"‘D‘AO’Z 087 ROYAL AIRCRAFT ESTABLISHMENT FARNBOROUGH (ENGLAND) F/6 9/2
USING BRITISH STANDARD INTERFACES TO CREATE A FAST LINK BETWEEN=-=ETC(U)
JUL 77 6 SHARPLES: & F DRURY

UNCLASSIFIED RAE=TR=77010 DRIC-BR-59871

| o& | « 0
A ey

END
DATE
FILMED
DoC

.' 10 ke e

ol T

T 2
o~ n

22 T e

MICROCOPY RESOLUTION TEST CHART
TIONAL BUREAU OF STANDARDS

TR 77010

TR 77010

(i RNEQAT7
l\o /q —‘En Vel S]__,,;/

@

-

e\

u

>

=T ROYAL AIRCRAFT ESTABLISHMENT

* e

/| Technical Repmt,J7010
(e 7)%
//_\, p— —
E o (€) I
" — 7 USING BRITISH STANDARD ——
S| INTERFACES TO CREATE A FAST LINK |
MNow— BETWEEN WO COMPUTERS .|
T ed
e by
< TS :
/) G./Sharples
G.F./Drury
*

Procurement Executive, Ministry of Defence

Farnborough, Hants
GDD C

w Tww J - J"“'""ﬂ!Il'llI!l!!u!-l!nul-u--nu-u;;p.-.............-.-."..'
2 Wt Sattiee [' Par—

EXAINGUACED O
BT 3111 E—

eeriasias st tasmssiane e b

(TN :.f,ik AYAILZDILITY CODES

ko SPEOAL

v e e)

ROYAL AXIRCRAFT ESTABLISHMENT

Technical Report 77010

Received for printing 20 July 1977

USING BRITISH STANDARD INTERFACES TO CREATE A
FAST LINK BETWEEN TWO COMPUTERS

by

G. Sharples
G. F. Drury

\/' SUMMARY

An ICL 1906S running under the GEORGE 4 operating system and a Digital
Equipment PDP 11/40 have been linked using British Standard Interfaces. The
PDP 11 user is given access to the 1906S basic peripherals and filestore via the

multi-access facilities of GEORGE. He also has the capability of transmitting

files between the filestores of the two machines.

This Report describes the implementation of the inter-machine link giving

specifications for the hardware and software involved.
]

Departmental Reference: Math 227

DDC

A\ M-
\ ELRE .

= §

F 3
]
Copyright Ay MAR 24 1978 {;]
© e

Controller HMSO London
1977

3
4
5
6
7
8

LIST OF CONTENTS

INTRODUCTION

A DESCRIPTION OF THE HARDWARE
2.1 Earthing problems

2,2 Operation of a BSI

THE BSI SIMULATOR

THE SOFTWARE ENVIRONMENT
DEVELOPMENT OF THE SOFTWARE
USER INTERFACE TO THE SOFTWARE
THE SPEED OF THE LINK
CONCLUSION

Appendix A The BSI communication conventions

Appendix B The simulator operating modes

Appendix C User specification of the software

Appendix D Logical operation of the BSI simulator

Tllustrations - Figures DI1-D3

Appendix E Software documentation

Illustrations - Figures El1-E5
Figures E6-E18

References

Report documentation page

29

31
40

54

inside back cover

010

1 INTRODUCTION

The refreshed graphics installation, provided as a general facility by
Computing Division at RAE, consists of a Vector General display linked to a
PDP 11/40 minicomputer. The PDP Il provides the local processing power to
run the graphical analysis programs, the core storage from which the picture on
the display screen is refreshed and the bulk storage for medium sized data and
program files. If the PDP 1l were used in isolation, the maximum size of program
which could be run and the limited amount of file storage could prove to be a
restriction on the applications which could realistically be undertaken. It was
the realisation of these restrictions which led to the development of the system

described in this Report.

It was evident that the utility of the graphics installation would be
greatly improved if a high speed and readily used means of communication existed
between the PDP 11 and the ICL 1906S which provides the central, multi-access
computing service for the RAE. It was therefore decided to try to link the two

machines. The objective was to create a link with the following characteristics:

(a) the ability to transfer files between the filestore of the 1906S and the
filestore of the PDP 11,

(b) a high transfer rate so that a user can transfer files of a reasonable size

in an 'acceptable' time,

(e) a simple command language for the user to initiate transfers.

As considerable effort had already been put into connecting a Tektronix
display to the 1906S through an ICL 'interface converter'*, or 'uniplexer', this

was the obvious means of connection.

It was appreciated at an early stage that the two interfaces would not be
immediately compatible and so the precaution was taken of constructing a test box
or BSI simulator which could be used to converse with either interface. This

would allow major incompatibility problems to be located precisely.

This Report describes the development of the inter-machine link and includes

sections on the BSI communications conventions, the hardware of the simulator

* An interface converter is a piece of hardware which converts signals conforming
to a British Standard! into a form suitable for the computer to which it is
connected. In order to set up the link two interface converters were required:
one produced by ICL and the other by Digital Equipment. Throughout this report
these interface converters are referred to as British Standard Interfaces (BSIs),

and the software for both the PDP and 1906S computers. Full hardware and software

specifications are given in Appendices D and E.

2 A DESCRIPTION OF THE HARDWARE

The equipment used to make the connection is an ICL 7203 Interface
Converter unit connected to the 1906S computer, and a BSI interface, produced by
the manufacturer of the PDP 11, connected to the PDP 11 input/output highway,
(the unibus). This equipment provides a single channel input/output connection
between the PDP 11 and the 1906S computer in accordance with British Standard

1
specification 4421 .

The ICL 7203 Interface Converter unit transposes signals presented at the
BSI into those required for operation of the ICL 1900 standard interface and
vice-versa. Similarly the Digital Equipment BSI transposes signals presented at

the BSI into those required for operation of the PDP 11 unibus and vice-versa.

2.1 Earthing problems

Even assuming compatible interfaces, the two machines could not be linked
immediately because of restrictions imposed by ICL on 1906S peripherals. The
ICL 1906S computer uses emitter coupled logic in its construction, and the logic
elements are switched from the 'O' to 'l' state, and vice versa, by small volt-
age changes of the order of 0.9 V on the signal lines. It is therefore essen-
tial that the zero voltage reference lines of all peripheral devices and sub-
systems connected to a 1906S computer are connected directly to the 1906S
computer zero voltage point. This will avoid any 'earth loops' which might cause
differences in earth potentials in the 1906S computer system which could cause

spurious switching of the logic.

The PDP 11 system was originally powered from 13A ring-main wall-sockets.
An investigation of the PDP 11 earthing system showed that the PDP 11 zero voltage
reference and mains earth were common and that it was not feasible to isolate
the two. This meant that if the PDP 11 was connected to the ICL 7203 the 1906S
zero voltage reference would be connected to mains earth via the BSI cable and
the PDP 11, resulting in an 'earth loop' which could be detrimental to the

performance of the ICL 1906S computer.

The problem was solved by powering the PDP 11 system directly from the

ICL 1906S generator via a Power Distribution unit.

010

7

a Tektronix storage tube to the 19068 5. The low level software to handle these

links was developed within the Computing Division.

| 5 DEVELOPMENT OF THE SOFTWARE

The specification of the communications software required that the user be

allowed:

(a) To transfer a PDP alphanumeric file into any 1906S file, creating the 1906S

file if it did not already exist.

(b) To transfer a PDP alphanumeric file onto any 1906S output peripheral eg

line printer, card punch.
(¢) To transfer a 1906S basic peripheral file into a PDP file.

(d) To manipulate GEORGE files in the usual multi-access (MOP) fashion.

The development was planned to follow several stages:

(a) The transfer of fixed length, fixed content records between the 1906S and

the test box.

i (b) Linking the PDP 11 to the test box in a similar fashion,

! (c) The transfer of fixed length, fixed content records between the two

machines.

(d) The transfer of variable length records between the two machines, using

T T P TP | gy Py

the PDP 11 teletype as though it were a normal interactive console linked
to GEORGE.

(e) The implementation of the file transfer mechanism.

Because of previous experience in programming for the BSI on the ICL
machine, it took only a short time to write a test program for the 1906S which 3
would transfer data into and out of the simulator. Within an afternoon, the
closed loop was operational and the test box and 1906S software had run success-

fully at a high speed transferring a large volume of data.

No corresponding expertise was available for the PDP half of the link and
the authors had to rely on the manual6 supplied with the BSI hardware and a

minimum of expertise in PDP assembler programming. The simulator proved to be an

invaluable aid and must have reduced the time taken by a considerable factor.
Wherever the PDP program failed to communicate correctly with the simulator, the

current status of both the BSIs could easily be read from the lamp display, and

—

the PDP program could be investigated in the usual fashion using the excellent

PDP debugging aids for assembler programs.

Having established that the hardware and software at both ends were
functioning correctly in isolationm, Ze linked to the simulator, it only remained
to complete the direct connection between the two machines. In theory, there
should have been no further problems but the two machines adamantly refused to
communicate. The resolution of the next series of problems proved to be rather

difficult because:

(a) Since both ends worked correctly at high speed with the simulator, neither

end could be identified as the ‘trouble maker'.

(b) Without the simulator in the circuit, it was only possible to establish the
status of the ICL BSI by investigating the depths of the hardware with an oscil=~

loscope probe and consulting the corresponding circuit diagram.

(c) The ICL BSI (or GEORGE Executive) demonstrated again its lack of resilience,
as it had during its use as a link to the Tektronix display. The BSI would
periodically go into an indeterminate ‘lock out' state, in which it rejected all
requests from the 1906S and all operations proposed by the remote device. Some-
times, this condition could be reset by switching the BSI off and then on again
after a pause of a couple of minutes; but at other times testing would result in
the total loss of input and output on the 1906S, which was understandably
unpopular both with users and with the operations staff. System tests had,

therefore, to be made with care.

(d) The failures did not occur consistently but appeared to vary according to

the work load being processed by GEORGE

After a period of intensive development, using mainly a trial and error
approach, the two machines were able to transfer fixed length, data blocks to
each other and the authors were able to progress to the more interesting problem
of providing the interface software to allow the graphics user to transfer and

manipulate his 1906S and PDP 11 files,

The software already in use with the ICL BSI has been described elsewherea.
Its purpose is to allow a remote device linked to the BSI to function as if it
were a normal MOP console but with the additional advantages of a potentially
high speed of working, plus the ability to communicate in terms of the full ASCII
character set. The software is known as a driver since it handles the transfer

of data between two normally unconnected input/output channels:

010

B R

e

(a) it controls the data flow to and from the BSI,

(b) using the command issuer facility of GEORGE, it issues commands to GEORGE

and receives replies, as if it were a normal multi-access user of the system.

In normal operation, the driver accepts the data arriving at the BSI, passes
the completed data buffer to GEORGE, reads the reply from GEORGE and then writes
this back to the BSI. Thus the remote device functions in a conversational mode.
Using this software unmodified, it appeared that all the requirements could be
satisfied. At the start of a file transfer or manipulation session the PDP 11,
the user establishes the link to the 1906S which gives him the full MOP capability.
He can then LOGIN to GEORGE and the transfer operations at the 1906S end can be

requested using the normal GEORGE commands:
(a) 1906S files can be created or overwritten using an INPUT command.,

(b) Information can be transferred onto an output peripheral using an INPUT
command followed by a LISTFILE. These commands would be generated automa-
tically by the PDP 11 driver in response to a file transfer request from

the user.

(c) 1906S basic files can be output using a LISTFILE command.
(d) 1906S files can be manipulated in the normal MOP fashion.

The advantage of this proposal was that it required programming effort only at
one end of the link,Ze a PDP driver had to be written to pass commands from the
keyboard to the 1906S and to read back the replies. Special pseudo GEORGE
commands requesting file transférs would be trapped by the driver, which could
pass across the required GEORGE command and then handle the subsequent file

transfer.

Early in the development of the PDP driver it became apparent that this

system had some major drawbacks:

(a) Because of the work-load on the 1906S service from other users, it was not
always possible to LOGIN, the system being 'full'. The file transfer facility

was thus effectively not available.

(b) On transferring data to the 1906S, the PDP 11l program had to wait for
GEORGE to respond between each record. When using an INPUT command, the procedure
is for GEORGE to say 'ready', the user presents his data, and when GEORGE is

prepared to accept the next line, it outputs the 'ready' signal again.

010

!l"“"“"T

T

10

This conversational mode necessarily slowed down the transfer process, especially

during periods when the 1906S was heavily loaded.

It thus became necessary to redesign the system with the objectives of
allowing the graphics user to transfer files without having to LOGIN to the 1906S,
and secondly, to increase the transfer rate. A representation of the original

design is given in Fig 2.

1906S FILESTORE

GEORGE
COMMAND
ISSUER
CHANNEL
DRIVER USER
JOB JOB
li%i\\\\B LS EERERTN
PDP 11 B
DRIVER TELETYPE
PDP
FILESTORE

Fig 2 A representation of the original design for the file transfer system

From this diagram, it can be seen that one link in the chain is removed if the
driver job itself executes the 1906S filestore transfers rather than setting up
another job on behalf of the user when the user's LOGIN command is passed to
GEORGE. The ICL BSI driver does not have the same problem of 'logging in' since
this job has the privileged 'system issued' status, which means that it is
initiated by the operators and becomes started immediately. This solves the
problem of the user not being able tc initiate his own job but it also introduces
additional complications since the driver is not run under the user's own cost
code. The normal filestore access restrictions apply and thus it is not possible

for the graphics user to transfer to or from a 1906S file which has not been

010

11

appropriately trapped (see section 6: User Specification) and it is not possible
to create files in the user's directory by means of a file transfer request.

This latter drawback has been reduced in importance by setting up a central
directory, controlled by the cost code under which the driver operates, in which
the graphics user can create or overwrite files. Unless the default is explicitly

overridden all 1906S files referred to in a filestore request are assumed to

belong to the directory :MM1132-PDP, which is an inferior to the proper user
tMM1132, If the user does successfully LOGIN to the 1906S then he can trap or

create files under his own directory before he requests the file transfer.

The second problem concerning the response to an INPUT command is avoided
by the driver issuing direct input/output requests to the user's file which has
been assigned to the driver. This is to be contrasted with the former method
whereby information was transferred in a (slow) conversational fashion through

the command issuer channel.

The cost of the two improvements appears in the form of greater complication
of use and in the effort in enhancing the 1906S simulator to recognise and

implement file transfer requests from the PDP 11.

Even in this final stage of development, problems occurred in transferring
information from one machine to the other. These problems appeared to be mainly
associated with the transfer of short length records so that the BSIs had to
change very quickly between read and write status. The 1906S software had
previously only handled a device which responded relatively slowly and so some
modifications were made to speed up the driver program, Also, as an additional
safeguard, the PDP routines were written to accept a slave relationship to the
1906S, monitoring the status of the ICL BSI and accepting this as correct. Thus
should the two drivers get out of step, the PDP 11 driver would fall into line
with the current request set up by the 1906S driver, and the possibility of

'locking up' the 1906S is avoided.

6 USER INTERFACE TO THE SOFIWARE

In order to establish the connection between the PDP 11 user and the 1906S,
it is necessary to initiate a driver program in each machine. The driver in the
PDP 11 must be started first. This sends an introductory message to the tele-
type:

PDP 11-1906S LINK

010 and waits for a message from the 1906S. The 19068 driver can then be started

M——_— - —

"-}m“ Yﬂ'—nuuw e rr———

12

up and first of all, it transfers the GEORGE 'hello' message to the PDP 11 driver,

which in turn transfers it to the teletype:
RAE MOP SERVICE

The PDP 11 user is then faced by an almost normal MOP situation and after logging

in he is free to manipulate his 1906S files using the normal SEORGE commands from

the PDP 11 teletype. j

' The PDP 11 driver examines all commands received from the user to establish
if he wishes to execute a file transfer. This the user indicates by typing one

of the special commands

CT - copy file in
g CYO - copy file out
Two parameters to.these commands specify the PDP 11 and 1906S files or peripherals :

to be used in the transfer. On receipt of one of these commands, the PDP 11
driver inhibits the transfer of the command to the 1906S but instead sends across
a data header indicating the 1906S file or peripheral and the direction of the

transfer.

For an inward transfer, the PDP 11 driver then reads a series of records 5
from the 1906S storing them in the PDP 11 file until a transfer termination record |
is received. Conversely, for an outward transfer, it reads a series of records
from the PDP 11 file and transfers them across to the waiting 1906S. On recogni-
tion of the end of the PDP 11 file, a transfer termination record is transmitted j
to the 1906S.

On the completion of the transfer, the driver reverts to the MOP mode,
transferring commands direct to the 1906S, until another file transfer request is

recognised.

A further special command is issued by the user to close down both drivers: é
RELEASEM.

The 1906S driver acknowledges receipt of this command by transmitting to the

PDP 11 the message:
CLOSED DOWN

and it then deletes itself. The PDP 11 driver transfers this message to the

teletype and similarly deletes itself, returning control to the operating svstem.

In this state, the PDP 11 user is isolated from the 1906S and any further commands

input are handled by the PDP operating system.

|
|
|

010

Further details are given in Appendix C.

{3 THE SPEED OF THE LINK

Some elementary timings measurements were made in order to obtain a feeling
for the speed of the link, its potential speed and perhaps to identit, any factors
reducing the transfer rate. Table | gives a typical timing result obtained for
each method of connection, together with a final, rounded, average transfer rate.

All transfer rates are expressed in bytes per second, wnere | byte consists of
8 bits.

The reservations about these figures should be stated first:

(a) The readings were necessarily taken over a period of days and so the work
load being handled by GEORGE did vary. However, all the figures were taken when

the system was moderately loaded, Ze about 13 MOP jobs and twc background jobs,

and so they should represent a typical case.

(b) In some cases, the quantity of data transferred was relatively small and so
the file initialisation procedures account for a higher proportion of the total
time than they would for larger transfers. This has the effect of depressing the

figure for the average transfer rate.

(c) Timings were only taken to the nearest second and so where the total trans-

fer time is quite small, significant errors could be involved.

For the first trial, the authors examined the transfer rates between the
simulator and each of the two machines in turn. The two sets of results proved
to be similar: the transfer rate was 20000 bytes per second out of the simulator
and 1500 bytes per second in the opposite direction. The |500 bytes per second
figure is obviously a limitation of the simulator, which was not specifically
designed to act at high speed; in fact, delays were deliberately incorporated so
that the transfer pattern could be viewed more easily on an oscilloscope.
Similarly, the two transfer rates out of the simulator were the same and so it
appears that this also is a limitation imposed by the test box. Nevertheless,
for this primarily qualitative assessment, 20000 bytes per second seems a seusible

maximum operational transfer rate.

When the simulator was removed and the two machines communicated using
fixed length, fixed content messages, the transfer rate dropped by a factor of
2 to around 10000 bytes per second. This is presumably caused by the delays
introduced with synchronising two independent processes, both performing data

initialisation and checking. The use of a filestore system at either end caused

a further reduction in the transfer rate by a factor of 2 or 3.

In this respect,

it appears that the PDP DOS filing system bas the greater effect.

Finally, the use of the complete system, Ze transferring from one filestore
to the other, involved little further reduction in the transfer rate presumably
because much of the file handling work in the two machines can be carried out in
parallel. However, by this stage, the transfer rate had fallen from the initial
figure of 20000 bytes per second to around 2500 bytes per second, a considerable

drop.

Even at this reduced speed, the system can still handle bulk quantities of
data reasonably quickly: to transfer a complete PDP 11 disk of 2.4 million bytes
would take approximately 15 minutes. But the graphics user is unlikely to be
handling such large quantities of data since it could never be refreshed on the
display screen. ‘A reasonable sized data file might be 100000 bytes and this can

be passed across in less than | minute.

Iable 1

Timings taken to estimate the speed of the link

Direction of transfer Quantity of data Time Averagiazzansfer
Test box to 1906S 14000 blocks of 256 bytes 165 s 20000 bytes/s
1906S to test box 1100 blocks of 256 bytes 183 s 1500 bytes/s
Test box to PDP 11 1000 blocks of 256 bytes 13 s 20000 bytes/s
PDP 11 to test box 1000 blocks of 256 bytes 165 s 1500 bytes/s
PDP 11 core to 1906S storef 1000 blocks of 256 bytes 24 s 10600 bytes/s
1906S core to PDP 11 core { 1000 blocks of 256 bytes 1S 12200 bytes/s
. 7P 11 file to 1906S store| 100 blocks of 256 bytes 9 s 2800 bytes/s
1906S core to PDP 11 file 500 blocks of 256 bytes 37 s 3400 bytes/s
1906S file to PDP 11 core 100 blocks of 256 bytes 5 s 5100 bytes/s
PDP 11 core to 1906S file 1000 blocks of 256 bytes 44 s 5800 bytes/s
PDP 11 file to 1906S file 100 transfers of 256 bytes 11 s 2400 bytes/s
1906S file to PDP 11 file | 100 transfers of 256 bytes| 10 s 2600 bytes/s
8 CONCLUSION

The objectives of the project were achieved in that a reliable and high

speed link has been created

between the 1906S and the PDP 11/40. The link is 010

010

convenient to use since it operates in terms of the GEORGE command language and
information can be transferred directly from filestore to filestore without having

to resort to an intermediate medium such as paper tape.

Large and long-running data reduction and analysis programs can be run on
the 1906S utilising the processing power and program capacity of a large computer
backed up by a large, secure filestore. Only the final stage of data processing
need be run on the PDP 1] when the user requires intimate interaction with his
experimental results. This means that the PDP 11 is fulfilling its proper role
of supporting the graphics display rather than performing number-crunching

calculations.

In addition to providing access to the processing power and filestore of
the 1906S, the link has also allowed the number of peripherals linked to the
PDP 11 to be reduced, with the emphasis being placed on graphical input and output
devices rather than the normal paper tape, line printer and card devices. All
these facilities are already provided by the 1906S installation and thus a
considerable duplication of hardware has been avoided7. Again, the graphics
installation is pursuing its true goal and the computer hardware has not been

allowed to proliferate and assume an undeserved importance.

Appendix A

THE BSI COMMUNICATION CONVENTIONS

A BSI consists of two logical sections: a Source and an Acceptor. Data 1s
transferred from the source of one interface to the acceptor of the other inter-
face and transfers are regulated using control signal lines which indicate

'operable', 'termination' and 'ready to accept transfer' (control) conditionms.

4.1 Data Transfers

The BSI Source will set its SOURCE OPERABLE (SO) line when the source
ccmputer is ready to transfer data to the acceptor computer. This SO indicates
to the BSI Acceptor that the Source 1s operable and able to send data when
required to do so. In response to SO the Acceptor makes itself ready to receive
data and, when ready, sets its ACCEPTOR OPERABLE (AO) line, indicating to the
Source that it is operable, and its ACCEPTOR CONTROL (AC) line to request the

data transfer. SO and AO must both be set before any data transfer can take place.

In response to AO and AC the Source will cause the first data byte to be
set onto the 8 BSI data lines and will then set its SOURCE CONTROL (SC) line to
indicate to the Acceptor that data is ready. The data byte is then copied from
the BSI data lines into the acceptor computer memory via the BSI Acceptor. Upon
completion of the transfer the Acceptor resets its AC line to indicate to the
Source that the data has been accepted. The Source notes that the data has been

accepted and resets its SC line.

As soon as tlie acceptor computer is ready to receive the next data byte the
BSI Acceptor will set its AC line to request the next data transfer from the BSI

Source.

A.2 Termination of a data transfer

Data transfers continue in the manner described (section A.!) until the
BSI Source sets its SOURCE TERMINATE (ST) line coincident with its SC line,
indicating to the BSI Acceptor that the coming data byte is the last in the
current block. The transfer of this last data byte will take place in the normal
way but the BSI Acceptor, having detected ST, will reset its AO line when its AC
line is reset. The BSI Source notes that the data block has been accepted ‘AO is
reset) and resets its SC, SO and ST lines. The BSI is then in a correctly

terminated state ready to proceed with the next block transfer.

010 ;-._ s

Peceding 7ge BLark :

S

— L

it e

wereres

Appendix B

THE SIMULATOR OPERATING MODES

B.! Read-write mode

The simulator, when operating in this mode, first acts as an Acceptor and
receives (READs) 256 byte blocks of data, in the form of a binary count, from a
Remote Source, checks each byte as it is received and indicates if any errors

occur by lighting the error lamp.

Upon completion of the READ transfer the simulator automatically disables
its Acceptor and enables its Source. It then transfers (WRITEs) a hardware
generated 256 byte data block, in the form of a binary count, to a Remote Acceptor

where the data can be checked.

The simulator can be made to stop transfers after each READ/WRITE cycle, and

then be manually restarted, or can 'free run' alternately issuing READs and WRITEs.

B.2 Read only mode

In this mode the simulator continuously READs and checks data blocks from

a Remote Source, indicating any errors.

B.3 Write only mode

In this mode the simulator continuously generates data blocks and transmits

(WRITEs) the data to a Remote Acceptor where it can be checked.
B.4 Test mode

The simulator Source must be connected' to the simulator Acceptcr when
operating in this mode. The simulator generates data blocks which are transferred
from the Source to the Acceptor where the data is checked. A data error will

stop transfers. This mode is used to check that the simulator is functioning

correctly.

010

010

Appendix C

USER SPECIFICATION OF THE SOFTWARE

C.l Establishing the link

In order to transfer data in either direction it is necessary to initiate a
driver program in each machine. The PDP program should be started first and this

is done by:
(a) Logging in as usual.
(b) Typing in: R GEORGE
The program replies with the message:
PDP11-1906S LINK
and waits for a message from the 1906S.

The 1906S driver is activated by informing the operators that the display link is

required.
When contact is established the usual

RAE MOP SERVICE
message is output on the teletype.

€2 Using the link

Having received the 'hello' message the user is faced by an almost normal

MOP situation. The differences are:
(a) To transmit a line RETURN is pressed and not ACCEPT or ESCAPE.

(b) To cancel a line, press CONTROL&U. The PDP driver replies with a CARRIAGE
RETURN and LINEFEED and the correct line may then be input.

(c) The GEORGE facility to delete a character may not be used in the file trans-
fer commands. To delete a character, press RUBOUT: the driver acknowledges

this request with a '¢'.
Files may be transferred by using two special commands:

CYI - copy in
CYO - copy out

These are recognised by the PDP driver and are not passed across to the 1906S.

20 Appendix C

The format of the commands is:

CYI PDP dataset specification, 1906S source specification

CYO PDP dataset specification, 1906S destination specification.

The system has been designed so that files can be transferred in no-user
context and so the user need not LOGIN to the 1906S. A consequence of this,
however, is that the 1906S files are accessed directly by the 1906S driver which
is run under a pseudo user, :MM1132-PDP, which is subordinate to the proper user,
:MM1132. Thus files to be transferred from the 1906S to the PDP must be given
READ traps for :MMI1132; and files in the user'sdirectory which are to receive

data must already exist and must be given the WRITE trap for :MMI1132.

Zg TG OUTFILE, :MM1132,READ - file for transfer to PDP 11
TG INFILE, :MMI1132,WRITE - file for transfer from PDP 11,

Users should note that while a 1906S file is trapped to :MM1132, any PDP 11
user can access that file and so it is strongly recommended that WRITE traps be

removed at the end of a session.
If no user name is specified for the 1906S file, :MMI1132-PDP is assumed.
Eg CYO FRED.LST,FRED-LST

establishes or overwrites a 1906S file, :MM1132-PDP.FRED-LST from the contents of
the PDP file, FRED.LST.

Eg CYO DK1:JOE.MAP [1,1], :MM1199,JOEMAP

overwrites the 1906S file, JOEMAP, belonging to :MM1199.

If several files are to be transferred using the same 1906S directory, the
name of the default directory (initially :MM1132-PDP) can be changed by using the
additional special command, PDPTIDY (PDP Transfer DirectorY)-

| Eg PDPTDY :MM1199.

After entering the command given above, a user name of :MM1199 is assumed

for all 1906S files with no explicit user name.

Generation numbers and language codes may be specified for the 1906S files

but not qualifiers such as APPEND.

The ICL specification is optional. 1If none is given, it is assumed that
the filename for the 1906S should be the same as that for the PDP machine, any

'.'s being replaced by '-'s.

Eg CYO BILL.FTN 010

010

Appendix C

establishes or over writes a 19068 file, :MMI132-PDP.BILL-FTN.

This file can then be returned to the PDP 11 by a similar cormand :

CYI BILL.FTN

The ICL specification need not be a filename but can be an output device

plus any qualifiers which are allowed in a LISTFILE coumand:

eg CYO DICK.BAK,*TP
CYO HARRY.MAC,*LP,PR MATHS,FR 100

In these cases, the file is copied into a workfile and the workfile is then listed

on the appropriate device.

The PDP 11 file specified in a CYI command must not exist at the time the command

is issued.

The maximum size of record which can be transferred in either direction is

256 bytes.

€3 Errors in file transfers

Two error messages can be produced as the two specifications are checked:

(a) DEC ERR : the program has failed to open the specified PDP file. No infor-
mation has been passed to the 1906S and the program issues a further request

to the keyboard for the next command.

(b) ASSIGN ERR : the PDP file was opened successfully but the 1906S driver has
failed in trying to perform an assignment on the specified 1906S file. A

request is made to the keyboard for the next command.

If the 1906S driver recognises an error in a course of a transfer it

continues until the file transfer is complete and then issues the message:
TRANSFER ERR
It is then up to the user to decide what action to take.

If the PDP driver recognises an error in transferring to or from disc it

halts. Pressing the CONTINUE switch causes the error to be ignored.

C.4 Disconnecting the link

The link is disconnected by:
(a) Issuing a LOGOUT command if the user has logged in to GECRGE.

(b) Typing 'RELEASEM',

22 Appendix C

The 1906S driver confirms that it has received the message by returning
a 'CLOSED DOWN' reply and the PDP 11 then returns to the normal command status.

Both the drivers have then been removed.

010

.

23

AEEendix D
LOGICAL OPERATION OF THE BSI SIMULATOR

The BSI Simulator logic is shown in Figs DI and D2 and typical waveforms in
Fig D3.

A logic reset signal (REST) is generated whenever the simulator is switched

on or the RESET switch is operated.

D.1 Operation in auto mode

D.1.1 Simulator write 'transfer'

The signal REST resets the counter flip flops CO to C7 and the dual purpose,
counter source operable/acceptor operable (CSO/AO). This flag is in fact just a
ninth counter flip flop which is alternately set and reset as the count in CO to
C7 increments from 257 to 0. REST causes the simulator to signal SIMULATOR
SOURCE OPERABLE (SSO) to the Remote Acceptor indicating its ability to commence

data transfers.

The Remote Acceptor notes SSO and, when it is ready to accept data, sets its
REMOTE ACCEPTOR OPERABLE (RAO) and REMOTE ACCEPTOR CONTROL (RAC) lines. The
simulator responds to RAC by setting its SIMULATOR SOURCE CONTROL (SSC) line,
indicating that the first data character (the contents of the counter CO to C7) is
on the data lines SDO to SD7. The data is then copied from the data lines to the
remote computer. On completion of the transfer the Remote Acceptor drops RAC to
indicate that the data has been accepted. The simulator responds by dropping SSC.
Each time RAC is dropped the counter CO to C7 is triggered causing its contents
to be incremented by one. The Remote Acceptor sets its RAC line once again when
it is ready to receive the next data character thereby initiating the next

transfer.

The above sequence of events continues until the contents of the counter is |
equal to 255, Ze the counter outputs are all binary 'l'. The simulator then sets
its SIMULATOR SOURCE TERMINATE (SST) line to indicate that the coming character
is the last in the current block. This data transfer takes place as before but
the Remote Acceptor drops RAO when RAC is dropped. The simulator drops SSC and
SST in response to the change in state of RAC. The latch TERMINATE is triggered
when SST is dropped and this causes the SSO line to be disabled, resulting in SSO
being dropped, and the SIMULATOR ACCEPTOR OPERABLE (SAO) being enabled.

The counter is again triggered when RAC is dropped and this causes the

010 counter outputs to be set to binary '0' and the CSO/AO flip flop to change state.

" — \ -

Y —

24 Appendix D

The signal SAO is therefore set indicating that the simulator is ready to accept

data from the Remote Source.

D.1.2 Simulator 'READ' transfer

The Remote Source sets its REMOTE SOURCE OPERABLE (RSO) and REMOTE SOURCE
CONTROL (RSC) lines when it is ready to transfer the first data character to the
simulator. In response to RSC the simulator sets its SIMULATOR ACCEPTOR
CONTROL (SAC) line indicating that it is ready to accept data. The simulator
then compares the data on the data input lines (RDO to RD7) with the contents of
the counter and after a short period of time (set by Monostable RESET SAC) drops
SAC. The Remote Source notes that the data has been received (SAC) and drops RSC.
If an error has been detected in the data SAC is inhibited and transfers cease
but if no errors are found SAC is set again to request the next data character.

Data checking can be inhibited by means of the DATA CHECK switch.

The counter, CO to C7, is triggered when RSC is dropped at the end of each
data character transfer, causing its contents to be incremented by one each time,
and so data from the Remote Source must be in the form of a binary count if data

checking is to be performed.

The above sequence of events continues until the data character equals 255,
when the Remote Source will set its REMOTE SOURCE TERMINATE (RST) line coincident
with RSC, indicating that this is the last transfer of the current block. This
last data character is transferred as before but at the end of the transfer, when
RSC is dropped, RSO and RST are also dropped. The new state of RSO prevents SAC
being set again. Also the latch TERMINATE is triggered when RST is dropped and
this causes the SAO line to be inhibited, resulting in SAO being dropped, and
the SSO line to be enabled. The counter, CO to C7 and CSO/AO, is again triggered
when RSC is dropped and this causes the contents of the counter to be set to zero
and the CSO/AO flip flop to change state. This results in SSO being set again

causing the above sequence (from section A.l1.1) to be repeated.

Control of the SSO and/or SAO lines by the latch TERMINATE can be inhibited
by operation of the SSO and/or SAO CONTROL switches. Also the data transmitted
to the Remote Acceptor from the simulator can be set to any fixed bit pattern by
means of the SELECT DATA SOURCE switch and data select switches, DSWO to DSW7.
The SELECT DATA SOURCE switch routes either the counter outputs or the data

switch outputs onto the simulator data output lines.

T ———————

010

Appendix D 25

D.2 Operation in WRITE mode

The MODE SELECT switch, when set to the WRITE position, disconnects the
CSO/A0 flip flop outputs from the SSO and SAO lines and permanently holds SSO
set and SAO reset. As a result the simulator can only transmit (WRITE) data to
a Remote Acceptor as described in section A.l1.l1. All other control switches

operate as before.

D.3 Operation in READ mode

The MODE SELECT switch, when set to the READ position, disconnects the
CSO/A0 flip flop outputs from the SSO and SAO lines and permanently holds SAO in
the set state and SSO in the reset state. As a result the simulator can only
receive (READ) data from a Remote Source as described in section A.1.2. All other

control switches operate as before.

D.4 Operation in LOOP mode

The MODE SELECT switch, when set to the LOOP position disconnects the
CSO/A0 flip flop output from the SSO and SAO lines and permanently holds SSO and
SAO in the set state. To operate in this mode the Simulator Source interface
must be connected to the Simulator Acceptor interface, SSO to RAO, SAO to RSO,
SDO to RDO, SD! to RD] etc, so that information transmitted from the Simulator
Source is received by the Simulator Acceptor. This mode of operation allows the

simulator to test itself. All other control switches operate as described above.

Appendix D

10)dedde ajowal 0} ejeq

159y

9gse

2160] jos3u09 elep s02e)nWIS | Bi4

01042 H1 |

0

W
W

2
X
W
7 ot
'0

W

b
SN

Al

22in0s

s eep
133185

AL

paxi4

" v.M" x:ﬁ v_:vﬁ Hg g V..M
pr
* m. WQ m. w. m" m’
o L0 090 L 10] 070 €0 —20 10
Ov/0S9 T " T8 R £ g T 00

153y o

2160j jo13u00 Bulwn |Sg Jorenuig zq by

ﬁ@-éamom
T - a

AO
" nod s
ug9 ®ieQ
AL
mo
L2 (614 wouy)
—0SY
ws {1} —a_}- 02z 1
| (614 u01y)
— - e-—e 013y
135 (B14wouy)

5 Jo1juod
1SSo— 248 ovs
955 o—{ X1} LQ 1O

mm S _O:W_Mu
)
70 b
—ol9 614 wouy
—o20
\a
oa

(614 wouy)

o J—2s

AO

big
AO woly
ejeg
——o 1,0 -
o ¥ L0Y
Jioyesedwos|))
way [lvalExéom 2
— G9BYLNS | :‘1.1]5. say | =
. — %0 E an
——{aeray|
bl
|J " ﬂ 3
—otd 2
% g esas 2
J.o.SmanuT.,. -IND Elowm_m 3
Wey | =
serns [o0 il 104 | &
1 ——000 8
0 oo

s
Appendix D

614 wou4

b
1Sy

0102 81

010 W1
(= :
x
..m swuioyanem a160) Jojenwig g by 1
0
&
<¢ — | /L.
L/ "
eiep 15¥
#34)
\\\h
S _ S
L\\h
— 47 0Sy
7’
Jes jas
_. _ 3]qeISOUOW
7 /a
A} Jes |asas
||||4I\ ﬁ 4 1 3|qeisouoy
JL
%y L4
—/f
rr..l..\ [S
¢ 7
/L ovs
7/~ = __ _ETep 1366113 13)uno
u U u \m L abuey) A
0=¢ejeg
W | [| vy

_ s " - ovy
| \ 155
Il_ e _ _ 2SS

0SS

e
|

/L
/oo

~UOISSIWSUBI} ,a}lJM, pu0d3g UOISSTWSUBl}) ,peal, |Siig UOISSTWSUBI} ,311IM_ 1Silg

28

l-U-ll!ll!lll!!l!lllIl'llll!ll!IlllIllllllllIIl-IlIlllllllllllllllllllllllllq"ll

29

Appendix E
SOFTWARE DOCUMENTATION

The software consists of two communicating programs, one running in the
PDP 11 machine and the other in the 1906S. This system allows a user at the
PDP 11 teletype:

(a) full access to the MOP facilities of GEORGE,
(b) the ability to transfer
(1) 1906S alphanumeric files into PDP 11 files,
(ii) PDP 11 alphanumeric files into 1906S basic files,

(iii) PDP 11 alphanumeric files onto 1906S basic peripherals.

E.l 1906S software description

The original driver to control the ICL BSI has been described in detail
elsewherea and so only the modifications required to implement the file transfer
procedure are described in this section. Figs El to E5 contain the flowcharts
for the routines concerned. The driver is written in the ICL assembler language,
PLAN.

The main controlling routine implements the loop required to provide the

conversational MOP facility, e

(a) read a command from the BSI and pass it to GEORGE,

(b) read the reply from GEORGE,
(c) pass the reply to the BSI,

(d) if GEORGE is ready to receive a further command, return to step (a); other-

wise step (b).

Step (a), as described above, is handled by the subroutine MINT. It inputs
the command typed on the PDP 11 teletype and passes control to the routine CHIN,

which checks if the request:
(a) is to be passed to GEORGE for processing, or,
(b) is to be processed by the driver itself.

CHIN has two exits corresponding to these two conditions. Four 'non-GEORGE'

requests are trapped for internal processing:

(a) RELEASEM : the user wishes to terminate his use of the BSI link and thus

the driver program is deleted with the message 'OK'.

30 Appendix E

(b) PDPTRANC : the PDP 11 user wishes to transfer a file to the 1906S and to

implement this request, the routine TROUT is entered.

(c) PDPTRANI : the PDP 11 user wishes to transfer a file from the 1906S and to

implement this request, the routine TROP is entered.

(d) PDPTDY : the PDP 11 user wishes to change the default directory for file

transfers.

The 1906S destination of a file being transferred from the PDP 11 is passed
to the 1906S in the 'PDPTRANO' warning record. Where the specification is a file-
name then the output stream can be directed to that file in a straightferward
manner. If a device is specified (Z2 the first character of the specification is
a '"*' requesting a basic device such as a line printer, *LP) then the data stream
must be directed to a workfile, which is listed on the required device and then
erased. In fact, the LISTFILE and ERASE commands are issued immediately ‘after
the data stream has been assigned but they are not implemented until the transfer
is complete and the file is released. Should a command error occur during the
execution of any of these commands than a special exit from TROUT is taken to
indicate that the transfer cannot be undertaken and that an error message should
be output to the BSI : 'ASSIGN ERR'. If the data stream is assigned successfully,
then all subsequent data read from the BSI is transferred to the file until the
PDP declares that the 'end of file' has been reached by sending the message
'"PDPTRANE'. On exit from TROUT, the driver returns to MINT to take the next

command from the BSI.

Similarly, for a file transfer to the PDP 11 the 1906S file specification
is contained in the 'PDPTRANI' record sent to the 1906S and the routine TROP
assigns the input stream appropriately. Should a GEORGE command error occur then
a special exit is taken, exactly as for TROUT; otherwise the whole of the file is
transferred to the PDP 11 and the 'end of file' is announced by sending the
terminating reccrd, '"PDPTRANE'. On exit, the driver loope to accept the next

command typed on the PDP 11 teletype.

Should any BSI operation generate an unexpected reply word then at the end
of the file transfer the message 'TRANSFER ERR' is sent to the PDP teletype as a

warning to the user that his data is suspect.

To change the default directory, the driver simply issues a DIRECTORY (DY)

command with the requested directory name as a parameter.

Appendix E

B51 LINK
NARIN CONTROL

INIT
INITIALISE BSI
AND CEORGCE

READC
READ MESSAGE
FROM CEORGCE

Y CEORGE
READY FOR

INPUT
\/

nouT
oureuT
TO 861

MouT
ouTPUTY
TO0 861

MINT

INPUT FRON 861
[

TRANSFER TO
CEORGE

Fig E1 BSI link: 1906S main control

31

32 Appendix E

HINT

READ RECORD
FRON BSI

SURE
SUSPEND
& RESEY FLAC

INTERNAL OHEN
CHECK FOR

INTERNAL COMMAN

NOT
INTEANAL

PASS RECORD
T0 GEORGE

L

NEGE
SEND LF-CR
T0 BS1
TO ACKNOULEDGE

RETURN

Fig E2 MINT: reads a record from the BSI

Appendix E 33

HESS
QuUTPUT n:og:sr
‘CLOSED DOWN'

ODIRECTORY
CﬂQ’G!

DELETE PROGRAN
oK’

RETURN)
NOT INTERNAL

CHANGE CURRENT
DIRECTORY BY
‘DY’ COMMAND

TRANSFER 2 COMMAND COMMAND TROP TRANSFER
ERROR et MPLEY
COMPLETE ERROR TRANSFER FILE bl

TRANSFER FILE

T0 PDP

FROM POP

HESS
QUTPUT
"ABSICN ERR'

MESS
SUTPUT
'TRANSFER ERR'

RETURNJ
INTERNAL

Fig E3 CHIN: checks for internal request

- ,--' e e - . o - " w

34 Appendix E

186UE

ASSIGN OUTPUT
TO REQUIRED
FILE

188U
CREATE
WORK FILE

r

I8SUE
ASSIGN OUTPUY
TO WORK FILE

REARD RECORD

FRON BSI
183UE 1 RETURNS
LIST WORK FILE SURE CONNAND. EARON
ON DEVICE SUSPEND)

& RESET FLAG

I

1SSUE . INDICATE
EAAGE UNEXPECTED TRANGFER
REFLY WORD
WORK FILE ? FAIL
IF FORM FEED
PRESENT, SET RED
TAPE FOR NEW PAGE
s
=]
RECON
| “CONUERT RECOAD
TO 6-BIT CHARS
|
RELEASE
oUTPUT |
ouUTPUT STREAN
BUFFER

RETURN
TRANSFER COMPLETE

Fig E4 TROUT: transfers a file from the PDP 11

Appendix E

1SSUE
ASSIGN INPUT TO
SPECIFIED FILE

it

READ RECORD
FROM FILE

END
OF FILE

?

Y

OF END OF
TRANSFER

CALCULATE
CHARACTER
COUNT

|

1

SURE
SUSPEND J
& RESET FLAG

RICON
CONUERT RECORD
T0 8-B1IT
CHARACTERS

1

RELEASE
INPUY
6TREAN

RETUAN?
CONMAND ERROR

INSERY FORN
FEED IF GPACE

RETURN
TRANSFER COMPLETE

AVATLABLE
QUTPUT
TO
BS1
1
SURE
SUSPEND
& RESET FLAG
INDICATE
UNEXPECTED TRANSFER
REPLY WORD
: FAlL

)

Fig ES5 TROP: transfers a file to the PDP 11

35

Appendix E

E.2 PDP 11 software description

The PDP software consists of a basic BSI driver which handles the inter-
active MOP conversation together with the routine to implement the file transfers
requested via the CYI and CYO commands. Figs E6 to E18 contain the flowcharts

for the routines concerned.

The bulk of the software is written in the form of FORTRAN callable,
assembler routines so that any new BSI applications can be quickly programmed in

a high level language. The main control of the driver is written in FORTRAN.

BSI transfers in the 1906S are carried out autonomously. The user supplies
the address of the start of data, the character count and the type of transfer
required, and this is executed without further user intervention. In the PDP
machine however, BSI transfers occur on a character by character basis, each end
of character generating an interrupt which can be used to temporarily halt the
execution of the main program in order to service the device concerned. To

achieve the transfer of a complete record, the software has to:

(a) provide a routine to be entered whenever an interrupt occurs. This routine
checks that the previous transfer was completed successfully and continues to

initiate successive character transfers until:
i) on input, the terminate flag is raised,
(ii) on output, the user's character count expires;

(b) inform the PDP operating system of the address of the interrupt routine.
Each device has an associated two word area, at fixed locations in core, which
is used to store the address of the interrupt routine and the status required
when an interrupt is being processed. The status value, amongst other functions,
establishes the priority of the routine, 7¢ the extent to which it may be
interrupted by requests from other devices. Once the operating system has been
provided with the address of the interrupt routine, the routine is entered
automatically each time an interrupt occurs on the associated device. The
routine NITBSI performs the function of setting up the interrupt vectors for the
input (Acceptor) and output (Source) sides of the BSI. The vectors are reset by
RELBSI.

In addition to the interrupt vectors associated with each device, there are
also two other registers which contain the current status of the device and any
associated data. For example, the acceptor status word has bits which indicate
the current state of the PDP acceptor operable and acceptor control flags, and

the 1906S source operable and source control flags. Conversely, the source status

Appendix E 37

word indicates the current state of the PDP source operable and source control

flags, and the 1906S acceptor operable and acceptor control flags.

TOBSI is the routine which transfers a user record to the BSL. First of
all, it checks if the 1906S is asserting 'source operable' and if so it takes an
error exit. Otherwise, it adds an ESCAPE character to the output record as a
terminator (this is included to maintain compatibility with the Tektronix link),

and generates an initial interrupt by setting:
(a) source operable and interrupt enable,

(b) source start.

It then loops waiting for an interrupt to be generated and periodically checking

whether the interrupt is being inhibited by the 1906S having set the source

operable flag. Once it recognises that the first interrupt has been generated
it leaves the work to the source interrupt routine and waits until it receives

an indication that the transfer is complete before making an exit.

On entry to the source interrupt routine, the source status register is
checked to see if a transfer error has occurred; if so the routine halts, Other-
wise the 'source start' flag is cleared to inhibit further interrupts and the
'data ready' flag is cleared to reset the data register. The next character from
the output record is moved into the data register, a check is made to ensure that
the 1906S acceptor control flag is up, and then the source control flag is set
to initiate the transfer. As a further security check the source control flag
is not reset until the 1906S acceptor control is lowered. Finally, before
returning to resume the interrupted process, the 'source start' flag is again set
to indicate that the next interrupt may now be accepted. For the transfer of the
last character in the record the 'terminate' flag is raised to indicate to the

1906S that the record transfer is about to be completed.

On the input side of the software, FROBSI is the routine which reads a
record of information from the BSI. As an initial precaution it ensures that the
1906S acceptor operable flag and all the PDP source flags are reset. The initial
interrupt is generated by setting the PDP acceptor operable, acceptor control and
interrupt enable flags. Should an interrupt not be generated, then the routine

checks if it is being inhibited by the 1906S having raised its acceptor operable

o Vs

flag. After the first interrupt has been received, successive character trans-

fers are initiated by the interrupt routine until the 1906S sets the 'terminate'

flag. FROBSI also handles the Tektronix 'page full' message which is output by

the 1906S driver but is of no interest to the PDP user; and establishes whether

W

38 Appendix E

GEORGE is ready to receive the next command, Ze whether the message terminates
with "BACK ARROW,SPACE,BELL'.

The acceptor interrupt routine is very simple. Successive characters
received from the BSI are added to the user's buffer and the next transfer is
then initiated by setting the PDP acceptor operable, acceptor control and
interrupt enable flags. When the 'terminate' bit is asserted by the 1906S, the
interrupt routine sets the 'transfer complete' indicator which is polled by
FROBSI.

Two other FORTRAN callable routines, TOKB and FROKB handle the teletype
input and output. FROKB provides the usual DOS facilities of line deletion

(CONTROL/U), character deletion (RUBOUT) and TAB implementation.

File transfers are implemented by the routine TRANS. The PDP file specific-
ation is compacted using the standard DOS facility,.CSIl (command string
interpreter macro), is analysed into its input/output constituents using.CSI2
and then the file is opened. Should any errors occur during these procedures
then an error exit is taken to output the message :'DEC ERR'. If no 1906S
specification has been provided by the user, the routine substitutes the PDP file
name minus any device or user identification and with any '.' replaced by '-'.
The 1906S specification is then appended to the PDPTRANO or PDPTRANI buffer and
the whole is sent to the 1906S driver as a warning that a file transfer is
required. If the 1906S driver finds an error in the file specification, then it
returns the message 'ASSIGN ERR'. This is either received as the first record of
an inward file transfer or its attempted transmission causes a protocol error on

the first record of an outward transfer.

For an outward file transfer, the information is read from the PDP file-
store, the terminating CARRIAGE RETURN/LINE FEED characters are removed and the
record is sent to the BSI. To prevent the transmission if initial control
characters other than form feed (these occur in listing files) the first two
characters are always examined and any control characters are replaced by spaces.

The routine also attempts to insert a form feed character in the first record

of the file so that a 1906S listing is produced in a convenient format. When
the end of the PDP file is recognised, the 'PDPTRANE' warning is sent to the

1906S as an indication that there are no further file records to be transferred.

When transferring in to the PDP 11, the first record received must be
checked against the 'ASSIGN ERR' message. If this is found, the PDP file is

closed and deleted, and control is returned to the main routine to take the next

...I--l................-.I...II.‘.II-IIII-I-ﬂ-l---hn-ut*“‘.‘““h— - : -

Appendix E 39
command from the keyboard. Otherwise, a terminating CARRIAGE RETURN/LINE FEED is
added to each record received from the 1906S and then is written into the PDP
filestore. This continues until the 'PDPTRANE' end of file record is received

when the PDP file is closed.

40

B61 LINK

MAIN CONTROL

NITBEI
INITIALISE
BSI

I

TOKB
ANOUNCE
BSI LINK

TOKB

OUTPUT HESSAGE

TO KEYBOARD

RELEARSE BSI

RELBSI

RETURN

FROBS!
READ

FAOHN 197865

Appendix E

READ COMNAND
FAON KEYBOARD

FROKS

FILE TRANSFER

TRANS
EXECUTE

1L
RANGFE
REQUEST

SET RETURN COUNT
TO ZERO TO SEND
ONLT ‘ESCAPE"

i

l

PASS COMMAND

ToBSI

TO 190685

INDICATE BSI
ABOUT TO BE

Fig E6a

RELEASED

BSI link: PDP main control

Appendix E 41

ERROR

1
REMOUVE LEADING
NULLS FAOH
REPLY

&

Fig E6b BSI link: PDP main control (continued)

42 .
Appendix E

NITBSI

(!

SET UP RCCEPTOR
INTERRUPT ADDRESS
AND PRIORITY

l

GET UP SOURCE
INTERRUPT ADDRESS
AND PRIORITY

RETURN

RELBSI

U0,

RESET ACCEPTOR
INTERRUPT ADDRESS
AND PRIORITY

I

RESET SOOURCE
INTERRUPT ADDRESS
AND PRIORITY

RETURN
TO MONITOR

Fig E7 NITBSI: BSI interrupt initilisation
RELBSI: BSI interrupt release

Appendix E

RESET ERROR
INDICATOR

ToBes1

RETURN 'ESCAPE’

RESET
S0URCE STATUS
RECISTER

SET
ACCEPTOR OPERABLE
EPTOR CONTROL
INTERRUPT ENABLE

TEKTRONIX
PAGE FULL
HE§:RGE

SET

'READY'INDICATOR'

CALCULATE SET
INPUT ERROR
COUNT INDICATOR
RETURN
BACK
Y ARROW
RECEIVED
?
RESET

'"READY' INDICATOR

il

RETURN

Fig E8 FROBSI: transfers a record from the BSI

43

I~

INTERRUPTY
HANDLER

INDICATE
INTERRUPT
GENERATED

HALT

6TORE CHARACTER
RECEIVED .
INCREMENT COUNT

RETURN

RESET
ACCEPTOR STATUS
WORD

T

INDICATE TRANSFER
COMPLETE

RETURN

Fig E9 Acceptor interrupt handler

Appendix E

Appendix E

ToBsI

AESET ERROR
INDICATOR

I

ADD ESCAPE’
TO RECORD

REMOTE
SOURCE

OPERABLE
2

SET
SOURCE OPERABLE
& INTERRUPT ENABLE

RETURN

SET ERROR
INDICATOR

RETURN

Fig E10 TOBSI: transfers a record to the BSI

46

HALTY

INDICATE
INTERRUPY
CENERATED

ERROR
IN LAST

TRANSFER

-
CLEAR

‘'S START' &

‘DATA READY'

CHARACTER
?

SET
TERHINATE

Appendix E

OF SPACES TO
NEXT TAB POINT

CALCULATE NUNBER

1

HOVE CHARACTER
INTO DATR
REGISTEN

-l

]

HOVE SPACE
INTO

DATA RECGISTER

sk

WAIT UNTIL
ACCEPTOR CONTAROL
SET.

SET SOURCE
CONTROL TO
TRANSFER .«

" |

VAIT UNTIL
ACCEPTOR CONTROL
RESET

RETURN

Fig E11 Source interrupt handler

LAST
CHARACTER
SENT

SET
'S STARTY'

RETURN

Appendix E

TOKB

WAIT UNTIL
KEYBOARD FREE

OUTPUT
NEXT CHARACTER

DECREMENT
COUNT

Fig E12 TOKB: sends a message to the teletype

47

s

48 Appendix E

CLEAR
INPUT COUNT

]

1

READ IN
CHARACTER

CONTYROL-U

?

' QUTPUT
[CARRIAGE RETURN
.

\ LINE FEED

I TO TELETYPE

‘ RUBOUT

?
QUTPUTY SPACES ouTeuT 2
UP TO NEKT CHARACTER UFFER START

TAB POINT TO TELETYPE 2

P

ouUTPUT
BACK ARAROW

|

SHIFT BACK
POINTER .
DECREMENT COUNT.

6TORE CHARACTER
IN BUFFER .
INCREHENY COUNT .

RETURN

* Fig E13 FROKB: reads a command from the teletype

Appendix E 49

TOKSB
ACKNOUWLEDGE
REQUEST

1
FIND NO. OF CHARS
N PDP

SPECIF{CQTION
IN THE FILE MNARE
ALONE

csIt
COMPACT

' SPECIFICATION

INUALID v
>
V

INIT
INITIALISE
DATASET

T
OPEN

OPEN
SPECIFIED FILE

Fig E14 TRANS: executes a file transfer
Section 1: analysis of the PDP file specification

v . _ — — —

50 Appendix E

HOVE
PDP FILE NANE
INTO GEORGE BUFFER

I

REPLACE ANY
1.6 BY '='$

TOBSI
WARN 1906S
OF FILE
TRANSFER

INVARD
TRANSFER

Fig E15 TRANS: executes a file transfer
Section 2: analysis of the George specification

: >3
Appendix E

SET ERAOR]
: INDICATOR

CLOSE
CLOSE
PDP FILE

CLOSE
CLOSE
POP FILE

RETURN

TOKB

168UE REQUEST
TO INPUT

Fig E18 TRANS: executes a file transfer
Section 5: termination conditions

54
REFERENCES
No. Author Title, etc
1 British Standards A digital input/output interface for data
Institution collection system.
BS 4421
2 Digital Equipment The DOS/BATCH Handbook.
Corporation DEC-11-0DBHA-A-D
3 International Computers Operating Systems GEORGE 3 and 4.
Ltd Tech. Pub. 4345
4 R.T. Robinson The GEORGE 3 Computing Service at RAE
T.R.H. Sizer Farnborough: Planning and Organisation.
RAE Technical Report 76022 (1976)
5 G. Sharples RAE User's Guide to the TANGO Computer
Graphics System.
RAE Technical Report 75073 (1975)
6 Digital Equipment Option Description: BSI PDP 11 to
Computer Special System British Standard Interface ;
Reading
7 T.R.H. Sizer Possibilities for a new Computing

Facility at RAE, Farnborough.
RAE Technical Memorandum Math 7507 (1975)

REPORTS QUOTED ARE NOT NECESSARILY,
AVAILABLE TO MT“MPZRS OF THE PUBLIC
OR TO COMMERCIAL ORGANISATIONS

Overall security classification of this page

UNCLASSIFIED

As far as possible this page should contain only unclassified information. If it is necessary to enter classified information, the box

above must be marked to indicat

e the classification, e.g. Restricted, Confidential or Secret.

1. DRIC Reference
(to be added by DRIC)

2. Originator’s Reference 3. Agency 4. Report Security Classification/Marking

Reference
RAETR 77010

N/A UNCLASSIFIED

5. DRIC Code for Originator
850100

6. Originator (Corporate Author) Name and Location

Royal Aircraft Establishment, Farnborough, Hants, UK

N/A

Sa. Sponsoring Agency’s Code 6a. Sponsoring Agency (Contract Authority) Name and Location

N/A

7. Title

Using British Standard interfaces to create & fast link between two computers

7a. (For Translations) Title in Foreign Language

7b. (For Conference Papers) Title, Place and Date of Conference

(®b) Speqial limitations (if any) —

8. Author 1. Surname, Initials | 9a. Author 2 9b. Authors 3,4 10. Date Pages _ Refs.
Sharples, G Drury, G.F. July | 53 l 7
1977
11. Contract Number 12. Period 13. Project 14. Other Reference Nos.
N/A N/A Math 227
15. Distribution statement
(a) Controlled by — VW‘W"

UNLIMITED

16. Descriptors (Keywords)

(Descriptors marked * are selected from TEST)

Computer systems programs*, Data links®.

17. Abstract

Equipment PDP 11/40
user is given access
access facilities of
between the filestor

An ICL 19068 running under the GEORGE 4 operating system and a Digital

have been linked using British Standard Interfaces. The PDP 11
to the 1906S basic peripherals and filestore via the multi-
GEORGE. He also has the capability of transmitting files

es of the two machines.

This Report describes the implementation of the inter-machine link giving
specifications for the hardware and software involved.

RAE Form A143

W—

