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FOREWORD

The funds for supporting the preparation of this memorandum were provided
by the US Army TRADOC Systems Analysis Activity through the Arryj Research
Office, Short Term Scientific Assistnnce Program. The program is admin-

istered by the Battele Col-nbus Laboratories, inc.
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TRASANA MEMORANDUM 2-77

THEORY OF STOCHASTIC DUELS

MISCELLANEOUS RESULTS

1.

1.0 PURPOSE

This memorandum documents mathematical derivations that have application
in the use and further development of the theory of stochastic duels.

2.0 RESULTS

2.1 Introduction

Presented below are particular applications of various aspects of the
theory of stochastic duels that the author has accumulated during the
past 20 years. Some of the material dates back to his employment with
what was formerly the US Army Operations Research Office that operated
through the Johns Hopkins University and later with the System Develop-
ment Corporation, Santa Monica, CA.

2.2 Marksman Problem with Erlang n Firing Time Distribution

a. The Gamma probability density function is expressed by

tb-l e-t/a

f(t) t , t 0 a, b> 0
ab r (b) 

'b

0 , elsewhere

If the parameter b is restricted to the set of positive integers b = n,
(n = 1, 2, ... ), the function is normally called the Erlang distribution
and is expressed by

tn-l e-t/a
f(t) -_= et>O ; n= 0, 2,

an (n-l)! a > 0

0 , elsewhere.



b. The characteristic function of the Erlang n is

1•@u (1)

(I- iau)n

The characteristic function of the probability density function (PDF) of
the time-to-hit for a Marksman firing at a passive target has been shown
previously to be

.(u) - _
ON() 0(u (2)

where p = marksman's fixed hit probability, and q 1 - p.1 Consequently,
the PDF of the marksman's time-to-hit is

S_ p / @(u)e-iu

h(t) 2=-r qý(u) du * (3)

Substituting Equation (1) into Equation (3) results in

p ÷I -~itu

h(t) p e1(1 i du. (4)

The integrand of Equation (4) has n simple ooles in the lower half of
the complex plane which are

Uk I 9I - 5(k -1 - q/lei21k/nfl , k = 0, 1, ... n-i. (5)

Using Equation (5), Equation (4) may be rewritten as

h (i/a)n e-itu (6)27t f n-l Eu + i/a (1 - qfn ei 2 •kl)]
k=0 -

1 2'jrevor Williams and Clinton J. Ancker, Jr, Stochastic Duels, Operations
Research, Volwne •_7Z No. 5, October 1963, pp 803-817, Equation 14.
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This may be evaluated by integrating around the contour of Figure 1 by
using residue theory since the integral on C vanishes as R + =.

\RC

C

Figure I Contour of Integration

The jth residue is obtained by removing the jth singularity and replacing
"u by uj. Finally, the residues are surimed and multiplied by -2iri since

the contour is covered clockwise. This process provides the equation

n-t/ /n (i27)/n

aFh(t) nl (7)A"a-- (el 2r/ •kn

k=o
ktj

where the product in the denominator is equal to 1 for n = 1.

c. If it is now noted that the mean of the PDF is I/na and, follow-
ing usual convention, that the rate of fire (r) is denoted by the recip-
rocal of the mean, Equation (71 becomes

•prenrt e'~nrtql/n ei2uj/n

Wn-1 E0 nl (eT 27j/n ei 2Zk/n)

With more manipulation, Equation (8) may also be written

"n-i e~,. 41/n etql n•" npre-nrt .- ) ei2nj/n no,

npr htt = n-i)~~IT ~ , n = 2,3,... (9)h•t) = (2q1//l)n-In

izo 11 sin ir(k-J)/n
k=o

fit

3



EXAMPLE 1: Letting n = 1 (remembering that the product in the denomi-
nator is 1 for n = 1), then

h(t) p r e-Prt (10)

and the distributicr, function (DF) is

t

"H(t) f h (•) dý = e-prt(

H0

EXh:•:v'LE 2- Letting n 2 0

-2H e2rv'q t ~-2rr/ -2rt (A2lit[ 2 J.PX-e2pre-2r sinh2r /-t (12)

and the DF by .n-,.egration is

H(t)= I sinh 2r /qt + V`cosh 2r /q t (13)

d. In passing, it is also noted that the DF of the time-to-hit may
be given in terms of characteristic functions as

S(I - -it

1H(t) f ( -e du (14)(t) 2• --ir q ý(u)] u

t

by noting that H(t) f h(ý) dt a.id applying Equation (51) of para 2.7.3 a
0

to this expression and to Equation ýý). The plots of Equations (11) and
(13) are shown in Figure 2 for comparison.

2.3 Tactical Equity Duel with Erlanq 2 Firing Times 2

a. For half of the time, A sights B first and fires a round that
either kills or alerts B, in which case the duel proceeds as a fundamental

2 lbid. p 811

4,4
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duel. The other half of the time starts with B firing first. Thus, 3

P[A] = [P. + qA P[Alf] +-1 qB P[A]f (15)

where the subscripts refer to the parameters of A and B, and P[A]f is the

probability of A winning the fundamental duel.

b. If the known result of the fundamental duel with Erlang 2 firing
times 4 is substituted into Equation (15), the expression becomes

(PAr- PBrB)[2r•A- (r4 + rB)PB3 + 4rArB(rA + rB)[2rA + (r,- rA)PB)

P[A] =.PA1A 2 2.(16)

(PAr PBrB) + 4 rArBCrA rB)(pArA + PBrB)

2.4 Different Tactical Equity Duel

a. The duel described in paragraph 2.3 above is modified for pro-
viding a different approach. As before, each contestant fires one round
first half of the time. However, in this case, the opponent has a loaded
weapon and immediately returns the fire with one round, thus precipitating
the duel if both survive the opening engagement. From this description

P[A] = PA + q q3 P[A]f} + {qBP + qBq P[A]f

. A1

2 PA~l + qB) + qAqB P[A]f (17)

where, as before, P[Alf is the probability that A wins the fundamentalSduel.

eb. If the case of both sides having negative exponential firing

times is substituted, the expression is

P[A] P + qB) + qBPrA (I8)2 PArA + P(rB

SaXbid, Fquation (28)

46 F

.Ibid., Equation (28)

L6
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S_ _,_ _ _ _

2.5 Duel with Random Initial Surprise and Laplace Sighting Times

a. The general solution of this duel iss

P[A) =2-T fA(-u) 4B(U) e(u) du (19)
t.u

or

P[A] 1 + 1 f2 A(-U) 08(u) e(u) du (20)

U U

Sf f
where Jand fare the usual indented contours in the lower and upper halfS, L

of the complex plane, and PA(u), %B(u), and o(u) are the characteristic

functions of the time for A to hit, time for B to hit, and sighting time,
respectively. A pcsitive sighting time is an advantage for A, whereas a
negative sighting time is an advantage for B.

b. If negative exponential firing times are assumed for A and B, and
if the sighting time is allowed to be Laplace-distributed [g(t)], then

PArA
SA(-U) PArA + iu (21)

PBrB(22)
OB(u) iPBrB (22)

1 _It-dl -w < t <+KV' g(t) : -c e c (23)

V~ dw < <-

and

S"du

G(U) +1 2 2  (24)

* 51bid, p. 813 et seq



c. A typical PDF for the Laplace sighting time with d =0 is shown
in Figure 3. Note that the mean is d, and the standard deviation is F2 C.

o.8i

1-; dm0

-2t 1 0 t-3 I

-5 -*-1- -

The two cases that must be distinguished are for positive d and negative d.For positive d, Equation (20) and the upper half of tne complex plane are
used. Thus,

eidu

I f PArA PjrB eB
P[A] + 2(25)

(PArA + iu)CPBrB -iu)Ol + c2uz) UJ

There are 2 simple poles in the upper half plane, at u = ipArA and u = i/c.

By applying the residue theorem, the result is

P[] , -pBrB ePArAd PArA pBrB ed/C•.IPEA] 1 2 2 -2)_ (26)
(pBrB + PArA)(l PAr) 2(pBrBC+ 1(PArA- -

8



For negative d, Equation (19) and the lower half plane are used. Thus,

P[A_ - 1 PArA PBrB e du(27)

1PA 2i (PArA + iu)(P~r8 - iu)(l + cu 2 ) u
L

There are 2 simple poles in the lower half plane, at u = -ipBr, and

u = - i/c. By again applying the residue theorem, the result is

PArA ePBrBd PArA PprB ed(8•,•PEA]= + - (28)
(PArA + pBrfl)(l - c2pzrl) 2ýpArA (pr

For the special case d = 0, Equation (26) or (28) is used for obtaining

PArA Ez(P~rA +1) P rg (pArA pr)
P[A] C-- L A ] (29)

(EP2B 2(pArA +p.r..) (I+ p~rB) (pr. +

The plots of Equations (26), (28), and (29) for various values of the
parameters PArA, pBrB, c, and d are shown in Figure -.

1.0.

k -C2

.48,

0 .5

0 1 2 3 4 6 6 7 8 S 1

PArA

Figure 4 Stochastic Duels with Surpri-se - B
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2 3 4 7 e2 10

PAr,

Figure 6 Stochastic Duels with Surprise - PBrB = 10
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d. Two further simplifications may be noted. If it is supposed

that A always has the sighting advantage and that g(t) = I/c et/c,
t > 0, c > 0, and g(t) = 0 elsewhwere, and e(u) = I/(l-icu), it is easy
to calculate as above and show that

[ PArA + PArA PBrB (30)

S(PArA + PBrB)(I- PBrBC) (PArA + c-)(P~r

Similarly, if B always has the sighting advantage, with g(t) = I/c et/c,
t < 0, c > 0, and g(t) = 0 elsewhere, and o(u) = 1/(l + icu); then

7 PArAP[A] = (PArA + PBrB)(I + PBrBc) (31)

In this case, obviously, P[A] has been reduced, compared to the funda-

mental duel, by a factor of

1

1 + P rc

2.6 Fundamental Duel with Erlang Firing Times ;
a. In this application, the fundamental duel is examined where A

has an Erlang n firing time PDF, and B has an Erlang m PDF. This means
that

St~n-1 e-t/a

fA(t) =tn et >0, a >0 (32)
an(n - 1~, 2,

= 0, elsewhere

1
with WA(U)•. (I - iau)n,,

and
M-1 -t/b

f(t) t t > 0, b > 0 (33)
t bm (m -1)! m =1, 2,

0, elsewhere

with %(u)
(I -ibu) m

-~ ''-.nfl .t !C~aznt.fl&L.. ia~ona.n ~ fS ~II-



From previous work, we have6

P[A] 1 f du (34)
2 Ji JL ÷ iau)n - I ( - ibu)m- qB -

which may be rewritten as

SiP-APB I duN_

P[A dun (35)A lPA]-•- + iau~ q u + im -(,i)mq 7u "

There are m simple poles in the lower half plane, at u -•(- ei 2q8 k/m)e

k =0, 1, ... , m-l. Hence, Equation (35) may again be rewritten as

i to

P[A) 1~j du _ (36)

IKEl~~ PA ii + -+ -I/i i2;.k/ajJI + i aU)~ ciA) Mn[U 4--l( qB e ~ )

b. The jth singularity is now removed, and uj is substituted for

all u's to get the jth residue. The residue theorem is then used,
multiplying by -21i and summing over all residues. Finally, it is noted
that rA = I/na and r, = I/mb. ThusF•: •P1A3 1 j ' eP2B'I/ -]n I e2wj/•} (37)[[ '

whee i isnoted that the product term in the denominator is l ifI' m = 1. One can imnediately check this result by substituting m = n = l?
and by letting m = n =2.8 Equation (37) above may be written in the
following form which may be somewhat simpler to evaluate.

= APB ii tijr - 1) e(38)l

SI r -/M i2 ,j/ ql n ee l{l )

A- k -0

whr itand again the product term in the denominator is 1 if m = 1.

anbid3  lequaionn (14) and (20)

SIbi:dj E:quaton (6)

(2q .11 2jr)noIM is/ . 0

Ibid, Equation (24)

12



2.7 Some Results in the Theory of Characteristic Functions (Modified FourierTransforms) of Positive Random Variables

a. Shown below are results that may be useful in new applications
of the Theory of Stochastic Duels. Only positive random variables are
considered, i.e., PDFs such that

f(t) O, t - 0

S0, t< O

and (39)

SIf(t) dt I A

I

with characteristic function

0

Su real (40)and with inverse

ft f e ý(u) du

2.7.1 Parseval's Theorems

Three versions of Parseval's Theorem are denoted by

+0 +0

fA fB(t) dt ) fA( du (4)

-Co

+ f0
i~~ ~~ e•"• fA(t) fB(t) dIt : AUW BW (42)"0

••' [Ti tc~nar-h, "Introduction to the Theon~j of Fou~rier Integrals.," Oxford :

•: § University Press, 2d Edition, 1948; Equation 2.1.1., p 50.,

1 ]eid Equatio dt2.Auw: wd 1.a' 7,p5



e"fA fB(t) fC(t) dt _v) dw

C' 4w2 JAu I ýB(W dv' (43)
-~ - ~ '-9,

This result comes about by applyiig Equation (42) to the left-hand side
twice.

N.B. These theorems do not require the functions f(t) to be pdf's. They
care general for any integrabZe functions.

2.7.2 Properties of Characteristic Functions of Positive Random Variables

a. *(o) 1 (44)

PROOF: From Equations (39) and (40)
gA

e f(t) dt f(t) dt I

o 0

b. lk(u)_ < I, (Imaginary u > 0) (45)

This implies no singularities in the upper half of the complex plane.

PROOF: Let u = v + iw, then

*(u) = e e f(t) dt

0

or

I: a(u)j el f(t) dt , elt I<
oA

;;- and

f(ufftf dt 1
0

for w > 0, i.e., positive imaginary u.



C. I0(-u) <. 1 (Imaginary u < 0) (46)

This implies no singularities in the lower half of the complex plane.

PROOF: Same as for subparagraph b above, with negative u where final step

depends on le"tI < 1 for negative w.

d. I f(t) a differentiable (47)
lUl function of bounded

variation. Imaginary u > 0,
k = positive constant.

This implies that *(u) diminishes as 1/R in the upper half-p!. ne where R
is the radius of a semicircular path of integration in the complex plane.

PPOOF: Integrate Equation (40) by parts to obtain

4 Co
O(U) i f(O) + u t dt

0

This makes use of the fact that, necessarily, f(,) = 0. Now, for u complex

and t > 0, eje I I in the upper half-plane. Thus,

Co~

tlCu)i < f(0)+ f * If,(t)l dt
IUI IUI

0

Now, assuming a differentiable function f(t) of bounded variation, then

Cof k

Vf'(t)Idt is bounded; therefore, jý(u)j <k;3T where k is a positive

0

constant and imaginary u is positive.Vk
e. /¢U~l f(t) a differentiable (48)
e. I÷(-u)j _< function of bounded

variation. Imaginary u < 0,
k = positive constant.

This implies that ý(-u) diminishes as I/R in the lower half-plane.

15



PROOF: Same as for subparagraph d above using negative u. In this case

for u complex and t > 0, Ieiut I < 1 in the lower half-plane.

1f. 1ý(U-w)I (Imaginary u > 0) (49)

(Imaginary w < 0)

This implies no singularities in the upper half of the complex u plane
and the the lower half of the complex w plane.

PROOF: Let u= g+in andw=x+ iy so that

an (u-W) = h C(Xjt e f(t) dt
0

and

C-

0

Co

f/f(t)=

0

if y-n <_0 for all y,n. This implies y is negative and n is positive or
that Imaginary u positive and Imaginary w is negative.

k f(t) a differentiable (50)
function of bounded
variation. Imaginary u > 0,
Imaginary w < 0, and

kc = positive constant.

This implies that 4(u-w) diminishes as 1/R in the upper half of the
u plane and in the lower half of the w plane.

16



PROOF: Integrating the integral form of *(u-w) by parts, again using
f(-) 0 co

I €_f(°) +_ f e(u-* f' (t) dt

U U-W
0

1jNow, l< 1 for Imaginary u positive and Imaginary w negative.

Therefore,

iI<,-,,! f(O) + 1 f(t)! dt
Iu-W u--- If't

0

and again, if f(t) is a differentiable function of bounded variation

I ~h'.-w)I < • where k = positive constant.
lu-wi

2.7.3 Additional Theorems
a. + Co,=0

a. (t) dt = 1 1 (w + l - eWG) dw (51)2ne f " 1
0 -CO

Note that for u = 0, an expression is also given for the distribution
function of a random variable in terms of characteristic functions.

PROOF: Using Equation (40)

aa to

Sf M dt f i (t fJei(u dw dt
-0 2 0

+00

•I i ~ ~2-.1_ d()ief-' idj-

W U



The desired result is now obtained by replacing w with (w + u).

b. etut f(t) dt =(u) - f•(W + (1 (52wa)
f WIl (52)
a -

Note that for u = 0, this provides an expression for the complementarySdistribution function in terms of characteristic functions.

PROOF:

ie f(t) dt : eIu f(t) dt e iu f(t) dt

a 0 0

+ Co

(u 1 .)(w + u)(l -

where we have used Equations (40) and (51).

C. 0

i f f(t) dC dt, iu (53)
0 t

This is the characteristic function of the complementary distribution
function.

PROOF: Integrating by parts results in

Ut

Je~ ( f(C) dý) d t L + ~L
0 t

17



d. 40

ffA( 1 .Lf 4A(-u) 
.]

f )[ffB(E) dCj dt O B dU (54)P

PROOF: Previously given. 11

JfA(t)[ ffB(C) ./rcn~dnj dt

40 + tJI+

1 [+C&-11) (U (f~wA u
___ ___ __ __ _ _ _ _ _ _ _ _ (55)

to CO

PROOF: Previously given. 12

4f1
S• r-j

S~PROOF: Previously given.1:i
Tfit

)(jf(_ ) U w)L•B,) -% (57)

0o -4

T lrevor I,'i liam, r.wd Clinton J. Ancker,, Jr, "Stochastic Ducts.," Oý)cations

•: Research, Volume 11, No. 5, October 1963, pp 803-817, F^Tuation (18).

I •?'~C. ,J. Ancker,, Jr. "Stochastic Awles of Lim.ited Tt•me l)ration;",'

"' ! L'•CORS Jo:unla! 116omic 4., No. 2, July 1966, pp• 69-81, E:quation (5).

ObFd, Equation (28) gvn

g. d~i~dt
-p j A



PROOF: c 1

•lAi

jfA(t) fB)d) dt

1tt

f ,t ,dkdt - ,t / (~d dt
0 t 0 t

<I

S=d(above) - f (above)

h.

efI -'au ý(u[ uI fAMt JfB(ý d) dt = -! eu (58)[B~)PROF a du du (58)
0 t+a a C

S~PROOF: Letting t =n-a,

the inner integral is the inverse transform of Equation (53)

ffA(n-a) ( [eB(u) - u dn

fA(n -a) e-u dn du

2r ( ffA

I,, 
20



2.2

'- Now, let n-a = p, so the above

+ C t

1-i [-B(U) fA(p) eiu(DO) dp du

+c
l f e(=. [B(u) -l]

, e7" I A(-u) du by Equation (40).

"C CJ

C* to+ CO

e A[t) ()zdt[• e) - l] du. (60)

0 at+ bo

PROOF: Let t - - thena

ffA(t) f BfB) d\ dt f fA (ffB() d a a
a at+b b n

As in subparagraph h above, the inner integral rmay be replaced to provide

(n-ab- ( f e-•u [@B(U) J) dn
= fA j• i • u a-

b -co

-00" b

I., *

-477 
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Now, let p to provide
a

[)B(Uý)l fA(p) e dp du

-Co 0

and by Equation (40)

+ Co
t) fA(auB(u) d d]

- 2~ J udu

T-0

YE dc dt3, . 1o * fB~

at+ b

+ +00
=1fe-i24- 1 ( A(u a-0a) e~L[Y8 w) - w 1] du (61)

PROOF: Let t 7-b then
a

- at+ b 0

ff~t (B C) dc' dt f f (nRk)(ffB() a~ ~

0t + b b

and replacing the inner integral

at + b
e (AW)1 dn

at +

1 C-
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* Now, let T-b=p
a

2r2 f W~(' (ffA(P) e i

and using Equation (51)

_. DBMw 1- I ib_ I ýA(U- CI)[l - •U

-- ' -ý d

e-) -]

.• D f W -[-l"l( (-~ )e-lu' '¢(u at)-v du ( )

- i 0 ] t( A - d dt -2

which provides the form of Equation (61) if the order of integration is
reversed.

k. fA(t)( ff%(C) dC) dt=

at + b

+ o-i e %(-au)lh~u) -1]
f du

iUT

ff~t(Jf! dtfot) dus dt2

Equatheiontga (60) - e Equatio n (61
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S, ~. • ,

A, ~ ~~~27ri fb v(3

PROOF: First apply Euation (42) and then Equation (53) to the left-hand
side of Equation (63) to obtain the right-hand side immediately.

A\~~~/D 7  /fc(n)LIf (P d drd

*�fj ¢I c ~C(-u-,v)[oD(v)-1] dv CA(U-)&() - d]

_ -v du (64)

side of Equation (64); with slight rearrangement, one obtains the right-
hand side immediately.

C, ZO

n. )fA(t) fB() d fc(n) d, fD(p) dp dt

"0 ý ( t t

S1["] [ - - ] -)_-] do dv (65)

SPROOF: Apply in succession Equations (42), (43), and (53) to the left-
hand side of Equation (65), and with some rearrangement of terms, theright-hand side is readily obtained.
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2.7.4 Two Theorems Useful in Numerical Integration

a. The fundamental duel has a solution (see footnote 6) provided by

P[A f-ijO'-u, ' (u)P[A] -2• A -du. (66)
U

The indicated contour implied by fcan just as well look like Figure 7

as long as the indenture contains only the singularity at the origin.

R

Figure 7 Lower Integration Contour

b. The investigation of certain properties of the integrand of
Equation (66) is now desired. First, however, it is noted that )A(-•)•B(u)

is the characteristic function of TA - TB where TA and TB are the random
variables time to a hit for A and B, respectively. The difference is a
random variable with range (-•c, -) whose characteristic function is •(u)
with pdf f(t). Equation (66) may now be rewritten as

PEA] du- je tft) t2-cJ 23rJ2.u

L L CO

-hfut)dt f -t u(67)
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The substitution now made is u = x + iy which is an analytic continuation
of the real variable u into the complex plane. This substitution provides

P[A f f(t) dt e e (dy•-idx)

-~ L

S(t) v , sin =t - y cos xt)di. + (x cos =t + v sin xt)dy)

p +y

-e (--= cos xt + v sin xt).& + (u cos =t •- =sin =t)d,1 (68)

f X2 4- yZ
L

c. Consider the two integrals within the brackets in Equation (68);
specifically:

R, (1) By integrating along any line parallel to the x-axis at some y,
M, e.g., Y0 (which may be +, -, or zero, thus including the x-axis), dy = 0,

and the integrand of the real part is even and the integrand of the imagi-
nary part is odd.

(2) By integrating along lines parallel to the y-axis at some fixed x,
e.g., X0, dx = 0, and the integrands are neither even or odd. However, if

two lines are considered, one at +x and one at -x , it is noted that theS~0 -0

integrand of the real part along -xo is the negative of the integrand of

the real part along +xo, i.e., the integrand is odd relative to the x variable,

and the integrand of the imaginary part is exactly the same at +x and -Xc,0 0

i.e., the integrand is even relative to the x variable.

d. The result of the above is that P[A] may be evaluated along the
contour shown in Figure 8. The property described in c(l) above means
that the imaginary part along C1 is equal to the imaginary part along C6

except that the signs are opposite; consequently, the sum is zero while
the real parts are equal. The same applies for the integrals along C3 and C4 .
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"Figure 8 Numerical Integration Contour

e. From the property described in c(2) above, the imaginary part

of C2 is again canceled by the imaginary part of Cs• and the real parts

are equal. Thus, the only thing that must be done is to integrate the
real part of the integrand along C4 , Cs, and C6 and multiply the sum

by 2 to get P[A]. This can significantly reduce the amount of numerical
integration.

f. One should also note that exactly the same argument holds for
Equation (19) or for any integrand that is a product of characteristic
functions with at least one positive argument and at least one negative
argument divided by u. In addition, one may speculate that -y and +x

should be chosen so as not to be too close to the singularity at the
origin or to the nearest singularity in the lower half-plane. This
would avoid steeply varying integrands and should reduce numerical inte-
gration difficulties. Also, one may simply continue C4 to •, thus elim-
inating Cs and C6.

2.8 Generalizations of Some Results by Thompson

Thompson has derived some results for incorporating reliability into the

theory of stochastic duels.' 4  However, he has not simplified them by using
characteristic functions. This has the disadvantages of leaving the solu-
tions with one or more infinite sums of weigqhted convolutions of pdf's to
be integrated. These operations can only be closed for very special pdf's
and thus are of limited utility. By using characteristic functions, these
sums can always be closed to a simple form, and the number of multiple
integrations to be performed is reduced by at least one. Finally, there
exists a characteristic function for every pdf and if it is unknown, can

14
David Thompson, Development of Analytical M4odels of Battalion Task
Force Activities, Systems Research Laboratory, Department of Indus-
trial Engineering, University of MItchigan., Ann Arbor., Mchigan,
Report Number SRL19757 FRO-1 (U), Part F, Chapter 1, Editors: Seth
Bonder and Robert Farrell.
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be approximated from real data for practical applications. For these
reasons, we now simplify some of Thompson's results as follows:

a. In the case where either side's weapons may fail to function
after some period of time and no withdrawals are permitted, Thcmpson
provides the following expression for the probability that side A wins: 1 s

P[A] hI~ d t (69
f[A(t)(frA(ý) d 1 fhB(X( rB(n) dx ct (69)

0 t /1 x /

where hA(t) and hB(t) are the usual pdf's of A's and B's times to a kill,

and rA(t) and rB(t) are A's and B's pdf's of times to weapons failure.

All are independent of each other. We now rewrite Equation (69) in a
more convenient form for our purposes, i.e.,

P fA) (t)( f () d I fhB(x) rB(n) d dx dt

0 0

f A(t) frA (x)[ rB(n) d x dt (70)

C t t

We now apply Equations (54) twice to the first expression on the right-
hand side of Equation (70) and Equation (64) to the second expression to
obtain

2r[A - *A B('[YA[ ( )

3iB0(-:-V)[_B(V) - 1 do OI.A(,,-'W)[ A(1) 1- du (71) j

Swhere 0(-) is the characteristic function of h(t) and •()is that of r(t).

SSince all of the pdf's are for positive random variables, we may now use

15
Ibid p582, Equat-ion
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the properties of positive RVs given earlier to further simplify these
"results to 3

P[A] I r*A( u) hA(u) du d- 1B(-t) hB(w ) do]

P[AB] l Af"A((UUR d (5

L L

+ f (f• hn h p(-u-ai Y8 (f) a)d A(7), e A(w) o (72) his8jri 3 i fi do dLV. (72)

The corresponding expression for a draws P[AB], is provided by Thompsonl "

' de Ai h assrt)[arenhAsis o dth denominator.A~f

P[AB) = fr~)f hAW dx *t- ý()V h ()d]d.(3

00 t 0

Applying Equation (54) to each half of this product, we have

-71Bid, 1] B B(w) dw (74)4U u

which is now further simplified using the properties of positive random i

f_ A -U) tA(u) f 'B -W) 4i BMP[AB] -- du -dw .(75)

L L

Thompson provides an example17 where all the pdf's are negative exponentials.
* When these pdf's are used in Equations (72) and (75), we check out with his

results except for an error in his expression for P[A]. He should have
added a XAin the last parenthesis of the denominator.

IGThid, p582, Equation'3
17 Thbid., p583
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b. In a situation where. a withdrawal, and consequent end of the duel
in a draw, occurs as soon as a weapon fails, Thompson provides 18

f hA(t) hB(x) B(Y) ( -) dz dt (76)

From Equation (65), we immediately have

[ if] J- ,,_i 1 dv (77)

which again may be reduced by the properties of positive RVs to

P[A] 1 1" B(w-v)f du d dv. (78)87r iJ V IJ W VJU-ZW/
L. L

In Equation (78), the u integration is indented around u = w on the real
u-line, and the w integration is indented around w = v on the real w-line.
The results' 9 for a draw, P[AB], are

"((
P[AB] jr A(t) jB(x)d-)Kj h A(Y )d )\ h B(z)d)

+1Bt(r A W dx)(f hA( )dy)(f hB )d) (79)
t} t

1 8 Thid, p584, Equation (4)

19Tbid, p585
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Again, we apply Equation (65) to each term of the right-hand side of
Equation (79); thus

/ f r i.)yu-
B( ) C A('' A'")[B' dWj

P[B V I- _ du) dv'

1 [OB(t) +r [Od- V - p_)UY(UW
8.[7 f LWA-: _W~Y~UL~U-~ du) do])jdt (80)

which again reduces to1 V r OA)_v _ A~
P[ABJ 3 B 1 ((-B(V)(fW + YB(-UWA(W) du d &a dii (81)

8Vr~ f ( v-V [ J .1 /
L L L.

and the indentations are the same as for Equation (78). Again, Thompson
provides an example using all negative exponential density functions. 20

When these assumed functions are inserted in Equations (78) and (81) and
are integrated, the results check with his.

c. In the next duel, we have the more difficult case where a duelist
withdraws when his weapon fails but only after he discovers it, which is
on the next attempted firing. For this case, 2 1 Thompson provides

P[A] MA rA(f;,(ZrB(yd.(" qxff" (=" +J 8 1(xd] dt (82)

0 tIt

We note here that

CO n n qB B f(x)dx=q hB(x)

and shall hence forward use that fact.

2 0Xbid. p586
2 11bid, p588, Equations (6), (7), and (8)
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Rewriting Equation (82), we obtain

q8 f (
0 t-X #•

+ hA(t)(frA()d)(Ff(x)d\ dt (83)

We shall now do this one step at a time. First, from Equation (55), the
last expression in Equation (83) becomes

Ce

Aft) B(x) dt

0 
" 

t

- l J ¢B(-U) OA(u-w)[TA(W) ) ] (4

- d du (84)

Now, let us use Equation (61) on the inner part of tne first expression
in Equation (83).

frB(y)d'tfB(y)dyl hB,()dz

fe_ f -I Ue-(v+u)hB(-) B(y)dy dx du dv. (85)

KWe now use Equation (63) on the integration with respect to x in Equation
(85) to get

+4 +0 - •o

LHS - e•i d dB•-)-l) .I) * (86)
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Now, by writing out the entire first term of Equation (83) and reversing
the order of integration, we get

LHS of the first term of Equation (83) =

3 BB dp) (e e ')hA(t)
S• 0

rA([)dJ dt)duldv. (87)

&C. The inner integral of Equation (87) is from the application of Equations
(42) and (53), therefore

J, e--t+ )h (E)d dt

0 t0

2= fA- --A(w)•] - do (88)

Now, substitute Equation (88) into Equation (87) and then Equations (87)
and (84) into Equation (83), thus

P[A] q B f 1 [B l-l +B(v+-P)[+B(P)-l] "

V d
_ 161T- I - [)-l] B A(U-) f + A( )-()

I'I
(rA(w)-l] [AVuW -~~w])ud

W1 A)-l](f) A(-u-w)[i~)1

33



Equation (89) is now further reduced using the properties of positive
random variables to

P[A) v fL -___ -udo

aap. 1

A(U-)YA~) d (90)

U V t
U L

This expression again checks Thompson's example2 using all negative expo-
nential pdf's. The prior results were based 122fiur ehnimta
was a random function of time. In what follows, the failures only occur
at the instants of weapon firings.

d. The no-withdrawal case 23 is identical to the author's random
ammunition-limited duel, and the characteristic function form of the solu-
tions is given in the referenced paper and will not be repeated here.

e. Similarly, in the same paper mentioned above, the characteristic

function form of the solution to the duel in which a contestant withdraws
the instant a failure occurs is also given and will not be pursued further.

f. The case in which a contestant whose weapcn has failed on the

nth round but who only discovers that fact on the (n+l)st round and then
withdraws is provided by Thompson2 4 as

P[A] =J' A(t) B(x))dx + E. (91)

0 t 0 t-X

Thompson assumes the probability of failure on any given round is fi.ed
at u and, therefore, p + q + ,u = 1. Again, noting that

O n _n* q
q B qfB (x) dx :q3 hB(x)

n-1 PB

2 ibid., p589
2 31bid" p594
2 4Ibid, pp 597, 598
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we rewrite Equation (91) as

PB[Ad dt + !- h(t)f h.() f(y) d) dt. (92)

(f~tffB(Xd)1d PBJA[JB X

Using Equation (54) in the first integral and Equation (61) in the second,
we have

P[A] I du +

qB p / r.-(JB ) I d[dudt -(93)

In the second integral, we now reverse the order of integration and inte-
grate out t to get

+- 0

I AC-U)[1 (u)P[A] =- u

q BA) 
d du • (94)

Now, taking advantage of the properties of positive RVs, Equation (94)
becomes

P[A] T i ) -A -(u)du/u

L

47)4 W (
L U
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The expression for a draw25 is composed of two terms, each of which is
similar to P[A] and the development is almost identical; therefore, we
shall merely write down the results, i.e.,

P[ABJ .u)duu + p(U )duu
w U' L

PA /uqB [fA(w)-l] ( a(up(-U-w) B

i÷pBPA4,J w / •• (5L U

Equations (95) and (96) both check with one of Thompson's exampdos 28 where

again he uses negative exponential pdf's.•

g. The remainder of Thompson's parer deals exclusi\,ely with negative
Sexponential pd•' from the beginning, and all the results are consequentlyI

• ~so specialized , that function that no further simplifications through
•. the use of cha, ,teristic functions are possible.

S, h. In a paper published in the Naval Research Logistics Quarterly..

:• Thomnpson extends the situation in paragraph f above to the case where each
S•contestant has an independent probability distribution on the pos.,ibility

• ~of a failure on the nth round (and thus a withdrawal on the n+lst round). 27•
¢: lie pr'ovides the following as solutions:
•"If •j=P [A's weapon fails on round j+lJ

•"1k=P [B's weapon fails on round k+lJ]
•., (97)+and B• A 0u d (96

'J3 bO.,, -O.

47r2

DTavid E. Thompson, Stochastic Duels hu'olving Rel•.ab~litt, The Naval •
Research Logistics Quaricrly, Vol 19, No. 1, March 1972, pp 147-1Ij8,Equations (6) through (11).
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then

PEA] 0f~P~ fAt[ ll{ (x)dx +
Z AIA A f ft

t

00 co 0,] qk]nff8n (x) [J fB(y) dydxj dt (8

and
t

PEAB) f ffB (x)dx + z k]B IBCX)L ff (y) dy]dx}

0 0 t-x

dtt

+ f{Acxdx + (>aj)qvf~() J )AdYdx}

0 '0 t-x

Now, if we define

hA~)=~P~l (100)

and n-I n*

2 t ( j) (101)
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we then have the corresponding cf's to be

PAA(u) (102)
A(u)= 1 -qA(u)

and reducing the double sum in Equation (101) to a single sum

=j ý *q ( (103)A(u) = 4A(L) [1 E A A

If we now define NA to be the random variable, the round number on which

A's weapon fails, then the probability generating function (z-transform)
, Of NA is

"Na(z) = J+ (104)

A

and thus
11i• ' ~ ~PNA~AA"

A )U(105)A(2) Wu qA #A(u)

Similar expressions can be written for B. Then, using Equations (54), (61),
(104), and (105) and integrating out t first, we get

÷/PNA[qA0A(''u)]d

f AfOAA(u)]- -

+ 8~ f~U+W) (to) -i)((..z, a) 2jdu. (106)•+4%2PB J ý1

This may now be reduced to final form by integrating u first using
Equation (105) and the properties ol our characteristic functions
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2[A ... LeA(u qBu du
-u) - Uu

+BW -1] BBB
+ J W -q~~uw

L J

du dw .(107)

Proceeding in the same fashion, we obtain the P[AB] as shown below.

*P[ABJ P NA(q f(-u)j OB (U) du +
0A. UAl

* L

P rO.~,3 U+W)l1. I'1

L

BY-)] jPN d
ULe

L u 0A


