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SUMMARY

Magnet bearing support systems are becoming of increasing interest in ’
satellite and other engineering projects. In order to design such systems a
knowledge of the bearing stiffness is required. This Report analyses the dynamics
of a repulsive type magnet bearing and proposes a simple pendulum experiment to
determine the radial stiffness by measuring the vibration frequency. The
analysis, based on the potential energy of the system, shows the relationship
between radial stiffness and the pendulum arm length and also predicts a rota-
tional stability condition, namely that the bearing length to diameter ratio must
be greater than /3 for stability. —
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1 INTRODUCT ION

In recent years there has been increasing interest in the use of magnetic
bearings for rotating mechanisms, such as momentum wheels in satellites, in order
to obtain a reduction in friction and wear of conventional bearings and hence a
greater reliability and lifetime. In order to design such bearings it is neces-—
sary to determine the stiffness of the system. One way of doing this is simply
to directly measure the forces involved with a static measuring system using
force transducers and position measuring equipment. Such a procedure introduces
measuring uncertainties due to equipment biases and tends not to give very
accurate results. The method is even less accurate when attempting to estimate

the cross-axis stability due to the angular stiffness.

An alternative method is proposed here, with the appropriate theoretical
analysis, based on a pendulum type experiment. Not only does this method provide
the stiffness of a bearing but it can also be used to confirm the 'cockling ratio'
which is predicted by the analysis: namely, that a bearing is angularly stable
if its length is greater than V3 times its diameter. This has been confirmed by

the experimental work] of Lodge.

The only theoretical analysis2 that is known to the author is that of
Backers'. This work predicted the positional stiffness of a magnet but not the
angular stiffness and was limited to a two-dimensional analysis. This latter
restriction is removed in the present paper where a full three-dimensional

analysis is made.

2 DESCRIPTION OF THE EXPERIMENT

The type of repulsion magnetic bearing considered here is illustrated in
Fig 1. Such a bearing consists of an outer shell of permanent magnet rings of
equal thickness, magnetised axially with the rings arranged so that like poles
are adjacent, Ze alternate rings have opposite directions of magnetisation.
Inside this is a coaxial inner shell of magnetic rings of the same thickness and
stacked on a shaft in exact correspondence with the outer shell. Such an arrange-
ment is radially stable but axially unstable and the angular stability depends,

as mentioned above, on the dimensions of the bearing.

If the shaft of the bearing is now suspended from a point S, Fig 2, on the
bearing axis whilst the outer shell is fixed vertically the inner shell is free
to oscillate and the frequency of oscillation will be a measure of the forces
and couples acting on the bearing. We will now determine what this relationship

is.




3 THE FIELD OF THE OUTER SHELL

Following Backer32 we will assume that the intensity of magnetisation M

of the magnets follows a sinusoidal spatial distribution axially, 7e
M = .#gin 21Z/) ¢D)

where )\ is the periodicity of the system, so that each magnet is of thickness
t =2/2, and .# is the maximum magnetisation occurring at the centre of a
magnet. The Z axis is taken along the bearing axis with origin at the inter-
face between two adjacent magnets. It will also be assumed that the magnets are
homogeneous so that the field is radially symmetric and end effects will be

ignored.
The magnetic potential Q may now be calculated from the formula

Q = fy_.grad:_—dv

where the integration is over the outer shell or, integrating by parts,

T _Idlvb_ldv+]k_4_.d_s_
r r

and the second integral is zero since the surface element dS is normal to the
magnetisation vector. Consequently, the magnetic potential at a point Zo along
the bearing axis is

dz pdp (2)

2 2
pi /D + (z 3 zo)

o0
f Mo cos alZ
~~00

where CH and o denote the inner and outer radii respectively of the outer
shell and a = 2n/) = m/t . The integral in equation (2) may be evaluated
explicitly to give

n(zo) = = 4m.dcos uzo[bikl(api) - poKl(apoﬂ (3)
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where Kh(x) denotes the modified Bessel function of the second kind defined by

cosh nt dt . (4)

o0
EG) = ] X cosh t
n
0

Thus the magnetic potentisl along the bearing axis varies as
Q(Z) = F cos aZ (5)

where F is a negative constant defined by equation (3) and the suffix 0 has
now been omitted. The explicit form for F will not be needed in this Report
since it is not necessary to evaluate the absolute forces and couples but only

their relative magnitudes.

Now the magnetic potential must satisfy Laplace's equation and consequently
its spatial distribution within the region occupied by the inner shell is

(R,2) = F cos a2 Io(aR) (6)

where R denotes the radial position from the bearing axis and In(x) denotes

the Bessel function with purely imaginary argument, defined by

ﬂ
In(x) - 21—"7 i LA nd do . €D
0

Thus the magnetic field H = - grad 2 is
H = =~ qoF sin a2 Io(aR)é_- aF cos aZ I,(aR)é_ @)
where é. and é. denote unit vectors in the axial and radial directions

respectively. Fig 3 shows the distribution of the magnetic field and potential.

4 FORCES AND COUPLES ACTING ON A SINGLE INNER RING

It is shown in the Appendix that for small axial and radial displacements
of the centre of an inner ring, a and d respectively, and a small angular




rotation 6 about the equilibrium position the potential energy of a single ring

is approximately

2 2
Vo= W, [fos aa Io(dd) x %’ (azfg - %f X %)]

where T, is the outer radius of an inner ring. Consequently the axial and

radial forces F, and Fr acting on the centre of an inner ring are

W 3
Fa - == + awo sin aa Io(ad)

W
; = e aWb cos asa Il(ad)

which approximate for small displacements to

S

-iéd 9)

where SA - GZWb is the axial stiffness. It is to be noted that this shows that

the axial stiffness is twice the radial stiffness SR independently of any small

rotation present.

Similarly, for small displacements, the couple acting about the centre of

a ring is
2 2 2 2
W 2 . - t 2 _t t
. Bedbn | iy *i“"o('o Tz“p) 4 +"Sa(fo ﬁ*;z')- o

It is to be noted that this couple has a destabilising influence.

5 MOTION OF THE PENDULUM

Let us now consider the total couple acting on the inner shell assembly, 122

about the point of suspension. If there are a total of n inner magnets so that

. <1._______.........................-----Iniiill‘




122

the length of the inner assembly is £ =nt and L is the distance from the
point of suspension to the centre of the inner assembly then the total moment
about the point of suspension due to the radial forces acting on each magnet is,

using equation (10)

n
2
M = —SRGN'Z-I[L+(N+§-n)t]

The moment due to the axial force is second order in 6 since the axial displace-
ment depends upon | - cos 8 and may thus be neglected to first order in 6 .
Adding now the destabilising couple of each magnet gives a total moment about

the point of suspension

Ms - Mr+nC

T

2 |
2 1 2 2 3¢ |
- = SRGn[L + 17 (i‘, -3 - —-2-)] (11)

where D = 2r° is the diameter of an inner ring.

From this equation it can be seen that if there is a long suspension arm,
then the moment about the point of suspension is equal to the arm length L
multiplied by the total radial stiffness Sgr = nSR of the bearing, Ze the
destabling couples may be ignored. On the other hand, when the inner bearing is
supported about its centre (or freely suspended with the aid of a stabilising axial
2 . w? - (eied.
Since the term 3:2/w2 is negligible, the bearing will thus be rotationally stable

servo), the moment about its centre depends upon the quantity 2

if its length is greater than V3 times its diameter and unstable otherwise.

If, now, m is the mass of the inmer bearing and k is its radius of
gyration about an axis through its centre normal to the bearing axis, then the

total moment of inertia about the point of suspension is

2 2
I = m(L +k)+1am (12)




where Iarm is the moment of inertia of the supporting pendulum shaft. Also,

if =-6M_ is the moment about the point of suspension duve to gravitational forces,
the total moment is Ms - eMg and consequently the oscillation frequency of the
pendulum,  , in rad/s is given by

2
g - ey <2 2 3t )]
S L * —— 9‘ _3D - — +M
g Mani k RT[ 12 2 - (13)

2 2
m(L +1<)+Iam

The gravitational term will be positive if the point of suspension is above
the pendulum, otherwise negative, and is proportional to the arm lenmgth L . For
practical bearings this term will be insignificant compared with that contributed
from the radial stiffness. For long arm lengths, then, the oscillation frequency
will approach the asymptotic value

- A (14)

independently of the arm length. Consequently the period of oscillation provides
a measure of the radial stiffness of the bearing and, by varying the arm length,
the rotational stability condition can be investigated. Fig 5 shows the predicted

variation of wz with L2 &

6 CONCLUSION

The analysis has shown the relationship between the radial stiffness, the
geometry of the bearing suspension system and the frequency of oscillatien,
equation (13). By measuring the period of oscillation for long arm lengths a
direct measure of the radial stiffness is available. Furthermore by varying the
arm length the rotational stability condition can be investigated. A limited
number of experiments have been reported in Ref 1| and support the predictions of

this Report.
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Appendix
POTENTIAL ENERGY OF A SINGLE RING

Consider the situation where the inner shell is rotated by a small angle
6 about the point of suspension S, Fig 4. Let this be in the plane XZ with
the Y axis forming a right hand set, and let a and d denote corresponding
axial and radial displacements of the Nth inner magnet. We will now introduce
another cartesian frame of reference (xyz) with its origin at the centre of the
magnet, 2z axis along the axis of the magnet and the xz plane coinciding with
the XZ plane. Thus if (x,y,z) are the coordinates of a point in the magnet,

then the corresponding (X,Y¥,2) coordinates are

X = Rcosd® = d+ xcos 6 + z sin 8
Y = Rsind = y

Z = (N-4)+a-xsin6 + z cos § (a-1)

where (R,9,Z) are the corresponding cylindrical coordinates.

Now the potential emergy W of the ring is given by the equation

where H is the magnetic field of the outer shell, M, is the magnetisation of

the inner ring and the integration is over the volume of the inner ring. Now

M, (2) = sin[a(N- Dt +2z]2

N+1

()" Mcos az z (a-3)

where 2_ is a unit vector along the 2z axis. Consequently, by integrating
equation (A-2) by parts and noting that Q = 0 at the 2z boundaries, the poten-

tial energy is

BMi
W = -uofﬂz-dv

: ‘*‘f§=tf“””=Hiiii-----JLi'




10 Appendix

and thus, using equations (A-1), (A-3) and (6),

W = - by [dval?lsin az sin o (a - x sin 6 + z cos e)Io(aR) .

Introducing polar coordinates (r,y) , so that x = r cos vV, y=rsiny,
and the integral representation (7) for I, gives

W = - uoal-‘.,l rdrdydz sin az sin a (a - r cos ¥ sin 6 + z cos 8)

2n
ik / eaR cos (t - @) e (A-4)
27
0

For convenience we will now use the thickness of a magnet as the unit of length

so that we may put a = |. Using equation (A-1) equation (A-4) may then be put
in the form

To /2
W = = qu,l[ rdv /dz sin z Im J (A-5)
r. -n/2

1

where Im J denotes the imaginary part of the integral

2n 27
a % ™ /d'b e1.(a<l»z cos 6 -r cos Y sin 6)

0

5 e(d+r cos Y cos B8+z sin 8) cos t+r sin ¥ sin t

and r, and r, denote the inner and outer radii of the inner shell.

Expanding J to second order in € about 6 = 0 produces

122




Appendix 11

el [ dt [ v ei(e+z) +dcost +r cos (y-t)

x E - 8(ir cos ¥ - z cos t)

2
= %F-<Fz + rcos Y cos t + 2irz cos Yy cos t + r2 coszw - z2 cosz€ﬂ

and using equation (7) to evaluate the integrals results in

J Y
i ellatz) [Io(r)Io(d) - E)Il(d)(irll(r) - zIO(d))
02 /. 3 Iy (d)+1,(d) .
- ?f'(IZIO(r)IO(d) + r(l + 21z)Il(r) 5 )] g (a=8)

Now consider the 2z integration occurring in equation (A~5) for W.
Firstly, the term independent of rotation in equation (A-6) contributes a

potential energy

8 /2
Wl = - 2wqu¢<[ rdr ./ dz sin z sin (a + z)Io(r)Io(d)
r. -n/2
i
= Wy cos a Io(d) (A-7)

where Wo is the equilibrium potential energy of a ring
W 2, Fele 1 1 A-8
o = " Tughrely(rp) - w5 . -n

The remaining terms in equation (A-6) are already of second order for d small
and hence, to second order, we may put a zero, 7e the rotational energy is
independent of small axial motion. Furthermore, with a = 0 , the 6 coeffi-
cient occurring in equation (A-6) gives zero contribution to W since the
integrand of the 2z integration in equation (A-5) is an odd function of =z.

From this we mey conclude that for small translation and rotation about the
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12 Appendix

equilibrium position, the nett forces acting at the centre of an inner magnet are

independent of rotation and the couple is independent of translation.

The remaining 62 coefficient in equation (A-6) contributes, for a and
d small, a rotational energy

r
2 0 n/2

v = 9_
"'2 T 7 qu,( rdr [

dz sin z [sin z (rII(r) + (r2 - zz)lo(r?)
r, -/2

+ 2z cos z (Io(r) + rIl(r{)] . (A-9)

Using the basic integrals

2 2 3 3 2 1
j;lodt = rI] s ]; Il = r I2 ; jr I0 = r I1 = 2r 12 - i
/2 /2 /2 ]
2 T ™ 2 2 b 1r2
sin"x dx = = , x sin 2x dx = <+ , X sin"X dx = —[—+1
2 2 Z\6 |
-7/2 -1/2 -m/2 4
i
reduces equation (A-9) to |
. 5
W, = 23 w2 F rz - I3--0 . rl, (r) : (A-10) %
2 o 12" 2 : |
s i
. ;

Now provided that (ro = ri) is several times the thickness of a magnet,
as is always the case in practice, the contribution from r, in equation (A-10)

is negligible. Consequently, the rotational energy may be approximated by

2 2
A v g - S T |
W) T T HoRarpl(xg) . (‘o 7t 2)
2 2
0 2 L 1
< - e—e - -
4 wo(‘”o 1z 2) 122

using equation (A-8).
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. Appéndix 13

Summarising, then, and re-introducing the factor o the potential energy

of a displaced inner ring is given approximately by

2 2
W = WO [;os aa Io(ad) - %r-(azrg - %§.+ %)]

for small displacements a , d and a small rotation 6 .
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Fig 1 Cross section through repulsion type magnetic bearing
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Fig 3

Fig3 Magnetic field and potential of outer shell
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Fig5 Variation of oscillation frequency with arm length
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