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I. INTRODUCTION

Euler's Theorem is the basis for a four parameter alternative to
Euler matrix representations of yaw, roll, and pitch motions of an
unbending missile. The quaternion [1-31 has already demonstrated
superior features in that:

i) It needs only 35% of the multipliers used by Euler matrix
computers.

ii) Analog and digital computations are more accurate than Euler
matrix computations.

iii) It is preferred to Euler matrix representation in strap down
gyro platforms that replace expensive mechanical gimbals with
digital computers.

The bordered matrix form is emphasized exclusively. Transmitted

quaternions interchange lead vectors and effect speedier hand computa-
tions. These two quaternion implementations are attributed to Ickes [4].

The nth root of a quaternion is an instructive precursor to small
angle recursions. These algebraic recursions are regimented by
Chebyshev polynomials.

The appendices contain four gimbal quaternions for strap down
computers and quaternion representation by differential equations.
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I. SOME PRELIMINARIES

Slight familiarity with Euler matrices, trace of a matrix, and
quaternions will be presumed. The ordinary matrix-vector notation and
some Gibbs vector (X, 9, Z) algebra will be employed. The transpooe of
a matrix or vector is denoted by a prime. Unit Gibbs vectors are
indispensable and are denoted by a caret; swift inter retations of the

vectors I and • are possible. The Euclidian norm ISO appears.

Example 1

If g is a 3-vector and Ii1 - ,/C1 , then O - •/I!dI • other
objects such as the lead vector and transmitted quaternions will be
introduced as needed.

4
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III. ROTATION IN THREE-SPACE

Euler matrices produce rotations in 3-space by successive rotations
in three 2-spaces, the xy-plane, the yz-plane, and the zx-plane,
Reference vectors are x, y, and z, respectively, the first symbols in
the plans designations. The plane normals are z, x, and 9. The sign
of angles is determined by the right hand screw convention. These
rotations produce the yaw, roll, and pitch angles, respectively. Euler's

theorem returns a 3-space rotation to its basic situation in 2-space.

Theorem 3.1 (Euler). A 3-space rotation is equivalent to a 2-space
rotation about a fixed vector. The 2-space rotation has the fixed
vector for its normal.

Sketch of Proof:

a) If E - feij) in a 3 x 3 Euler matrix such that EEI I, then

there exists a fixed 3-vector g such that Eg - t.

b) The angle of rotation, e, is given by

1 + 2 cos 0 - e 11 + e 33 e tr E (3.1)

c) Alternatively,

Cos = ! + tr E 32
2 2

e - (3.3)

The three components of the fixed vector, t, and the argle, e, constitute
a four parameter system. Naturally, there exist three possible classes
of representations:

i) Four component vectors.

il) Four parameter bordered matrix.

iii) Four parameter pseudo-vectors.

The first representation will be considered. Afterwards, a return to
quaternions in bordered matrix form is in order. The pseudo-vector is
sometimes called a hypercomplex number. It is Hamilton's (1843) original
formulation and can be found in Bean [31. It is a matrix decomposition
of the quaternion and does not need to be considered in this computation
context.

I
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IV. THE CONSTRUCTIVE EULER THEOREM

Theorem 3.1 can be reinforced by two tasks:

i) Determine two vectors in the 2-space whose normal is the fixed
vector.

ii) Construct a four-component lead vector that deduces a complete
orthogonal basis.

As implied in the statement, a lead vector can deduce other vectors and
with them form an orthogonal (orthonormal) bases.

Lemma 4.1. The fixed vector • of Theorem 3.1 satisfies (E - E')t * 0,
and its components are

•y " 31 1l3

Moreover, there exists a natural vector decomposition

U -U - V

where

v -e12

\e32

Leina 4.2. The vectors (u X v) and (u x v) X (u - v) are in the plane
whose normal is the fixed vector •.

6



Studies of four parameter 4-vector representation can commenceo.
The norm preserving mapping

* 11111 co on
s( ° in a

ins a formal condensation of all that has been stated so far into the
4-vector on the right, The angle 0 is implicit in the Euler matrix E
through Theorem 3.1. Norm preservation simply means that the 4-sphere
has the same norm, IasfI, as the 3-sphere.

eua 4.3. The vector ( co is a lead vector that can deduce
Ssin /

the other three members of an orthogonal basis. The orthogonal basis,
after using- u - v, is

(u-v) sin/ (u-V) cose v)(

If c u X v, d • (u X v) X (u - v), then the orthonormal basis is

Coso (i Z :). ( (o)\•sin 8/ of d

The second vector is obtained by replacing 9 in the first vector with
0 + (iV/2). No more angles are available, and the top components of the
third and fourth vector are zero. The scalar triple product from Gibbs'
vector algebra ensures orthogonality of the vector parts of the third
and fourth oasis vectors.

Lemas 3.1, 4.1, 4.2l and 4.3 comprise the Constructive Euler Theorem
whose corollary is an orthogonal basis of 4-vectors. The Constructive
Rulor Theorem generates the need for 4-vectors, but computations are
slow. Swift computation is effected by quaternions largely because cross
products are present ir quaternion products.

7



V. SIMPLE QUATERNION COMPUTATIONS

The quaternion can be introduced through the nonstandard Cayley-
Klein form

( + jb -c+ Jd\ 2

c +jd a -jb

A nonunique matrix representation of complex numbers leads to the
4 X 4 matrix

a -b -C -d a

b a d -c b
- Q(q), q . (5.1)

c -d a b C

d c -b a d

The notation Q(q) means the "quaternion array" Q whose first column
vector is q. The standard Cayley-Klein form places the lead vector in the
the first row. After becoming familiar with fundamentals, a bordered
4 x 4 matrix will be used exclusively; this usage coincides with Ickes [ 4] .

An intermediate result is needed.

Lemma 5.1. The column vectors of Q(q) form an orthogonal basis; the
column vectors of Q(q) form an orthonormal basis. Moreover, q is a lead
vector.

Proof:

a) Q(q) Q'(q) - (q'q) I (5.2)

is obtained by direct computation.

b) Q(q) Q'(q) - I. (5.3)

This lemma immediately replaces many geometrical calculations required
by the orthogonal basis of the Constructive Euler Theorem with a format
of four signed and unsigned rearrangements of the lead vector q that are
orthogonal.

If indices are employed for the lead vector, the nonstandard vector
component notation (p 0 1 P1 9 P2 * P3 )' will be employed. Oftentimes inter-

est focusses on the "vector part" (pl, p2 1 p3) and the lead vector is

8



shortened to (po, p)0; this partitioned vector reduces symbol clutter.

The "real part" of the vector is the scalar po.

Skew quaternions with zero real part are interesting in their own
right. Direct computation gives

q *\p) p q )

depend0n Po (5.4)

SIP2 "P l 0

depending on whether Gibbs' vector or matrix - vector notations are
employed. A computation such as the commutator identity

QQ) )] Q(o) (5.5)

requires more tools for effective computation. Two digressions are

needed to consider lead vector selection rules and transmuted quaternions.

Finally, the bordered matrix form

Q )+ -(5.6)P PO I +-

exhibits the 3 X 3 matrix, (p0 I + P), the "kernel" matrix of the

quaternion. If p0 - 0, then the skew matrix P is the kernel of

Qj) The symmetric part of Q~o is Q ... I 0 . It is important

- to realize that automatically constructs the full quaternion.

IP

Interaction of real part, vector part, and kernel should be apparent.

Si
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VI. LEAD VECTOR SELECTION RULES

Lead vector selection rules transform matrix multiplications to
simpler matrix-vector multiplications and thereby reduce calculation
effort.

Let Dirac brackets (9> denote the selection of the first column
vector from a given matrix; i.e.,

(Q (p)) W p . (6.1)

The following rules can be deduced from matrix multiplication rules:

i) Distributivity over sums:

(Q(p) + Q(q)) - (Q(p)) + (Q(q)> - p + q , (6.2)

ii) Distributivity over products:

(Q(p) Q(q)= (Q(p) (Q(q)>) (6.3)

iii) Absorption rule:

(Q(p) q) - Q(p) q (6.4)

iv) Idempotent rule:

((()>- (P) - p (6.5)

The idempotent rule is a slight extension of the absorption rule for the
case where Q ib replaced by the identity matrix. In the distributivity
rule, the flow of Dirac brackets is from outside to inside and from left
to right.

The Q operation in

Q(Q(p) q) - Q(p) Q(q) (6.6)

is the inverse of the absorption rule.

Many of these rules are general in that they can be applied to
matrices and vectors which are not quaternions and lead vectors.

J
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IRI
VII. TRANSMUTED QUATERNIONS

The second requirement for converting matrix multiplications is the
interchange of lead vectors on the left-hand side of our similarity
equation

Q(q) p -Q(p) q (7.1)

to the preferred lexicographical order p q on the right-hand side.

If pI (a, b, c, d) and qI Y.•,B,7 5),

then form

a -b -c d as - b -yc - d

Q(p) q b a d (7.2)
c -d a b(a + 6ba + ac - 3d

d c -b a -a - 7b+ c + ad

Rewrite the rightmost vector so that Greek letters are in a matrix and
Latin letters are in the column vector to obtain

a - y - -8 a,

.C -5 y b
Q(p) q- 7 7(q) p (7.3)

7 8 a -• c

8 -r • cx d•

If one suppresses the distinction between Greek and Latin letters, the
array Q7 is obtained from Q by transposing only the kernel matrix.

Q7 (q) is the transmuted quaternion and one can verify that q is a lead

vectora

The matrix-vector resulc can be summarized.

Q(q) p Q7 (p) q

I 7( 7p (PIP) I(7.4)

tr Q7 (p) - tr Q(p)

I J



If the problem is interchanging p and qin p' Q(q), one then has the dual
problem that lead@ to the second transmuted quaternion. Form

a -0 -! -5 8+ b+ ye+8d

p a 8 -Y ab- Oa + yd- be
' Q(q) -(a b c d)

Y -8 Ux ac r-Od -ya +bb

8 Y' - a ad +Pc -yb - a

(7.5)

Rewrite the rightmost vector so that Greek letters are in the row vector
and Latin letters are in the matrix to obtain

a b c d

b -a -d c
pI Q(q) (ax p y 5) • q' Q (p) (7.6)

c d -a -b

d -c b -a

If one suppresses the Greek and Latin letters, the array Q1 is obtained

from Q by multiplying the second, third, and fourth column vectors by
-1. Moreover, p is the lead vector of Ql(p), which is the second trans-
muted quaternion.

This matrix-vector result can be sumnmarized.

Lemma 7.2.

q' Q(p) - p' Ql(q)

[Q 1(P)] [Q()]' (PIP) I (7.7)

tr Q1(p)- -0.5 tr Q(p)

Ickes [4] employed Q0 in place of our notation Q7 and called Q•
the transmuted quaternion. This notion is generalized in Appendix A.

12



VIII. FROM QUATERNIONS TO EULER MATRICES

This section reinforces previous methods to achieve firmer founda-
tiono. The first task is to present methods from behind the scenes of
Lemmas 3.1 and 4.1.

Lemma 8.1. Given any 3-vector, k, it's annihilator K, a 3- x 3-skewmatrix,

can be constructed as follows

fo k3 k2\ k\ k3k2 - k2k 3  /0

Kk - k3  0 k1,) ~k2) k 3k, + klk3) 0 o (8.1)

2 1 k2k1  kk 2

Moreover, if g is another 3-vector, then

Kg - -Gk - g X k,

K' uK,,

G- -G,

tr K - -2k'k,

K3 + (k'k) K - 0.

Lem 8.2. If h - Kg and K' -- K, then H KG -GK -gk' -kg'.
Proof is by direct calculation.

A frequent problem is that K is known but t is unknown and subject
to K9 - 0. The solution is t - k up to an arbitrary non-zero scalar
factor.

Note that the trace operation, trA, as the sum of the diagonal ele-
ments of the matrix A.

The second taskis to derive a more specific form of the transposed
lead vector (cos 6, 9' sin e).

The third task is to derive the Euler matrix from a quaternion.
The second and third problems are solved together.

Theorem 83.If y

13



and (P) is a unit lead vector, then the similarity transformation

S Q(;)
2

Po + p Pp ( 1

induces the Euler transformation

P r Er (8.3)

and

p0- Icos

p - the fixed vector of E.

Proof:

7(o) c )(0) -(0)

1p pT poI ro
"i 0 P0I [ I P

of ol
iii) -. = I

)2]
0 pp' + (poI -P) 0

iv) tr((pp' + (poI - ) 3 p2 " PIp 1 1 + 2 coo e

implies that

[0 CoO or 0 I

v) ['(P) Q()] [Q()(P) P) I implies that VEE- I

vi) (Et - t and EE' O I) imply that (E - E')t.= 0

vii) (E - E')t - -4 poPt - 0, pO 0  0. implies t - p up to a

multiplicative scalar factor;

14



viii) (7O) -( uos(12

Step viii displays an amended, principal part form for a lead vector
that originally contained the full angle. Note that the ± sign on pO

in Step iv has been arbitrarily made positive in Step viii. This sign
decision must be made external to the quaternion system,

Some straightforward calculations can be executed. The first cal-
culation is the explicit form of the Euler matrix, E, in terms of the
lead vector (pot p') components; namely

y 2 + 2p, 12  
2p, 2 -2 2 p~ 2p p Y

i-:P 2  P23  P3 P2 2
2 2L. [L2P 1P3 - 2 PoP 2  

2 pop1 + 2 P2 P3  I - 2 p1  - 2P 2 ]

(8.4)

The skew matrix is

[0 -4pop 3  4POP 2] 0F3 P

4poP 3  0 44pop 1  - - 4 po "P3  0 p (8.5)

-4PoP 2  4pop1  0 P2 IP 0

The second and last calculation specifies a product of quaternions

Q(;O) .Q( O) Q(O) Q(O)

where u, v, and w are mutually orthogonal vector parts to greatly reduceA A A

calculations. Employing x , y , z for the first, second, and third column
vectors of the identity matrix, one obtains the specific form

co 6/ 1 / 2 43(o 2/Cos 2~ ~Cos 2 Cos 21
-Q Q •

* ~e I~l A ~
s zin 2 xsin y2m si

(8.7)

15



The strange unit vector and subscript association derives from our

canonical Euler transformation sequence; i.eL rotation first in the

xy-plane whose normal is ^Z, rotation in the yz-plane whose normal is

X, and rotation in the zx-plane whose normal is the ^. Moreover, the

leftmost quaternion performs the first operation in the similarity trans-

formation. Direct calculation leads to

-cos Pr). (coS) (cs~) cos~ 88

CP- sin- cos + o sin-

2 2 2 2 s c 2

sicon-sin 7  -tsin 
sin-

It should be emphasized here that the quaternion angles (gl, g2' Ia3) are

the negative Euler angles; this anomaly arbies because of our choice of
the first column vector as the lead vector.

P 4

I 1 2 1

wo i 3 si i



IX. SMALL ANGLE APPROXIMATIONS

The small angle approximations

sin p IipI for I•t • 0.1 rad
co0 p & 1

is a mechanism for calculating the Euler matrix, E, from the following
identity. If

K.~ 3 2K P2)

•2 "P

then

expE 0p - (9.1)exp 0 K ep K] 0

The exponential matrix is also the culmination of the differential equa-
tion formulation of rotations (Appendix C). Although differential equa-
tions can be solved recursively, one would rather emphasize direct alge-
braic methods.

The next task is to compare small angle second-order effects on
Euler matrices and quaternions. Consider the quaternion similarity
transformation again. Quaternion calculations specifically lead to
the Euler matrix

pp, + (PoI - P)2  I - (sin e)p + (sin) 2  (' + - I) . (9.2)

Some simplified calculations are in order. If

, (1, 0, 0)

and

P (0o, 1, 1)

then

S, 1. - -2 diag (p) 1

+• 17



,PV

If the previous identity and the small angle approximation are invoked,
one obtains

2

V2

PP' + (poI -PI)2 I -ý 19-^ diag (P) (9.3)

However, if

then

pp'+ (p1-P) Iep--(.) (9.4)

T - diag(l, -1, -1),

and matrix norm comparisons of the second-order matrices can be made;
these are

12 diag~p~ -f -02 - 0,707e2 (9.5)
O22

II*22T 11.)f - 0.433e 2(96

One can conclude that the quaternion small angle approximation
should be slightly better than the Euler matrix small angle approxima-
tion if the goal is to obtain the smallest second-order tetma. Such a
goal is implicit in the exponential matrix, Equation (9.1).

I

18
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X. NTH ROOT OF A QUATERNION
Before venturing into small angle-induced recursions, it isinstructive to find the nth root of a quaternion. This provide. anoverview of the digital recursion scene irrespective of the large

computation effort implied.

Three mathematical tools must be used. These are as follows:

a) The Cayley-Hamilton Theorem.
b) The minimal polynomial equation of a quaternion.
c) The modified Chebyshev polynomials Sn (x) and C (x).

G Cayley-Hamilton - The polynomial equation of Q 0 is

" 2Po + ( + P) - o (10.1)

and the minimal polynomial equation for a unit quaternion is

Q m2p0 Q .2 
(10.2)

This minimal equation directly links the modified Chebyshev poly-,nomial S n(X) with this subject through powers of a quaternion in the
identity

( P o S 2 2 p ) Ig ( 1 0 .3 )

n- 2 3, 4, 5, ...

The right-hand side of the equation can be written as

-PSn-n1 2Po) (10.4)

nl 0

19
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or

0.5C (2p )
Sq • (10.3){ Sn I (2Po))

The last -equation exhibits the remaining Chebyshev polynomial C (x).I n
Lanczos (51 presents a very readable introduction to Chebyshev
polynomials.

Chebyshev polynomial identities,

Cn (2 cos 0) - 2 cos ne (10.6)

and
(sin nO)

Sn(2 cos 1) - (sin 6) (10.7)

strongly suggest the form of the nth root of a quaternion.

Lemma 10.2. If n is an integer and n L 2, then the nth root of
/cos-\ / cos (6/n)\

sin /ep sin(O/n)/

Proo__f:

Cosf 0.5 C(2 cos -Q) \ Cfc
Q=Q = ' . (10.8)[~ sin( ~~ ^(sin 1) Sfl( o sin e/

In the similarity transformation context, the full angle 9 must be
* replaced with 8/2.

Computation complexity increases when cos(O/n) and sin(9/n) must
be computed from cos e and sin e. Trigonometric computations first
yield

20



co 0.5 Vi + Cos a

and

Cs)- 0.5 1+ co e9

and, in general, one obtains the recursion

coo - 0.5 +

m O, 1,2,3,... . (10.9)

Finally, trigonometric computations yield

sin .0.5 + sin2(i)

m O, 1, 2,3,... . (10.10)

Unfortunately, iterated square roots in both computations require
multiple precision computations.

The nth root of a quaternion demonstrates that the unit quaternion
property must be maintained in a recursion. Limitations inherent in
cos(8/n) and sin(e/n) calculations and in the fact that n must be a
power of two can be avoided by the Pads approximant to be presented
in the next section.

With increasing n, 1/n tends to zero. If continued further to
n - -1, then the inverse problem reoccurs as presented in Appendix B.

21



XI. SMALL ANGLE RECURSIONS

The small angle approximations are restarted with the norm pre-
serving PadS approximant

J(0/2n) ,~4n + 18 e 0. 1 rad ~ 2--l(1)
a4n - jO 2n~

which implies that

2 _2SCos l" -" 1611.2)
2n 16n + 2 (11.2)

and

sin (11.3)l6n + e

If e - 1 rad A 53 deg and n - 5, then 1I/2n1 is at the equality boundary.

In this case,

401

s in 401

and the computer binary words must contain at least 9 bits.

/ os(o/2)
The nth root of Qcs(8/2)) is approximated by

ln2 + e2k 8nO p

The finite matrix-vector iteration format is

22F -



16n2 + 2\ 2
q a. (A) (~ )1+ 82 8 1

%M Aq. 1

m =1, 2, 3, ... ,( - ).(11.4)

Normalization is enforced by the iteration scheme

q, -(A>

4" A q 1

q el qgm i

m-- 2, 4, 6,9. . . , (2n - 2)

q- 4-vectors . (11.5)

Figure 1 presents the computer flow chart for this recursion.

The end result

Q ( q a - . n P)

is given by

I 1 2(16n 2 2 Y (11.6)
PO 2n k(16n 2+0)/

A *114 / ý A2
p Mp 2 2 S Ip~ p(19) *(11.7)

16n +0 a \-16n 2+0 /9)

23



Entering these values into the Euler matrix and using the identity

2 2 2 27n2 + an 0.25 Cn(2x) + (1 - x2) S n-l(2x) 1 (11.8)

yields a slight simplification in

-P
2  

- ~ 2, -22y a an + P-I) (19pp + (po I -P)n n P + npp (11.9)

A slight hazard occurs when C (2p0) = 0; this results in much compu-nO0

tation to produce a simple result, Q(

These end results suggest that dedicated digital computer itera-
tions may be emulated by the iterative processes of C (2p ) and

nO0

/1_2-pa no ; thereby, matrix-vector iterations and normalizations

are minimized. The sole matrix-vector calculation appears in the
quaternion to Euler matrix conversion near the end.

The minimum multiplication recursion for the modified Chebyshev
polynomials [5] is

S (x) - 1
0

S1 (x) - x

Sn(X) x Sn-l(X) - Sn 2 (x) (11.10)

followed by additions in

Co(X) - 2

S~ cI (x)- x

SCn (X) Sn (x) Sn 2 (x) . (11.11)
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START

A.%.,<A7'

=M A qm-1

qM1 qM vq

Mqt m- m+2

I p '--[- - P) -- - I ... - ,END

Figure 1. Single quaternion small angle
recursion and conversion to an Euler

{I

matrix.
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XII. ITERATION OF PRODUCT QUATERNIONS

Suppose the quaternions producing yaw, roll, and pitch motions
in the similarity transformation are symbolized by A, B, and C,
respectively, and that the combined transformation is the product ABC.

1/ni
In Section XI, (ABC) was the small angle approximationand iteration
yielded

[(ABC) I/n]n .ABC

The exponential matrix, exp , of Section IX in the context

of a triple matrix product uses an extremely large integer n such that

K in [I + (K/n)] retains only first-order terms and the iteration
converges to the Euler matrix. If n is not large, then a fundamental
inequation

(ABC) /n 0 A1/n B1/n C1/n (12.1)

appears behind the scenes in the quaternion aspect.

The third possibility is motivated by the desirable equality

(AI/n)n (Bl/n)n (cl/n)n - ABC (12.2)

This iteration requires three parallel iterations and a final matrix
product. This results in a maximal computer, but would give the safest
computation for the finite arithmetic available on a dedicated digital
computer.

A flow chart summary of the primary results obtained is presented
in Figure 2. The starting equation is the quaternion similarity
transformation. Ascending or descending vertical arrows represent
major transitions whose meanings are apparent, while horizontal arrows
represent rather minor transitions. END3 is a theoretical ending,
whereas END4 and END5 represent computer configurations. A solidus (/)
through a directed line denotes an unrecommended transition. END numbers
are numerically ordered according to the occurrence of results in this
report. Unrecommended exits are assigned the last numbers, i.e., 6,
7, and 8.
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ZND4 and END5 are possible wlt•ple exits for this study. END4
leads to existing dedicated quaternLon computers. If specifications
should tighten in the future, then END5 is available for alternative
consiceratLon.

A

2

£ 4,
L

i,

I i
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4END 3) (END 4) (END 6)

(0 1M(/o) n a 09n 1 A

( (P) kI.n /n) ooo~o

LAST

START: 0 1(P 5) O~ (Po 0)~

FIRST

(ENS)f l1 p\) /OOpV\ .(

C'WA'"[ -4ABp' (A ) C (P 01 -'7 ) 1+ lXA

P9/ I
(END 1) AA

Figu E 2. Flo chart +o quaerio similrt

trIfrmto study.l-01)1 w

/n) 3n~n l/28



XIII. CONCLUSIONS

Detailed quaternion applications to three-dimentional rotations
of a rigid body have been presented in a bordered matrix format. There
is an initial abstruseness about quaternions that eventually becomes
more concrete* Recursions can be generated algebraically after intro-
ducing the nth root of a quaternion. A flow chart for the quaternion
similarity transformation study summarizes procedures and results.

Two appendices contained In this report are concerned with strap
down digital computers modelled by four gimbal quaternions and quater-
nion representation by a matrix differentiai equation. Numerical
integration of differential equations is understood by experts; there-
fore, because of this and emphasis on simpler algebraic recursions,
no differential equation (DE) recursions were presented. Quaternion
fundamentals range over several mathematical subjects even though
angular acceleration of a rigid body hau not been included.

The reference list samples the extensive quaternion literature.
Branets f6] has been mentioned becaube of the large list of European
papers, books, and static and dynamic applications.

This report is oriented coward analog and digital computation and

fosters fundamentals which eventually produce the following:

i) Improve computer hardware acceptance testing.

ii) Provide better formulation of computer hardware requirements.

iii) Provida minimal software emulation of hardware realizations.
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Appendix A. GENERAL QUATERNION TRANPOSES

The two transmuted quaternions can be imbedded in a set of eight
general quaternion transposes. Also, there exists a natural subscript
notation with simple binary number operational rules. Motivation
arises from the fact that transposes of quaternions are equivalent to

transformations with a diagonal matrix T.

Loma A-1, If T - diag(l, -1, -1, -1) and the prime denotes matrix
transpose, then

Q'(q) - Q(Tq)

and

2 0
T -I T

In general, T can also be a left multiplier or a right multiplier of
Q as in

0 0Ql(q) TOQ(T q) T 1 - Q(q) T

The usual binary representation of 1, [112 - 001, immediately locates T

in a position accordingly because 1 implies the presence of T and 0
implies the absence of T in a particular bit position.

It is natural to consider the subscript as an operation; namely,
the generalized quaternion transpose

Qi(p) [Q(P)]i

The next task is to determine k in

if i, J are given from the set of indices 0, 1, 2, 3, 4, 5, 6, 7.
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Lemma A-2. If

[) 2 - a 2ca1 a 0

U1 ]2 " 20100

(k]2 - K2 K1 K0 ,

and V is the term-by-term sum-modulo-2 of a pair of binary words, then

i) K K K )(2 1 0 " (a2  82 )( 1  O l)(0 ( D0) ']i 2 V [j] 2

ii) k i2(2 2 +K 1 ) + K 0

gives the decimal number k in [Qi(p) -Qk(p)

Table A-I displays k for given i and J. Here, it is desirable to
shorten the precise [['] 2 V [J] 2] to iVj. A typical dogleg path for

determination of k - 4Vj is shown by a pair of heavy lines. Some simple
arithmetic representations of iVj are also noted in Table A-1. It is
natural to consider the fundamental subset of generalized transposed
quaternion as Q7 (p), Q4 (p), and Q,(p).

Lemma A-3. The complete set of transposed quaternions can be determined
from the fundamental subset Q7, Q41 and Q1 9 The complete set can be
conducted as follows:

i) Q79 Q4 1 Ql

ii) ' [Q4]' [Q1] yield Q_, Q6, and Q3, respectively;
2 2 2

iii) Q2 - Q' and QO - Q are implicit in the conptruction of i)

and ii).

The quaternion meanings of Q7 (p) and Ql(p) have already been

presented in a lead vector interchange context. The meaning of Q4 (p)
is that it is the row transformation counterpart of Q (p).
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TABLI A-1.i DETERMINATION OF iVJ A k

L 1 0 1 2 3 4 5 6 7

0 0

1 1 0 k

2 2 3 0

3 3 2 1 0

A START: 4 4 5 6 7 0

5 5 4 7 6 1 0

6 6 7 4 5 2 3 0

7 7 6 5 4 3 2 1 0

END

A Identities: [ivJ * 0
'1Ovi mi

7VJ 7 -j

Arithmetic 4YJ - (4 + J) mod 8

representations:
S- 1 if J is odd

S+ I if J is even
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The subscript-7 operation is employed most frequently. Its transpose-
like nature is now demonstrated.

LeMMa A-4.

[Q(p) Q(q)] 7 - Q7 (q) Q7 (p) - Q6(q) Q3(p)

Proof:

[Q(p) Q(q)] 7 - T[Q(p) Q(q)] 'T

- (T Q(Tq)] [Q(Tp)T], (T - I)

- Q6 (q) Q3CP)

- (T Q(Tq)T) (T Q(Tp)T)

- Q7 (q) Q7 (p)

Only subscripts 2, 3, 6, and 7 have middle ONEs in their binary represen-
tations and these subscript operations "transpose" matrices as in Lemma A-4.
Further investigation can proceed.

Lemma A-5.

[Q(P) Q(q)] 2 - Q2 (q) Q2 (p)

[Q(P) Q(q)]3 - Q2 (q)' Q 3(p)

[Q(P) Q(q)] 6  n Q4 (q) Q2 (p)

As before, these factorizations are not unique.
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Appendix B. FOUR GIMBAL OUATERNIONS
Quaternion inverse equation variants lead to two error quaternions

applicable to the remote contr-l of two rotating rigid bodies. A further

consequence is the four gimbal quaternion, a mathematical model for a
strap down digital computer that replaces expensive mechanical gimbals.

The motivating quaternion equation is

coome coef
-(B-1)

Ssin Caine

Replace the first lead vector with another lead vector and form the
quaternion difference

(l\ co: cos6

where (coo 0, p sin 0)' is the reference lead vector.

Lemsa B-1.

(1cosn Q( \ cos e0

Cos

sin coso - p coo r sin e + (p X l) sin sinO)

Co0 -co come
=Q e') . (B-2)sin e -1 sqin Q(; sin

Understanding can be furthered by making a side calculation for the special
case q - p. Differences of angle will appear in such a way that all lead
vector components ari zeroed when the two rigid bodies are aligned and
have identical anglej. This result reinforces Ickes' [41 practical goal
of applying quaternions to aligning two rotating systems.

Replacing one lead vector with an orthogonal lead vector in the
left-hand side of Equation (B-I) leads to a complementary identity,
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c) (B-3)\•c 60n e) coine

Transposing both sides yields the following result.

Lemma B-2.

* - Q(B-4)
pcos Q(COsi ne C

and the quaternion product commutes. The second error quaternion comple-

ments the quaternion previously derived.

Lemma B-3,

-p) cos \/ sin s i

. co., + s (ln -osi 0 i sine•) + os, ~ osn 4

cosi-snocs + (1 Gn + sln) co (, sine sine)

sn sin CO COS sin

if!! where (cos 0, + sin *)' is the reference lead vector. This again leads

to an all zero lead vector when the two rigid bodies are aligned.

An additional application of Lemma B-2 is the nulling of the earth's

spin angle, w - wt, along the spin axis, ^r, for a long range missile's

geonavigation system. If Q() , in the original similarity transforma-

tion, is replaced by a counterpart of Equation (B-3), one obtains the
asimilarity transformation

caesin 24A co s ric ns)[Q, in* Q csr ) Q(4rsin**i) co(:snVJ~ $
(B-6)
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Lead vector selection and lead vector interchange on the asimilarity
transformation yield the desired result.

L The asimilarity transformation yields the four-gimbal quater-

nion model

"/ )os \ sins** 0).~ Iow
co: /o ( co:.**) 'A (B-7)

\psn y rcosa \sn/ y rs 8

which nulls the spin angle, *, along the spin axis, r. Three of the four
gimbals are resident in the half-angle quaternions, whereas the fourth

$sin l
gimbal is represented by. The extraordinary event here is

A Cos

that the angle * appears on the left-hand side but disappears on the
right-hand side - a hidden variable situation. From this point on,
p is the same as given in the text.

Another scenario for four-gimbal quaternions is the spin stabilized
missile. Missile spin produces desirable aerodynamic stability but
undesirably spins radar homing data. Four-gimbal quaternions "de-spin"
the data.

The simple flowchart for error and four gimbal quaternions is shown
in Figure B-1.
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I MIAI\ 06 \cs

(END 1 )

J u~) sin I0 $i"nO~
FIRST

00 )0 " ,/
START: o( •)(.o

LAST

um 0G -,sine) (Do\,.,.°o •0,) "( 0)8

0(10 si\ /me~ FOUR GIMBAL OUATERN IONS
k~J 6AW si 0 IN LEMMA B4.

(END 21 (END 3)

Figure B-1. Flow chart for investigation of two error
quaternions and the four gimbal quaternions.
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Appendix C. QUATERNIONS AND DIFFERENTIAL EQUATIONS

The matrix DE aspect of four gimbal quaternions is presented. A
simple computation is considered first.

Lemma C-L If

and

x(o) - Q 2

where r is a constant 3-vector, w - Liril, X(t) is a 4 X 4 matrix function
of time, 0 S t < -, then

i) X(t) = l2 (Q e

a / \•r s (t/

cos 2 o w
ii) (1(t)) -Q!~ 2i~ (cosn Wt)

Proof:

1) r• +r'rmr

2) Q2(0) _ W21

rI

3) X + w I - 0

4) X(t) X(O) I cos Wt + Q W

5) X(t) Q7(, eIn sin /:

ain Q sin wt
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co ~ cosW

7) End of proof.

It is apparent that the matrix and vector portion of the four-gimbal
equation with * - Wt have been represented by matrix differential equa-
tions. It suggests that the two leftmost matrices be computed next
as the slightly more difficult case.

Lemma C-2. If

and .
Y(O) - Q ( co~ 20

where r is a constant 3-vector, w - Irll, 0 : t < , then,

0 sin- 1  sinfi Qwtj
o Q sin wt

ii) Y~t J •. e

Q1 2 t

(p sin oWt

Executing step ii) of Lemma C-2 and step ii) of Lemma C-1 as

parallel computations followed by matrix-vector multiplication yields

,fCO sin2 e )O ( W)]L7(; ( ^COSi:n t)J .co•~1 siw • (\ t sinj/

the end result of a matrix differential equation representation of a
four-gimbal platform.

It is now possible to branch into numerical integration according
to Barker [7] or into analog simulation according to Mitchell (8].
Critical comments are in order for Barker's [7] numerical methodology.
Barker compares the self-starting Adamo-Bashforth-2 method, which belongs
to numerical transform methods peculiar to electrical engineering, with
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the local linearisation (LL) method of numerical analysis; this is a
comparison of the worst method in numerical transforms with the best
method in numerical analysis. The "correct" Boxer-Thaler Z-form of
numerical transforms is a much better performing numerical transform

specifically applicable to X + ý2X M C, X(O) - , (O) , which

is identical to Barker's problem. A best-with-best comparison results
in ,a fairer contest and one can conjecture that the LL algorithm will
not be overwhelmingly superior.

Analog computer integration is rather easy. Past analog and digital
simulations require representation of the quaternion with orthogonal lead I' ~vector in Lemma C-2. i

A slight disadvanta e of the DE representation of quaternions in
that w is dependent on Irl, whereas in the algebraic context w and
lirli are independent.

4

* *

: :1

j I
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