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I, INTRODUCTION

b d Ak e st o2 b Ak e ek At At s h it s Rad ot A < lm

The assessment of delivery accuracy for a weapon is usually
initiated through test firings. The results of these test firi@gs
are miss distances of the rounds from the target center in the |
X (cross range) and y (down range) directioms, usually denoted by

{xi, yi} . These n pairs of miss distances are then used to %
1 b
compute an estimate of a parameter or parameters which descrlbeg the
accuracy of the weapon. The parameter most commonly estimated ﬁn
the CEP (Circular Errcr Probable), the radius of a circle thhlﬂ
which 50% of the future rounds will fall. This estimate provides
a single number which is customarily used to describe the accuracy
of the weapon under study.

The procedure described above can be improved by incorporaéing
the concept of statistical tolerance limits. This topic is addiessed
in Reference [8] but will be briefly restated here for completedess.
Consider the case where the miss distances from the target centér
follow a circular normal distribution. This distribution is given by

~x24y2) 1 (20%)
f(x:Y) = 2 e
™y

(1)

[ 3]

[P SOy

where ~ is the common standard deviation of the miss distances
(common to both the x and y directicns). Under this distributichal
assumption, the relationship betweon CEP and ¢ is well known to be

CEP = 1,177 o . i)

If ene know the value of the population parameter o, then CEP abiove,
dafined in terms of -, provides the rvadius of a civele which containg
exactly 50% of the bivariate probability and, hence, will contain 50%
of the future rounds. lHowever, s+ is usually not known and must be
estimated frem the test datas  One such estimate based on the th?ory

of maximun likel thood is J
1

L T A :
S=I3 (x; + yi)lzn] S (3)
ivl ;




where the circumflex (or hat) above ¢ is used to signify an estimate
of the true population parameter 5. Hence, an estimate of CEP is
obtained by replacing o in (2) with & which yields

CEP = 1.,1774 & . %)

(This estimate is slightly biased but it is rarely corrected since
the bias is small and the correction factor is complicated.) CEP
above is only a point estimate of the true CEP, and, as such, it
yvields no information regarding the probability that the circle it
defines contains 50% or more of the population. This probability
has been evaluated in Reference [8] for the circular case under
discussion. The results show that it does not exceed .50 for any
finite sample size. This means that one has at most 50% confidence
that a circle of radius CEP will encompass 50% or morxe of the future
impact points from the weapon under test,

To increase this probability or confidence to a more acceptable
level, it is clear that one must increase the multiplying factor in
(4) above the customary 1.1774, Tables of these multiplying factors
are provided in Reference [8] for the case of circular normally
distributed miss distances. These factors enable the analyst to
construct circles which encompass at least 100P% of the population
(ruture rounds) with 1007 confidence for a wide varjety of realistic
values of n, P, and «. Cireles of this type arve referred to in
statistical literature as tolerance circles, tolerance regimms or
tolerance limits. In general, (P,v) tolerance limits are functions

of the sample data and define a rvegion which contains at least 1000%
of the population with 100v% confidence.

On the basis of the abvve, one can utilize developed precedurcs

fv construct telerance cirvceles provided the miss distances follow a
civeulary normal distribution, He can use the muluiplying facter
which wiil provide auy level of preseribed confidence not only for
507 of tho population bur fer any Jdesired percentage. The preoblan
“have {5 that wiss distance distributions ave noet always circular
normal,  In fact, more often than net, they teund to follow an
eolliptical distribution, The purpese of this voport is te previde
a procedure for conatructing tolerance eiveles for the case where
tho miss distance distribution follews an uncorvelated bivariate
proreal digeribution wirh unagual variances c¢horeiwafter veferved

to a¢ elliptical novmal), The precedure to be developed in the
ensuing scctions is wet exact in the zonse of providing eivcles
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which contain at least 100P% of the population with exactly 100v%
confidence. However, the confidence afforded by these approximate
tolerance circles is very close to 100y%. The closeness has been

examined through a computer simulation, the results of which are
provided in a later section,




11, TOLERANCE CIRCLES: ox and OY KNOWN

It would be instructive at this point to examine the problem
of finding the radius of the 100P% circle when the miss distances
are elliptical normal and the population parameters are assumed
knovm, Such circles can be thought of as tolerance circles when
the sample size n is infinite and the confidence coefficient
v = 1.00. This development will pave the way and ease the burden
in the davelopment of tolerance circles for the more practical

case where Oy and GY are assunmed unknown,

We shall first briefly review the circular case. Let the
bivariate random variable (X,Y) represent the miss distance of a
round in the x and y directions, respectively, If this miss
distance follows a circular nmmal distribution, the probability
density of (X,Y) is given by equation (l). From equation (1), it
is casy to show that the probability density of the radial miss

L

distance R = (X° + ¥°) is

< . . ro b 2 *‘!‘2/26‘2 .
% £) s (efs" ) e , v >0 (5)

where the subsceipt € denwtes civeulav.e Furthermove, one can
obtain the cumslative distribution functien of R in closed form,
i.e" . .

‘ |4 : 2. 2 ,
Gk(r) = Brob(R - ¢) = I gefe) de=teg?” /29 . (ﬁ)

0

A ebtain the well kuewn relation betwaon ~ and CEP, one merely
fiads the value of ¢ for which G () = 5. Selvieg

-Sél“?,»‘l.

I 5




one finds ¢ = CEP = L.1774~ which was given in ecquation (2). To
find t' .« radius of tie gencral 100P% civcle, CP' one solves '

2,,2
pel.-e¥ 20
for r which yields
. . %
v=Cp =0 {2 In (1-P)}5 (7

The development is quite easy for the circular case since only one
population parameter, ~, is involved and the cumulative distribution
function of R can be expressed iwn closed form, Let us now turn to
the elliptical case.

If the miss distance tollows an clliptical nevmal distribution,
the dengity of X,Y) is given by :

st ) + tyla )12
£(x,y) = (1/2n e mY) e - ¢8)

whove =, amd -+, ave the mics distance standard deviatiors in che

% and ¥ diveetiens, respectively, The prebabilicy deneity of the

- vadial miss distanee R {s rove cowplicated in this case and is given
by

k]

¥ ), ¥ =0 (9

e 2 (rfa o b
gple) = (tiws ) ¢

shiere the subsoript B Jetotes whiistical anld shere

kd 2 < 2
Y = Te T g
Y X )
a * —/ _“"—‘.’ » b o e a—n—n———xz
- - g - >
Kz".; *Y) €2§~ ;A




and 1 (x) is the Modified Bessel Fuaction of the First Kind cud Zero
0rder? i.e.,

a H—

o
Io(x) I X cos O a0 .
3 _

The derivation of the density of R in (9) is obtained by applying
the usual transfommation from Cartesian to pelar coordinates to
(8). The complete derivatiouw is provided by Chew and Beyce in
Reference {1].

The cumulative distrvibution function of R is defined by
_ r
Go(r) = Prob® < 1) = I g (£) de. (10)
' 0

Hewever, it is clear thag Gp(r) cannet be exprassed in closed form
since the integrand contafns an integral which eannot be expressed in
closed form, Hence, the radius of the 10007 circle for the elliptical
case cannot be expressed bv a simple fovmula as it was for the civcular
case (aquation (7)), o rust solve

P o= cE(r) (i1)

fur v LI witich van ealy be geevplizhoed by nuswerical mothods,

The dirvece seolution of equativs (11} (solucion of ¥ fov fixed
values o€ £, =, and =) can b obtained by uring ae effictent
aluoritha deveYoped by Dibocate and Jaemacin vhich i duoeumented
in Refervnea 31, The inverss sobytien (ewiatieon of ¢ for fixad
v%kue% Ot Py s mpd ean be obratoed feon tables prepared by
Bibonrits and Jaraar,a asd set ferth io the sazg doswsent, The
pﬂin' te bo made §a ghgr to fiad th radiug of che 10OPY circle fov
the clliptival case, one muct redort fe tahies OF gigage iw extensive
©orwtwy beal effores. :

Thus far, A ®eation hax boen “gde about the CBP for the
elitptival vaees the reaven ix that e CEP por e ir asseciated
Cenly with the eivovlar cave, owéver, thove i3 certalaly a cigele
centeted 2t the target center wvhicvh contafas 3T of the Sivaviate
probability. the fadtus of the civele s just a ¥pecial case of <,
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above with P = ,50, To distinguish it from the CEP for the circular
case, the radius of the 50% circle for the elliptical case is some-
times referred to as an "equivalent CEP" (ECEP). The reason for
distinguishing between the two is to avoid possible misuse of the CEP
for the elliptical case. For example, if one were given a CEP with
no mention that it pertained to the elliptical case, he may be tempted
to divide it by 1.1774 and use the resulting ¢ in equation (6) to
obtain "hit probabilities." Such probabilities are erroneous for
values of r # ECEP unless the population distribution is circular
normal.

To avoid a table '"look up" for the ECEP, several approximations
have become fashionable over the years. The three most common are

given below:

%
ECEP ~ 1,1774 (°x OY) (12)
ECEP ~ 1.1774 [("x + oY)/Z] (13)
2 2 3
ECEP ~ 1,1774 [(o‘x + cY)/z} . (14)

These approximations are discussed by Groves in Reference [4] where

it is shown that unless ., is very close to g, only (13) has merit

and then only if the ratio of the larger to the smaller of these two
standard deviations is less than about five. A fourth approximation
will be given later in this report as a limiting form of the expression
to be derived for tolerance circles. This fourth approximation is nnt
restricted to the radius of the 50% circle but has general application
to the 100P% circle. It is found to be more accurate than any of the
above three for approximating the radius of the 50% circle.

Throughout this section, it has been assumed that o, and @, are
known a priori. This is rarelv the case in that ¢, and oy are usually
gstimated fiom test data, One could use these estimates in place of
og and oy in equation (11) te obtain point estimate of the ECEP or the
more general C,. tHowever, point aestimation for the elliptical case
vields no more infomation than for the civcular case. Therefore. let
us tum our atteation to the problem of deriving tolerance limits for
the alliptical case when tho parameteors are estimated from tost data.

R i 2 Cand v

w
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III. APPROXIMATE TOLERANCE CIRCL.3: oy AND Oy UNKNOWN

Suppose n rounds are fired at a target and yield miss distances

{xi, yi}n . Under the assumption that the miss distances follow an
i=1 .
elliptical normal distribution, the probability density for the
population of miss distances is given by equation (8)., The standard
deviaticns oy and oy are unknown, but their maximum likelihood
estimates are

T U . S P
Gy = > xi/n} Gy = {i§ yi/n} .

i=1 1

To construct a tolerance circle in accordance with the definition on
page 3, we need to find a function of thr sample data, say L(xl, eeey
Ko Yoo oves yn) which satisfies

f
f - 2 2
L - ¥ 2
proby | | oo e o Gl 12 B y (15)
1 2 22 X
X+ <L J

where the arguments of L have baen deletecd, In the above, L is the
radius of a circle which contains at least 100P% of the population
with 100v% confidence. It is ecasy to show that &, and §, above ave
sufficient for their respective parameters. Hence, the radius L of
the tolerance circle can be expressed as a function of these two
estimates vice all 2n observations. That is, we can express L in
functional form as LCQX, ﬁY) vica L(xl, sery X Vs wenn y“).

Equation (15) is a geuneral expression of the problem. However,
the problem can be expressad more simply since a tolersnce civele for
this case is equivalent to an upper tolerance bound for the distribution
of the radial errer R as given by cquation (9). MNence, the problem can
be restated as one of finding L(&x. 8Y) which satisiies
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2
prob{ [ (/ogp) e I,(br’) dr =P ) =y (16)

0

where a and b are the functions of 5, and ¢, defined earlier. The
function L{(§,, &,) above could be found if %a) the integral in (16)
could be expressed in closed form (as in the circular case) or (b)
a suitable transformation could be found to express the integrand
free of the unkaown population parameters g, and Oy Condition (a)
clearly does not hold in this case, and with respect to condition
(b), a suitable transformation has not been found., Hence, an
approximate solution will be sought. o ‘

The integrand in (16) is the distribution of the radial miss
distance R = (X2 + Yz)'2 under the assumption of elliptical normality
on the bivariate random variable (X,Y¥)., <Consider now an approximation
to the distribution of a function of R, Under our distributional

- assumption, X ~ N(O, o¢5), ¥ ~ N(0, 63), and X and Y are independent

where "~'" signifies "is distributed according to' and N(u,cz) signifies

a normal distribution with mean , and variance o?. It is well known

that the square of a standard normal variable (N(N,1)) is a chi-square
variable and that independent chi-square variables are additive where the
density of a chi-square variable with y degrees of freedom (Xg) is given
by

1 w(v/2) -1 e-w/Z'

rev/2y 2%/2

h(w) = w0 . (17)

Since X and Y are not standard normai variables, Rz = Xz + Y2 is not

a chi-square variable, However, the distribution of

n

uR*
2
ax+

Y o= (18)

2
Ty

can be approximatoed with a chi-square density with u degrees of
freedou where

. (19)

Sy
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This approximation is a special case of a more general approximation
due to Satterthwaite (see Reference [6]). Tha general form is as

follows:

2,2 2 .
Let vy Xi/ci v X, 21T 1, ooy, k
i

and let Xl’ XZ’ ey Xk be independent.

k
v ¥ a, X%
Then U = i —
k 5 X
= a; o5
i=1

approximately where the a; are constant and

2
/ E 2)
a, ¢
- (i=l L
\V] k ) 4 .
iE’ ((ai Oi/vi)

3

For our applicaticon above, k - 2, 4 = a, < 1, and vy = vy T

(20)

1.

The approximate distribution of U in (18) could be used to find -
the approximate distribution oi R, However, one can restate the

‘prehblem in terms of U via

A
Prob(f h(u)du » P} ~ vy
0

10

(21)
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where A = sz/(gi + 02) and h(u) is the chi-square density given in
(17) with degrees of freedom y given by (19), The inequality in (21)
holds if and only if A > X% p where X%,P is the 100P% poin* for a
chi-square variable with y degrees of freedom. That is, if U ~ X%’
then X%,P is such that

Prob (U <« xi P) =P .
y v

Hence, (21) can be restated as

TN

2
Prob 5 5 X, B~ Y (22)

or equivalently,

Prob 0)2( + 5\2_, < Vg ESEVENR (23)

To complete the solution, we need to obtain the upper 100v% confidence

bound for o% + 0% . We then equate this bound to VLZ/Xv,P and solve
for L,

To cobtain a confidence bound for 02 + 02, we again resort to

Satterthwaite's approximation (20). Under the initial normality
assumption,

11
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Using (20) with k = 2, ay ~ay = 1, and Vi ® vy, ® n, the distribution
of

! A2 Az
v (Gx + oY)
2 2
Ox + Oy

can be approximated with a chi-

square distribution with v’ degrees
of freedom where

2 2
(OX + UY)

v':——-———....__-.

4 4 SRy o,
O‘x/n + O’Y/n

Using this approximation, the upper 100y% confidence bound for

2 2 .
Oy + oy is
2 2
nv(nx + UY)
2 »
Xy, Loy
We now sct

2 2
f) ) ” -~
o } ny (o'x + n’Y)
2 2

x\)'p Xﬂ\),l‘\(

and solve for L. We find
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2
nx\) 35
A " P a2 A2
L (ox, cY) = 2_"— (ox + O'Y) . (24)
Xy, 1=y

The parameter v in (24) is a function of the parameters oi and c%
which are unknown. Hence, y must be estimated from the data by
replacing c% with 8% and 0% with 62 in formula (19) for y. One

notes that v is not restricted to the integers in (24) so that to
apply this formula one needs a table of chi-square percentage points
for fractional degrees of freedom. A table of this type has recently
been prepared by DiDonato and Hageman (Reference [2]) and will be

utilized in the example which follows.

Suppose 15 rounds are fired at a target and provide the miss
distances shown in Table 1., Estimates uf ¢, and o, obtained from
the data are &y = 85.11 and 6Y = 20.55. Let us use these values
to construct (P,v) tolerance circles for P = .50, v = .90 (the
circle which contains 507 of the population of future rounds with
90% confidence) and for P = ,50, v = .95 (the circle which contains
50% of the population of future rounds with 95% confidence), For
both circles, the value of

1 L
]

2 2 2 2.°¢ ,
.+ nY) = [(85.11)" + (20.55)71 = 87,56.

X

s

we now nead teo calculate v which, according to formula (19) is

Lo Le8sa)® ¢ 0,551
(85.11)" + (20.55)

= 1,116 ,

and nv = 15v = 16,74, The value ef the 507 (value of P) peint is . .
needod for a chi=square with 1,116 degrees of froedom as well as ' B
values of the 9% and 10% (values ef l-v) points for a chi-gquare '
with 16,24 degrees of freedon,  Refereme {21 cited above provides

tabular values of chi=squave percentage peints Yer + » (1({.1)
13¢.22)260.29)42.5(.3)512. The peints unecded for eur degroes ef

froedom ¢an bhe vbtatned using these tibleg with linear intervpelation,

or they can be cheained oxactly by usingt the pregran Jocurented in .

the report. Livcar interpolation of tabular values provides




TABLE 1

Hypothetical Miss Distances For Sample Problem

- - -y
11.71 - 3.40
51,94 ' -19.68
- 87.60 -20.80
31.11 12.35
-104.12 15.68
23.95 1.53
- 15.10 16.60
96.24 -12,55
157.33 ' -47.80
- 74,22 3.43
68.04 -14,78
- 96,03 , -24,70
-110.75 8.05
95,01 : © 21,05
111,74 32,15
] LY
15, ; i, )
i izl X /15 Ay isk ¥ l15)

. 85.11 S = 20,35

o

s
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2

X1.116, .50 ~ 2204

9
-

X16.74, .10 9.4836

2 =
X16.74, .05 - 8:4803 .

The exact values, obtained by vuning the program, are .5564, 9,8822,

and 8.4844, respectively. The values obtained by linear interpolation
are the values which would usually be available to the analyst. They

are sufficiently accurate and will be used to complete our sample

problem.

For (P,v) = (.30, .90), we {find

LGy 3.8836

i 11325—2-&41}- (87.56) = 80.46,

and tor (P,v) = (.30, ,95), we fina

The point c¢stimate of the ECEPR tor chix ¢age iz 61.42, It is
obtained by enteriag the tables in Retevence T3 wigh e = G.SS’SS.lE
= 7419 and B 50 re obtain (7207 which when mulvipliod by A
sholds the nhuvv pestile. Lt hat an asseciated contidence of lous
than 0%, t.e., wo are ters than 907 contident that a civele of
radiug 61.&2 emtictinm at leaze 507 of the population of impacts,

the éaﬁa ﬁvintﬁ for this exaple and all theee eircles are
ghown in Pigure L. X three edrelos can be thought of ax estimatas
of the “"SO7 ciecte” but vith diféerent fovels of confiderce, e
wies in this ekevple and in geacral that the con:idanee incecases
ag the ci.cic vadivg increases.
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1V, ACCURACY EVALUATION

Satterthwaite's approximation (20) was used twice during the
formulation of the (P,v) tolerance circle given by equation (24).
Therefore, it is an approximate tolerance circle, and one should
know the worth of this approximation in order to use it with
Yeonfidence.'" The purpose of this section is to evaluate the accuracy
of the approximation; several approaches will be used in this endeavor.
Let us first define 0 « ¢ = “Y[’X + 1, Then the first approach will be
to examine L(5,, QY) in (2*) for the cases where ¢ =1 and ¢ = 0, This
will correspunﬁ, respectively, to the circular case (case where
Ov = M) and the univariate case (case where o, differs so much from
v that the entire population is concentrated on a line)., The second
approach will be to examine the confidence afforded by the approximation
for small sample =izes n using a Monte Carlo simulation. The last
approach will be to examine the limit of L(dy, Gy) as n increases
without bound, The resulrs of these examinations should be sufficient
to pass judgment on the worth of equation (26).

If ¢ =1, then - = v T T _Sa¥, and A3 and 5% in (24) are both
estimating the vemmon variance ~2 so that 52 + &2 becomes 252, Also,
v, it equation (19) becomes ¢ X

. 2
‘.) _‘!
S 4 .
vy ) — - .
34 . 0 zg&
Honew, If ¢ = L, L{itg GY) bacsmars
fo2 Y%
. J““JZPE 2%
R e B
E %'ﬂ,l‘vj

GTEY 5 @)
j}“‘n.l‘wf v ,




Equation (25) coincidos ecxactly with the exact solution for tolerance
clrcles for the circular casc provided by Thomas and Crigler in
Reference [7]. (Roference [7] is a refinement of the work in
Refaorcnce [8] for publication in the open literature.) Therefore,

if o, = oy, the approximate solution in (24) corresponds to the

exact solution for the circular case.

To cxamine ¢ = 0, we shall simply set o, = 0, Here we find 82 +
= 3¢ and y in equation (19) equals one so that L(éx, SY) become§

3 = &%

1%
L(* ) = :—X—I.I_P. 2 (26)
y1-y

Equation (26) 1s the exact expression for the upper tolerance bound
for a univariate normal distribution when the mean is known a priori
to be zero., (See the development of the univariate case by Hald, for
example, in Reference [5].) Therefore, the approximate solution in
(24) becomes the exact solution in the degenerate case where one of
the standard deviations is zero,

The results of the last two paragraphs indicate that the
approximation provides what is needed for values of c close to
zero or one, For mid-range values of c, we shall have to resort
to Monte Carlo simulation, A single replicate of the simulation
process used in this study is described below:

(1) For given values of P, +, ox» and Oy»
a sample of size n was generated from
an elliptical normal distribution using
Monte Carlo sampling techniques.

(11) Using the data points generated in (i),
Sy» Gy» and v were computed.

(111) Using the value of y computed in (ii)
and the specified values of P and v,
the required fractional chi-square
percentage points were computed and
L(&x, GY) formed,

18



(iv) The integral I of the elliptical normal
distribution with parameters g, and oy
was computed over a circle of radius

L((“;x ’ (?Y) .

The above process was repeated N times, and the confidence coef{icient
was estimated by the ratio of the number of replicates in which [ > P
to the total number of replicates N. If the equation for L werc exact,
then y would lic within sampling variation of §{ (the estimate of the
true confidence) for all values of P, , ¢, and n. Since L in (24)

is an approximation, the departure of ¢ from y (outside sampling
variation) is a measure of the worth of the approximation,

The selected values of the input’parameters P, v, n, and c for
the simulation were as follows:

p: .50, .90
v: .90, .95
n: 5, 10, 20

c: 0, .05, .10, .20, .25, .33, .50, .57, .67, .8C, 1.00.

Values of n were restricted to small samples in order to avoid
excessive computer running time. The number of replicates N for

each combination of parametric values was set at 10,000, This value
insures (with 95% confidence) that the true confidence (not neccssarily
v) lies within .01 of ¥. The results are shown in Figures 2-5 uhere
v is plotted as a function of ¢ in multiple curves representing the
three different values of n. Each figure represents a different (P,y)
combination, For each combination, horizontal lines have been cdrawn
at v + .0l. Values of 4 within the region enclosed by these lines

can be considered within sampling variation of y. Values outsids the
region represent values of 4 outside sampling variation and indicate
departures of the approximation from vy. One notes that in all four
cases ¢ lies in the region of sampling variation for c close to zero.
This merely confirms the results of the earlier discussions on the
behavior of the approximation when g, and g, are substantially
different, One does not observe a s%milar ehavior for all values of
P, v, and n for the case where ¢ = 1, He does observe, however, that
for the larger value of n(n = 20), { lies either within or very close
to the region of sampling variation. Departures also exist for the
mid-range values of ¢ (most notably for values of ¢ close to .25) with
the departure being less scvere for the larger n than for the smaller
one,

19
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On the basis of Figures 25 and the above comments, one can

~ conclude that the approximation is very good for values of ¢ close

to zero vegardless of the values of P, vy, and n. Tor values of ¢

close to one, the approximation is also very good if n is not too ‘
small, For other values of ¢, there are departures in the confidence

afforded by the approximation which appear to increase as P increases

and diminish as n increases. We now neced to {nsure that the ‘
approximation continues to improve as n increases beyond the maximum

value of 20 used in the simulation. Hence, we shall consider the limit

of L(ﬁx, SY) as n ~» , It is easy to show tuat

y Y
& y
o s -~ ~ T e \" P 1 2 2 : i
Limit L(5,A0) ={ —= (o *oy) (27

N o ‘ U; J

The right hand portien of the limiting expression is based en the

fact that A2 and 32 are concistent estimators and, hence, approach

ss and -2, Tespectively, as n -« The left hand portion is based

on the faer that as the deurces of freedom f - », the distribution

of xfff is concentrated at unity, Hepee, in the limit, all percentage
peoints of a chi-square random variable divided by its degrees of free-
dow are uwnity. IF approximarion (24) continues to iwprove as n = -,

‘chen the pevcent of the population encompassed by a ¢ircle with rvadius

given by (27) should approach o The percent of the population
engompassad by cireles of ratius (27) was evaluated for ¢ = 0.0(.1)1.0
and P o= 50, .94, 95, ami 29, The results are set out in Table 2
and show that while thesg pepcentapos, designated P, are not exacely
agqual te P, thay are very acearly egual to P, differing only in the

Jed docimal ploce. The meantng heve is that the peraent of the
population encompassad by g vircle of vadius L{5., 3.) - P! vice P

as 1 -~ x.  This poses ae roal problem since P* 1S close te P '
Henee, ond can vest assaved rhat for all praceical purposes,

Lig, Sp) in (24) improves as n inevouses without bound,

Yo can sumparhes the worth of appreximation {24) with the
fallowing romarks: : R

(a) It arpresches the oxact valwe ag ¢ = @
C and appoars pe produce eseellont resules
, vegardless af n, P, and v For values of
— € clvpe to aeru. '
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.l

o3
4

o0
o7
o8
8
1.0

TABLE 2

Fvaluation of

, L llo s yla) 112
p’ o= T dxdy
Xy
2, 2 2
X4y Te(liwit LY

L L - L
+50 «5000 .0 .90
.50 .5011 .1 +90
.50 .5032 2 .90
.50 +5018 .3 .90
«50 L4981 N .90
«50 24962 .5 .90
.50 . 4904 .0 .90
50 L4976 o7 .90
<50 L1989 .8 <90
.20 #0997 .9 .90
«50 « 5GO0 1.0 .90
98 L8900 0 94
o83 .9320 .1 +99
W99 L5001 2 99
L) « 5013 3 .99
295 L9506 A .99
.08 L9510 .5 .99
9% #9511 6 «99
2% L A o7 499
.98 950t .8 .99

E 9502 9 99
[ ] 95 ) 9560 1 oﬂ . 99

25

PI

+9000
. 9004
.9014
.9028
. 9042
»9052
. 9049
.9034
.9017
.9004
«9000

+ 9900
. 9899
+ 9897

L .9893

9889
9880

9893

.9397
+9599
9900

T




(b) It approaches the exact value as ¢ ~ 1,
but the results do depend on n,

(¢) PFor intemmediate values of ¢, there is
some departure from the desired confidence,
but even for a sample size as small as
n =5, it does not exceed 3% and is much
less for most values of c.

(d) It improves for all values of the
paraneters as n oincreascs.

Hence, the approximation appears to be suitable for general applicatioms
with little loss in accuracy cven for sample sizes as small as n = 5,




V. MULTIDIMENSIONAL EXTENSION

Thus far our attention has been confined to the two dimeasiunal
case where miss distances are re:orded in the (x,y) plane.. This
could be the ground plane or perhaps the plane normal to the trajectory
at impact. 1In the case of an air burst weapon, however, the niss
distances are three dimensional, and for other applications, the number
of dimensions could exceed three. 1In these cases, we would be
concerned with a k dimensional tolerance sphere vice a tolerance
circle., Extending the work of the previous sections te tolerance
k-spheres for the multidimensional casc is straiahtforward and will
be outlined below.

Let the multivariate random variable (Xj, ..., Xg) represent the
niss distance of a round in k directions., If this miss distance
follows an uncorrelated multivarviate normal dxstrxbutxon, its
probability density is given by

2 ' . 2
S (g fo ) F e ¥ (3, /0, )7)
f(x],' coes xk) = 73 ! e | R { k' k (23)
(2"?) - "1 T et ”‘k

vhove ~; is the mise distance standard deviation in the {th divection,
¥ a ea&ple ef n rounds is fived, the n miss distances
TSigs ooer Ny 'Yxt ave wsed to ostimate the 75, The methed of

max iovun ixkel;hoos yields t

".“ : §,;,
S | R ¢
%i 2 1 1y xzjin v =l 2, ceen R

~ Te consrtyuct a telerance kesphere wo wead teo Ein& the radius L as.

a Eun@ti@n of the ‘i BUHeH - ehat

Pwh‘ ["‘5 f(xi’ sowy &&) 5&1 e 6& o~ E’ ® v «19}
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where the vegion of itoltcgration § is the interior region of tlie
-sphere x¢ + ... + %2 =12, 1fwo let R2 = x{ * oo + xﬁ, the
application of (20) provides that

2
U= pR 5~ xi approximately

2
(71"' see +O’k

where

” , 2
(ni + .a. +a§)
% % . (30)

- a4 ¥ ees +G
1 k

u =

Oune can now restate (29) in terms of the discriduti-a of U via
A

Prob f h(uddu » P ) ~ (31)
0

where h(u) is the chi-square density with degrees of freedom given

-

by €30) ond A = v’t‘-‘f«fﬂt% F oaes b w%). Equation (31) holds it .wd anly
2

A >y pr Hereo, (31) can bo rowvitten in form
Ve . .

§ f, .4 ,
Prab 2 - =
‘?2 + .ee + Q‘z &.P v
1 &
ot eQuivalen:ly - ‘
P“@b‘, {-fﬁa + ..nt_’f@'k < "":'_' & \‘?bn ) - (32) ’
i ' - x.’:p'[ :

3
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Applying (20) again, we find the uppey 100v% confidence bound for
c% * oeee * nﬁ to be approximately

Az : 52
ny (nl tiaes + gk) L}

12 ) ’
)"n\),l-'y

(33)

U

Equating (33) to the right hand side of the inequality in (32), one
obtains '

2 ‘ ' .
~ ~ — “x\’ap : u2 + + az <
L(Ulz f"! Gk) =. i) (01 eve Gk) . (34)
Xavy Loy '

One notes that this geweral expression is very similar to the two
dimensional expression given by (24), The difference lies in the
formula for v and the additional terms in the right hand portion

to account for the increased dimensionality. This expression for

L is the radius of a k dimensional sphere which contains at

least 100P% of the population with confidence approximately equal
to 100v%i. The worth of this approximation has not been studicd for
Jimgnsionality above two, : ; :
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VI, ANOTHER APPROXIMATION: PARAMETERS KNOWN
]
It was shown in %cction II that when the parameters are known
a priori, the ECEP or the radius of the general 100P% circle for the
elliptical case can be obtained exactly but only by table loock-up or
extensive caleulations, Several approximations were shown ((12), (13),
and (14)) which are oftentimes used for ECEP calculations to avoid the
exact procedure. A fourth approximation which can be applied to the
gcneral case of the 100P% circle is simply the limiting form of
L(ng, Fy) in (24) as n - ». This form was given in equation (27) in
Section IV and upon minor rearrangcment becomes

L P
Cp~ 2x$’va [og + oy)/Z} . @35)

wvhere v is given by (19),

e notes from Table 2 that this appreximation is exact for the
~degenerate cases whoevre ¢ = nvfﬁxv 0, 1. Also frem Table 2, we sec
that for midrange values ot ¢, a cirvcle of radius (33) contains very
nearty 10017 of the population, differing from P only in the 3rd
decimal place. However, to employ approximation (33), we need valuas
of v= ,, for fractional v, Tao obtain such values, we have to rosort
Lo ab‘vn or engage in heaey calenlations. These are the same
alternatives we faced for the exact solution, Thercfove, one could
arpue that #t the gpproximation invelves the use of tables of
percentage peints for the chiesquare with fractional degrees of
-freeder (Referonze {21), why uot use inverse tables of the circular
coverage Function (Reforence F31) to obtain the exact solution? This
is 4 valid arpument, and ne attompt will he made te vefute it oxecpt
re way that many amabyses toel mere comtortable using a meltiplying
factur for Reme fupction wf op and -y than thoy do using the table
 leekeup For the exaet solution, Furbhevmore, if one confives
B aveention to rlia BUEDP, ho can veadily construct a shoet table of
such Faeters For aivy decoss,  Table 3 balew i8 a shovt table of this
ey vhere the peredatage points have boon taken from Referonce [2].

fo thhuaerate the nke oF Tabic 3 and to compave apprexiration
S (M) with the exact svlutivir and the ether approximations, consider
~the tollowing nmauvle: It(v = 15 ft. awd @g « 30 £k,




TABLE 3

i
Multiplying Factors of [(qi + 05)/2]
tor ECEP Approximation

o 12 %, .s0/v]
1.0 ' .9538
1.1 ©.9928
1.2 - . 1.0258
1.3 | 1..0542
1.4 ' 1.0789
1.5 S 1.1005
1.6 B S § £
1.7 | 1.1365
1.8 ' 1,1516
e - o 11,1652
2,00 | ‘ 1.177%

2. 22

vo Syl
o * oy

£ind the BCEP by the oxact method and compave with the four
approximate selutions, Ve obtain the cxact selution free tables

in Reference (31, The first thvoe approximations are straight forward
and roquive te olaboration. The last approxiamation, (35), iwolves -
the use of Table 3. For this case’ S : '

2
Lo Lot s e

an® + as)®

= 1.4704%,

i




Interpolating between < = 1,4 and 1.3 in Table 3 yields a multiplying
factor equal to 1.094). The results are set out below for comparison.

ay = 15 fe., oy = 30 fe.
Exact ECEP = .8704 o = 26.1120 ft., Keference [3]
Approx. BCEP = 1.1774(21,2132) = 24.9764 ft., Equation (12)
Approx. ECEP = 1,1774(22,5000) = 26,4915 ft., Equatien (13)
Approx. ECEP = L.L774(23.7171) = 27.92545 fe., Equation (14)
Approx. ECEP = 1,0941(23,7171) = 25,9489 ft., Equation (33)

The vesults confirm the remarks made in Section II about the relative
worth of the first threce approximations, i.e., only (13) has merit
unless ¢ = g fe, is very close to cne. The results also show that
(35) is closer to the exact than (13) but not by much.

Let us now consider another example with a smaller ¢. Consider

cw = 15 and ~, = 100 so that ¢ = .15, TIn this case v = 1.0450 with
.corresponding multiplying factor 9714 obtained by interpelation.

= 15 ft,, % “'100 £,

Exact ECEP LN © = 69,1600 ft,, Beforemce {31
Approx, ECEP = },1774(738, 73q&\ = 65,0005 £t., Equatien (12)
_ Approx, ECEP = 1.1774(57.5000) = 67,7005 ft., Bguatien (13)
Approx. BCEP = 1LITFA(41,5007) = 84,1802 fe,, Bguatien (14)

Approx. ECEP = G*Ietfl.Sﬁif) = 69,4568 ft., Equation (33) .

' tere again we owe ognatien (}3) i2 cleser to the oxact than
eteher C12) er (14) bue hurely close opmeugh for practical use. On.
the othor hond, apyeonimation (3%) is quite ci@se to tho exaet,
drifforing only in the znir& digic.,

Thus rar the cemevats {n this zection have been confined te the
bivaviate case. 4 aforcrwntioned, the nced for such an approximation
i% ner wreat Fer rhe bix satiate Care sinee we have tables ef the e¢xact
gelutton in Roference '3!, Howover, whon the nusber of dimeasicas
execeds tve, tabloy of the v\ac& solution andfor cowputer programs




for the exact solution ave net believed to exist., Hence, in the
geneval multivariate case, an approximation for the vadius of the
1009% kesphere could be of practical value.

To obtain such an approximation, we apply the above limiting
concept to the general expression for L in (34) vice the twe
dimensional expression in (24). This provides us with the following
approximation to Sp, the radius of “he 100P% k-spherce in the
mulgivariate case: .

L.

2 )2 _
. R, P 2 2, & - ,
Spay o [bp ¥ee fﬁ;k)/kj ~{36)
S ~
"= (:"1 T oae. F {"k) |
4 AN
ﬁl Foean Gk

The worth of this approximation is difficult to ascevtain due to

the absenco of tables of ov programs for the exact selutien., Howaver,
"~ some vough comparisons can be made if we once wmove rosovt te simulation,
To make these compavisens, we specify &, ey, o0y 7, and P and then
compute ocuy apprenimation te 8p which we shall designate Sp.  For
the same -, we then pepeatedly sample from a multivaviste normal
papulation, cach time sensing on the radial évver R, The astimate

of B, P, i3 sirply the vatic of the number of veplicates in vhich R
i less than 8} ko the tetal number of veplicates. If the approxnimas

-»

tion has wevit, P should {ie wichin gampling variatien of b,

Sevoral example cages arve eonsideved belew. fThe veader vhe is
sorfeusly intorested fn using approximation (36) should engage in a
more extensive evaluation. Per eaeh easo, the aumbey of veplicates
was ot at 10,080, teiug thic nuahey, one t¢ 937 confident that the
tree pepulativs proportion cacoapassed by a k-sphove of rvadive §) ;
ties within 00 of P, Herce, valuox of P uwithin 01 of P indicate
that the apprexisation Bac metit. The cases cougidorwd and the
vasules are shown in Table &, - o
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TABLE &

i O T S
1 3 .50 13 1 4 1.5382 »3031
, 2 3 90 ! ! I 2.5003 .9038
- 3 3 S0 1 2 4 3.6367 L5032
4 S S S 721376 .9020
5 4 .8 1 -2 &8 7.3596  .4965
b A .90 ] 2 4 § 163186 9019
3 In the €ivst twe cases in Table 4, che distribution is spherical

¥ -s0 the vatues of $ for these cgses gre exact, We note that P lies

Peoud® for all casos.

within sampling variation of § for both values of P as expacted.
the last {eur case=, the disteibution is ellipsoidal and as such,
‘values of S& are approxinations.,
samolips variation of P,

in

e all four cases, P lics within
Because of the 2mall number of cases

examined, we canrot conglusively state that the appronimgtion is
Howvaver, those cases ave evideace tha

¢ Ehe
Cappreximation hay prestise,

A e L il
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VII. CONCLUDING REMARKS

The addition of this report to References [7] and [8)] provides
one with the methodology to construet (P,y) tolerance k-spheres for
the uncorrelated multivariate normal distribution. The spheres
can be constructed whether the sample size is finite or infinite
(corresponds to the case where the parameters are known) and whether
the standard deviations are the same for each direction or different,
References [7] and [8] address the case where the standard deviations
are the same for all directions and provide the exact formula for
the radius of the k-sphere, This report addresses the case where
they are different and provides an approximation for the radius of
the k-sphere, This approkimation provides little loss in accuracy
for the cases examined even for small sample sizes, Collectively,
these reports provide -the weapons analyst with the tools to make a
more meaningful assessment of the delivery accuracy of a weapon than
has been possibhle in the past., However, one closing cautionary point
should be mentioned. These reports assume that there is no bias in
the weapon system, i.e., that the long run average or expected miss
distance is zero in all directions. If this assumption of zero bias
cannot be made, the procedures set forth in this report and in
References [7] and [8] are not directly applicahle.
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