example if the target is a small function which makes use of a large number of the extended
acquaintances of the messenger then it is probably more efficient to transport the target to the
messenger. On the other hand if the target is a large data base which is searched according to the
directions of a small query in the messenger, then it is probably more efficient to transport the
messenger to the target. Research is needed to develop dynamic mechanisms for deciding what
information to transport for computations that are physically distributed on a network of machines.
Hopefully some general mechanisms can be developed which, in practice, yield acceptable efficiency.

ACTORS Hewitt and Baker ; 24

SECTION XII --- CONCLUSION

In this paper we have presented some laws that must be obeyed by the computations of communicating
parallel processes. These laws are expressed in the language of first order set theory. The actor message
passing model is based on axiomatizing the causal and incidental relations between computational
events where each event consists of receiving a message. An important advantage of the actor
message-passing model is that specifications for actors can be expressed directly in terms of the events
involving those actors. Our approach is different from the more usual one which is to postulate the
existence and “fairness” of some underlying global "scheduler” [21] or "oracle” [22]). Partial orders
provide a means for concentrating on the causal relations among event as opposed to time relationships
that result from some arbitrary interleaving.

The development of histories in the actor model of computation as partial orders of events as a
generahization of the previous development as sequences of events has proven to be very fruitful. The
parual orders =act=>, =arr=>, for each order dependent actor x, =cont=>, and ==>, are all physically well
grounded in the sense that if two events are observed to be related in a certain way in some observation
frame then they will be observed to be related in the same way in all observation frames. Each of these
dif ferent orderings serves its own purpose in the model. The following table summarizes the partial
orders which we have introduced to describe the histories of computations:

—act=> activation causality between events

=arr=>, arrival local time of arrival of messages sent to x

-=> combined general notion of one event preceding another
-cont~> continuation nested activities

Partial orders of histories have been used to develop specification and proof techniques for modular
synchronization primitives [32,34]. The machinery of partial orders of events provides the semantic
glue needed to relate the specifications and implementations of communicating parallel processes.

This paper has traced some of the important relationships between the actor message-passing model of
computation and classical denotational, semantics. It has been proved that every actor which behaves
like a mathematical function is the limit of a continuous functional. This result provides a physical
L s1s for the treatment of continuity in the Scott-Strachey theory of computation. The actor
message-passing model has important applications for the semantics of communicating parallel processes
which will be explored in subsequent papers.

ACTORS Hewitt and Baker 25

SECTION XIII --- ACKNOWLEDGEMENTS

The research reported in this paper was sponsored by the MIT Artificial Intelligence and Laboratory
and the MIT Laboratory for Computer Science under the sponsorship of the Office of Naval Research.
A prelimmnary version of some of the laws in this paper were presented in an invited address delivered
at the Conference on Petri Nets and Related Systems at M.LT. in July 1975. Some of the notation for
representing partial orders of events was developed at the Workshop on Language Features for
Non-deterministic Programs which was held in Cambridge, Mass. in August 1976. This paper is a slight
revision of the one by the same title presented at the IFIP Working Conference on Formal Description
of Programming Concepts at St. Andrews, New Brunswick in July 1977.

Our research on actors is an attempt to provide a semantic understanding of constructs for supporting
modular programs that have been developed in programming languages and operating systems. The
original impetus for the research came from a conversation in November 1972 with Alan Kay about the
SMALLTALK language which he was designing. His idea was to base all computation on
communicating ob jects each of which can have the power of a digital computer. The design of
SMALLTALK built on the class instance distinction of SIMULA, the separation of goal language from
method language in PLANNER, the control ideas in David Fisher's thesis [49) and Seymour Papert's
“httle person” model of computation. We have worked to construct a theoretical model that encompasses
these ideas 1n addition to similar abstractions which have been developed in lambda calculus languages
and for operating systems such as domains of protection and capabilities.

This paper builds directly on the thesis research of Irene Greif. Many of the results in this paper are
straightforward applications or slight generalizations of results in her dissertation. For example our
notion of an activity derives from the bracketed sets of events in her thesis. We are further indebted
to Irene for the suggestion that the arrival ordering of an order dependent actor may be one of the
fundamental differences between the actor model of computation and the Scott-Strachey model.

Many of the ideas presented in this paper have emerged in the last three years in the course of
conversations with Irene Greif, Robin Milner, Jack Dennis, Jerry Schwarz, Joe Stoy, Richard
Weyhrauch, Steve Ward, and Bert Halstead. Bill Ackerman, Valdis Berzins, Henry Lieberman, Ernst
Mayr, Ehot Moss, John Moussouris, Bruce Schatz, and Guy Steele made valuable comments and
criticisms which materially improved the presentation and content of this paper. The arrow notation
used for the different partial orders is due to Gary Fostel.

ACTORS Hewitt and Baker 26

SECTION XIV --- BIBLIOGRAPHY

(1J L. Lamport. Time, Clocks and the Ordering of Events in a Distributed System. Memo
CA-7603-2911, Mass. Computer Assoc., Inc. March 1976.

(2] R. W. Floyd. Assigning Meanings to Programs in Mathematical Aspects of Computer Science (ed.
J.T. Schwartz), Amer. Math. Soc, 1967, 19-32.

(3] C.AR. Hoare. An Axiomatic Basis for Computer Programming. CACM 12,10 (Oct. 1969), 576-580.

(4] V. Pratt. Semantical Considerations on Floyd-Hoare Logic. 17th IEEE Symp. on Founds. of Comp.
Sci., Oct. 1976, 109-121.

[5] D. Scott. Outline of a Mathematical Theory of Computation. 4th Princeton Conf. on Inf. Sci. and
Sys., 1970, 169-176. '

[6] D. Scott. The Lattice of Flow Diagrams. Symp. on Semantics of Algorithmic Langs,
Springer-Verlag Lecture Notes in Mat. 188, 1971.

(7] J. Vuillemin. Correct and Optimal Implementations of Recursion in a Simple Programming
Language.]. of Comp. and Sys. Sci.. 9, 3, Dec. 1974.

(8] R. Lipton. Reduction: A Method of Proving Properties of Parallel Programs. CACM 18,12 (Dec.
1975), 717-721.

(9] S. Owicki. A Consistent and Complete Deductive System for the Verification of Parallel Programs.
8th ACM Symp. Th. Comp, Hershey, Pa., May 1976, 73-86.

(10] R. Rivest and V. Pratt. The Mutual Exclusion Problem for Unreliable Processes. 17th IEEE
Symp. on the Founds. of Comp. Sci., Oct. 1976, 1-8.

(11 E. Organick. The MULTICS System: An_Examination of its Structure. MIT Press, 1972.

(12] W. Wulf, et al. HYDRA: The kernel of a multiprocessor operating system. CACM 176 (June
1974), 337-345.

(12] J. Dennis and D. P. Misunas. A Preliminary Architecture for a Basic Data-Flow Processor. 2nd
IEEE Symp. on Comp. Arch, N.Y,, Jan. 1975, 126-132.

(14] G. Kahn. The Semantics of a Simple Language for Parallel Programming. IFIP-74, Stockhoim,
Sweden, North-Holland, 1974.

(15] Hoare, C.A.R. Communicating Sequential Processes. Dept. of Comp. Sci. The Queens of Belfast.
Aug. 1976.

ACTORS » Hewitt and Baker 27
(16] J. Feldman. A Programming Methodology for Distributed 'Computing (among other things). TR9Y,
Dept. of Comp. Sci., U. of Rochester, Feb. 1977.

(17] G. Birtwistle, O.-J. Dahl, B. Myhrhaug, and K. Nygaard. Simula Begin. Auerbach, Phil., Pa., 1973.

(18] Learning Research Group. Personal Dynamic Media. SSL76-1, Xerox PARC, Palo Alto, Cal.,
April, 1976. .

[19] B. Liskov and S. Zilles. Programming with Abstract Data Types. SIGPLAN Notices (April 1974),
50-59.

[20] B. Liskov. An Introduction to CLU. CSG Memo 136, MIT LCS, Feb. 1976.

(21] E. Cohen. A Semantic Model for Parallel Systems with Scheduling 2nd SIGPLAN-SIGACT
Symp. on Princ. of Prog. Langs, Palo Alto, Cal,, Jan. 1975.

(22] R. Milner. Processes: A Mathematical Model of Computing Agents. Colloquium in Math. Logic,
Bristol, England, North-Holland, 1973.

[22] D. J. Farber, et al. The Distributed Computing System. 7th IEEE Comp. Soc. Conf. (COMPCON
72). Feb. 1973 ,31-34.

(24] R. Metcalfe and D. Boggs. Ethernet: Distributed Packet Switching for Local Computer Networks.
CSL 75-7, Xerox PARC, Palo Alto, Cal.,, Nov. 1975.

[25) K. E. Batcher. Sorting Networks and their Applications. 1968 S JCC, April 1968, 307-314.

(26] C. Hewitt. Viewing Control Structures as Patterns of Passing Messages. WP 92, MIT Al Lab,,
Dec. 1975. Accepted for publication in the Al Journal.

(27] R. Steiger. Actor Machine Architecture M.S. thesis, MIT Dept. EECS, June 1974.

(28] P. Bishop. Computer Systems with a Very Large Address ‘Space and Garbage Collection. PhD
Thesis, MIT Dept. of Elect. Eng. and Comp. Sci,, June, 1977.

(29) H. G. Baker, Jr. List Processing in Real Time on a Serial Computer. WP 139, MIT Al Lab., Feb.
1977, also to appear in CACM.

(20] H. Baker and C. Hewitt. The Incremental Garbage Collection of Processes. ACM
SIGART-SIGPLAN Symp., Rochester, N.Y., Aug. 1977.

(31] I. Greif. Semantics of Communicating Parallel Processes. MAC TR-154, MIT LCS, Sept. 1975.

(32] N. Goodman. Coerdination of Parallel Processes in the Actor Model of Computation. MIT LCS
TR-173, June, 1976.

ACTORS Hewitt and Baker 28

(23] V. Berzins and D. Kapur. Path Expressions in Terms of Events. MIT Specification Group
Working Paper, Dec. 1976.

(24] C. Hewitt and R. Atkinson. Synchronization in Actor Systems 4th SIGPLAN-SIGACT Symp. on
Princ. of Prog. Lang., Jan. 1977, 267-280.

(25] A. Holt, et al. Final Report of the Information System Theory Project, RADC-TR-68-305 RADC,
Gniffis AFB, N.Y,, Sept. 1968.

(26] F. Furtek. The Logic of Systems. TR-170, MIT Lab. for Comp. Sci., Camb., Mass., Dec. 1976.

(27]) G. Plotkin. A Powerdomain Construction. SIAM]. Comput. 53 (Sept. 1976), 452-487.

(28] D. J. Lehmann. Categories for Fixpoint Semantics. Theory of Computatzon TR 15, Dept. of Comp.
Sci, Univ. of Warwick, 1976.

(39] C. Hewitt and H. Baker. Laws for Communicating Parallel Processes. IFIP-77 , Montreal, Aug.
1977.

(40] I. Greif and C. Hewitt. Actor Semantics of PLANNER-73 ACM SIGPLAN-SIGACT Conf., Palo
Alto, Cal, Jan..1975.

(41] Hoare, C. A. R. "Monitors: An Operating System Structuring Concept” CACM. October, 1975.
(42] Hansen, P.B. "Operating System Principles” Prentice-Hall. 1973.

(42] Bustard, D. W. "Parallel Programming Pascal (PPP)" Version I. Dept. of Computer Science.
Queen’s University of Belfast. November 1975.

(44) Sulivan, H. and Bashkow T. R. "A Large Scale, Homogeneous, Fully Distributed Parallel
Machine” Proceedings of Fourth Annual Symposium on Computer Architecture. March 23-25, 1977.
pp 105-17.

[45] Cohen, E. S. “Information Transmission in Computational Systems™ The University of Newcastle
upon Tyne Computing Laboratory. June 10, 1977.

(46] Wand, M. "The Frame Model of Computation” Technical Report No. 20. Indiana University
Computer Science Department. Dec. |, 1974.

(47] Clinger, W. Untitled notes handed out in MIT course 6.835 in December 1977.

(48] Berzins, V. "An Independence Result for Actor Laws" Computatnon Structures Group Note 34.
December 1977.

A m———— g -+

ACTORS Hewitt and Baker 29

(49] Fisher, David A. "Control Structures for Programming Languages” Phd. Carnegie-Mellon
University. May 1970.

[50) Baker, Henry G. "Actor Systems for Real-Time Computation” forthcoming Phd. MIT. 1978.

Official Distribution List

Defense Documentation Center
Cameron Station
Alexandria, Va 22314 12

Office of Naval Research
Information Systems Program
Code 437

Arlington, Va 22217 2

Office of Naval Research
Code 1021IP
Arlington, Va 22217 6

Office of Naval Research
Code 200
Arlington, Va 22217 1

Office of Naval Research
Code 455
Arlington, Va 22217 1

Office of Naval Research
Code 458
Arlington, Va 22217 1

Office of Naval Research

Branch Office, Boston

495 Summer Street

Boston, Ma 02210 1

Office of Naval Research

Branch Office, Chicago

536 South Clark Street

Chicago, I1 60605 1

Office of Naval Research

Branch Office, Pasadena

1030 East Green Street
Pasadena, Ca 91106 1

copies

copies

copies

copy

copy

copy

copy

copy

copy

New York Area Office
715 Broadway - 5th floor
New York, N. Y. 10003 1 copy

Naval Research Laboratory

Technical Information Division

Code 2627

Washington, D. C. 20375 6 copies

Dr. A. L. Slafkosky

Scientific Advisor

Commandant of the Marine Corps

(Code RD-1)

Washington, D. C. 20380 1 copy

Naval Electronics Laboratory Center
Advanced Software Technology Division
Code 5200

San Diego, Ca 92152 1 copy

Mr. E. H. Gleissner

Naval Ship Research & Development Center
Computation & Mathematics Department
Bethesda, Md 20084 1 copy

Captain Grace M. Hopper

NAICOM/MIS Planning Branch (OP-916D)
Office of Chief of Naval Operatiomns
Washington, D. C. 20350 1 copy

Mr. Kin B. Thompson

Technical Director

Information Systems Division (OP-91T)
Office of Chief of Naval Operations
Washington, D. C. 20350 1 copy

