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INTRODUCTION
The results reported here are part of the overall experiment entitled
“Project da Vinci ” which was conducted on 1 and 2 November 1974. The
Chief of the Research Division , RDE Directorate, Army Materiel Coninand
issued the directive that the Atmospheric Sciences Laboratory actively
participate and partially fund Project da Vinci . Consequently, the

• experiment described herein was carried out, as were other experiments,
in response to that directive.

Laser detection and ranging systems (lidar) have been shown to have the
potential for detecting subsidence temperature inversions which have formed
in the atmosphere [1]. Early lidar detection of temperature inversion for-
mations can serve as an additional source of information which can contrib-
ute to making weather forecasting more effective; however, the invers ion
l idar “signatures ” are still not sufficiently defined for prognostication
purposes. Since each inversion signature is actually caused by laser energy

• reflections from trapped particulates, addit ional concurrently sampled
aerosol concentrat ions , atmospheric temperature structure, m d backscat—
tered laser energy data are needed. Project da Vinci , a manned balloon
flight , instrumented to obta in comprehens ive meteoro logical samples and
measure aerosol concentrat ions, and scheduled to floa t in the vicinity of
the ground based lidar to be descr ibed below , afforded an excellent oppor-
tunity to acquire the aforementioned concurrent data samples. Thus the
objective of the lidar experiment described here was to obtain laser energy
atmospheric reflections as a function of altitude which , in conjunction
with the da Vinc i in situ aerosol data and the accompanying radiosonde data,
would further assist in clarifying the lidar ’s temperature inversion signa-
ture characteristics.

Lidar probi ng was conducted from Small Missi le Range, White Sands Missile
Ran ge, New Mexico. The balloon trajectory was in a general l~’ northeasterndi rection from Las Cruces , New Mex ico (2045, 1 November 1974), to Wagon
Mound, New Mexico (0830, 2 November 1974). This path brought the balloon
aerosol sensors wi thin 20 km of the lidar. Temperature and relative humid-
ity versus altitude profi l es were acquired wi th standard radiosonde instru-
ments rel eased at 2045, 1 November, and 0415, 2 November, in the proximi ty
of the da Vinci balloon path. This report bri efly describes the lidar
system, the fundamenta l laser energy backsca tter ing equation, and laser
atmospheric data col lected during Project da Vinci . It identifies two
inversion—type lidar signatures and investigates aerosol density , tempera—
ture , and relative humidity versus altitude profiles to determine the
mechanism which produced the lidar inversion-type signatures.

GB-60B LIDAR SYSTEM

The Sandia Laboratory GB—6OB lidar system (Fig. 1) was employed during
Project da Vinci. This system consists prir~ar ily of a “Q—switched” ruby
l aser transmi tter, a Cassegrainian telescope, light fil ter, and a photo—
mult iplier compr ising the rece iver , an ME— 16 tracking mount wi th sighting
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telescopes, and the electron ic equipment for digital ranging and data
recording. A detailed description of the GB-60B lidar and its associated
equipment is given by Landry and Lockner [2). The basic laser character-
istics are :

Wavelength 6943 angstroms (Ruby)
Pulse width 20—35 nanoseconds
Maximum output energy 4 jou l es/pulse
Max imum beam divergence 85 mill i radians
Photomultiplier RCA 7265—S20
Receiver aperture 1 .68 N2
Sighting capability Azimuth 0 to 360 degrees

Elevation 0 to 90 degrees

The lidar ’s oscilloscope records voltage amplitudes as a function of time.
Reflected laser light energy is collected by the Cassegrainian ’s primary
mirror and is focused onto the photomultiplier ’s photocathode surface.
The photomultiplier output is fed to the oscilloscope on which the repre-
sentative voltage amplitudes are displayed and photographed. Figure 2
shows a typical laser atmospheric data photograph. The gradual decrease
in ampl itude wi th increasing height as seen in Fig. 2 on the left side
trace is due to the divergence of the transmitted laser beam (h r 2 factor,
where r is the slant range) and to the decrease in scatter concentration
since the hidar is usually pointing at elevation angles greater than zero.
Time gating of the oscilloscope photograph and the preset scope ’s horizon-
tal sweep time provide the timing i nformation required to calculate the
target slant ranges. Figure 2 also displays a pulse on the right side.
The area within this pulse provides a measure of the laser energy. Atmo-
spherically reflected light power incident on the primary mirror is obtained
from the recorded vol tages by employing the rela tion

Pi = ~ , (1)
~~ RxN0

where

v = voltage
g = photomultiplier gain

= oscilloscope input impedance

RA = photomultiplier responsivity

N0 
= product of mirrors , light fi l ter, and glass enclosures optical
efficiencies

The parameters g, R1, L,, and N0 may be assumed to remain reasonably con—
tant during the lasir.g period of one mission.

4 
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BASIC LIDAR THEORY

In the coaxial arrangement of the lidar ’s transmitter and receiver, the
fraction of the atmospherically backscattered light power which is col-
lected by the primary mirror is given , w ith sufficient accuracy for the
present purposes , by the relation

P
~
c-rA r

= ~(r) exp —2 5 ct(r)dr , (2)
8irr2 o

where
= light power incident on primary mirror
= transmitted power

c = the velocity of light
= pulse width

A = receiver aperture
r = range

= 

~~~ 
+

= molecular volume backsca tter ing coeffic ient
= aerosol volume backscattering coefficient
= 

~~~ 
+

= molecular extinction coefficient
= aerosol extinction coefficient

The volume backscattering coefficient B is equal to the product of the
backscattering cross-sectional area (m2) of the specific particle and
the particle number density (m 3).

Elimination of the power quantity P1 in Eq. 2 wi th the use of Eq. 1
yields the expression

= 

KPt T 

[B afr) + Bm(r)] exP [-2 f ctdr
]~ 

(3)

where
gR.R~N cA

7 0 (4)

8,t6
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Equation 3 demonstrates that the lidar ’s oscilloscope voltage deflections
(to be presented as data later) are, through the B parameter , proportiona l
to aerosol and~molecu1ar concentrations. Within the first 4 km of the
atmosphere the aerosol volume backscattering coefficient , at ruby wave-
lengths , exceeds the molecular bac ksca tter ing coeffic i ent by fac tors of
1.5 to 10 [3]. Consequently, in this altitude interval , the voltage ampl i-
tudes are more representative of aerosol densities and their variations
than molecular density or its variations.

DATA RESULTS

Atmospherically backscattered laser energy data were recorded during the
da Vinci balloon passage on 1 November 1974 from 1800 to 2100 MST. Al—
though the altitudes probed ranged from 1.3 to 18.0 km MSL, only the laser
data at altitudes which coincide with balloon heights at which in situ
aerosol data were obtained are discussed here. The balloon reached a
maximum altitude of 3.85 km MSL. The sequence of lidar photographs (Figs.
3, 4a, 4b) in which altitude overlaps from one photograph to the next shows
voltage data (on the left side trace) as a function of altitude . These
voltage profiles, recorded at 2045 MST, are representative of the general
atmospheric light energy backscattering conditions which prevailed through-
out the 3—hour lasing period.

Examination of Fig. 3 shows two abrupt decreases in backscattered
laser energy at approximately 2.22 and 2.56 km. These abrupt decreases
are typical of temperature inversion lidar signatures. The acute laser
signal decreases occurred within an altitude interval of 100 rn. Abrupt
optical signal decreases such as these have been observed before and were
associated with sharp reductions in aerosol concentrations above the tern-
perature inversion [1]. During past lidar experiments , this author has
observed similar optical signal decreases with respect to increasing
altitude occurring concurrently with decreases of relative humidity irne-
diately above the temperature inversion height. It has been suggested
that the rapid changes in backscattered signal in this case are caused by
an abatement of humi d atmospheric l ayers containing hygroscopic nuclei
which have grown through condensation processes [4]. The relatively smooth
profiles in Figs. 4a and 4b indicate that between the voltage drop at
2.56 km and the balloon ’s maximum altitude , the atmosphere was character-
ized by an absence of anhydrous particulate concentrations or humid l ayers.
Backscattered laser energy profiles similar to Figs. 4a and 4b have been
reoorted to be representative of an atmosphere in which the aerosols are
more uniformly distributed and are predominantly Aitken size continental
particles [5].

Under the auspices of Dr. A. J. Al kezweeny of Pacific Northwest Laboratories
(PNL) and Dr. R. F. Pueschel of the National Oceanic and Atmospheric Admini s-
tration (NOA.A), in situ aerosol concentration measurements were made from
the balloon gondola with a Royco Model 220 Optical Sensor and a Gardner
Small Particle Detector. The sampling systems were such that total con-
centrations recorded as a function of altltude were divided into particle7
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groups with diameter, d, less than 1110pm (Aitken nuclei ) and wi th radii
ranging from O.3prn to 3pm. At the GB—60B laser light wavelength of 0.69pm ,
the concentration varia tion of particles wi th radii > O.liim induces the
larger backscattered signal fluctuations , provided the < O.lpm aerosol
densities are not excessive. Based on the NOAA data on total concentration
of particles of radius r 

~~. 
0.li.im, the backsca ttered energy due to aeroso l s

of r ~~. O.lpm was established to be less than that due to molecular scatter-
ing. Also particles of this size range will not have grown through conden—
sation processes because the radius of curvature is below the critical size
for which vapor and water droplet pressure are likely to exist in equilib—
rium. Accordingly, only aerosol data of radii group O.3~im < r < 3jirn was
examined. In the latter group of data , the electronic pulses representa-
tive of aerosols in the radius group, O.3pm .~~. r < 1pm , became embedded in
the electronic noise and the data were not recovered. Consequently, only

• concentrations of particulates in the 1pm to 3pm radius group measured• with PNL instrumentation were used for comparison wi th backscattered laser
energy profiles.

Aerosol concentrations of the 1pm to 3pm radius size which were sampled
between approximately 2300 and 2400 MST within the altitude region 2.28 to
3.84 km are plotted as a function of altitude in Fig. 5. Examination of
Fig. 5 reveals the existence of a sharp decrease in aerosol concentrations
from 2.2 to 2.8 km, a small increase from 2.8 to 3.1 km, and a more gradual
decrease from 3.1 to 3.8 km. Comparison of Fig. 5 with the backscattered
energy trace of Fig. 3 shows that the two abrupt drops in reflected laser
energy at 2.22 and 2.56 km, which are typica l of lidar inversion signatures,
occurred within this altitude region where the aerosol density diminished
from 1.2 x 106 to 3.4 x lO~ particles/rn

3. There was, unfortunately, a
scarcity of data samples from 2 to 2.8 km which precluded designating the
exact aerosol density gradient required of particles this size to induce
such laser energy decreases. Nevertheless , it may be inferred that the
sharp decreases in backsc attered energy are due to a decrease in aerosol
concentrations. A review of Figs. 4a and 4b clearly shows that the slight
enhancement , 3,4 x i0~ to 4.5 x lO~ particles/rn

3, and the succeeding
decrease , 4.5 x iO~ to 1.2 x l0~ particles/rn3, in aerosol densities werenot detected with the lidar system.

To determine whether temperature inversions or humid layers existed dur-
ing the lasing period , atmospheric temperature and relative humidity data
recorded with two standard radi osondes re l eased at 2045 MST, 1 November
1974, and 0415 MST, 2 November 1974 were collec ted and are shown plotted
in Fig. 6. These profi l es illustrate the general temperature and water
moisture conditions which prevailed during the intervening time period.
This period includes those times wi thin which laser atmospheric probing
was conducted and the time at which the balloon aerosol sensors passed
within 20 km of the GB—60B hidar probing sector, 2100 MST.

Inspection of Fig. 6 reveals that from an altitude of approximately 1.5 km,
which is where the laser data commences, atmospheric temperatures followed
a relatively consistent lapse rate of about 8.2°C/km up to at least an

9
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alti tude of 4 km. During this 7—1/2—hour night period , the temperatures
decreased by an average of 1.5°C throughout the 2.5 km interval. Since
no pronounced temperature inversions occurred at altitudes coincident
with laser data, the sharp reductions in aerosol densities detected by
the lidar at 2.22 and 2.56 km cannot be attributed to inversion effects

• as suggested in reference 1.

The absence of a temperature inversion precluded investigation of the ef-
fects of laser energy reflections caused by inversion trapped humid layers.
Nonetheless , since humid layers do not necessarily have to be associated
with inversions , the relative humidity data in Fig. 6 was examined. Rel-
ative humidity exhibited a decrease beginning at ground level and ending
at 1.6 km and then an increase from 1.6 km to 3.5 km at 2045 MST. There-
after relative humidity diminished with increasing altitude from 3.5 to
3.9 km. Similarly at 0415 MST, the atmospheric moisture content decreased
between the ground and 1.6 km altitude , then increased from 1.6 km to 3.1
km; from 3.1 km to 3.5 km relative humidity decreased again. Comparison of
these profiles wi th the laser data of Fig. 3 indicates that the two abrupt
decreases in laser reflected energy at 2.22 and 2.56 km were riot associated
with an acute termination of a humi d atmospheric layer. In fact, in the
2— to 3—km region relative humidity was not only varying slowly with re-
spect to altitude but was also gradually increasing . The more pronounced
decreases in relative humidity recorded in the 3- to 4—km region failed
to produce any signal variations in the laser data.

CONCLUSIONS

Laser atmospheric probing conducted during Project da Vinci yielded two
acute decreases in backscattered laser energy which resembled lidar sig-
natures formerly associated with temperature inversions. The two abrupt
drops in reflected energy were detected at altitudes of 2.22 and 2.56 km;
otherwise, the laser data were indicative of a uniformly dispersed aerosol
background. Analyses of atmospheric temperature versus altitude profiles
divulged the absence of any temperature inversions . Consequently, these
energy “disconti nuities ” cannot be attributed to the termination of
enhanced reflections from temperature inversion trapped particulates.

Examination of the atmospheric relative humidity data between 2 and 3 km
has shown that in this altitude interval , relative humidity varied rather
slow ly, 1 2% per km, and therefore the abrupt energy decreases were not asso-
ciated with an abatement of hygroscopic aerosols which had grown through
condensation. The 1pm to 3pm radius aerosol concentrations plotted in
this report exhibited a sharp decrease in aerosol densities in the alti-
tude regi ons where the laser energy “discontinuities ” occurred. Within
the same al titude interval , water moisture content was increasing . There-
fore the laser data “discontinu ities ” are attributed to negative density
gradients of anhydrous aerosols. More important , it has been shown that
a lidar temperature i nversion type signature can be induced by aerosol
gradients wi thout the mechanism of temperature inversion trapping.

12 - 1J
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Finally, based on the resul ts of this experiment, and those relevant results
in references 1 and 4, It is concluded that additional concurrent laser
atmospheric probing , in situ aerosol measurements as a function of altitude,
and radiosonde temperature and relative humidity measurements are required
to identify the spec i fic slope characteristics of laser energy discontinu— -

~ 
-
~

ities which may properly identify temperature inversions.
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