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A DYNAMIC METhOD OF DETERMINING THE STIFFNESS AND CROSS AXIS
~. I

STABILITY OF A REPULSION MAGNETIC BEARING

by

R. N. A. P1 immer

SUMMARY

Magne t bearing support systems are becoming of increasing interest in

satelli te and other engineering projects . In order to design such systems a
knowledge of the bearing stiffness is required. This Report analyses the dynamics

of a repulsive type magnet bearing and proposes a simple pendulum experiment to
determine the radial stiffness by measuring the vibration frequency. The

analysis, based on the potential energy of the system, shows the relationship
between radial stiffness and the pendulum arm length and also predicts a rota-

tional stability c~ndition, namely that the bearing length to diameter ratio must
be greater than v’~ for stability. ~~~
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INTRODUCTION

In recent years there has been increasing interest in the use of magnetic

bearings for rotating mechanisms, such as momentum wheels in satellites, in order

to obtain a reduction in friction and wear of conventional bearings and hence a

greater reliability and lifetime . In order to design such bearings it is neces-

sary to determine the stiffness of the system. One way of doing this is simply
to directly measure the forces involved with a static measuring system using

force transducers and position measuring equipment. Such a procedure introduces

measuring uncertainties due to equipment biases and tend s not to give very

accurate results. The method is even less accurate when attempting to estimate

the cross—axis stability due to the angular stiffness.

An alternative method is proposed here, with the appropriate theoretical

analysis, based on a pendulum type experiment. Not only does this method provide
the stiffness of a bearing but it can also be used to confirm the ‘cockling ratio ’

which is predicted by the analysis: namely, that a bearing is angularly stable

if its length is greater than v5 times its diameter. This has been confirmed by

the experimental work
1 
of Lodge.

.2The only theoretical analysis that is known to the author is that of

Backers’. This work predicted the positional stiffness of a magnet but not the

angular stiffness and was limited to a two—dimensional analysis. This latter

restriction is removed in the present paper where a full three—dimensional

analysis is made.

2 DESCRIPTION OF THE EXPER IMENT

The type of repulsion magnetic bearing considered here is illustrated in

Fig 1. Such a bearing consists of an outer shell of permanent magnet rings of

equal thickness , magnetised axially with the rings arranged so that like poles
are adjacent, ia alternate rings have opposite directions of magnetisation.
Inside this is a coaxial inner shell of magnetic rings of the same thickness and
stacked on a shaft in exact correspondence with the outer shell. Such an arrange—

meat is radially stable but axially unstable and the angular stability depends ,
as mentioned above, on the dimensions of the bearing.

If the shaft of the bearing is now suspended from a point 5, Fig 2 , on the
bearing axis whilst the outer shell is fixed vertically the inner shell is free
to oscillate and the frequency of oscillation will be a measure of the forces

122 and couples acting on the bearing. We will now determine what this relationship

is.
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3 THE FIELD OF THE OUTER SHELL

Following Backers2 we will assume that the intensity of inagnetisation M

of the magnets follows a sinusoidal spatial distribution axially, La

M — -~~sin 2 1TZ/A (1)

where A is the periodicity of the system, so that each magnet is of thickness
t — A/2 , and .4 is the maximum magnetisation occurring at the centre of a

magnet. The Z axis is taken along the bearing axis with origin at the inter-

face between two adjacent magnets. It will also be assumed that the magnets are

homogeneous so that the field is radially symmetric and end effec ts will be
ignored.

The magnetic potential ~ may now be calculated from the formula

— fM.srad~!~.dv

where the integration is over the outer shell or, integrating by parts,

tdjv H IM . dSj _ d v + J_  —

r r

and the second integral is zero since the surface element dS is normal to the

magnetisation vector. Consequently, the magnetic potential at a point Z0 along
the bearing xis is

~ 
p
0

I’ r .~~~~cos aZ
— — 2~ I dZ I pdp ______________ 

(2)
J J /2 2

—
~~ 

p
2.

where 
~i 

and p
0 denote the inner and outer radii respectively of the outer

shell and ~ 2w/A w/t . The integral in equation (2) may be evaluated
explicitly to give

(2(Z
0
) — — 4w.A’cos csz0[p.K1 (np . )  — p

0
K

1 
(ap

0)] (3) 122
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where K (x) denotes the modified Bessel function of the second kind defined by

K (x) — 
J ~~~~ ~~~~ cosh nt dt . (4)

Thus the magnetic potential along the bearing axis varies as

(2(z) — F cos aZ (5)

where P is a negative constant defined by equation (3) and the suffix 0 has
now been omitted. The explicit form for F will not be needed in this Report
since it is not necessary to evaluate the absolute forces and couples but only
their relative magnitudes.

Now the magnetic potential must satisfy Laplace’s equation and consequently
its spatial distribution within the region occupied by the inner shell is

fl(R ,Z) — F cos c~Z 10(aR) (6)

where R denotes the radial position from the bearing axis and I~ (x) denotes
the Bessel function with purely imaginary argument, defined by

I~(x) — 

~~~

. 71 eX COB ~ cos nO dO . (7)

Thus the magnetic field H — — grad (2 iS

— — c*F sin czZ 10 (csR)Z — uP COB uZ I~ (czR)I( 
(8)

where Z and R denote unit vectors in the axial and radial directions
respectively. Fi8 3 shows the distribution of the magnetic field and potential.

4 FCRCES AND COUPLES ACTING ON A SINGLE INNER RING

It is sho rn in the Appendix that for small axial and radial displacements

122 
of the centre of an inner ring, a and d respectively, and a small angular
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rotation 0 about the equilibrium position the potential energy of a single ring

is approximately

w — w0 [c~~ aa I0(csd) — 
~2 (22 — ~~~~. +

where r0 is the outer radius of an inner ring. Consequently the axial and

radial forces Fa and 
~
‘
r acting on the centre of an inner ring are

F — — — + uW
0 
sin aa 1

0
(czd)

— — — — uW0 COB ut I~ (csd)

which approximate for small displacements to

F ~ S aa A

S
F ~~~—~~d (9)r 2

where SA — a2W0 is the axial stiffness. It is to be noted that this shows that

the axial stiffness is twice the radial stiffness SR independently of any small
rotation present.

Similarly, for small displacements, the couple acting about the centre of

a ring is

c — — — + . .  a2w0(r~ 
— ~~~~. + -4) — + OS~~ r~ - ‘ •

It is to be noted that this couple haa a destabilising influence.

5 NOTION OF TUE PENDULUM

Let us now consider the total couple acting on the inner shell assembly, 122
about the point of suspension. If there are a total of n inner magnets so that

_ _ _ _  
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7

the length of the inner assembly is £ nt and L is the distance from the

point of suspension to the centre of the inner assembly then the total moment

about the point of suspension due to the radial forces acting on each magnet is,

using equation (10)

It 2
M — SRO Z + (N + — n)tJ

N—I

2i 2  n — I  2
— — S On L + t

The moment due to the axial force is second order in 0 since the axial displace-

ment depends upon I — cos 0 and may thus be neglected to first order in 0

Adding now the destabilising couple of each magnet gives a total moment about

the point of suspension

M - N
5 r

— — SROn [L
2 

+ 
L 
(2
2 

— 3D2 — (11)

where D — 2r0 is the diameter of an inner ring.

From this equation it can be seen that if there is a long suspension arm,

then the moment about the point of suspension is equal to the arm length L

nvltiplied by the total radial stiffness — nSR of the bearing, ie the
destabling couples may be ignored. On the other hand, when the inner bearing is

supported about its centre (or freely suspended with the aid of a stabilising axial

servo), the moment about its centre depends upon the quantity £2 — 3D2 — (3t2/n2).
Since the term 3t2/it 2 is negligible, the bearing will thus be rotationally stable

if its length is greater than /~ times its diameter and unstable otherwise.

If, now, a is the mass of the inner bearing and k is its radius of

gyration about an axis through its centre normal to the bearing axis, then the
total moment of inertia about the point of suspension is

122 i — m(L~ + k2) + tarm (12)
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where ‘arm is the moment of inertia of the supporting pendulum shaft. Also ,
if ~OM

g is the moment about the point of suspension due to gravitational forces ,
the total moment is N5 

— ON
8 

and consequently the oscillation frequency of the
pendulum, w , in rad/s is given by

— 

N5 + Mg 
— 

S
RT[L 

+ .-~~~~~ 

(
~2 - 3D2 - 

. (13)

DI(L + k ) + Iarm

The gravitational term will be positive if the point of suspension is above
the pendulum, otherwise negative, and is proportional to the arm length L . For
practical bearings this term will be insignificant compared with that contributed
from the radial stiffness. For long arm lengths, then, the oscilla tion frequency
will approach the asymptotic value

(14)

independently of the arm length. Consequently the period of oscillation provides
a measure of the radial stiffness of the bearing and , by varying the arm length,
the rotational stability condition can be investigated . Fig 5 shows the predicted
variation of with

6 CONCLUSION

The analysis has shown the relationship between the radial s t i f fness , the
geometry of the bearing suspension sys tem and the frequency of oscillation,
equation (13). By measuring the period of oscillation for long arm lengths a
direct measure of the radial stiffness is available. Furthermore by varying the
arm length the rotational stability condition can be investigated. A limited
number of experiments have been reported in Ref 1 and support the predictions of
this Report.
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Appendix

POTENTIAL ENERGY OF A SINGLE RING

Consider the situation where the inner shell is rotated by a small angle

0 about the point of suspension S, Fig 4. Let this be in the plane XZ with

the Y axis forming a right hand set, and let a and d denote corresponding

axial and radial displacements of the Nth inner magnet. We will now introduce

another cartesian frame of reference (xyz) with its origin at the centre of the

magnet, z axis along the axis of the magnet and the xz plane coinciding with
the XZ plane. Thus if (x,y,z) are the coordinates of a point in the magnet,

then the corresponding (X,Y,Z) coordinates are

X — R cos~~ = d + x c o s 0 + z s i n e

Y — R sin~~ — y

Z — ( N —~~)t + a — x s i n 8 + z c o s O (A—I)

where (R,~,Z) are the corresponding cylindrical coordinates.

Now the potential energy W of the ring is given by the equation

- - i.~0J H . M1dv (A-2)

where H is the magnetic field of the outer shell, is the magnetisation of

the inner ring and the integration is over the volume of the inner ring. Nov

M.(z) — 4’sin [cz(N — 4 ) t  + zJ i

N+I
— (—) .4cos uz z (A—3)

where ~ is a unit vector along the z axis. Consequently, by integrating
equation (A—2) by parts and noting that (2 — 0 at the z boundaries, the poten—

tial energy is

~ 3M.
I 1.V — -p 0~~(2 ——— dv

122 ~

—a -..~



. .- . -

10 Appendix

and thus, using equations (A—I), (A—3) and (6),

V — — u~ fdvuF4sin as sin a (a — x sin 0 + z cos O) 1
0

(aR)

Introducing polar coordinates (r,g~) , so that x — r cos ~p , y — r sin 
~and the integral representation (7) for 10 gives

V — — 1.I0aF.4frdrd4~dz sin uz sin a (a — r COB 
~~ sin 8 + Z COB 0)

2w
x ...L I e~~ 

cos Ct — “~ dt (A—4 )
2w J

0

For convenience we will nov use the thickness of a magnet as the unit of length
so that we may put a — I. Using equation (A—I) equation (A—4)may then be put
in the form

r0

W — - ii0F4~ J rdv f dz sin z Its J (A—5)
r.

where Its .T denotes the imaginary part of the integral

— ei(a +z cos 0 — r  cos i~ sin 0)

~ 
(d+r cos i~ cos 8 + z  sin 8) cos t + r sin ~ sin t

and r and r. denote the inner and outer radii of the inner shell.0

Expanding J to second order in 0 about 8 — 0 produces

122
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Appendix 11

2wJ — fd ~? ~~~~~ 
+ d COB t + r cos (~—t)

X [i 
— 0(ir COB ip — z cos

— 
~~~~

. (iz + r cos ~ cos t 
+ 2irz cos ~ COB t + r

2 cos 2ip — z
2 cos~t)]

and using equation (7) to evaluate the - integrals results in

— ~~~~~~ {IO(r)IO (d ) — OI 1 (d)(irI1
(r) — zI 0 d)

e2 I0 (d)+I 2 (d)
— -

~~
— (izI0(r)I0(d) + r(1 + 2iz)I

1 (r) 2 
. (~~.~;)

Now consider the z integration occurring in equation (A—5) for W.

Firstly, the term independent of rotation in equation (A—6 ) contributes a

potential energy

W 1 = — 211u 0F.A*’
f 

rdr f dz sin z sin (a + z)1
0
(r)I

0
(d)

r.

— V0 cos a I0(d) (A—7)

where W0 is the equilibrium potential energy of a ring

— — it2u0F€[r0
1

1
(r
0
) — r.Ii (r

)] 
. (A—8)

The remaining terms in equation (A—6) are already of second order for d small
and hence , to second order , we may put a zero, ie the rotational energy is
independent of small axial motion. Furthermore, with a — 0 , the 0 coeffi-

cient occurring in equation (A—6) gives zero contribution to V since the

integrand of the z integration in equation (A—5) is an odd function of z.

From this we m~y conclude that for small translation and rotation about the

122
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12 Appendix

equilibrium position, the nett forces acting at the centre of an inner magnet are
independent of rotation and the couple is independent of translation.

The remaining o 2 
coefficient in equation (A—6) contributes , for a and

d small , a rotational energy

w/2

V2 ~~~~
-. ~~~~~ rdr f dz sin z [sin z (ru (r) + (r2 - z2)I

0(r)~
r.

+ 2z cos z (IO(r) + rI
i (r))] . (A—9)

Using the basic integrals

frIo
dr — rI

1 , fr
2
u

1 — r2I2 , Jr
3u0 — r3I1 

— 2r 2I2

w/2 w/21 . 2  1 . w 12 . 2  ,i- /w2

3 sin x dx = , J x sin 2w dx — , jx sin x dx = + 1
—w/2 —w/2

reduces equation (A—9) to

- ~~~~ w\~~[(r
2 

- + 

~
) r11 (r)]  . (A 10)

Now provided that (r
0 

— r
1) is several times the thickness of a magnet,

as is always the case in practice, the contribution from r
1 in equation (A—b )

is negligible. Consequently , the rotational energy may be approximated by

W2 

: 

0
2

2
F t o  (r~ 

— +

— _ T wo(ro
_

Ti~~~) 122

using equation (A—8).
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• Appendix 13

Sununarising, then, and re—introducing the factor a the potential energy

of a displaced inner ring is given approximately by

w — w0 [cos cia 10(ad) 
— 

e2 (22 — ~~~~~. +

for small displacements a , d and a small rotation 8

122
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