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FOREWORD

The work described in this report was per formed in the Materials Technology
Laboratory of TRW Inc., under the sponsorship of the Office of Naval Research ,
Contract N00014-74-C-0365. Dr. P. A. Clarkin acted as Program Monitor for the
Navy. The program was administered for TRW by Dr. C. S. Kortovich , Program
Manager. The Principal Investigator was Dr. A. A. Sheinker , with technical assistance
provided by Mr. J. W. Sweeney and Mr. R. R. Ebert. Work conducted during the first
two years of this contract involved a study of the effect of rare earth additions on the
hydrogen embrittlement resistance of cathodically charged and cadmium plated 4340
steel. Work conducted during the third year , covered in this report , consisted of a study
of the effect of rare earth additions on the stress corrosion cracking resistance of 4340
steel in salt water.

This report has been assigned TRW Equipment Number ER 78 14-3 and the data are
recorded in laboratory notebook Number 794.
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ABSTRACT

• The addition of rare earth elements was investigated as a method of improving the
stress corrosion cracking resistance of high strength steels. The addition of cerium at
levels of 0.20 and 0.30 weigh t percent had only a small effect on the stress corrosion
cracking resistance of AISI 4340 steel heat treated to a yield strength of approximately
215 ksi (1480 MPa). The stress corrosion cracking threshold (K T ) in 3.5 percent
sodium chloride solution at room temperature was about the same the two cerium-
bearing steels as it was for 4340 steel without cerium , ranging from 15 to 17 ksi A~(16.5 to 19 MPa v’~~). The higher cerium (0.30%) material had longer failure times and
lower average crack growth rates than the lower cerium (0.20%) material. The failure
times and average crack growth rates for the steel without cerium could not be directly
compared with those for the two cerium-bearing steels because of crack branching,
which occurred only in the material without cerium. However , it was estimated that , in
the absence of branching, the failure times for the non-cerium steel would be shorter
and the average crack growth rates higher than those for the lower cerium steel. The
cerium additions had no effect on the fractographic morphology of stress corrosion
cracking , which was intergranula r at low stress intensity levels, with an increasing
proportion of dimpled rupture as the stress intensity level increased.
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I INTRODUCTION

High strength steels, particularly the low alloy martensitie types, are susceptible
to stress corrosion cracking in a wide variety of both aqueous and nonaqueous
environments (1-4). For a given type of steel, the resistance to stress corrosion
cracking decreases with increasing yield strength (1-4). Thus , for applications in which
the metal is exposed to a hostile environment , the high load-bearing capabilities of
these materials cannot be fully exploited because of the increased possibility of service
failures due to stress corrrosion cracking.

Considerable research in the past decade has led to the conclusion that stress
corrosion cracking in most high strength steels is a form of hydrogen embrittlement (3 ,
5, 6). The hydrogen-bearing environment present in a crack reacts with the metal at
the tip of the crack to form hydrogen , which enters the triaxiall y stressed metal at the
crack tip and results in local embrittlement and crack growth. Therefore , there is a
strong relationship between the stress corrosion cracking resistance of a high strength
steel and its hydrogen embrittlement resistance.

There are two forms of hydrogen embrittlement phenomena: (1) internal h ydrogen
embrittlement , which is associated with the presence of hydrogen in the metal due to
prior processing, and (2) environmental hydrogen embrittlement , which results from the
entry of hydrogen into the metal during exposure to a hydrogen-bearing service
environment , as in stress corrosion cracking. It is generally accepted that the

• mechanism of embrittlement is the same in both forms , but that the processes of
hydrogen transport are different. The essential difference between internal and
environmental hydrogen embritt lement is the source of hydrogen, resulting in different
hydrogen transport processes for the two forms of embrittlement. In the internal form ,
hy drogen is already present in the metal when it is placed into service and diffuses
through the bulk metal to cause embrittlement.  In the environmental form , hydrogen
must enter the metal fro m the service environment , so that metal-environment
reactions at the metal surface play an important role and hydrogen diffusion occurs
over only a short distance below the surface or near a crack tip.

The current methods of inhibiting hydrogen embrittlement in high strength steels
• include changes in microstructure , changes in alloy composition , baki ng, surface

prestressing, plating, cathodic protection , nonmetallic coating , selective changes in
surface composition by heat treatment and modification of the embrittling
environment. All of these methods have serious limitations in practical applications so
that no truly satisfactory method of inhibiti ng hydrogen embritt lement has been found.
However , a new method which has considerable potential is the addition of rare earth
elements to high strength steels. In previous work under this contract (7), it was shown
that the addition of either 0.17 weigh t percent cerium or 0.16 weight percent lanthanum
substantially improved the internal hydrogen embrittlement resistance of AISI 4340
steel at a yield strength level of approximately 205 ksi. This improvement was
manifested in hydrogen-charged specimens by (1) longer crack growth incubation times ,
(2) lower crack growth rates, (3) longer failure times , and (4 ) higher threshold stress
intensities , as compared with non-rare earth treated 4340 steel. The most significant
aspects of this increased resistance to internal hydrogen embritt lement were associated 
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with the lower crack growth ra tes and the h igher threshold stress intensities. The crack
growth rates for the rare earth materials were about an order of magnitude lower than
those for the non-rare earth 4340 steel. The threshold stress intensities (i.e., the stress
intensity levels below which failure did not occur) of the rare earth materials were
approximately fou r times higher than that of the non-rare earth 4340 steel. The

• purpose of the present study was, therefore, to extend this concept to stress corrosion
cracking to determine whether rare earth additions can increase the stress corrosion
cracking resistance of high strength steels. 
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II EXPERIMENTAL PROCEDURE

• The test material was obtained by making three experimental 50-pound (23-kg)
• heats of 4340 steel containing zero , 0.20 , and 0.30 weight percent cerium. The

chemical compositions of the three heats are presented in Table 1, along with the
• specified composition ranges for AISI 4340 steel. All of the standard elements were

within the specified ranges, except the silicon and molybdenum in heat X792 , which
were slightly higher. However , silicon and molybdenum at these levels have a negligible
effec t on stress corrosion cracking in 4340 steel (4 ,8,9). The presence of small amounts
of lanthanum in the two cerium-bearing heats was due to the presence of lanthanum in
the cerium su icide used for making the cerium additions.

The three heats were vacuum-induction melted and aluminum deoxidized and the
cerium was added after deoxidation. The heats were cast in the form of tapered round
ingots measuring 4 inches (0.10 m) in diameter at the bottom , 4-3/4 inches (0.12 m) in
diameter at the top, and 10 inches (0.25 m) tall. The three ingots were forged in four
passes at 2150°F (1450°K), c~çoss—roll8d in two passes at 1950 °F (1340°K), and straight —
rolled in two passes at 1950 F (1340 K) to obtain three plates , 3/4 inch (0 .0 19m) thick
by 8-1/2 inches ~0.22 md wide by 20 inches (0.51 m) long. The plates were then
annealed at 1150 F (894 K) for 8 hours. This ingot breakdown procedure demonstrated
the workability of 4340 steel made with the levels of rare earth additions studied in this
program.

Prior to finish machining , the test specimens cut from the three plates were heat
treated as follows:

1. Normalized at 1700°F (1200°K) for 15 minutes in salt bath and air cooled.
2. Austenit ized at 1550°F D 120 °K) for 30 minutes in salt bath and oil quenched.
3. Tempered at 450 F (505 K) for 1 hour plus 1 hour in air , and air cooled.

The 450°F (505°K) tempering temperature was chosen to obtain a high strength level
and thus increased susceptibility to stress corrosion cracking in this steel (4 ,10).

The conventional mechanical properties of the three heats were evaluated by
performing duplicate tensile and Charpy impact tests at room temperature on both
longitudinal and transverse specimens. The dimensions of the test specimens are shown
in Figure 1. The hardness of the heat treated specimens was Rockwell C51.

Stress corrosion cracking tests were conducted at room temperature on the
precracked compact tension specimens shown in Figure 2. These specimens were
machined fro m the plates in the T-L orientation , i.e., with the direction normal to the
crack plane (loading direction) parallel to the width direction of the plate and the
direction of expected crack propagation coincident with the longitudinal direction of
the plate. The saw-cut notch was extended 0.050 inch (0.0013 m) by electrica l
discharge machining (EDM) in order to promote fatigue crack initiation. The specimens
were precracked by cyclic tension-tension loading on a Sonntag SF-4 fatigue testing
machine at a frequency of 60 hz and a load ratio (R = ratio of minimum load to
maximum load) of 0.200. The fatigue cracks were grown to a length of 0.15 inch (0.0038
m) beyond the EDM slot to obtain a total precrack length of 0.58 inch (0.015 m) 

-- .~~~~—••
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Table I

Compositions of 4340 Steel Heats, Weight Percent

• AIS I 4340 Heat Heat Heat
Elemen t Specification X794 X793 X792

C 0.38-0.43 0.41 0.1+1 0.140

Mn 0.60-0.80 0.73 0.71 0.72

P 0.040 Max. 0.008 0.008 0.008

S 0.040 Max. 0.005 0.003 0.003

Si 0.20-0.35 0.28 0.30 0.45

N i 1.65-2.00 1.77 1.74 1.72

Cr 0.70-0.90 0.80 0.71 0.71

Mo 0.20-0.30 0.28 0.30 0.32

Al - 0.043 0.064 0.070

Ce - 0 0.20 0.30

La — 0 0.019 0.023
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measured from the load line. The fatigue cracks were produced in 25,000 to 50,000
cycles and the maximum £tr -ess intensity factor ( K )  at the conclusion of precracking
was 23 ksi /i~. (25 MPa vi~). All of the fatigue craks grew straight and perpendicularto the loading direction.

The stress corrosion cracking tests were conducted under sustained load on Satec
• self-leveling, lever-loaded creep rupture testing machines . The test environment was

an aqueous solution of 3.5 percent sodium chloride , which is commonly employed in
stress corrosion studies. The compact tension specimens were completely immersed in
the test environment by surrounding the specimen with a plexiglass container fastened
to the lower pull rod and filling the container with the corrodent. The specimens were
immersed in the corrodent prior to application of the load in order to promote
immediate wetting of the precrack tip. Tests were conducted at various initial stress• intensity (K ~

) levels to determine failure time as a function of K and the stress
corrosion cr~cking threshold (K the stress intensity level below wl4ich failure is not
observed) for each heat of stJ~~. Stress intensity factors were calculated from the
equation (11)

K 1 = B /W [29.6 ( a )l/2 
— 185.5 ( a )3/2 

+ 655.7 ( a )5/2

—1 017 ( a )7/2 
+ 638.9 ( a )9/2 1

where P = applied load , pounds (newtons)

B = specimen thickness , inches (meters)

W = specimen width measured from load line , inches (meters)

a crack length measured fro m load line , inches (meters) .

The tests were terminated after 10 ,000 minutes if failure did not occur sooner. A total
of 17 stress corrosion cracking tests were performed for each heat of steel. The
fracture surfaces of selected failed specimens were examined in the scanning electron
microscope to determine the morphology of crack propagation.

7 
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Ill R ESU LTS AND DISCUSSION

A. Mechanical Prqperty Characterization

The mechanical properties of th~ three heats of 4340 steel are presented in Table
2 and plotted as a function of cerium content in Figures 3, 4, and 5. Following the same• trends as in the previous study (7), the strength , ductility and impact resistance all
decreased with increasing cerium content. These reductions were attributed to the
presence of continuous networks of rare earth oxide inclusions at the prior austenite
grain boundaries , as shown in Figure 6. There were no signifi cant differences between
the longitudinal and transverse mechanical properties of any of the three steels ,
p robably because the plates had been cross-rolled.

The decreases in strength with increasing cerium content were small. The
greatest reduction in average y ield strength was only 2.1 percent for the 0.20% Ce steel
in the transverse direc t ion , while the greatest reduction in average intimate tensile
strength was only 3.8 percent for the 0.30% Ce steel in the transverse direction.
However , the decreases in ductility and impact resistance were substantial , particular ly
at the 0.30% Ce level. For example , the average longitudinal elongation decreased 20
percent at the 0.20% Ce level and 65 percent at the 0.30% Ce level , and the a ierage
longitudinal reduction of area decreased 30 percent at the 0.20% Ce level and 82
pe rcent at the 0.30% Ce level. The average Charpy impact energy in the longitudinal
dire ction decreased 45 percent at the 0.20% Ce level and 60 percent at the 0.30% Ce
level.

The 0.20% Ce steel met the current ductility requirements for aircraft quality
4340 steel in this temper condition (6% min imum transverse elongation , and 25%
minimum and 30% average transverse reduction of area) ( 12) , wherea s the 0.30% Ce
steel did not. However , it is recognized that these cerium levels are higher than the
levels of rare earth additions currently used in steelmaking technology and were
employed to study the effect of high rare earth levels on stress corrosion cracking sus-
ceptibility.

B. St re -‘sion Cracking Results

The stress corrosion test results for the three heats of 4340 steel are presented in
Tables 3, 4 , and 5. Failure times are plotted as a function of initial stress intensity (K it )• in Figures 7 , 8, and 9 , and the three time-to-failure versus Ki~ curv es are shown for
comparison in Figure 10. Average crack growth rates (da/dt) are plotted as a function
of in Figures 11, 12, and 13, and the three da /dt versus K 1. cu rves are shown for
com p~rison in Figure 14. The average crack growth rate f~r each specimen was
determined by measuring the length of the stress corrosion crack (from the end of the
fa tigue precrack to the onset of rapid fracture ) observed on the fracture surface and
dividing this length by the failure time.
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Tabl e 3

Stress Corrosion Test Results for 4340 Steel Heat X794 (0~ Ce)

Ini tial Stress Failure Average Crack
Specimen Intens ity (Kj j,~ Tim e, Growth Rate (da/d~)
Number ksi u n . MPa v’m Minutes in./minute M/S

2 14.1 15.5 (no failure) 0 0

1 0 15.7 17.2 1320 6.4 x 10~~ 2.7 x

9 16.1 17.7 840 1.0 x 10~~ 4.4 x l 0~~

7 16.6 18.3 7624 1.0 x 10~~ 4.3 x 1 0 8

3 17 .1 18.8 (no fa ilure) 0 0

6 17 .1 18.8 918 9.5 x l0~~ 4.0 x

8 17.2 18.9 990 8.1 x l 0~~ 3.4 x l 0~~

14 17.4 19.2 4290 1.8 x 10~~ 7.7 x

5 17.9 19.7 1446 5.5 x l 0~~ 2.3 x

1 18.8 20.6 588 1.14 x l0~~ 6.0 x l0~~

11 27.8 30.5 450 1.6 x l0~~ 6.8 x l 0~~

12 36.9 40.5 438 1.6 x l0~~ 6.8 x l 0~~

13 46.7 51.3 4414 1.4 x l 0~~ 5.9 x IO~~

14 57.2 62.9 312 1.5 x l 0~~ 6.14 x 1 0~~

15 64.8 71.2 318 1.5 x 1 0~~ 6.3 x 1 0~~

• 16 75.2 82.6 222 1.7 x l0~~ 7.2 x l 0~~

17 85.9 94.14 0 - -

14
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Tabl e 4

Stress Corrosion Test Results for 4340 Steel Heat X793 (0.20% Ce)

• 
- Init ia l  Stress Failure Average Crack

Spec i men Intensity (K1~ ) Time , Growth Rate (da/dt)
Number ksi un . MPa /m Minutes in ./minute M/S

2 14.1 15.5 (No failure) 0 0

10 14.8 16.2 (No fa ilure) 0 0

9 14.9 16.4 912 8.4 x 3.6 ~ 1o~~
8 15.8 17.3 1878 4.0 x J Q 4 1. 7 x l0~~
3 16.9 18.5 (No failure) 0 0

7 17.0 18.7 1410 5.3 x l0~~ 2.3 x
5 17.4 19.2 852 9.4 x l0~~ 4.0 x 10~~
6 17.7 19.4 612 1.2 x l 0~~ 5.2 x I 0~~
4 18.1 19.9 5304 1.4 x l 0~~ 6.0 x 10 8

1 18.8 20.7 468 1.5 x l 0~~ 6.5 x l0~~
II 28.3 31.0 204 2.8 x j Q 3 1.2 x 10 6

12 38.0 41.8 156 2.6 ~ Io~~ 1.1 x 1o 6

13 4 1.8 46.0 108 3. 7 x l0~~ 1.6 x l 0 6

14 46. 4 51.0 90 4 .4 x l0~~ 1.9 x io 6

15 52.1 57.2 66 5.3 x l 0~~ 2.2 x 1 0 6

16 57.1 62.8 54 - -

17 60.8 66.8 30 - -

_ _ _ _ _ _ _ _ _ _ _ _
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Table 5

Stre ss Corrosion Test Results for 4340 Stee l Heat X792 (0.30% Ce)

In i t i al Stress Fai lure Average Crack
Specime n Intensity (K i t ) Time , G rowth Rate (da/dt)

Nu mber ksi  v’in. MPa /m Minutes in ./minute M/S

2 14.1 15.5 (No failure) 0 0

• 8 14.9 16.4 (No fa ilure) 0 0

7 15.0 16.4 2598 2.9 x l 0~~ 1.2 x l0~~

6 15 .4 16.9 39 18 1.5 x 10~~ 6.2 x 10 8

4 15.9 17 .5 4554 1.6 x 1O~~’ 7.0 x io 8

3 17.1 18.8 3360 2.2 x l0~~ 9.4 x 10 8

5 18. 1 19.9 2070 3.4 x 10 ’
~ 1.4 x l0~~

1 9 .2 2 1 .1  1266 5 .1 x 2.2 x 10~~
9 27.8 30.5 570 1 . 1  x 10~~ 4.8 ~ lo~~

10 38.3 42.1 1414 - -

11 46.5 51 .1 288 1.9 x l0~~ 8.1 x l0~~

12 55.4 60.9 276 1.4 x l0~~ 6J x l 0~~

13 65.7 72.1 138 2.2 x 9.2 x

14 69 .6 76.5 162 1.2 x 10~~ 5.2 x IO~~

1 ,5 75 .1 82.5 42 3.6 x l0~~ 1.5 x 1 0 6

16 80.7 88.7 66 3.8 x 10~~ 1.6 x 10 6

17 86.1 94.6 6 1.7 x io 2 
7.1 x 1o 6

16
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Figure 1 1 .  S t ress corros i on crack growth rate as a function of
init i a l  stress intensity for 431+0 steel heat X794
containing no cerium.
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Fi gure 12. Stress corrosion crack growth rate as a function of
i n i t i a l  stress intensit y for 4340 stee l hea t X793
c o n t a i n i n g  0.20% c e r i u m .
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The effect of the cerium additions on stress corrosion cracking was much less• pronounced than the effect of rare earth additions on internal hydrogen embrit t lement
• - observed in the previous work (7) . The stress corrosion cracking threshold (K 1 ) was

about the same for all three materials , ranging fom 15 to 17 ksi Ai~~ (16.5 to 5l~ MPa
I~~~~ ). The higher cerium (0.30%) material had longer failure times (Figure 10) and lower
average crack growth rates (Figure 14) than the lower cerium (0.20% ) material. A valid
comparison between the failure times and average crack growth rates for the steel
without cerium and those for the two cerium-bearing steels could not be made because
of crack branching , which occurred only in the material without cerium. A typ ical
example of stress corrosion crack branching in a specimen from heat X794 is shown in
Figure 15. Branching reduces the actual stress intensity at the crack tip and hence
retards the rate of crack growth and increases the time to failure ( 13). For example . in
a study of the effects of electrochemical variables on stress corrosion cracking in 4340
steel (14), for precracked cantilever bend specimens tested at the same K 11 level and
under identical environmental conditions , the failure times were 7.5 times longer when
the crack branched than when branching did not occur. Crack branching was suppressed
in the latter specimens by the use of deep side grooves (15). On this basis , it is
estimated that , in the absence of branching, the failure times for the non-cerium steel
would be shorter and the average crack growth rates higher than those for the lower
cerium steel. It should be noted that crack branching cannot be relied upon to retard
stress corrosion crack growth in service app licati ons because branching may be
suppressed by the structural configuration.

In the previous study of the effect  of rare earth additions on the internal hydrogen
embritt lement resistance of 4340 steel ( 7 ), it was found that  the addition of either 0.17
weight percent cerium or 0.16 weight percent lanthanum resulted in an increase in the
hydrogen embrittlement cracking threshold stress intensity by a factor of about fou r
and a reduction of the crack growth rate by about an order of magnitude. These results
were attributed to the ability of the rare earth elements to interact wi th  hydrogen , thus
reducing the supply of hydrogen available for embri t t lement  and impeding the diffusion
of hydrogen to the crack tip where it would accumulate and cause crack growth by local
embrittlement. At a given stress intensity level , a critical hydrogen concentration is
required at the crack tip to init iate and sustain crack growth in high strength steels ( 16-
18). As the crack tip hydrogen concentration is reduced , the stress intensi ty required to
initiate crack growth (i.e., the hydrogen embri t t lement  cracking threshold ) increases.
Thus ,the threshold stress intensities of the rare earth treated 4340 steels were much
higher than that of the standard 4340 steel because of the greatly reduced hydrogen
concentration at the crack tip. Once crack growth has initiated , the rate of crack
growth at any given stress intensity level above the threshold depends on the rate at
which hydrogen is transported to the tip of the crack. Thus , the crack growth rates in
the rare earth treated 4340 steels were much lower than those in the standard 4340
steel because of the retardation of the diffusion of hydrogen to the crack tip.

The stress corrosion cracking results differed from the interna l  hydrogen
embri t t l ement  cracking behavior because the source of hydrogen was not the same,
resulting in differences in the amount of hydrogen available for embri t t lement  and in
the hydrogen transport processes. In the interna l hy drogen embri t t lement  stud y. the
specimens were electrolytically charged with hy drogen and plated with  cadmium to
contain the hydrogen in the metal. Thus , hydrogen was already present in the metal
p rior to sustained loa d testing, but in the rare en r t h  treated steel specimens. the supply

- _ • _  _ _ _ • _ _ _~: - - ~~~~~~~~~~~~ - - -•_-
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Fi gure 15. Typ ica l examp le of stress corrosion crack branc hing in a
specimen (No. 14) from Hea t X794 (O~ Ce) .
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of hydrogen available for embrittlement was reduced by the interaction of hydrogen
with the rare earth elements. However , for the stress corrosion specimens , hy drogen
entered the metal at the crack tip from the corrodent within the crack , so that the
supply of hydrogen available for embrittlement was unlimited in both the rare earth
treated and standard steel specimens. Because of this , there were no differences in the
stress corrosion cracking thresholds of the three steels. In the intern al hy drogen
embrittlemen t stud y, the hydrogen transport process in the hydrogen-charged specimens
consisted of diffusion through the bulk metal to the tip of the crack , but in the rare
earth treated steel specimens , hydrogen diffusion was retarded by the presence of the

• rare earths. In environmental hydrogen embrit t lement , the path of the diffusion of
• hydrogen into the crack tip is very short and hydrogen transport is strongly influenced

by metal-environment reactions. Thus , the kinetics of stress corrosion crack growth in
hi gh strength steels are controlled by the surface reactions at the tip of the crack ( 19) .
Because of this , the increase in failure times and the decrease in crack growth rates
resulting fro m the rare earth additions in the stress corrosion cracking study were much
smaller than the corresponding changes in the internal hydrogen embrit t lement study.

C. Fractographic Analysis

Fractographic examination was performed on six of the failed stress corrosion test
specimens , two from each of the three steels , one of these having been tested at a low
initial  stress intensity level (15.4 to 17.0 ksi Air) and one having been tested at a high
in it ia l  stress intensity level (52.1 to 57 .2 ksi ~‘ii~iT). These were specimens 10 and 14 from
heat X794 (0% Ce), specimens 7 and 15 fro m heat X793 (0 .20% Ce), and specimens 6 and
12 fro m heat X792 (0.30% Ce).

The fracture surfaces of the three specimens tested at low K 1- levels are shown in
Figure 16. The stress corrosion cracking area has a granular app~arance in all three
specimens. The rapid fracture area contains longitudinal ridges only in the two
specimens containing cerium. These ridges resulted from separation along the rare
earth oxide inclusions (Figure 17) which were elongated by the forging and hot rolli ng
processes. In the specimen with no cerium , the stress corrosion crack appears to have
begun to branch just prior to the onset of rapid fracture.

The fracture surfaces of the three specimens tested at high K i~ levels are shown in
-
~~ Figure 18. In the two specimens containing cerium , both the stress corrosion cracking

and rapid fracture areas contain longitudinal ridges. The presence of these ridges in the
stress corrosion cracking area is probably due to the high stress intensity levels during
stress corrosion cracking in these specimens , which resulted in separation along the rare
earth oxide inclusions (Figure 6) such as occurred in the rapid fracture area. In the
specimen with no cerium , the stress corrosion crack branched directly from the end of
the fatigue precrack. Two other views of this specimen are shown in Figure 15.

Scanning electron microscope photographs of the fracture surfaces of the six
specimens were taken at various distances from the end of the fatigue precrack along
the centerline of he fracture surface , i.e. at the mid-thickness of the specimen.
Fractographs of the three specimens tested at low initial stress intensity levels are
shown in Figures 19, 20 , and 21. The morphology of stress corrosion crack propagation
was the same in all three specimens. At shorter crack lengths and corresponding low K
levels , the morphology was almost entirely intergranular (Figures 19 a-d , 20 a-d, and 21
a-c). With increasing crack length and K level , the proportion of dimpled rupture
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Figure 17. Separation along rare earth oxide inclusions In Spec i men 8 from
431+0 steel Hea t X792 (0.30% Ce), resulting in long i tud i na l ridges
on f rac ture  sur face (left of upper photograph). Plane of plate
is horizontal.
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(a) Fat igue - SCC area at end (b) SCC area
of precrack. 0.17 in. (4.2 mm) from precrack
K = 1 6 ks i  v’1T~ (17 MPa v~T K = 20 ksi vT~T (22 MPa /

~Y

“~ 
. .

(c) SCC area (d) SCC area
0.33 in. (8. 1+ mm) from precrack 0.49 in. (12.5 mm) from precrack
K 26 ksi ~‘T~E (29 MPa ~~ K 38 ksi VT~~ (42 MPa V~3

F igure  19. Fractographs of Spec imen 10 f r o m Hea t X794 (0% Ce) . Arrows
indicate direction of crack propagation. Magnification , J000X .
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(a ) r a ti gue - SCC area at end of (b) scC area
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(c) SCC area (d) SCC area
0.28 in. (7.1 mm) from pr~crack 0.42 in. (10.7 mm) from precrack
K = 27 ksi v’in . (29 MPa v~T K = 35 ks i vT~T (39 MPa

Fi gure 20. Fractographs of Spec i men 7 from Hea t X793 (0.20— Ce).
Arrows indicate d irection of crack propagation.
Magnification , l 000X
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(g) SCC area (h) Rapid fracture area
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Fi gure 20. (continued) , 

- --



1 
~~~~~~~~~~~ I ‘~~~~~~

I

-. ~~

~~~~~~~~

‘ 

~~~~~~~~~~~~~~~~~~ 

i

:. . 

- . 
;

_ -
~~ 

~~ . .-
.- “ h, ‘~

-j

(a) Fa ti gue - SCC area at end (b) SCC area
of precrack 0.17 in. (4.3 mm) from precrack
K = 15 ksi vT~VT (17 MPa p’~~ K = 20 ks - i /~T (22 MPa - -

4 !~~>

4

~~~~~~~~~~~~

•

Tj

t 

~~~~~~
‘

, j ~~~~~~~~~~~~~~~

• ~~~~~~~~~~~~~~~~~~~~~~~~ _
~~~~~ ~~ ; 

~~~:. .

(c) SCC area (d) SCC area
0.33 in. (8.5 mm) from precrack 0.50 in. (12.8 mm) from precrack
K = 26 ks- i VT~~ (29 MPa P’~Y K = 37 ks - i ~~~ (1+ )  MP a ~~~T

F i g u r e  21. Fractographs of Spec i men 6 from Hea t X 792 (0. 30- Ce ) .
Arrows ind i ca te direction of crack propagation.
Magnifica tion , I 000X
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gradually increased (Figures 19 c-g, 20 c-g, and 21 c—g), up to the onset of rapid
fracture. In the rapid fracture area , the crack propagation morphology was entirely
dimpled rupture in all three specimens (Figures 19h , 20h , and 2 1h) . The stress corrosion
crack propagation morphology of the three specimens tested at high ini t ial  stress• intensity levels was similar to that  of the three specimens tested at low K - levels .
except that the proportion of dimpled rupture was higher at any given crack length
which , in these specimens , corresponded to higher K levels.

Thus , the fractographic analy sis showed that a predominantly intergranu l ar
morphology was associated with  low stress intensity levels , wi th  an increasing
proportion of dimpled rupture as the stress intensity level increased. This fractograp hic
morphology is ty pical of stress corrosion cracking in high strength , lo w alloy,
martensitic steels (20) .
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IV SUMMARY AND CONCLUSIONS

The addition of the rare earth element cerium to AISI 4340 steel was investigated
as a means of improving its stress corrosion cracking resistance. Previous work had
shown that rare earth additions at levels of approximately 0.2 weigh t percent
substantially improved the internal hy drogen embrit t lement resistance of this steel.
Because the stress corrosion cracking resistance of high strength steels such as 4340 is
believed to be strongly related to their hydrogen embrit t lement resistance , this study
was undertaken to extend the concept of rare earth additions to stress corrosion
behavior. The experimental approach involved the preparation of three 50-pound (23-
kg) heats of 4340 steel containing zero , 0.20 and 0.30 weight percent cerium which were
vacuum-induction melted and hot worked into plate form. The test material was heat
treated to a y ield strength level of approximately 215 ksi ( 1480 MPa) . The resistance to
stress corrosion cracking was characterized by conducting sustained load tests on
fati gue-precracked compact tension specimens in 3.5 percent sodium chloride solution
at room temperature. -

The cerium additions had a much smaller effect on the stress corrosion cracking
resistance than cerium and lanthanum additions had on the internal hydrogen
embrittlement resistance in the previous stud y. The st ress corrosion crackingj hreshold
(K 1 ) was abou t the same for all three steels , ranging from 15 to 17 ksi /Th~ ( 16.5 to
19 M~ a/~i). The higher cerium (0.30%) material had longer failure times and lower
average crack growth rates than the lower cerium (0 .20%) material. The failure t imes
and average crack growth rates for the steel without cerium could not be directly
compared with those for the two cerium-bearing steels because of crack branching.
which occurred only in the material without  cerium. However , it was estimated that ,  in
the absence of branching, the failure times for the non-cerium steel would be shorter
and the average crack growth rates higher than those for the lower cerium steel.

The difference between the effects of the rare earth additions on stress corrosion
cracking and internal hydrogen embrit t lement was attributed to the difference in the
source of hydrogen in the two cracking phenomena , which affects the amount of
hydrogen available for embr it t lement  and the processes of hydrogen transport to the t ip
of the crack. In internal hydrogen embrit t lement , hydrogen is already present in the
metal prior to sustained loading, so that the supply of available hydrogen is l imited and
hydrogen transport to the crack tip occurs by diffusion through the bulk metal . which
was affected by the presence of the rare earths. However , in stress corrosion cracking.
hydrogen enters the metal at the crack tip from the corrodent within  the crack during
sustained loading, so that the supply of available h ydrogen is unlimited and hydrogen
transport into the crack tip is strongly influenced by metal-environment reactions at
the crack ti p surface , which were only mildly affected by the presence of the rai-c
ear ths. The fractographic morphology of stress corrosion crack propagation f o r  all
three steels was intergranu lar at low stress intensity levels, with an increasing
proportion of dimpled rupture as the stress intensity level increased.
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