AD-A052 238	ARINC COST A APR 77	RESEARC NALYSIS P WOO 1329-01	H CORP OF SEL DIE, D -1-160	ANNAP ECTED SWANN	OLIS MD	TIVE CO	NFIGURA	TIONS F	FOR THE	F/G 17/ INET	2 C (U)	
1 OF 2 A052 238	1 - ##- 1 - ##-	「「「「」」」	ana Rights			genner		TORSON COL				
											BERNAR	
				と思い								
			artimer	in the second								

I FINAL REPORT Ι 6 COST ANALYSIS OF SELECTED ALTERNATIVE CONFIGURATIONS FOR THE L INTERNAL REVENUE SERVICE TOLL-FREE TELEPHONE SYSTEM Ι I DDC Apr# 177 RARIE I MAR 30 1978 T Ι Prepared for Internal Revenue Service 1111 Constitution Avenue, N.W. T Washington, D.C. 20224 under Contract TIR-7T-64 T by P./Woodie D./Swann ARINC Research Corporation a Subsidiary of Aeronautical Radio, Inc. 2551 Riva Road Annapolis, Maryland 21401 Publication/1329-Ø1-1-16Ø5 DISTRIBUTION STATEMENT A 410 247 Aproval for public telease; granmatic Univerted

Copyright © 1977

ARINC Research Corporation

Prepared under Contract TIR 7T-64, which grants to the U.S. Government a license to use any material in this publication for Government purposes.

FOREWORD

This final report presents the results of Task One of a two-task effort for the Internal Revenue Service. Task One was a study of various levels of site consolidation for the Toll-Free Telephone System (TFTS) and the resultant economic/service benefits of such consolidation. The Task Two report, on comparative ACD evaluations, will be issued separately.

We are indebted to R. Layel, P. Smith, and G. McDonald of the Internal Revenue Service for their assistance in providing information, guidance, and the benefit of their many years of association with the TFTS. We are also grateful for the assistance of R. Pickering and L. Toner in accumulating much of the data used in this study. Special assistance in evaluation of the study approach was provided by J. Ambrose and J. Jones.

I

Τ

T

We are also indebted to J. Nalewaik for his initiation and support of the present study.

NTIS DDC UNANNOUNCED JUSTIFICATION	White Section
BY DISTRIBUTION/AV	AMADI ITY CODES
A	- CIAL

GLOSSARY

Abandoned Call - Call on which the calling party disconnects or hangs up before a TSR completes the call.

Automatic Call Distributor (ACD) - A type of answering equipment used for automatic distribution of incoming calls to persons designated to receive calls. The calls are served in the approximate order of arrival and routed to TSRs in order of availability.

Average Speed of Answer (ASA) - The average length of time a caller has to wait in order to reach an employee. This is measured from the time a call is received by the ACD to the time it is answered by a TSR.

Busy Hour - The peak 60-minute period during a business day when the largest volume of telephone traffic is handled.

CCS - A unit of measurement of telephone traffic. One CCS is equivalent to one telephone conversation lasting 100 seconds, two telephone conversations lasting 50 seconds each, or some other combination.

FX - A service that connects a caller's telephone to a remote exchange. This service provides the equivalent of local service from the distant exchange and is paid for on the basis of miles per line per month.

Grade of Service - Grade of service is related to basically the availability of incoming lines. It is expressed as the percentage of calls that receive a busy signal.

Hold Time - Related to circuit engineering, hold time is an essential element in the computation of line requirements. It is the length of time a communication channel is in use for each transmission from pick-up to disconnect of call.

Key Set - Another name for push-button telephones, wherein the buttons are used for intercom, holding, signaling, or pick-up of additional lines. Example: 6-button sets, Call Directors.

Toll-Free Telephone System (TFTS) - All answering sites and the telephone communications network that serves these answering sites.

WATS - A telephone company abbreviation for Wide Area Telephone Service. It refers to long-distance service that permits all taxpayers in one or more states to dial direct, with no toll charge, into a central answering point, i.e., district headquarters office (In-WATS) or a similar service (Out-WATS). ABSTRACT

1

T

T

I

T

T

T

ala ala

unterson Vill (20)

-

1

This report describes a generalized cost model for the nationwide Toll-Free Telephone System (TFTS) used by the Internal Revenue Service (IRS) in providing tax information and assistance to the U.S. public. The model is evaluated to provide an economic comparison of the potential savings for several candidate levels of consolidation for TFTS answering sites. The result of this comparison is a set of recommendations to the IRS concerning the preferred site-consolidation options in each of the ten IRS areas of the contiguous U.S.

v

SUMMARY

This report describes the work performed for the Facilities Management Division of the Internal Revenue Service under Task One of Contract TIR 7T-64. The broad purpose of this task was to provide telecommunications engineering services directly related to the design of a communications network for the IRS Toll-Free Telephone System (TFTS). The specific objectives were:

- To develop a methodology for more detailed analysis and continued assessment of TFTS site configurations and communications networks by the IRS
- To determine the cost of an improved and uniform level of service to the public through design of an improved communications network
- To investigate potential cost reductions through several levels of answering-site consolidation

To accomplish these objectives, a generalized cost model was developed for the TFTS system. This model included both personnel-related costs (such as wages, benefits, office space, telephone equipment, etc.) and communications costs (such as local business lines, WATS lines, and Foreign Exchange lines). The cost model was developed on the basis of data supplied by the IRS about their TFTS operations and the results of many meetings with IRS personnel for review and guidance.

A cull analysis methodology was developed in support of the generalized cost-model configuration of sites in the TFTS. The purpose of the cull analysis was to reduce the number of consolidation options to a reasonable number so that it would not be necessary to consider every combination of sites (more than 1200 different combinations are possible). The cull analysis is a process of TFTS site ranking and selection based on traffic and communications cost considerations. The output of the analysis was a subset of all possible site-consolidation combinations that would yield cost-effective consolidation options for the IRS.

Both the cost model and the cull analysis were applied to the TFTS sites in each Service Center to permit a financial comparison of various site-consolidation alternatives. The results of these financial comparisons are shown in a series of bar graphs representing costs in each

vii Preceding Page BLank -

of four categories (Personnel, Facility, ACD, and Communications) for each of three site-consolidation alternatives. They are described separately for each of the ten Service Center areas as well as for the single case of nationwide consolidation. The results generally indicate that the IRS could reduce costs by \$3.8 million per year by consolidating to no more than 20 sites. Specific recommendations were developed concerning the preferred consolidation option in each Service Center area and other areas of potential cost savings, e.g., WATS-to-FX diversion.

CONTENTS

 \Box

 \Box

П

Π

Π

Π

Π

Π

Π

Π

[]

Pa	ige
FOREWORD	ii
GLOSSARY	iv
ABSTRACT	v
SUMMARY	rii
CHAPTER ONE: INTRODUCTION	1
1.1 Background	-1
1.2 Reason for Study	1
1.3 Purpose and Objectives	-3
1.4 Scope and Assumptions	-3
CHAPTER TWO: PROJECT APPROACH	2-1
2.1 Overall Approach	2-1
2.2 General Cost Trade-Offs Considered	2-2
2.3 Project Activities	2-3
2.3.1 Phase 1. Planning and Data Identification	-6
2.3.2 Phase 2: Data Acquisition	2-6
2.3.3 Phase 3: Cost Model Development and Network	
Configuration	2-6
2.3.4 Phase 4: Cost Analysis and Report Preparation	2-6
2.4 Analysis Methodology	-6
2.5 Costing Refinements	2-8
2.5.1 LATA	2-9
2.5.2 WATS-to-FX Diversion \ldots	-9
2.5.3 Full-Time/Measured-Time WATS Optimization	-9
2.6 Time Period Used for Study	2-9
CHAPTER THREE: CULL ANALYSIS	3-1
3.1 Cull Analysis Assumptions	3-1
3.2 General Approach	3-2
3.3 Description of the Algorithm	3-5
3.3.1 Factor Creation	3-5

CONTENTS (continued)

	3.3.2 Deletion	
3.4 3.5	An Example: The Covington Area	
CHAPTER F	OUR: DETAILED ANALYSIS	
4.1	Cost Models	
	4.1.1 Personnel Costs 4-1 4.1.2 Facility Costs 4-2 4.1.3 ACD Costs 4-2 4.1.4 Communications Costs 4-2	
4.2	Other Cost-Reduction Techniques	
	4.2.1 LATA	
4.3 4.4	Costing Worksheet	
	4.4.1 Andover 4-9 4.4.2 Austin 4-9 4.4.3 Brookhaven 4-12 4.4.4 Chamblee 4-12 4.4.4 Chamblee 4-12 4.4.5 Covington 4-12 4.4.6 Fresno 4-12 4.4.7 Kansas City 4-12 4.4.8 Memphis 4-12 4.4.9 Ogden 4-17 4.4.10 Philadelphia 4-17 4.4.11 Inter-Service Center and Summary 4-22 4.4.12 WATS-to-FX Diversion 4-24	
CHAPTER F	IVE: RECOMMENDATIONS	
5.1 5.2	Ground Rules and General Observations	
	5.2.1 Andover 5-2 5.2.2 Austin 5-2 5.2.3 Brookhaven 5-3 5.2.4 Chamblee 5-3 5.2.5 Covington 5-4 5.2.6 Frespo 5-4	

Page

T

CONTENTS (continued)

a de la compañía de

Π

Π

Π

																						Ē	age
	5.2 5.2 5.2 5.2 5.2	.7 .8 .9 .10 .11	Kans Memp Ogde Phil Summ	as Ci his n . adelp ary o	ty hia f Re	 	mer	nda	 tic		· · ·		 	· · ·	· · ·		• • • •	•		•	•		5-4 5-5 5-5 5-5 5-6
APPENDIX	A:	IRS	TELE	COMMU	NIC	ATIC	NS	su	PPC	RT	GF	ROU	ND	RU	LES	5	•	•	•	•	•	•	A-1
APPENDIX	B: 1	TRAF	FIC	DATA	PRO	VIDE	DE	BY	THE	I	RS	•			•	•	•		•	•	•	•	B-1
APPENDIX	с: :	SITE	INV	ENTOR	Y D	ATA	PRO	ovi	DEL	B	Y I	HE	IF	s	•	•	•	•	•	•			C-1
APPENDIX	D: :	STAF	FING	COST	MO	DEL				•												•	D-1
APPENDIX	E: 2	ACD	COST	MODE	L.						•	•				•		•	•	•	•		E-1
APPENDIX	F : 1	FACI	LITI	ES CC	ST	MODE	L	•						•	•								F-1
APPENDIX	G: (CULL	, ANA	LYSIS	RE	SULI	s I	FOR	EA	СН	SE	ERV	ICE	c	ENT	ref	A	RE	A				G-1
APPENDIX	н: (CALC	ULAT	ION C	FS	AVIN	IGS	DU	ЕЛ	o I	LAT	A											H-1

CHAPTER ONE

INTRODUCTION

1.1 BACKGROUND

The Internal Revenue Service (IRS) operates a nationwide telecommunications system that provides federal tax information and assistance to the U.S. public. As currently configured, the system consists of 70 individual telephone answering offices, each with its own network of local and Foreign Exchange (FX) and/or WATS telephone lines (See Figure 1-1). Most of these Toll Free Telephone System (TFTS) sites have an Automatic Call Distributor (ACD) to distribute the incoming calls on a load-leveling basis to the Taxpayer Service Representatives (TSRs). Some of the smaller sites, however, are not large enough to warrant the installation of an expensive ACD. These sites use a key telephone system with many line-pickup buttons in order to distribute the calls equitably. Each of the 48 contiguous states contains one or more answering sites that service calls exclusively from within that state -- with the exception of the Denver answering site, which currently serves both Colorado and Wyoming.

The IRS has also divided the 48 contiguous states into ten Service Center areas for the processing of tax returns. Each Service Center area has its own Integrated Data Retrieval System (IDRS). For purposes of this study, the IDRS is a data base retrieval system that can be used only by a TFTS answering site in its own Service Center area. To accommodate this constraint, the TFTS network is configured so that each answering site serves a geographic area completely contained in one of the ten Service Center areas (see Figure 1-1).

1.2 REASON FOR STUDY

The IRS recognizes that this system requires substantial expenditures for communications circuits, communications equipment, and personnel, and that there are many feasible variations or trade-offs among these expenditures that could result in a system that provides the same or better level of service to the public at a significant reduction in total cost.

1-2

There are a number of techniques that have the potential for reducing costs and maintaining or increasing the level of service being provided to the calling public:

- A more effective TFTS system configuration in terms of the number and locations of answering sites
- The collection and utilization of more accurate and timely traffic data to develop traffic projections that permit dynamic reordering of communications circuits on a monthly or seasonal basis
- The optimization of communications network configurations based on traffic statistics and projections.
- The utilization of newer, more economical telephone communications system developments (e.g., the use of computer-controlled electronic automatic call-distribution systems and their interconnection in lateral transfer arrangements, or LATA)

1.3 PURPOSE AND OBJECTIVES

The general purpose of this study is to provide to the IRS a management tool that can be used to gain insight into the cost economies and service improvements that can result from various levels of answeringsite consolidation. The specific objectives are:

- To develop a methodology for detailed analysis of TFTS costs
- To apply the methodology to the investigation of major and moderate levels of site consolidation and resultant communications networks
- To make recommendations concerning the preferred TFTS siteconsolidation plan
- To make recommendations in areas that might need further investigation before a consolidation plan is implemented

1.4 SCOPE AND ASSUMPTIONS

This study was conducted with a number of constraints, limitations, and assumptions. The more important of these are listed here (a comprehensive list of study ground rules is presented in Appendix A):

- · The study was performed in a limited (six-month) period.
- No new or non-TFTS site locations were considered.
- The study was limited to voice communications within the 48 contiguous states.
- The study was based on traffic data for the period 1 May 1975 through 30 April 1976. (The word "present" as used in this report refers to the system as configured during this period.)

- No traffic growth or redistribution was considered.
- The primary focus of the study was on *intra* Service Center consolidation (as opposed to *inter* Service Center consolidation).
- Three levels of site consolidation were considered for each Service Center area: major, moderate, and no consolidation. In addition, one case of nationwide consolidation was considered.

CHAPTER TWO

PROJECT APPROACH

2.1 OVERALL APPROACH

The broad purpose of the study is to develop a management tool that can be used to provide insight into the cost economies and service improvements that would result from various levels of answering-site consolidation. The goal is to identify, and then to quantify, the cost elements that are the driving cost factors in any site-consolidation decision. There are many cost elements that can be used to describe the TFTS, with variations and additions from site to site. These include costs associated with the following:

- ACD features such as extra call-transfer capability, music-on-hold, etc.
- Methods of differentiating calls such as forms only, referral (as opposed to front line)
- Load-leveling techniques such as "call back" or transfer to non-TFTS sites
- Indirect costs associated with transferring TSRs from other IRS functions to TFTS duties during peak telephone traffic hours

These features (and their associated costs) vary from site to site and, to some extent, from one period of the year to another.

Because of the limited availability of cost information and the time and resource constraints of this study, it was decided to eliminate many of these detailed (and minor) cost differences from consideration. Hence, it was necessary to form some broad cost models that would be indicative of the "typical" IRS TFTS answering site. This approach, by design, precludes a more exact costing of the various consolidation options. It does, however, enable costing and comparison (within the time and resource constraints of the study) of a number of different levels of site consolidation, each with its own communications network configuration.

The overall approach has been to develop two analysis tools and then apply these tools to three levels of site consolidation in order to determine the relative importance of the various cost elements in any consolidation/reconfiguration plan. The two tools developed were a cull analysis methodology and a generalized cost model. The cull analysis was used to define an orderly approach to TFTS site consolidation. The generalized cost model was applied to several levels of TFTS site consolidation as defined by the cull analysis (see Ground Rule 8 in Appendix A). The result of this model application was a financial comparison of these various site-consolidation alternatives.

2.2 GENERAL COST TRADE-OFFS CONSIDERED

At the outset of the study, it was necessary to identify the critical cost elements that would be combined to calculate the total costs of each consolidation option. To meet this requirement, the following generalized cost model was developed:

TFTS Monthly = $\sum_{i=1}^{N}$ (TFTS Personnel Costs)_i + (Telephone Equipment Costs)_i + (Facility Costs); + (TFTS Communications Costs);

where

N = Number of Sites Within Each Consolidation Option

Telephone Equipment = ACD Con + Supe	mmon Equipment Costs + TSR Attendant Console Costs rvisory Console Costs
TFTS Personnel Costs =	TSR Salary Costs + Management/Clerical Salary Costs + Overhead Costs (Fringe Benefits, Training, etc.)
Facility Costs =	Office Space Costs (Includes Desks, Chairs, Floor Space, Light, Heat, Power, etc.)
TFTS Communications = Costs	WATS (Inter- and/or Intra-State) Costs + Local Business Line Costs + Foreign Exchange (FX) Line Costs + LATA (if used) Costs

Three of these four cost factors can be directly related to each other: TFTS Personnel Costs, Telephone Equipment Costs, and Facility Costs. The amount of telephone equipment (and hence the cost) at a TFTS answering site is directly related to the number of TFTS personnel answering calls. The facility costs are likewise related directly to the number of TSRs that staff a given answering site. These three cost categories can be lumped together into one broad category, personnel-related costs. The fourth cost category, TFTS Communications Costs, is related more directly to the traffic volumes and to the distance from the TFTS answering site to the calling public.

2-2

From previous ARINC Research experience with large networks and callanswering sites, these two broad cost categories, personnel-related costs and communications costs, can be related to network consolidation alternatives as shown in Figure 2-1. In this general figure, communications costs and personnel-related costs are plotted as a function of the number of sites remaining in any given consolidation plan. Also plotted are total costs, which are simply the sum of personnel-related costs and communications costs. The communications costs represent the sum of the costs for all communications circuits (WATS, FX, local) for each of the sites remaining in any given consolidation plan. The personnel-related costs include TSR costs, facilities costs, and ACD costs.

As the graph illustrates, communications costs tend to increase as a network is consolidated, but personnel-related costs tend to decrease. The increase in communications costs is caused by the increased length of the telephone circuits (WATS and FX). The decrease in personnel-related costs is directly related to the increase in serving efficiency of a larger serving group (more calls handled per TSR).

The total cost curve (the sum of personnel-related and communications costs), as illustrated by this generalized model, has a minimum at some point of moderate consolidation -- a point between the case of no consolidation of answering sites and full consolidation to one answering site. This generalized model applies to the IRS TFTS in each Service Center area. In some areas, the curves are slightly different in magnitude from those in other areas, but the principle remains the same throughout the areas.

The general approach to this study was to collect data, to develop a detailed costing methodology to apply to each of the four cost categories, and then to determine the costs for each of several levels of TFTS answering-site consolidation. In addition, three cost-reduction techniques were applied to the consolidation options to increase the cost-effectiveness of the resulting consolidation configurations.

2.3 PROJECT ACTIVITIES

Figure 2-2 shows the flow of project activities during the Task 1 study, divided into four phases:

- Phase 1 Planning and Data Identification
- Phase 2 Data Acquisition
- Phase 3 Cost Model Development and Network Configuration
- · Phase 4 Cost Analysis and Report Preparation

2-4

Π 0 1 11 Π Π Π

Π

Figure 2-2. PROJECT ACTIVITIES FLOW CHART

2.3.1 Phase 1: Planning and Data Identification

Phase 1 consisted of the development of plan to conduct the cost analysis study: description of the activities required and identification of the necessary cost elements, constraints, and data. Forms were developed (by either ARINC Research or the IRS) for collecting traffic, site-configuration, and cost data. All of these items were coordinated with the IRS at a project kick-off meeting on 8 October 1976.

2.3.2 Phase 2: Data Acquisition

In accordance with agreements reached at the October kick-off meeting, the preliminary data forms were revised and submitted to the IRS for collection of the required traffic and cost data. The IRS had concurrently prepared a questionnaire that was sent to the various field locations for use in a more detailed site inventory. Some of the data to be collected were available immediately at the IRS headquarters; the balance of the data required for the study had to be collected from the various field locations (Appendixes B, C, D, E, and F contain these data). Preliminary work was also begun during this phase on developing the cull analysis methodology and the various cost models.

2.3.3 Phase 3: Cost Model Development and Network Configuration

During Phase 3, cost models for each of the four cost categories were developed. All data used to generate the personnel-related cost models (TSR, Facility, and ACD) were supplied by the IRS. For the communications cost models, data from both the IRS and published telephone company tariffs were used. All cost models were then coordinated with the IRS.

The cull analysis methodology was completed and applied to each of the ten Service Center areas, as well as to a single case of nationwide consolidation with no Service Center boundaries considered.

2.3.4 Phase 4: Cost Analysis and Report Preparation

During Phase 4, the cost models were applied to each level of site consolidation as identified by the cull analysis. This phase culminated in the preparation of this final report documenting the work performed during the study, together with the conclusions and recommendations concerning TFTS site consolidation.

2.4 ANALYSIS METHODOLOGY

Figure 2-3 illustrates the detailed technical approach followed in the study, from determination of the sites to be considered in the study through the final comparative cost presentation. The elements comprising this technical approach are presented in the following paragraphs. Each of these elements is explained in detail in Chapters Three and Four.

ないの

1

1

Figure 2-3. TECHNICAL APPROACH

As the figure illustrates, the starting point for a consolidation study is the selection of sites to be considered. In this particular case, the IRS has divided the continental United States into ten Service Center areas, each with its own Integrated Data Retrieval System (IDRS). The IRS indicated that the TFTS answering sites should serve the same geographic area that is served by a single IDRS -- that no inter-IDRS (inter-Service

2-7

Center) consolidations should be considered.* Hence the starting point (see Figure 2-3) was to select all TFTS answering sites in a given Service Center area. These TFTS answering sites are shown grouped by Service Center in Appendix B.

The cull analysis methodology was then applied to these answering sites. The output of the cull analysis was a site-consolidation ordering or ranking and the traffic rerouting pattern to accommodate this site ordering. The cull output indicates the order in which sites are to be eliminated in any consolidation (Site N eliminated first, Site 2 eliminated last) and how the traffic from the eliminated site should be rerouted. (See Appendix G for cull analysis results.)

For a Service Center area with eight sites, there would be eight possible consolidation outputs from the cull analysis (8 sites, 7 sites, 6 sites, ..., 1 site). Three different levels of consolidation were considered in the present study: no consolidation (present system, N sites remaining), maximum consolidation (one site), and a single case of moderate consolidation (N - i sites remaining).

In some Service Center areas, the moderate consolidation was determined to be the lowest-cost consolidation option. This determination was made by costing one or more remaining options (e.g., m - 1 sites, m sites, and m + 1 sites). For other Service Centers, the lowest-cost option was the one-site consolidation. In these cases, the moderate case was either a two-site or a three-site option.

The costing analysis was then applied to these three consolidation cases. The costing analysis employed the previously developed models for the TSR, Facility, ACD, and communications costs. In some cases, actual cost data were available from the Site Inventory sheets, and these data were used. The result of the costing analysis was a total cost figure for each of the three selected levels of site consolidation. The costs were presented in the form of three composite bar graphs, showing total costs and their breakdown (TSR, Communications, Facility, and ACD costs).

2.5 COSTING REFINEMENTS

Three other potential cost-reduction techniques were examined for the consolidation options in order to assess their impact on overall TFTS costs:

- LATA (Lateral transfer, sometimes called dynamic load balancing or interflow)
- WATS-to-FX diversion
- Full-time/measured-time WATS optimization

^{*}A single case of inter-Service Center consolidation was considered for comparison purposes only.

2.5.1 LATA

LATA is implemented by interconnecting two or more ACDs in such a way that the incoming-call volume, or load, is shared among these ACDs. This increases the total number of TSRs available to handle any particular incoming call and, hence, increases serving-group size. Large serving groups can operate more efficiently than small serving groups. Interconnecting ACDs by this technique has the effect of combining two or more smaller ACDs into one large ACD -- a "virtual consolidation" -- without physically moving the ACDs or consolidating sites. To maintain the same grade of service for the larger, more efficient serving group would require fewer TSRs and, hence, reduced personnel (and personnel-related) costs. The additional cost incurred would be for the trunk lines connecting the ACDs to each other. This is a minor variation of the personnel-communications cost trade-off discussed in Section 2.2. The results of the LATA cost analyses are presented along with those of the consolidation options, although LATA does not represent a true consolidation option but simply a cost-reducing option.

2.5.2 WATS-to-FX Diversion

An investigation was made into whether a new FX group could be created to carry, at lower cost, some of the traffic previously handled on a WATS group. An example is a city that is currently served by WATS lines but could be handled with less expensive FX lines.

The cost economies resulting from WATS-to-FX diversion can be realized by the IRS regardless of site consolidations. Therefore, these results were computed and included in the overall summary tables only.

2.5.3 Full-Time/Measured-Time WATS Optimization

Some of the TFTS sites currently use a combination of WATS lines that are costed at a full-time rate and lines that are costed at a measuredtime rate.

By correctly choosing the combination of full-time and measured-time WATS lines used, the total WATS charges can be minimized. An investigation was made of the cost reduction that could be effected if all sites used the optimum mix of full-time and measured-time WATS lines. These cost economies have been automatically included in both the moderate and one-site consolidation options.

2.6 TIME PERIOD USED FOR STUDY

This study was based on TFTS telephone traffic statistics collected for the period 1 May 1975 through 30 April 1976: number of calls handled at each TFTS site, number of calls abandoned (caller hangs up before he is served), and number of calls for which the caller received a busy signal. These three factors were combined by the IRS into one composite traffic figure called "adjusted demand". The adjusted demand traffic figure represents the total potential number of calls (traffic load) offered to the TFTS site under consideration. An internal IRS study determined that the year under study could be divided into seven periods such that the telephone traffic variation within each of these periods was relatively small. Period 2 and Period 6 are representative of the highest and lowest traffic intensity and correspond roughly to the filing and nonfiling seasons, respectively. To study either period by itself might lead to erroneous conclusions concerning the preferred consolidation option. For example, to study only a high-traffic period might tend to favor no consolidation; to study only a low-traffic period might tend to favor maximum site consolidation. Therefore, it was decided to study both periods and combine their results. Since all costs for both Periods 2 and 6 were normalized to "monthly costs", the annual costs were obtained by using the following algorithm, which assumes a four-month filing season and an eight month nonfiling season:

Annual costs = $4 \times \text{Period } 2 \text{ costs } + 8 \times \text{Period } 6 \text{ costs}$

CHAPTER THREE

CULL ANALYSIS

This chapter describes the methodology used to establish the consolidation options for the ten IRS Service Center areas that warrant detailed evaluation with the TFTS cost model. Instead of costing all possible options for each of the areas, a procedure was required to cull from among all of the various site combinations the subset of site combinations that should be costed to determine the least expensive TFTS option. For an N-site region, the cull analysis procedure produces a list of the N-sites ordered on the basis of the relative desirability of site elimination. In addition to this output, the cull analysis produces a routing plan for each level of site elimination (or consolidation option) to indicate where the traffic from each eliminated site goes. Thus the cull analysis defines the list of remaining sites and the plans for network reconfiguration for each consolidation option.

3.1 CULL ANALYSIS ASSUMPTIONS

The cull analysis methodology is based on the general assumption that the communications cost associated with routing traffic over Foreign Exchange (FX) lines is proportional to the number of circuit-miles. The methodology examines each of the N(N-1) possible combinations of N candidates (sites to be closed) and N-1 hosts (sites to receive the traffic from a closed site) to determine which pair has the lowest circuit-miles total and hence the lowest cost. This lowest-cost candidate/host pair is then selected as the preferred consolidation if one site is to be eliminated. The process is repeated until all but one of the sites have been eliminated. However, it should be noted that only a portion of the communications costs is being considered in the cull analysis and that detailed analysis is required to evaluate the preferred consolidation from this ordered list of options.

Once the candidate site has been eliminated, its traffic is routed to the host site and the cull analysis continues until one site has received all of the traffic in the Service Center area (an exception to this general rule will be noted in the discussion on backtracking in Section 3.3.3). The cull analysis routine models only Foreign Exchange (FX) costs and is therefore driven only by FX traffic for a given site. WATS costs are also a major portion of communications costs, but they are nonlinear functions and are only an indirect function of distance. One result of the cull analysis is that each successive site elimination results in a higher communications cost; the cost function is, therefore, a monotonically increasing one. WATS costs, though very unpredictable, are basically monotonically increasing with increased traffic and distance. The other three personnel-related cost components (TSR, Facility, and ACD) are all monotonically decreasing functions; combining their sum with the communications (FX and WATS) cost for each consolidation option, therefore, defines a curve that has, at most, one point of inflection. This important feature is used as a basis for the costing as described in Section 2.2.

3.2 GENERAL APPROACH

The first stage of the cull analysis consists of generating a figure of merit for each site in the Service Center area. These figures of merit represent the cost to close that site and reroute all of its traffic to the closest remaining site. The figure of merit is calculated for each site pair by using the following algorithm:

$$F_{CH} = \frac{T_C \times D_{CH}}{10^6}$$

where

C = subscript defining which site is the candidate H = subscript defining which site is the host T_C = yearly adjusted demand on FX local lines of candidate site D_{CH} = distance in miles between the candidate and the host site

Distances (in miles) between are given by the equation:

$$D_{CH} = \sqrt{\left(\frac{V_{c} - V_{H}}{10}\right)^{2} + \left(\frac{H_{c} - H_{H}}{10}\right)^{2}}$$

where

 V_C , H_C = the V and H coordinates, respectively, for the candidate site* V_H , H_H = the V and H coordinates, respectively, for the host site

The specific details of the cull analysis algorithm used in this report are illustrated in Figures 3-1, 3-2, and 3-3, and they are described in Section 3.3.

^{*}V and H are coordinates used by the Bell System in computing mileage charges for long-distance communications costs. They constitute a coordinate system (similar to latitude and longitude) that covers the United States and is used to calculate distance.

Figure 3-2. DELETION ROUTINE

Figure 3-3. BACKTRACKING ROUTINE

3.3 DESCRIPTION OF THE ALGORITHM

3.3.1 Factor Creation

The first stage of the algorithm is concerned with generation of the factors. The V and H coordinates and traffic figures for each site in a given Service Center area are listed on an "Active List". When a site is closed, it is removed from this list and its traffic is added to that of a host site.

The first site on the Active List is chosen as a candidate. The distances between it and all of the other sites on the Active List are calculated to determine which site is the closest; this closest site becomes the best host site. A factor is then calculated from the distance between these two selected sites and the traffic of the candidate site. A similar factor is calculated for each site on the Active List.

3.3.2 Deletion

The next section of the algorithm examines all of the factors (one per site) and selects the smallest one. This means that the site elimination corresponding to this smallest factor will involve the lowestcost FX of all of the possible traffic reroutings and is therefore the most desirable.

The candidate site is deleted from the Active List. If, however, the candidate site just deleted has had traffic rerouted into it prior to its deletion, then the routine must backtrack, as described in Section 3.3.3. If the candidate site has not received any traffic before, its traffic then is added to that of the host site. If only one site remains on the Active List, then the algorithm has generated the one-site consolidation case and is therefore finished. Otherwise, the algorithm repeats the factor-generation process with the sites remaining on the Active List.

3.3.3 Backtracking

Figure 3-4 illustrates backtracking. The cull analysis has indicated that Albuquerque should be closed and its FX and local traffic (T_1) routed into Oklahoma City. Later, however, the cull analysis indicates that Oklahoma City should be closed and that its traffic $(T_1 + T_2)$ should be routed into Dallas. Should the algorithm continue at this point, an incorrect routing would result from the cull analysis in that Albuquerque's traffic (T_1) would not be routed to Dallas directly but to Oklahoma City and then to Dallas. This is clearly undesirable. A straight run should be made from a site to the host, and the calculated factor should reflect the cost associated with the desired routing. At this point, the cull analysis must backtrack.

The backtrack routine restores the Active List to its original state, with all sites appearing with their coordinates and their original traffic figures. The sites that were deleted (closed) at the time of the backtracking are removed from the Active List. The traffic for each of those sites is then added to that of the nearest site on the Active List. In Figure 3-4(b), this corresponds to Oklahoma City traffic (T₂) being routed directly to Dallas and Albuquerque traffic (T₁) being routed directly to Dallas. At this point, the backtracking has been completed, and the routine selects the first candidate from the Active List and calculates the next series of factors. The routing initiates another backtrack when it is determined that a site which has received traffic after this point must be eliminated.

The example indicates why the creation of the next consolidation option, by the elimination of one site, does not necessarily imply that the new traffic routing pattern is a direct extension of the previous one.

3.4 AN EXAMPLE: THE COVINGTON AREA

The Covington Service Center area consists of 3 sites: Cincinnati, Cleveland, and Detroit. The cull analysis was employed to produce the two-site and one-site consolidation options.

Table 3-1 indicates the distances between the cities in the Covington area. For example, the distance from Cleveland to Cincinnati is 222 miles. Table 3-2 indicates the V and H coordinates and the present FX/Local Yearly Adjusted Demand (listed under the "Present" column). The factors for each site for each option are listed (the factors for Cleveland, Cincinnati, and Detroit are 50, 130, and 79, respectively). The numbers below the factors indicate the best (closest) host site. A horizontal line indicates that a site was eliminated because it had the smallest factor. In this case, Cleveland was eliminated in the first iteration and Cincinnati in the second. The routing maps for the two-site and the one-site consolidation options are shown in Figure 3-5.*

3.5 SUMMARY OF THE CULL ANALYSIS RESULTS

Table 3-3 summarizes the cull analysis results for each of the ten Service Center areas and the one nationwide consolidation. In the nationwide case, the starting point was the sum of the lowest-cost consolidation options identified in Chapter Four for each of the ten Service Center areas (a total of 18 sites). In Table 3-3, "row" one indicates the preferred one-site location. For example, in the Andover Service Center, the Portsmouth site should be closed first, followed by the Burlington, Augusta, Providence, Albany, Hartford, and Buffalo sites, in that order. The detailed cull analysis results are presented in Appendix G.

*The WATS traffic was routed to the site for which the WATS costs were lowest.

Table 3-1. COVINGTON DISTANCE TABLE										
	Cincinnati	Cleveland	Detroit							
Cincinnati		222	235							
Cleveland	222		91							
Detroit	235	91								

Table 3-2. COVINGTON CULL SHEET														
		Number of Sites Remaining												
	3 (Pr	esent)	2 (Mode	erate)	l (One Site)									
Site and Coordinates	Number of Calls	Factor Host Site Number	Number of Calls	Factor Host Site Number	Number of Calls	Factor Host Site Number								
Site 1, Cleveland: 5574-2543	551,021 (27%)*	50 3	4											
Site 2, Cincinnati: 6263-2679	386,285 (29%)	130	586,285 (29%)	137										
Site 3, Detroit: 5536-2828	882,856 (44%)	79 2	1,433,877 (71%)	336 2	2,020,162 (100%)									
*Percentage of regional traffic.														

Π Π Π Π Π [] Π [] 1

Π

3-9

П П Π Π [] 8.0 Ţ [] Π \Box IJ

CHAPTER FOUR

DETAILED ANALYSIS

This chapter presents a description of the cost models, the costing procedure, the costing refinements (LATA, WATS/FX diversion, and FT/MT WATS optimization), and the results of the costing for each of the consolidation options considered.

The results of the costing are presented in 11 parts: ten Service Center consolidations plus one single case of consolidation without Service Center boundaries (nationwide consolidation). The nationwide case contains the costing results of the present case (70 sites), the ten-site consolidation (corresponding to a single site in each of the ten Service Center areas), and two cases of "modest" consolidation (both with and without Service Center boundaries). Thus this case presents not only what economies are possible without Service Center boundaries but also a summary of the ten Service Center consolidations.

4.1 COST MODELS

The TFTS has four main cost categories, as noted in Chapter Two, and a cost analysis procedure or model was developed for each.

4.1.1 Personnel Costs

The first step taken to determine the personnel costs was to determine the size of its staff needed to operate a given TFTS answering site with the required level of service to the public. The level-of-service criterion established by the IRS for the TFTS sites was that the average delay for all calls entering the ACD should be 20 seconds (delay equals the time elapsed from entry of a call into the ACD until that call is answered by a This standard can be stated as "Average Speed of Answer (ASA) equals TSR). 20 seconds". Queuing theory was applied to generate a graph relating the number of TSRs required (for ASA = 20 seconds) to the incoming telephone traffic volume (see Appendix D). The incoming telephone traffic volume for each hour of the day during both Period 2 (19 January to 6 February and Period 6 (4 August to 28 November) was then determined on the basis of telephone traffic statistics supplied by the IRS. The graph and the number of calls during each hour of the day were used to determine the number of TSRs required for each hour and the daily total.

Data were supplied by the IRS on average wage rates for TSR, clerical, and management personnel. The IRS also supplied algorithms for calculating the number of clerical and management personnel required as a function of the TSR staff size. Overhead factors for such items as training, leave, and scheduling inefficiencies were included in these algorithms. These factors were combined in an algorithm that related TSR cost to the number of TSRs required according to the following formula:

TSR Cost (TSR + Management + Clerical) = \$11.89 × TSR hours

Appendix D provides the detailed formulation of the staffing model.

4.1.2 Facility Costs

Facility costs are costs for desks, chairs, tables, floor space, light, heat, power, etc. They are directly related to the number of personnel that staff a given TFTS answering site. These costs were supplied by the IRS, in a format identical to that of the TSR cost model discussed in Section 4.1.1, for each site in the present TFTS. Like TSR costs, the facility costs include costs for management and clerical support. (The facility costs vary from \$144/TSR/month to \$220/TSR/month.) Appendix F presents a detailed listing of facilities costs used.

4.1.3 ACD Costs

The ACD cost model used was derived from the Toll Free Telephone Site Inventory data that were collected from the IRS District Offices. A sample of sites was chosen, and monthly ACD costs were computed. In most cases examined, the number of ACD TSR consoles was adjusted to match filing season/nonfiling season requirements. Therefore, in the sampling of ACD cost data, a weighted average of filing/nonfiling season ACD costs was used for purposes of deriving an ACD cost model. These ACD cost data were plotted on a graph in the form of a scatter diagram, and a least-squares curve fit was made to determine the most appropriate model to use. The following ACD cost model was used to relate monthly ACD costs to the peak number of TSRs required:

ACD costs (\$) = \$93.60 $e^{\frac{\text{TSRs required}}{483}}$

Appendix E describes the ACD cost model.

4.1.4 Communications Costs

Communications costs were more difficult to model since there were three different types of communications lines to be considered:

- Local
- FX
- · WATS

The Toll Free Telephone Site Inventory sheets contained the costs for local lines for each site considered in this study. In all cases, these local-line costs were used (they varied by site from a low of \$4 per line per month to a high of \$55 per line per month).

The costing for FX lines was not immediately available from the Site Inventory sheets; therefore, a cost model had to be developed. The vast majority of FX lines in the TFTS are routed over the TELPAK network at a GSA-supplied rate of 54¢/mile. Channel-termination charges and local-line charges are independent of distance and generally run approximately \$80 per line per month for intrastate FX lines and \$110 per line per month for interstate FX lines. The two FX cost models used were:

• Intrastate FX monthly cost = (\$80 + 54¢/mile) per line

[]

• Interstate FX monthly cost = (\$110 + 54¢/mile) per line

Intrastate WATS costs were available for the present TFTS system directly from the Site Inventory sheets. These costs were used in the costing of the present case and in the costing of intrastate WATS lines used in the various consolidation options. Published intrastate tariffs were used to supplement the site inventory data in some cases. Interstate WATS rates were obtained from published AT&T tariffs dated 28 February 1976.

When a customer procures WATS lines (generally, either intra- or interstate), he can elect to be billed for the WATS lines either on a "Full Time" or on a "Measured Time" basis. Generally speaking, the optimum choice of either all Full Time (FT) lines, all Measured Time (MT) lines, or some combination thereof, depends directly on the monthly traffic and indirectly on the hourly traffic distribution on those WATS lines. In the case of the IRS hourly distribution, which was assumed to be the same for each TFTS site, the optimum FT/MT split is approximately 3:4 (3 FT lines to 4 MT lines). (This ratio is varied to a very small degree by the WATS tariff structure for each geographic area.) By selecting the correct mix of FT/MT WATS lines, the aggregate WATS costs can be reduced by 10 to 40 percent from the charges that would be incurred if all of the lines were FT lines.

In the case of interstate WATS lines, AT&T provides to the customer one free line per WATS line group. This has the effect of reducing WATS charges by 50 percent for a 2-line group, 33-1/3 percent for a 3-line group, 25 percent for a 4-line group, and so forth. In order to take both of these WATS charge-reducing factors into account, an interstate WATS charge reduction factor of 25 percent and an intrastate factor of 10 percent were selected. WATS charges were computed as though all WATS lines were FT lines, and then a reduction factor of 25 percent (or 10 percent for intrastate) was applied to reflect both of the above cost-reduction techniques. While a more precise analysis could have been performed, it was determined that the simplification made the analysis more straightforward and easy to document and had little effect on the accuracy of the relative cost results. In the present TFTS, some sites are now mixing the FT and MT WATS lines to take advantage of this cost-reduction technique. These reduced WATS costs are reflected in the "present case" costs as well as in any consolidation configuration costs. As agreed upon with the IRS, to reflect the actual present system as closely as possible, this WATS-charge reduction was not applied in the "present case" costing to sites that do not now mix FT and MT WATS.

4.2 OTHER COST-REDUCTION TECHNIQUES

Two additional cost-reduction techniques were also investigated: LATA and WATS-to-FX Diversion.

4.2.1 LATA

To estimate the savings that might be realized if LATA were fully implemented in any Service Center area, the following approach was used. Full implementation of LATA would be the same as virtual site consolidation within a Service Center area. This, in turn, would be equivalent to a one-site consolidation; i.e., the TSR requirements (and costs) would be the same as those for the one-site consolidation case. The Facilities and ACD costs, on the other hand, would be only slightly (if at all) reduced because there would be no physical consolidation and it would still be necessary to maintain separate facilities and ACDs at each TFTS site. Communications costs would be increased by the cost of the tie lines needed to interconnect each ACD in the Service Center area to the other ACDs within that area.

A full, virtual consolidation could be implemented only if there were LATA lines to interconnect each ACD with every other ACD in the Service Center area. Furthermore, each ACD in the virtual-consolidation plan would need the capability to automatically switch overflow calls to any of the other ACDs in the system. Since the present Bell System ACDs in the TFTS do not now have this full LATA (or interflow) capability, and since the tie line network required to interconnect each ACD would be quite complicated and impractical, this "full virtual consolidation" was not costed. On the other end of the full spectrum of LATA consolidation possibilities is the case of only two sites being connected to each other in a "two-site virtual consolidation" LATA (or interflow) between only two TFTS answering sites. This case could be implemented for one or more site-pairs within a Service Center area. If several site-pairs were so interconnected, the TSR costs would be roughly equivalent to the TSR costs for the "moderate consolidation" case. The Facility and ACD costs would remain essentially the same as those of the "present case". Communications costs would be those of the "present case" plus the added costs for the tie lines to interconnect the two-site pairs. An upper limit for the communications cost would be the communications cost for the "moderate consolidation" case. Hence, an estimate of the present case with LATA consists of "moderate" case TSR and communications costs, and "present" case ACD and facility costs. Appendix H provides a more detailed approach to calculating LATA costs.

4.2.2 WATS-to-FX Diversion

To determine the size of the FX group necessary to serve a given city or metropolitan area, it is necessary to know the TFTS telephone traffic that would be generated by that area. To make an initial determination of the traffic that would be generated in a given city or metropolitan area, 1970 population statistics were used. Traffic estimates were made according to the following formula as determined by regression analysis on available data:

CCS (average busy hour during Period 2) = population (in thousands)

where CCS = hundreds of call seconds (a measure of communications load used to determine the required number of telephone circuits). This estimate of traffic correlates very closely with actual TFTS experience. It was used to determine the number of FX lines required for PlO service.* This amount of traffic was then subtracted from the WATS traffic, and the required number of WATS lines was recomputed.

Since these savings could be realized in the present system by simply creating new FX groups, and since these savings would not influence the preferred consolidation option, this cost-reduction technique is not reflected in the consolidation-option comparison in the following sections. As a result of discussions with the IRS, it was decided that the savings to be achieved would simply be calculated and presented separately in order to demonstrate that WATS-to-FX diversion is a cost-effective technique that is generally independent of site consolidation.

4.3 COSTING WORKSHEET

This section describes the costing worksheets and how they were used in implementing the TFTS cost model. Completing a costing worksheet corresponds to calculating costs by using the TFTS cost model. Figure 4-1, a sample costing sheet for the Albuquerque answering site, should be consulted throughout the following discussion.

All personnel-related costs are calculated on the right side of the sheet (TSR Cost, ACD Cost, Facility Cost), and communications costs are calculated on the left side (Comm Cost). As discussed in Section 2.6, annual costs were calculated on the basis of both Period 2 and Period 6 costs. Period 2 and Period 6 data entries are to the left and right of the diagonal lines, respectively. All costs have been "normalized" to monthly costs except on the extreme right side of the worksheet, where a summary block has been provided to indicate annual site costs (based on four times the total Period 2 costs plus eight times the total Period 6 costs. There is a space in the upper right-hand corner to indicate the

^{*}A measure of the grade of service of a telephone system. Pl0 service represents callers getting through to the called number 90 percent of the time and getting a busy signal 10 percent of the time.

Albuquenque Present			Annual	SR 213	mm 60.9	ac 36.1	320.			1516 = 3459.6	ann 713.2	fer 823 -	ACD 158.6	SISS	con ut uption						
Site Consolidatio		WATS WON		65 10 97 76 73	0) 52 151 11 50	1 2 2 2 1 6 0 1 2 2 8 FG	2 12 (3) 26 M	108 11 12 26	17/1026	3 52 15/150	82 13 23 20 20	2	~		+	SR= ACD \$/mo	= 15,10	st	X 1 - Fac 3	= 3.01	
-se	TSR Cost	hr # 158's ending Calls rayd	2	9 622511 4	10 203 41 16 5	× = 279 46 18 - 5	12 23 36 15 4	10 270 4317 5	15 267 42 17 5	16 262 91 16 5	17 205 32 13 4		E TSR-hrs 10 42	(XZO THE XOT DAY)	ACD Cos	PK # TSR'SX AC D	18 5 × 90.516	Facility Cot	pk # ISR 'S (prmal 2014)	18 × 167	
0) 119038 64		\$/mo/ \$/mo line \$/mo	1.1.2 8 21.	\square	1		\square	\square				V	\bigvee	1					/	37.4	
Period 2/6 Annual Demand (oll \$ in ∞	m Cost	9 336 A A A	2 24 26 10 3													/	///	///	///	thly comm \$	
	Com	Line Type #	WATS (intro) (MATS (intro)	FX-	FX-	FX	FX- FX-	FX-	FX-	FX-	FX-	FX-	FX-	FX-						yoin S	

Figure 4-1. SAMPLE COSTING WORKSHEET

1

4-6

site name and the consolidation option being costed (present system, onesite consolidation, etc.). In this case, the sheet is for the Albuquerque site and the present system.

In applying the model, the first step is to determine the annual adjusted demand for the site and consolidation option under consideration. The number to use for the adjusted demand (hereafter referred to simply as annual demand) depends on the consolidation option being considered. In the example shown here, the annual demand figure is simply the figure supplied by the IRS for the Albuquerque site. If this were a consolidated site, the annual demand would be the sum of the annual demands for the sites that had been absorbed into the site.

The next step is to complete the TSR cost block as follows. Determine the number of calls received at the site during the one-hour period ending at 9 AM, 10 AM, 11 AM, etc., during Period 2. Enter these numbers in the column headed "TSR cost, #calls" for Period 2. These numbers were determined by using the factors supplied by the IRS for traffic distribution by hour and by period. In this example, 162 calls were received during the average hour ending at 9 AM local time during Period 2, 262 calls during the hour ending at 10 AM, etc. The corresponding number of calls for Period 6 are 25 and 41. At this point, the staffing model (Appendix D) was used to determine the number of TSRs required to provide an ASA 20 grade of service. In this example, 11 TSRs were required during the hour ending at 9 AM and 16 during the hour ending at 10 AM during Period 2 (Period 6 figures are 4 and 5, respectively). The " Σ TSR-hours" block provides a space to sum the total number of TSR-hours required during an average day of Period 2 and Period 6. This is translated into the TSR costs by multiplying by an average of 20 business days per month and \$11.89 per TSR-hour. The resultant figure is monthly TSR cost (including management and clerical cost) for both Period 2 and Period 6 of \$33,300 and \$99,900, respectively.

ACD cost was determined by using the peak number of TSRs required during both Period 2 and Period 6 (in this case, 18 and 5, respectively). The ACD cost per TSR was calculated from the ACD cost model. In this example, the ACD costs were \$90.20 per TSR (P2) and \$92.60 per TSR (P6). The total monthly ACD costs in this case were \$1,620 and \$463. The annual ACD cost was \$10,200.

The Facility cost is tied to the peak number of TSRs for Period 2 (the peak period of the year) because the amount of office space, etc., cannot be readjusted seasonally to correspond to filing season/nonfiling season requirements). In this case, the peak number of TSRs is 18. The facility cost (\$/TSR/mo.) was calculated by using the facility cost model supplied by the IRS. In this case, the facility cost is \$167/mo./TSR. The monthly facility cost is \$3,010. The annual cost is simply 12 times the monthly cost (\$36,100).

Communications costs were calculated as follows: The traffic during the busy hours of the day was split into local, WATS, and FX according to the number of lines currently installed during Period 2. In this case,

there were 9 local, 6 intrastate WATS, and no FX lines into the Albuquerque site. These proportions were used to split the 289 calls (Period 2 peakhour calls) among the various line groups. The average call-holding times supplied by the IRS for Period 2 and Period 6 were 194 and 187 seconds, respectively. The Period 2 busy-hour traffic on the local trunk group was 336 CCS (289 calls \times 184 seconds/call/100 \times 9/(15), where 100 is a CCS conversion factor, 9 is the number of local circuits, and 6 is the number of FX circuits). For a grade of service of PlO, instead of the present P50, 14 local trunks would be required during Period 2 and 4 during Period 6. In a like manner, Period 2 and Period 6 intrastate WATS lines requirements are 10 and 3, respectively. The local and WATS line charges per line per month are \$15 and \$738, respectively. If there had been FX lines, the FX costs would have been calculated on the basis of the FX cost models as previously discussed. In each case, the number of lines was multiplied by the monthly charge per line to give the total monthly cost (e.g., Period 2 local line charges are \$215 per month). These charges are all summed to provide the aggregate monthly communications expenses for Period 2 and Period 6 (\$7,060 and \$2,710, respectively). Total annual communications cost in this case is \$52,100.

Costing for each site, both "present" and consolidated, was accomplished by using the costing worksheet (a complete set of costing worksheets is available at ARINC Research). The annual costs in each category (TSR, Comm., Facility, and ACD) were added together to obtain the costs used in the bar-graph presentations shown in Section 4.4. For example, the TSR costs for Albuquerque were added to the TSR costs for all of the other sites in the Austin Service Center area to obtain the aggregate TSR cost for the present configuration.

In some cases, it was necessary to divide the telephone traffic at a site into WATS and non-WATS traffic so that WATS and non-WATS traffic could be routed to two different sites where there would be a cost advantage in doing so. An example of such division is Nebraska, from which the WATS traffic was routed to Denver and the non-WATS traffic to St. Paul.

4.4 COSTING RESULTS

This section presents the results of the costing for each consolidation option of the ten Service Center areas and also for a single case of nationwide consolidation without regard to Service Center boundaries. In each case, the costing worksheets were used to develop the costs. The results of the costing are presented as a series of bar charts depicting aggregate TFTS annual costs. These charts have been divided into the four component costs: TSR, Facility, ACD, and Communications. (These four component costs are always shown in the same order on the bar charts from the bottom to the top.) Also shown for each region is a bar chart of the annual savings for each consolidation option.

The site used for the one-site consolidation was determined by the cull analysis. This site handles all traffic from each of the other sites in the Service Center area on either WATS or FX lines. Since FX is generally less expensive than WATS, FX lines were used in lieu of WATS lines whenever possible. For example, when a site was eliminated, the (formerly) local lines from that eliminated site were run as FX lines (and not WATS lines) to the new site. All (formerly) intrastate WATS traffic was summed and run on one interstate WATS line group except where otherwise noted. Interstate WATS does not cover the state in which the answering site is located; therefore, intrastate WATS lines were used to cover that one state.

In general, traffic for the "moderate consolidation" cases was routed as follows: all FX line groups were routed to the closest remaining site, minimizing the mileage (and hence the cost); WATS traffic was routed on an intrastate basis where possible since intrastate WATS, in general, is less expensive than interstate WATS. Where it was not possible to route WATS traffic on an intrastate basis, the WATS traffic was routed in one or more interstate WATS line groups so as to minimize the WATS costs.

For all of the ten Service Center areas, both the moderate and the one-site cases involve closing sites, terminating ACD leases, and, in some cases, relocating employees. There are one-time expenses associated with each of these options. LATA, on the other hand, could be implemented without incurring most of these one-time expenses.

4.4.1 Andover

The results of the costing for the Andover Service Center area are shown in Figure 4-2. The annual aggregate cost of the present system* is \$3.48 million (\$2,482,000 for personnel, \$448,000 for facilities, \$117,000 for ACD, and \$433,000 for communications). The one-site case is Boston; the moderate case consists of two sites, Boston and Buffalo. For this Service Center area, the lowest-cost consolidation option is the one-site case (Boston), although a two-site consolidation would provide almost as great a saving. In Figure 4-2a all costs have been normalized to \$3,480,000 per year for the present sites in the Andover Center.

As shown in the figure, the annual saving for the "Present with LATA" case is \$251,000.

4.4.2 Austin

The results of the costing for the Austin Service Center are shown in Figure 4-3. The effects of the two time zones were considered in the costing for this case. The aggregate annual cost of the present system is \$5.155 million (TSR, \$3,460,000; Facility, \$823,000; ACD, \$159,000; Communications, \$713,000). The one-site case is Dallas; the moderate consolidation case is a two-site case consisting of Dallas and Houston. In this Service Center area, the lowest-cost option is a one-site option. As shown in the bar graph depicting savings over the present system, the annual saving for the one-site case is \$405,000.

^{*}All costs are based on a PlO grade-of-service and an ASA of 20. Therefore, the present system costs are actually higher than today's cost to reflect the improved service to the public.

Figure 4-2. ANDOVER SERVICE CENTER RESULTS

Π

Figure 4-3. AUSTIN SERVICE CENTER RESULTS

As shown in the savings bar chart, the annual saving in the "Present with LATA" case is \$87,000.

4.4.3 Brookhaven

The results of the costing for the Brookhaven Service Center are shown in Figure 4-4. The aggregate annual cost of the present system is \$3.8 million (TSR, \$2,891,000; Facility, \$619,000; ACD, \$132,000; Communications, \$158,000.) The one-site case is Manhattan; the moderate case consists of three sites: Manhattan, Camden, and Smithtown. In this Service Center area, the lowest-cost consolidation option is the one-site case (annual saving of \$273,000).

As shown in the figure, the annual saving in the "Present with LATA" case is \$202,000.

4.4.4 Chamblee

The results of the costing for the Chamblee Service Center are shown in Figure 4-5. Two time zones were considered in the costing for this case. The annual aggregate cost of the present system is \$4.549 million (TSR, \$3,170,000; Facility, \$585,000; ACD, \$146,000; Communications, \$648,000). The one-site case is Atlanta; the moderate-consolidation case consists of three sites: Atlanta, Miami, and Jacksonville. In this Service Center area, the lowest-cost option is the three-site case (annual saving of \$178,000).

As shown in the figure, the annual saving for the "Present with LATA" case is almost as large as for the moderate case \$148,000).

4.4.5 Covington

The results of the costing for the Covington Service Center area are shown in Figure 4-6. The aggregate annual cost of the present system is \$3.118 million (Communications, \$372,000; ACD, \$99,000; Facility, \$464,000; TSR, \$2,183,000). The one-site case is Detroit, and the only "moderate" case consists of two sites, Detroit and Cincinnati. In this Service Center, the lowest-option is a two-site option. As shown in the bar graph depicting savings over the present system, the annual saving for the two-site case is \$114,000.

As shown in the savings bar graph, the annual saving in the "Present with LATA" case is \$86,000.

4.4.6 Fresno

The results of the costing for the Fresno Service Center area are shown in Figure 4-7. The annual aggregate cost of the present system is \$5.087 million (TSR, \$3,633,000; Facility, \$796,000; ACD, \$170,000; Communications, \$488,000). The one-site case is Los Angeles; the moderate case consists of two sites, Los Angeles and San Francisco. In this Service Center, the best consolidation option is the two-site option (annual saving of \$531,000).

Figure 4-4. BROOKHAVEN SERVICE CENTER RESULTS

.

-1 --I 100200 10.00 Π Π

.

Figure 4-7. FRESNO SERVICE CENTER RESULTS

Π

As shown in the figure, the annual saving for the "Present with LATA" case is substantial (\$372,000).

4.4.7 Kansas City

The results of the costing for the Kansas City Service Center are shown in Figure 4-8. The aggregate annual cost of the present system is \$3.791 million (TSR, \$2,684,000; Facility, \$482,000; ACD, \$125,000; Communications, \$500,000). The one-site case is Chicago; the moderateconsolidation case consists of two sites, Chicago and St. Louis. In this Service Center area, the lowest-cost consolidation option is the two-site case, although both the one-site and "Present with LATA" cases are substantially equivalent in cost savings to the moderate case. As shown in the bar graph, the annual cost saving in the moderate-consolidation case is \$244,000.

As shown in the savings bar chart, the annual saving in the "Present with LATA" case is \$210,000.

4.4.8 Memphis

The results of the costing for the Memphis Service Center area are shown in Figure 4-9. The aggregate annual cost of the present system is \$4,182,000 (TSR, \$2,889,000; Facility, \$494,000; ACD, \$136,000; Communications, \$663,000). The one-site case is Indianpolis; the moderateconsolidation case is a two-site case consisting of Indianapolis and Norfolk. In this Service Center area, the lowest-cost option is the moderate-consolidation case (annual saving of \$419,000).

As shown in the savings bar chart, the annual saving in the "Present with LATA" case is \$351,000.

4.4.9 Ogden

The results of the costing for the Ogden Service Center area are shown in Figure 4-10. Three time zones were considered in the costing for this case. The aggregate annual cost of the present system is \$5.944 million (TSR, \$3,832,000; Facility, \$686,000; ACD, \$182,000; Communications, \$1,244,000). The one-site case is Denver; the moderate case consists of three sites: Denver, St. Paul, and Seattle. For this Service Center area, the lowest-cost option is the three-site case (annual saving of \$844,000).

As shown in the figure, the annual saving for the "Present with LATA" case is \$741,000.

4.4.10 Philadelphia

The results of the costing for the Philadelphia Service Center area are shown in Figure 4-11. The annual aggregate cost of the present system is \$3.367 million (TSR, \$2,465,000; Facility, \$546,000; ACD, \$111,000; Communications, \$245,000). The one-site case is Baltimore; the moderate

Figure 4-8. KANSAS CITY SERVICE CENTER RESULTS

1 Π -

Figure 4-9. MEMPHIS SERVICE CENTER RESULTS

4-19

Figure 4-10. OGDEN SERVICE CENTER RESULTS

Π

Π

Figure 4-11. PHILADELPHIA SERVICE CENTER RESULTS

case consists of two sites, Baltimore and Philadelphia. For this Service Center area, the lowest-cost consolidation option is the one-site case (annual saving of \$157,000).

As shown in the figure, the annual saving for the "Present with LATA" case is \$53,000.

4.4.11 Inter-Service Center and Summary

A summary of the preceding results for each of the ten Service Center areas is shown in Figure 4-12. The sum of the annual costs for each of the ten present cases is \$42,473,000 (TSR, \$29,689,000; Facility, \$5,943,000; ACD, \$1,377,000; Communications, \$5,464,000). The next bar represents the sum of the costs for each of the ten "Present with LATA" cases. The third bar represents the sum of the costs for the ten optimum cases (one-, two-, or three-site cases). The fourth bar represents the sum of the costs for the ten one-site cases.

The last bar represents the cost of an eight-site consolidation option with the Service Center area constraints removed. The sites that comprise the ten optimum consolidation cases were used as a starting point for this non-IDRS case. A cull analysis was then performed to determine the site ordering, as explained in Chapter Three. The factors used in the cull analysis are indicative of the cost penalties associated with the various levels of site consolidation. These factors were plotted for the non-IDRS case as a function of the number of sites remaining. This plot was nonlinear and showed that the communications cost penalty increased as the number of sites was reduced -- a logical outcome. The plot showed a definite breakpoint at the eight-site level of consolidation; i.e., the communications costs rise steeply as consolidation proceeds to fewer than eight sites. Hence, the eight-site case was costed. These eight sites are:

- Atlanta
- Dallas
- Denver
- Indianapolis
- Los Angeles
- Manhattan
- Miami
- Seattle

Basically, each of these eight sites serves all local, WATS, and FX calls in its geographical area.

Figure 4-12. NATIONWIDE CONSOLIDATION AND SUMMARY

Π

The annual cost of the non-IRDS eight-site case is \$38,744,000 (TSR, \$25,154,000; Facility, \$5,379,000; ACD, \$727,000; and Communications, \$7,484,000). This cost is only \$48,000 greater than the cost of the ten optimum consolidation cases. Considering the magnitude of the costs involved, this cost differential is insignificant. An important point, however, is that no excessive cost penalties are being incurred solely as a result of the IDRS constraints.

4.4.12 WATS-to-FX Diversion

Table 4-1 shows the WATS-to-FX Diversion savings on a per-Service Center basis. For example, in the Andover Service Center, if new FX groups were created so that the traffic from New Haven and Waterbury could be diverted from WATS to FX, the annual saving in the present case either with or without LATA would be \$12,900. The annual saving for both the optimum consolidation case and the one-site case would be \$14,800 because New Haven and Waterbury areas would be served from Boston instead of Hartford. In every case, the new FX group is assumed to go to the closest TFTS office, which accounts for the cost variation between the optimum and the one-site cases for the Chamblee, Fresno, Kansas City, Memphis, Ogden, and Philadelphia Service Centers. In Chapter Five, these WATS-to-FX diversion savings will be combined directly with consolidation savings to determine the total savings possible in the TFTS. The saving in the one-site case is generally greater than in the optimum case because telephone traffic is being diverated from more expensive WATS lines in the one-site cases.

Π Π П Π Π T 1

	Table 4-1.	WATS-TO-FX DIV	ERSION SAVINGS		
Service Center	New FX Groups Serving	Annual Savings in Present Case	Annual Savings in Present with LATA Case	Annual Savings in Optimum Consolidation Case	Annual Savings in One-Site Cases
Andover	New Haven, Waterbury, CT	\$ 12,900	\$ 12,900	\$ 14,800	\$ 14,800
Austin	Corpus Christi, TX	23,000	23,000	13,500	13,500
Brookhaven	1				
Chamblee	Hollywood, FL Macon, Savannah, GA	44,300	44,300	37,000	163, 300
Covington	1		-		
Fresno	Fresno, Sacramento,	53,600	53,600	53,600	71,900
Kansas City	kuverside, san bernardino Rockford, Peoria, IL Madison, WI	24,500	24,500	19,600	97,800
Memphis	Charlotte, Raleigh, Winstron-Salem, NC	38,900	38,900	36,200	17,600
Odgen	Colorado Springs, CO; Tucson, AZ; Duluth, MN	53,500	53,500	32,000	184,000
Philadelphia	Scranton, Erie, PA	9,600	9,600	4,300	33,100
	Total	\$260,300	\$260,300	\$211,000	\$596,000

CHAPTER FIVE

RECOMMENDATIONS

This chapter contains a recommended plan of action that the IRS should implement for each of the ten Service Center areas in order to obtain the maximum savings in TFTS operating cost. Included with these recommendations are observations concerning alternative cost-saving measures that could be taken, such as load sharing (LATA) and diversion of traffic from more expensive WATS to less expensive FX.

5.1 GROUND RULES AND GENERAL OBSERVATIONS

A fundamental ground rule followed throughout this study is that each TFTS site will provide enough TSRs to ensure an average speed of answer (ASA) of 20 seconds for incoming calls. All cost-saving figures are based on the assumption that the present system now provides or will provide an ASA of 20 seconds. The degree of error in the cost-saving estimates is directly related to the degree of error in this ground rule (which varies from site to site).

Two general observations can be made concerning the study results. First, the load-sharing technique of LATA should be carefully considered by the IRS. If the IRS is now providing ASA 20 service, then considerable cost savings are possible through the introduction of LATA (\$2,501,000/year) with little or no one-time expenses. If, on the other hand, the present service is poorer than ASA 20, the LATA technique offers a method of improving the grade of service offered to the U.S. public by the present offices (to the IRS objective of ASA 20) with a minimum cost increase.

The second general observation is that the annual saving for the recommended consolidation options summed over all ten Service Center areas is approximately \$3,800,000, which corresponds to a saving of roughly 9 percent of present nationwide system operating costs. The percentage saving varies by Service Center area from a low of 4 percent to a high of 14 percent. All recommendations are made on a per-Service Center basis.

5.2 DETAILED RECOMMENDATIONS

Recommendations for the ten Service Center areas are presented individually in Subsections 5.2.1 through 5.2.10. The recommendations address (1) the lowest-cost consolidation plan, (2) the LATA cost-saving alternatives not involving site consolidations, and (3) the WATS-to-FX diversion recommendations where applicable.

A summary table is presented in Section 5.2.11. It shows the cost savings that could be obtained by combining all of the possible costreduction techniques as applicable. For example, the WATS-to-FX diversion cost savings have been added to those savings possible in the "Present with LATA" case and the moderate-consolidation case where applicable.

5.2.1 Andover

A two-site consolidation (Boston and Buffalo) is the recommended option in the Andover Service Center area, with an annual saving of \$302,000. This recommendation is made because the present ACDs in these two sites could be expanded relatively easily to handle the increased traffic. Although a one-site (Boston) consolidation is slightly less expensive (the difference of \$10,000 per year is not significant), that option would require installation of a new ACD either to augment or to replace the present ACD.

Alternatively, it is recommended that the IRS consider implementing some form of LATA among the present sites in this area. This would require relatively small one-time expenditures, no site moves, and no other relocations, and could potentially result in annual savings of \$251,000.

It is further recommended that two new FX line groups be created to serve the New Haven and Waterbury areas. These new line groups would divert traffic from the present WATS line group at the estimated annual saving of \$12,900 in the present case.

5.2.2 Austin

A one-site consolidation into the Dallas answering site is the recommended consolidation option, with an annual saving of \$405,000. This site would require 298 TSRs during the peak period of the year, necessitating installation of another ACD either to replace or to augment the present 3A ACD in Dallas. Substantial one-time installation costs would be incurred. A larger-capacity Collins ACD has just been installed in the Houston answering site. It is recommended that if the IRS desires to implement a one-site consolidation in this Service Center area, Houston should be considered as the site to consolidate into. Although the communications costs would be somewhat higher in a Houston one-site consolidation, many of the other cost benefits would be retained. Alternatively, it is recommended that the IRS consider implementing some form of load sharing, interflow, or LATA among the present sites in this area. This would require relatively small one-time expenditures, no site moves, and no other relocations, and could result in an annual saving of \$87,000.

Regardless of the consolidation option, routing the present Corpus Christi area traffic over FX lines instead of WATS lines would involve very low one-time installation charges, and this WATS-to-FX diversion would result in an annual saving of \$23,000 in the present case. Both the LATA and the WATS-to-FX diversion could be implemented immediately and independently of any eventual plans for site consolidation.

5.2.3 Brookhaven

11

11

The one-site consolidation (Manhattan) is the recommended consolidation option in the Brookhaven Service Center area (annual saving of \$273,000). It would require installation of a new ACD in the Manhattan office either to augment or to replace the existing 3A ACD at that site. There would be one-time expenses associated with this new ACD, as well as with existing ACD terminations and possible employee relocation.

As an alternative to site relocation, LATA could be implemented, with a potential annual saving of \$202,000. To implement LATA would require only a minimal one-time set-up expense.

5.2.4 Chamblee

A one-site consolidation (Atlanta) is the preferred option (annual saving of \$267,300). Although the three-site case involves the lowest cost not considering WATS-to-FX diversion, when that diversion is considered, the one-site case is the preferred option. The one-site option, however, will require either augmenting or replacing the present ACD in Atlanta.

Alternatively, it is recommended that the IRS consider implementing some form of LATA among the present sites in this area. This would require relatively small one-time expenditures, no site moves, and no other relocations, and could result in an annual saving \$148,000.

It is further recommended that new FX line groups be created for the traffic from Hollywood, Florida, and Savannah, Macon, and Columbus, Georgia. This would result in estimated annual savings of \$44,300 in the present case.

5.2.5 Covington

A two-site consolidation (Detroit and Cincinnati) is the recommended consolidation option in the Covington Service Center area (annual saving of \$114,000). The 3A ACDs in each of these sites would need to be expanded, but these ACDs have adequate capacity for this expansion. To implement this site consolidation, there would be a one-time relocation expense.

As an alternative to site consolidation, LATA could be implemented, with a potential annual saving of \$86,000. This would require only a minimal one-time set-up expense.

There are no specific recommendations for the Covington Service Center area concerning WATS-to-FX diversion. However, as new areas of population concentration develop in the future, consideration should be given to serving that segment of the public with FX lines instead of WATS lines.

5.2.6 Fresno

A two-site consolidation (Los Angeles and San Francisco) is the lowestcost consolidation option for the Fresno Service Center area (annual saving of \$479,000). This option would require larger ACDs at both sites, however. There are currently 3A ACDs at both Oakland (San Francisco metropolitan area) and El Monte (Los Angeles metropolitan area). These ACDs could handle the TSR requirements for these two areas (117 and 193, respectively). It is therefore recommended that the IRS consider a two-site consolidation using these two sites (Oakland and El Monte).

An alternative to the consolidation would be LATA, which would involve minimal one-time rearrangement expenses but would yield a potential annual saving of \$372,000.

ARINC Research recommends that new FX groups be created for the traffic from Riverside, San Bernardino, Fresno, and Sacramento. This would result in estimated savings of \$53,600 in the present case.

5.2.7 Kansas City

The one-site consolidation (Chicago) is the recommended consolidation option in the Kansas City Service Center area (annual saving of \$436,000). Although the two-site case is the lowest-cost option not considering WATSto-FX diversion, when that diversion is considered, the one-site case is the preferred option. It would require either replacing or augmenting the ACD at this site.

As an alternative to site consolidation, LATA could be implemented, with a potential annual saving of \$210,000. To implement LATA would require only a minimal one-time set-up expense.

We recommend that the IRS consider serving the following areas with FX lines instead of WATS lines: Rockford and Peoria, Illinois; and Madison, Wisconsin. This would result in estimated annual savings of \$24,500 in the present case.

5.2.8 Memphis

A two-site consolidation (Indianapolis and Norfolk) is the recommended option in the Memphis Service Center area (annual saving of \$419,000). This option would require replacing the existing key system at the Norfolk site with a large ACD such as a 3A. The existing 3A ACD at Indianapolis could be expanded to handle the added traffic there. A two-site consolidation as proposed would involve substantial one-time expenses for a new ACD installation, ACD-termination liabilities, and office-closing expenses.

It is recommended that the IRS consider implementing LATA in the present system as a method of achieving annual savings of up to \$351,000, with little or no one-time expenses.

It is also recommended that some of the present North Carolina WATS traffic be diverted to new FX groups. These new FX groups would serve Charlotte, Raleigh, and Winston-Salem, North Carolina, at the estimated annual saving of \$38,900 in the present case.

5.2.9 Ogden

A three-site consolidation (Denver, St. Paul, and Seattle) is the recommended option in the Ogden Service Center (annual saving of \$844,000). This option would require replacing or augmenting the existing 2B ACD at Denver with a larger-capacity machine. The existing 3A ACDs at St. Paul and Seattle could be expanded to handle the extra traffic resulting from consolidation. This three-site consolidation would involve substantial one-time expenses for a new ACD installation (Denver), ACD-termination liabilities, and office-closing expenses.

It is recommended that the IRS consider implementing LATA in the present system as a method of achieving annual savings of up to \$741,000, with little or no one-time expenses.

It is also recommended that three new FX groups be created to serve the Colarado Springs, Colorado; Tucson, Arizona; and Duluth, Minnesota areas. Diverting this traffic from WATS to FX would result in the estimated annual saving of \$53,500 in the present case.

5.2.10 Philadelphia

A one-site consolidation (Baltimore) is the recommended option for the Philadelphia Service Center area (annual saving of \$157,000). This option would require augmenting or replacing the existing 3A ACD (peak Baltimore TSR requirement would be 220). It would involve substantial one-time expenses for new ACD installation, ACD-termination liabilities at the other three sites, and office-closing expenses.

It is recommended that the IRS consider implementing LATA in the present system as a method of achieving annual savings of up to \$53,000, with little or no one-time expenses.

It is also recommended that some of the present Pennsylvania WATS traffic be diverted to new FX groups. These new FX groups would serve Scranton and Erie, with the estimated annual cost saving of \$9,600 in the present case.

5.2.11 Summary of Recommendations

Table 5-1 summarizes the recommendations and savings on a per-Service Center basis. The recommended consolidation options are shown for each of the ten Service Center areas, along with the annual savings potential for each of the alternative reconfigurations. For example, if the IRS implemented the recommended two-site consolidation in the Andover Service Center Area, the annual savings potential, including the savings from WATS-to-FX diversion as recommended, would be \$326,800. If the IRS did not consolidate, but rather implemented LATA with the present system, the annual savings potential would be \$263,900. If the IRS chose only to implement the recommended WATS-to-FX diversion with the present system, the annual savings potential would be \$12,900.

Table 5-1. SUMMARY OF RECOMMENDATIONS AND SAVINGS								
Service Center Area	Recommended Action	Annual Savings, Including, WATS-to-FX Diversion	Annual Savings for "Present with LATA" and WATS- to-FX Diversion	Annual Savings, WATS-to-FX Diversion Only				
Andover	Two-site consolidation to Boston and Buffalo	\$ 316,800	\$ 263,900	\$ 12,900				
Austin	One-site consolidation to Dallas	418,500	110,300	23,300				
Brookhaven	One-site consolidation to Manhattan	273,000	202,000					
Chamblee	One-site consolidation to Atlanta	267,300	192,300	44,300				
Covington	Two-site consolidation to Detroit and Cincinnati	114,000	86,000					
Fresno	Two-site consolidation to Los Angles and San Francisco	584,600	425,600	53,600				
Kansas City	One-site consolidation to Chicago	317,800	234,500	24,500				
Memphis	Two-site consolidation to Indianapolis and Norfolk	455,200	389,900	38,900				
Ogden	Three-site consolidation to Denver, St. Paul, and Seattle	876,000	794,500	53,500				
Philadelphia	One-site consolidation to Baltimore	190,100	62,600	9,600				
	Totals	\$3,813,300	\$2,761,600	\$260,600				

APPENDIX A

IRS TELECOMMUNICATIONS SUPPORT GROUND RULES

The following ground rules were established for the Task One study:

- 1. The telephone system under consideration is dedicated entirely to tax information service.
- There are 10 IRS Service Regions, each with its own data retrieval system. All consolidation options except one will preserve these Service Region boundaries; i.e., there will be no inter-region traffic. A single case of major consolidation will be considered where the Service Region boundary constraints are removed.
- 3. The study will not consider DDD or FTS switched telephone service, but only FX, WATS, local, and, in some cases, tie lines (LATA).
- 4. The IRS standard for service is P10 (Poisson Tables) for telephone lines, with ASA of 20 seconds,
- 5. "Forms only" traffic or telephone service will not be considered in the study.
- 6. Transfer of calls to and from nonanswering sites will not be considered.
- 7. Call-back will not be included in the study.
- 8. The following consolidation options will be evaluated for each of the ten Service Regions:
 - (a) No consolidation of answering sites, but number of lines and TSRs enhanced to provide Pl0 and ASA of 20 seconds
 - (b) Consolidation to one site per Service Center Region
 - (c) Consolidation to an intermediate number of sites (exact number of sites to be determined by ARINC Research on a per-Service-Center basis)

In addition, there will be one case of major nationwide consolidation with no Service Center boundary restraints. The maximum number of cases to be costed is 31. LATA will be considered in each case.

- 9. There will be no scheduling constraints on TSR availability -- as many TSRs as are required during any given hours will be available.
- Any after-hours traffic volume in the present system is insignificant. Extended working hours can be arranged to accommodate any inter-time zone traffic.

- 11. The relative proportions of WATS/FX/local lines during the filing period should be used in allocating aggregate adjusted demand to each trunk group.
- 12. The consolidation options will be compared financially on the basis of one-time costs (e.g., BTC, ACD installation) and recurring costs. One-time costs such as employee relocation, construction, etc., will not be considered.
- 13. It is recognized that the IRS, for the purposes of matching the number of circuits to the amount of traffic, can adjust the number of circuits as often as once a month. This seasonal circuit readjustment will be considered in formulation of the cost-analysis approach for the various consolidation options.
- 14. The study period is FY 1976, and no traffic growth projections will be included for the Task One report. Observations and recommendations on traffic-growth sensitivity will be made in the final report.
- 15. The adjusted demand will be reduced by 7 percent, per IRS directive, in calculating the number of TSRs required for ASA 20 service. This factor is to account for blockage on the incoming telephone trunks and some abandoned calls.
- 16. Referral TSRs will be included with the front-line TSRs in determining the staffing requirements.
- 17. A 2- to 3-percent traffic growth rate will be used for the Task Two study of ACDs. The Philadelphia answering site will be used as the basis of sizing/features/costing for the Task Two effort. Non-ACD features (e.g., local PBX service) will not be considered.
- 18. Interstate WATS charges will be reduced by 25 percent to reflect savings resulting from Full-Time/Measured-Time economies and the one free line; intrastate charges will be reduced by 10 percent for the same reason.
- 19. Diversion from WATS to FX will be considered. Adjusted demand for the cities to be added to the network will be calculated on the basis of the regression equation: CCS during a period 2 busy hour is population in thousands.
- 20. For purposes of computerized costing, both the Poisson trunking and Erlang C staffing curves will be piecewise-modeled by curvilinear functions.
- 21. The round-off rule for both trunking and staffing is as follows: fractional part > .1, round up; otherwise, round down.
- 22. The intrastate FX cost model is \$80 + .54¢ per mile. The interstate FX cost model is \$110 + .54¢ per mile.
- 23. The single case of inter-IDRS consolidation will start with the optimum consolidation options for each of the ten IDRS regions.
- 24. Where Full-Time WATS rates were not available, they were estimated on the basis of rates for a state with comparable measured time rates.

25. States divided by a time zone were considered to be wholly contained in the time zone of the major portion of the Service Center area. The only exception to this rule was Ogden, for which each state split by a time zone was considered to be in the time zone containing the major portion of that state.

[]

Π

APPENDIX B

TRAFFIC DATA PROVIDED BY THE IRS

The IRS provided traffic data in several different forms. Table B-1 represents the annual adjusted demand. Table B-2 lists the factors used in converting annual adjusted demand into hourly demand during Periods 2 and 6. These factors reflect the traffic ratios that were supplied by the IRS.

	Table B-1.	ANNUAL ADJUSTED DEMAND	
Albany	273341	Bailey's Yrds	280586
Augusta	97397	Greensboro	524077
Boston	681885	Indianapolis	587018
Buffalo	661035	Iouisville	297742
Burlington	76184	Memphis	211931
Hartford	497800	Nashville	414871
Portsmouth	122634	Norfolk	168046
Providence	210232	Parkersburg	149389
		Richmond	422540
Brooklyn	524937	Atlanta	601438
Camden	265851	Birmingham	498720
Manhattan	1182770	Columbia	287970
Mineola	231853	Jackson	281708
Newark	852592	Jacksonville	697094
Smithtown	254332	Miami	1311577
Baltimore	1167598	Cleveland	875151
Philadelphia	1064671	Cincinnati	679751
Pittsburgh	529130		
Wilmington	162286	Detroit	841139
Aberdeen	92255	Chicago	996330
Boise	111468	Des Moines	285585
Denver	439503	Kansas City	237765
Fargo	124815	Milwaukee	569098
Helena	103875	Springfield	361609
Las Vegas	238616	St. Louis	582112
Omaha	264145		526075
Phoenix	382324	Carson	536075
Portland	517087	El Monte	/06289
Salt Lake City	263256	Los Angeles	052542
Seattle	702907	Oakland	881765
Spokane	105032	San Diego	313875
St. Paul	562760	San Francisco San Jose	305409
Albuquerque	198397	Van Nuys	351368
Dallas	1186756		
Houston	1086507		
Little Rock	285236		
New Orleans	506930		
Oklahoma City	432475		
Wichita	279256		

B-1
Table B-2.	FACTORS USED F	OR CONVERSION
Hour Ending	Ratio of Hour Annual Adju	ly Traffic to sted Demand
	Period 2	Period 6
9	8.167×10^{-4}	1.321×10^{-4}
10	1.320×10^{-3}	2.135×10^{-4}
11	1.454×10^{-3}	2.352×10^{-4}
12	1.376×10^{-3}	2.226×10^{-4}
13	1.164×10^{-3}	1.882×10^{-4}
14	1.365×10^{-3}	2.208×10^{-4}
15	1.343×10^{-3}	2.171×10^{-4}
16	1.320×10^{-3}	2.135×10^{-4}
17	1.029×10^{-3}	1.665×10^{-4}

Π

1

Π

APPENDIX C

Π

Π

Π

SITE INVENTORY DATA PROVIDED BY THE IRS

A Toll-Free Telephone Site inventory sheet is presented on the following pages as an example of the data supplied by the IRS for use in this site consolidation study. One Toll-Free Telephone Site inventory was supplied for each site in the present system.

[]

Π

Π

Π

Π

[]

1. Local Lines: N/a Con e. Total Calls Received 8 b. Our flow/Nery c. All Trunks Bury 2. WITS Lines: N/a e. Total Calls Received	nto	Min.			Number of	Monthly	Annual C	mnect/			
e. Total Calls Received 8 b. Overflaw/Buay c. All Trunks Buay 2. WATS Lines: n/a s. Total Calls Received			Max.	Unit Cost	Totalizers	Unit Cost	Disconne	t Charges	FORCED ADMI	NISTRATIO	N DATA
b. Overflaw/Busy c. All Trunks Busy 2. WATS Lines: N/A s. Total Calla Received		-		1		\$	8		SYSTEM		
c, All Trunks Busy 2. WATS Lines: TJ/8 a. Total Calls Received									Rented from	Telephon	e Comp
2. WATS Lines: N/a e. Total Calls Received									and obtaine	d from Di	gital
									contains 20 registers a	0 digital nd 50 tim	count e meas
b. Overflow/dusy	and the								circuit reg	isters.	The fi
c. All Trunks Buey		-	1						90 register	s count t	he num
3. Foreign Exchange Lines:* n/a									wering stat	ions. The	e next
b. Overflow/Busy			1						calls recei	ved on lo	cal tr
c. All Trunks Buey		-	1						The next 40	register	s coun
"If more than one trunk grouping, as	upply the in	formati	on on the	space below	for each suc	ch grouping.	1		number of c WATS Trunks	alls rece	ived of f the
									10 are used tion call c through 89; count, regi total WATS ters 150 th overflow an Only 9 circ registers, are being u	ount, reg total lo sters 90 trunk cou rough 189 d WATS ov wit measu out of th	isters cal tr throug nt, re ; loca erflow uring ne next
4. Other Type Circuit Registers: (Secify)									They measur positions m time positi time positi	e (1) Tot anned, (2 ons busy, ons talk,	al tim (3) Tota (4) L
B. Desiding Designation		1 10	0						trunk waiti	ng time,	123 1
1 Total Calla Persiund at		-40	00			+			trunk Busy	lisage (7	WATS
All Work Stations									trank Busy	Usage, (F	Tran
2. Cells Received at an Indi- vidual Work Station					1				trunk busy	usage, (9) Cycl
C. Systems Registers Installs 1. ACD Package* Cost	tion Number Regist	of Hor	thly it Cost	2. FADS Reg	istors			Installa Cost	Count. tion Number of Registers	Monthly Unit Cost	
a. Total Calls Received		-		a. 6 Reg	ister Package	•					
b. All Trunks Busy				b. 7 Reg	ister Package	•		1 000	0.000	262 55	
c, Lost/Abandoned Calls				No of Curl	as Par Pario	4 oft 18/	1 26/ 1	150.0	250	1 202.22	
secarate trunk groupings with asag	ciated cost			Automatic P	rintout Feat	ure? (x)Yes	()No			1.	
				3. General	Systems Regi	eters					
				. Total	Calla Recei	ved					
				6. A11 T	runka Buay						
				c. Lost/	Abandoned Ca	11.					
				d. Other				1	_		1
D. Special Management Information Syste	ms ()Sta	r ():	18M-7 (X	JESS/ACO (Colline			Ini	4362.60		a
Form M-0116		This	Form	Expires .	Jan. 1 1	977	An	Hatt Cost			

BEST AVAILABLE COPY. Preceding Page BLank

C-3

PART II INCOMING CIRCUITRY

LOCAL

		Unit Cost		Numbe	r of Ci	rouite	(FY 176)								
Types of Incoming Circuitry	Suppended Cost	Installation	Monthly	41.	IAug.	ISen.	loct.	Nov.	Dec.	Lina.	Feb.	Mara	Apr.	Max	her.
1. Business Lines	n/a	40.00 ea	47.08	23	23	23	23	23	23	40	50	35	50	24	24
2. House Aabby					1										
3.															1
4.						T			1	T		T		T	

LONG DISTANCE

		Unit Cost		Number	of Cir	cuite (FY . 76)								
ypes of Incoming Circuitry	Suspended Cost	Installation	Monthly	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Jan.	Feb.	Her.	Apr.	May.	Jan.
1. WATS (Intre State)															
a. Full Time (24Ohrs in base period)	n/a	50.00 ea	600.00	6	6	6	6	6	6	15	20	20	20	6	6
b. Measured						1	1	1	+					1	-
hours in base rate							+	+	+	+		+	+	+	-
pres rate/per hour				+			+	+	+	1		+		+	-
hours in base rate								+	+					+	-
pres rate/per nour															
2 Franking Furthering											1		1		
Origin City Hilange		1									1	Į.	1.		ł
	1	1		1	1	1	1	1	1	1	1	1	1	1	-
•••••••••••••••••••••••••••••••••••••••					1	+		1	+		+	+	-		
b.											3			.*	
						1	1			-					
¢									+						
4				-			-	-	-	1	-		-	-	-
•															
and the second s		1				1	1	1	1		1	+	1	1	
f				1											-
9.				1	1	1	1	[]	1	1	1	1	1	1	
h.								-							
				1	1	1		1	1			1	1		
3. Other Special Long Distance Lines		1				1					1				
(Forms Only) n/a															
					T							T	T		
		1		-	1	1	1	1	1	-	1	-		1	
••				-	1	+		+	+	+	+	+		+	
°.				-	-	-	-	-	-	-	-	-	-	-	
	TOTAL IN	COMING C	IRCUITS												
	REVERSE O	CHARGE SI	ERVICES	\$	18	1	8	1	8	8	1	8	8	8	8
	Contraction of the second s				1		1	1			1				

BEST AVAILABLE COPY

C-4

PART III ANSWERING EQUIPMENT

Π

Π

Π

Π

[]

| Delayed Announcement Recording Monthly Costs

Anavering Equipment	Cost	llation	Recu	urring	1 at	yed Annou	1	2 nd	ecord	109 10	Night/	Veeken	-	nic on	Hold				
1. Type of ACD	1						I												
1. 24 5C							1			_			-			barra.			
b. 28 70	-						+			-			+	-		1			
c. 34 162	2,00	0.00	1,0	040.00	13	7.00	+	42.8	0	-	n/	8	-	n/a					
d. 4 5-	1						+						+			1			
•.							-												
(Other Specify)							88									1			
2. Type of Key System n/8							20												
e. 6 Button	-						+			-					11-1-1				
b. 10-12 Button	-						+			-+			+						
c. 18-20 Button	-		-				+						+-			-			
d, 30 Button	-				-		+						-			1.1			
•.	-	_	_				4						_		-				
(Other Specify)		Suspend	bed	Installa	tion	Monthly		Numbe	r of P	ositi	one (Fi	(176)							
3. Position Equipment (per unit cost)		Cost	-	Cost		Recurri	ng	Jul.	Aug.	Sep.	10ct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May.	Jun
e, Front Line Consoles (Attendant Posi	tions)		-	35.00	68	20.00	e	40	40	40	40	40	40	86	86	86	86	86	80
b. Referral Stations n/a			-		1				-	-	-	-	-	+	-	-	-	-	+
c. Monitoring/Supervisory Consoles				50.00	ea	35.00	e	2	2	2	2	2	2	4	4	4	4	2	2
TOTAL												1	1	1	-	-		_	-
4. Supplemental Equipment	-	Number Units	of	Installa Bost	tion	Monthly Recurri	ng												
a. Lasp Cabinete		2				20.00	e												
b. Emergency Power Source																			
C.																			
							-											at something	

(Other Specify) * Minimum number allowed 40 - remaining 46 suspended six months per year.

PART IN TRANSFER CAPABILITIES AND SUPPLEMENTAL EQUIPMENT

								Number o	f Trensfer			
Front Line Station Transfer Features	1	Type	of Trans	fer Ce	patility			Circuits	Available	Mont	thly Unit	and the second second
Capability to transfer call:		(spec	ify	Dial	, Automat	ic or Operato	r Assist)	Min.	Max	Cost	Der Circuit	
1. Within Teleshone Answering Unit									-	-		
a. To other Front Line Stations									-	_		
b. To general Referral Stations								-	-	-		and the second
c. To Technical Tax Referral Stations									+			
d. To IDRS Referral Stations												
e. To Microfilm Referral Stations										-		
f. To Any Switchboard Station								10	20	11	3.35 ea.	
(Other Specify)										Number	of Transfer	
		IfL	imited,S	secify	Type of	Transfer Capa	bility			Circuit	ts Available	Monthly Unit Cost
2. Outside Answering Unit n/a		Numbe	er of Sta	tions	(specify	e.g, Dial,	Automatic	or Operato	or Assist)	Min.	Max.	Per Circuit
. To other IRS Function's Referral Sta	ation										-	
b. To "Forms Only" Station										-		
c. To IDRS Referral Station												
d. To Microfilm Referral Station		-										
. To Walk - in Area Referral Station											+	
f. To other Government Agency												
Io											_	
(Other Specify)												
	Anel	ysis .	of Numbe	A	nalysis of	Amount of	No. of	Unit	osts U	nit Lost		
Type of Call Waiting Analysis Devices	of	aller	s Waitin		ime Caller	s are Waiting	Units	Instal	CO on	ONTHIN NO	reurring.	
1. Pagode Lampe	- yes	()	nel	×	es DOQ	nol		- 20.	w ear	K0.15	ea	
2. Chimes/Bells	yes	()	ne(y y	es ()							
3. Digital Display Device	1 705	(1	ne(× + ×		ne ()						
4.	yes	()	no () y	•• ()	no ()	1	-				

(Other Specify)

BEST AVAILABLE COPY

C-5

Page 3

Instructions for Completion - Toll-Free Telephone Site Inventory Form M-0116

The preceding four-part inventory is a one time only request for detailed information from every Toll-Free Tolephone System (HTTS) Site as it me configured on 6/30/76. Each page deals with a different aspect of the system's equipment end capability. Heast of this information will be available in either the Regional or District Offices; however, scan sections may request information evaluable from your local telephone service representative.

Coordination between Facilities Management and Taxpayer Service will be necessary for completion of the inventory.

Because of the comprehensive nature of the inventory, not every line will pertain to all the sites. If a category does not apply to your system, please indicate with the notation Not Applicable (NA). If the information requested does apply to your system but you are unable to abtain the date, please provide a brief nerretive explaining why the information is unavailable. In those sections requiring the number of atrouits or positions for a particular south, use the figure for the squipeent is use at the beginning of the south.

Attached are some explanatory notes for use in completion of the inventory. Any questions concerning completion of the fore should be directed to Gordon MaDonald, A:FN:I, 376-0521 or Harold Hiller, ACTS:1FF, 546-4550.

Part I. Equipment Operational Features

Annual Connect/Disconnect Charges - include all charges for connection or disconnection of lines as a result of changes in the master or configuration of lines during the year.

Part II, Incoming Circuitry

Measured WATS - in completing presium rate/per hour, monhtly data will be total monthly presium costs. Base rate values will be number of measured circuits per month.

House A abby - (scattime known as one-digit dialers) includes phones that are located outside of the TTS area (often situated at emil PO's) but which are tied directly into the Staphone system. <u>Other Local Circuitry</u> - includes any other trunk groups which enter the TTS locally (i.e., Government Switchboard/Centrex, Local Forms Only Lines).

<u>Suspended Costs</u> - total annual cost associated with suspension of circuits. Include all connect and/or disconnect charges as well as any sonthly charge for suspended equipsent,

Part III, Answering Equipment

<u>Position Equipment - if headests are leased rather than purchased</u> include the cost for them in the monthly recurring column for each type of position.

Apply of protisions - include only those referral positions within the TFTS that are different from the Front-Line attendant consoles. <u>Monitoring/Supervisory Consoles</u> - if necessary, define any differences between these two types of consoles and indicate difference in associated cost.

Suspended Costs - total annual costs for suspended position equipment. See Suspended Costs, Part II.

Supplemental Equipment (Other) - include any equipment unique to your system which is not covered elsewhere (i.e., diverting devices, also known as trans-a-call).

Part IV, Transfer Capabilities and Supplemental Equipment

Complete only those sections of Part IV that have an associated cost clearly identified with the capability to transfer from the front-line station to the particular type of station in question.

GPO

Page 4

BEST AVAILABLE COPY

APPENDIX D

STAFFING COST MODEL

The TFTS staffing model was developed by using the following assumptions:

- Erlang C assumptions (calls not answered upon arrival are held in queue)
- ASA = 20 seconds
- Weighted call value = 195 seconds for Period 2 (214 seconds for Period 6)

The staffing curve shown was derived by using the following equations:

$$E(c,a) = \frac{\begin{array}{c} a^{c} \\ c! \\ \hline c-a \end{array}}{\begin{array}{c} 1+a+a^{2}+\ldots+a^{c} \\ \hline c! \\ \hline c! \\ \hline c-a \end{array}}$$

$$\overline{d} = E(c,a) \times h$$

where

11

E(c,a) = probability of delay

c-a

c = number of servers (TSRs)

- a = total incoming traffic (in erlangs)
 - = number of calls × serving time per call
- \overline{d} = mean or average delay of all calls (=20 seconds)
- h = service time (ACWV)

To account for some calls being blocked from entering the ACD (due to trunk blockage) and some callers being impatient and hanging up before they are served, the number of incoming calls was reduced by 7 per cent per IRS directive before the TSR requirements were determined.

The curve (Figure D-1) was modeled in four segments for purposes of machine computation. The staffing model equations are shown in Table D-1.

Number of TSR's Required

Π

Figure D-1. STAFFING CURVE

The staffing costs were computed by using the staffing cost model (staffing subroutine) developed by the IRS. The following hourly rates were employed:

TSR	\$5.13
Clerical	\$3.79
Management	\$8.58

D-2

Table D-1.	STAFFING MODEL EQUATIONS
Traffic (x) (Calls/Hour)	Number of TSR's Required (y)
Per	riod 2 Staffing Model
9-40	$y = \left(\frac{0.93x}{2.02}\right)^{0.465}$
41-173	$y = \left(\frac{0.93x}{6.47}\right)^{0.752}$
174-665	$y = \frac{0.93x + 35.47}{17.55}$
Over 665	$y = \frac{0.93x + 66.79}{18.32}$
Per	iod 6 Staffing Model
9-35	$y = \left(\frac{0.93x}{2.33}\right)^{0.508}$
36-158	$y = \left(\frac{0.93x}{5.64}\right)^{0.746}$
159-605	$y = \frac{0.93x + 36.46}{15.93}$
Over 605	$y = \frac{0.93x + 62.39}{16.58}$

Π

Π

Π

П

Π

Other factors were used to account for overhead items as follows:

Factor
0.6
0.095
0.14
0.095

D-3

The number of management and clerical staff required as a function of TSR staff size (x) was calculated by using the following IRS guidelines:

Clerical staff size = $1 + \frac{x-23}{15}$ (round to next higher integer)

Management staff size = clerical staff size

From the staffing model developed and the wage rates as shown above, the composite staff costs (management, clerical, overhead, etc.) were calculated to be \$11.89/TSR hour. This figure was used in the costing work sheets.

[]

APPENDIX E

ACD COST MODEL

The ACD cost model was derived on the basis of a least-squares regression curve fit of the ACD cost data as reported in the Toll-Free Telephone Site inventory sheets. The least-squares curve that best described the sample ACD cost data was an exponential curve as shown.

ACD cost/TSR/mo (\$) = \$93.60
$$\times e^{-\frac{\#TSRs}{483}}$$

ACD costs were calculated for a sample of 20 ACDs based on the data supplied by the IRS. This sample included 2A, 2B, 3A, 4A, and ESS ACDs. The ACD costs were adjusted to account for the fact that ACD sizes were adjusted throughout the year to match the telephone-call volume. These costs were then plotted on a graph in the form of a scatter diagram. As expected, there is a wide variation from site to site in ACD costs. In order to generate a uniform cost model that could be used in the site-consolidation costing, a least-squares regression was performed. The resulting curve is shown below.

E-1

APPENDIX F

FACILITIES COST MODEL

Facility costs were provided by the IRS in a format that could be directly combined with the staffing model to yield facility costs as a function of the number of TSRs required. However, these facility costs cover not only TSR, but also clerical and management personnel. These cost categories were combined according to the staffing criteria provided by the IRS. Following is a list of Facility Costs per month per TSR for all sites.

	Facility Cost		Facility Cost
Site Name	(\$/TSK/mo.)	Site Name	(\$/TSR/mo.)
Albany	170	Bailey's X'rds	177
Augusta	155	Greensboro	151
Boston	183	Indianapolis	155
Buffalo	157	Louisville	171
Burlington	154	Memphis	151
Hartford	173	Nashville	151
Portsmouth	154	Norfolk	170
Providence	173	Parkersburg	170
		Richmond	170
Brooklyn	214		
Camden	187	Atlanta	168
Manhatten	214	Birmingham	155
Mineola	214	Columbia	151
Newark	187	Jacksonville	151
Smithtown	214	Jackson	151
		Miami	181
Baltimore	184		
Philadelphia	220	Cleveland	189
Pittsburgh	190	Cincinnati .	169
Wilmington	169	Detroit	191
Aberdeen	144	Albuquerque	167
Boise	156	Dallas	161
Denver	182	Houston	172
Fargo	160	Little Rock	144
Helena	144	New Orleans	161
Las Vegas	177	Oklahoma	144
Omaha	157	Wichita	157
Phoenix	177		
Portland	165	Carson	212
Salt Lake City	156	El Monte	212
Seattle	174	Los Angeles	166
Spokane	156	Oakland	212
St. Paul	171	San Diego	177
		San Francisco	212
Chicago	177	San Jose	177
Des Moines	157	Van Nuys	212
Kansas City	160		
Milwaukee	155		
Springfield	157		전 이번 영양은 것은 것은 것이라.
St. Louis	157		

APPENDIX G

CULL ANALYSIS RESULTS FOR EACH SERVICE CENTER AREA

The cull analysis work sheets are reproduced on the following pages.

Π Π [] II Π Π

COST TO CONSOLIDATE	and traffic	factor	traffic	facto-	traffic (factor	S +raffe 1	- lactur	+ H Hatter	factor	traffe	f. the	traffic	factor
Hrowkle 12	%	3.10	20	Site	90	site	%	ste	%	site	30	site	30	s.te
1. Bukenerton	44, 246	6		6		~								
8081. OCCH		4 010		4 216	1		1							
2. Autrusta	42,263	5	12:00	0	522, 44 52,177	60								
3961-1370		J Pours		9 1005		8 Dus								
3. PORTMULTING	246,47	J												
42 20-1313		8 635												
4. A.L.A.	199.216	10	312 141	91	13 512	20	2 364C	5.0	243,512	00				
4639-1629		L - HAK		6 . 14.41		6 HART		6 HART		6 HAN	1			
5. PROVIDENCE	210,232	1		6	210232	6	414,012	9						
4550 1219		3 6.55		3 2.75		S 612		3 605			4			
6. HALFNO	331,867	T T	331, 367	60	531, 367	22	331,461	22	341 867	57				
4637-1273		5 140		5 14		5 Pro		5 110		4 ALG				
7. 841.4-0	520.0.4	130	520 014	135	410.025	135	F1002 5	135		135				
5075.2556		a.a. r		46		4 P.C.		4 + 4		4 6.0				
8. Buston	900 48 5	22	+ 16 807	25	646 209	2.5	661,126	27	871.359	40				
pher ten		5 - 1940	-	5 PILO		5 P(40		S Più	-	6 HART				
.6														
10.														
						-							1	1
11.														
														1
12.														
13														
14.														
15.														
AR Form 64 i January 1976	scins'i	-												
			ULU.	T A	7 A 5 5	0	C L	100						
			BE	Y		A L		20						

G-3

Preceding Page BLank

COST TO CONSOLIMITE CULL SHEET 2/3 Ar Day (12 2/3	+rathe	factor S.te	+raff.c	facto - s. te	Straffic 2	factor site	1 2110	actor site	+12(f.c	factor	sitest of	factor	J. Jert	factor s.te
1. BURLINGTON	955,74					~								
		8												
2. AUGUSTA	261 55													
	-	8				-								
3. PURTS MOUTH	24,943													
		0												
4. ALCANY	194,216													
		9												
5. Plan Burch	216 212					\langle								
	-	8			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1									
6. HARTFORD	331,867		524,083	48										
			-	8 605										
7. BUFFALO	Y10.005		1-10 025	169										
				6 rIAN										
8. Buston	S34 uule		920654	85										
			-	L meht										
θ.														
10.														
					1	1	T	T	T	T		I		1
H.														
(2.														
13.														
	DIG	T A	IV/	P	C L	SOC								
.41	3	H		22	20075A	10								
ائز														
AR Form 641 January 1976		Γ				T								

G-4

]

Π Π [] Π Π Π Ù

++affe	factor	traffic	facts -	traffic 1	facts.	traffe f	actor	traffic	factor	traffc.	factor	J. J. J.	62.64 C
		ę				2		2		2		2	
o													
					1 X								
8													
					*								
8											_		
80													
~													
00		1											
		P10, 623	207										
			ind ,										
		1 446 739	576	1.51 61 61									
			7 . 4.6										
		+											
			8										
\downarrow													
_					1								1
_		30	2				S	A					
					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 m m	3	-					
-													
												_	

G-5

12	1															1			1		1		1			1		1
i (-							-	_			-				-	-	-	+	-	+		+			+		
	-							-				_						_	+	-	+		+			1		
4 . 4 . 4			1					_	_			_							4	+	+	+	1			4	+	
ivaile.																			1	-						1		
luch-	\backslash		1				\backslash																					
Inilla 9.																												
 	$\overline{)}$		\backslash		1		8	و	114	7	177	۲	242	1							T	T	T					
		1					118,812		358,560		9413,178		1 081 507								T	MAN	5					
14.45	\backslash			J			36	6	*"	7	111	1	949	و					T		T	2 N				1		5
tinte 5			119,038				558,22H		358 570		943,178		108.507									6	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			1		
-theta	34	6	61	4			96	6	114	1	155	Ч	242	6								10 m						
·	116,687		119,038				451,833		358 500		1 64.458		1.084.507															
1.1.1	34		61	+	27	4	43	3	114	-	155	4	242	•					1		T		AL	017				211
6	116.687		119 033		Her Bri	-	281,109		358 560		826.491		1.086.507															2,967
يتر م	×	+	2005	682		20		73	SANS	.38		634		536					T		T					1		
21L	15 Rod	1.345	1 800	49.5	HITA	89.45	CITY	47.43	W ORL	483 . 24	LLAS	436.4	1576N	138 - 3.														
Per fe	. Litt	212	DLA.	85	MIC MIC	74	4. OL	90	5. NG	8	6 DA	•	7. 410	80	×.			19.		::-		12.	13		.4:		15.	Form 64 uary 1976
5	-	1	1	1	10	1		1	1	1		1				G-6	1	1	1	1	1	1	1			1	1	A.F.

П [] Π Π Π Π Π

		,	1 1	1	1		1	1	1	1	I	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1 1		
4.2																													
)
(e. tr x. te																									1				
tratte																													_
141.45-					_																								
, 111 . ,																													
1.11			/		Ì								V										-	2					
14		1		~		1					2,967,11									1			22		2				
1.4.4	1		1						1		339	-	et 2 1	6									and D with		a load' ways kum			 	-
traffic S.		1		1						1	HO 225 1		1,445,06												W N Band				
3 1000 5.10	1		1		1				FI1	1	339	2	242	6															
1. M						1			359,560		1 5 22 040		1,086,507												1				
. 1711 1711		6 bal		6 DAL		L D AL		(BAL								1													
· · ·																													
*/c	×		16				~		ANS																				
STIN	16 601		U O VEQ		HITA		6174		W ORLE		ILLAG		Note																41
COLT TO	1. LIT		21. A.B.		3. 610		4. OL		S. NI		6. Do		7. 40		8.		4.			.		(3.		13			15.		Art Form 6 January 197

wallic facture																								
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1	1			1.4					271 5.6 2			6.01	36.9	05								
tratte factor					254 314 10.9	6					2665,6-112.0	5		10.5	24.0	1								
3 10 11 11 11 11 11 11 11 11 11 11 11 11	126,596 10.6	9	1	1.	254,332 10.9	6		1			1.101 120,22	3		6 6	1.51	43						Adu -	LCUI	
4 11 11 11 11 11 11 11 11 11 11 11 11 11	26.546 9.4	٤.			10.4				-9.9 CCH (PS	6	4.91 560 19.4	2		4.6	8.8	40			+			V V V V	Fall Neve	
5 Jour	1 4.6 9.67	5	9.4 653 153	e	1.9 456,452	2:			6.6 C		9.7 Top 19.8	5		4.7	4. 2	0.01						DECT AV	SUL A	
6	126.596 9.4	-2	23, 353 4.6	4 2.6	254, 332 6.1	Z: MIN	2.4 737 4.2	6	599 479 6.6	602 4	1 181 770 9.5	7											1	
Cost to conserved	1. CAMDEN T		A. MIULOLA		3. SMITHTOWN		4. BROOKLYN	(Augret Rack)	5. NEWARK		6. MANHATTAN	(Centrel Fark)	7.	. A lost of consulting	9. Charletz ar	10. D Cas.	5.m	11.	13.	13.	141.	15.		A.F. Form 641

U U U 0 U 1 1 Ū (I [] []

iffic factor																						-		+	+	-
factor tra																										_
11affe																4	_	-	-					-		_
traffic factor 20 site																										-
factor site	~																									
traffic				1				/																		
4 factor s.te					197	S AT.	75	5 AT-	6 86	4 . B HM	324 11	3 3 44			_				NGU			_		_	_	_
traffic 90		/			697,09		539,17(615,38		2.115.1								R. R							
facto- site	/		36	5 : ATL	179	2 648	75	2 9 2	60	4: 640	425	× 2. 5							Contraction of the second	a stor he						
traffic 70	11	/	185,781		4 40 163		251,176		429,540		1.31.577									12 12 2 Cor						
factor 5.te	32	H : 64M	3%	S : ATL	861	Z : CAE	55	S ATL	0)	WH3. +	425	1 42 : 2							Ref Cont							
traffic	148,287		185,787		490, 594		390,889		429,599		1.311.579															
SET TO CONSOLIMITE CULL SHEET	. JACKSON IAN	8035.2890	2. COLUMBIA CAE	6 901 . 1589	3. JACKSON VILLE JAK	7649.1276	4. BIRMINGTIGT BHA	7518.2446	5. ATLANTA ATL	7260.2083	6. migmi ma	8351.0527	7.	8.	÷		10.		11.	12.	13.		14.		اي:	

G-9

OST TO CONSOLIDATE CULL SHEET 2/2	+-all.	factor 3.te	traffic 3	facto- site	C	factor	1 1.	actor site	traffic	factor site	offic.	factor site	traffic	factor
1. JACKSON	148, 287			1										
		SATL	11											
2. CO. JMBIA	185, 781			1										
		S PI-	1		1									
3. JACKSONVILLE SAY	697.094		11.014	191		1								
			-	5.01.										
4. BIRMINGHAM	340, 889													
		SATL	~											
5. AT.ANTA AT.	992,595		1154.562	197	851 456	1111	3,163,233							
				3. SAK		(T m A	,							
6. MIAMI MIA	1 311 577		1.31.577	495	1 311 577	187								
				3.50		5: AT-								
7.														
.8														
٩.														
10.														
11.														
					T		T	T						1
12.								T						
13,														
14.														
		1.00.1												1
اي:		X				E.	30							
		and the	2 8 8	N N N N	Rown where w	100								
R Form 641 anuary 1976														

G-10

[] П П П Π

				1	1	;	;	;	;	;	1	: :		1	;	!	:	1	1	1		;	; ;	:	;	1	1
· · ·							 			!			-+		_		1	-		-+	1				4		
Lach-								-						- +		_	1			_	-	-			4	4	
				_		4	_	\downarrow	-	+					-		+	-			-	-			+	-	4
c lactor				_		+	+	+	+				_		-	-		X		-	+	-			+		-
	_			-	_	4	4	\downarrow	+	+					1		+		5	4					4	+	
Lick-	\sum		V						+								1	E. E.	-								
Latter 1		1																Can I and									
Z tactor	\sum		5 137	3	1 336	2	_									-									4		
traffe.		/	85-18-5		8 55 41												1 000	Marris									
Hacks-	50	3.	130	-	66	-											1 m		-								
raite 3.	551,02 t		58, 285		958 . 588																	\downarrow					
Dat to conversate	. Cleveland	5574.2543	2. Ciacianali	6263.2679	3. Detroit	5536 . 2828	H.		5.	e.		7.		8.		٩.		10.	11.		12.	13.		14.		اي:	1 Form 641 Wary 1976
0				1	1	1	1	1	1	1	1		1	G-	-11	1	1	1	1	1	1	1	1	1	1	1	N S

CULL SHEET 1.2 FRESNO 1. OAKLAND 27 8486.8615 2. SAN JOSE 30 8583.8619 3. 5L MUNTE 30 4. SAN DIEES 30 4. SAN DIEES 30 4. SAN DIEES 30 4. SAN DIEES 31 9.10 9	-416.c 30 71,312	factor s.te	1:3ft:c	facto- site	traffic 90	factor	traffic 30	factor site	traffic	factors	straffic 30	factor site	J'seit	factor
I. OAKLAND 21 8486.8675 20 2. SAN JOSE 300 8583.8619 300 3. EL MUNTE 300 9202.7840 313 94.68.762 313 94.68.762 313 94.68.762 313 94.68.762 313	71.312								22				and	
84 86.8695 2.5AN 5056 305 8 583.8619 3. EL MUNTE 300 9202.7840 4.5AN DIEGS 313 94 68.7629 313 94 68.7623 343 94 68.7623 343		2.17	z	1.1								/		
2. 5AN JOSE 30: 8 583.8619 3. EL MUNTE 30: 9202.7840 313 94 68.7629 313 94 68.7629 313		5: SF	1		1						1			
8 583.8619 3. EL MUNTE 300 9202.7840 1.56N DIEGO 9468.76129 313 9468.76129 343 343 343 344 344 344 344 34	604.20	12	305 409	13	Pc 4, 208	13	Pc 4, 265	13	305 Ho4	13		/		
3. EL MUNTE 300 9202.7840 4.5AN DIEGO 313 9468.7629 5.5AN FRANCISCO 34	1	: OAK		5 56		5.SF		5:56		5:56				
4.5AN DICGO 313 4.5AN DICGO 313 94 68.7629 5.5AN FRANCISCO 34	205 70	т	306,503	ч								1.1		
4. SAN DIEGS 313 94 68. 7629 5. SAN FRANCISCO 34 84452 2715		LA.		8.LA										
94 68. 7629 5. SAN FRANCISCO 34 8442 2712	13,875	34	213,875	34	213 315	35	313.815	35	313 875	35	313, 875	35		
5. SAN FRANCISCO 34				3: 210		3 . LA		8 - LA		8.LA		B. LA	1	
2100 0200	121.12	2.75	613034	26	413,034	24	100319	26	613 034	26	913443*	321	6 14 818	321
110.0100		200		2:53		2.53		2 51		2:51	-	8. LA		8 LA
6. VAN NUYS 35	51,348	2	351,368	2	31,368	S						1		
9197.7919		8. LA		8-LA		S.LA			/				~	
T. CARSUN 530	36.075	* 11	536,075	* 5	526.075	* 11	536,015	* 11				and the second		~
(not are able)	3	8:LA		3:-A		8-LA		8.19						
8. 403 41146465 65	5 2 542	00	242,542	8	959 OHS #	12	2 4 0 12 1	147	1,846 486	207	1846 486	207	2160.363	156
9 4213.7878	3	. ELM		3 Elm		6:11		4.50		4:50		4.50		5:56
														
10.														
11.														
11	T	Τ												
13.														
		Ι		a 60	the second	100								1
14. DIV	-	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			3	Simes.								
112 PUD	1			200 Lat										
AR Form 641 January 1976														

Π П Π

Π Π

COST TO CONSOLIMITE CULL SHEET KANSO, CITY 13	++alkc 90	factor s.te	traffic 5	facto- site	traffic 4	factor s.te	Jalle F	actor site	1.136++	factor site	traif.c 30	factor site	traffic 30	factor s.te
1. DES MOINES	196,261	31	190,201	31	176 791	31				1				
6471.4275		2 : 40		2 20	2		/							
2. KANSAS CITY , MO	237,765	24	237,765	42	237755	4 17	414 500	99						
7027.4203		m 530 . 1		1 045 m		~ 50 w		4 574						
3. SPRINGFILLO, ILL	251,367	21		1										
6539.3513		4 51-					~							
4. ST LOUIS	273052	33	524,419	1251	PIHHES	25	514,462	125						
6845-1089		3:5PR		2:40		i re		2 × C						
5. MILWAUKER	301 287	44	301 287	24										
5788.3589	-	6 CHI		C. CH 1						-				
6. CHILAGY	044:19	54	671,440	54	ret 219	53	רבר,נוף	253						
5986.3426		simi . s		S. MIL		T		1						
7.														
8.														
														1
ō														
10.														
11.		0		A B B	185 ₆₀ 1859 1 1		CS	180						
12.			5		21 . or 1 3	and man								
13.														
14.														
ائ														
AR Form 64.	1.911	tol												
January 1970	-										-		_	

G-13

COST TO CONSOLIDATE	traffic	factor	2 traffic	facto -	traffic 1	actor	traffe f	lactor	traff:c	factor	traffe	factor	Diggert	factor
FANSAS CITY TO	%	s.te	20	Site	9°	s.te	%	site	%	site	30	site	9c	s te
1. DES moints	166,201													
		Ч	1											
2. KANSAS CITI, MD	237,752			1										
		٦	1											
J. SPY NGEISLD, ILL	736,367			1										
		1												
4. ST LOVIS	213 054		9 38915	770										
				6. 64										
5. Mumauca	31, 237			/										
		10												
6. Chicaco	671,440		125,518	253	1.9.706									
				4.576										
7.														
8.														
9.														
10.														
11.														
(1.														
13,														
2	and the	BBU	12 6	0.1 1	100	18								
14. K			A LINE A		Control Control Control Control Control	-								
3	a prod				1	1								1
15.														
						1								
January 1976														

G-14

-	
π.	7
а.	8.
2	8
	×.,
-	
а.	8
8	8
а.	2
~	- C.
5	15
•	
3	
18	新
-	-
8	
13	
22	22
100	and it
100	205
-	189
-	-
17	100
1.2	
1	10
18	60
-	
13	
4	
	-
19	18
3	
3	
*	10
	-
1	- 81
8	
8	
	11
	181
LEC	
LEF	
LEF	
LE	
LE	
LE	
LEEE	
LEEF	
LEET	
I LL LL Land	
I II had been	
I II II III	
LILI	
LILIE	
I had been in	
I II had been in	
I I LA LA LA	
I I LA LA LA	
I I I I had been been	
LIL LA LA VA V	
I had been been been been	
I had been been been	
I I I I had been been been	
I I I La had bed bad	
I I La had bed bed	
I I'L Lat had bed had a	
I I'L LA LA FA FA LA	
I I I I I I I I I I	
LIL LI LI LI LI	
I I'L had bed bed had had had.	
I had beed beed bad bater	

414- 414- 414- 414- 414- 414- 413- 412-	9 factor traitie lactor traitie factor traitie factor traitie factor traitie factor traitie factor				815 17 104, 815 17 104, 815 21 J	3 3 4 1			04% 15 148 046 15 308 42 413 413908 65	3 3 7 7 1	111 21 233 255 233453 25 233453 25 233453 25		431 42 24 931 42 211, 931 42 211, 931 42	8 8	586 26 280.536 280.586 44 280.586 44 280.586 44	3 3 4 4	451 43 283454 43 283,959 43 283,959 43	s s s s	الدد هار کې الحد هار در					ALLA DEPAG			
232,4716 5 1110,004,015 5 1110,004,01 1110,004,00 1110,004,004,00 1110,004,00 1110,004,00 1110,004,00 1110,004,00 1110,004,00 1110,004,00 1110,004,00 1110,004,00 1110,004,00 1110,004,004,00 1110,004,004,00 1110,004,004,004,004,004,004,004,004,004	P	3.	32,476	5	1 218 401	3	1 648.041	7	110.04%	3	201 177 3	4	211 931	8	280.586	3	283,459	8	516.227	5		-	-	1	t		

-

tralle factor tradet tradet traile tactor traile tactor traile factor traile factor to a the traile tactor to a the tactor to a							ك، 402. 14						44 LAO (15	, ц	415 89 123	ELI MON BIL L	8								
trattic tacto-	/				\setminus		412,008 65	۲ ،		$\overline{)}$	eh 155.11e	8	313,062 49	3	283459 5L	PLI Hop AIT	8	-+					ALLADE		6. J.M
ratte tack-	ום. אוו	F	- KIS	*	40. 947	*	68 046		201,177	6	162.114		239,586		151 154	18,225						114 777	IN IS		**
COST TO CONSOLIONTE	1. PARKE RS BURE LOV	-	2. GELLINS BORD . W. C. 10		3. RICHMOND IN		4. NORFOLK		S. Louisviele		6. mempells a		7. BAILEY'S CLOSS ROADS 2		8. MASHVILLE	1. INDIANARIS		10.	-11-	12.	E.		14.		All Form fil January 1976

And and a

6. minopelis 211, 4 7. Anile (vi sensenen ragazh 8. Minile agi 293 9. Exembori sigazh 10. 11. 12. 13. 14. 14. 14. 15. 14. 14. 14. 14. 15. 14. 14. 14. 14. 14. 14. 14. 14	1. PARKEES CURGE LAV 1. PARKEES CURGE LAV 2. Getens gave NU 3. Richmord NU 4. Northere	4-211. 132 90 31.476 33.476 9 104,915 4 1149,915 4 1148,046 1148,046	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1014	traffic	la fate	radie 6	s. tr.	4raf(i.c. %-	1406- 3.46	1. sile	s.tc	4.16 c	
7. Abrilly is classiands 20,314 - <t< td=""><td>6. mimpyls</td><td>1 151 1 e</td><td></td><td></td><td></td><td>\backslash</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	6. mimpyls	1 151 1 e				\backslash								
8. PASHULL 233,923 1,241,773 120 4 9. Explanaboult 519,327 1,241,773 120 4 10. 1 4 1 1 11. 1 1 1 1 13. 1 1 1 1 14. 1 1 1 1 13. 1 1 1 1 14. 1 1 1 1	7. BAILE V'S CROSSRAADE	+ 980 280 H			N									
9. THOMADOLIC 519, 120 400 120 400 10. 1 1 1 1 11. 1 1 1 1 11. 1 1 1 1 11. 1 1 1 1 11. 1 1 1 1 11. 1 1 1 1 11. 1 1 1 1 13. 1 1 1 1 13. 1 1 1 1	8. MASHUILLE	233,959												1.1.1
I:	9. THOID NAPOLIS	Tes, 912	1,2477	021 0	1	ŝite								
II. II. <td>10.</td> <td></td>	10.													
12. 13. BEG MHILLOOV (001 (001 (001 (001 (001 (001 (001 (00														
ис. Ли Form Bit. January 1976	(2. 3	510	MAIN	T	8	Ta								
	15. AR Form Br. January 1976		56'1	2,064										

. .

ST TO CONFOLIMITE	+raffic	3 factor s.te	traffic 12	L factor site	11 +raffe	factor c.te	traffic t	actor 4	4 7:33ert	teter 4.	3 3950	actor	Laffic %	fachr s.te
HELENA	18, 88 6	5.0	18,38 6	5.0		1		1.1						
6334.7348		Ы		S	/		1							
C. ACTIDET!	27.677	3.5		/		1								
5942.5.208		m					1							
L FARGO	41, 605	5.2	69 282	15.4	69,282	15.4	69,282	15.4						
5615.5132		٩		11		1		1			1			
4. Buist	41 015	13.3	SPP. JPP	13.3	246,445	6.61								
7046. 7967		L		S		s								
5. SPORANIE	105 036	1.50	4 5 0' SOI	1.50	123, 918	28.3	170,343	38.8						
6241 318J.		51		С.		13		13						
6. Sait LA.L	1.0 , 344	48.0	han call	48.0	163,004	49.0	400 271	58.5						
7576.7065		7		7		7		8						
7. DMAHA	19 .96	51.8	178 686	51.8	173 486	513	178.686	518						
668-1.4595		11		1	-	11		• 11						
8. LN VERE	190.993	1.94	150.913	1.64	608 001	1-62	648 041	49.1						
8665 - 1411		٩		4		4		4		1				
4. PHOLD	278 054	31.5	278.054	5.16	278054	2.15	120.812	71.5			1			
9135.6748		8				0		8	1	1	1			
10. 26,00416	450,425	130.6	heobse	130.6	354 034	130.6	HO HSE	130.6						
1501.5919		و		٩		5		و		1	1			
11. ST PAUL	ELLISLE	83.5	\$15.113	93.5	(11,378	53.3	37512	83.5						-
STIG 4018		m		3		3		\$						
12. POR - FND	954'SNH	65 5	445,440	65.5	054'544	65.5	44540	65 5						
4 99 394		13		61		1,		()						
13. Statte	551,512	1-18	551 511	1.18	115 155	1.18	551512	- 16						
6236. 3 89.0		11		11		1		1	1	1	T	T		
14.									T			T		
							ľ		6		THE REAL	T		
15.						RE		HAN A	202		3			
										-				

Π

	341814	tacter	+ralks	factor	4rattic	lachr	4rafic	19040	tratt: c	tactor	1-after	factor	Sittert	fachr
06062 76	%	8. hc	20	Site	%	5.10	å	ste	%	5.46	2	2.10	30	2
. FARGO	41,605	`		1		/								
5615.5182		a	1		/									
C. SPARNE	160,201		5 95.011	39		1								
6247.8180		10		10	1 × 1									
5. SA A	100.011		162.014	58										
7576.7065		s		S										
4. OMANA	13 90		139.811	52										
6687.4545		8		3										
S. LAS MUAL	190,993		628.001	49										
11. 14 . 3998		6		6										
6. PHOSERX	478.054		4.50 BLE	11										
9135.6143		2.		S										
7. DENUER	hiohse		HC0 - 52	131										
15.01 5999		3		3										1
8. 51 PAUL X	115 113		444.455	128									and the second	
5776-4498		4		T										1
9. PORTLAND	CPY 244		CP2, 244	65										
- 799.394		2		13								1		1
10. 241.722	512.122		315,155	18									1	
6336.8896		6		•							_	1		1
11. FILLEDA	129.84													1
		2	1		1									1
12. AURDEN	27,617	`		11/10		1						-		1
		8	1		1					_				1
13. BUISL	41.485								-	_		_		1
		۲	1								Ì	APA.		1
14.							Did				-	いい		1
									IL N	1				1
15.										1	-			1
				-		1			-	1	4	1	1	1
Form &	12.7	164.20	ברר ב	164 5										

fach. traffic 3e COPY interitant traffic factor traffic factor ICV III 1 437 236 011 A THEFT 16hSLLC 131 84 1 3 ~ m 5 3 1102054 222 165 419 947 354034 14.250 traffic factor 437 1692176 131 65 96 23. 227 345 64 3 3 ٥ c 5 BES 19 و 654541 +60,426 THI SCO 448 947 abh 'Shh 1 traffic factor 23. 128 65 34 10: 96 52 0 1645660 2 3 • 00 3 458947 227,335 173,686 440.45E ----42929 054 544 trathe factur 1 +8 65 131 50 1th SLLE 4.2 129 11 0 656, 544 96 + 5 10 5 3 • 145,152 224, 44F 189,811 430 BLC 190, 893 HO 138 0141344 1 fachr S.te 2 3 8 • 8 3 10155 ten'sol 130.666 Y20, 615 111 318 44.445 145,490 18,836 20414 400,531 190.943 364 034 119.15 traffic COST TO CONSOLIMITE CULL SMEET OGDEN 3/6 S. LAS WEAL 13. ABLADELN 3. SALT LAKS 9. PURTLAND 10. SLA77.1 6. Piscoly 8. 57 PAUL 2. SPUKANC S HAMO 7. DEWULR BUSL II. HILGAA FARGO AR Form 6 January 1976 13 13. 14. ÷ -

Π

2

ない

1993) 1997) 1997)

1

angan Se^ran

109-303 107-50

100 m.

[]

Ω

Π

M

G-21

CULL BUCK 1/6	++affic	factor	traffic 1	factor s: te	traffic 90	factor	trallic factor	traff.	ic factor site	staffer 30	factor	+raff:c	4 "
1. FARGO	41, 605					/	Second in						(1-1) (1-1)
	-	ac	/										
2. SPKANE	105.032		-	1		/				-			
		10						1					
3. SALT LAKE	162,004					~~~~							
		7											
4. OMAHIA	178, 686		0	1									
		8			and the second								
5. LAS VEGAS	568.001												1 p
		و											
6. PHOGUNX	278,054		448.947	273		/							
				2									121
7. DINVER	354,034		* 516.039	300									
				6					No. of Street,				
8. ST. MUL	375,173		¥ 141	437									1.5
			•	7									
9. PULTLAND	445,490			N		1.1							
		0			and services								
10. SEATTLE	551.515		* * *	1186									
	•			7									
11. HELE JA	18.836					1.							
		10											
12. ABERDEEN	27.677												
		8			1								
13. BOISE	544 JH					\backslash							
		10			~ /								
14.								2002	(VIA	II A	JIC	COD	
									AVE		10000 C	ち	_
15.								5					
]							
AR Form E			~~ ~	1 00 1								-	

 \square

Π Π 1 Π Π Ω

Cost to conjourante Curl Satur OG-Build	trailer	tactor 3.10	trailie 3	factor Site	Back traffic	TRACK- Factor	tratic	factor site	1.11 Lat	tach- site	al al	4 a. H.	1.311 c 2c	tacm?
1. FARGO	41,605-			/		1								
		8			\backslash									
2. SPEAN &	4 5 U. 3 01			1		\backslash								
		0	/											
3. SALT LAKC	400.641			1		\backslash								
		-			/									
4. DMAHA	199.601			/		\backslash								
		8	/											
5. LAS VEGAS	190.893			\backslash		/								
		5	/		1									
6. PHOLDIX	278.054			\backslash		1								
					1.1									
7. DENVER	460.425		981, 985	1.67										
				8										
8. ST PAUL	511,248		141 623	439										
				•										
9. PORTLAND	014. 2YH					/								
		0			1					111	8 28	10	COL	N
10. 56ATTLL	551,512		1,11,365	1186				a	2	200	nites nites nation		3	
				9				2	5					
11. HELENA	18.836			\backslash		1								
		0			1.1.									
12. 465 POEL	27.677					1 - 1 - T								
		8	/		and the second									
13. BOISE	46 445			1		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					+			
		0												
14.														
														1
اي:												-		
R Form 64	1		2775	ŝ	1	h						1.	1	
Javiuary 13/15														

realle factor tralle factor traile factor trailer factor													ONC SIK	~cita ->											A MARK	KEN NAM ADI TOD	CUL AVALUATE UN			
traffic factor							\backslash			1	1		114 SLL 2		//				/-	+		~	~ ~		\backslash	1		_		5
traitic factur	/					/					//		1,609,126 1634	01	1	//	~		1.11 365 1186											194,255 2
traitic tactor	41 tog	F	105,032	01	Hoo CAL	L	139.66	L	40, 843	F	+ 30, 91 a	Ŀ	264,034		575 173	1	440	10	112°, 12		18.386	10	27,617	5	Sty ab	10	_			
COST TO CONSOLIMTE	1. FARGO		2. SPOKANG		3. SALT LAKC		4. OMAHA		5. LAS VEEAS		6. PHOLPIX		7. DEMUCH		8. ST PAUL		9. PURTLAND		10. SENTLL		II. HI. SUA		12. ABLICDIEN		13. BolsE		14.		15.	AR Form 64
411 -3 M C BEST AVMUNDE COPY warde factor Fullie Anthe-Π traite barn à. 4. 604 1,327,414 118 9,2,224,059 3, PHI Π 4 teatte dure [] 818,437 80 × 848,637 80 N [] 1 4 GAL 1H4 : E 4 .641 1 ON2498 93 and tarks 56 M 114 482 0 3 PHL 1 80 1.042,498 L7 11.0.1 11 726'956 I WIL 121,715 3 75 916 82 r PHILAD ECPHIA 2. PHILADELPHIA 5251.1458 5621.2185 5510 - 1575 Luinni'GTON 4. BALTIMORY 21. PITTS BURGH 5326.1485 /.1 Form 641 January 1976 :2: 14. 13. 12. 5 12 G-25 8 1:-----1. e -1 1 1 i 1 İ I

1.

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	SIT TO CONSO LION TE	L. J		11	-	2		-		1-1		(3		TELE .	AUK
Circle Gam TT Mass L 13.13 24.74 13.0 13.14 21 21 <th>Circlessmert Masser L 5:13:377 1:00</th> <th>A Tideburger 48</th> <th>+raff.c</th> <th>factor S.le</th> <th>traffic f</th> <th>actor Site</th> <th>seff.</th> <th>facter</th> <th>+ 1311c +</th> <th>actor site</th> <th>+ra(1.c</th> <th>factor site</th> <th>30</th> <th>facter site</th> <th>** 36 C</th> <th>f1000</th>	Circlessmert Masser L 5:13:377 1:00	A Tideburger 48	+raff.c	factor S.le	traffic f	actor Site	seff.	facter	+ 1311c +	actor site	+ra(1.c	factor site	30	facter site	** 36 C	f1000
6-3-13-2771 1-10 1-0 1 1-31 1-31 1-31 6-3-13-2771 47976 48-314 21 1-314 21 1-314 24 423441 31 6-3-13-2771 47976 48-314 12 1-31 1-314 24 423441 31 7-305 5-302 4-314 12 1-31 1-31 1-314 2-4 4-314 7-305 5-303 4-314 20 2-31444 2-3 41741 2-3 41741 2-3 6-37 4-304420 1-37 1-30 1-3 41741 2-3 41741 2-3 41741 2-3 6-37 4-314 1-37 1-3 41741 2-3 41741 2-3 41741 2-3 8-45 4-344 1-37 1-3 41741 2-3 41741 2-3 41741 2-3 6-37 4-344 1-3 41741 2-3 41741 2-3 41741 2-3 6-37 4-342 1-37 1-3 41741 2-3 41741 2-3 41741 6-37 4-342 1-3 2-3 41741 2-3 41741 2-3 41741	6-3-1.3 7-1 1-0 1-0 1 1-0 1 1-0 1 6-3-1.3 7-1 42-1 6-314 2-1 6-314 2-1 6-314 2-1 6-314 2-1 6-3-1 7-1 49-76 7-1 2-1 6-314 2-1 6-314 2-1 6-314 2-1 7-3 3-3 3-3 1-1 2-1 1-1 2-1 1-1 2-1 7-3 3-3 3-3 1-1 2-3 1-1 2-3 1-1 2-3 7-44 3-3 1-1 1-1 2-3 1-1 1-3 1-1 1-3 8-31 3-1 1-1 1-2 1-1 1-3 1-1 1-3 1-1 8-31 3-1 1-1 1-3 1-1 1-3 1-1 1-3 8-31 3-1 1-1 1-3 1-1 1-3 1-1 8-31 3-1 1-1 1-3 1-1 1-3 1-1 9-31 1-1 1-1 1-1 1-1 1-1 1-1 9-31 1-1 1-1 1-1 1-1 1-1 1-1 9-31 1-1 1-1 1-1 1	CINCINMATE	584, 245	é		\backslash		\backslash								V
Control Learning 2-1 Learning	L of The ULL Up MI 21 Up MI 22 Up MI 23 Up MI 24 Up MI 24 <t< td=""><td>6263.2679</td><td></td><td>140</td><td>\langle</td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	6263.2679		140	\langle		1									
G 716. 44918 Gui Gui Gui Gui Gui Gui Gui Gui 1. 36460xx annay 12 chuan 20 chuan 20 chuan 20 chuan 20 1. 344500xuut c bringui 20 chuan 20 chuan 20 chuan 20 chuan 7141.12.7c bringui 20 chuan 20 chuan 21 chuan 21 chuan 7. 411.12.7c bringui 20 chuan 21 chuan 21 chuan 21 chuan 7. 411.12.7c bringui 20 duan 21 duan 21 duan 21 chuan 21 6. 671.400 bringui 20 duan 21 duan 21 duan 21 duan 7. 640.1000 bringui 21 duan 21 duan 21 duan 21 duan 7. 640.1000 bringui 21 duan 21 duan 21 duan 21 7. 640.1000 bringui 21 duan 21 duan 21 duan 7. 640.1000 bringui 21 duan </td <td>G_{17} G_{11} /td> <td>. ST MUL</td> <td>623.141</td> <td>21</td> <td>L23MI</td> <td>21</td> <td>625.141</td> <td>21</td> <td>141,623</td> <td>29</td> <td>111 623</td> <td>24</td> <td>141,529</td> <td>31</td> <td></td> <td>1</td>	G_{17} G_{11}	. ST MUL	623.141	21	L23MI	21	625.141	21	141,623	29	111 623	24	141,529	31		1
(1 Modelect. (m. subsection.	(1) Marchenk Marc	5776.4498		CHI		CH1.		CHI		571		574		100		
5736.1198 64 64 64 64 64 64 6. 3744.000/LLG 10111 20 10111 20 10111 20 7.441<12.7L	5736.1194 64 64 64 1. 3A4450000000 670044 20 67104 20 67104 20 67104 20 67104 20 67104 20 67104 20 67104 20 67104 20 67104 20 67104 20 67104 20 67104 20 67104 20 67104 20 67104 20 67104 20 671045 20 671045 20 671045 20 671045 20 701045 20 701045 20 701045 20 701045 20 701045 20 701045 20 701045 20 701045 20 701045 20 701045 20 701045 20 701045 20 701045 20 701045 20	. NORFOLK	442 449	12	445,443	12		\backslash		\backslash				\backslash		
(1) 364560-001L (5) (1) 36 (1) 37 (1) 3 (1)	(1) (59 36.1198		BAL		844			\langle							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Tury (12)C Art	4. JACKSONVILL &	440:169	20	40.000	20	400,002	20	420.000	00		\backslash				V
\mathcal{F} save frametico Interface In	5. Sano Fremundo Imaria 3.2 Imaria 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 </td <td>7649 1276</td> <td></td> <td>ATL</td> <td></td> <td>A71</td> <td>-</td> <td>A11</td> <td></td> <td>911</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	7649 1276		ATL		A71	-	A11		911						
8443-8714 Lay Lay Ay Lay Lay <thlay< th=""> Lay <thlay< th=""> <t< td=""><td>8493 8143 1<!--</td--><td>5. SAN FRANCISCO</td><td>219,443</td><td>32</td><td>610 443</td><td>32</td><td>SYN. OIP</td><td>32</td><td>610,443</td><td>32</td><td>644 -19</td><td>es</td><td>CNN OID</td><td>52</td><td></td><td></td></td></t<></thlay<></thlay<>	8493 8143 1 </td <td>5. SAN FRANCISCO</td> <td>219,443</td> <td>32</td> <td>610 443</td> <td>32</td> <td>SYN. OIP</td> <td>32</td> <td>610,443</td> <td>32</td> <td>644 -19</td> <td>es</td> <td>CNN OID</td> <td>52</td> <td></td> <td></td>	5. SAN FRANCISCO	219,443	32	610 443	32	SYN. OIP	32	610,443	32	644 -19	es	CNN OID	52		
6. ST. Louis Marting 3.2 3.2 Marting 3.2	6. ST. Louis Mark 3-2 Atrain 3-2	8442 SIC 8. 2848		LAY		- AX		LAX		LAY.		LAY		LAV		
$(260-3/8/2)$ $\overline{100}$	$(607) - 3yg 1$ $\overline{100}$	6. ST. LOUIS	269,955	22	752.926	te	938,975	10	938,975	22	311,756	10				1
T. CHICAGO 973,25 14 112	T. CHICAGO $\eta_{23} \mu_{23}$ IL $\eta_{13} \mu_{23}$ IL $\eta_{13} \mu_{13}$ <	6807-348 2		Juo		ONI		IND		140		1 ND				1
596: 3Y26 1UD	596: 3726 1UD	7. CHICAGO	972,727	16	ובר נוף	16	rer ere	16								1
B. Douve Douve January 67 Apple Ap	8. Delayte 6.7 194,195 194,195	5986. 3426		011		110		100					\backslash			1
T5e1.5894 Dat Dat Jac	T501.5894 Date Date Date Date Date Date Date Date 6. GALTIMORLy isergrie 18 isergrie 18 isergrie 18 isergrie 18 isergrie 18 isergrie 19 initiation 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21	8. DENVER	484,985	65	264.486	65	984,9 05	65	184,485	65	984,985	در	984,985	65		
9. GALTINORC Igaurd 18 1,014,73 24 1,014,73 24 1,014,73 24 1,014,73 24 1,014,73 24 1,014,73 24 1,014,73 24 1,014,73 24 1,014,73 24 1,014,73 24 1,014,73 24 1,014,73 24 1,014,73 24 1,014,13 24 1,014,13 24 1,014,13 24 1,014,13 24 1,014,14 24 24 1,014,14 24 24 1,01 24	9. GALTIMORL Icratrie 18 IN24,19 3 IN24,12 24 IN24,12 24 IN24,12 31 Main 71 <th71< th=""> <</th71<>	7501.5899		DAL		JAL		20.		JA.		DAL		DAL		
55 10. 1575 man man mai	SF [0.] S7 S man mai	9. BALTIMORE	1,043,498	18	814,540,1	.8.	1,736,792	29	625 9EC.1	24	6× '15C'1	50	er	34		1
Io. ATL ANTA $ sy/sze 33 sy/sze 33 sy/sze 33 sy/sze 33 sy/sze 33 sy/sze 34 71 se/sze 72 se/sze 72 $	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	55-10.1575		MAN		MAN		mad		MAN		MAN		MAU		1
7260. Jog3 JMLC $3 nLC$ $5 nLC$	72.60 309.3 $5Muc$ $5Muc$ $5Muc$ $5Muc$ $5Muc$ $5Muc$ $5Muc$ $5Muc$ $6Muc$ $6Muc$ 100	10. ATLANTA	1,154,562	33	1,154,562	33	242.421.1	33	505.4211	53	1 851 656	66	1851,650	14		
I. $36A71L\zeta$ $1 u_7 345$ 80 $1 u_7 345$ 81 $1 u_7 345$ 81 $1 u_7 345$ 81 $1 u_7 345$ 81 $1 u_1 345$ $1 u_1$	I. $3(\pi 7/L \zeta_{-}$ $1(\pi 7)$ and g g_{0} <	7260. 2083		SNILLE		JUILL		SULLE		SULLE		ani		ANI		1
(533.899L (570) 570 570 570 570 570 570 570 570 570 570 570 570 570 570 210	(334.899L SF0	11. SEATTLE	246, 7 11,1	80	216,5111	&	1,167,365	ad	215,1711	8	345,241,1	08	292.2011	8		
(a. TobleAveRuls 1247776 12 (a) $\frac{1}{3}$, $\frac{1}{3}$, $\frac{1}{3}$, $\frac{1}{3}$ (a) $\frac{1}{3}$, $\frac{1}$	(2. The harvarber is 124/1776 (2. 33) (3. 30, 13) (4. 2, 20, 13) 240, 12 (3. 124) (4. 1) 3	6 334. 8896		SFO		SF0		5 50		560		550		350		1
$(2, 73, 249.2)$ (C_{11}) (C_{11}) (C_{11}) (C_{11}) (C_{11}) (S_{1}) (S_{1}) S_{1} <	62 73 211 C112 CH1 CH1 CH1 CH1 STL STL BLT 13. MIAMI 1.311,577 43 1,311,577 43 1,311,577 74 367 13. MIAMI 1.311,577 34 1,311,577 34 1,311,577 74 8351. 05237 34 1,413,1877 34 1,413,1877 34 1,413,1877 14. bErteol T 143,1877 34 1,413,1877 34 1,413,1877 34 55736. 2637 C113 LH1/MM Cu1/MD 1,113,1877 34 1,113,1877 34 Form 64 C113 LH1/MM Cu1/MD 1,113,1877 34 1,113,1877 34	12. JADIANAPOLIS	act, 145,1	12	1.834,055	30	1.934 055	30	2,806,732	64	2, 804,78	64	136345	68		
13. migmit 1.3 <th< td=""><td>13. migmi 13. migmi 14. migmi 13. migmi 13. migmi 13. migmi 14. migmi 13. migmi 34. migmi 13. migmi 34. migmi</td><td>12 72.292 Ed</td><td></td><td>512</td><td></td><td>CHI</td><td></td><td>CHI</td><td></td><td>115</td><td></td><td>371</td><td></td><td>267</td><td></td><td>1</td></th<>	13. migmi 14. migmi 13. migmi 13. migmi 13. migmi 14. migmi 13. migmi 34. migmi 13. migmi 34. migmi	12 72.292 Ed		512		CHI		CHI		115		371		267		1
B351.0527 JYULL JULL JULL JULL JULL JULL JULL ATL ATL 14. DETROIT 1498871 34 1493877 34	8351.0527 37444 37444 37444 37444 3744 474 474 14. DETRol7 1434871 34 1413871 34 1413871 34 1413671 34 5536.267 1413.677 34 1413.677 34 1413.677 34 1413.677 34 5536.267 1413.677 34 1413.677 34 1413.677 34 1413.677 5606.6 1410 1410 1413.677 34 1413.677 34 1413.677 600 141 1413.677 34 1413.677 34 1413.677 34	13. MIAMI	1.31.577	43	1.3.115.1	43	1,311,577	2	1.311,577	43	12,021	79	1,34,577	11		1
14. DETROIT 143487) 34 143387 34 143387 34 143387 34 14357 34 14357 34 14357 34 14357 34 14357 34 14357 34 1435	14. DETROIT (143.87) 34 (143.87) 34 (143.87) 34 (143.87) 34 (143.87) 34 (143.87) 34 (143.87) 34 (143.87) 34 (143.87) 34 (143.87) 34 (143.87) 34 (143.87) 34 (143.87) 34 (143.87) 34 (140.87) 35 (140.87)	8351.0527		JUNIC		שאורון		371105		31115		ATL		A71		1
53-36- 2F-3Y CI,J CHI/und Callure IND IND IND IND Form BAD	55-36-2F-2 C(J) (cH1/und Cut/und Lud 1 UD 1 U	14. DETROIT	118.664.1	34	419.6241	34	143.621	NC	LTA ECH I	34	143 (641	34	11,433,617	HE		
		5536. 2624	1 653	CIN		CH1/140	4	Cui / 100		DNI		9~1		Oral		1
Form (a)			10 m	100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100											1	Ser and
Form BA		in in the				2		.ta								
		Form 64		1.0			14	2					_	-	1	
		and tend tend	the second	-	1					L.				1	L	1

Π IJ

	• 1		i		1		1		1	1	• •	1	1		11	10	1	1 1			1		1
	1.5		_	-+	+		-		-			+		++-		C	3		+	+		H	-
	+ 311.5															4	4						1
	site .	38	MAN	76	25	27	BAL	196	D1.1							A S A	R			1			
	C	1.946.751		5-110310		175 616 C		911, 116, 6															
-	facter site	38	men	76	560	415	641	161	576								H						
-	trail.c	1.946 751		5 160 303		2, 9, 9, 9, 5		0 967 HL									昭						
5	lacter site	38	man	11	s fo	• *	AA L	111	57-														
	1ralle	1.51, 1.19.1		2 140 303		2, 919, 967		2 967 110															
	fuctor .	36	m w w	96	5 60	• • •		191	7.5.														
1	traffic 3.	156,395,1		2,160,16		2319.916.5		2 967 1 0															
	10040 - S. 12	38	MAN	76	SF0	4.4	BA i	1-1	-15														
21	tralf.c	1.966, 751		2.1.0.3,3		2 914 967		0 9.7 110															
bunker	factor s. Ne	38	MAN	76	SFO	49	OAL	161	STL														
18	traile	1946,751		2,160,363		2, 919,967		2967,116															
T TO LONSO LIDITE	NATIONLIDE 218	Bestow	pyc1. cett	Los ANGELES	9213-7879	MANHA TTAN	5014.1393	. DALLAS	84 36. 403 V									A .	ß		X.	3	Form 64.

G-27

COST TO CONSOLIDATE	traffic 96	factor 5. He	traffic 12	facto - Site	traffic 1	facts.	inalle f	acher ster	P. 1161+	facter site	S .inc.	facte .	7.3. Mer. 7	· • · ·
1. CINCINNATI	78c, 982			\backslash		1		\setminus		/		1		
		1021	/		/		/		\backslash				1	
2. ST PANK	141.563		141 229	31		1		\langle		1		\backslash		1
				INC			\backslash		/		1			
3. NollFork	445,443					1.1		\backslash		/		\backslash		
		MAN	/		\langle		\backslash		/		1			
4. JAULSONVILIC	400 - 69							1		11		/		
		みたし					//							
5. SAN FILANCISCO	644,819		414,415	32	918,443	52			1111	1				
				LA		L A			/		1			
6. ST. LOUIS	Sep 815			/		1		\backslash		/		1		
		ONI	1		~				(1				
7. CHILAUD	(cl'clb			1				/		1.00		1		
		1,00	/				/		//					
8. Dener	184.985		984, 985	65	984,985	65	9 34 935	65	1 84, 98 5	15	984,485	65	~	
	•			PAL		DAL		JAC		LAL .		Det	/	
8 9. 64.7. molta	1.041.498			/		and the second		\backslash		/		10 - F 10		
		wAn .	/											
10. AT.ANTA	242 4211		45.1.28.1	90	459.153.1	79	1891881	29	26.128.	74	4 1911881	79	1,35165	1.97
				1 ND		100		601		11.0		0-11		0101
11. 5607714	216,711		2167.01.1	30	2461111	60	2-5-1-11	113	1.11-7.5-5	h3	747,345	113	326.5461	• •
				SFO		5 40		194		LAX		LA F		. 9.
12. THOURNANDLIS	1,247,720		rac Stre	89	4,318,395	Hol	4.348 913	Hel	212 6083	THE	511 198 3	the	211 108 2	1.9.0
				067		7.14		241		ATL		ATL		
13. MIANI	1,311577		1 2 11 5 11 6 1	79	15 1161	51	113. 116.1	66	112.42	99	112 1141	75	1,31,571	71.13
				ATH		A7-		A'.		AL		PTL.		Alt
14. DET Cal 7	779.884.1		445641	34	116,444.1	34	178.462.1	×						.
				an		001		0~1						
ÿ														
AR Form 64. January 1976														

1

DE 44	rraitic 9e	factur s.te	traffic 1	tactor site	1,13fl.c	facter	trafic f	actor s.te	113(1.c	facto- site	s of so	fact.	1.3 Mer.	1.2
2	1961,751	T	152 916 1	38	1 946 751	56	1,966751	35	1 56 776 1	58	\backslash			
4.145	the she		140 110	36	2 160 343	36	3 078 24	255	3 079 906	255	3079 905	256	3.078.806	297
				SFO		550		DEN		260		Din		StA
194	2919 . 917		9656.759	89	4. 656,759	•	4, 154,757	64	1.651.754	64	6.623,510	428	6,623,510	8ch
				605		305		(cd)		605		021	4	5N1
	2 967.116		3,947114	1961	211,116	(4)	2,11,5 12,00	- 2 6	J. 947 114	. 4.0	2 911116	19.61	5952,101	285
				Air		142		228		Der		100		LU
											-			
		T												
		T				T								
			DEC.	V	ALL I	C		Vd.						
				2	Z	32		-						1
														_
														1
					1	-						_		-

Π

Π

772.5

CULL SHEET SID	+raike	factor	2. Jert	facto-	+raff.c	factor	11alle	lactor .	++ all	factor	. sile	(ache -	
AL JOINSOILUN	30	5.16	70	5.46	20	5.10	2	\$15	20	5.16	2	Ì	, _
L. CINCINNA' I	586285			/								1	
		3 021			1				\backslash				
2. 2 . PAN.	141 623	2				1							
		ONI			1.	V		1202	1				
3. 1.2.4 -	1 40.421			•••	1	1							
		u ku	1 1 1		1			mAr)	\backslash				
4. Inchedorunche	41 014	here		1		~				1			
•		PIN BIN						100	1.1				
5. SAN FILMUNICO	544 810				1	1				1		-	
		Pé						LAX	1				
6.51 .00.5	219 35 935												
		102			~~~~			• 07-	~				
7. Chick an	166 210			`					•	/			
		140						10.21	1.1				
8. Deruck	284 486			1									
		DAL						194-					
9. BACT NORE	644 cho'i			/					•••	1			
		MAN	/					mail	/				
10. ATLANTA	645 YEL .			1	1								
		d'il	/					1021					•
11. 540 724	296 1911		245, 141, 1	113		1							
				141	1			LAY	1				
12. INDIANADUS	OLLIN C'I		125,7393	644	116,957.31	6 24			800 176 8	579			
•				NAM		MAN							
13. miAmi	512.118.1		YILEP.C	299	PIL 159.5	999							
				IND	-	ONI		120					
14. 2476017	19364.1			1		1	A SALAN			/			
		110	\backslash		1			022	1		Y	1	
¥													1
AR Form 64.					1	-							

Restriction Sector Lease	C. R. WARTMARK MERT PARK	1. car 5. te		
C. Exister met Sector m	сте сайзелинте абщелинте абщелинте стеле заще стеле сайзелинте абщелинте абщели стеле абщели адщели адще Същина защина типи адщели адщ	·		
Constraint Constraint <thconstraint< th=""> Constraint Constra</thconstraint<>	T Exercise Lease Lease <th< td=""><td>39914 79244</td><td></td><td></td></th<>	39914 79244		
C Example unit Cash of the first of the fi	T TE EMBOUNTE Mart Taute Lette Lette <thlette< th=""> Lette<td>t factor</td><td>7 52 11. 1 64 125 1 1.10 1 1.10 1 1.10 1 1.10 1 1.10</td><td></td></thlette<>	t factor	7 52 11. 1 64 125 1 1.10 1 1.10 1 1.10 1 1.10 1 1.10	
C constraint Batter Attic Lease Lease <thlease< th=""> Lease Lease Le</thlease<>	T TE Existe inter inter state Barty Tet Existe Inter State Inter State <th< td=""><td>ater traff</td><td>29 9 5 .</td><td></td></th<>	ater traff	29 9 5 .	
е сыйстинг банттан и анкт и анкт	T Te Existentie Balter fault Fault <t< td=""><td>cter traffic</td><td>113 DAL 200 200 120</td><td></td></t<>	cter traffic	113 DAL 200 200 120	
е сыбоснате ванг/Анс гадь Гасы- Тролчнос 4/8 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.	T Construents Rate TArit Factor Totator Totator <t< td=""><td>17 13 14 14 14 14 14 14 14 14 14 14 14 14 14</td><td>827,725,2 7 7 1 01,5,50,0 1 01,5,26,5 1 01,5,26,5 1 01,5,26,5 1 01,5,26,5 1 01,5,26,5 1 01,5,26,5 1 01,5,5,5 1 01,5,5,5 1 01,5,5,5 1 01,5,5,5,5 1 01,5,5,5,5 1 01,5,5,5,5,5 1 01,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5</td><td></td></t<>	17 13 14 14 14 14 14 14 14 14 14 14 14 14 14	827,725,2 7 7 1 01,5,50,0 1 01,5,26,5 1 01,5,26,5 1 01,5,26,5 1 01,5,26,5 1 01,5,26,5 1 01,5,26,5 1 01,5,5,5 1 01,5,5,5 1 01,5,5,5 1 01,5,5,5,5 1 01,5,5,5,5 1 01,5,5,5,5,5 1 01,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5	
C Consolimite L'Tiurun OK 4/8 PTIULUN OK 4/8 BOSTUN 1914 75 Set 101 Set 165 Set 165 Se	T TE EMBELIANTE BALKTARIK CUTE SWEET METENEL MATULUNIOL NG BOSTUNI 1941751 ANNU LUS ALIGELEE 2140 363 2 MANU ANNU	altic beets-	54 000 000 000 000 000 000 000 000 000 0	
C CONSOLIMITE La Sulte PTILOLULION VIE BOSTUN 1944 2110.3 GANHATTAN 2111.0 DALLAS 2.947 DALLAS 2.947	Re consociemes de cure suis raise la fuer suis de cure suis de cure suis de cure suis de cure	KTCALIC Facher He S.He		
DALLAS	Antivention antiventi antivention antivention antivention antivention antivent	16 4-12 - 1-	276 E	
		BOSTUN	OALLAS	

.

 \Box

I. CINCINURTI Stable 1 ND Z. ST PRUC 12111 1 LD Z. ST PRUC 12111 1 LD J. Store 11 LD 1 LD J. CHILGOD 1 LD 1 LD J. CHILGOD 1 LD 1 LD	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
2. 37 Phu- 11/1 11/1 11/1 3. 17 Phu- 123111 11/1 11/1 3. 100 FEUL 121/1 11/1 11/1 4. 3 Ruu- 121/1 11/1 11/1 5. 5 Ruu 121/1 11/1 11/1 5. 5 Ruu 131/1 11/2 11/1 5. 5 Ruu 131/1 11/2 11/1 6. 5 T 131/1 11/2 11/1 7. CHILAGO 131/1 11/2 11/2 8. 3 (RUU 394/4 1 11/2 8. 3 (RUU 394/4 1 11/2 9. 6 8. 1/2 1 1/2 1 1/2 1 1/2 1 1/2 1 1/2 8. 3 (RUU 394/4 1 1/2 9. 6 1 1/2 1 1/2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 <	ani () () () () () () () () () () () () () () () () () () ()	
2. 57 Phuc (12) (10) (10) (10) 3. roacfork (11) nh_{13} nh_{13} (11) (11) 4. JackSonvuluck. (11) nh_{13} (11) (11) (11) 5. Sau Ficanuciu 110 110^{2} (11) (11) (11) 6. St. Joul 110 110^{2} (11) (11) (11) 7. Child 110^{2} (11) (11) (11) (11) 8. Stanka. 110^{2} (11) (11) (11) (11) 9. Stanka. 110^{2} (11) (11) (11) (11) 8. Stanka. 110^{2} (11) (11) (11) (11) 9. Bait 110^{2} (11) (11) (11) (11) 9. Stanka. 110^{2} (11) (11) (11) (11) 11. Stat (11) (11) (11) (11) (11) (11) 11. Stat (11) (11) (11) (11) (11) (11) 11. Stat (11) (1	(i.i. dui dui dui dui tu vi dui dui dui dui dui dui tu vi dui dui dui dui dui dui dui dui dui du	
3. rocetout (10) (10) 3. rocetout (11) (11) 4. Frenousica (11) (11) 5. Sonu Frenousica (11) (11) 5. Sonu Frenousica (11) (11) 6. ST (11) (11) 7. Childed (11) (11) 8. Disardi (11) (11) 9. Sianka (11) (11) 8. Disardi (11) (11) 9. Sianka (11) (11) 9. Sianka (11) (11) 11. Sign (11) (11) <	140 140 140 140 140 140 140 140 140 140	
3. MORFOLK (H1,34V mh_{1}^{N} mh_{1}^{N} mh_{1}^{N} mh_{1}^{N} mh_{1}^{N} 4. JALKSONULLE. (11) ¹ ¹ ¹ ¹ ¹ ¹ (11) ¹ ¹ ¹ ¹ ¹ (11) ¹ ¹ ¹ ¹ ¹ (11) ¹ ¹ ¹ ¹ 5. Sart Firaturicu 919 (12) (11) ¹ ¹ ¹ ¹ (11) ¹ ¹ ¹ ¹ (11) ¹ ¹ ¹ ¹ 6. ST - OUL 918 (12) (11) ¹ ¹ ¹ ¹ (11) ¹ ¹ ¹ ¹ (11) ¹ ¹ ¹ ¹ 7. CHILGO 912 (12) (11) ¹ ¹ ¹ ² (11) ¹ ¹ ¹ ² (11) ¹ ¹ ¹ ¹ 8. D (MKL 919 (12) ¹ ¹ ¹ ¹ ² (11) ¹ ¹ ¹ ² (11) ¹ ¹ ¹ ¹ ² (11) ¹ ¹ ¹ ² 9. D (MKL 10 ¹ ¹ ¹ ¹ ¹ ² (11) ¹ ¹ ¹ ² (11) ¹ ¹ ¹ ² (11) ¹ ¹ ¹ ² 9. D (MKL 11 ¹ ¹ ¹ ¹ ² (11) ¹ ¹ ¹ ² (11) ¹ ¹ ¹ ² (11) ¹ ¹ ¹ ² 9. D (MKL 11 ¹ ¹ ¹ ¹ ² (11) ¹ ¹ ¹ ² (11) ¹ ¹ ¹ ¹ ² (11) ¹ ¹ ¹ ¹ ¹ ² 9. D (MKL 11 ¹ ¹ ¹ ¹ ² (11) ¹ ¹ ¹ ² (11) ¹ ¹ ¹ ¹ ¹ ² (11) ¹ ¹ ¹ ¹ ¹ ² 9. D (MKL 11 ¹	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
4. TRUESOMNILLE. $(11)^{2}$ $(11)^{2}$ $(11)^{2}$ $(11)^{2}$ 5. Shu Firancicus 919 492 $(11)^{2}$ $(11)^{2}$ $(11)^{2}$ 5. Shu Firancicus 919 492 $(11)^{2}$ $(11)^{2}$ $(11)^{2}$ 7. CHILACO 913 733 $(11)^{2}$ $(11)^{2}$ $(11)^{2}$ 8. Dénutic 994 95 $(11)^{2}$ $(11)^{2}$ $(11)^{2}$ 9. Dénutic 1994 935 $(11)^{2}$ $(11)^{2}$ $(11)^{2}$ 9. Dénutic 10. P. C. And T. $(12)^{2}$ $(12)^{2}$ $(12)^{2}$ 9. Dénutic 10. P. C. And T. $(11)^{2}$ $(11)^{2}$ $(11)^{2}$ 9. Dénutic 10. P. C. And T. $(11)^{2}$ $(11)^{2}$ $(11)^{2}$ 10. P. C. And T. $(12)^{2}$ $(11)^{2$	1.00 1.10 1.14 1.14 1.14 1.10 1.10 1.10	
4. JALESORVILLE. $(x_1) ay$ $(x_1) ay$ $(x_1) ay$ 5. SAL ³ FIRAULUS and and upper the second strategies of th	14 14 14 14 14 14 14 14 14 14 14 14 14 1	
5. Saru Francicus 418 μ_{12} 1 1 <t< td=""><td>144 LAY LAY LAY MA</td><td></td></t<>	144 LAY LAY LAY MA	
5. Sau Francica 418 443 1.5% 1.1% 1.1% 6. ST -oui 438 435 1.0% 1.1% 1.1% 7. CHILAGO 912,723 1.0% 1.1% 1.1% 8. Dfaurie 994 945 1.0% 1.1% 1.1% 9. Dfaurie 994 945 1.0% 1.1% 1.1% 9. Dfaurie 1.0% 1.0% 1.1% 1.1% 9. Dfaurie 1.0% 1.0% 1.1% 1.1% 10. Alt.mode 1.1% 1.1% 1.1% 1.1% 11. Stat 1.1% 1.1% 1.1% 1.1% 11. Stat<	LAX LAX WD WD	
6. 57 - OUIJ 198. 4387 7. CHILAGO 192. 7337 7. CHILAGO 192. 7337 8. DENKE 194.945 8. DENKE 194.945 1. DD 1. D	LAy	
6. 57 - 701 318 475 7. CHILAGO 912, 731 9. DENVEL 999, 995 9. DENVEL 999, 995 1.05 9. BALTINGE 1299, 995 1.0		
7. CHILAGO 913.73) 1.00 8. DENKL 999.935 1.00 8. DENKL 999.935 1.00 9. BALTINOR 1.00 1.00 1. SEA 1.00 1.00		
7. CHILAGO 912,73) 100 8. DENUGE 99495 100 9. BRITINORE 99495 100 1.00 1.00 1.00 9. BRITINORE 1.00 1.00 1.00		
8. D four de 1949 495 100 100 100 100 100 100 100 100 100 10		
8. DEMUKE 994,995 1 No 9. ENTTORE 1 No 1 No 9. ENTTORE 1 No 1 No 10. F. Mu-F 1 Ley yis 1 No 10. F. Mu-F 1 Ley yis 1 No 11. SEA 1 Ley Jos 1 No 11. SEA 1 Ley Jos 1 Ley Jos 13. ALANI 1 JUL JUL 1 JUL		
9. BALTINGIAL INPO Y89 1. BALTINGIAL INPO Y89 10. ATIMUTA INSYSTA 10. ATIMUTA INSYSTA 11. SEATTLE INPO INDO 11. SEATTLE INPO INDO 12. INDONE IS INTO INDO 13. ALAMI INPO INDO 14. ALAMI INPO INDO 15. ALAMI INDO 1		
9. BALTINGRIE 1049.499 10. P.T. MWTA 1184512 10. P.T. MWTA 1184512 11. SEA - E 1187305 11. SEA - E 1187305 12. LUBINNABULI 1243775 13. MIANI 131577 13. MIANI 131577 13. MIANI 131577 13. MIANI 131577 13. MIANI 131577 13. MIANI 131577 14. MIANI 131577 14. MIANI 131577 15. MIANI 1315777 15. MIANI 1315777 15. MIANI 1315777 15. MIANI 13157777 15. MIANI 131577777777 15. MIANI 131577777777777777777777777777777777777	0.1	
10. A. M. A. 11. 10. A. M. A. 11. 11. Sea 4. 11. Sea 4. 11. Sea 4. 12. INDADULI 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,		
10. A. MA 1.54513 100 11. 56A 6 1.167 105 11. 56A 6 1.167 105 12. 1.105. 1.107 105 13. 1.105. 1.241310 12,4169 835 13. 1.107. 1,21577 12,416 13. 1.107. 1,21577 12,416 13. 1.107. 1,21577 12,416 13. 1.107. 1,21577 12,416 13. 1.107. 1,21577 12,416 14. 1,21577 12,41777 12,4177 12,4177 12,4177 12,4177 12,4177 12	9/1	
11. 54A		
11. SEA	c ni	
13. AIAMI ANI 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,		
13. MIANA 11 13. MAN 12. MAN 12. MAN 12. MAN 14. MAN 14. MAN 14. MAN 13. MAN 1		
13. AIAMI 1,311,577 1,164	1,169 Bas 111, 122, 121, 120, 827, 9	bad une site
14. D(-14017 11411 41)		
100	01	
15.		
AR Form 64.		

Π [] 14

APPENDIX H

CALCULATION OF SAVINGS DUE TO LATA

In Chapter Four, the costs to implement LATA in the present system were approximated by adding the TSR and Communications costs of the moderateconsolidation cases to the Facility and ACD costs for the present cases. This appendix presents a more precise method of determining costs (and savings) attributable to LATA. A detailed approach to determining LATA network requirements will be presented. This approach will be applied, as an example, to the sites in the Philadelphia Service Center area. It will be demonstrated that the costs (and hence the savings) are within 4 percent of those estimated by using the approach taken in Chapter Four.*

Following is a general procedure for determining the number of LATA lines required to handle overflow (or LATA) traffic, the TSR reduction, and the resultant cost savings for TFTS Sites A and B.

*This procedure can be used to determine the TSR savings and LATA trunk costs. It does not provide a detailed implementation plan.

1. Determine the probability that a call arriving at Site A will receive an "all TSRs busy" condition (will be a candidate for LATA). This is simply the Erlang C probability calculated by using the incoming traffic and the number of TSRs at Site A.

2. Determine the probability that there are one or more idle TSRs at Site B. This is simply $1 - P_B$, where $P_B =$ the Erlang C probability for Site B. This is calculated by using the incoming traffic and number of TSRs at Site B.

3. Multiply the probabilities determined above to find the probability that there will be an "all TSRs busy" condition at Site A and a "TSR idle" condition at Site B at the same instant.

4. Multiply the probability determined in step 3 by the incoming traffic load (in CCS) at Site A to determine the traffic offered to the LATA trunk group from Site A to Site B.

5. Determine the number of trunks required to handle the traffic load calculated in step 4. This can be found by consulting a Poisson table for a Pl0 grade of service.

6. Repeat steps 1 through 5 to determine the number of trunks required to handle the traffic diverted from Site B to Site A.

7. Multiply the cost of a line connecting the two sites by the total number of lines as determined in steps 5 and 6. This represents the added communications cost to implement a two-site LATA.

8. Add the total adjusted-demand figures for both sites A and B to determine the aggregate traffic offered to the site combination now interconnected with LATA lines.

9. Calculate the number of TSRs required to handle this total adjusted demand, using the TSR algorithm in Appendix D.

10. Subtract the number of TSRs determined in step 9 from the total number of TSRs at both Sites A and B prior to LATA.

11. The TSR cost saving is simply the product of the TSR composite wage rate and the number of TSRs saved as a result of LATA.

As an example of the foregoing procedure, we calculate the savings due to LATA for the Philadelphia Service Center area. Two site pairs will be formed: Philadelphia-Wilmington and Baltimore-Pittsburgh.

1. The probability that all TSRs will be busy at Pittsburgh is .19.

2. The probability that there will be one or more idle TSRs at Pittsburgh is 1 - .5 = .5.

3. The product of the above probabilities is $.5 \times .19 = .095$. This is the probability that there will be no TSRs available at Pittsburgh and one or more idle TSRs at Baltimore at the same time.

4. The product of the traffic offered to Pittsburgh and the abovedetermined probability (.095 \times 1296 CCS) is 123 CCS. This is the traffic that would be offered to the LATA trunk group from Pittsburgh to Baltimore.

5. To provide a P10 grade of service for this traffic load would require 7 trunks.

6. Repeating steps 1 through 5 for the Baltimore to Pittsburgh traffic shows that 46 trunks are required.

7. The communications cost for these trunks is 53 lines × \$218/line/ month = \$11,500/month.

8. The total adjusted demand for the two sites is 2,471 calls.

9. From the staffing model shown in Appendix D, 129 TSRs would be required to handle this traffic load.

10. The total TSR reduction due to LATA during Period 2 is 90 + 43 - 129 = 4 TSRs.

11. The TSR cost saving is 4 TSR × \$11.89/hour × 9 hours/day × 20 days/
month = \$8,600/month.

12. Repeating the above procedure for period 6, we find that the total LATA trunk costs and TSR savings are \$1,700/month and \$6,400/month, respectively.

13. The annual net saving as a result of LATA is \$26,000.

14. Repeating steps 1 through 13 for the site pair Philadelphia-Washington, we find that the annual net saving is \$25,900.

15. Combining the annual savings for both site pairs yields an annual saving of \$51,900.

The annual saving for the "present with LATA" case as approximated in Chapter Four was \$53,000. The annual saving as calculated by the above procedure is \$51,900. This difference is approximately 4 percent (0.03 percent when compared with the present system costs of \$3,367,000).

	REPORT DOCUMENTATION P	AGE	BEFORE COMPLETING FORM
1.	REPORT NUMBER	. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
	1329-01-1-1605		
4.	TITLE (and Subtitle)	· · · ·	5. TYPE OF REPORT & PERIOD COVERED
	COST ANALYSIS OF SELECTED ALTERNAT	IVE CONFIGURA-	
	TIONS FOR THE INTERNAL REVENUE SER	VICE TOLL-FREE	
	TELEPHONE SYSTEM		6. PERFORMING ORG. REPORT NUMBER
			1329-01-1-1605
7.	AUTHOR(s)		8. CONTRACT OR GRANT NUMBER(s)
	P. Woodie		
	D. Swann		TIR 7T-64 run
9.	PERFORMING ORGANIZATION NAME AND ADDRESS		10. PROGRAM ELEMENT, PROJECT, TASK
	ADTNO Beccometh Comm		AREA & WORK UNIT NUMBERS
	2551 Pire Boad	/	
	Annenolic Meruland 21401	/	
11.	CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE
	INTERNAL REVENUE SERVICE		April 1977
	111 CONSTITUTION AVENUE, N.W.		13. NUMBER OF PAGES
	WASHINGTON, D.C. 20224		64
14	MONITORING AGENCY NAME & ADDRESS(If different	from Controlling Office)	15. SECURITY CLASS. (of this report)
	INTERNAL REVENUE SERVICE		UNCLASSIFIED
	111 CONSTITUTION AVENUE, N.W.		15- DECLASSIFICATION/DOWNGRADING
	WASHINGTON, D.C. 20224		SCHEDULE
17.	UNCLASSIFIED/UNLIMITED	a Block 20, if different from	m Report)
17.	UNCLASSIFIED/UNLIMITED	Block 20, if different fro	m Report)
17.	UNCLASSIFIED/UNLIMITED DISTRIBUTION STATEMENT (of the abstract entered in	a Block 20, 11 dilferent fro	m Report)
17.	UNCLASSIFIED/UNLIMITED DISTRIBUTION STATEMENT (of the abstract entered in SUPPLEMENTARY NOTES	a Block 20, if different fro	m Report)
17.	UNCLASSIFIED/UNLIMITED DISTRIBUTION STATEMENT (of the abstract entered in SUPPLEMENTARY NOTES	a Block 20, if different fro	m Report)
17.	UNCLASSIFIED/UNLIMITED DISTRIBUTION STATEMENT (of the abstract entered in SUPPLEMENTARY NOTES	a Block 20, 11 dilferent fro	m Report)
17.	UNCLASSIFIED/UNLIMITED DISTRIBUTION STATEMENT (of the abstract entered in SUPPLEMENTARY NOTES	Block 20, if different fro	m Report)
17.	UNCLASSIFIED/UNLIMITED DISTRIBUTION STATEMENT (of the abstract entered in SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse side if necessary and	a Block 20, if different from	m Report)
17.	UNCLASSIFIED/UNLIMITED DISTRIBUTION STATEMENT (of the abstract entered in SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse side if necessary and	Block 20, if different from	m Report)
17.	UNCLASSIFIED/UNLIMITED DISTRIBUTION STATEMENT (of the abstract entered in SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse side if necessary and	Block 20, if different from	m Report)
17.	UNCLASSIFIED/UNLIMITED DISTRIBUTION STATEMENT (of the abstract entered in SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse side if necessary and	a Block 20, 11 dilferent fro dentify by block number)	m Report)
17.	UNCLASSIFIED/UNLIMITED DISTRIBUTION STATEMENT (of the abstract entered in SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse side if necessary and	Block 20, if different from	m Report)
17.	UNCLASSIFIED/UNLIMITED DISTRIBUTION STATEMENT (of the abstract entered in SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse side if necessary and	Block 20, if different from identify by block number) identify by block number)	m Report)
17.	UNCLASSIFIED/UNLIMITED DISTRIBUTION STATEMENT (of the abstract entered in SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse side if necessary and ABSTRACT (Continue on reverse side if necessary and i This report describes a generali	Identify by block number)	for the nationwide Toll-Free
17. 18. 19.	UNCLASSIFIED/UNLIMITED DISTRIBUTION STATEMENT (of the abstract entered in SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse side if necessary and ABSTRACT (Continue on reverse side if necessary and This report describes a generaling Lephone System(TFTS) used by the Ir	Identify by block number) Identify by block number) Ized cost model nternal Revenue	for the nationwide Toll-Free Service(IRS) in providing
17. 18. 19.	UNCLASSIFIED/UNLIMITED DISTRIBUTION STATEMENT (of the abstract entered in SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse side if necessary and ABSTRACT (Continue on reverse side if necessary and This report describes a generali- ilephone System(TFTS) used by the Ir x information and assistance to the	Identify by block number) Identify by block number) Ized cost model nternal Revenue e U.S. public,	for the nationwide Toll-Free Service(IRS) in providing The model is evaluated to
17. 18. 19.	UNCLASSIFIED/UNLIMITED DISTRIBUTION STATEMENT (of the abstract entered in SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse side if necessary and ABSTRACT (Continue on reverse side if necessary and This report describes a generalities information and assistance to the rovide an economic comparison of the	Identify by block number) Identify by block number) Ized cost model nternal Revenue e U.S. public, e potential savi	for the nationwide Toll-Free Service(IRS) in providing The model is evaluated to ngs for several candidate "he result of this comparison
17. 18. 19.	UNCLASSIFIED/UNLIMITED DISTRIBUTION STATEMENT (of the abstract entered in SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse side if necessary and ABSTRACT (Continue on reverse side if necessary and This report describes a generali Lephone System(TFTS) used by the Ir x information and assistance to the rovide an economic comparison of the rivels of consolidation for TFTS answ	Identify by block number) Identify by block number) Identify by block number) Ized cost model nternal Revenue e U.S. public, e potential savi wering sites. I	for the nationwide Toll-Free Service(IRS) in providing The model is evaluated to ngs for several candidate The result of this comparison a preferred site-consolidation
19. 19.	UNCLASSIFIED/UNLIMITED DISTRIBUTION STATEMENT (of the obstract entered in SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse side if necessary and ABSTRACT (Continue on reverse side if necessary and This report describes a generalist tephone System(TFTS) used by the Ir x information and assistance to the ovide an economic comparison of the vels of consolidation for TFTS answ a set of recommendations to the In-	Identify by block number) Identify by block number) Identify by block number) Ized cost model internal Revenue e U.S. public, e potential savi wering sites. T RS concerning th of the contigue	for the nationwide Toll-Free Service(IRS) in providing The model is evaluated to ngs for several candidate The result of this comparison the preferred site-consolidation
19. 19. 19.	UNCLASSIFIED/UNLIMITED DISTRIBUTION STATEMENT (of the abstract entered in SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse side if necessary and ABSTRACT (Continue on reverse side if necessary and This report describes a general Lephone System(TFTS) used by the In x information and assistance to the rovide an economic comparison of the vels of consolidation for TFTS answ a set of recommendations to the In- tions in each of the ten IRS areas	Identify by block number) Identify by block number) Ized cost model nternal Revenue e U.S. public, e potential savi wering sites. T RS concerning th of the contiguo	for the nationwide Toll-Free Service(IRS) in providing The model is evaluated to ings for several candidate The result of this comparison the preferred site-consolidation
19. 19. 19. 19.	UNCLASSIFIED/UNLIMITED DISTRIBUTION STATEMENT (of the abstract entered in SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse side if necessary and This report describes a generalist Lephone System(TFTS) used by the Ir x information and assistance to the rovide an economic comparison of the rovide an economic comparison of the rovide an economic to the IR a set of recommendations to the IR tions in each of the ten IRS areas	Identify by block number) Identify by block number) Ized cost model nternal Revenue e U.S. public, e potential savi wering sites. T RS concerning th of the contiguo	for the nationwide Toll-Free Service(IRS) in providing The model is evaluated to ngs for several candidate The result of this comparison the preferred site-consolidations U.S.
17. 18. 19. 20. 20. 20. 20. 20. 20. 20. 20. 20. 20	UNCLASSIFIED/UNLIMITED DISTRIBUTION STATEMENT (of the abstract entered in SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse side if necessary and This report describes a generalist thephone System(TFTS) used by the Ir x information and assistance to the ovide an economic comparison of the twels of consolidation for TFTS answ a set of recommendations to the If this in each of the ten IRS areas	identify by block number) identify by block number) identify by block number) ized cost model nternal Revenue e U.S. public, e potential savi wering sites. T RS concerning th of the contiguo	for the nationwide Toll-Free Service(IRS) in providing The model is evaluated to ings for several candidate The result of this comparison the preferred site-consolidation ous U.S.

T

The second

-

.....

I

I

I

I