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I. INTRODUCTION

The assessm( at of delivery accuracy for a weapon is usualljv
initiated through test firings. The results of these test firiq'gs
are miss distances of the rounds from the target center in the i
x (cross range) and y (down range) directions, usually denoted iiy

nI(xiij . I ar
yi n These n pairs of miss distances are then used to
i=l

compute an estimate of a parameter or parameters which described the
accuracy of the weapon. The parameter most commonly estimated JIs
the CEP (Circular Error Probable), the radius of a circle within
which 50% of the future rounds will fall. This estimate provides
a single number which is customarily used to describe the accuracy
of the weapon under study.

The procedure described above can be improved by incorporating
the concept of statistical tolerance limits. This topic is add,•essed
in Reference [81 but will be briefly restated here for completeriess.
Consider the case where the miss distances from the target centcir
follow a circular normal distribution. This distribution is given by

22 2
1 -(x 21 )/(2o2) (,. ~fix,y) =e i I

where - is tho comnmon standard deviation of the miss distances
(comnon to both the x and y directions). Under this distributic"al
assumption, the relationship between CEP and c7 is well known to be

CEP = 1.1774 , . (2)

if one knew the valuie of the population parameter ~,then ICEP awti
defined in teynw of . , provides the radius of a circle which contains
o~actly 507 of the bivariate probability and, hence, will contain 50%
of the future rounds. lowever, ý is usually not known and must be
estinated from th, Lest data. Whe SuCi ostimato based on Lthe tipory
of max•ium likelihood is

x +



where the circumflex (or hat) above a is used to signify an estimate
of the true population parameter (T. Hence, an estimate of CEP is
obtai•ied by replacing o in (2) with 6 which yields

CEP - 1.1774 C . (4)

(This estimate is slightly biased but it is rarely corrected since
the bias is small and the correction factor is complicated.) C^P
above is only a point estimate of the true CEP, and, as such, it
yields no information regarding the probability that the circle it
defines contains 50% or more of the population. This probability
has been evaluated in Reference [81 for the circular case under
discussion. The results show that it does not exceed .50 for any
finite sample size. This means that one has at most 50% confidence
that a circle of radius CEP will encompass 50% or more of the future
impact points from the weapon under test.

To increase this probability or confidence to a more acceptable

level, it is clear that one must increase the multiplying factor in

(4) above the customary 1.1774. Tables of these multiplying factors
are provided in Reference [81 for the case of circular normally
distributed miss distances. 'Tlese factors enable the analyst to
construct circles which encompass at least 10017 of the population
(ruture rounds) with I00lO , confidence for a wide variety of realistic
values of n, P, and v. Circles of this type are referred to in
statistical literature as tolerance circles, tolerance regiezqs or
tolerance limits. In general, (P,v) tolerance limits are functions
of the samplo data atid define a region which contains at least lOO1V7
of the population with MO•I, confidence.

On the basis of the ahluve, one cati utilize developed procedures
W con.struct tolerance c irtles provided the miss distances follow a
circular normtal distribution, lie can use the Multiplying factor
which witl provide any level of pre.;crihed confdence not only for
1.507, of L ite |opulatioti ht for any desired porcentaO. hTie p1roblem

1Or in that Miss d ~nO~istribtioxis are iiot always circular
normtl. In fact, M-1'Ve okun dtanl tutt, they tend to follow an
Aclipticail distribution. The purpose of this report is to provide
t prcdkrý o cosw aic~tivi ~r an circe,,. for tile. case.ute

the miss distancy distrblotti•a follows An uncorrelated bivarin•e
nor•aL distrbut t ion wad tieuih aual vart ates (hereitsafter referred
to a,• elliptical normal). T4V Oroeciur'e to be develuped in the-

isiting Stkus ~ is 1t: eacu t itl the tse of Providing, crcles



which contain at least lOOP% of the population with exactly lOOy%
confidence. However, the confidence afforded by these approximate
tolerance circles is very close to lOOy/.. The closeness has been
examined through a computer simulation, the results of which are
provided in a laZer section.
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II. TOLEILANCE CIRCLES ox and a KNOWN

It would be instructive at this point to examine the problem
of finding the radius of the 1003P7 circle when the miss distances
are elliptical normal and the population parameters are assumed
known. Such circles can be thought of as tolerance circles when
the sample size n is infinite and the confidence coefficient
-y =.1.00. This development will pave the way and ease the burden
in the development of tolerance circles for the more practical
case where (X and Oy are assumed unknown.

We shall first briefly review the circular case. Let the
bivariate random variable (X,Y) represent the miss distance of a
round in the x and y directions, respectively. If this miss
distance follows a circular ,ntrmal distribution, the probability
density of (X,Y) is given by equation (1). From equation (1), it
is easy to show that the probability density of the radial miss

distance R (K Y) is

"(r j'2 ,r /2q >

,ter)he qut-rlt. C detiotes 'c utzit'. Fur.th,: rQ. one canf
oAtain the cumulative !i t,-tribttion fuQntioll of R io closed faeut,

ri. t;•l~~~r) ,, "',b(g+, v ),+"J•) •dt: I-.•r' ' ,)

i~t'..io hi +tht velu of V._ioi Wfhttu C_(r) o.. oLvtv

L~

-I,!



one finds c = ( =1.1774,! which was given in equation (2). To
find t*. radius of tiwe general IOOP. circle, CP, one solves

P r/
2a

for r which yieit

r cP a f-2 In (1-P)}3. (7)

Tite development i. quite easy for the circular case since only one
population parameter, ;,, is involved and the cumulative distribution
function of R can be expressed in closed fona. Let us now turn to
-h elliptical case.

If the miss dt.tance folltowAs a elliptical "Ormal distribution,
the dansity of ZX.Y) is given by

t'(s,•' -(t+ (Y/"y) 18

w-t. r .:and a.. 't tmi ittgwt dd vtionrt i. .h.
x ztud Ydtetn etv!y Tho prtihabitity denstity Oi tho

r ~iatv* diltt~acic it tairi kro e -icacvd in this C4so &W, is givitt
by

4 .4 --
V.,, • ' • b ,, .- - .

!% 1



andi I (x) is the Modified Bessel lFudction of- the First Kind and Zero
Order, i.e.,

0 .ry -I o
00

The derivation of the dens ity of R in (9) is obtained by applying
the usual tranisformation from Cartesian to peolar coordinates to

L ~ (8). Vie complete derivationi is provided by Chew and Boyce in
Reterence ()

TheC cumulative distribution functictn of R is defined by

r
GE(r) Prob(R r) fS(t) dr. (0

0

Uo-wever, it is clear Ohat Gý (r) canniot be expressed in closed form
since the intogrand uonvafný ziti integral whitch cannothbe expressed in

cled ferna. HencQ~te rai C the l0OP% circle for tI ell ipticalI
ease cainrwe 1w exprossed hiv a simple tonrata as it was for the circular
caso (equation (7)). thw, rnLqr solve.

(orr wit-h cvwt only he% ttwihc 1 nrc t methds.

th v ditrct oftt-~ et qttsttt'n (41) (volution of P for' Eixwc

* hritv i r 1 fIt teJ hit PtE1ifitic 'Ind J4riu1A4&ft wh1ich i* uCwme
Ut ~ hy ~e*~ ~"btt~tu ftlottii'n of r for find

*vdttwt 01 1~ - zvat kw 0i ttvo'4 Irilmý ta'Moe tpr'dPObV

*hs i tie ,Coft kti tJN N'etl %a~ 41YUt- Othe CI? er O

vh Vuth th kjr ~rt~ t-IAtver. tiSrvp i* Ctrt~diht a ict
ante~]4t itwi tiret VC-Ata URiOtN LArjwMtZo the6 bMvaiat'd



above with P .50. To distinguish it from the CEP for the circular
case, the radius of the 50% circle for the elliptical case is some-
times referred to as an "equivalent CEP" (ECEP). The reason for
distinguishing between the two is to avoid possible misuse of the CEP
for the elliptical case. For example, if one were given a CEP with
no mention that it pertained to the elliptical case, he may be tempted
to divide it by 1.1774 and uise the resulting 3 in equation (6) to
obtain "hit probabilities." Such probabilities are erroneous for
values of r # ECEP unless the population distribution is circular
normal.

To avoid a table "look up" for the ECEP. several approximations
have become fashionable over the years. The three most conmion are
given below:

ECEP • 1.1774 (oX cy)2  (12)

ECEP • 1.1774 [(C + y )/2] (13)x Y

ECEP 1.1774 [(X2 + C2)/2] (14)

These approximations are discussed by Groves in Reference [4] where
it is shown that unless , is very close to a only (13) has merit
and then only if the ratio of the larger to t&e smaller of these two
standard deviations is less than about five. A fourth approximation
will be given later in this report as a limiting form of the expression
to be derived for tolerance circles. This fourth approximation is not
restricted to the radius of the 50% circle but has general application
to the 100P% circle. It is found to be more accurate than any of the
above three for approximating the radius of the 50% circle.

Throughout this section, it has been assumed that 0X and ay are
knoxn a priori. This is rarely the case in that cX anO' are usually
estimated fow Leo-t data. One could use these estimates in place of
nX aud Yy in equation (11) to obtain point estimate of the ECEP or the
wore general C.. Hiowever, point estimation for the elliptical case
yields no more information than for the circular case. Therefore. lot

* - us turn our attention to the problem of deriving tolerance limits for
the elliptical case Ahen the parameters are estimated from test data,1

\..



III. APPROXIMATE TOLERANCE CIRCLES: aX AND ay UNKNOWN

Suppose n rounds are fired at a target and yield miss distances

(xi, yiln . Under the assumption that the miss distances follow an
i=l

elliptical normal distribution, the probability density for the
population of miss distances is given by equation (8). The standard
deviations aX and (y are unknown, but their maximum likelihood

estimates are

2 2 2i •~XC X ["• /n} ýY y { 'Y/n)

To construct a tolerance circle in accordance with the definition on
page 3, we need to find a function of thr sample data, say L(xI, ... ,

XnY Yn) which satisfies

S-[(xl x)2 + (/y /

Prob 2  • [Y+e/ dxdy P y' (15)
x2 2 L2 IXl

where the argunentU of L have been deleted. In the above, L is the
radius of a circle which contains ht least 100P*/. of the population
with 100V7. confidence. It is easy to show that OX and ay above are
sufficient for their respective parameters. Hence, the radius L of
the tolerance circle can be expressed as a function of these two
estimates vice all 2n observations. That is, we can express L in
functional forma as L(,X, ^y) vice L(xl, o..$, xn, y1 , ...

Equtation (15) is a geteral expression of the problem. However,
the problem can be expressed rmrv simply since a tolerance circle for

this case is equivalcnt to, an upper tolerance bound for the distribution
of the radial errer Il as given by equation (9). Hence, tho problem can
be restated as one of finding L(ICy X y) which satislios

A8



Prob (r/cy c) ear 1 0 (br2)dr P}y (16)

where a and b are the functions of yX and (5 defined earlier. The
function L(6, 6v) above could be found if Ta) the integral in (16)
could be expressed in closed form (as in the circular case) or (b)
a suitable transformation could be found to express the integrand
free of the unknown population parameters (y and yy. Condition (a)
clearly does not hold in this case, and with respect to condition
(b), a suitable transformation has not been found. Hence, an
approximate solution will be sought.

The integrand in f16) is the distribution of the radial miss
distance R = (X2 + Y2)*2 under the assumption of elliptical normality
on the bivariate random variable (X,Y). Consider now an approximation
to the distribution of a function of R. Under our distributional2
assumption, X - N(O, (X), Y ~ N(1,Ov), and X and Y are independent
where "-" signifies "is distributed according to" and N(,o 2 ) signifies
a normal distribution with mean L and variance a2. It is well known
that the square of a standard normal variable (N(0,1)) is a chi-square
variable and that independent chi-square variables are additive where the
density of a chi-square variable with v degrees of freedom (2) is given
by

1 (v/2) - 1 -w/2h(w) w 0- 0. (17)
r(v/2) 2v

2 2 2
Since X and Y are tiot standard normal variables, R = X + y is not
a chi-square variable. However, the distribution of

> + 2y

can be approximatud with a chi-square density with v degrees of
froodowu where

X + 2Y

9
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This approximation is a special case of a more general approximation
due to Satterthwaite (see Reference [6]). Tha general form is as
follows:

Z 2 2
Let Vi Xi/oi 2. 1, k

and let XI X2 , Xk be independent.

k 2
V E a. X.i=I i 2

"Then I=l ~ 1 (20)
k 2

ia i~l

approximately where the a. are constant and

2
i i

IV
(a i aai 2V

For our application above, k 2, a1 = a2  1, and = 2 1.

The approximate distribution of U in (18) could be used to find
the approximate distribution of R. However, one can restate the
prcblem in terms of 11 via

A

erobJf h(,u)du P P3 • y (21)

0

10
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whr A v 2  2 2
.where A \= L/(2 + a2) and h(u) is the chi-square density given in
(17) with degrees of Ireedom v given by (19). The inequality in (21)
holds if and only if A > X2 p where 2 p is the lOOP% poini for a
chi-square variable with v Aegrees of freedom. That is, if U 2
then 2 is such that

Prob (U 2\•p) ! P

Hence, (21) can be restated as

:I-

Prob L { L 2 } Y (22);...2 + 2 Xv,p P (2
CI X +•y

or equivalently,

P o { 2 2 \ vL 2 }( 3

To complete the solution, we need to obtain the upper 100y% confidence
bound for y2 + c*2 . We then equate this bound to vL 2 /X2p and solve
for L.

To obtain a confidence bound for G2 + C2 ' we again resort to
Satterthwaite's approximation (20). Uner e initial

A r L intialnormalityassumption,

2 2 2 a ,2 2 2
nýx/ax~ Xn and n8y~ /a •

1 YY (

Ui



Using (20) with k 2, a1  a2 1=, and v2 v n, the distribution
of

,(,2 +A2V C'X + GY )

2 2UX +ly

can be approximated with a chi-square distribution with v' degreesof freedom where

• Using this approximation, the upper lOOy% confidence bound for2 2

aX(n + •
2 2

Xnv(^-+

We now set

22 2

and solve for L. We finid

i-, .12



L . (24)

2 2
The parameter v in (24) is a function of the parameters aX and (y
which are unknown. Hence, v must be estimated from the data by
replacing c2 with CX2 and o2 with Cy2 in formula (19) for v. One
notes that V is not restricted to the integers in (24) so that to
apply this formula one needs a table of chi-square percentage points
for fractional degrees of freedom. A table of this type has recently
been prepared by DiDonato and Hageman (Reference [2]) and will be
utilized in the example which follows.

Suppose 15 rounds are fired at a target and provide the miss
distances shown in Table 1. Estimates u( aX and 7y obtained from
the data are 6x = 85.11 and ay = 20.55. Let us use these values
to construct (P,v) tolerance circles for P = .50, ' = .90 (the
circle which contains 50% of the population of future rounds with
90% confidence) and for P = .50, v = .95 (the circle which contains
50% of the population of future rounds with 95% confidence). For
both circles, the value of

( + ) A [(85.11)2 + (20.55) 2 87.56.

we now need to calculate v which, according to formula (19) is

xi .8$.1l)V + (0.5!)' 11

(85.l1)• + (20.55)"

and mv 15v l 16.74. the valte oC 507, (valut, ofr P) point is
needed for a cht-square with 1.116 degrees of freedom as well as
valets of 0h1 57- and 107 (vatles of I-N,) poilts for a chi-square
witlh 16.74 degroes of freedom. Referenae !21 vited above provides
tabitlar valuos of Owi-squarv percentage twints for .1(.1)
13(.12)26(.?5)t2.i(.5)5l2. �vTh points need'e foe ,ur dvgreevs ef
froedot can he obtaie•d using tho.e tables vi~th litu-ar interp~olatiori,
or they Ca•t be Obtainet.d vsart by using the progerti doct-onted in,
the rettot:. Linear inetpolation of tabular valueo provides



TABLE 1

Hypothetical Miss Distances For Sample Problem

x y

11.71 - 3.40

51.94 -19.68

- 87.60 -20.80

31.11 12.35

-104.12 15.68

23.95 1.53

- 15.10 16.60

96.24 -12.55

157.33 -47.80

- 74.22 3.43

68.04 -14.78

- 90.03 -24.70

-11.0.75 8.05

95.01 -21.05

111.74 32.15

t 4~

X / i4 Y /. .

4144



X1 . 1 1 6, .50 5564

X16 . 7 4 , .10 9.8836

2
X1 6 . 7 4 , .05 = 8.4863

The exact values, obtained by running the program, are .5564, 9,8822,
and 8.4844, respectively. The values obtained by linear interpolation
are the values which would usually be available to the analyst. They
are sufficiently accurate and will be used to complete our sample
problem.

For (P,.v) = (.50, .90), we find

"L L0• •2.88 ") (87.56) 80.46,
X, 2y9.8836

auJ for (P,k) t.5o, .95), we t'inx

t•'x' o:) st.JS 3 2J - (87.56)- 86.83

Tho point et!£tir4tv ot 0h10 ECEP for ch' tnie•t it% 61.4%. It i•
(tbt~tu4 h by te !twc~ (ho ttkso4 h ei orlcne Wi ¶th 1ý 20. $5V85, It

*:'$ ad g Thto- "Altattu .7If17 thdeh vhevn t'wtitplie) t~v
OQIot~ the til~oe ztrvttt. tt 11itn dot A*AfltIMtfl ctintideqtw-t (4 lois
th4n 507X. t.iO.,WC,wcV WAte Otffl IW ConiJMt chAL A eirAleOf
rjdhit OI.42 '.',trc e at hiatt VO •, alo ph eIthu n of ti pacs.

00hotn to rigurr, i. All tud!ttrelior C4(% No thooghc of nw ecstiuatas
01 the'05W clrctc9 ' ýiut vici Jieftrenr. levdot* (Of emnfldcnco. thwv
n.itte" in thlit io,%h vut tt trral chartchai confiithrnc incrcaass

Otuzht ci-.cte rdito# nceafl
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IV. ACCUIUCY EVALUATION

Satterthwaita's approximation (20) was used twien during the
formulation of the (P,v) tolerance circle given by equation (24).
Therefore, it is an approximate tolerance circle, and one should
know the worth of this approximation in order to use it with
"confidence." The purpose of this section is to evaluate the accuracy
of the approximation; several approaches will be used in this endeavor.
Let us first defiine 0 " c = 1y/,- " 1. Then the first approach will be
to examine L(;., *Y) in (?') for the cases where c = 1 and c = 0. This
will corresponE, respectively, to the circular case (case where

and the tnivariate case (case where cyX differs so much from
(I that the entire population is concentrated on a line). The second
approach will he to examine the confidence afforded by the approximation
for small sample sizes n using a Monte Carlo simulation. Tie last
approach will be to examine the limit of L(ax, 6) as n increases
without bound. Tile results of these examinations should be sufficient
to pass judgment on the worth of equation (24).

IfC = 1, * say, and and ir in (24) are both
estimiting the co.mmon vsiance so Uthu et + 6÷ becomes Zý2. Also,
v, in equation (19) hecties

• ~ ~...,..,

4_ .

Q WW

ii:.
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Equation (25) coincides uxactly with the exact solution for tolerance
circles for the circular casu provided by Thomas and Criglar in
Reference [7]. (Reference [7] is a refinement of the work in
Reference [8] for publication in the open literature.) Therefore,
if 0 - cv, the approximate solution in (24) corresponds to the
exact solution for the circular case.

To examine c - 0, we shall simply set cy- 0. Here we find 12 +
-2 - ^2 and v in equation (19) equals one so that L(aX, Sy) bacoZ

2½
n )(1 

AL(ax) - Ox (26)
1'X4,1-y I

Equation (26) is the exact expression for the upper tolerance bound
for a univariate normal distribution when the mean is known a priori
to be zero. (See the development, of the univariate case by Hald, for
example, in Reference [5].) Therefore, the approximate solution in
(24) becomes the exact solution in the degenerate case where one of
the standard deviations is zero.

The results of the last two paragraphs indicate that the
approximation provides what is needed for values of c close to
zero or one. For mid-range values of c, we shall have to resort
to Monte Carlo simulation. A single replicate of the simulation
process used in this study is described below:

(i) For given values of P, y, aX, and cy,
a sample of size n was generated from
an elliptical normal distribution using
Monte Carlo sampling techniques.

(ii) Using the data points generated in (i),

OX' •Y' and v were computed.

(iii) Using the value of v computed in (ii)
and the specified values of P and y,
the required fractional chi-square
percentage points were computed and
L(x, Cy formed.

18



(iv) The integral I of the elliptical normal
distribution with parameters ax and oy
was computed over a circle of radius
L(TX, 0 y).

The above process was repeated N times, and the confidence coefficient
was estimated by the ratio of the number of replicates in which t ' P
to the total number of replicates N. If the equation for L were exact,
then y would lie within sampling variation of 9 (the estimate of the
true confidence) for all values of P, y, c, and n. Since L in (24)
is an approximation, the departure of 9 from V (outside sampling
variation) is a mneasure of the worth of the approximation.

The selected values of the input-parameters P, y, n, and c for
the simulation were as follows:

P: .50, .90

y: .90, .95

n: 5, 10, 20

c: 0, .05, .10, .20, .25, .33, .50, .57, .67, .80, 1.00.

Values of n were restricted to small samples in order to avoid
excessive computer running time. The number of replicates N fnr
each combination of parametric values was set at 10,000. This :-alue
insures (with 95% confidence) that the true confidence (not necessarily
y) lies within .01 of V^. The results are shown in Figures 2-5 .iere
9 is plotted as a function of c in multiple curves representing the
three different values of n. Each figure represents a different (P,y)
combination. For each combination, horizontal lines have been erawn
at v ± .01. Values of 9 within the region enclosed by these lines
can be considered within sampling variation of y. Values outsid- the
region represent values of 9 outside sampling variation and indicate
departures of the approximation from y. One notes that in all four
cases ^ lies in the region of sampling variation for c close to zero.
This merely confirms the results of the earlier discussions on the
behavior of the approximation when oy and oy are substantially
different. One does not observe a similar 5ehavior for all values of
P, y, and n for the case where c - 1. He does observe, however, that
for the larger value of n(n - 20), j lies either within or very close
to the region of sampling variation. Departures also exist for the
mid-range values of c (most notably for values of c close to .25) with
the departure being less severe for the larger n than for the smaller
one.
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Oin the basis of Figures 2-5 and the above co.-ents, one call
conclude that the approximation is very good for values of c close
to zero regardless of the values of 1', y, and n. For values of c
close to one, the approximation is also very good if n is not too
small. For other values of c, there are departures in the confidence
oafforded by the approximation which appear to increase as P increases
and diminish as n increases. We now need to insure that the
approximation continues to improve as n increases beyond the maximum
valuh of 20 used in the simulation. Hence, we shall consider the limit
of (, ) as n - it is easy to show that

2 27Iimi t L (iý''Y: (( I T 2

The right band portion of the limiting expression is based on the
fact that :2 anid -,2 ar, con,-istO•nt estimators and, hence, approach

ait! . espeWCLivelv, i."; n . The left hand portion is based
on the fact that as the ie,,rt's of freedtm f - the. distribution
(Iof y\/f is c ent'ated ,it unity. HeocC, i-n tile limit, all percentage
points of a chi-squaroe rtintom variablh divided by its degrees of free-
doma are wunity. if apQox.,avion (Z4) continues to improve as n -
then the percent of thtv popttllatioo eticompassed by a circle with radius
giveit by (27) should apin'oich P. The pretn¢otit of the population

S .... uomsse| by ciret!roý, of radius (27) was. evaluateti for c .0(A)1.O
aitd P .p50, .%1, .9S, aitt .99, 'Clio re.'iltrs are set out in Table ?
altd sýhow t-harOtilk' Lheo", t 'rtapos ,!siigtiated P-1, are flot CNaCVtly
equat to P, thk ey aItL v•-o !arlvy oqtt.al to P, difteritig only in the
31't deciltuLl placo. "CheI .t.iuw helro is that the percenit C" the

.ppulation by! o vircL-e of rdius ) L(' P 0 Vice P

iwt ti Titis posos no voot prohlom stic Pý 0* clos to I'.
Pence cal ee!'Lrht allI practival purposes,

- in) it (24) p'.ovey- as it irlml'olsa without bound.

ZO i can Ott!rU~ .~ wkoýrth of approxititati (24) with U~i

-°fo~l hvin r ct.s

(aVI -*p we.4 thekl toxaCt V4lu jts t (I C
toV ari-as tpdio t t~t-Cldt eeleuiLt 8t t us

iegarlv*4l' o f•, t ai"•nd foLr values of.

24e ....



TABLE 2

Evaluation of

(x/crx)2+(y/Y)212

2 dxdy

ff 2 2 2(I 4y(ivit L)

c pP c P PI

.0 .50 .5000 .0 .90 .9000

.1 .50 .5011 .1 .90 .9004

.2 .50 .5032 .2 .90 .9014

.3 .50 .5018 .3 .90 .9028

.4 .50 .4981 .4 .90 .9042

.5 .50 4, 96Z .5 .90 .9052

.6 .50 .+964 .6 .90 .9049

.7 .50 .4976 .7 .90 .9034

.8 .50 .1989 .8 .90 .9017

.9 .50 .'997 .9 .90 .9004
1.0 .50 .GCW!0 1.0 .90 .9000

.0 )r9 00 .0 .99 .9900
It .4)5 .9500 .1 .99 .9899

.95 .451)1 .2 .99 .9897
.3 .95 .9503 .3 .99 .9893
.4 .'lQ(;6 .4 .99 .9890
.5 .95 .9,10 .5 .99 .9889
.6 .95 ,951) .6 .99 .9890
.7 .*¶ %sI., .7 .99 .9893

.8 .95 -950t. .8 .99 .9897
.9 .9- .9502 49 .99 .9899
).0 .95 .9500 1.0 .99 .9900

L

!i " 5



(b) It approaceI~s the exact value its c -. 1,
but the results do depend on n.

(c) For intenrmediate values of c, there is
some departure from the desired confidence,
but even for a sample size as small as
it = 5, it does not exceed 3%h aid is much
less for most values of c.

(d) It improves for all values of the
pa•imeters as ii increases.

Hence, the approximation appears to be suitable for general applications
with little loss in accuracy even for sample sizes as small as i- 5.
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V. MULTIDIKENSIONAL EXTENSION

Thus far our attention has been confined to the two dimensional
case where miss distances are reorded in the (x,y) plane.- Thi.s
could be the ground plane or perhaps the plane normal to Ohe trajectory
at impact. In the case of an air burst weapon, however, the wiss
distances are three dimensional, and for other applications, the number
of dimensions could exceed three. In these cases, we would be
concerned with a k dimensional tolerance sphere vice a tolerance
circle. Extending the work of the previous sections to tolerance
k-spheres for the multidi=,nsional case is straigtforward and will
be outlined below.

tLL Lhe multivariate random variable (X1 , ... , Xk) represent the
miss distance of a round in k directions. If this miss distance
follows an uncorrelated multivariate normal distribution, its
probability density is given by

+ *2
) ..0 Nk + .1. + (xk/C)2 )!.,~~(2, ý(51 .. ,fy te (a

w.•hore •i is • ,the s ditxace st•atird deviation in tlhe ith direction.

If a sý•ple f Ft rou"(ls is fired, tlhe n miss dtstaQcsýs
r~q, .. ,x >Lare us-ed to estitu- to tho Ti. Tho *bthwI Of

f },
4i I pi -

To eowtr'ttt ý: uiirrjtic k- ,phere ve twiad to fiW~ the radiu& L 4*
f of th-e nI, tht

!. ..



where the region of integration Sis the interior region of the
1-phr to. + = L2. If wo lcet R2  X2 ..+ + X2 th

application of (20) provides thlat

%)R 22 C 2 + -C XV approximately
a1  k .

wh~ere

v ~ + 4. ~' (30)
CI + + C

Oite cazn now restate (29) in ter-ms of the diqcri%,utj-i- of u via

fA1
Plvob j It (u)du P (31)

where h(u) is the chi-square deusi )tY witht degrees of freedom given
bv (30.) airid A v1/- .. +E.~ quatiott (31) holds i~f 4d

+1 +

Plob i L + ek (2



Applying (20) again, we find the uppdr 100y% coufidewce bound for
oY2 + . + (2 to be approximately

(33)

Equating (33) to tie right hand side of the inequality in (32), one
obtains

L " )(&j +-'-2 + ) • (34)i k
One notes that this general expression is very similar to the two
dimensional expressicn given by (24). The difference lies in the
formula for v and the additional terms in the right hand portion
to account for the increased dimensionality. This expression for
L it tihe radiuq of a k dimensional sphere which contains at
least 100lP of the populationl with confidence approximately equal
to IOOv%. The worth of t~tis approximation has not been studied for

Sdimonsiomality above two.

S
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VI. ANOMhER APPROXIMATION: PARAMETERS KNOWN

It was shown in %ction II that when the parameters are known
a priori, the ECEP or the radius of the general lOOPZ circle for the
elliptical case can 1)e obtained exactly but only by table look-up or
extensive calculations. Several approximations were shown ((12), (13),
and (14)) which are oftentimes used for ECEP calculations to avoid the
exact procedure. A fourth approximation uhich can be applied to the
general catle of the 0OP%, circle is simply the limiting form of
L(;X, ;y) in (24) as n -. This form was given in equation (27) in
Secion-IV and upon minor rearrangement becomes

Cp 2 2\ N /v ((. + oZ)I2] (35)

where v is given by (19).

One itotes from Table 2 that this approximation is exact for the
* dogenerate cases where c :-y/,-\= 0, I. Also from Table 2, we see
chat for midrange values of c, a circle of radius (35) contains very
nearly 100P% cf the population, differitig from P only in the 3rd
decimal place. tiowever, to employ approximation (35), we need values

1 .. for-frctional . To obtain suchi values, we have to resort

to taove or enga-ge it hteavy calcttlations. These are the same
alternatives we Caced for the enact solution. Therefore, one could
argue that it thek approNxrtAr.ion tivolves the use of tables of
jlt'rcntg(•a poitts i for the cli-sNqtuarv, with fractional degrees of
rt'edom (Ro•fronae .. , we hy nt u~e inverse tables of the circular
etoot'"e Vtwt iotnl (Roeferanwe I 3•}) vo t'4bvit -the exact solution'? Thib

Is A valid argttuntit, .111d tio attempt will be made. to refute it except
to *4v that, nsw11v AoA.ysts; teol ftre comfortable usitng 0 thultiplyiog
i 4Wtlq' for a' ,4¶*-t ftv- io f 14 AmuJ thanl they do1 tsiltjte table
lvok-tup tor the oxW' t Itt I klutn. Pur ;ort'we, i t one confinles
hi n Attona'1i'tt to rho1 PiC?. , he can reasily construct a short table of
4u1;c f--citirs for ea-zii -actcoss '.itale I btlwia a short table of -this
type vlhoru t01 6 r1 t poilts have b01 taken fro Refluc [2•2).

to tllfkt-na the 01v otf Table 3 and to cepario approuimw.ton
(.ItS) With;he e.xact w4uth|io and the other approxdthnw, constdor

ltho lelluwuing toxa e: -It ISf it, atd 30 t.,

30.



TABLE 3

2 2 2Multiplying Factors of [(ax + ay)/21

for ECEP Approximation

1.0 .9538

1.1 .9928

1.2 1.0258

S1.3 1.0542

1.4 1.0789

1.5 1.100.5

1.6 1.1195

1,7 191365

1.S 1.1516

1.9 1.1652

2.0 1.1774

x 'A

K +

Lidt teFt EC'P 11y, the oeaC t uuithud and eet'pnre with Lite four
ujprimitwite Milnttol$S, te Obtaint the exact Soitatwio fromt tables
ini Rehrencoe V3. The,, fdI r thriae appruxittatitis are tttraiMglttorard

sadreqUire' tie ebbrto.m ast approXiMation, (3) Itlv

the use of Tibia t. For this. ease

S ~ L.4104.

(30)~ + (1S)
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Interpolating between 1.4 and 1.5 in Table 3 yields a multiplying
factor equal to 1.0941. The results are set out below for comparison.

= 15 ft., a =30 ft.

Exact ECEP = .8704 7,._ 26.1120 ft., Reference (37

Approx. ECEP = t.1774(21.2132) = 24.9764 ft., Equation (12)

Approx. ECEP = 1.1774(22.5000) = 26.4915 ft., Equation (13)

Approx. ECEP = 1.1774(23.7171) = 27.9245 ft., Equation (14)

Approx. ECEP = [.0941(23.7171) = 25.9489 ft., Equation (35)

The results confirm the remarks made in Section II about the relative
worth of the first three approximations, i.e., only (13) has merit
unless c is very .-lose to cnc. The results also show that
(35) is closer Eo the exact titan (13) but not by much.

LoQt us now conszider amnoher example with a smaller c. Consider
15 and • 100 so that c = .15. In this case 44 1.0450 with

corresponding multiptyi-n factor .9714 obtained by interpolation.

•~It

- .ct ..t

EN .ý9L u ..041 ft., ,eference .3.

Approx. F&EP t.I7'74U84.72MR) 45,6005 it., Equ'atioin (12)

Approx. UTEP 1* .1774(57.5000) 67.7605 ft., hquntion (13)

Apprx. CEP 1.U7(7P. 5 17) .81862 ft., EquatioI (14

Approx. ECEP .9 4714i .M501T) 69.456S ft., Equationt (35)..........

sducAI tonly in t thfren 3'.r digiooe t. u ltwte fdw~st

ened wcalutof the '!Ndet 90lution ~an/or Cumwuter prudtaa



for the exact solution are not believed tV exist. Hence, In the
general multivarate case, an approximation for the radius of the
100M k-sphere could be of practical value.

To obtain such an approximation, we apply the above limiting
concept to the gener:it express ion for L in (34) vice the two
dimensional expression in (24). This provides us with the following
approximation to Sp, the radius of 'lie lOOPf k-spihere iii the
multivariate case:

I..

+r. +) (36)

(I " + +. k

The wtortht of citis .approattion is difficult to ascertain due to
tile absence of tabhles of or programs for the exact solution, However,
some rottgh compmriqsonS• •tu be made if we once "ore resort to simulatton.
To make these compArisenK we srif k., rAnd P and then
Compute aour appcve$irtatks to $• whtch we sthalt designate Se. F-or
the s~mv. t+tcW UtrIm reetdl apemf~ a tttlttvivLtet llwtma
popultktion, eitch time A%11 n0 f tho radial error R. The e-Stietaze

('tP.P~~ frpy het'atiof OfA to urber ("I repicate-S in Vshsuh IR
t'n lto-% than 9' Wjt the, total wnumber of relacIf the apoia
tion has morlJ, P Avuld 1Uo within nrnptiiw variation of P

e"..

Several exrvlu iease Areý kmidered bekv,. VhV refader who ito

tw ret; extenive Fo~iVr -eah re~i- tho aumber ofvqlktl
Veas got at 10A000. Irstg thI* nuflber. 10,10 IU 9SIZ cOOWIO*t that. th-

tru nrslatn rrrtrtten~aro by a I-het'e of ra4iti*eS"*
lIu wQ ithin .$M t4 P. awo. VAlU4A 0f P withfIn 01 be Oinict

musultis Ito shwn hi t,4ble 4,.



TABLE 4

k p .3I CT 4 v

1 3 .50 I 1 1.5382 .5031

2 3 .90 1 1 1 2.5003 .9038

3 3 .50 1 2 4 3.6367 .5032

4 3 .90 1 2 4 7.1374 .9020

5 4 .50 1 2 8 7.3596 .4965

6 4 .90 1 2 4 $ 14.3186 .901,9

It% tthe Eirst tt•o v¢asvs it Tzh•h 4, tzhe di.sribucion is sphexrical
so the values of St for tOhw'e cses arce exact, We note that P &l ti
t4lkhin samplirtg variation of P .for both vatules of- P us e.petted. In
t01 iStC four Cs4e01, 0h1 d-;trubttlott is telipsoidl, and as such,
%ttlo• of S' are uwprooi'ailtQ. In a±ll four QasqS', P Lles Within
,tplirtto vaViatonoP. &•- 0.usew oCf the RMALI nuMbetr of casest'.
eNLined, w cOatnne C'twltasiveflV Stat t013t the appromtvimtion is.
"good" for alt 14c~ ttvvet', cheos caus are evidence that the

- ... . ."4



VII. CONCLUDING REAMAKS

The addition of this report to References [7] and [8] provides
one with the methodology to construct (P,,y) tolerance k-spheres for
the uncorrelate-d multivariate normal distribution. The spheres
can be constructed whether the sample size is finite or infinite
(corresponds to the case where the parameters are known) and whether
the standard deviations are the same for each direction or different.
References [7] and [8] address the case where the standard deviations
are the same for all directions and provide the exact formula for
the radius of the k-sphere. This report addresses the case where
they are different and provides an approximation for the radius of
the k-sphere. This approximation provides little loss in accuracy
for the cases examined even for small sample sizes, Collectively,
these reports provide the weapons analyst with the tools to make a
more meaningful assessmunt of the delivery accuracy of a weapon than
has been possible in the past. However, one closing cautionary point
should be mentioned. These reports assume that there is no bias in
the weapon system, i.e., that the long run average or expected miss
distance is zero in all directions. If this assumption of zero bias
cannot be made, the procedures set forth in this report and in
References [7] and [8] are not directly applicable.
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