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l. INTRODUCTION

Euler's Theorem is the basis for a four parameter alternative to
\ Euler matrix representations of yaw, rcll, and pitch motions of an
E : unbending missile., The quaternion [1-3] has already demonstrated
4 superior features in that:

i) It needs only 35% of the multipliers used by Euler matrix
computers,

i1) Analog and digital computations are more accurate than Euler
matrix computations,

ii1) It 18 preferred to Euler matrix representation in strap down
gyro platforms that replace expensive mechanical gimbals with
digital computers,

The bordered matrix form is emphasized exclusively, Transmitted
quaternions interchange lead vectors and effect speedier hand computa-
tions, These two quaternion implementations are attributed to Ickes [4].

The nth root of a quaternion is an instructive precursor to small
angle recursions, These algebraic recursions are regimented by
Chebyshev polynomials.

The appendices contain four gimbal quaternions for strap down
computers and quaternion representation by differential equations.
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Il. SOME PRELIMINARIES

Slight familiarity with Euler matrices, trace of a matrix, and
quaternions will be presumed. The ordinary matrix-vector notation and
gsome Gibbs vector (X, ¥, Z) algebra will be employed. The transpose of
a matrix or vector is denoted by a prime. Unit Gibbs vectors ara
indispensable and are denoted by a caret; swift interpretations of the
vectors t and £ are possible. The Euclidian norm llg i also appears,

Example 1

If ¢ is a 3=-vector and ”gll 4 JE'E, then £ = g/llg“ « Other
objects such as the lead vector and transmitted quaternions will be
introduced as needed,




Iil. ROTATION IN THREE-SPACE

Euler matrices produce rotations in 3-gpace by successive rotations
in three 2-spaces, the xy-plane, the yz-plane, and the zx-plane,
Reference vectors are X, ¥, and z, respectively, the first symbols in
the plane designations, The plane normals are z, X, and §. The sign
of angles is determined by the right hand screw convention. These
rotations produce the yaw, rell, and pitch angles, respectively. Euler's
theorem returns a 3-space rotation to its basic situation in 2-space,

Theorem 3,1 (Fuler). A 3-space rotation is equivslent to a 2-space
rotation about a fixed vector. The 2-space rotation has the fixed

vector for its normal.

Sketech of Proof:

ay IfEm= {eij] in a 3 X 3 Euler matrix such that EE' = I, then
there exists a fixed 3-vector & such that E¢ = ¢,
b) The angle of rotation, 8, is given by

+e.+e.,¢trE (3.1)

14+ 2cos O me 22 33

11
¢) Alternatively,

cos g - % J1+ tr E . (3.2)
stnfmd fr@-B) (3.3)

The three components of the fixed vector, ¢, and the argle, 6, constitute
a four parameter system, Naturally, there exist three possible classes
of representations:

i) Four component vectors.
i1) Four parameter bordered matrix.

i1i1) Four parameter pseudo-vectors.

The first representation will be considered. Afterwards, a return to
quaternions in bordered matrix form is in order. The pseudo-vector is
somatimes called a hypercomplex number, It is Hamilton's (1843) original
formulation and can be found in Bean [3]., It is a matrix decomposition
of the quaternion and does not need to be considered in this computation

context,
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IV. THE CONSTRUCTIVE EULER THEOREM
Theorem 3,1 can be reinforced by two tasks:

1) Determine two vectors in the 2-space whose normal is the fixed
vector,

i1) Construct a four-component lead vector that deduces a complete
orthogonal basis.

As implied in the statement, a lead vector can deduce other vectors and
with them form an orthogonal (orthonormal) bases.

Lemma 4.1. The fixed vector ¢ of Theorem 3,1 catisfies (E - E')t = 0,
and its components are

- e

| x €23 7 32

:

| & |71 %31 " °13 .
' ¢, e12 = €1

Moreover, there exists a natural vector decomposition
E=u-v s
where

€23

u = e31 ’

12

32

vV = e13 .

? c21

Lemng 4.2, The vectors (u X v) and (u X v) X (u - v) are in the plane
whose normal is the fixed vector ¢.




Studiaes of four parametaer /-vector representation can commenca,
The norm presarving mapping

3 ; [|&]| cos e
| R =) -
k. " $ 8in 6

is a formal condensation of all that has been stated so far into the
4e-vector on the right. The angle 6§ is implicit in the Euler matrix E
through Theorem 3.1, Norm preservation simply means that the 4-sphere
has the same norm, ||t||, as the 3-sphere.

||&]l cos @

: Lemma 4,3, The vector i8 a lead vector that can deduce

! ¢ 8in @

: the other three members of an orthogonal basis. The orthogonal basis,
after using ¢ = u -~ v, 138

(“u-vll cos 6 “|lu=v|lsine 0 0
; ’ u

Xv ’ (u=v) X (uxv)

(u=v) 8inb ' (u=v)cos 8

Ifc QuXxXv,d g (uXv) X (u-v), then the orthonormal basis is

cos 6 - 8in 6 0 0
(A )'9 A ) ’ ~n ) ~ o
¢ ein 6 § cos 6 c d
The second vector is obtained by replacing 6 in the first vector with
8 + (n/2). No more angles are available, and the top components of the
third and fourth vector are zero. The scalar triple product from Gibbs'

vector algebra ensures orthogonality of the vector parts of the third
and fourth pasis vectors,

Lemmas 3.1, 4.1, 4.2, and 4,3 comprise the Constructive Euler Theorem
whose corollary is an orthogonal basis of 4-vectors, The Constructive
Eular Theorem generates the naad for 4-vectors, but computations are
slow, Swift computation is affected by quaternions largely because cross
products are present in quaternion products,




V. SIMPLE QUATERNION COMPUTATIONS

The quaternion can be introduced through the nonstandard Cayley-
Klein form

a+jb «c + jd

j - =1 .
c + jd a-~-jb/,
A nonunique matrix representation of complex numbers leads to the
4 X 4 matrix

a =-b -C -d a
b a d -C b
= Q(q), q-=~ . (5.1)
c ~-d a c
d c -b a d

The notation Q(q) means the ""quaternion array" Q whose first column
vector is q., The standard Cayley-Klein form places the lead vector in the
the first row, After becoming familiar with fundamentals, a bordered
4 X 4 matrix will be used exclusively; this usage coincides with Ickes[4].

An intermediate result is needed.
Lemma 5,1, The column vectors of Q(q) form an orthogonal basis; the

column vectors of Q(q) form an orthonormal basis, Moreover, q is a lead
vector,

Proof;
a) Q(q) Q'(q) = (q'q) I (5.2)
is obtained by direct computation,
B (@ Q' (9 = I. (5.3)

This lemma immediately replaces many geometrical calculations required
by the orthogonal basis of the Constructive Euler Theorem with a format
of four signed and unsigned rearrangements of the lead vector q that are
orthogonal,

If indices are employed for the lead vector, the nonstandard vector
component notation (po, Pis Py p3)' will be employed, Oftentimes inter-

est focusses on the "vector part" (pl’ Pos p3)' and the lead vector is
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shortened to (po, p)'; this partitioned vector reduces symbol clutter,

The '""real part'" of the vector is the scalar Ppe

Skew quaternions with zero real part are interesting in their own
right., Direct computation gives

0\/0 q°*Pp P'q

P/ \4 qQXxXp Pq

0 Py P,
P - -p3 0 pl (5 04)
p, -pp O

depending on whether Gibbs' vector or matrix — vector notations are
employed, A computation such as the commutator identity

1 q
el "] - q ")a = Q (5.5)
requires more tcols for effective computation, Two digressions are

needed to consider lead vector selection rules and transmuted quaternions,

Finally, the bordered matrix form

P P -p'
of %) =("° (5.6)
P p pOI + P

exhibits the 3 X 3 matrix, (p0 I + P), the "kernel" matrix of the
quaternion, If Py = 0, then the skew matrix P is the kernel of

0 Pg Py
Q . The symmetric part of Q 1sQ_|= P I. It is important
] 0

P
to realize that 0 automatically constructs the full quaternion,

P
Interaction of real part, vector part, and kernel should be apparent,

B
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VI. LEAD VECTOR SELECTION RULES

Lead vector selection rules transform matrix multiplications to
simpler matrix-vector multiplications and thereby reduce calculation
effort.

Let Dirac brackets (s) denote the selection of the first column
vector from a given matrix; i.e.,

(@(pi> = p . (6.1)

The following rules can be deduced from matrix multiplication rules:

i) Distributivity over sums:

Qe + ) =) + (@) =p+q , (6.2)
ii) Distributivity over products:

@@ @) = @ Q) (6.3)
iii)  Absorption rule:

Q) q) = alp) ¢ (6.4)

iv) Idempotent rule:

<KQ(929 = (p) = p (6.5)

The idempotent rule is a slight extension of tke absorption rule for the
case where Q iu replaced by the identity matrix, 1In the distributivity
rule, the flow of Dirac brackets is from outside to ineside and from left

to right,

The Q operation in

Q(Q(p) 9) = Q(p) Q(q) (6.6)
is the inverse of the absorption rule,

Many of these rules are general in that they can be applied to
matrices and vectors which are not quaternions and lead vectors,

10
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VIl. TRANSMUTED QUATERNIONS

The second requirement for converting matrix multiplications is the
interchange of lead vectors on the left-hand side of our similarity
equaticn

Q(a) p = Q(® q (7.1)
to the preferred lexicographical order -1; q on the right~hand side,

e e e e

1f p' § (a, b, ¢, d) and q' 4 (@, B; 7, ),

then form

]
1
o
]
[¢]
]
0,

ca =~ Bb - ye - 5d

o
[
[« M
[ ]
(o]
w

Ba + ab - d¢c + »d

Q(p) q = - . (7.2)
ya + &b+ ac - pd

[ 2]
[ ]

[+ 9
[
o
~

Q.
0
1
=
[ ]
o

ba = yb+ Bc + d

Rewrite the rightmost vector so that Greek letters are in a matrix and
Latin letters are in the column vector to cbtain

o = =y =B\ [al.
=} a =B Y| b . j

Q(p) q = 4 (@ p . (7.3) i
4 o a =Blle -

8 =y B af\d

If one suppresses the distinction between Greek and Lztin letters, the
array Q7 18 obtained from Q by transposing only the ternel matrix,

Q,(q) is the transmuted quaternion and one can verify that q is a lead
7 y

vector,

The matrix-vector result can be summarized,

o s A i 1 et i

i -
Q(q) » = Q,(P) q
[Q,(p)] [Q,(p)]' = (p'p) I (7.4) j

tr Q,(p) = tr Q(p)

11




1f the problem is interchanging p and q.in p' Q(q), one then has the dual
problem that leade to the second transmuted quaternion, Form

a =B =y =B ca + gb + 7c + 8d
B o & ob - pa + 7d - B
' Q(q) = (a b c 4d) -
y =B « ) cc -~ pd - ya + 8b
5 7 -B o ad + pc = 7b = Ba
| (7.5)

Rewrite the rightmnat vector so that Greak letters are in the row vector
and Latin letters are in the matrix to obtain

o
[
[
[}
[- 9
(o]

P' Q@ =(ax B 7 B) . 4 4" QP (7.6)

0
[= 9
1
4
]

d - b -8

If one suppresses the Greek and Latin letters, the array Q1 is obtained

from Q by multiplying the second, third, and fourth column vectors by
-1, Moreover, p is the lead vector of Ql(p), which is the second trans-
mutad quaternion,

This matrix-vector result can be summarized,

Lemma 7.2,
q' Qp) = p' Q,(a)
[o,@] [} = w1 . 7.7

tr Ql(p) - '005 tr Q(P) L]

Ickes [4] employed Q’ in place of our notation Q7 and called Q==
the transmuted quaternion, This notion is generalized in Appendix A,

12
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Vill. FROM QUATERNIONS TO EULER MATRICES

This section reinforces previous methods to achieve firmer founda-

i tions, The first task is to present methods from behind the scenes of
Lemmas 3,1 and 4.1,

e

e T

Lempa 8,1, Given any 3-vector, k, it's annihilatorK, a 3~ X 3~skewmatrix,
can be constructed as follows

0 ky =k, ¥, kqk, = k,ky 0
’ Kk = |-k, 0 kl ko | = |kyky + Kk, | = |0 . (8,1)
ky, =k, 0 k, ok, = Kk, 0

Moreover, if g 18 another 3=-vector, then

Kg = -Gk = g X k,

K' =K,
G' = -G,
2 '
tr K” = «2k'k,
K3 + (k'k) K = 0,

2, If h=Kgand K' » «K, then H = KG - GK = gk' =~ kg',
Proof is by direct calculation,

A frequent problem 18 that K is known but ¢ 18 unknown and subject

to Kt = 0, The solution i8 ¢ = k up to an arbitrary non-zero gcalar
factor,

Note that the trace operatinn, trA, as the sum of the diagonal ele~
ments of the matrix A,

The second task is to derive a more specific form of the transposed
lead vector (cos 6, t' sin @),

The third task is to derive the Euler matrix from a quaternion,
The second and third problems are solved together,

; X x
é Theorem 8,3, Iffw|ly |, fF =Yy
E 13
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P B
and ( 0 is a unit lead vector, then the similarity transformation
P

P 0 P 0 |
(IO - )
P t9 P (4] .
902 +p'p=1 |

induces the Euler transformation

iv) trépp' + (pOI - P)2) =3 poz -p'p=1+ 2 cos 0

implies that

ot = eon ) o o= e (9]

v) [Q'(p) Q7(p)]' [Q'(p) Q7(p)] = I implies that E'E = I
vi) (Et = ¢ and EE' = I) imply that (E - E')t = 0

vii) (E ~E")t = =4 p0P§ =0, Py ¥ 0, implies ¢ = p up to a
multiplicative scalar factor

14

5= [pp‘ + (pyl - P)z] P 4 EY (843)
and
8
Py ™ t|cos (E)l
p = the fixed vector of E,
Proof:
P P 0 0
0
P P r p
P p' P -p! ) 0
1) 0 0 NN
-p pOI - p P pOI - P r P
1 o' 0 [0
1) | 5 -
0 pp' + (pyl =B)7f]% B




viii) (p°) - co.(%) .

P 3 sin(%)

Step viii displays an amended, principal part form for a lead vector
that originally contained the full angle, Note that the * sign on Pg

in Step iv has been arbitrarily made positive in Step viii. This sign
decision must be made external to the quaternion syatem,

Some straightforward calculations can be executed, The first cal-
culation is the explicit form of the Euler matrix, E, in terms of the
lead vector (po, p') components; namely

x 1 - 2p,% - 2p, 2p Py = 2PgP3  2PgPy + 2p;Py x

y|= | py*2ppp, 1 20, % - 22, 2p,p, - 250, y| .

E 210y - 20gpy gy + 202y 1= 28 - 2,7 |
(8.4)

The skew matrix is

0 “4PgP3  4PgPy - 0 p3 R
4pop3 0 ~4pgPy | ™ -4po “Py 0 Py o (8.5)
=4PgPy  4PyP; 0 P, =P O

The second and last calculation specifies a product of quaternions

P u v W
0 0
P u v w
where u, v, and w are mutually orthogonal vector parts to greatly reduce

calculations. Employing %, ¥, 2 for the first, second, and third column
vectors of the identity matrix, one obtains the specific form

0 o o B3
cos 3 cos = cos = cos
. = Q Q .
3 - ~ B ~ M ~ M
P sin 2 z sin Tl x 8in -52' y sin -22

(8.7)
15
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The strange unit vector and subscript association derives from our
canonical Euler transformation sequence; i.e,, rotation first in the
Ey-plane whose normal is Z, rotation in the yz-plane whose normal is
%, and rotation in the zx-plane whose normal is the y, Moreover, the
leftmost quaternion performs the first operation in the similarity trans-
formation, Direct calculation leads to

ro = oo (§)= oo 3) eor ) (0 2)
+ (sin L}) (sin -l:i"l) (,m .'129.)

b M o m 5 Kq

(8.8)

1 2 3 ]
cos ) sin 2 cos 2 4+ s8in 2 cos --2 sin ——2
() K K (3} K [N
A e 1 2 3 1 2 3
P= (csc 2) cos 3 cos = sin 5 - sin 3 sin 3 cos 3 R
¥ H M K M K
1 2 3 1 2 3
sin 5 cos -3 cos 5 cos 3 sin 3 sin 2

(8.9)

It should be emphasized here that the quaternion angles (pl, Ho» "3) are

the negative Euler angles; this anomaly arises because of our choice of
the first column vector as the lead vector.

16




IX. SMALL ANGLE APPROXIMATIONS

The small angle approximationa

gin p & p
for |p| s 0,1 rad
cos u w1

is a mechanism for calculating the Euler matrix, E, from the following
identity. If

then

0 o 1 0 1 o
exp - = —3 Lo - L[] (901)
0 K 0 expK 0 E
The exponential matrix is also the culmination of the differential equa-

tion formulation of rotations (Appendix C), Although differential equa-
tions can be solved recursively, one would rather emphasize direct alge-

braic methods,

The next task is to compare small angle second-order effects on
Euler matrices and quaternions, Consider the quaternion similarity
trangformation again, Quaternion calculations specifically lead to
the Euler matrix

2
pp' + (p,l - P)2 o 1 - (sin 6)P + (sin %) Gh +P2-1) . (9.2)

Some simplified calculations are in order, If

P o= (1, 0, 0)

and
P, 1,1 ,
then
- L L SR R TPY Sy S

17




If the previous identity and the small angle approximation are invoked,

one obtains
2

pp' + (ol = D)2 =1 -6 -5 atag(® . | (9.3)
Hovever, if
cos % 1
. \a ,
] e
P 8in 2 P 3
then
2 A 2 2
pp' + (pOI =P)" =1 - 6P -(3) T , (9.4)

T = diag(l, -1, -1),

and matrix norm comparisons of the second-order matrices can be made;
these are

“%2 diag (p) “ = [.;,% 6% = 0,7076% (9.5)
“%ZT ” = [43:92 - 0.43%° (9.6)

One can conclude that the quaternion small angle approximation
should be slightly better than the Euler matrix small angle approxima-
tion if the goal is to obtain the smallest second-order terms, Such a
goal is implicit in the exponential matrix, Equation (9.l).

18
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X. NTH ROOT OF A QUATERNION

Before venturing into small angle~induced recursions, it is
instructive to find the nth Yoot of a quaternion., This provides an
overview of the digital recursion scene irrespective of the large
computation effort implied,

Three mathematical tools must be used, These are as follows:

&) The Cayley-Hamilton Theorem,
b) The minimal Polynomial equation of a quaternion,
¢) The modified Chebyshev polynomials § n(x) and Cn(x).

0
Lemms 10,1, Cayley-Hamilton — The polynomial equation of Q(p) is
%4

2 2 2
Q" - Zpo Q + (po + p'p)I =0 (10,1)
and the minimal polynomial equation for & unit quaternion is

*=2pp0-1 (10.2)

This minimal equation directly links the modified Chebyshev poly-
nomial Sn(x) with this subject through powers of a quaternion in the

identity

n(‘o ) (po) (1)
Q =S __(2p.) Q -5 (2p,) qf- (10.3)
P n-1 0 p n-2 (4] 0

n-2.3'4.5.00. *
The right-hand side of the equation can be written as

o) 05n-1(2Pg) - Sn-z‘zl’o))

S -1(2py)

Q (10.4)

P

19

st o A e e




A ERRCS |
- | : | 0.9
P sn-1(2p0)

The last -equation exhibits the remaining Chebyshev polynomial Cn(x).

Lanczos [5] presents a very readable introduction to Chebyshev
polynomials, .

Chebyshev polynomial identities,

Cn(2 cos Q) = 2 cos né (10.6)
and
- (sin nb) ‘
8,1 (2 cos 6) = RIS , (10.7)

strongly suggest the form of the nth root of a quaternion.

If n is an integer and n 2 2, then the nth root of

cos (6/n)
is Q ]
p 8in(6/n)
cos(ﬁ) i 0.5 Cn(é cos‘g) cos 6
Q = Q =Q . (10.8)
P sin(ﬁ ﬁ(;in g) sn_l(z coa<g) p sin @

In the similarity transformation context, the full angle 6 must be
replaced with 6/2,

Computation complexity increases when cos(9/n) and sin(6/n) must
be computed from cos 6 and sin 6., Trigonometric computations first
yield

20
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cos(%)- 0.5/1 +cos 6

coa(%) = 0,5 /1 4+ cos %

and, in general, one obtains the recursion

and

—L - -.ne-
cos 2m+1 0.5 + cos o
m= 0' 1’ 2’ 3. L . (1009)

Finally, trigonometric computations yield

6
2m+1

sin = 0,5 /2 + sin2<£L)
m

2

m = 0, 1’ 2.‘3’ ¢ o o . (10010)

Unfortunately, iterated square roots in both computations require
multiple precision computations,

The nth root of a quaternion demonstrates that the unit quaternion
property must be maintained in a recursion, Limitations inherent in
cos8(6/n) and 8in(8/n) calculations and in the fact that n must be a
power of two can be avoided by the Padé approximant to be presented
in the next section,

With increasing n, 1/n tends to zero. If continued further to
n = -1, then the inverse problem reoccurs as presented in Appendix B,
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X!. SMALL ANGLE RECURSIONS

The small angle approximations are restarted with the norm pre-
serving Padé approximant

P

i 3(6/2n) , 4ot 16 2 2..

] e i - 16 > <=0,1rad , 1, (11.1)
é which implies that '
4 2 2

cos -ZQ- = -LQB-Z-—B-Z- (11.2)
n 16n” + 6

1‘ and

sin & & —88 . (11.3)
lé6n™ + 8

,{i’:‘

; If 6= 1 rad & 53 deg and n = 5, then |8/2n| is at the equality boundary.
. In this case, :

{ (.l) 2 329
§ €°%\n/ " o1

é sin(l> 2 20
! n 401 °
and the computer binary words must contain at least 9 bits,
cos(6/2)

The nth root of Q . is approximated by
p sin(6/2)

1 Q A,
2 2
16n” + @

The finite matrix-vector iteration format {is

22




(16112 - 92)

| 0" ¢ 1602 + 6% \ 806

1 | W= Ay

m=1,2,3,.00,(@=1) . (11.4)

Normalization is enforced by the iteration scheme

q1-<A>
9o = A 9

% ;
+1 T 0

m-2,‘0, 6,.0.,(2“" 2)
q; = 4~vectors o (11.5)
Figure 1 presents the computer flow chart for this recursion,

The end result

P

0
Qg ) = A" = 0( )

P

is given by

2 2
1 2(1én" - ¢ ) o
Pp=5¢C 7. (68) ’ (11.6)
0 “((16:12 + 92)) n

2 2

p=p—l— sn.l(—y”—-)é P o, (6) ‘ (11.7)
lén” + 6
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; Entering these values intu the Euler matrix and using the identity

2 2 , 2, 2
75 + 00 = 0.25C (2%) + (1= x°) S (2x) = 1 (11.8)

yields a slight simplification in

2

pp' + (poI - P)2 = I - 27n°n § + oi(ﬁﬁ' + P¢ - 1) . (11.9)

{ A slight hazard occurs when Cn(ZpO) = 0; this results in much compu-

"~

0
tation to produce a simple result, Q( ) .
P

These end results suggest that dedicated digital computer itera-
tions may be emulated by the iterative processes of Cn(ZpO) and
/1 - pi Sn(po); thereby, matrix~vector iterations and normalizations

are minimized. The sole matrix-vector calculation appears in the
quaternion to Euler matrix conversion near the end,

The minimum multiplication recursion for the modified Chebyshev
polynomials [5] is

So(x) =]

Sl(x) = x

Sn(x) - X Sn_l(x) - Sn_z(x) , (11.10)
followed by additions in
Co(x) “ 2
Cl(x) = X

Cn(x) = Sn(x) - Sn_z(x) . (11.11)
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Xil. ITERATION OF PRODUCT QUATERNIONS

Suppose the quaternions producing yaw, roll, and pitch motions
in the similarity transformation are symbolized by A, B, and C,
respectively, and that the combined transformation is the product ABC,

In Saection XI, (ABC)]'/n
yielded

[(ABC)]'/ “] “amc .

was the small angle approximation and iteration

0 K

of a triple matrix product uses an extremely large integer n such that

0 o
The exponential matrix, exp( ), of Section IX in the context

K in [I + (K/n)]n retains only first-order terms and the iteration
converges to the Euler matrix, If n is not large, then a fundamental
inequation

canc) /0 4 pl/n gl/n (1/n (12.1)

appears behind the scenes in the quaternion aspect,

The third possibility is motivated by the desirable equality

(Al/“)n (B”“)n (c”“)n = ABC . | (12.2)

This iteration requires three parallel iterations and a final matrix
product, This results in a maximal computer, but would give the safest
computation for the finite arithmetic available on a dedicated digital
computer.

A flow chart summary of the primary results obtained is presented
in Figure 2, The starting equation is the quaternion similarity
transformation., Ascending or descending vertical arrows represent
major transitions whose meanings are apparent, while horizontal arrows
represent rather minor transitions, END3 is a theoretical ending,
whereas END4 and END5 represent computer configurations. A solidus (/)
through a directed line denotes an unrecommended transition. END numbers
are numerically ordered according to the occurrence of results in this
report, Unrecommended exits are assigned the last numbers, f.e., 6,
7, and 8,
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: END4 and ENDS are possible multiple exits for this study. END4 j‘

leads to existing dedicated quaternion computers., If specifications
should tighten in the future, then END5 is available for alternative E
; consicderation, ‘
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(END 4) {END 8)
4 A
(A"" B1In c"/n’n (A‘l/tI,“ (B'l/ll," (cilﬂ,n

{ n LARGE n SMAI.I.’

o) o) o) of

) sABC;ulviwlu

L

wor [0

(ENDY8)
e e—

C'B'A'C,B,A, = (ABC)' (ABC),

(END 1)
-

'

7= [o0" + ot ~ PP

!

(e

ret) | (676 6]

t (pp' + Pyl —P1) = 1420006

'

(END 7)

Figure 2,

transformation study.

{

Po=t |ooed/2 |
p=A FIXED VECTOR
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XH1. CONCLUSIONS

B ' Datailed quaternion applications toc three-dimencional rotations

‘ : of a rigid body have been prasented in a bordered matrix format, There
is an initial abstruseness about quaternions that eventually becomes
more concrete., Recursions can be generated algebraically after intro-
ducing the nth root of a quaternion. A flow chart for the quaternion
similarity transformation study summarizes procedures and results,

Two appendices contained in this report are concerned with strap
down digital computers modelled by four gimbel quaternions and quater-
nion representation by a matrix differantial equation. Numerical
integration of differential equations is understood by experts; there-
fore, because of this and emphasis on simpler aigebraic recursions,

r no differential equation (DE) recursions were presented, Quaternion
. 3 fundamentals range over several mathematical subjects even though
angular acceleratinn of a rigid body has not been included,

. The reference list samples tile extensive quaternion literature.
E- Branets [6] has teen mentioned because of the large list of European
; papers, books, and static and dynamic applicatinns.

~éi This report ig oriented toward analog and digital computation and
fosters fundamentals which eventually produce the following:
i) Improve computer hardware acceptance testing.
ii) Provide better formulation of computer hardware requirements.
i1i) Provide minimal software emilation of hardware realizations,

|
|
|
|
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Appendix A. GENERAL QUATERNION TRANSPOSES

The two transmuted quaternions can be imbedded in a set of eight
general quaternion transposes., Also, there exists a natural subscript
notation with simple binary number operational rules, Motivation
arises from the fact that transposes of quaternions are equivalent to
transformations with a diagonal matrix T.

Lemmg A-1, If T = diag(l, -1, -1, -1) and the prime denotes matrix
transpose, then

Q'(q) = Q(Tq)
and

TZ-I-TO .

In general, T can also be a left multiplier or a right multiplier of
Q as in

Q@ = 1% Tl=q T .
1

The usual binary representation of 1, [1]2 = 001, immediately locates T

in a position accordingly because 1 implies the presence of T and 0
implies the absence of T in a particular bit position,

It is natural to consider the suBscript as an operation; namely,
the generalized quaternion transpose

ROENCIO

The next task is to determine k in

[Qi(p)]j = [o,®] " @

if 1, j are given from the set of indices 0,1, 2,3,4,5,6,7,




é
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Lemma A-2, If
1], = wa,

[klp = Kpkykp

and V is the term-by-term sum-modulo~2 of a pair of binary words, then
1) Kkykiky = (@, @ B @ B (o @ By = (1], V [1],
11) k= 2(2, + &) + K,

gives the decimal number k in [Qi(p) - Qk(p).

Table A-1 displays k for given i and j. Here, it is desirable to
shorten the precise [[112 v [j]il to ivj. A typical dogleg path for
10

determination of k = 4Vj is shown by a pair of heavy lines. Some simple
arithmetic representations of iV] are also noted in Table A-1l, It is
natural to consider the fundamental subset of generalized transposed

quaternion as Q,(p), Q,(p), and Q,(p).
Lemma A-3, The complete set of transposed quaternions can be determined

from the fundamental subset Q., Q,, and Q,. The complete set can be
77 4 1
conducted as follows:

i) Q7s Q4: Ql H
ii) [Q7]2 s [é“]z , [Ql:]2 yield QS’ Q6’ and Q3, regpectively;

i1i) Q2 = Q' and Q0 = Q are implicit in the congtruction of 1)
and 11).

The quaternion meanings of Q7(p) and Ql(p) have already been

presented in a lead vector interchange context, The meaning of Q4(P)
is that it is the row transformation counterpart of Ql(p).
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TABLE A-1, DETERMINATION OF iVj = k

»
—
o

START:

LS
~

o v P W
oalulsrilwle
wWn
o
-~
o

END

jvi=o0
ov) = 3§

Identities:

((7vi =7 - 3

Arithmetic 4vy = (4 + §) mod 8

reprasentations: <
} -1 1f j 18 odd

1V =

jJj+1 4if § is even
\,
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The subscript-7 operation is employed most frequently. 1Its transpose-
like nature is now demonstrated,

: Q A' .

[ae) 2], = Q€@ ;) = Q@) Q) .

Proof;

[ae) a@], = Tiaee) a@1'T

= [T QT [Q@p)T], (1% = 1)
! = Qg () Q,(p)

= (T QTQ)T) (T QTp)T)

= Q,(9) ,(p)

Only subscripts 2, 3, 6, and 7 have middle ONEs in their binary represen=
tations and these subscript operations ''transpose’ matrices as in Lemma A-4,
Further investigation can proceed.
Lemma A-5,

(e QD], = Q,(q) Q,(p)

[Q(p) Q@]; = QyCa) Qy(p)

[Q(P) Q(q)]6 - Q4(q) Qz(P) .

As before, these factorizations are not unique.
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Appendix B. FOUR GIMBAL QUATERNIONS

Quaternion inverse equation variants lead to two error quaternions
applicable to the remote control of two rotating rigid bodies, A further
consequence is the four gimbal quaternion, a mathematical model for a
strap down digital computer that replaces expensive mechanical gimbals,

The motivating quaternion equation is

cos O cos 6 1
Q' = Q ° (B“l)
P sin 6 5 sin 6 0

Replace the first lead vector with another lead vector and form the
quaternion difference

1 cos V cos 6
Q_’ - Q'h PS ’
0 q sin W' sin 6

vhere (cos 6, P sin 6)' ia the reference lead vector,

Lemma B-1.

1 cos V¥ cos O
- - Q'(A Q A~
C q sin V¥ sin 6

l «coa ¥V cos 6 - (a -S) sin ¥ 8in 6

4 sdn ¥ cos © = p cos ¥ sin 6 + (B X Q) sin ¥ sin 6

cos O = cos V¥ cos 6
= Q' Q . (B-2)
B sin 6 - a sin V¥ 3 8in @

Understanding can be furthered by making a side calculation for the special
case G = p. Differences of angle will appear in such a way that all lead
vector components ar~ zeroed when the two rigid bodies are aligned and
have identical angles. This result reinfeorces Ickes' [4] practical goal
of applying quaternions to aligning two rotating systems.

Replacing one lead vector with an orthogonal lead vector in the
left-hand side of Equation (B-1) leads to a complementary identity,
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k- cos 9 sin 6 0
‘ (o) Gome) = )
p sin @ p cos O P

Transposing both sides yields ths following result.

Lemma B-2,

ﬁ | sin 6 cos 6 0 . J
i z qf . q = o | (B=4) ;
3 } p cos 6 p 8in 6 o]

| and the quaternion product commutes., The second error quaternion comple-
j ments the quaternion previously derived.

Lemma B-3.

0 sin V¥ cos 6 ' ' i
) = o) G oer) f
(% q cos V¥ p 8in |

- 8in ¥ cos 6 + (4 ¢+ P) cos ¥ sin @

i
- = Q ' |
b -q cos ¥ cos 6 + P(L =~ sin ¥ sin 6) + (P X §) cos ¥ sin 6 ;
3 }
3
sin 6 - sin V¥ cos O ;
= Q A A Q ~ ’ (B-S) l

p cos 8 = q cos V¥ p sin V¥

where (cos 6, S sin 9)' 1is the reference lead vector. This again leads
to an all zero lead vector when the two rigid bodies are aligned.

An additional application of Lemma B:Z is the nulling of the earth's
spin angle, ¥ = wt, along the spin axis, r, for a long range missile's

geonavigation system. If Q » in the original similarity transforma-
2

tion, is replaced by a counterpart cf Equation (B-3), one obtains the
asimilarity transformation

cos % sin ¥ cos V cos % 0
Lo )4 [623] €
sin 3 r cos | r sin V¥ sin 2 &

(B=6)




Lead vector selection and lead vector interchange on the asimilarity
transformation yleld the desired result,

- The a&similarity transformation ylelds the four-gimbal quater-
nion model

cos % sin ¥ cos % cos ¥ 0
Q' o ] . QA o] (. = {. (3=7)
P lin-i- r cos ¥ p c:l.n-f r sin V¥ P

which nulls the‘spin angle, ¥, along the spin axis, T. Three of the four

gimbals are resident in the half-angle quaternions, whereas the fourth
sin V

gimbal is represented by Q(% ). The extraordinary event here is
cos V¥

that the angle V¥ appears on the left-hand side but disappears on the

Eight-hand side — a hidden variable situation. From this point on,
P is the same as given in the text.

Another scenario for four-gimbal quaternions is the spin stabilized
missile. Missile spin produces desirable aerodynamic stability but
undesirably spins radar homing data. Four-gimbal quaternions 'de-spin"
the data.

The simple flowchart for error and four gimbal quaternions is shown
in Figure B-1,
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START:

(END 1)

(=}

(6) %y

Figure B-l.

Y

(END 2)

FOUR GIMBAL QUATERNIONS
IN LEMMA B4.

(END3)

Flow chart for investigation of two error

quaternions and the four gimbal quaternions.
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Appendix C. QUATERNIONS AND DIFFERENTIAL EQUATIONS

The matrix DE aspect of four gimbal quaternions is presented. A
simple computation is considered first,

Lemmg C-1, If

. 0
X(t) = X(t) o( )
r

P PP U N R

and

vhere r is a constant 3-vector, w = ||r||, X(t) is a &4 X 4 matrix function
of time, 0 s t < », then

Proof;
1) wéro +r'rwr'r

0
2) Q2< )- i,
r

3) X+ux=o0 ,

0
4)  X(t) = X(0) [1 cos wt + q( )'*—“%] ,

H r v
2]
i ‘ cos 3 cos Wt
é 55 xe =ql %) el ;
: sin 7 sin ot
39
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cos % /COB wt

6) X(t)) = Q
< ) 7 P sin % k? sin wt

7) End of proof.

It is apparent that the matrix and vector portion of the four-gimbal
equation with ¥ = wt have been represented by matrix differential equa-
tions. It suggests that the two leftmost matrices be computed next

as the slightly more difficult case.

Lemma C-2, If
0
¥(t) = Y(t) Q( )

r

and 9
cos

Y(0) = Q' 6 ’
P sin )

where r is a constant 3-vector, w = “rll, 0 £t <w, then,

;

cos '2- cos wt
1)  Y(t) = Q' 0] Q

P sin ) Z sin wt
t cos -g' 0
i1y  -w f Y(7) d7 + Q' g | Q
~ N
o p sin 2 (3
cos -g- - sin wt\

) Q'Ssin-g-/q?coswt/ '

Executing step ii) of Lemma C-2 and step ii) of Lemma C-l as
parallel computations followed by matrix-vector multiplication yields

cos = - sin wt cos £ cos wt 0

o %) Q 2 -
) 9 ~ 7 ~ 9 ~ "~ *
psin-z- r cos wt psini r sin wt P

the end result of a matrix differential equation representation of a
four-gimbal platform.

It 18 now possible to branch into numerical integration according
to Barker [7] or into analog simulation according to Mitchell [8].
Critical comments are in order for Barker's [7] numerical methodology.
Barker compares the self-starting Adamp-Bashforth-2 method, which belongs
to numerical transform methods peculiar to electrical engineering, with
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the local linearization (LL) method of numerical analysis; this is a
comparison of the worst method in numerical transforms with the best
method in numerical analysis. The "correct' Boxer-Thaler Z-form of
numerical transformse is a much better performing numerical transform
" . 0

specifically applicable to X + wzx =G, X(0) =1, X(0) = Q( ), which

‘ r
is identical to Barker's problem, A bast-with-best comparison results
in a fairer contegt and one can conjecture that the LL algorithm will
not be overwhelmingly superior,

Analog computer integration is rather easy. Past analog and digital
sinulations require representation of the quaternion with orthogonal lead
vector in Lemma C-2,

A slight disadvantage of the DE representation of quaternions in
that w is dependent on Iﬁ:". whereas in the algebraic context w and
lir]l are independent.
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