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PREFACE

The Department of Defense in the United States is running a project,
known as IRONMAN , to establish a new progranmiing language for
computer applications embedded in other hardware. Their evaluations
of existing languages determined that only PASCAL, ALGOL68 and Pill
were suitable as bases for the new language. This report describes
work that was begun on such a Pill-based language. The work was
terminated before completion since the Department of Defense have
recently chosen to pursue only PASCAL-based solutions.

This report contains a technical discussion leading to a PL/I-based
language to meet the lronman requirements, and a user manual for
this language. Although it is incomplete we believe it will be of
some interest since there is enough to establish the potential of
the approach. The work did not reach the stage of being amended by
the input of IBM specialists in such fields as proof of correctness,
and no implementation has been attempted.
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CHAPTER 1. TECHNICAL DISCUSSION

1.1 INTRODUCTI ON

The US Department of Defense are running a High Order Language
pro ject. The aim is to develop a common language for use in
embedded computers , i.e. computers supplied as part of a larger
piece of equipment such as a radar system. Starting in 1975, they
have issued a series of requirements documents codenamed Strawman ,

Woodenman , Tinzn an and lronjnan (ref 1). Because of the
intended application of the language, the requirements point to a
language which could be called a systems programming language or a
real-time programming language. After evaluating many languages,
both existing and under development, the DOD decided that the
planned language should be based on PASCAL, ALGOL68 or PL/I .
However when the f our initial contracts were awarded in July 1977 ,
they were all to bidders proposing a PASCAL-based language.

The author~ started work on a Pill-based solution during the
evaluation and since the DOD have chosen not to pursue a Pill-based
language, we do not plan to continue our work. But we decided to
publish it as it stands today in the hope that it may be of use to
others working in this field. This report is therefore of
unfinished work , and undoubtedly contains many mistakes,
inconsistencies and omissions. To rectify these would be to
complete the language design work. We have no plans currently to
continue this work: either to complete the language design or to
develop a compiler.

The report describes in outline form a design f or a programming
language to meet the requirements in lronman (ref 1) using ANSI
Standard Pill (ref 2) as a base. We first took only those parts of
PL/I which met requirements in ulronman a , and then extended this
language to meet the remaining requirements. An important part of
the subs etting process was to increase the opportunities for
compile-time checking of the program by excluding, for instance,
implicit conversions . This was also helped by some of the
extensions; constrained pointers f or example. But the two main
areas of extension were (i) to allow the programmer to define new
data types and operations, and (ii) extensions to parallel
programming .

Most of the ideas we have used are not new; we have tried to learn
from previous work as much as possible. of particular influence we
could mention CLV (ref 3), MODULA (ref 7) • ILIAD (ref 4) and
ALGOL68. We have also benefited from discussions with colleagues
both inside IBM and outside, although the formal reviews by IBM
specia lists in particular fields that were originally planned have
not taken place.

-
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1.2 RELATION TO Pill

It is unlikely that any existing Pill programs will fortuitously be
PL/I Based Ironman (PBI) programs. The discipline we have proposed
for the positioning of declare statements etc. will prevent this
(see appendix). One could write PSI programs that were acceptable to
a PL/I compiler but major parts of PBI could not be used and the
compiler would not make some checks . Hence we are not talking about
a zero-cost interchange of Pill and PSI programs. Mechanical
transport of P1./I to PBI would be fairly simple by adapting a Pill
compiler to emit source rather than object code . A translator for
the other direction would be somewhat harder .

A principle reason for compatibility with PL/ I is to benefit from
the base of experience that the ANSI Standard represents. Thin
definition has been rigorously examined from a number of
perspectives over recent years . As far as possible we have departed
from it only by subsetting.

Programmers moving from P1./I to PBI would not have major hurdles to
cross. They would:

-need to adopt the disciplines of explicit declaration and conversion.
-need to work within the subset,e.g. BASED only in AREAs
-eventually learn to benefit from MODULES etc.

1.3 DYNAMISM

There is a general problem with languages in deciding how dynamic
things should be. Should the size of an array be changeable at every
reference (as with APL ) , at procedure entry (as with PL/I ) , or
should it be fixed at compile time (as with PASCAL)?

Our approach has been to provide the most dynamic features that are
realistically consistent with making the best object code. For
example we would expect the compiler to map storage completely at
compile time (and tell the user the requirements) if the objects of
a particular program were all of fixed size (and there was no
recursion etc.) Otherwise the compiler would provide basic
information (such as space required by particular procedures) and
would nake efficient code for dynamic allocation but would not be
able to guarantee a maximum storage requirement.

PRIORITY is a difficulty. If the priorities are compile time
constants then the implementation can be very efficient when the
hardware has priority levels. Dynami c priorities mean significant
overheads irrespective of the hardware. It seems better to restrict
than to support multiple mechanisms in this case.

_ -- _ _
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1.4 CHARACTER SETS AND RESERVED WORDS

The syntax of the language is based on that of Pill. The character
set used is that common to EBCDIC and the 64-character subset of
ASCII, i.e.

AtoZ Oto9 ‘~~“ O*+ ,— ./:;<>=?_-~J
(note and are alternatives for A and I in ASCII)

%$a* are not used; the latter three are used as alphabetic extenders
in some countries.

If El are available they can be used as in mathematics, i.e. they
mean the same as C )  but like must match like.

Identifiers must be strings of letters, numbers and underscore (_ )
beginning with a letter . Some keywords in the language are reserved.
These are the ones which determine the structure of the prograldi or
ones where the syntax scan (b~th for a compiler or a human reader)
is made more difficult by use of the identifier for other things.
The reserved identifiers are: BASED, CASE, DECLARE, DO, END, IF,
INITIAL, MODULE, PRIORITY, PROCEDURE, RETURNS, SELECT, SYSTEM, THEN,
UNSPEC, VALUES , WHEN, WHILE.

Comments may appear anywhere a blank may appear, and are written
thus: 1* comment *1

1.5 DATA TYPES

Declare statement

The declare statement is used to introduce the names of variables
and constants.

DCL ( (level-no) ( identifier (identifier-commalist) )
attributes } ,. ..;

The attributes must include one datatype attribute (except for
structures) .
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Dat atype attributes

BIT
CHARACTER
FIXED DECIMAL (p (,q])
FLOAT DECIMAL (p)
POINTER TO (type) IN (area-ref )
AREA ( area-description)
FILE [RECORD (KEYED] PRINT]
CONDITION
VALUES (value-constant-commalist)
declared-type ( (extent-expr-commalist) ]

The DECIMAL precision(p) and scale(q ) specif y the allowed range and
interval of the values which an arithmetic data element may be
given.

(A possible alternative to DECIMAL(p) would be a RANGE attribute
which would be able to specify the allowed values more exactly e.g.
with maximum other than 1O**n-1, or always non-negative. It avoids
the problem of choosing BINARY or DECIMAL too.]

VALUES allows the programmer to specify a- list of names to represent
the possible values e.g. -

VALUES (UMONDAYW , TUESDAY”, WEDNESDAYM etc.)

(Another use of a RANGE attribute could be to specify a subrange of
a previously defined VALUES type.]

The attributes BIT and CHARACTER may be regarded as predefined
VALUES types with values of:

0 and 1 , and
A , UB , •C~ etc respectively.

Strings of bits or characters are introduced under the heading of
arrays. The attributes FILE , CONDITION , POINTER and AREA are
discussed later in separate sections.

Literal forms exist for the values of the computational types i.e.
FIXED FLOAT and VALUES (including SIT and CHARACTER).

Examples

FIXED : 23 0.625
FLOAT : 9.62E5 and FIXED literals used in a FLOAT context,

e.g~. FLT FLT+1;
VALUES ) the values specified in the VALUES attribute
BIT ) for this type.
CHARACTER ) e.g. ‘MONDAY , 0 (for BIT), A (for CHARACTER)

_  ~~--~~~~~~~~~ .- -~~~~~~~~~-~~~~~~~~~~~~
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If the same literal value is specified for several VALUES types it
may be used where only one of the types is valid. If more than one
is valid, the ambiguity should be resolved by a conversion operation
to the type intended, e.g. BIT ( 1U)

(If we did not want the literal values to be syntactically
distinguishable,the double quotes could be omitted, and the value~specified as normal identifiers. For single (non-letter) characters
the single quote could perhaps be used as for strings, although this
would not distinguish between a scalar and a string of length one.
Later versions of the Ironman specification do not ask for syntactic
distinction and this is reflected in some examples in this report. ]

Additional attributes

The following attributes may also be specified:

INITIAL (expression )
means that the object is set to the value of the expression
at the beginning of its lifetime.

CONSTANT
means that the value of the object is constant throughout
its lifetime. It must therefore not be assigned to..

CONSTANT (expression)
is a shorthand for CONSTANT INITIAL (expression).

Declared types

These are specified by a declaration which includes the keyword
BASED in addition to a normal attribute specification for an object,
e.g.

DCL COUNTER BASED FIXED DECIMAL (4);
DCL FIXCON BASED FIXED DECIMAL(1) CONSTANT;
DCL WEEKDAY BASED VALUES (‘MONDAY , TUESDAYm etc)

The attribute specification must include a datatype attribute
(except for structures) and may also include CONSTANT and INITIAL .
The declared user types can then be used in further declarations of
constants, variables or new types, e.g.

DCL ONE FIXCON INITIAL (1);
DCL (X ,Y,Z) COUNTER;
DCL SPECIAL-COUNTER BASED COUNTER ;

(Another possible syntax for the declaration of types would be a new
statement, e.g.

TYPE M~TYPE BIT; 

-----~~~~~~~~~~~~~~~~ ~-- - -  —~ - —.- - -
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But using BASED preserves the part of PIS/I which provides some type
declaration function. The type can be considered based” on the
attributes used to define it..]

1.6 AGGREGATES

In addition to the datatypes already described, objects may be
declared to be aggregates, either arrays or structures. Both are
made up of components which can be selected and operated upon
individually: for arrays the selector is the value of an expression
or expressions (the subscripts) which are of a declared type, for
structures the selector is one of a set of declared names. 

-

Arrays

Arrays of one or aore dimensions can be declared; the range of each
subscript can be specified either by a VALUES type or as an integer
range. For integer values , the lower bound is always 1 and is not
specified . Arrays are declared thus:

(dimens ion-cotmnalist) datatype

dimension::= extent-expression I usertype I BIT I CHARACTER

Examples

DCL X (10 ,1+2) BIT;
DCL Y (WEEKDAY) FIXED DECIMAL (2);
DCL POINT BASED (3) FLOAT DECIMAL(6);

elements can then be referenced thus :
X(J,4) Y (W MO N DAY W )

Any integer in an attribute, such as the extent-expressions
specifying the dimensions of an array are evaluated when the array
is allocated at the beginning of its lifetime. For a declared
variable or constant this is on entry to the block in which it is
declared.

An extent-expression can involve components of the aggregate being
declared, in which case these components must be constants
initialised either in the declaration of the type, or in the
declaration (or allocation) of the variable.

_ _  _ _ _ _ _ _ _ _ _ _ _ _  
_ _ -



~~~ --
_ — ..-- _ —---.-- - ,.- -,~~~

_ .~~
_

UNRESTRICTED TR.. 12.. 168 Page 11

DECLARE 1 STRUCT BASED,
2 N FIXED DECIMAL(2) CONSTANT,
2 ARRAY(N) BIT;

DECLARE X STRUCT INITIAL(N:50);

A declared type or parameter may be specified with an asterisk in
place of an extent-expression , e.g.

DCL VECTOR BASED (4 )  FLOAT;
DCL PARAM CHARACTER ( 4 ) ;

This means that the object contains a hidden field which will
contain at run-time the value of this extent . This value is set at
allocation time and is then constant for the lifetime of the object.

For declared types the value is specified in the declaration. The
values are associated with the asterisks in order.

DCL V VECTOR(10)ailocates a (10)FLOAT plus the hidden field with
value 10..

For parameters it is taken from the argument.

(A note on precision

The precis ion and scale specifications, p and N q W in the datatype
attribute list are integer values.

So they could be allowed to be expressions calculated at procedure
entry. But this would in practice be of limited use and certainly
make separate compilation of subroutines more difficult , and should
perhaps be disallowed. Expressions which can be evaluated at
compile time are of course relatively straightforward.

They could also be asterisks. This is useful for type
specification, e.g.

DCL INTEGER BASED FIXED DECIMAL(*,O)
DCL (A ,B,C) INT~~ER(5);

But it is probably sufficient, and much easier to implement , if
these asterisks can be resolved at compile time. In wuich case they
are really a form of compile time parameter. We could use ? rather
than S for this form:

DCL INTEGER BASED FIXED DECIMAL(?,0);

Note however that since assignment is defined between different
precisions, a routine can be written to handle arguments of various
precisions by making the parameter precision the maximum required.

_ - _-

~
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On the other hand this means a compiler can compile code to handle ?
precision parameters by using the maximum precision of the target
machine , or the ma ximum used by calls to the procedure.

(It might be useful to allow repeated use in a type definition of a
single element , e.g.

DCL MATRIX BASED (?1,?1) FLOAT ;
DCL M MAT BIX (3) ;

It might also be useful for function definitions:

SIN:PROCEDURE (X:FLOAT DECIMAL(?1) )RETURNS(FLOAT DECIMAL(?1 ));]

(These numbered question marks are really nothing but identifiers,
and the next stage would be to use identifiers , and allow them to
take values other than integers, for example-types (ref 5).

It would be a useful extension to allow types as parameters to other
types, e.g.

DCL PAIR(T) BASED (2) T;
DCL X PAIR(FLOAT DECIMAL(6));

This would allow the definition of new aggregates such as STACK or
QUEUE . However the implications of this for the definition of
operations is complex , and needs further study.]

Array construc tor

Array values can be constructed from element-values; the notation is
a parenthesised list, each element specifying a subscript and the
value which the corresponding array element is to have, e.g.

(1:X+Y , 3:A, 2:93)
( W A W :193 , B~~~ 194 “C :195)

Consecutive integer subscripts may be omitted:

(10 ,20,30 ,50)

and repetition may be specified:

((2)(2,3)) is equivalent to (2 ,3 ,2 ,3) .
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Multiple dimensions are specified by nesting the parenthesised
lists:

( ( 2 , 3,4) , (3 , 4 ,5) )

These forms may be used wherever a corresponding array reference can
be used, e.g. in INITIAL, assignment, or argument. But they cannot
be subscripted.

This constructor notation is used for array literals also. When the
literal is a commalist of single character literals of a VALUES type
(e.g. for (*)CHARACTER) the following shorthand is available:

‘ABC’ for (WAW •B~ , C’) etc.

Type names may be used on constructed values to specify their type
if required:

BIT(’lOOl’) POINT(0,1,1)

Strings

The datatype attributes:
BIT (extent-expression)
CHARACTER (extent-expression )

are builtin with a definition as one-dimensional arrays:
(extent-expression ) BIT
(extent-expression) CHARACTER

and certain operations not available for all arrays are defined for
these types.

Additional string types can be defined , e.g.

DCL BCDCBAR VALUES ( WA , etc ...);
DCL BCDSTRING BASED (4 )  BCDCHAR;
DCL STRINGVBL BCDSTRING( 12) ;

Structures

Structures can be declared using level numbers, e.g.

DCL i S ,
2 X ,

3 A FIXED DECIMAL (S)
3 B CHARACTER ( 3) ,

2 C MYTYP E

L _ _ -4
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Structure values can be constructed; the notation is similar to that
for arrays: a parenthesised list , each element specifying which
component and the value it is to have, e.g.

(X: (A:99 ,B: ‘ABC’) ,C:XYZ)

( One can debate whether this is too elaborate. There are merits in
schemes which allow assignment of a list of values to a structure,
e.g. MARY= ’FEMALE ’, 27; ]

CONSTANT/INITIAL may be specified on structures or their elements
(but not both). When specified on a structure, the constructor
notation is used for the value.

DCL 1 COMPLEX BASED, 2(REAL,IMAG) FLOAT DECIMAL(6);
DCL X COMPLEX INITIAL (REAL: 1, IMAG:-2)

For types declared based on structures, the typename may be written
before a cons tructor where necessary to specif y the type intended,
e.g.

COMPLEX (REAL:1, IMAG:-2)

Variants

In some structi res, a field may appear or not depending on some
other information. This can be declared, but the discriminating
information must be part of the structure , so that the structure is
self-describing . This makes it possible for the compiler to check
for correct usage - for a further discussion see the section on
DYNAMIC STORAGE”.

The alternative fields are declared at the same level and each bear
the attribute CASE , e.g.

DCL 1 PERSON BASED,
2 SEX VALUES (“M” ,”F”) CONSTANT,
2 MAIDEN_NAME CRAR (12) CASE (SE X ”F”) ,
2 MILITARY_SERVICE BIT CASE (SEX ”M”);

The CASE expressions must be of Constant value through the lifetiL
of the structure. Structure elements later in the structure may not
be involved. The expressions are evaluated when the structure is
allocated and storage is provided for the element for which the
expression is true. There should be only one. (This might be a
bit strong. We could say the first applies , as with SELECT. We could
even allow none or several of the CASES to be present . In this case
IF might be a better word than CASE.. ]
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Unions

The discriminating field will be provided automatically by the
compiler if no expressions are specified on the CASE attributes,
e.g.

DCL 1 NUMBER ,
2 X FIXED DECIMAL(6) CASE,
2 Y FLOAT DECIMAL (6) CASE;

In this case the di scriminating field is not constant, but will
reflect the current value of the structure. Sufficient storage will
be allocated for all possible cases.

All forms of aggregation may be combined without restriction.
Arrays of arrays, arrays of structures, structures of arrays are
allowed. Variants and unions may be specified for minor structures
and may be nes ted .

1.7 REFERENCES

Reference to a declared variable or constant is by its name .
Aggregates may be referenced in toto by this means • An element of
an array is specified by subscript(s) . Trailing subscripts may be
omitted, thus referencing a connected array of lower rank.
Components of structures are referenced with dot-qualified names.
For arrays of structures and vice versa , any subscripts in a
reference must be written on the name which is declared dimensioned.
Subscripts may not be omitted on qualifying names , to avoid
disconnected references.

Variants and unions may be referenced in toto like other structures.
The components may also be referenced: in this case the compiler
will check that the discriminating field(s) have values consistent
with the CASE cf the compon ent referenced. (This check may be done
at run time, or flow analysis at compile time may make it
unnecessary.) The exception is assignment to a CASE component of a
union, which is always allowed. The (hidden ) discriminant is set to
describe that CASE.

_ __ __ _ __ _ _  _ _ _ _ _ _  
- .  ~~~~~~~~~~~~~~~~~~~ 



— . - - ,~~~~~~~~~~~~~~~~~~~~~~~~~~
—,.

UNRESTRICTED TR.12.168 Page 16

Examples

DCL X BIT; X
DCL A (iO) CHARACTER ; A C ) ) , A(I+ 2)
DCL B(20,20) COUNTER; B(5,2),B(7), B, not B(,7) or B(*,7)
DCL 1 S(i0), s, S(2)

2 C (5) CHARACTER, S(5).C(2), S(5).C, not S.C(5,2) or S.C
2 D BIT S(2).D, not S.D(2) or S.D

For a one dimensional array where the dimension is of integer type,
as well as referencing a single element, a subarray can be
referenced, e.g. (using the declarations above)

A(2:5)means a 4-element array consisting of
A( 2) A ( 3 )  A (LL) and A(S).
This array is of type (4) CHARACTER.
B(20,X:Y)sub-array can only be specified for the rightmost
dimension, to avoid disconnected references.

(It might be useful to include the notation
.1

A (2::4) also, meaning the same as A (2:5). This can often lead to a
constant length being apparent to the compiler and resulting in
better code. A useful mn emonic for these operators is to consider
the number of dots: 2 “two” 5 and 2 “four” 4.1

1.8 ALLOCATION AND ASSIGNMENT

Allocation, freeing and assignment are defined for all datatypes
except CONDITION, AREA and FILE, for elements, aggregates and
declared types.

A declared variable or constant is allocated on entry to the
procedure in which it is declared. Any initial value declared for
it is assigned to it at that stage. During the lifetime of the
procedure , i.e. until control returns from it to the caller, the
variable or constant may be referenced from any point in the program
where it is known (see under “scope of names”). When control leaves
the procedure the variable or constant is freed. On a subsequent
call to the procedure , the variable or constant is allocated again
and re-initialised if INITIAL was specified.

For dynamic or explicit allocation see under “DYNAMIC STORAGE”.

_ _ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
_ _ _  _ _ _ _ _ _
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Assignment

The assignment statement is written thus:

~ef erence = expression

weaning that the expression is evaluated to give a value (the
“source”) and this value is given to the variable identified by the
reference (the “target”).. Assignment is also performed in other
constructs of the language, for example a DO-loop with a control
variable, or argument passing.

Assignment is defined for all types when the source and target are
of identical type. This means for elements:

1. both BIT or both CHARACTER

2. both FIXED with same precision and scale

3. both FLOAT with same precision

4. both POINTER with same TO and IN

5. both BIT(n) or CHARACTER(n) where n is the same value for both

6. both the same declared type, with the same values for any *
specif ication

7. For arrays:the same number of dimensions, type and values of
each dimension, and same type of element.

8. For structures:same names and types for all components,
including CASE attrib.ites where present.. (Major structure names
may differ) ..

Assignment is also defined for some cases where the source and
target are not of identical type..

FIXED FIXED
of different precisions. If the value of the source
exceeds the range of the target, the condition SIZE is
raised .

FIXED FIXED
where target scale is not less than than source , but not
vice versa .

FLOAT FLOAT
where target precision is greater than source. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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FLOAT FIXED
where target precision is not less than source.

Any other conversions must be done using explicit conversion
functions.

1.9 OPERATIONS

There are four syntactic forms for operations, three return a value
and thus appear in expressions and the fourth does not and thus
appears as a statement.

i) prefix operations

expression: := prefix—operator expression

prefix-operator: : + - -
~

ii) infix operations

expression::= expression infix-operator expression

infix-operator::= + - * / ~ ~ I I I II
I = I - ~= I > = I <= I> I< I ide n t i f i e r

The prior ity of these operators is:

highest * /
+ — I I
= > < >= <= ~~1=

lowest

If two operators of the same priority are adjacent, parentheses must
be used to specify the exact meaning. The exception is + , - and I f
where they are perf ormed from left to right, in recognition of the
nature of the standard definition of these operations. Identifier
operators have undefined priority and parentheses must always be
used if they appear with another operator.

examples: A+B-C
(A/B) *(
A MOD B
(A MOD B)LOG 10
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iii) function operations

expression::= identifier ( expression-comma].ist)

iv) subroutine operations

statement : := (CALL] identifierl ((expression-cotnmalist ) 3
(identifier2 (expression) ]

(identifiern (expression) 1;

The reason for allowing only a standard list of operator symbols,
and for not allowing identifier prefix operators is that with the
above rules an expression can be parsed without knowledge of what
operators have been defined .

To compile the program, a def inition must be available for each
operation in the program, i.e. a definition of that operator on the
appropriate operand data types.

These definitions may be user-written or they may be built in to the
language.

I It would be good documentation if the invocation of an operation
indicated whether the the arguments were to be altered or not. Since

is not otherwise used as a prefix or postf ix operator , a
reasonable syn tax would be, for example :

CALL X( A+1, B=, ~C );/* A used,B set, C both *1
The same syntax would have a use with parameter and export lists.

The DoD has said that functions on the left of assignment are not
required , although without them there is no reasonable way to make
sparse arrays (say) a user extension. They could also be used to
implement sensor output with the syntax of variable reference. 3

Built-in operations

prefix •+“
defined on all FIXED and FLOAT , yielding the same.

pref ix  -“

as prefix “+“

prefix “- “

defined on BIT, yielding BIT ;defined on BIT(*), yielding
the same

—S



~~~~.- - - .
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inf ix +“
defined on FIXED DECIMAL(pl ,ql ) and FIXED DECIMAL (p2,q2)
yielding FIXED DECIMAL (1+max (pl-ql ,p2-q 2) + max (ql ,q2),
max (ql ,q2 ) ;defined on FLOAT DECIMAL(pl) and FLOAT
DECIMAL (p2) yielding FLOAT DECIMAL(max (pl,p2))

inf ix “-“

as inf ix “+“

infix “*“
as infix “+“ except FIXED result is (pl+p2+l , ql+q 2)

infix “I”
as infix “+“ for FLOAT ;only allowed for FIXED in positions
where there is an explicit target , i.e. as the source of an
assignment, since the precision required to hold the result
exactly is indefinitely large. With an explicit target ,
the precision of the target can be used . Thus A=B/C ; can
be written , but not A (B/C) *D for FIXED data .

infix “g”
defined on BIT or BIT(*) and the same , yielding the same.

inf ix “ f ”
as infix “~~ “

inf ix •g€ ”
as infix “&“ (exclusive-or)

infix “=“

Defined for FIXED and FIXED of any precision/scale, FLOAT
and FLOAT of any precision, and all pairs of identical
types, including aggregates, yielding BIT.

infix •-‘=“

for all types , a-” b defined as -‘(a b ) .

infix “>“
defined for FIXED and FIXED of any precision/scale, FLOAT
and FLOAT of any precision, pairs of the same VALUES type.
including cHARACTER , but not BIT. Yields BIT.

Also defined for CHARACTER(*) and CHARACTER (S) including
different lengths , yielding BIT. Normal “dictionary
or dering” is used.

inf ix “<“
for all types, a<b defined as -~( ( a > b ) t ( a b) )

inf ix “ <“
for all types, a<=b defined as (a<b) f (a b)

inf ix “ >“
for all types. a > b  defined as (a>b)~~( a b )  

-~-- .. — ~~~~~~~~~~~~ . .
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infix “ t i ”
defined on one-dimensional arrays, with integer dimension
and e lements of identical type.

Yields a one-dimensional array of the same type with
dimension equal to the sum of the dimensions of the
operands .

Only allowed where there is an explicit target, i.e. as
source of assicinment. A=BI Id fD etc. is allowed.

Builtin function operations

The builtin functions EMPTY, NULL, ONCODE and DIMENSION are provided
as in PL/I. (Because results are system-dependent, ONCODE is allowed
only in system modules.) Most other functions can be written in the
language and INCLUDEd from libraries.

Builtin subroutine operations

The statements defined in the language include READ. REWRITE , WRITE ,
OPEN, CLOSE, GET and PUT. These are described in the section
INPUT/OUTPUT”.

User-written operations

These are defined by procedures (see below).

1.10 PROGRAM STRUCTURE

Flow of control in programs is specified using the following
constructs:

IF BIT-expression THEN clause; (ELSE clause;)

Each clause iray be an executable statement, including IF or a DO-
group. They may not be labelled..

(l abel:] DO;
executable-statement-list
END (label) ;

Is a way of combining statements into a clause for use in IF or
SELECT constructs. If the label appears on END, the same label must
appear on the DO..

~

- - - -—-

~
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DO WHILE (BIT-expr ession); 
-

The body of the DO-group is executed zero or more times; the WHILE
expression is evaluated and tested before each iteration.

(Indefinite loops can be written as DO WHILE(TRUE). It might be
better however to have a more elegant form such as LOOP or DO WHILE
without operand.]

DO ctlvar = expression (BY expr2] (DOWN] TO expr3;

The control variable must be an unsubscripted unqualified variable.
It may be FIXED or a VALUES type; in the latter case the BY option
may not appear. It would be possible to extend this to allow any
datatype for which the necessary operations + (for BY) and > were
defined.

For FIXED the neaning is defined as:

t2 = expr2; t3 = expr3;
ctlvar = express ion;

y: if ctlvar > expr3 then go to x; (< if DOWN appears]
do-body
ctlvar = ctlvar + t2;
go to y;

If the BY-option does not appear in the FIXED case, t2 is set to
one . DOWN and the lack of it assert that t2 is less or greater than
zero.

For VALUES, the meaning is similar - the body is executed with the
control var iable set to each of the specif ied values , in order. The
VALUES type must be ordered, i.e. the operation ‘>‘ must be defined
for it.

DO ctlvar;

Similar to above, the same rules apply for the control variable,
except that the operations + and > need not be defined, and the
order in whch in the control variable takes its values could be
undefined. The body of the loop is executed repeatedly with the
control variable set to all the possible values for its type, in an
undefined order.

L. .~~~~~
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Multiple case construct

It would be possible to extend the IF statement to multiple cases,
e.g.

IF A = I  1 F f
1 THEN clause; I A>O THEN clause;

I 2 THEN clause; A 0  THEN clause;
I A<0 THEN clause;

(ELSE clause;]

This is very like the notation of “guarded commands” introduced by
Dijkstra (ref 6).. But we have a PL/I construct already implemented
by IBM and proposed to ANSI, so we had better stick to it.

SELECT (expr); SELECT;
WHEN (expr-commalistl) clause; WHEN (BIT-expri) clause;

(OTHERWISE clause;) (OTHERWISE clause;]
END; END;

The WHEN expressions are evaluated in order until either expr=expr-n
or BIT-expr-n is true for the two versions respectively. Then the
corresponding clause is executed and control passes to after the
END. If no WHEN expression is satisfied the OTHERWISE clause is
executed, and if there is none the ERROR condition is raised.

GO TO label;

This statement transfers control to the statment with the
corresponding label , which must be in the same procedure as the GO
TO statement. Transfer into (Or out of?) a THEN or WHEN clause, or
a DO group is forbidden.

LEAVE ( label] ;

This statement transfers control to the statement following the END
of the DO or SELECT group with the corresponding label, or if no
label is specified, the immediately containing group. The LEAVE
statement must be in the group which is left.

A lone semicolon is a null statement which does nothing. It can be
used to carry a label, or to express a null clause, after WHEN ( )
for example .

L _ 
_ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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Procedures

PROCEDURE blocks specify the code for a function (i.e. a prefix,
infix or function operation) or a subroutine. Functions return a
value, whereas subroutj.nes do not. Subroutines may have keyword
arguments, whereas functions do not. The name of a procedure is an
identifier or, for prefix and infix operators, it may be an operator
between double quot es .

(label “operator” }:
[(condition-commalist) :]
PROCEDURE ( (pa rameter-identifier-commalist) ]

[RETURNS ( datatype)
(identifier (parameter-identifier ) }... ];

declaration-list
procedure-list
executable-statement-list
END (label];

Examples

SIN : PROCEDURE CX ) RETURNS (FLOAT DE CIMAL (6 )) ;
DECLARE X FLOAT DECIMAL (6) CONSTANT;

RETURN (expression );

END SIN;

MOD : PROCEDURE (X ,Y) RETURNS (FIXED DECIMAL (6));
DECLARE (X, Y) FIXED DECIM AL (6) CONSTANT;

RETURN ( expression);

END ;

: PROCEDURE CX ,?) RETURNS (FIXED DECIMAL(6)) ;
DECLARE (X ,Y) FIXED DECIMAL(6) CONSTANT;

RETURN (expression);

END;



~ 
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SEARCH : PROCEDURE (A) KEY (B) SET (C);
DECLARE A (*) CRARACTER (8) CONSTANT,

B CHARACTER ( 8) CONSTANT,
C FIXED DECIMAL (3);

END;

Now these definitions can be used thus:

SIN(P)
MOD(P,Q) or P MOD Q )in expressions
P+Q )

SEARCH(P) KEY(Q) SET(R); as a statement

( We have introduced keyword arguments, in a minimal way, for
readability. The further steps of allowing testing for the presence
of arguments (and hence defaulting) and allowing keywords without
arguments, would allow the user to adopt command-language-like
syntax. I

(It might make programs clearer if the types of the parameters, like
the type of the returned value, were specified in the parameter list
rather than in separate a DECLARE statement:

SIN : PROCEDURE (X:FLOAT) RETURNS (FLOAT);

But perhaps it isn’t worth changing.]

Parameters

The parameters of a procedure are allocated on entry to the
procedure. Any extents specified by * in the parameter declaration
are taken from the type of the corresponding argument. Then the
argument (s) are assigned to the parameters, following the normal
rules of assignment. If the parameter is CONSTANT, it may not be
subsequently assigned to (directly or indirectly). CONSTANT and
expression arguments may only ~e passed to CONSTANT parameters. 9’he
parameters of functions must be CONSTANT.

If the parameter is not CONSTANT, it may be assigned to during
execution of the procedure, and will be assigned back to the
argument varial ‘e when the procedure returns control to the caller.
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(The CONSTANT attribute is really a declaration of something the
compiler could deduce from the program .. We could introduce a similar
RESULT attribute, declaring that a parameter was never read before
being set.]

A compiler can compile code to pass parameters by reference, rather
than by value , if it can determine at compile time that the results
will be the same . For synchronous calls this will be the case when
argument and parameter are of identical type , unless a subroutine
assigns to a parameter under some alias. This could be done, for
example, by assigning to an argument variable, or to another
parameter when the same argument variable was passed to both. The
language could forbid all these cases anyway (see more below) .
Particularly for large aggregates , passing by reference is a useful
optimisation.

Inherited names

Functions and subroutines may reference names declared in containing
procedures, but not names declared in contained procedures.. (The
name of a contained procedure is considered declared in its
container.)

However a function may not (directly or indirectly) assign to any
inherited variable. (This means that functions “have no side-
effects”.)

A subroutine may not reference an inherited variable which has been
passed to it as an argument to a non-CONSTANT parameter, or assign
to one which has been passed to a CONSTANT parameter. Neither may
the same argument variable be passed to two non-CONSTANT parameters.

(This last paragraph is the “Ironman ” requirement (paragraphs 7E and
71). But it is difficult for a compiler to recognise these
situations with certainty because of aliases. There arise in two
cases - array subscripting and pointer qualification . Are A (I) and
A (J) the same variable? Are PTh-> and PTR2-> the same variable?

If we have the restrictions, the compiler must in these cases
compile the program (assuming they are not aliases) and give a
warning message. This message should be suppressed by an assertion
e.g.

ASSERT I-~~J; 
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The alternative wcxild be to allow the alias situations, with the
meaning defined by the description of the parameter mechanism in
terms of assignment. Then a verifier would have more trouble with
the program - trouble which would again be dispelled by the
assert ion .

The two approa ches are not so very different in practice.]

Scope of names -

The names under discussion are the declared names of data , including
elements , aggregates and their components , variables and constants,
and value-constants, the declared names of types (i.e. BASED)
including the names of their components if based on a structure, and
the declared names of operations (i.e. PROCEDUREs).

Procedures affect  lifetime and scope. Declared objects are
allocated on entry to the procedure in which they are declared and
live until exit from the procedure .

The scope rules for procedures are the same as in PL/I and other
block— structured languages. Names are known in the procedure in
which they are declared and any contained procedures. If a name is
already known in the containing procedure (and thus would be known
in the contained procedure) a declaration of the same name in the
contained procedure overrides the inherited definition.

(The compiler knows which names are imported into a procedure. The
programmer can know from a cross-reference listing, but this is
rather detailed . If the programmer is transporting the procedure he
needs to know what other procedures should be transported at the
same time. The CONTEXT (identifier-list) statement would allow the
programmer to document names that the procedure imports . By naming
an enclosing procedure (or a module ) a single name in the list could
ensure the names of that block were included . The compiler would
check that the CONTEXT assertion implied all the names actually
imported into the procedure . I

For operations, overriding definitions are not allowed. An inner
declaration does not override unless the declarations of the operand
types are identical. Otherwise the two definitions are both
available and resolution is determined by the operand types .
Bui].tin operations on builtin datatypes may not be overridden.

The algorithm for resolving an operation use is as follows. For the
scope in which the use appears , then for the containing scopes in
order , and f inal ly  for the builtin operation definitions, do the

—— - -.- - . — .
~~~— - - — - - —  ~~

_ -—--- - . . - _ -__ ._._ -_a__-_- ~~~~~~~~~
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following. If there is a procedure with parameters which exactly
match, i.e. same number of operands with same keywords if
applicable, and the types of the par ameters and the operands of the
operation being resolved are identical , except for a * in a
parameter and a corresponding integer in the operand, then use that
procedure. If not, if there is a procedure with the same number of
parameters, same keywords if applicable , and the parameter types are
valid assignment targets for the operands of the operation being
resolved, and valid assignment sources in the case of non-CONSTANT
parameter s , then use that procedure . If not , try the next scope .

1.11 MODULE S

Modules affect scope but not lifetime. A MODULE is written thus:

module-label: MODULE [export-list]
(declaration-list]
(procedure-list]
(executable-statement-list]
END [label];

If a module contains executable statements , it may appear anywhere
an executable statement may appear. If it does not, it may only
appear in the declaration or procedure list of a procedure or
module.

The scope rules for modules are as for procedures, except that names
may be explicitly exported from a module.

Names known in the containing procedur e or module are known in a
contained module. Names declared in a module are not known in the
containing procedure or module unless they are explicitly exported .
The syntax of the export list is:

EXPORTS( export-item-commalist
export-item :: identifier (EXPOSED]

The identifier may be the name of a declared constant , variable ,
type or procedure. The option EXPOSED is used only with types . If
a type is exported from a module , the base attributes are not known
outside the module and so if the base was an array or structure,
objects of the new type cannot be subscripted and components cannot
be selected. The EXPOSED option specifies that the base attributes
are known outside the module and references to elements or
components are permitted. Values of the type can also be
constructed by writing the typename as a function with a constructed
value of the base type as argument .
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M : MODULE
EXPORTS ( MYTYPE EXPOSED);
DCL 1 MYTYPE BASED(100),

2 A.. ;

2 B ...;

END M;

DCL MYVBL M YTYPE ; 1* allowed without EXPOSED */
M!VBL(J)..A 1* re ferences only allowed *1
MYTYPE(( 100)(A: 1,B: 2 ) )  1* with exposed *1

To expose some ccmponents and not others, the components to be
hidden should be made into a separate, unexposed type , e.g.

DCL 1 HIDDEN BASED,
2 H 1 ,
2 H2;

DCL 1 NEWTYPE BASED ,
2 H HIDDEN,
2E;

EXPORTS (NEWTYPE EXPO SED, HIDDEN3

In the scope in which a type is declared, assignment is defined
between the declared type and its base type , and therefore the
operation resolution rules allow the operations of the base type to
be used on the new type, and data of the new type may be used
anywhere data of the base type could be used.

e.g. DCL MYTY?E BASED BIT;
DCL MYVBL MYTYPE;
IF - MYVBL THEN ... 1* is OK 4/

If a type is exported from a module , whether or not the type is
exported EXPOSED, no operations are available outsi de the module
unless they too are exported (or defined in the outer scope, but in
practice some operations would need to be exported to form a basis) .
The exceptions to this are the operations which are defined on all
datatypes, viz allocation , freeing and assignment . These are always
inherited without explicit export , and cannot be redefined.

(It might be useful to have a way of EXPOSing components only for
read and not for write - all setting of the components would still
have to be done in the module.]

Both operations inherited from the base type and operations defined
in the MODULE may be exported , and the process can be nested : the
available operations on a type can be used on any new type defined
using it as a base. 
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M:MODULE
EXPORTS (MYT!PE ,INCREMENT);
DCL MYTYPE BASED FIXED;

INCREMENT : PROCEDURE(P);
DCL P MYTYPE;
p p+1;
END ;

END ;

DCL MYVBL MYTYPE; /4 user type exported from module *1
MYVBL=MYVBL+1; /* error : no + operation defined

on MYTYPE 4/
INCREMENT (MYVBL); /* Ok */

A module might define a new type and the operations on it. It can
also define operations between types : exported operations act on the
types of their parameters.

The lifetime of data declared in a module is determined by the
containing procedure. These data may therefore live from one
execution of code in the module to the next, providing the function
of “oWN ” variables in A.LGOL6O and replacing STATIC in PL/I , e.g.

M : MODULE
DCL Z FIXED INITIAL(O);
X : PROCEDURE;

Z = Z+1;
END;

Y : PROCEDURE RETURNS(FIXED);
RETURN(Z);
END;

END;

A program which includes the module N can call X any number of
times, and call Y to discover how many times X has been called. The
value will be reset on each entry to the procedure containing M.

(“Ironman ” asks for explicit loading of portions of programs. This
could be perhaps be done using modules and/or procedures as the
unit.. They would have to be marked in the program as not loaded
automatically (which is the default) and then an explicit statement
could load and unload them.. They could be referenced only when
loaded .

M:MO DULE LOADED;

FETCH M;
RELEASE M; ] 

-~~~~~~~~~~~~ - - -~~~ -~~ ~~~-~~~~ - -
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Program libraries

Portions of a program may be kept as separate units in a program
library. If the statement:

INCLUD E label-commalist;

appears in a program, the result is as if the program portion with
the corresponding label had been taken from the library and
lexically included at the point in the program.

The portions of program on a library may be:

i)labelled modules
ii) labelled procedures
iii)labelled declare statements

Modules can be used to include the definition of new types and
operations on them , with some hiding of things not exported.
Modules can also be used to include in-line portion of executable
code, possibly with its own declarations.

Procedures can be used to include the definition of a single
operation. Declare statements can be used to include a list of
declarations - the “comma list” syntax of the declare statement
allows an indefinite number of declarations in one statement. Note
that this would not be done to include declarations of shared data
in several procedures; in this case the declarations would be in a
containing procedure which INCLUDEd the several procedures. But it
would be useful for writing several versions of a procedure working
with the same data .

(It would be possible to allow labelled DO and SELECT groups to be
INCLUDEd froff libraries also , although this would provide no
function not already available by INCLUDin g a module. In the same
way, INCLUDing procedures provides no function over including a
module containing and exporting that procedure, but it does avoid
some extra statements and another name.]

Although the definition of the effect of INCLUDE is in terms of
lexical inclusion, it is expected that compilers would be able to
process libra ry portions separately and combine the processed form
into programs when INCLUDEd. This is especially true for procedures
and modules containing type and operation definitions.
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1.12 EXCEPTION HANDLING

During execution of a program, an exceptional condition may arise.
We consider here conditions which arise synchronously as a direct
consequence of the execution of the program, such as dividing by
zero , not an interrupt from outside the program even if it was
indirectly prompted by previous actions of the program. (LTPL-E call
these synchronous couditions “loose happenings” .)

There are no execution time error messages , in principle, because
errors give rise to conditions and these conditions may be handled
by ON-actions. However, an installation may provide a facility to
‘dump’ the status of an execution if a condition occurs for which
you have not specified an ON-action. This ‘dump’ can be subsequently
analysed ( in conjunction with the source program ) to provide a
symbolic picture of the failing execution and the values of its
objects.

Some conditions of this kind are builtin to the language and are
raised by various language constructs. These are listed below.
Others may be declared thus:

DECLARE condition CONDITION ;

All conditions, builtin or declared , may be raised explicitly by the
SIGNAL statement:

SIGNAL condition;

ON statements

What happens when a condition is raised is specified in ON
statements:

ON condition GO TO label;

These may be written in any procedur e, after the declaration-list
and before any executable code . They may be regarded as a form of
initialisation, although they generate no executable code. If a
condition is raised , then if an ON-statement for that condition
appears in the procedure , control is transferred to the label
specified, which must of course be in the same procedure . If no ON-
statement appears for the condition but one does appear for the
ERROR condition , th~~ that is obeyed . If no ON-statement appears

----

~
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for ERROR either , the procedure is terminated and the condition is
raised in the calling procedure , where the same definition applies.

1.12.1 SETS OF CONDITIONS .

There is a case for generalising the mechanism that allows ON ERROR
to be the action for many conditions. If names could be declared for
sets of conditions then ERROR would be a special case of this.

(It would be possible to allow as the ON-statement action not only a
GO TO statement, but other executable statements or groups. But
Control must not fall through the ON-units, since there is nowhere
to go.

For example:

ON condition SIGNAL another-condition ;

might be useful in definition modules . Such an extension might
improve readability, but it would provide no function not available
throug h GO TO.]

Condition prefixes

It is possible to assert that a condition will not occur in a
portion of program by writing a condition prefix on a PROCEDURE,
MODULE , group or executable statement. This means that an optimising
compiler need not generate code to deal with cases which would raise
the condition.

label: ((NOco ndition) :] PROCEDURE

Such a prefix way be overridden on an internal scope by a
(condition) : prefix . And conditions and NOconditions may be combined
in a commalist as a prefix.

Implementation note

The restrictions on placement of ON-statements mean that the enabled
condit ions and ON- actions can be bound at compile time to a
par ticular portion of the program. This specification can thus be
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kept statically with the object code of the program, and require no
executable code to establish at entry to procedures. The terminate
and raise-in-caller action can be done at run time using the already
established call chain.

Builtin conditions

AREA see under “DYNAMIC STORAGE”

ENDFILE
KEY
RECORD )see under “INPUT/OU TPUT”
TRANSMIT )
UNDEFINEDFILE )

CONVERSION raised by conversion functions
BIT , FIXED, FLOAT

ERROR described earlier

OVERFLOW raised if the value of a FLOAT
variable exceeds the capacity of the machine

UNDERFLOW raised if the value of a FLOAT
variable is too small for the machine to handle

SIZE raised if the value of a FIXED variable
is out of its declared range

SUBSCRIPTRANGE raised if a subscript on an array element
reference is out of the dimension range

ZERODIVIDE raised if a division of FIXED or FLOAT
by zero is attempted

(When a string is assigned a value of too great a length, PL/I
raises STRINGSIZE. For a short value it pads. For arrays, different
dimension is an error. In this lan guage strings and arrays are the
same , references to subarrays are possible , and we do not allow
different length assignment. We could raise STRINGSIZE for
assignment of both strings and arrays of differing lengths.] 

_ .- -,--——-
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1.13 INPUT/OUTPUT

There are two kinds of input-output required in the language , low-
level and high-level.. Low-level I/O exposes and exploits the
characteristics of particular devices attached to a specific
machine. High-level I/O has a meaning defined in the language, and
is implemented on every machine, hiding the different
characteristics of the machines.

High-level I/O

The main choice with I/O is whether to incorporate traditional
operating system aspects into the language. IRONMAN implicitly asks
for this.. It is reflected by (1) using the name resolution mechanism
for resolving TITLE arguments, and (2 )  using the language allocation
mecnanism for datasets-.

A subset of Pill I/O will serve for this without extension . High-
level I/O is done with files. There are three kinds of files:
stream files where character data (i.e. human readable ) is
transferred sequentially ,character by character, RECORD files where
data in internal format is transferred sequentially a record at a
time, and KEYED RECOR D where data in internal format is transferred
a record at a time but not necessarily sequentially - the record
number can be specified by a FIXED integer called the KEY.

File are declared in a DECLARE statement; the syntax is given in the
section on “Data types” .

[This subset of RECORD I/O is what in IBM PL/I is called
REGIONAL(1). It provides the basic facilities provided by
sequential and direct access devices. Content addressing by keys is
device-dependent and complex indexes are implemented in software and
could be written in this language as library routines; they have
therefore been left Out.]

Files must be explicitly opened before use and closed af ter use :

OPEN FILE(filename ) (LINESIZE ( constant-expression)]
(INPUT I OUTPUT I UPDAT E};

CLOSE FILE(filename);

(LINESIZE would be better as an additive attribute to PRINT in the
f i le  declaration, but PL/ I does not allow that.]  

~~~~~~~~ - - ~~~~---- - -
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The allowed input-output statements for each file type are given in
the table below:

Stream I RECORD I KEYED RECORD 
I I I 

INPUT GET(SKIPJ EDIT I READ INTO I READ(KEYJ INTO
OUTPUT I PUT(SKIPJ EDIT I WRITE FROM I WRITECKEYFROMI FROM

PUT(SKIP ] LIST I I
UPDATE I READ INTO I READ (KEYJ INTO

I I REWRITE INTO I REWRITE(KEY] FROM

In each sta tement a FILE option must appear after the statement
keyword ; the options must appear in the order listed.

The options are:

FILE (filename )
INTO (reference) )these references will normally
FROM (reference) )be structures
KEY (integer-expression)
KEYFROM (integer-expression)
SKIP
LI ST (expression- commal ist)
EDIT (expression-coimnalist) ( format-commalist)

LIST output uses a standard format for each data type and successive
items are printed with an intervening blank.

In EDIT output each item is printed in the format specified by the
corresponding format item . EDIT input is the reverse.

format:: (expression) (format-commalist) I
COL ( expression) I
SKIP ((expression)] I
PAGE I
X (expression ) I
A (express ion)] for CHARACTER items only
B [ (expression) ] I for BIT items only
E (exprl ( ,expr2]) for FLOAT items only
F (exprl (,expr2]) I for FIXED items only
P ‘picture’ for FIXED items only

Pictures are provided only for FIXED items, the allowed picture
characters are 9VZ I’$- .,B. All expressions in a format list must be
constant integer expressions.

The restrictions on data-lists and format-lists allow compile-time
pairing of data items and format items . This and the restricted
combinations ifake it possible to compile in-line code for much
formatting.
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The following conditions may be raised by file I/O statements:

UNDEFINEDFILE ( ( filename)]
raised by OPEN if the filename is invalid .

RECORD [ (filename)]
raised by READ/WRITE/REWRITE if the FROM/INTO operand does
not match the file record.

TRANSMI T [ (f i l ename)]
raised by READ/WRITE/REWRITE/GET/PUT if there is an error
in transmission.

KEY ((filename)]
raised by READ KEY/REWRITE KEY/WRITE KEYFROM if the KEY
value is invalid..

ENDFILE ((filename)]
raised by READ and GET if an attempt is wade to read
sequentially beyond the end of the file.

These conditions may not appear in a condition prefix.

(These conditions would be better as options on the appropriate
statement specifying action to be taken. The mechanism of block
termination is not needed for I/O conditions and is more difficult
to implement because of the filename. But that would mean a change
from PL/I.)

(“Ironman ” also requires statements to create and destroy files.
These could be options on OPEN and CLOSE or they could be separate
statements.ALLOCATE and FREE might be used . The capacity of the
file would have to be specified somehow, perhaps by a content-list
similar to that on AREA declarations. Optionally a device could be
specified; this would have to be machine dependent.]

Low-level I/O

The way in which attached devices appear in different  machine
differs greatly. For example, in System/360 one codes a program in
the machine language of a- different machine - the channel , whereas
in the PDP-11 one references special addresses in the storage of the
machine. And the nature of the attached devices may vary greatly
too, especially for embedded computers controlling equipment.

This makes it impossible to provide either standard statements in
the language with a defined meaning for doing control functions, or
to provide standard statements to write the machine dependent code
needed to implement such function. Exactly because one wants to
access and exploit the special characteristics of the equipment
attached to the computer , these operations have to be defined by the
user.

_ _ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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These defined operations would typically be subroutine operations
which look like statements, e.g.

READ DEVICE (‘OOC ’) INTO (reference);
OPEN VALVE (15,2) ;

The definitions can be written in system modules where access is
provided to machine instructions, storage locations, interrupts etc
and the device handling can be written in the way needed for the
particular machine.

1.14 DYNAMIC STORAGE

Some problems are best programmed using dynamic allocation of
variables , and the manipulation of pointers to them, but the danger
with such techniques is that the type checking normally enforced by
the compiler will be by-passed. It is of course possible to make the
necessary checks at run time, but this is expensive in both
processing time and storage. The language proposed here is designed
to be 0 safe” and to permit the majority of checking to be done at
compile time.

What do we mean by “ safe”? The definition adopted here is that an
erroneous program can never cause effects which no correct program
could produce. If we accept the frailty of programmers, errors
produced by programs which are correct (i.e. ones which obey the
rules of the language), but which do not have the required effect,
are inevitable. So this definition of safety reduces the set of
possible errors to a minimum.

One of the implications of such a definition is that an access
reference should al~~ys find a storage pattern which is a valid
value for the referenced type. This means that instances should be
initialised to a valid value on allocation (unless the compiler can
be sure that they are set before any use).

For data types such as character or arithmetic, often all storage
patterns are valid values , in which case no action need be taken to
initialise them. For self-defining structures, discriminants should
be initalised to the value (Or one of the values) consistent with
the storage allocated . Pointers should be initialised to a valid
value , the mos t appropriate default being a recognisable null value .
Similar action should be taken for other program control types such
as files.

In the absence of pointer-qualified references, these actions would
be sufficient. But with pointers the compiler must also ensure that
when a pointer is used to refer to a type, it is the same type as
that of the instance pointed to. Otherwise the program can read or
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set the instance to invalid storage patterns. And if the asserted
type is longer than the actual type, the ‘overhang’ may result in
the program setting unreferenced, and possibly unrelated , instances.

To solve these problems we must constrain pointers and make all
variants self-defining..

There remains another problem which arises when an instance is
freed. If subsequently a pointer to the instance is used , it will
touch the freed storage , which may well have been allocated to
another instance, possibly of a different type . It is possible , but
expensive at run-time, to keep track of all pointers and nullif y
them when the instance is f reed , or to free only when no more
pointers exist (garbage collection). Another approach is to prohibit
a pointer variable from containing values which point to instances
with a possibly shorter lifetime than the pointer, since rules of
this kind can be enforced at compile-time .

For pointers to implicitly allocated variables, this rule could be
enforced at compile time but there is no need to allow pointer
reference to such variables anyway, and excluding it removes the
need for the compiler to worry about aliases for these variables.

For dynamically allocated storage, we must ensure that any freed
storage is not re-used for a different type until all pointers to
the previous use have gone away . We do this by allocating dynamic
storage in AREAs which have a lifetime known at compile time.

These areas are declared like variables:

DCL areaname AREA ( content-commalist) ;

The content list specifies what type(s) may be allocated in the
AREA , and how many of them must be accommodated:

content: := [(constant-integer-expression) type]

For types with * in their definition, integers must be provided to
complete the type definition and allow space to be reserved, but
variables may be allocated in the AREA with any values for these
asterisks. The number which can be accommodated will differ from
the number of variables with the specified dimension.
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Variables (and constants) are explicitly allocated by the ALLOCATE
statement and freed by the FREE statement .

ALLOCATE [ty pe] SET ( pointer reference) [IN(area-reference)]
[ INITIAL C expression) ] ;

FREE F ointer-reference -> [type] [IN ( area-reference)] ;

Pointers are declared in a declare statement , and must be
co~istrained to a particular type in a particular AREA. Since this
AREA is known in the declaration, its lifetime must be at least that
of the pointer being declared.

DCL P POINTER [CONSTANT ] TO (t ype ( CONSTANTI ) IN ( area-reference) ;

Pointers may be variable or constant , they may themselves be
implicitly or dynamically allocated , and they may be components of
aggregates. Pointers are of the same type for assignment only if
they point to the same type in the sam e AREA. They must point to
identical types, not just types between which assignment is
possible.

References to dynamically allocated objects are made by
dereferencing pointer values with the “-> “ symbol, and they may be
dot—qualified and subscripted like other references :

Pointer-reference -> (type )
[dot qualification I (subscript-comnialist)] .. .

for example:
P->BIT P->INTEGE R P->
P ( 5) ->  S.P->T .C(J)  P->.C

The optional parts of ALLOCATE and FREE statements, and of pointer
references, must be the same as the pointer declaration if they do
appear and are inferred from the pointer declaration if they do not
appear. They are permitted to improve the readability of programs,
and to increase the compatibility with PL/I.

Note that we do not have any referencing operation, such as ADDR in
PL/I. We do not want pointers to implicitly allocated objects.
Fointers to explicitly allocated objects are provided by ALLOCATE
SET. And we do not want pointers to components of explicitly
allocated objects, since the compiler would then have to worry about
diagnosing attempts to free such pointers.

If an attempt is made to ALLOCATE a variable in an AREA in which
there is insufficient space, the AREA ((area-reference)] condition is
raised . (This , like the file conditions , might be better as an
option on the ALLOCATE statement.]
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Implementation note

Dynamically allocated objects which are FREEd are available for re-
use , but only for another object of the same type. This cannot be
done by a free chain through the spaces , since they m~; still be
referenced (erroneously) by a surviving pointer. Instead a list of
free instances of each type in the area must be kept. (This might
be more efficient in a virtual store anyway.) This free list can be
found easily because the AREA in which the free space is can be
determined at compile time from the pointer declaration.

For types with * extents, spaces can only be re—used for another
instance with the same values for the asterisks. But we do not need
to keep a separate li st for each set of values since the asterisk
values in the space itself will remain . The same applies to variant
structures with explicit discriminants.

For variant structures with implicit discriminant, i.e. CASE without
expression , the space can be reused for another instance of the same
type in the normal way .

Subroutines and Functions

Pointers can be passed as parameters and as return values from
functions. The parameters must be declared to be the same type as
the argument, therefore the AREA must be known in the called
procedure as well as the calling procedure.

The restrictions on functions, that they must not set inherited
variables, could be bypassed by setting a variable referenced by a
pointer parameter . Therefore a pointer parameter must not only be a
CONSTAN T but must be TO (CONSTANT non-pointer). Note that a function
may not allocate or free in an inherited AREA, since this is
changing the value of the AREA .

There is no reason why AREAs should not be passed as parameters.
But there would be little point: the parameters would be
(conceptually at least) a copy, and pointers into the argument could
not be used on the parameter and vice versa. So it is best to
disallow this. AREA assignment is similarly useless.

(As well as allocation in AREAs , we could allow allocation without
freeing of objects in a global heap referenced by point~ rs not
constrained to an AREA. But it is not clear that this provides
useful  additional fun ction . If the objects are never freed , they
might as well have been declared , rather than allocated. And an
AREA declared in an outer scope is much like a global heap anyway.)
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1.15 PARALLEL PROCESSES

We are not concerned here with portions of an algorithm which could
be done in parallel because they are disjoint: a clever compiler
could work these out from a sequential program anyway . We are
concerned with computer processes which must run in parallel because
they interact with each other and with real-world processes, such as
parts of the equipment which an embedded computer is controlling.

This is the part of the language for which it is most difficult to
decide on the design. “Ironman ” is at its most vague in this
section, no doubt because existing languages use several different
approaches and there is no consensus on which is best. The area is
one in which there is a lot of current research. And ANSI PL/I has
no parallel conbtructs at all either to guide or constrain us.

The main choices are firstly how to introduce the code of the
parallel activities ( processes) and how to start their parallel
execution, and secondly how co-operating processes, once started,
syn chroni se their activities-.

Processes

There is clearly a need for the static progr amming of a fixed number
of processes; the number perhaps depending on the physical equipment
being controlled.. This is the “independent tasking” model which the
industry control community (e.. g. the Purdue Workshop) seem to be
asking for. “Ironman” in section 9A seems to ask for a number of
processes which varies at run—time , but which is predictable at
compile-time. Others believe that it is desirable to create
processes dynamically in response to happenings, for example to
create a process to track each target identified by a radar system.

Our approach to dynamism determines the main structure of processes
- that processes can be created dynamically but the efficiency of
simple cases will not be compromised. This seems to be valuable for
systems where large numbers of processors are to be exploited.

Once we have run-time starting of new processes, it is not much more
complicated to allow an indefinite number. With adjustable data,
storage usage by procedures cannot always be predicted at compile-
time and so we need some form of storage management even with a
fixed number of processes. (If the number of processes and the data
sizes are all known at compile time, obviously a compiler could
optimise by doing the storage allocation at compile-time.)

_ _ _ _ _ _ _  _ _ _ _ _  -—-~~~ _ _ -~-_
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“Ironman” also requires that processes are able to terminate others
running concurrently. If we have language to allow signalling
between co-operating processes , then one could signal another which
on receipt of the signal would terminate. This seems adequate.. To
allow the destruction of processes would raise complications about
graceful termination which are not worth facing unless there is good
reason.

[If it were necessary to do this, the way would probably be to have
a FINISH statement which raised a FINISH condition in the other
process, allowing it to terminate gracefully, as well as some form
of DESTROY statement which stopped it immediately.]

If we do not have any language for destroying or suspending other
processes, we do not need any name or other “handle” for the
execution of a process. They can be anonymous. All we need to
specify to start a new process is the portion of code which should
run.

A procedure would do, but since there are special rules for what
concurrent process executions may and may not do, it is probably
cleare r for the compiler and the human reader if the code is
specia .ly marked. So we use a procedure where the word PROCEDURE is
replac4 ’d by PROCESS .

process-name: PROCESS (parameters) ... etc

To start a new execution of a process we write a START statement,
which is similar to a subroutine invocation but starts the
concurrent execution of a new process.

START process-name (argument—commalist)
( identif ier (argument)] .
PRIORITY(constant-integer-expression);

The parameters of a PROCESS must be CONSTANT , since the STARTer does
not wait for the new process and so cannot accept the return
assignment of a variable parameter .

Scheduling

Section 8D of “Ironinan” requires that the language should not
require an operating system to run . This implies that the
scheduling of concurrent processes should be simple, just the
allocation of the ready processes to the processor (s). It precludes
language such as 

- - -- -- --~~~~~~~~~--~~ --- - - - .  -~-.~~~~-- -~~~~~ -- - .-~~ - -
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SCHEDULE process AT 4PM ; -

SCHEDULE process ON interrupt;

This function can be obtained in another way. A process should be
started which waits for 4PM. It will, then continue, and might well
then load into storage a portion of program to be executed. This
approach allows the programmer to decide whether the program should
be loaded ready to respond quickly , or not loaded until it can run.

The same lack of operating system precludes the implementation of
clock facilities in the language , since the timing hardware attached
to different machines varies widely. Rather a machine-dependent
module should be written which provides- the facilities required
(such as a signal at a particular hour ) using the hardware-. Other
processes can then wait for this signal.

The simplest scheduling algorithm would be to run a process until it
can run no longer (i.e. it waits for something) and then look for
another ready process. Processes made ready by actions of the
running process would be run next when it relinquished control .
This is not adequate since we do need to be able to specify for an
urgent process that it starts as soon as it is ready but is not pre-
empted by other processes which it may make ready. So we introduce
the PRIORITY operand on START. The higher priority processes are
run in preference, i.e. it is always true that (at least) one of the
highest priority ready process(es) is’ running .

(If PRIORITY was never used, the compiler could optimise to a
simpler scheduler.)

The state transition diagram for processes is thus as follows:
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Synchronisation

There are two main reasons for synchronisation between concurrent
processes. Either they both use some resource which can only be
used by one process at a time (mutual exclusion) or one process
cannot proceed until a certain situation occurs and another process
makes it occur , thus allowing the first to continue (signalling).

Mutual exclusion is a special case of the more general signalling,
and can be implemented using a signalling primitive such as
semaphores. However this approach allows no checking by the
compiler of the correct coding of the rather common mutual
exclusion. Coding this with signalling is rather error-prone, and
the errors can be difficult to detect by testing.

We can introduce separate executable operations for locking and
signalling (for example LOCK/UNLOCK and POST/WAIT in Series/i PL/I).
This allows some checking of the locking , but it has to be done at
run-time. And there is no declared association of the lock with the
resource , and so the checking is somewhat limited.

To allow compile-time checking we must introduce some static program
construct such as the monitor in Concurrent PASCAL (ref 8) or the
interface module in MODULA (ref 7). These constructs are a portion
of the program in which mutual exclusion is enforced - only one
process may be executing it a once. Objects shared between
processes must be declared in monitors and accessed by calling
procedures in the monitor. This works, and it has a certain
elegance. To write in a language with monitors is to accept a
certain design discipline, which can be useful. The problem is that
monitors are rather static-. They implement mutual exclusion for (in
effect) monadic operations only, since only the shared objects in
one monitor can be accessed at once . It is not possible to acquire
exclusive access to several objects and then operate between them ,
unless they are all in the one monitor , and thus in effect  sub-
components of a single shared object.

Signalling between processes is done using special objects
(variously called conditions, signals and queues) which can be
declared in a monitor and signalled or waited on by processes
executing in the monitor. This method has the drawback that the
signal may well, represent a condition involving program data, but
this association is not declared in the language and therefore not
very clear. WAIT and POST in Series/i PL/I is very similar.

Leaving it to the programmer to invent signals and correlate them
with the progress of the execution can be efficient C in the same
way that letting the programmer do register allocation can be
eff ic ient  ) but it would be an abdication of the compiler ’s checking
powers. We have chosen shared objects as the synchronization concept
instead. If we recognise that the resources for which mutual
exclusion is required may well be program data , and will usually be
represented by program data if they are not (e.g. the status of
real-world objects, outside the computer), we can make it explicit
in the program that these data are the resources being contested .

_ _ _ _ _ _ _ _ _ _ _ _ _  _ _  ~~~~~~~~~~~~~ --—~~~~~~~~ -~ - -~~~~~~- ~~_
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Similarly, conditions which a process waits for (i.e. situations,
nothing to do with CONDITIONS and ON statements) are often logical
expressions involving program data, and will usually be represented
as such if they are not. This logical expression should be
specified in the wait operation.

So we introduce a SHARED attribute for data. This can be specified
on any variable element or aggregate, or FILE . Only objects with
this attribute can be used by more than one process. Also we
introduce a static construct to specif y the portion of the program
where mutual exclusion applies, and allow access to these objects
only in such portions. We want to wait for logical expressions
involving SHARED data, and we need to enter mutual exclusion from
the moment the expression becomes true . Otherwise it might no
longer be true by the time the process entered mutual exclusion.

The final consideration is that we sometimes want to wait for one of
several conditions - for example for a tank to become full or for a
time interval to pass - and to take different actions depending on
which becomes true. This leads us to a variation of the SELECT
construct.

SELECT
WHEN (TANK_FULL) DO; ... END;
WHEN(TIME> LIMIT) DO; ... END;
OTHERWISE WAIT;
END ;

Each WHEN expression may contain references to SHARED variables. If
the process can acquire exclusive use (i.e. a lock) of these
variables, and the expression is true, the corresponding WHEN clause
is executed holding these locks , then the locks are released and
execution continues after the END.If this cannot be done for any
WHEN-expression , the process waits until it can, if OTHERWISE WAIT
appears. If the OTHERWISE clause is an executable statement this is
executed instead.

If we want access to a SHARED variable, but no condition is required
we can write WHENCAVAILABLE(V)). The function AVAILABLE returns
true if the SHARED variable argument is not locked .

(The SELECT construct above might be thought too similar to the
normal multiple-case SELECT, in which case we could use another
keyword in place of SELECT. Alternatively we could use WHEN in the
synchronising SELECT and another word , perhaps IF, in the original
multiple-case SELECT.. OTHERWISE could be changed to ELSE too.]

A process may reference inheri ted variables only if they are
declared SHARED, and SHARED variables may be referenced only in WHEN
clauses where the variable is mentioned in the corresponding WHEN
express ion. Inherited constants may be referenced without
restriction , and so constants are never declared SHARED.

_ _ _ _ _  _ _ _  _ - -- -_
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Locking SELECT groups may be nested in the usual way (although this
should be avoided where possible since it can ’ lead to deadlock) , and
procedures can be called from WHEN claues which tnemselves contain
locking SELECT groups. A SHARED variable may not be locked twice,
even by the same process. Even in the same process this would
indica te that an atomic operation was being begun on the variable
while another was still in progress.

The compiler will check that the rules in the previous two
paragraphs are obeyed , since violations may well be unintentional
errors. For aliases the compiler may not be sure . As with the
parameter passing rules, the compiler cannot always know whether
A ( I )  and A (J ) , PTR 1->type and PTR2->type are the same objects or
not. In these cases the compiler will warn, and an appropriate
assertion will dispel the warning .

Note that if a procedure is called from a WHEN clause, it cannot
access the SHARED variables which are locked in that clause. For
the procedure to operate on them they should be passed as arguments
to it.

SHARED objects can only be declared directly in a PROCESS block, not
in any contained procedures. If a PROCESS in which SHARED data is
declared reaches termination before any contained processes which
share the data, it waits for them to terminate so that the SHARED
data is not freed.

A process does not (except under the rule above) wait for processes
which it started, and this allows “independent tasking” using
processes at the same lexical level.

(Read/Write locking

The above is entirely in terms of exclusive locking. For WHEN
clauses which only read a SHARED variable it would be possible to
use shared locking. This is not always a good idea since it
involves more overhead to acquire a lock and more storage in the
shared variable. We could introduce two attributes say EXCLUSIVE
for what we have already,  and SHARED for read/write locking. It is
much more complicated though, and read/write locking algorithms are
the subject of much discussion.

Note that a compiler could choose to implement the language we have
already using read/write locking, as long as the algorithm ensured
awarding of locks in the same order i.e-. a waiting writer should
stop the granting of read locks.]

- - -~~~~~~ - _ _~~~~~~~~~~_ _
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External interrupts

Signals from real-world processes, i.e. external interrupts, should
appear to the program just like signals from another software
process. So a “process interrupt” line on a processor should appear
as a SHARED BIT which can be referenced in a WHEN expression.. Some
machine-dependent language would be needed to specify the hardware
connection (see section on “machine-dependent language”).

Files

SHAREing of files can be used to synchronize dataset access provided
one defines that acquiring rights on the file object also acquires
rights on the data set OPENed with it. This is a slight distortion
of the SHARED concept since two file objects each accessed by a
different process (and hence strictly unshared) could be used for
shared access to a dataset. It would be more logical to allow the
SHARED attribute for datasets (and even objects in them) but this
has implementation problems - one does not want the anchor of a
chain of processes to be on disk storage.

Conditions

If a condition is raised in a process , the normal rules apply
regarding ON statements in that process. But if the condition is
not handled in the process, it is not raised either in the
containing or the STARTing process.

(The alternative would be to allow the declaration of SHARED
CONDITIONs, which are raised in the containing process when it waits
for the failing contained process to terminate.]

Implementation Note

The implementation of process scheduling can be done fairly simply,
along the lines described in MODULA (ref 7). There is a control
block for each process , perhaps at the top of the stack for that
process. All the ready processes are in a chain. A SHARED variable
has probably one extra word of storage: a bit to show if it is
locked and a pointer. Processes waiting for this SHARED variable
are chained to this pointer. When a process waits it detaches
itself from the scheduling chain and joins itself to the appropriate
waiting chain and then hands control to the next process on the
scheduling chain. When the variable is unlocked, the unlocking
process takes this chain of waiting processes and joins it on the
scheduling chain. Any of these processes which is waiting for an
expression which is still false, will find its way back into the
waiting chain when it is scheduled .
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Two things complicate this scheme a little. If processes have
priority, the scheduling chain should be ordered, and processes
should be put on it in the appropriate place. And when a process
waits for one of several SHARED variables it must be attached to all
the waiting chains, but r emoved from all when one variable becomes
available. A special wait block must be put in each chain , these
being chained in a ring with the process block. Note that this ring
can be largely made at compile-time. Now the wait chains have wait
blocks as well as process blocks on them and this is another reason
why the chain must be followed on unlock. Waiting for an ANDed
expression can be implemented by waiting for one then the other ,
although the code should be such that it does not hold one lock
while waiting for the other. Note that the complications here only
arise for programs which do such waits, simple waits for one
variable will be mu ch simpler.

A process block also needs a containing process pointer and a
contained process c~ int to implement the waiting for termination.

1.16 MACHINE DEPENDENT LANGUAGE

There is a need in a real-time programming systems language to be
able to write code for functions which must be machine-dependent.
(In this context machine means the target for the language compiler ,
which might be a virtual machine provided by an operating system.)
The need arises in at least two ways: to use the special facilities
on a particular machine or the equipment attached to it, or to
exploit the characteristics of the particular machine to get optimal
performance in some crucial area.

If we are not to lose the advantages of a high-level language with a
lot of compile-time checking , we must localise the machine
dependency as far as possible, allowing the rest of the program to
be written with all the usual checking. This also means that if we
want to re-implement the program on a different machine , the
alterations are limited to these portions. We do this by having a
special kind of MDDULE in which machine-dependent things can be
written. The SYSTEM MODULE is identified as such in its header:

label: SYSTEM MODULE;

but is otherwise similar to normal modules. Contained modules are
not SYSTEM MODULES unless so marked.
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Because they are modules, the effect of the machine-dependent coding
is limited to whatever is exported. To rewrite the program for a
different machine , we need only to rewrite the system modules to
have the same exported effect.  (The machine-dependent parts of a
system module can easily be found by compiling it without the SYSTEM
prefix - the diagnostics will then be a list of the machine
dependencies.)

Data Representation

Data representation must be a part of its datatype, since it
determines the storage requirements for objects of that type, and
how operations are performed upon it. An assignment for example
between two objects with different representations but otherwise the
same type will Lead to what is in effect an implicit conversion ,
which could take a lot of code to achieve. In the case of
parameters the code generation will be even more complex. So we
will make representation part of type, and all objects of the same
type will have the same representation.

There will be an implementation-defined representation for each of
the basic types of the language , e.g. FIXED ( 1) to (4 )  might be 16
bits. T’~ese representations cannot be changed , since if they were ,
normal ~-~~tements could generate unexpected code.

There is an implementation—defined representation for aggregates
also, out this can be overridden by the attributes

ALIGNED E (integer)]

UNALIGNED

which align the component on a multiple bit boundary . UNALIGNED
means ALIGNED ( 1) .  To put spacing in an aggregate a dummy component
can be declared by using * as its name.

~

.- - -
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It may be required to implement a datatype with some special
representation , e.g. ones complement on a twos complement machine.
(The only reason for wanting to do this is to construct data for
transmission to another machine or device.) This is done by
declaring the type and basing it on a bitstring.. The operations on
it will then have to be coded in terms of this bitstring. (The
implementation-defined representation of BIT and one-dimensional
array BIT ( *) should always be packed.)

(If an exchange data representation was established the compilers
could support an attribute for it. This would save the user having
to create a bit equivalent in order to exchange data . Assignment
from the installation representation to the exchange representation
would be supported , but probably no other operations since it makes
little sense to do arithmetic in other than the hardwares natural
format , and ~s expensive to implement.]

[It might be useful to allow the declaration of a VALUES type
specifying the representation for each value, although this could be
done by bas ing it on a bit string as described above.]

Another f acility available in SYSTEM MODULE S to manipulate data
representation is UNSPEC. UNSPEC(reference) allows reference to any
object as the bitstring by which is is represented. This can be
used to inspect or set any part of the representation , and provides
a way to assign between types without conversion. This is of course
highly machine-dependent.

Pointers

In SYSTEM MODULES the implementation of pointers as an integer
address in storage is exposed . Pointers may be declared not
constrained to any type or area. Integer operations may be
performed on pointers and integers may be used as pointers to
address specific storage locations.

[We could allow allocation and freeing not in an AREA . This would be
“unsafe” in the terms of the section on “DYNAMIC STORAGE ” .

Data shared between processes

System modules may reference data not declared SHARED from several
processes. The compiler will not generate and checking or locking
code. This can be used when the programmer knows that there can be
no interference. 

- -~~~~~~~~.---—- -~~~_ -~~~~~~~—----——-—- - .~~~~~~~~~ . - - - --~~~~~-- -——— -.~~ 
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Built-in instructions

The executable instructions of the machine are provided in the same
way as in PL/S II (ref 9). A built-in instruction, with the syntax
of a subroutine operation is defined for each machine instruction.
These may be written in the place of an executable statement in
SYSTEM MODULES , and to provide connection with the high level
language, the operands to the instruction are references or
expressions in the usual way. Code to evaluate these references and
expressions is generated before the instruction itself , and also any
code necessary to, for example, put operands into registers as
appropriate.

For example , on the System/360 ,

DCL A FIXED DECIMAL(6) ,
P POINTER TO (FIXED DECIMAL (6));

AL (A, P->);

might generate

L R i P
L R2 ,A
AL R2 ,0(R1)
ST R2 ,A

Other machine-dependent facilities

The machine-dependent facilities on each machine will obviously
differ, but the ones listed so far: ALIGNED, UNSPEC, pointer
arithmetic and an appropriate set of builtin instructions would
probably be provided on all. Examples of other things which might
be provided are:

i)A  REGISTER attribute , as in PL/S II.

ii)An option like PSW ( integer ) on a SHARED BIT variables to specif y
a machine interrupt.

iii)An option on a file creation statement to specify the device to
be used. 

-~~~~ . - -. ~-
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1.17 SYNTAX

The notation is similar to that in the ANSI PL/I standard, but the
overstruck characters are not used .

Square brackets mean option~’l. List mean s one or more , comrnalist
means one or wore , separated by commas. Characters that mi ght
otherwise be taken as meta-characters are underlined..

Low-level syntax

program-text:: ~~( delimiter-list] delimiter-pair-list
delimiter-pair: := non-delimiter delimiter-list
delimiter : :=  +

1*
I,

1<
>

<=
>=

-I

I”
2

II
U

I C

I,

I->
blank
comment

non-delimiter: : identifier
I a rithmetic-literal

string-literal
va lues-literal

id ent i f ie r: :=  letter (identifier-character-list]
identifier-character: : letter digit 

—

letter: : A IB IC I D IE I F IG IH I I I J IK IL IM IN IO I P IQ IR I S IT IU IV IW IX IY I Z
digit:: 0J1~ 2~ 3~ 4~ 5p 6 I 7 I 8 I 9
arithmetic-literal: : decimal-number C E exponent]
decimal-number : : integer (. digit-list]
integer: : digit-list
exponent::= [+I-] integer
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string-literal: : ‘ string-symbol-list’
values-literal: := “literal-symbol-list”
string-symbol: := any-character-except-quote I ’ ’
literal-symbol: := any-character-except-double-quotes””

High-level syntax

procedure:: statement-name [ prefix] procedure-statement
( declare-statement-list] [ on-statement-list]
executable-statement-list ]

ending
statement-name: := identifier:
prefix:: ( condition-prefix-commalist):
on—statement: : = ON condition-reference goto-statement
ending:  : (  statement-name] end-statement
executable—statement: : =

I statement-name (prefix ] module
[statement-name] [ prefix] group

I (stat ement-name] if-statement
I (statement-name] ( prefix] executable-single-statement

module: : =module—statement
(declare-statement-list] unit-list ending

group::= do-statement ( unit-list] ending
I select-statxnent choice-list
( default-choice] ending

select-statement: : SELECT [ (expression)] ;
choice: : WHEN ( expression-commalist) executable-statement
defa ult-choice : : = OTHERWISE executable-statement
if-statement::= IF expression THEN executable-statement

( ELSE executable-statement]
executable-single—statement: : = allocate—statement

I assignment- statement
I call-statement

close- statement
I free-statement
get- statement

I goto statement
leave statement

I null-statement
open- statement

I put-statement
read-statement

I return-s tatment
rewrite- statement

I signal-statement
I write-statement

condition-prefix: : = computational-condition
I disabled-computational-condition

computa tional-condition: : CONVERSION
I OVERFLOW
I S I Z E
I SUBSCRIPTRANGE
I UNDERFLOW
I Z E R O DI VI D E  

-~~
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disabled-computational-condition: : NOCONVERSION
I NOOVERFLOW
I N O S I Z E
I NOSUBSCRIPTRANGE
I NOUNDERF LOW
I NOZERODIVIDE

declare-statement: := DECLAR E declaration-commalist
declaration: :=[  integer ] declareds ( dimension-suffix]

attribute-list]
declareds: := identifier

I C identifier-commalist)
dimension - su f f ix :  : ( attribute-argument-comrnalist)
attribute-argument: := expression

1 *
att ribute: := data-attribute

I ALIGNED I (expression)]
I BASED
I CASE ((  expression)]
I CONSTANT
I environment
I initial
I KEYED
- PRINT
RECORD

I SHARED
I UNALIGNED

data-attribute: : AREA ( area-content~ comrnalist)
I BIT[ (attribute-argument ) I
CHARACTER ((attribute-argument )]
DECIMAL ( attribute-argument)

I F I L E
I FIXED
I FLOAT
I POI NTER
I VALUES ( value-literal-corrimalist)
I type-reference

area-content: := (type-reference expression )
environment: := ENVIRONMENT ( environment-specification )
initial: := INITIAL ( general-expression)

procedure-statement: : = PROCEDURE ( C  parameter-name-comrnalist)]
[keyword-parameter-list]
(RETURN S ( type-reference)]

keyword-parameter : := identifier( parazneter-name )
parame ter-name ::= identifier
rnodule-statement::= (SYSTEM ] MODULE

• (EXPORTS (exported-name- comrnalist)] ;
exported-name : : = unsubscr ipted-reference
do-statement:: DO;

I DO while-option ;
I DO do-spec;

do-spec::= identifier (=spec]
spec::= expression to-by
to-by : : = (  by-option ] to-option

L ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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to-option: : TO expression
by-option:: WY expression
while-option: : WH ILE (expression)
end-statement: : END ( identifier];
call-s tatement::= [CALL) identifier arguments (keyword-argument-list]
keyword-argument: := identifier(general-expression)
return-statement: := RETURN [(general-expression)] ;
goto-stateuient::= GO TO identifier
leave-statement: := LEAVE (identif ier] ;
null-statement: : ;
signal-statement: := SIGNAL condition-reference;
condition-reference:: computational-condition

I named-jo-condition
I AREA ( (ident i f ie r) ]
I ERRO R
I identifier

named-io-condition : := io— condi t ion((j dentj fj er )]
j o-condition: : ENDFILE

I KEY
I RECORD
I TRANSMIT
I UNDEFINEDF ILE

stop-statement : : = STOP
assignment—statement: : ref erence= general-expression

I concatenation ;
allocate-statement: : ALLOCATE allocation;
allocation: := ( identifier] set-option (in-option ] (initial]
set-option:: SET ( reference)
free-statement: := FRE E free ing ;
freeing : : locator-qualifier (identifier] [in-option]
in-option::= IN C identifier )

open-statement: : OPE N single-opening ;
single-opening: := file-oDtion( linesize-option]

[I NPUT I OUTPUT I UPDATE ]
file-option: : FILE ( reference)
linesize-option: : LINESIZE( expression)
close-statement: := CLOSE file-option ;
read-statement::= READ file-opton into-option C key-option]
into-option: : INTO C reference)
key-option: :=  KEY( expression)
rewrite-statement: : = REWRITE file-option from-option [ key-option]
write-statement::= WRITE file-option from-option [ keyfrom-option]
from-option : : FROM ( reference)
keyfrom-option: := KEYFROM( expression)
get-statement::= GET get-file
get-file: := [ file-opt ion] [ skip-option] ( input-specification]
skip-option : : SKIPEC expression)]
put-statement:: PUT put-file
put-file: :[ file-option] ( skip-option]

I output-specification]
input-specification : : = edit-directed-input
edit-directed-input : : = EDIT edit-input-pair
edit-input-pair: : (  input-target-commalist)

format-specification-commalist)

- ~~~~~~~~~• — — -
~~~~
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input-target::= reference
output-specification: : list-directed-output

I edit- directed-output
list-directed-output: : LIST( output-source-commalist)
edit-directed-output: : EDIT edit-output-pair
edit-output-pair: :( output-source-commalist)

format-specfication-commalist)
output-source: : expression
format-specification: : format-item

I format-iteration
format-iteration: : format-iteration-factor format-item
format—iteration-factor: := integer
format-item: := data-format

I control-format
data-format: := real-format

I picture-format
I string-format

real-format: : fixed-point-format
I floating-point-format

fixed-point-format : : F( expression(, expression))
floating-point-format: : EC expression(, expression])
picture-format: : P picture
string-format: : character- format

I bit-format
character-f ormat:: A (( expression)]
bit-format:: B(( expression)]
control-format : : space- format

I skip-format
I column-format
I PAGE

line-format: := LINE ( expression )
space-format: : XC expression)
skip-format:: SKIP [(  expression)]
column-format:: COLUMN( expression)

general-expression: : expression
I [type-reference] (component-commalist)

component: : ({identifier I expression}:] general-expression
expression : : expression-four

(level- four-operator expression-four]
I expression -one user-operator express ion-one

user-operator: : identifier
concatenation:: expression-one (fl concatenation]
level-f our-operator::= 

~ I L I ~‘expression-four: : expression-three
[comparison-operator expression-three)

comparison-operator:: - I ] I ( I ] I
expression-three: : expression-two

(level-two-operator expression-three)
level-two-operator: := + I -

expression-two : : expression-one
(level-one-operator expression-one]

level-one-operator: := * I /
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expression-one: : = reference
I literal
I prefix-operator expression-one
I ( expression )

prefix-operator: : + 1 - I -,
ref erence: := unargumented-reference (arguments )

I UNSPEC (reference)
unargumented-reference: := locator-qualifier (basic-reference ]

I basic-reference
locator-qualifier: : reference ->
arguments: := Cgeneral-expression-commalist)
basic-reference: := [structure-qualification] identifier
structure-qualification: : basic reference (arguments]
unsubscripted-reference: : = (unsubscripted reference.] identifier
literal: : arithmetic-literal

I string-literal
I values-literal

-
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CHAPTER 2. USERS MANUAL

2.1 INTRODUCTION

When a program executes, storage is allocated to represent objects.
These objects may be modelling the ‘real-world’, as for example when
trie object captures the relevant characteristics of a person, or
they may be objects that are required solely for the implementation ,
such as a catalog of procedures.

In either case the program may need to refer to the alternative
values that an object can have during execution. These references
are called literal constants. For one object they might be the
familiar 1 2 3 £ê S etc. For another they might be COLD WARM HOT.

Identifiers (sequences of ].etters,digits and underscores starting
with a letter) are also used to reference the objects themselves,
for example to test the current value of object WEIGHT during
execution:

IF WEIGHT 12O THE N etc .

There are usually many more objects during execution of a program
than there are unique identifiers in the written form of the
program , so they cannot have distinct identifiers. Their are various
ways that an identifier may represent several objects.

(1) The identifier may have different  meanings at different places
in the program.. This is useful, for example, when several
programmers each write part of a program. The rules for associating
an identifier with the declaration of its meaning are described
later in this introduction.

(2 )  An array of similar objects may be referenced by one identifier.
The objects within the array are distinguished by implicit names,
these names being the values of some other object. Thus two
identifiers, referencing an array and a suitable object, can form a
reference to a particular object in an array. This is written with
the latter in brackets, e.g.. AU) when the execution time value of 3
selects an object within A.

(3) An ordered collection of objects, called a dataset, may be
created. Another object, a file, can reference one object of a
dataset at one time.. There are explicit operations to associate a
file with a dataset and to position the file to access the N’th
object of the dataset. Also, accessing the N’th object positions the
file ready to access the N+l’th object. c.f. Input/Output.
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(( 4 ) An object may be given a name dynamically when it is allocated ,
and this name can become the value of another object . Such a
reference is written with an arrow , e.g. P-> is a reference to the
object whos e name is the current value of P.

(5)  An identifier may reference the most recently allocated object
in a stack of cbjects . This only happens within recursive procedures
q.v.

(6) A piece of program may be being executed more than once at one
time, e.g. because two CPUs are at work.,(c.f. tasking) The distinct
tasks will each allocate objects from their own storage resources,
so a reference may be implicitly qualified by a task.

In order to allocate appropriate storage for a an object, the
computing system needs to know the values it may be called upon to
hold. These are written in a list.

DECLARE BATH_TEMPERATURE VALUES (COLD, WARN, HOT);

If the object is to contain the values of more than one
characteristic it can be declared as a structure. This is written
with n umbers to indicate the containment.

DECLARE 1. PRESIDENT ,
2 SEX VALUES ( MALE , FEMALE) ,
2 RELIGION VALUES(HINDU,CATHOLIC,OTHER);

The object PRESID~~ T can take on all combinations of a value from
the first list and a value from the second list. The objects within
a structure can be referenced by postfixing their name within the
structure to a reference to the structure. This is written with a
period , e. g.

PRESIDENT. RELIGION

If several similar objects are to be allocated it will be
appropriate for  the program to seperate the description of values
from the operation of allocation. The program will first describe a
template for the objects and then reference the template when
allocating the objects . A template declaration is written like the
declaration of an object , with an extra word BASED.

DECLARE 1 BOOK BASED,
2 AUTHOR VALUES(BLYTON,DICKENS ,OTHER),
2 COVER VALUES ( HARDCOPY , PAPERBACK);

DECLARE HISBOOK BOOK;
DECLARE MYBOOK BOOK;
DECLARE HERBOOK BOOK;

This method of declaring objects is more than just a shorthand. The
specification of what operations are meaningful in the program makes
use of the template name, e.g. the program may define an operation
EXCHANGE that Operates on two BOOK objects. Thus the template name
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controls the behaviour of the object, and it is called the data type
of the object .

Some types are so widely useful that their declarations are provided
by the language translator, and not written in the program. These
‘builtin’ types include a FIXED type - FIXED objects take numeric
values and are subject to arithmetic operations.

There are three operations that apply to all objects - allocate,
f ree, and assign. Allocate makes an object which can then be the
subject of other operations. Free withdraws this availability.
Assign sets the object to one of its possible values. The value is
specified either as a literal constant or as the value of a
referenced object. The written form of assignment has the source
value on the right , e.g.

LENGTH 12O;
A(J ) B (J ) ;

For arrays and structures assignment implies assignment to all the
contained objects.

For the builtin data types some further operations are builtin, i.e.
predefined. Other operations may be defined by a particular program.
The use of an operation can be written in various ways e.g.

B>C
SQUARE ROOT (G)
H MODULO 6
CALL ABC;
UPDATE_PAYROLL (Al ,A2);
READ FILE(F) INTO (Y);

The ingredients of an operation are an operator (like READ,
SQUARE ROOT,>) and usually some operands (references to objects or
literal constants, like B , C and 6) .

Operations are either function operations or subroutine operations.
Function operations allocate a new object and give it a value - the
type of this object is defined as part of the definition of the
operation. Subroutine operations do not have this result object.
Subroutine operations are written with a semicolon after them.

Sequences of function operators may be written, forming an
expression. The result from one operation may be the operand of a
subsequent one. Such operands are normally written with parentheses
around the prior operation, e.g (B>C) but there are rules for
particular operators which allow the parentheses to be omitted.

J+K-1

SQUARE_ROOT(G MOD 6)
(N+1) * (N + 2 )

~

- - -— - ----

~

-

~

- - - - - -—— --- -

~

- --- - -- -. - - , -~~~~~-- - -- - - - . -- — - .-
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Sequences of subroutine operations are written in the sequence they
are to be executed , e.g.

READ FILE (F) IN TO(Y) ;
YY=Y;
PUT FILE(OUT ) LIST (YY);

A subroutine operation may be executed conditionally on the value of
an expression being TRUE. This is written with an IF clause
preceeding the statement, e.g.

IF B>C THEN OPEN FILE ( F) ;

A sequence of subroutine operations can be grouped to form a ngle
executable statement. This is written with a do-statement a an
end-statement enclosing the sequence.

IF B>C THEN DO;
J2;
K 2;

END ;

There are ways of writing a choice between two alternative actions ,
or several actions.

IF E>C THEN OPEN FIL~’(F);ELSE OPEN FILE(G);

SELECT (HUE);
cJHEN(PINK) OPEN FILE(F);
WHEN(MAUVE,ORANGE) OPEN FILE(G);
WHEN (COBALT);
OTHERWISE 32;

END;

A group may be executed repeatedly. If the group is to be repeated
while some expression remains true a WHILE option is written after
the DO.

DO WHILE(J> 1O) ;
PUT FILE (OUT ) LIST (A(Jfl ;
J J/2;

END;

There are forms for repeating the group with all possible values of
some object, and for repeating with an arithmetic sequence of
numbers.

-

~

-

~

---

~ 

-~~~~_ - -~~----- ~~- - _ - -- --~~~~~~~~~~~~~~~~~ - -~~~~~~~~ .



UNRESTRICTED TR..12.168 Page 63

DO BATH_TEMPERATURE ;

END ;

DO J 2  TO N BY 3;

END ;

Execution of a grc*.ip can end prematurely, by execution of a leave-
statement. This references the name of the first statement of the
group being terminated.

ALPHA : DO;

IF B>C THEN LEAVE ALPHA ;

END;

A particular order of execution of statements is specified with the
goto-statement. This references the name of a statement to be
executed next.

IF B>C THEN GO TO BETA;

BETA: 33;

Statements can be formed into a procedure by enclosing them between
a procedure-statement and an end-statement. The procedure-statement
must be given a name and reference to this name causes the
statements of the procedure to be executed.

OPENBOTH: PROCEDURE;
OPEN FILE(F);
OPEN FILE(G);

END ;

CALL OPEN BOTH;

Execution of a procedure can also finish by the execution of a
return-statement.

Objects declared in a procedure are implicitly allocated when the
procedure is entered and freed when it finishes. The declare-
Statements are written below the procedure statement.

L _ - _ _ . _ .—---_ - - .-- - _ - ~~~~~~~~— -  
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SUMSQ: PROCEDURE ;
DECLARE J FIXED DECIMAL(2);/* Fixed decimal is builtin. *1
X 0 ; 1* X and A are declared elsewhere. *1
DC J 1  TO 50;

X X+A (J) *A(J);

END ;
END SUMSQ;

The objects allocated by the procedure may be given values at the
same t:iie as they are allocated , in two ways. An expression may be
given as part of the declaration, to be evaluated and the result
assigned to the new object.

DECLARE 3 FIXED DECIMAL(2) INIITIAL(-3);

Alternatively the object can be made a parameter, by writing its
name in the parameter list of the procedure statement.

SWAP: PROCEDURE (BOCK 1. , BOOK 2);
DECLARE BOOKI. BOOK;
DECLARE BOOK2 BOOK;
DECLARE SPARE BOOK;
SPARE=BOOK1;
BOOK1=BOOK2;
BOOK2=SPARE;

END ;

When a procedure with parameters is referenced, initial values for
the parameters are given with the reference, usually in the form of
a list.

SWA P (MYBOOK , HISB OOK) ;

These arguments are paired with the parameters by position in the
the lists, and assignments made from the first argument to the first
parameter etc. When the procedure finishes assignments are made in
the reverse direction, from the first parameter to the first
argument etc. of course in many cases the language translator can
tell that these theoretical assignments would have no effect, and
hence need not be made.

Procedures are the mechanism for defining operations. The name is
the operator and the parameter declarations determine the number of
arguments to the operator, and also the allowable types of the
arguments because assignment is only allowed between similar data
types.

The presence of a returns—option on a procedure statement specifies
that it is a function operator rather than a subroutine. It
specifies the type of the object that is to be the result of the
operation. The procedure must finish by executing a return-statement
causing the object to be allocated and assigned the value specified
by the return-statement.

- - - . - - _ - -—~~~~-— -~~~~~~~ - - .-~~---_ - - -~~- - - _
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PROOF_READ: PROCEDURE (BOOKIN) RETURNS (BOOK);
DECLARE BOOKIN BOOK;
DECLAR E BOOKOUT BOOK;

RETURN (BOOKOUT);
END ;

Below the declare-statements in a procedure on-statements may be
written. Each on-statement specifies a condition-name and a
statement-name. If a signal-statement naming the same condition is
executed in the procedure then executior. continues at the named
statement.

ON TROUBLE GO TO FIXUP;

SIGNAL TROUBLE ;

FIXUP: N =N+l;

If a signal-statement is executed in a procedure that has no on-
statement relating to the specified condition, then the procedure is
prematurely finished, and further execution is as if the signal
occurred in the procedure that invoked this procedure. This
mechanism allows a procedure to specify what is to happen in the
event of conditions being signalled by procedures that it invokes.

Some conditions are builtin, for example the ZERODIV~IDE conditionwill be signalled by the builtin divide operation if the divisor has
value zero . The SUBSCRIPTRANGE condition will be signalled at a
reference to an array element if the value of the object used to
specify the element does not name an element in the array.

The programmer may assert that the flow of his program execution is
such that certain conditions will not be signalled. Assertions may
help the compiler to compile more efficient code. To assert that a
condition will not be signalled it is written ahead of the PROCEDURE
word , with the letters NO before it.

SUMSQ: (NOZERODIV IDE ) :PROCEDURE;

When large prograns, or large collections of programs, have to be
written it becomes vital to have rules about how programmers can use
the same identifier with different meanings, can reference
statements written by another programmer, etc.

The procedure provides some of this mechanism. It allows a sequence
of statements to be used indirectly, by referencing the procedure
name. Names declared in the procedure can be referenced only in the
statements that comprise the procedure . This means that the same
identifier can be used in different procedures without ambiquity.

L -~~_~~~~ _~~ -~~~~ -- -—-—— -~~~~~ ---~ ~~ —,~ - - - ~ ----~~~.‘ —- 
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SUMA: PROCEDURE ;
DECLARE ACCUMULATOR FIXED DECIM A L ( 8) ;

END ;
SUMB: PROCEDURE;

DECLARE ACCUMULATOR FLOAT DECIMAL (10);

END ;

If the procedures are nested the potential ambiguity is resolved in
favour of the the most closely containing procedure.

SUMA: PROCEDU RE ;
DECLARE ACCUMULATOR FIXED DECIMAL (8);

CALL SUMB ;

SUMB : PROCEDURE ;
DECLARE ACCUMULATOR FLOAT DECIMAL (lO);
ACCUMULATOR=O ;/* Refe rs to declar ation in SUMB *1

END SUMB;
END SUMA;

The names of statements and procedures are declared by their
appearence at the left of a statement, with a colon following them.
This means they cannot be referenced outside the procedure that
contains them. (A procedure does not contain its own procedure name
- the containing procedur e does.)

A procedure may reference a declaration in a surrounding procedure .
There are restrictions on what the goto-statement may reference.)

Note that the rules about where in the program a declaration can be
referenced are consistent with the execution time effect of
allocating the objects for a procedure when it is entered and
freeing them when it is left. The references can only be executed
when the objects are available~.

The procedure is a blunt instrument for controlling the resolution
of identifiers. Putting a procedure-statement and an end-statement
around a section of code prevents any of the enclosed declarations
being referenced from outside. The module is a more selective method
- the module-statement lists the identifiers for declarations that
are not to be hidden by the enclosure.

---

~

.-- -

~

-- - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



UNRESTRICTED TR.12. 168 Page 67

MODULE;
EXPORTS (A,SQRT);
DECLARE A FIXED DECIMAL(3);
DECLARE B FIXED DECIMAL(3);/* Cannot be referenced from outside *1
SQRT~ PROCEDURE;

END ;
END ; /* Of the module *1

Enclos ing declarations in a module does not af fec t  the allocation of
objects - they are allocated when the containing procedure is
entered.

There are some refinements to the rules above for associating a
reference with a declaration. In the case of operations , i.e.
procedure names, the basic rules ab ive might lead to an ident i f ier
being resolved to a procedure that was clearly the wrong one,
because it had the wrong number or type of parame4 ers.

SWAP: PROCEDURE (BOOK 1 ,BOOK2);

END ;

CALL SWAP(A ,B,C) ; /*  Note three arguments *1

In this case the putative association is rejected , and there must be
another procedure with the same identifier and appropriate
parameters that the reference actually resolves to.

Some of the builtin operators are implemented as more than one
procedure.

DECLARE 3 FIXED DECIMAL(3);
DECLARE X FLOAT DECIMAL(8);

3= -J;
X=-X;/ * Same operator ,but different type of argument *1

The combination of these rules allows a programmer to define a
module which provides operations accessible over a wide area of a
program without making accessible the details of how the operations
are implemented. c.f. the examples-.

Operations may be combined into a module because they have some
common factor , other than all being used in the same program-. For
example one module might be defined to contain a wide variety of
trigonometric cperations even though no single program was expected
to use them all. Similarly the procedures being maintained by a
particular programmer might be grouped together. Such large
groupings arc not usually executed as a complete unit, instead the
operations they make available are referenced in other programs.

The dot notation that is used for referencing objects in structures,
e.g. PRESIDENT.RELIGION, can also be used with a procedure reference

~

- - -

~ 

-~~~~~~~~~~
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to the left  of the dot. This says that the name to the right is to
be resolved as if it appeared in the referenced procedure. This sort
of reference is used when editing the written form of a program .

A: PROCEDURE ;

B: PROCED URE ;

END ;

END A;
DELETE A .B; / *  Deletes the procedure from the written program */

The language system editor is used by the programmer to develop and
modif y sections of program. This editing references sections of
program by their names, and may also use numbering of the individual
lines in a section.

The editor is a builtin operation, and there are other builtin
operations for translating and executing sections of program. The
translator checks for errors that can be found without execution and
creates a version of the section in an internal form. The existence
of this internal form will economise on the translating necessary
before the section can be executed on a subsequent occasion. The
system keeps track of whether an internal form is obsoleted by
editing of the written section that it corresponds to.

The arguments to the system services like editing allow the
programmer to control some details of their operation, e.g. whether
the translator is to produce a cross-reference of where identifiers
are declared and used.

There are two circunstances where the language does not fully define
what happens during execution. The first is if some assertion in the
program is incorrect. The second is if SYSTEM modules are used.
Inside SYSTEM modules code can be written that is peculiar to the
hardware that the program is going to execute on, and certain
constructions can be used that might lead to errors that the
language system cannot detect.

2.2 THE PHYSICAL COMPONENTS OF A PROGRAM

A standard representation for programs is defined so that the
programs can be processed by different machines. This representation
uses the 64 character subset of ASCII. The characters are formed
into lines. Each line consists of 72 characters of user program and
an 8 character line identification. The latter consists of a 5 digit
decimal line number and a 3 character user field. (Which might be
the authors initials or a modification level for example.) The
formation of lines into datasets is described in an appendix.

-—

~
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2.3 DELIMITERs AND NON-DELIMITERS.

Here we describe the most basic constructions of the language-.

The method of describing syntax is BNF-like , and follows the method
used in the definition of Standard PL/I, except that overstruck
characters are not used , angle brackets replace square brackets and
curly brackets are avoided by the use of extra productions. Where
there might be aut iquity quotes are used, e.g. • I ’ does not mean
syntactic alternative , while does .

text: : =<delimiter-list><delimiter-pair-list>
delimiter-pair: :=non-delimiter delimiter-list
delimiter : :=opera tor-symbol~ punctuation-symbol
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
punctuation-symbol ::=(j )  

~
. , I ;  : ~ ->~ ?Ibla nk l comment

non-delimiter: : =identifier I arithmetic-constant s string-constant
identifier:  :=letterl identifier identifier-character
identifier-character: :=letter~dig i tI_
arithmetic-constant: : =decimal-number<E<sign>integer>
decimal—number: : integer< . digit-list> I . digit-list
sign:: +
string-constant:: = ‘<string-symbol-list>’

A comment begins with /4 and ends with 4/ and any characters may
appear oetween these except the consecutive pair 4/

A string-symbol may be two consecutive characters ‘ or any
character other than quote.

Extra rules are imposed to make programs easier to read. The end of
a line of program is treated as a blank character. This prevents
most delimiters and non-delimiters from continuing across lines.
Also string constants must not continue across lines.

There are some punctuations of the language which look like
identifiers but are not the names of anything:
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BASED
CASE
DECLARE
DO
END
IF
INITIAL
MODULE
PROCEDURE
PRIORITY
RETURNS
SELECT
SUBSTR
SYSTEM
THEN
UNSPEC
VALUES
WHEN
WHILE

2 .4  IDENTIFIER S AND CONSTANTS

values : :=VALUES(constant-comxnajjst)
constant:: =arithrne-tic-constant l string-constant I identifier
statement-name: : =identifier:

In addition to the arithmetic and string constants, some identifiers
represent constants . These identifiers are defined in a list of
values , or they appear on the left of statements.

The builtin constants are:

NULL
TRUE
FAL SE

Where the language specifies an opening round bracket and matching
left bracket, square brackets may be used instead. When there are
multiple brackets this will make programs clearer.

2.5 OBJECTS, INCLUDING THOSE THAT CONTAIN OTHERS.

declare—statement: :DECLARE declaratjon-coxmnalist;
declaration: :=<integer> identifier <BASED> <dimension-suffix>

<attribute-list><SHARE1J><CASE< (expression)>>

The variations in the form of a declaration can specify attributes
about the containment of objects. These attributes are known as
Structure, Member, Array, Union and Augment. DATA sets and AREAs can
also contain objects, and what they contain is determined by the
execution of the program.

_ _  _ _ _  _ _
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2.5.1 STRUCTURE AND MEMBER.

An integer at the start of the declaration specifies that the
identifier is a structure or a member. The structure and its members
are written as a sequence of declarations. The integer on the
structure is one less than the integer on its immediate members.
This notation can be nested, so that an identifier is both member
and structure.

e.g.
1 journey,

2 start,
3 latitude degrees,
3 longitude degrees,

2 finish,
3 latitude degrees,
3 longitude degrees;

The advantage of forming a structure is that the complete structure
can be operated on, with the detailed effect on the members only
specified where necessary.

2.5.2 ARRAYS

An array is composed of a number of identical objects. The names of
these identical objects are the values of some other data type.
This other data type is specified in the dimension suffix.

DECLAR E HOtJR S(WEEKDA Y) INTEGER;/ * HOURS(MONDAY) ,HOURS(TUESDAY) etc. ~/

In the case where the names are the integers 1 to N, an expression
for the value of N is given in the dimension suffix. The value may
be zero, indicating there are no objects in the array.

DECLARE TRANSITION(6) FLOAT;/~ TRANSITION ( 1) .-. TRANSITION(6) 4/

One dimensional arrays are also known as strings.



UNRESTRICTED TR.12.168 Page 72

2.5.3 UNIONS

The keyword CASE indicates that a union structure is being defined.
There are two possibilities. 1. All the members of the structure
have CASE without a following argument. This is called an augmented
union. 2. All the members of the structure have CASE with a
following argument, except the first, which does not have CASE. In
the former construction, the members of the structure do not combine
to comprise the structure but are alternatives, only one of which is
held in the structure at any one time . Assignment to a member of a
union makes that member the current member, destroying any object
previously in the structure. The structure also contains an un-named
object with a value that indicates which member is current in the
structure. This augment value is used when the program specifies the
structure as - • source of a value, to check that the current member
is the one specified.

DECLARE 1 NUMBER ,
2 X FIXED DECIMAL(6) CASE ,
2 Y FLOAT DECIMAL (8) CASE;

NUMBER.X=27;/* Makes X the current member 4/
YY=NUMBER.Y;/~ An error , since NUMBER does not currently

contain Y. 4/

In the second form above the determination of the current member is
contained within the structure. The members, other than the first,
are alternatives. When the structure is used, the CASE arguments are
evaluated in order of appearence and the first TRUE one indicates
that the corresponding nember is currently the only member of the
structure. To ensure that this indication is consistent with the
asignments to the structures members, the following restriction is
made , (outside of SYSTEM modules). The CASE expressions must be
constant over the lifetime of an instance of the structure. This
means that the only member that can become current in an instance is
determined when the instance is allocated.

DECLAR E 1 PERSON BASED,
2 SEX VAL1UES(MALE,FEMALE) CONSTANT,
2 MAIDEN_NAME CHARACTER( 12) CASE ( SEX=FEMALE) ,
2 MILITARY_SERVICE BIT(1) CASE (SEX=MALE);

DECLARE MARY PERSON CONSTANT INITIAL(FEMALE,’SMITH’);
DECLAR E JACK PERSON CONSTANT INITIALCMA.LE,FALSE);

2 .5.4 SHARED

The SHARE keyword describes another situation where the written
declaration is augmented by an un-named augment object. Even if
there is no level number , a structure is implied.

DECLARE B BUFFER SHARE;/~ Declares B and an augment. Si
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The augment is used to perform synchronisation when the shared
object is accessed from different processes.

2.5.5 AUGMENTED ARRAYS

An array with an asterisk in the dimension suffix is augmented with
an object , ( of type FIXE D ) containing a count of the objects
within the array .

2.6 ARRAYS OF STRUCTURES ETC.

In general, a composed object can itself be part of a bigger
object.

DECLARE 1 A( 1O) ,/* An array of structures. 4/
2 Al FLOAT,
2 A2 FLOAT;

The restrictions are:
1. A dataset can only contain, it cannot be contained .
2. An area can only contain, it cannot be contained.
3. A SHAREd object must not be contained in a SHAREd object. 

-

An array of arrays may be written with the sizes listed in the
dimension-suffix e.g.. DECLARE RECTILINEAR(8,9) INTEGER;

dimension-suffix: : =( attribute-argument-comznalist )

2.7 ATTRIBUTES ACQUIRED IND IRECTLY

attribute: : =identifier< (attribute-argument-commalist)>
attribute-argument: : expressionj4 I ?Iattribute-list
The identifier of an attribute may be declared . If it is not
declared then it will be a builtin data type. If it is declared then
the BASED keyword will be used in its declaration.
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DECLARE X COUNTER ;
DECLARE COUNTER BASED FIXED DECIMAL (4);

Attributes which are referenced by declared name in this way are
expanded out, i.e. the item being declared acquires the named
attribute and all the attributes declared for the named attribute.
( In the example X has attributes FIXED DECIMAL(4) and COUNTER. )
All attributes can be acquired in this way. When structuring is
acquired the member names are also acquired.

The attributes being added may have asterisk or question-mark in
their arguments . If so , the reference to the declared attribute must
have just enough arguments to match one-to-one with these asterisk s
or question-marks. ( The association is by order of appearence.) In
the case of a question-mark the argument on the reference replaces
the question-mark in the attribute being added. In the case of an
asterisk the argunent becomes the value of the un-named object
defined by the asterisk.

DECLA RE VECTOR BASED (5)  FLOAT DECIMAL(?);
DECLARE V VECTOR ( lO , 6) ; /*  Attributes ( 5 )  FLOAT DECIMAL (6) with *=1Q •/

The attribute ‘parameter’ is acquired by the appearence of the
identifier in the parameter-list of a procedure statement.

2.8 ATTRIBUTES

The full set of attributes for a name that is not declared with
BASED must meet certain requirements.

1. if the attributes include neither array nor structure, they
must include just one set of values.( This may be written
explicitly as the attribute VALUES (value-commalist) or it may
be implied by a builtin attribute.)

2. There must be no question-marks remaining.

3. There must be no asterisks, unless there is also ‘parameter’.
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2.9 THE BUILTIN ATTRIBUTES.

The attribute INITIAL (expression ) means that the object is set to
the value of the expression at the beginning of its lifetime. It
can appear at most once in a full set of attributes. If it appears
on a structure declaration it must not also appear on anything
contained in the structure.

The CONSTANT attribute means that the only assignment to the object
occurs at the beginning of its lifetime.

The values of the FIXED data type are an arithmetic sequence of
numbers. The values of FLOAT are approximate numbers.

The DECIMAL (precision-expression, scale-expression) attribute gives
further specification of a FIXED or FLOAT object . The precision P
and scale Q give the values for a FIXED type. The values are
strictly between plus or minus 10**(P-Q) with an interval of 10**(-
Q). A fixed value is written with P-Q digits before the decimal
point and Q digits after.

00.625 /5 FIXED DECIMAL(5,3) 5/

For FLOAT data the scale is omitted~. The precision indicates thatthe ratio of the largest to smallest of the values is less than
10**P. A FLOAT value is written with P digits in the mantissa and E
before the exponent.

9.8’4E1 /5  FLOAT DECIMAL (3), an approximation to 98.4 5/

BIT(attribute-arguinent) is an array of Boolean values, i.e. there is
an implicit declaration BIT BASED (5)  Boolean; DECLARE Boolean
VALUES(FALSE,TRUE); The attribute Boolean is also builtin but is
written az BIT , (without an argument) . Thus BIT( 10) and (10) BIT are
the sar~e.

CHARACTER (attribute-argument) is an array of character codes. The
implicit declaration is CHARACTER BASED ( 5)  Codes ; DECLARE Codes
VALIJES(SP, HT,.... -‘ (‘ , “ ) ‘ , ‘5’ ,.... ‘A’, “B’,.... ‘0’, ‘1’,... DEL);
These are the ASCII codes . See ‘Machine Specification ’ for how to

specify that the hardware works in another set of codes.)

The AREA (attribute-list) attribute specifies a storage area from
which objects can be allocated .

The DATA(attribute-list) attribute specifies a special storage area
in which objects can be allocated, a dataset. Objects in a data set
can.not be referenced directly, but can be copied . See Input/Output.

The values of POINTER objects are names of objects allocated in an
AREA .
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The TO(identifier) attribute specifies that a pointer object has
values that name objects of the specified type.

The IN(identifier) attribute specifies that a pointer object has
values that name objects allocated in the specified area.

A FILE object has two states, open and closed. When open its values
are the names of objects within a dataset.

The RECORD, KEYED, PRINT, INPUT, OUTPUT, and UPDATE attributes
specify which forms of Input/Output statements may be used with the
f i le  object as an argument.

A CONDITION object is used only as the subject of the SIGNAL
statement and in condition prefixes.

2.10 RESOLUTION AND MODULES.

procedure: :=statement-name <prefix> procedure-statement
< declare-statement-list > < on-statement-list >
< executable-list > < procedure-list >
ending

executable::=< statement-name > < prefix > executable-statement
executable-statement: : =module I group~ if-statement Iexecutable-single-statement
module::=module-statement < declare—statement-list >

< executable-list > < procedure-list > ending
module-statement : :< SYSTEM > MODULE

< EXPORT(resolution-item-commalist) > ;
resolution-item: : name ~operator-symbolname: : =identifier j identifier.name

The most significant constructs in associating references with
declarations are procedures and modules. All the rules for finding
the declaration corresponding to a name are applied first in the
procedur e or module that most closely contains the use of the name.
Only if there is no matching declaration is the next most closely
containing procedure or module considered , and so on. It is an error
if none of the containing procedures and modules has a matching
declaration. The builtin identifiers are declared in a notional
outermost procedure, so that they can be used in all procedures and
modules. The rules for resolution within an individual procedure or
module are as follows .

A list is made of the declarations in the procedure or module,
indicating the identifier declared and its attributes. This is
called the catalog . Declarations stem either from declare-statements
or from statement-names. The attributes of a statement name on a
procedure include the number and attributes of the parameters to the
procedure. The catalog includes the names in any module statements
immediately contained in the procedure or module.
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There are constraints on the identifiers in the catalog.
Identifiers which are not declared as procedure names or members of
a structure must be unique within the catalog. The identifiers of
members of a structure must be unique within the structure that
immediately contains them. Two procedure names tha t are the same
must have attributes that dif fer  in the number or type of
parameters. These rules ensure that the process described below
leads to a single declaration.

When looking up a name , items from the catalogue are selected which
have the same name . In the case when the name is a sequence of
identifiers with dots between , each identifier must correspond to a
member such that all the identifiers to the left of it name
structures that contain that member , directly or indirectly. This
subset of the cata log may be empty, may be one declaration, or may
be several declarations.

If it contains one declaration then this is the declaration being
sought . If it contains more than one declaration then all the
declarations must be for procedure names , and generic selection ,
q. v . ,  is used in an attempt to select one of them. If it is empty
then an attempt is made to resolve the name by ‘indirect resolution ’
q.v. If these attempts fail the name cannot be associated with a
declaration in this catalog.

2.10.1 GENERIC SELE CTION

Generic selection depends on the notion of type.. When gathering the
attributes for an object a distinction is made on how a referenced
attribute is known to the declaration making use of it-. It may be
known because the reference resolves directly to a declaration , as
in the earlier examples. Or it may be known only because the name is
in the list of a module-statement:

DECLARE F SMALL_FIXED INITIAL(0) ;
MODULE ( SMALL_FIXED ,ALPHA) ;
DECLARE SMALL_FIXED BASED FIXED DECIMAL (2 ) ;

END;
The attributes acquired in the former way, with INITIAL and CONSTANT
discounted , are called the type of the declared item..

/~ F has type SMALL_FIXED and attributes SMALL_FIXED, INITIAL (0),FIXED, DECIMAL(2) 5/

Generic selection starts with a list of procedure-names, as
described above, and selects one or none of them The selection is
made on the basis of the arguments on the reference to the procedure
name. C The reference will usually be written with the arguments in
a list, like MAX (A ,B), but can be any form of operation like A+B or
A MOD B.) 
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A first selection is done by matching the type and numoer of the
arguments with the type and number of the parameters for each of the
procedures . The argument and parameter types match if the former has
all the attributes compri sing the latter .  This includes whether they
are both structures with the same member names , whether they are
both arrays covering the same names, and whether both have asterisk
arguments . INITIAL and CONSTANT are not included in the test for
equality. If there is a procedure with appropriate arguments this
completes the selection , otherwise a second selection is made.

In the second selection a weaker test of matching is made. An
argument matches a parameter if assignment between of an object of
the argument type to an object of the parameter type is defined in
the language. c . f .  assignment. If more than one procedur e matches
under this weaker test it is an error. If no procedure matches the
selection fa i ls .  Otherwise a procedure has been selected.

2.10.2 INDIRECT RESOLUTION

Indirect resolution operates only on a sequence of ident~ f i ers with
dots between them . The leftmost must resolve to a procedure or
module. The catalog of this procedure or module is then used to
resolve the relDainder of the sequence. This latter resolution may
again be i ndirect. Indirect resolution is only permitted in certain
circumstances , e.g. to reference a piece of program to be edited .

2.11 REFERENCING

reference: := unargumented-reference < arguments >
unargumented-reference: := locator-qualifier < basic-reference >

I basic-reference
locator-qualifier: := reference ->
arguments: : (<expression-commalist> )
basic-reference : :=< structure-qualification > identifier
structure-qualification: := basic-reference <arguments>.

The resolution of names to declarations occurs before program
execution - it does not depend on the values of any objects. (There
is an exception in the area of Input/Output) Here we describe how
different objects can be referenced during execution.

A declaration that is not BA~3ED relates to an object allocatedautomatically when the procedure that contains the declaration is
entered. The identifier from the declaration is used to reference the
object.

BATH_TEMPERATURE

_____
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If instead an object has been allocated explicitly,c.f. ‘Allocation
and freeing ’ , then there will be a POINTER object whose value
selects the object . Referencing the object is written with an arrow.

P->CELL

When an array or structure object is referenced , the reference may
be augmented to indicate that only a component of the object is
being referenced.. For an array the object whose value selects the
component, the subscript, is written after the array reference.
In the case of a structure the member name is used.

TAX_RATE (N) PRESIDENT.RELIGION

These selections can be applied successively, in left to right
order.
Q->ALPHA (J) .BETA
Successive selection on arrays is customarily written with an
argument list rather than many brackets.

PLOT(R,S) /5 Rather than PLOT(R) CS) */

References to the results of operations, which are un-named, are
achieved by writing the operation and any operands,q.v.

Reference to an alternative in a structure will be an error, if the
current member is not that alternative, and is not being changed to
that alternative. This error raises the TYPE condition when the
reference is executed. C Reference as the argument to the
IS(argument) builtin function is an exception - the result of the
function indicates whether the alternative is current.)

A section of an array can be viewed as another array. The form
SUBSTR (array-reference ,N,M) refers to the objects array-
reference ((N-1)-+1), array-reference ((N-1)+2), .... array-
reference( (N-1)+M)

The objects are renumbered , so that the section selected is an array
with components named 1, 2, .. M.

2.12 FUNCTION OPERATIONS

Function operations are written in three ways. Where there is an
operator-symbol that takes one argument the symbol is written ahead
of the argument, e.g. -X For operator symbols that take two
arguments and for procedure identifiers that take two arguments, the
operator may be written between the arguments. e.g. B>C H MODULO
6 For procedure identifiers the arguments may also be listed after
the identifier. Superficially thir looks like subscripting , but the
type of the identifier makes the distinction.

---- —- - - ----—-_- ~~~~ —--~~~~~~~~~~ --- _ - - - -- - - - - - - - -~~~~- -  -- ---- . - -* — - --- -—-  
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2.13 BUILTIN OPERATIONS

VALUEs are ordered, so that comparison of them is meaningful. Thus
if the values are VALUES (COLD,WA.RM,HOT) it is true that HOT>COLD and
that WARM=WAR~ . Wh en ob jects are referenced it is their values that
are compared. Thus immediately after an assignment T HOT it is true
that T>COLD and that T HOT. 

-

The meaning of comparison for builtin data types stems from their
underlying VALUES. Thus 5>3 and ‘B’ >’A’. Comparison is not defined
where there are no values, as with AREA,FILE , and CONDITION.

Comparison may also be applied to strings, which means the objects
of the strings are compared in pairs, left to right. If each object
in one string is equal to the object in the corresponding position
in the other string then the strings are equal. If they are not
equal the leftmost unequal position determines which is greater. If
one string is shorter than the other and hence does not provide
enough values for comparison, then the smallest possible value is
used as a substitute in these comparisons.

The result of a comparison is BIT(1), i.e. TRUE or FALSE.

The operations written ‘-~~~ ‘ , ‘g ’ , ‘ i ’ , and ‘g g ’ , (without quotes )
operate on Boolean values with the meanings NOT , AND, OR , and
EXCLUSIVE-OR. When applied to BIT strings where the Boolean values
represent inclusion/exclusion from a set, these give a result
representing the inverse, intersection , union, or symmetric
difference of the set(s). The operands should be ot the same length
and this determines the length of the result.

The operators written ‘- ‘
, ‘ -4 ’ , ‘5 ’ , ‘I’, provide the arithmetic

operations of subtraction (and negation when used with one operand),
addition , multiplication and division. They yield the normal
arithmetic results, e.g. 5+5 10, with the caveat that FLOAT values
ara approximations so that 0.4E0+0.6E0 may not equal 1.OEO.

The operands must be of the same numeric type, although they may
differ in precision and scale. The precision and scale of the result
are defined so that no accuracy is lost. For operations on float
values this means the precision of the result is equal to the
maximum of the operand precisions. For FIXED data it means there are
enough digit positions for all digits of the result, af ter lining up
the decimal points. More formally, if the operand types are FIXED
DECIMAL (P1,Q1) and FIXED DECIMAL(P2,Q2) then the result of addition
and subtraction is FIXED DECIMA.L(1+MAX(P1-Q1 P2-Q2)+MAX (Q1,Q2),
MAX (Q1,Q2)). The result of multiplication is FIXED
DECIMAL (1+P1+P2 ,Q1+Q2). Division strictly needs indefinitely large
scale in order to retain accuracy. Hence division is only permitted
in contexts where these extra scale positions, if produced , would
immediately be discarded. These contexts are ones where the result
is about to be assigned to an object with known scale. For example
FIXED division is allowed in the form A=B/C but not in the form 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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A= (B/C)*D. Note that this situation is an exception to the general
rule that digits are not lost on assignment.

2.14 ORDERING WITHIN EXPRESSIONS

expression::= expression-four < level-four-operator expression-four >
I expression-one user-operator expression-one

level-four-operator: : 
~ 

‘
~~~
‘ 

~~~~user—operator: : identifier
expression-four: : expression-three

< comparison-operator expression-three >
expression-three: := expression-two

< level-two-operator expression-three >
level-two-operator::= + I -

expression-two: : expression-one
< level-one-operator expression-one >

level-one-operator::= * I /
expression-one::= reference I literal

I prefix-operator Lxpression-one
I (general-expression )

prefix—operator: := + I — I -‘
Sequences of function operators may be written, forming an
expression. The result from one operation may be the operand of
another operation. Such operands are normally written with
parentheses around the earlier operation, e.g. (B+C).
There are rules for particular operators which allow the
brackets to be omitted. These rules are chosen to simplify writing
some common cases.
No brackets are necessary around prefix operators since they always
apply to the expression on their right, e.g. A*-2 is the same as
A*(-2). No brackets are necessary to ensure that Boolean operations
are performed before comparisons, e.g. CID TRUE is the same as
(C~D)~ TRUE, not CI(D TRUE). No brackets are necessary to ensure
that arithmetic precedes comparison, e.g. A+B>10 is the same as
(A+B)>10. C The alternative of A+ (B>10) would not be meaningful
anyway.) No brackets are necessary if multiplication/division
precedes addition/subtraction, e.g. A+B*10 is the same as A+ (B*1O).

A sequence of additions and subtractions, or a sequence of
concatenations, does not need brackets if the operations are to be
evaluated from left to right.. e.g. I+J-2 is the same as (I+J)-2

The order of evaluation of operators is obvious when the result of
one operation is required as an operand of another. In very rare
cases the order of evalut.ion of the operands for a single operation
will be significant, since these evaluations may be function
operations with -‘ side-effects’ additional to their main effect of
returning a result. The order is left to right.

—— ~~~~~~~~~~~ — -—-  . - .  —
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2.15 ASSIGNMENT OF OBJECTS WITH COMPONENTS.

assignment-statement: :=reference = general-expression;
general-expression : : =expression-item-comxnalist

I concatenation
expression-item : := expression I (expression-iteui-comrnalist)
concatenation::=expression < ‘H’ concatenation >

Assignment uses the value of an expression , the source, to set the
value of an object, the target. The details of this operation depend
on the data types of the source and target. Note that it is the type
and not the complete set of attributes which is relevant. If a
module defines a type using an array then a single object of that
type is not an array.

If the target is a structure then the assignment is expanded to be
an assignment to each of its members. The source must be a structure
with the same number of members, or a list with the required number
of members. The component targets and the sources are paired by
order of appearence.

DECLARE 1 PRESIDENT,
2 SEX VALUES(M.ALE,FEMALE),
2 RELIGION VALUES(HINDU,CATHOLIC,OTHER);

PRESIDENT FENALE ,HINDU;/* Has effect of PRESIDENT.SEX=FEMALE
PRESIDENT.RELIGION HINDU 5/

Union structures may be assigned only if they are identical in type.

If the target is an array, then the source must be an array or a
list of values. As for a structure, the assignment is expanded.
However if there are more components in the target than the source
the residual target components are set to their lowest possible
valu€ . ( i.e. the leftmost in their VALUES list.)

By applying these expansi.on rules repeatedly if necessary all
assignments are reduced to ones where there are no components to the
source or target. 

—-~~ —— -----—- - -- - - - - - - -  -- -- 
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2.16 ASSIGNMENT OF SINGLE OBJECTS.

• If the source and target are of identical type then the value of the
source becomes the value of the target. Some other assignments
between builtin types are meaningful.

Assignment of a FIXED value to a FLOAT object is permitted, since
any loss of accuracy is not significant because the result is only
used as an approximation . Assignment of FLOAT to FIXED is not
permitted because there is no obvious interpretation of constructing
an exact value from an approximation.

Assignment of FLOAT to FLOAT is permitted provided the precision of
the target is at least that of the source, so that no accuracy is
lost. Assignment of FIXED to FIXED requires the scale of the target
to be at least that of the source, for the same reason. (If it is
larger the extra digit positions are set to zero.)

In all assignments there is a condition that occurs if the value
being assigned to the target is too large for the target to hold.

2.17 ORDER OF EXECUTION OF STATEMENTS.

group::=do-statement < executable-list > ending
I select—statement < choice-list < default-choice >> ending

choice: : WHEN ( expression-commalist ) executable
default-choice: : cYTHERWISE executable
if-statement::= IF expression THEN executable < ELSE executable >
do-statement::= DO;

I DO WHILE < expression >
I DO do-spec;

do-spec::= identifier< =spec >
spec::= expresssion to-by
to-by::= TO expression < BY expression >
call-statement: := < CALL > reference-list;
return-statement:: RETURN < (general-expression) >;
goto-statement:: G0 TO identifier;
leave-statement: : LEAVE <identifier> ;
null-statement:
stop-statement: : STOP;

<< In the Users Manual this would be an elaboration of the
sequencing constructs IF, SELECT, etc described in the introduction .
This should present no difficulties. Only iteration over a domain
will be new to most programmers.>>

“ - - --
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2.18 CONDITIONS 

signal-statement : := SIGNAL condition-reference;
pref ix: : C condition-reference-commalist ) :
on-statement: := ON condition-reference goto-statement;
condition-reference: :=identifier< (identifier)>

<< This User Manual requires an elaboration of what is in the
Introduction. The only tricky bit is compile time distinction
between ERROR and other conditions: >>

Tne condition ERROR is special. It represents the condition ERROR ,
and also all builtin conditions other than those with ON statements
in the same procedure. Thus if the procedure has just ON ERROR GO TO
LA; then SIGNAL SIZE or SIGNAL ERROR will transfer control to LA. If
the procedure has ON SIZE GO TO LS; ON ERROR GO TO LA; then SIGNAL
SIZE will transfer to LS, SIGNAL ERROR will transfer to LA, and
SIGNAL OVERFLOW will transfer to LA.

<< The following list of builtin conditions is incomplete. The
intention is to extend the list until there is no need for an error
code. >>

AREA (reference)
Signalled by ALLOCATE if there is insufficient free
storage in the area.

CONVERSION
Signalled by certain builtin functions, q. v.

ENOFILE (reference)
Signa lled by an input operation if the current value of
the file has been so far advanced that there is no
corresponding object in the dataset.

OVERFLOW
Signalled by FLOAT arithmetic when a result exceeds the
maximum value an implementation can support . This value
can be determined by examining the machine description.
See also builtin functions , which may signal this
condition.

RECORD (reference)
Signalled when the object in a dataset referenced by the
specified file , does not match the type which the I/O
statement specifies it should have.

SIZE
Signalled when the value being assigned to a FIXED object
is not a value that the object can hold.
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STORAGE
Signalled when there is insufficient storage remaining in
the pool used for allocating objects automatically when a
procedure starts.

STRING SIZE
Signalled when the source string of an assignment is longer
than the target.

SUBSCRIPTRANGE
Signalled if the value of a subscript is not the name of
an element of the array..

UNDEFINEDFILE (reference)
Signalled by OPEN if the TITLE argument does not name a
dataset.

UNDERFLOW
Signalled when the result of FLOAT arithmetic is too small
for the machine to handle.

ZERODIVI DE
Signalled when division by zero is attempted.

2.19 SUBROUTINE OPERATIONS

procedure-statement: : =PROCEDURE<(parameter-name-comznalist)>
< keyword-parameter-list >
< RETURNS( attribute-list )>;

parameter—name: : identifier
keyword-parameter: : identifier(paraxneter-naxne)

The arguments to subroutine operations are written in one or more
argument lists. The procedure stat~~nent for the operation determines
how the arguments should be written. The arguments written ifter
the operator (the procedure name) are matched with the parameters
listed after the word PROCEDURE. The arguments after keywords are
matched with the parameters after the same keyword in the procedure
statement. The order of appearence of keywords is not significant.
e.g.

SORT:PROCEDURE (P1) IJSING(P2) LIKE(P3);...;END;
SORT(A) LIKE(F) USING (Y);/* Matches A to P1, F to P3, Y to P2 •/

Many of the builtin subroutine operations (executable single
statements) do not follow this format, because they have an argument
that is not an object (e.g. ALLOCATE) or because they are shorthands
for several operations (e.g EDIT(A,B)(F(3)) ).
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executable-single-statement: :=allocate-stateznent
I assignment-statement
I call-statement

• I close-statement
I free—statement
I get-statement
goto- statement

I leave-statement
I null-statement
I open-statement

put-statement
I read-statement
I return-statement
I rewrite-statement
I start-statement
I signal-statement
I write-statement

2.20 ALLOCATION AND FREEING

allocate-statement: : ALLOCATE identifier
< IN(identifier) > < SET (reference) >

free-statenient::= FREE reference < IN(identifier) >

Allocation makes a new object available for use. Freeing asserts
that the object is no longer in use, and the language system may
reuse its storage.

Any expressions tha t determine array sizes or initial values are
evaluated at the same time as the allocation is done, and the
initial values are also set at this time.

Declarations without BASED are declarations of objects that are to
be automatically allocated each time the containing procedure is
entered and freed each time it is left. Notice that if the procedure
is recursive, i.e. entered more than once without an intervening
exit, there can be more than one object associated with the
declaration. There is no way of referencing other than the latest
object to be allocated.

These automatic allocations are made out of a storage area
associated with the current process.

Explicit allocation and freeing are performed by the corresponding
statements. 

- - -  



r - -

UNRESTRICTE D TR.. 12.168 Page 87

2.21 PARAMETERS

The procedure-statement defines which arguments of an operation
correspond to which parameters. The parameter objects are declared
like other objects and are automatically allocated and freed in the
same way . C They cannot be allocated explicitly in areas.)

Initialization of parameters is not the same as for other objects.
A parameter cannot have the INITIAL attribute and it is initialized
by assigning the argument to it. Also the parameter ’s value is
assigned back to the argument when the procedure terminates~. These
assignments will not occur if they are redundant , i.e if the
parameter is k nown to have the same value as the argument at the
finish of the procedure , or if the parameter is only used as a
target in the procedure.

Parameters may have attributes with unmatched asterisk or query
extents in them . These values are taken from the corresponding
attribute arguments of the argument.

Objects returned by function operations are not declared or
allocated like other objects. Their type is defined in the RETURNS
clause of the procedure-statement. They are allocated and assigned
to by the RETURN statement.

2.22 INPUT/OUTPUT

<< In this report we have not reproduced all the relevant details of
PL/I I/O, simply en~ igh to to show what subset is used.>>

Data that is typed by humans, or destined to be read by humans , will
be held in character form . The values are written in the same way as
values are written in a program.

276 HOT 9.81 E1 ‘1’

There are additional ways in which data can be written. The format
of any particular constant can be specified by a format item.

data-format: : fixed-point-format
I floating-point-format
I picture-format
I haracter-format
I bit- format

fixed-point-format::=F (expression < ,expression >)
floating-point-format: :=E(expression < , expression >)
picture-format: : P string-constant
character-format:: =A<(expression)>
bit-format: : B<(expression)>

~
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A format is written in conjunction with a reference to the object
which is to provide, or receive, the value.e.g EDIT(ALPHA)(F(5)).

edit-directed-input: :=EDIT edit-input-pair
edit-directed-output: : EDIT edit-output-pair

The data-item may be a structure, in which case it is expanded into
its components. A list of data-items may be given, which are paired
with tne format items in order of appearance. If there are fewer
format items then ‘wrap-around ’ of the format list occurs. e.g.
EDIT (I,J,K)(F(5)).

The word LIST may be used instead of EDIT, in which case appropriate
formats will be deduced from the types of the data items.

edit-input-pair: : = (reference-commalist)
(format- specification-conunalist)

edit-output-pair: : =(expression-commalist)
(format-specification-commalist)

list-directed-output: : LIST (expression-cozumalist)
output-specification : :=list-directed-output

I edit-directed-output
There are also control format items. These have an effect without
being paired to a data item.

control-format: := LINE(expression)
I X (expression)
I SRIP< ( expression)>
I c OLUMN(expression)

When a PUT statement is executed the output-specification produces a
sequence of characters, the human-readable form of the data values.
When a GET statement is executed the input-specification consumes a
sequence of characters.

put-statement: :PUT fi~le-option< SKIP<(expression)> I PAGE< LINE (expression) >>
<output-specification> ;

get-statement: :=GET file-option input-specification;

Each of these characters is transmitted by an implicit WRITE or READ
operation to or from the dataset associated with the specified file.

The relation between a file object and a dataset is determined when
the file is opened.

open-statement: := OPEN file-option <TITLE (expression)>
~LINESIZE(expression)>;close-statement: :cLOSE file-option ;

file-option: : =FILE (reference)

The value of the argument to TITLE is the name of the dataset . The
resolution of the name to the declaration is made in the same manner
as resolution of other names, but is made when the open-statement is

__________________
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executed. The significance of this is that different executions of
the same statement can resolve to different datasets. The file
object remains associated with the dataset until it is CLOSEd. A
fi le object can only be associated with one dataset at a particular
time. Any number of files may be associated with one dataset..

As well as determining a dataset, an opened file object names an
object in that dataset.. The objects are numbered 1 to N, and when
initially opened the file names the first. Statements with a KEY or
KEYFROM option set the name to the given value at the start of
execution of the statement . The READ , WRITE , and REWRITE statements
increment the number by one on their completion.

The READ statement copys a value from the object currently named by
the file into the object referenced in the INTO option. A REWRITE
statement copys a value from the object referenced in the FROM
option into the object currently named by the file. The WRITE
statement creates an object in the dataset with the name given by
the file value, and then acts like REWRITE,. These operations of
copying values are not exactly the same as assignment - the data
types of source and target must be identical.

read-statement::= R EAD file-option key-option
INTO(reference);

key-option: : KEY(expression)
rewrite-statement : :REWRITE file-option <key-option> from-option ;
from-option: : FROM (reference)
write-statement: :=WRITE file-option < KEYFROM (expression) >

from-option; 
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2.23 STARTING AND SYNCHRONIZING

For any procedure to execute there has to be a source of storage for
the objects automatically allocated when the procedure starts, and
there has to be an engine to execute the statements of the
procedure. This combination of storage and engine is called a
processor , and ultimately is implemented by hardware - the memory
and Central Processing Unit.

Most programs are executed on the basis that there is only one
processor, so that it does not need to be referenced explicitly.
However for some problems it is valuable to be able to write as if
there were several processors. This may be because the execution is
on hardware with several processors, and this formulation of the
program helps the implementation to exploit them. Or it may be the
program is modelling, controlling, or reacting to several real-world
processes that are not (entirely) synchronised.

The unit of allocation of work to a processor is the execution of a
procedure (and the procedures invoked normally from it). A process
begins when the procedure is STARTed, and terminates when the
procedure terminates.

start-stateinent::= START call-body < PRIORITY(expression) >;

A number of factors contribute to how fast a process executes. The
actual source statements in the procedure are relevant. The quality
of the compiler that prepares them for execution is relevant. The
power of the hardware processor(s) is relevant. If the program
interacts with real-world activities, e.g. closing a valve, then the
speeds of these activities are relevant. The language system cannot
guarantee the speed of a process, but it will provide information to
allow the speed to be worked out for a particular implementation ,
e.g. timings of generated code sequences will be listed.

Some control over process speed is given by the PRIORITY option.
The argument is an integer between I and 1000 which represents a
ranking of the desired speed of the new process. (i.e. Where the
implementation has a choice the process with the larger ranking will
execute faster.)

Often processes wil l, need to cooperate. This may arise because one
computes information used by the other, or may arise because they
control or monitor pieces of real-world equipment that are not
independent. Since the progress of real-world activity is
discernable in the computer only by its reflection in the value
(state ) of some internal object, these two cases are essentially the
same. Hence the general situation is one process assigning to an
object and another using the value. Access to the object is shared
(although only one of them allocates and frees the object).

Access to a shared object is not allowed to be simultaneous access
by the two processes. (Assigning to the object may be a multi-step
operation and it would not be meaningful to try to access the value

- - —- ——~~~~~~~~~~~~~~~~~~~~~~
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in the middle of these steps.) A process which is going to access a
shared object must, during execution, acquire and release the right
to do so. While it has the right no other process has the right. The
construction for controlling this is the SELECT group.

When a SELECT group references shared objects in a WHEN expression
the WHEN expression is deemed to evaluate to FALSE if a shared
object cannot be accessed. If this causes all the WHEN expressions
to be FALSE (and there is no OTHERWISE clause) then evaluation of
the WHEN expressions is repeated. ( The language system will detect
if the program reaches a state where there is no prospect of the
shared objects becoming accessible.)

When a WHEN expression evaluates to TRUE, the shared objects it
references are available to this process (only) until the select
group is left. To acquire this exclusive use, extra references may
be added to the expression - the READY builtin function returns TRUE
only when its argument is accessible.

WHEN (A>B £ READY(C)):DO;/* A,B,C rights now held by this process *1
C. PART1=A;
C. PART2 99;
END;/* Rights released *1 
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2 . 2 4  INVALID PROGRAMS

The language specifies certain things that should not be written,
e.g. unmatched parentheses. When these rules are broken the program
is invalid. This is somewhat different from being in error, since a
program can be in error solely in the sense that it fails to
implement the programmers intentions. Mistakes that make a program
invalid fall into different categories, in practice, because of the
trade-of fs that users want to make between the cost of checking them
and the cost of not checking them.

Many mistakes are always checked for. This includes all those that
can be checked at compile time. (q.v.)

There is a category of mistakes where the checking is under the
users control. This control is exercised by assertions, in
particular the NO-condition prefixes which assert that certain
conditions will not occur. If the user elects to have assertions
checked then a wrong assertion will cause ERROR to be signalled in
execution. If the user elects not to have assertions checked and an
assertion is wrong then the program is invalid. This last case i3
not checked for by the language system since to do so would negate
the users control of cnecking.

The effect of such incorrect unchecked assertions is in general
undefined. It may be that the effect is the same as that produced by
some valid program, e.g. if SIZE occurs the value assigned to the
target will be a possible value for the target, although not the
value the programmer tried to give it. On the other hand the effect
may be one that no valid program could produce. It will depend on
the implementation whether a particular error is a ‘safe’ or
‘dangerous’ one.

Finally there are a class of mistakes which are never checked
because a mechanism to check them would be prohibitively expensive
to implement or use. These too may be ‘safe ’ or ‘dangerous’ errors.

There are two noteworthy special cases. (1) The only dangerous error
which can be written outside of a SYSTEM module is a subscript with
the wrong value when this is not being checked. (2) The ‘safe
error ’ of unchecked UNDERFLOW has a natural interpretation as giving
the result zero. This is sufficiently valuable that it is part of
the language and not regarded as an error. 

~~~~-~~~~~~~~~~~~~ -~~~-~~~-__ - - .~~~ ~~~~ - - , - - - - - - - - - .—- -~~ - ~~~~~~ - --~~. - - . -- - - —-,-.~ - --- ~ —-
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2.25 SYSTEM MODULES

Your installation may have chosen to make available some subroutine
operations that only work on your system. These ‘builtin
instructions’ are written like any other subroutine operations. Your
installation will maintain a list of these builtin instructions,
what type of arguments they need, and what they do.

Programs that use i~iiltin instructions are not immediately suitablefor use on other installations. To avoid inadvertent use, builtin
instructions are only permitted in modules that are written with
SYSTEM on the uodule statement.

Other special facilities are available in system modules, to allow
programs to be dependent on a specific representation of data
values. Every installation will represesent a Boolean value as one
bit in storage, and represent BIT(n) as n bits. The representation
of other data wiU be defined individually by installation. A
program can know these representations by referencing a builtin
constant structure (see the appendix). The representation is defined
in terms of bit storage, e.. g. FIXED DECIMAL(3) and FIXED DECIMAL(L4)
might be held as 2’s-complement numbers in 16 bits.

In order to refer to the bit string underlying a reference one
writes tJNSPEC(reference). If a program is to run on one installation
and create code for another installation it will be necessary to
pass the data as entirely BIT data, for which UNSPEC is necessary.

Within an installation the representation of a pointer is the same
as the representation of some integer, e.g. POINTER and FIXED
DECIMAL(3) may both be 16 bits. In SYSTEM modules pointers and
numbers having the same representation are regarded as having the
same type. Hence if the installation attaches a special significance
to some address , that numeric address can be used as a pointer. e.g.
80->T may be a reference to the hardware timer .

In a system module pointers may be declared that are not constrained
to any type or area . The type and area associated with the object
the pointer names are determined dynamically by the allocation that
SETs the pointer.

The installation wil l  define what is an error in a system module .
e.g. 80->T may be OK but 81->T wrong, because of alignment. System
modules should be written with extraordinary care - there are many
opportunities for ‘unsaf e’ mistakes.

_ _ _ _ _ _ _ _  
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2.26 SH0RTHANDS

Several identifiers may be declared to have the same attributes by
putting them in a list, e.g. DECLARE (J •K,L) INTEGER;

The form CONSTANT(expression) is a shorthand for CONSTANT
INI TIAL (expression)

A string constant containing several string symbols is an
abbreviation for concatenation . e.g ‘ABC ’ for ‘ A ’ I I ’ B ’ I I ’ C ’

An arrow without an identifier following can be used if the pointer
to the lef t  of the object has a TO attribute. The argument of the TO
is inserted on the right of the arrow .

DECLAR E P TO(CELL) ;X=P->;/* Refers to P->CELL *1

A subscript consisting of two expressions separated by a colon is a
variation of SUBSTR. Reference(J:K) means SUBSTR(Reference ,J,K-J+1)

DO WHILE; means DO WHILE(TRUE);

2.27 EDITING, TRANSLATING, AND EXECUTING PROGRAMS.

<< It may not be a good idea to make this part of the language. One
can argue that it is not necessary for the embedded programs
themselves, only for their production. And there are certainly some
difficulties in avoiding implicitly specifying an operating
system.>>

Programs are entered and modified under control of an editor. The
programs produced are IRONMA N datasets but the user is not concerned
with their details because only the editor directly maintains the
datasets. The user refers to procedures and m odules. Reference at a
detail level depends on the style of the editor, e.g. it might be by
line number or by cursor position on a screen. Because of the
possibility of indirect addressing , any procedure or module can be
referenced.

The translator partially prepares programs for execution. Tne
arguments to it determine the procedure or module compiled , the
context it is compiled in , and the objectives of the compilation.

Execution occurs when a procedure is STARTed.

Details of parameters to these builtin programs are given in the
appendices. 
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2.28 MESSAGES

The translator makes a variety of consistency checks on a piece of
program. The written form must be recognizable so, for example ,
there will be an error message if opening and closing brackets are
not matched. Typical messages of this sort are: +++

Other errors are errors of type , for example if a reference has an
argument list the identifier must be either an array being
subscripteu or an operation. Typical messages of this sort are:
++ +

Some language constructs are intended as documentation that also
causes checking. The CONSTANT attribute documents that the object is
not assigned to, and the RESULT attribute that it is only assigned
to.

2.29 MACHINE DESCRIPTION

<< A special constant structure can be referenced from any program
to obtain details of the hardware being compiled for, such as the
details of floating point implementation . >>

2.30 PROGRAM INTERCHANGE

<< It is necessary to say more than just ASCII to promote
interchange. Here would be the specifications for the datasets and
labelling necessary . >>

2.31 PARAMETERS TO BUILTIN PROGRAMS

<< A specification of the inputs to the translators etc. that make
up the language system. For example, of the parameter that
determines whether the compiler produces a source listing. >>

2 .32  BUILTIN FUNCTIONS.

<< names , arguments, cond itions raised etc.
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2.33 SYNTAX

<< The Users manual will need a ‘Railway-shunting-yard’ style of
syntax description. >>

-~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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CHAPTER 3. EXAMPLES

3.1 SIMPLE PL/I

This example illustrates simple data processing. It is a subroutine
that reads N records from a dataset, normalises them and prints
them.

SHOW_NORMALIZED: PROCEDURE (N);
DECLARE N FIXED DECIMAL(14);/* Number of records, for this call *1
DECLARE VALUES(N) FLOAT DECIMAL(8);/* Copies of the records *1
DECLARE J FIXED DECIMAL (4) ; /*  Counts up to N *1
DECLARE X FLOAT DECIMkL(8) INITIAL(O);/* Sum of the values */
DO J 1  to N;
READ FILE(IN) I~~O(VALUE5(J));X X+VALUES (‘7);
END;

/* If X is zero the caller will. be signalled by the following code *1
DO J1  TO N;
PUT FILE(OUT) EDIT(VALUES(J)/X)(SKIP ,E(8,6));
END;

END SHOW_NORMALI ZED ;
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3.2 COMPLEX ARITHME’I~IC

We define a COMPLEX datatype and the usual arithmetic operations on
COMPLEX and between COMPLEX and reals. The definition is
encapsulated in a module which could be included in a program by
INCLUDE COMPLEX;

COMPLEX:MODULE 1* same name as type is Ok ,/
EXPORTS ( COMPLEX,

/S this exports all the definitions
of e.g. + in this module SI

DECLARE 1. COMPLEX BASED,
2 REAL FLOAT DECIMAL (6) .
2 IMAG FLOAT DECIMAL(6) ;

/5 Inf ix operators between COMPLEX 5/

+ :PROCEDURE(P ,Q) RETURNS ( COMPLEX) ;
DECLARE (P ,Q) COMPLEX ;
RETURN (COMPLEX (REAL : P..R EAL+Q.REAL ,

IMAG : P. IMAG+Q. IMAG ) 1;
END +

W
;

*:PRQ(EDURE (P,Q) RETURNS (COMPLEX);
DECLARE (P ,Q) COMPLEX;
RETURN [COMPLE X (REAL : P. REAL$Q. REAL-P. IMAG*Q. IMAG ,

IMAG : P.IMAG*Q.REAL+P.REAL*Q.IMAG) 1;
END * ;

•..L :PRcCEDURE(P,Q) RETURNS(COMPLEX) ; similar to above
/ :  PROCEDURE(P ,Q) BETURNS(COMPLEX); similar to above

/5 Prefix operations on COMPLEX 5/

U +N :PROCEDURE(P) RETURNS (COMPLEX) ;
DECLARE P COMPLEX ;
RETURN(P) ;
END U

+
U ;

- :PROCEDURE(P) RETURNS(COMPLEX) ; similar to above

/5 Operations between COMPLEX and real 5/

/5 The a+. operation is always commutative, and so this
definition defines both COMPLEX + real and vice versa

5/

+ :PROCEDURE(P ,X) RETURNS(COMPLEX) ;
DECLARE P COMPLEX, X FLOAT DECIMAL (6);
RETURN (COMPLEX (REAL : P . REAL+X,

IMAG:P.IMAG) 3;
END + ;
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- :  PROCEDURE(P, X) RETURNS(COMP LEX) ; similar to above
U S a : PROCEDURE (P X) PETURNS(COMPLEX) ; similar to above

/5 The / operation is not commutative, and needs two definitions 5/

/ :PROCEDURE(P,X) RETURNS(COMPLEX);
DECLARE P COMPLEX, X FLOAT DECIMAL(6) ;
RETURN C COMPLEX ( REAL: P.. REAL/X,

IMAG:P.IMAG/X) 3 ;
END / ;

U/U :PROCEDURE(X , P) RETURNS(COMPLEX);
DECLARE P COMPLEX , X FLOAT DECIMAL (6);
RETURN C COMPLEX ( REAL:X , IMAG:O)/p 3;

/5 notice the use of another procedure in this module *1
END U/U ;

END COMPLEX;

To allow precision to be declared for COMPLEX items, rater than be
fixed in the definition, we could write:

DECLARE 1 COMPLEX BASED ,
2 REAL FLOAT DECI MAL ( ?1) ,
2 IMAG FLOAT DECI MAL ( ?1);

The rest of the example could be the same , except that the real
operands X would be declared:

DECLARE X FLOAT DECIMAL(?) ;

COMPLEX items would then be declared COMPLEX(n) rather than COMPLEX..

It would also be possible to define a REAL type as FLOAT DECIMAL(6)
or FLOAT DECIMAL(?) , and this could be used to define the components
of COMPLEX, as well as to declare data. 

-~~~~- ‘- ~~.- .~ ~~~ - . , -~~~~---__ __
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3.3 PRODUCER/CONSUMER

This is the simple example in the Series/i PL/I manual of one
producer, running from 9 to 5, and multiple consumers communicating
via a bucket holding one widget.. The solution here could easily be
extended to multiple producers or a larger bucket.

EXAMPLE: PROCESS;
INCLUDE CLOCK; /5 provides timing facilities, including HHNMTIME 5/
DECLARE BUCKET VALUES(UFUIL , U EMPTYU ,_LAST9 SHARED ;

PRODUC ER: PROCESS;
DECLARE INFILE RECORD,

INRECORD ... ;
ON ENDFILE(INFILE) GO TO FIN;
OPEN FILE (INPILE);

SELECT;
WHEN (HHMMTIME > 0900) ;
OTHERWISE WAIT;
END;

LOOP:DO WHILE ( TRUE) ;
SELECT;
WHEN ( HHMMTIME > 1700) RETURN; /5 End of producer process 5/
OTHERWISE SELECT;

WHEN(BUCKET~~~EMPTY ) BUCKET= FULL” ;
OTHERWISE WAIT;
END ;

END ; END LOOP;
FIN: SELECT ;

WHEN (BUCKET= EMPTY ) BUCKET= LAST ;
OTHERWISE WAIT;
END;

CLOSE FILE C INFILE) ;
RETURN ;
END PRODUCER;

CONSUMER:PROCESS ;

LOOP: DO WHILE (TRUE) ;
SELECT;
WHEN(BUCKET= FULL”) BUCKET~~ EMPTY ;
WHEN(BUCKET = LAST ) RETURN; 1* End of consumer process 5/
OTHERWISE WAIT;
END ; END LOOP;
END CONSUMER;
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/5 BOdy of main process EXAMPLE 5/

START PRODUCER;
START CONSUMER; /* Several if desired 5/

END EXAMPLE; /5 Will wait for producer and consumer(s)
because they use the SHARED BUCKET 5/

The example above includes a module called CLOCK to access the time
of day. The following is an example of how this might be implemented
using the System/360 interval timer . Presumably we would not want
coarse timing like 0900 hrs and 1700 hrs to interfere with fine
timing. This clock module implements a coarse timer called HHMMTIME,
and could be extended to provide others.

Procedure SET_CLOCK(T) sets the time of day and starts a process to
maintain it , and STOP_CLOCK stops this process.

-4
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CLOCK:SYSTEM MODULE /* Uses the sf360 interval timer */
EXPORTS (HHMMTIME, SET_CLOCK, STOP_CLOCK);
DECLARE TIME SHARED FIXED DECIMAL(9) /*hhmmssddd*/ ,

HHZ4MTIME SHARED FIXED DECIMAL(4) ,
STOP SHARED Bfl INITIAL ( FALSE);

SET_CLOCK : PROCEDURE CT) ;
DECLARE T CHARACTER (4 ) ;
TIME=FIXED(T)*100000;
START TIMER_WATCH;
END SET_CLOCK;

STOP_CLOCK : PROCEDURE;
STOP TRUE ;
END STOP_CLOCK ;

TIMER WATCH:PROCESS;
DECLARE TENTH_SECOND FIXED DECIMAL(9) CONSTANT ( 30) ,

TIMER_INTERRUPT SHARED BIT ENVIRONt4ENT (PSW ( 88)) ;
/5 S/360 timer interrupt loads PSW from location 88 5/

LOOP:DO WHILE(TRUE);
SELECT ;
WHEN (STOP) RETURN;
WREN (TIMER_INTERRUPT ) DO;

80-> TENTH_SECOND; /~ location 80 isthe timer 5/
UPDATE_TIMERS ;
END;

OTHERWISE WAIT;
END; END LOOP;

UPDATE_TIMERS: PROCEDURE;
add 1/10 sec to TIME
IF (TIME is exact minute) THEN add 1 mm to HHMMTIME
update any other timers
END UPDATE_TIMERS;

END TIMER_WATCH;

END CLOCK;
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3.4 LTPL-E/297

This example was first presented by Peter Elzer in LTPL-E paper
number 297.

AssUme three tasks Ti , T2 and T3. Let Ti be a data acquisition
task taking data from an ADC and filling them into two buffers Bi
and B2. It can only write into one buffer when this buffer is
empty. It declares a buffer ‘full ’ after it has written into it..

Let T2 be a sorting task which takes the data from Bi or B2
alternatively, does some calculation on these data and puts the
results into another data area called S ( for spectrum ) .. T2 can only
read from the buffers Bi and B2 after they have been filled by Ti.
It declares them empty after having evaluated their respective
contents.

Let T3 be e.g. a display task , which draws a picture of the contents
of S on a display screen. It shall run forever, unless stopped by
external influence, because it shall show the dynamic behaviour of
data accumulated in S.

Up to now this is a classical double-buffer-problem which can be
solved by nearly all known synchronization mechanisms. But now
let ’s assume a boundary condition imposed on this problem by the
demands of practical use. For some reason the device ADC shall stop
or be stopped. Now the task T2 shall be able to evaluate the
remaining data in either Bi or B2 whatever buffer is just in use
when ‘ADC-stop’ occurs.

This problem has turned out to be somewhat difficult to solve with
e.g. sempahores.~

MAIN: PROCEDURE ;

DECLARE N FIXED DECIMAL(3) CONSTANT(100) ,
S ~HARED ...;

DECLARE 1 BUFFER BASED SHARED ,
2 STATE VALUES (UEMPTYU ,SFILLEDU) INITIAL( EMPTY ) ,
2 COUNT FIXED DECIMAL (3),
2 DATA(N) ... ;

DECLARE B (2 )  BUFFER;
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Ti: PROCESS;
DECLARE X ..., I FIXED DECIMAL (1);

LOOP: DO WHILE ( TRUE) ;
DO 1=1 UP TO 2;
SELECT;
WEEN(B (I) .STATE= EMPTY ) DO;

DO B (I) .. COUNT 1 UP TO N;
E: READ ADC INTO ( X ) ;
IF X=STOPPED THEN IF B (I).COUNT > 1 THEN LEAVE ;

ELSE GO TO H;
ELSE DATA (B (I) .COUNT~=X;END ;

3(I) .STATE= FILLED ;
END ;

OTHERWISE WAIT;
END ;
END; END LOOP;

END Ti;

T2: PROCESS;
DECLARE I FIXED DECIMAL (1);

LOOP: DO WHILE (TRUE);
DO 1=1 UP TO 2;
SELECT;
WHEN (B(I).STATE FILLED ) DO;

process B (I).DATA(1 TO COUNT);
SELECT;
WHEN (AVAILAB LE (S)) put result in 5;
OTHERWISE WAIT;
END ;
END ;

OTHERWISE WAIT ;
END;
END;
END LOOP;

END T2;

T3: PROCESS;

LOOP: DO WHILE (TRUE) ;
SELECT ;
WHEN(AVAILABLE (S)) draw S on screen;
OTHERWISE WAIT;
END ;
END LOOP ;

END T3;
/5 Body of MAIN procedure 5/

START Ti;
START T2;
START T3;

/0 No way has been included to atop these three processes. The
stopping of ADC will suspend T2 and T3, but they will resume when

______
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more data is received . 0/

END MAIN;

~iL - -.-- — —--
—-

~~~~
-- - -—-—- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ , .- - - 4
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Appendix: Intersection with PL/I

Since the proposed language is based on PL/I, there is an
imtersection between the two languages: the parts of PL/I which are
valid in the new language. The intersection language could perhaps
be used to implement the first compiler for the new language, using
existing Pie/I compilers to bootstrap. The intersection language is
described briefly in this appendix..

1. DATA TYPES

All variables must be declared with one of the following data types
specified (except for structures).

BIT E (extent-expr)]
CHARACTER ((extent -expr) I
FIXED DECIMAL (p ( ,qI) 0�q�p
FLOAT DECIMAL (p)
POINTER
AREA (extent- expr)

Note: Because the POINTERs are unconstrained and not in a SYSTEM
MODULE the new language compiler will issue a warning. The extent-
expression form of AREA size would also only be allowed in SYSTEM
MODULEs.

Literal forms exist for Constants of the four computational types:

BIT ‘101’ or BIT(’lOl’)
CHARACTER ‘ABC ’
FIXED DECIMAL 23 0.625
FLOAT DECIMAL 9-.62E5 or any FIXED DECIMAL constant in a FLOAT

context .

File constants (but not variables) can also be declared.

FILE (RECORD ( KEYED IJ (PRINT ]

Procedures are discussed further under Program Structure , and
Files under Input-~ itput .

L -
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Aggregates

Structures can be declared using level numbers , e.g.

DCL 1 STRUCT, -

2 A FIXED DECIMAL(5),
2 B POINTER ;

Arrays of one or more dimensions can be declared; the lower bound is
always 1 and may not be specified, the upper bounds are specified
thus:

(extent-expr-commalist) datatype, e.g.
DCL ARRAY (10,1+2) BIT;

Arrays of structures, structures of arrays and structures of
structures are all allowed. A structure component or array may have
any variable type, except AREA.

Storage Classes

BASED, parameter and automatic can be used-. BASED is specified
explicitly in the declaration. Parameter is implied by the variable
appearing in a parameter list. If none of these is specified, the
variable is automatic. BASED and automatic may be initialised.

The syntax of initial is:

initial—attribute : : INITIAL (item-commalist)
item :: [prefix-op] constant I NULL)

(constant-expression I
(constant-integer-express ion) (item- commalist)

Note: ALIGNED/UNALIGNED can be specified on elements or
structures,although the new language compiler will issue a warning
message outside SYSTEM MODULEs. Unaligned BIT items cannot be used
as arguments.

Extent-expressions for array bounds, string lengths, and area size
(if included) may have the following forms:

1) constant-expression or * for parameter
2) expression for automatic
3) expression involving only

constants and components of
the BASED structure for BASED

_ _ _ _  _ _ _ _ _  ~~~~~~~~~~ - - -—~~~~~~~~~~-~~~~~~---~~
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Declare statement

DECLARE ((lev el-no]
(identifier (identifier-comxnaljst))
attributes),...;

Allocation of BASED storage

(label:] ALLOCATE based-variable (IN(area-ref)
SET(pointer-ref)];

[label:] FREE based-reference;

N~~e: The SET and IN options can be omitted if the new language
allows this in SYSTEM MODULEs.

2. COMPUTATION

The assignment statement has the form

ref erence=expression;

References can be pointer qualified, dot qualified and subscripted.
They must be connected, so * subscripts and references to components
of arrays of structures are not allowed. The expression must have
the same data type aggregation and extents as the target reference,
with the following exceptions:

FIXED DECIMAL of different precision.
FIXED DECIMAL with target scale larger than source.
FLOAT DECIMAL of different precision
FLOAT DECIMAL target and FIXED DECIMAL source

Expressions

No conversion is done to operands in expressions, so they must all
be the same datatype. Some operations are only allowed where there
is an explicit target - i.e. assignments of the form A = B op C~.
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The operators are:

with explicit target

+ - FLOAT, FIXED
* FLOAT , FIXED
/ FLOAT FIXED

£ j -l BIT ( same constant length) same variable length
II CHAR

-
~
= > All scalars of same type,

< > <= CHARACI’ER of different lengths.

3. PROGRAM STRUCTUR E

A program consists of several procedures. Each begins with a
PROCEDURE statement and ends with an END statement. In between may
appear DECLARE statements and internal procedures , then ON
statements and then executable statements.

((condition-commalist):] (label:]

PROCEDURE ((parameter- identifier-commalist) ]
I RETURN S C descriptor) ] ;

Functions and subrxitines can both be used, but each PROCEDURE must
be one or the other . A function may not assign to its parameters.
Constants or expressions may not be used as arguments if the called
subroutine assigns to the corresponding parameter .

Conditional control structures

IF bit (1)-expression THEN clause (ELSE clause)

Each clause may be an executable statement, including IF, or a DO-
group. They may not be labelled..

DO WHILE (bit (1)-expression); or
— DO ctlvar = expr (BY expr2] TO expr3;

executable statements
ENDElabel];

In the iterative f orm of DO, the expressions must be FIXED , and the
BY-expression must be positive. The control variable must be an
unqualified unsubscripted local automatic FIXED variable. It must
not be referenced except in a DO-loop to which it is the control
variable, and must not be set .

_ _ _ _ _ _  _ _ _ _  _ _ _ _  
-—
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GO TO label;

This statement transfers control to the specified label, which must
be in the same block as the GO TO statement.

A null statement, consisting of just a semicolon, can be used to
carry a label or to express a null clause, after THEN for example.

SELECT ((integer-expression)];
WHEN (expression-comma ].ist) clause;

(OTHERWISE clause; ]
END ( label];

The values of the SELECT and WHEN expressions determine which
alternative is to be executed .

Each END statement terminates one PROCEDURE or DO or SELECT group.
The label, if it appears, must match the label on the corresponding
PROCEDURE etc statement.

LEAVE (label] ;

This statement transfers control ~-o the statement after the END ofthe enclosing DO or SELECT group with the specified label, or the
immediately enclosing group if none is specified..

Note:SELECT and LEAVE are not a subset of ANS PL/I , but of a
proposal which is under consideration as an extension to the
standard.

4. EXCEPTION HANDLING

In each procedure, action may be specified for each of various
exception conditions using ON-statements

ON condition GO TO label;

Conditions are raised implicitly by various language constructs, e.g
ENDFILE by READ, and can also be raised explicitly by the SIGNAL
statement:

SIGNAL condition;

ON-statements must appear before any other executable statements in
the block. If an exception occurs and there is no ON-statement in
the procedure , the procedure activation is terminated and the same
condition raised in the calling procedure . If there is no ON-
statement in any procedure, system action is taken.

--4
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The conditions are:

OVERFLOW,SIZE, SUBS CRIPTRANGE
CONVERSION , UNDERFLOW, ZERODIVI DE
ENDFILE ,KEY ,RECORD ,TRANSMI T , UNDEFINEDFILE -

AREA, STORAGE, FINISH , ERROR

Notes: The restrictions on the placing of ON-statements mean that
the translator knows that they apply throughout the block . This ,
and restricting condition prefixes to blocks means that exception
handling information can be static tables for each procedure. No
execution time is required to set these up on entry to the
procedure. When a condition is raised, the appropriate ON-unit can
be found from these tables and the normal call-chain.

No return from ON-units leads to better structured programs, and
helps the efficient handling of conditions in called procedures . It
makes the ENDPAGE condition rather useless, and so this is excluded ,
as is the PAGENO bif,.

REVERT is not needed with this subset of ON-handling..

5. INPUT-OUTPUT

There are three kinds of files: stream files where character data
(i.e. human readable) is transferred sequentially character by
character, RECORD files where data in internal format is transferred
sequentially a record at a time, and KEYED RECORD where data in
internal format is transferred a record at a time but not
sequentially - the record number is specified by a FIXED integer
called the KEY.

Note

This subset of RECORD I/O is what in IBM PIL/I is called RBGIONAL(l) .
It provides the basic facilities provided by sequential and direct
access devices . Content addressing by keys is device-dependent and
complex indexes are implemented in software and could be written in
this language as library routines.

Files must be explicitly opened before use and closed after use

OPEN FILE(filename) (LINESIZE(constant-expression)]
(INPUT IOUTPUT UPDATE);

CLOSE FILE(filename);
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The allowed input-output statements for each file type are given in
the table below:

Stream RECORD I KEYED RECORD 
I I 

INPUT GET(SKIP] EDIT READ INTO I READ(KEY] INTO
OUTPUT PUT(SKIP] EDIT WRITE FROM WRITE(KEYFROM] FROM

PUTESKIP] LIST I I
UPDATE I I READ INTO READ (KEY] INTO

I I REWRITE FROM REWRITE (KEY] FROM

In each statement a FILE option must appear after the statement
keyword ; the options must appear in the order listed.

The options are:

FILE (filename)
INTO (reference) )these references will normally
FROM (reference) )be structures
KEY (integer-expression)
KEYFROM (integer-expression)
SKIP
LIST ( expr~~ sion-conunalist)
EDIT (expression-conimalist) ( format-commalist)

LIST output uses a standard format for each data type and successive
items are printed with an intervening blank. (i.e. there is a tab
at every position ..

In EDIT output each item is printed in the format specified by the
corresponding format item. EDIT input is the reverse.

format : := (expression ) ( format-cotumalist)
COL (expression)
SKIP ( (expression) ] I
PAGE I
X (expression)
A ( (expression) ) I for CHARACTER items only
B ((expression) ] ( for BIT items only
E (expri (,expr2i) for FLOAT items only
F ( expri ( expr2]) for FIXED items only
P ‘picture’ for FIXED items only

Pictures are provided only for FIXED items, the allowed picture
characters are 9VZ*$S— . B .  All expressions in a format list must be
constant integer expressions..

6. BUI LTIN FUNCTIONS

The functions EMPTY , NULL, ONCODE and DIM are in the new language..
Mott other PL/I built-in functions could be defined in the new
language, and thus can be used in the intersection. The few
exceptions include ADDR.
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