Studies in Support of the application
of Statistical Theory to Design and
Evaluation of Operational Tests,
Annex D,

AN APPLICATION OF BAYESTAN STATISTICAL METHODSJ -
N & P = K SER N 2

7 IN THE DETERMINATION OF SAMPLE, SIZE
= o - N

| FOR' OPERATIONAL TESTING IN THE U.S: ARMY

ADAOD207H6

e U - o o
e S h
/aaiétéb2§czﬂzj . 3
e ;
4 JTRESTS 5 X
Presented to ~€
» f
,;g&n#;_ 5 The Faculty of the Division of Graduate Studies 3’
| % 79 by
o Robert M. /Baker
. B Y aat \
Y 4 \ 4
/ " :...-""
Cd L 4
=8
S In Partial Fulfillment - 3
of the Requirements for the Degree f?
Master of Science in Operations Research f
N
o ’
L d ?

Vo6, )
/5?

Ceorgia Institute of Technology

5 -~
[/ suney B76 /

L4




T A T

- (3 [
UNCLASSIYIED - o A e
SECURITY CLASSIFICATION OF THIS PAGE (When Duta Entersd) . : oy &
; """ READ INSTRUCTIONS
BE REDORTDDCUMENTAhPNPAGE BEFORE COMPLETING FORM

-0
o

L)

IR

«{Statistical Theory to Design and Evaluation

1 nZe0rtr NUMRER . GOV ACCESSION 10 3. RECIPIENT'S CATALOG NUNBER

R,

(Y
3

4 TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED
Studies in Support of thé& Application of Final

of Operational Tests (report + four annexes) . & 6. FERFORMING ORG. REPORT NUMBER
g . “w

7, AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)

JDouglas C. Montgomery DAAG 39-76=C-0085J
[Harrison M. Wadworth s

% PERFORMING ORGANIZATION NAME AND ADDRESS 10. ﬁg g AWOERLKESEFTTNPUTAOQ)EF?T TASK

School of Industrial & Systems Engineering“’

Georgila Institute of Technology 651014

Atlanta, CGA

Il. CONTROLLING OFFICE NAME AND ADDRESS NKER ,aEﬁOHMA:L,

US Azmy Cperational Test & Evaluation Agency Ty I

3600 Columbia Pike \B“ﬂuMBEQOPPAGES

Falls Church, VA 22041 88

{13 ONTTORING AGENCY NAME & ADBRESS(If differsnt from Controlling Office) | 15, SECURITY. CLASS. (of thia report)
UNCLASSIFIED

1Ba, DECLASSIHCATION/DOWNGRADlNG
: SCHEDU "'N/A

15. DISTRIBUTION STATEMENT (ol thls Report)

Approved for public release; distribution unlimited

{7. DISTRiIBUTION STATEMENT (of the abstract entered in Bloc‘k 20, 1t ditterent from Report)
|9 . :
t N .
o . N

‘fa. SUPPLEMENTARY NOTE::

19. KEY WORDS (Continue an teverse side 1f nacezancy and identlly by block numbbdr)

Evaluation Training level Sample size
Operational testing Statistics ,
Bayesian Theory Multivarlale atatistics

20. ABSTRACT (Contlaue on raverso side If necessary snd tdentlty by block number)

This report is a summary report of four studies in supporz of the application
F statistical theory to design and cvaluation of vperational tests  The
four toples are: y

e e e et e e a e

NS
PRETSROS



PR

T R
. o . .
¥ A sy h
o v, ¢ . o S AN
BT o RS
£A L AR
. .

FRRTE L Y

Qo -
4 i:( 'f ;';‘.? '-A;;{“ i

wi #.
e -

SR D+ AR

i
:

DGO -
PR P
LN}
C S P!
S !
P A
w ,

52

rb’\

b
P

o

- i i Y

A

- —— v e i e AT S 4t e h b Pt e

UNCLASSIVILD = ~

SELMVUTY CLASSIFICATION OF . 'S PAGE(Whon Data Entered)

a. "A Methodology lor Determining the Power of MANOVA vhen the
Observations are Serially Correlated” by Norviel R. tyrich, CPT,
Artillery.

b. "An Application of Multiple Response Surface Cptimization to the
Analysis of Yraining Effects in Operaticnal Test and Evaluation" by .
Vernon M. Pettencourt, Jr., CPT, Artillery.

<:;) "A Cost Optimal Approach to Selection of Experimeatal Designs
forx \Operational Testing under Conditions of Constrained Sample Size'
~by Sam W. Russ, MAJ, Signal Corpe. .

d. ""An Application of Bayesian Statistical Methods in the Determination

of Sample Size for Operational Testing in the US Army" by Robert M. Baker,
CPT, Infantry. . ..

¢
4

«
’
-
- v il
N 3
o
)
. B
« o 4 *
4 | '
a .
‘ ’ LI
! 1 . " s :
’ «
Vo : AR
. . foa /
. N
¢ 1Y
Ty '
: . j) Lo .
o - s R R AR b gy dmpr hvasie hms asant vwms o s psagyacs mamreie o ..
i [ o L ~
' 4
1
’
k4
'
\
. »
* vt
)
.
'
L)
]
“
4y
»
*
3 I




Awdet 7

R
R,

e i?".* o
AT A SO
e

e .

<

-t

YT

. ‘"';‘«;?,;“,'.cc..;:A*:‘{;"‘.

KL

'3
ey

P C

AN APPLICAIIbN OF BAYESIAN STATISTICAL METHODS
IN THE DETERMINATION OF SAMPLE SIZE

FOR OPERATIONAL TESTING IN THE U.S. ARMY

o

A THESIS
Presented to
The Faculty of the Division of Graduate Studies
by

Robert M. Baker

In Partial Fulfiliment
of the Requirements for the Degree

Master of Science in Operations Research

Georgia Institute of Technology

June, 1976



= CIO G
~bouontes g

WIQXS 1557 M.:\, 0
N A T T
m . CU A4
SQE 5 w
g ——
N X
=

G

Tt

P T S

Richard D

Date approved by Chairman; S

AN APPLICATION JF BAYESIAN STATISTICAL METHODS
IN THE DETERMINATION OF SAMPLE SIZE
FOR OPERATIONAL TESTING IN THE U.S. ARMY

a -
S - - - - [ _ - o - -
TS
. ] . N B . . {
2 o 3. o P — N —— e e e e e o e e A - e - - .
T S P S P pTe T e - g T S e i - T i
B . . B : R

) -
pres A rr s
. .
T T D S Wt I N S LIPS 3 s oe ' PR P
- B PE «“#,Lwr \?Whmsf.mw M& v.%..ﬁh-NaﬁuvL..?&.lWMM.&PﬂW..RW&t\mwr. b “ ;ur\ ﬁw.urt%(. «m”}w. f, -

Sy el een b et teae s owe s s = H



R T, T, T A

o

Emadety

e add bt e

[N

PRI e e b M s A G S S A A 3

ACKNOWLEDGMENTS

I would iike to express my appreciation tc my thesis advisor,
Dr. Douglas C. Montgomery, for his encouragement and understanding in
assisting me in the preparation of this theziy My gratitude is also
extended to Dr. Lynwood A. Johnson and Dr. Richarl D. Wright for cheir
nany significant comments and useful suggestions.

A special note of thanks goes to my wife, Mavy Francas, for her

enduring patience and endless encouragement over the past two years.

ii



Ve b 4
o -3
5 é;
AU
a iii
21
e 45,
Rk Ny TABLE OF GUNTENTS
b |
§§ e Page
& ACKNOWLEDGMENTS. o + v v v v v o v v o 0w n o v o o v o v oo v il
w4
AOEE .
1{:; N LIST OF TABLES . » L] . L] L] ° . . . . £ . L] L) L] ’ £ ] . . . * . . 3 ¢ V
&1 LIST OF ILLUSTRATIONS« « + v v v o v v o o o o e v o v o v o v v v Vi
¥, .
)iz‘"l%' - SUmARY' Ll . . , L] L) . . * L] ® . - v . . L] L] . » * L] L] a2 - . L] L] . * vii
ol ' Chapter
T T. INTRODUCTION: « « o 4 v ¢ 4 v o o o o o d o o v o s oo won 1
. ‘ Background
. Objectives of Research
STERE BN Fundamentals of Bayesian Analysis
5 of II. AN INFERENTIAL APPROACH . + 4 v ¢ v o v o s o s o s o o o oo T
- Bayesian Inference
. The Likelihood Function
N The Prior Dlstribution
ié : The General Prcblem
y~ The Solution Using the Standard Deviation
Lt The Solution Using a Bayesian Interval
L . Illustrating the Procedures
|
|
| IIX. A DECISION THEORETIC APPROACH . & ¢ o o o o o o s o o o o s 28
\
| Introduction
L ‘The Colution Procedure
I Linear Utilities
! Power Function Utilities
? E Illustrating the Procedure
B
| . IV. CONCLUSIONS AND RECOMMENDATIONS + « + 4 o ¢ ¢ ¢ s o ¢ o o o « 44
q Conclusions
“i Recommendations
4
; Appendices
i— I. LIGHTWEIGHT COMPANY MORTAR SYSTEH
y OT I TEST DATA' L] L] . L] L] L] * L] . L] . L ] . v . . L] . * . L ] . . 46
=



[P

_ et * i &

g

~

.
/ ted

S .
R P

) iv
\" ;4 ‘ .
! TABLE OF CONTENTS (Concluded)
I
| Appendices ' Page’
II. FORTRAN PROGRAM FOR THE GOLDEN SECTION
SEARCH TECHNIQUE. + . . . ® . - o () . . . . ) L[] 1 ] * . . L) * . 47
III. EXPLANATION OF NOTATION o v « + o o o o o o o o o o« o o o o o 01
BIBLIOGRAPHY [ ] - . 1] 1 ] L] . . L[] L] L] L] * - [ ’ L] * L] * L) * . * . L] L] . 53
i
¢
!
}
LY
B



Table
1.

LIST OF TABLES

Percent Error in Approximating the Expected
Posterior Standard Deviation. . « « . . . .

Required Sample Sizes for Values of the
Expected Posterior Standard Deviation . . .

Total Cost Estimates (Direct Costs) . . . . .

Allocation of Estimated Fixed Costs . , . .
Computer Analysis Using Linear Utility. . .

Computer Analysis Using Power Function
Utility withc = 1/2. . . . v v v v v o v

Results of Computer Analysis Using Power
Function Utility with e =1.5 . . . . « .« .

Page

19

25
37
39
41

42

43



- F

'4 <
7 A

¥

REar)

T
et

LA N

AR

T

AR e 4
2

i AP

3

TR

T,

i

NS A

b
e
b P vi
:5;1‘ .
B
)
:g‘ﬂ ) )
P
o
E ‘ LIST OF ILLUSTRATIONS
i
Figure Page

—

Generalized Bayesian Interval on fi. « + + « « v ¢ ¢ » o o« o 21

L 2, Typical Power Function Utilities for
! ' 0 < c § 1 . . L] . L] 1 ] L] L] . . . L] - » . . * . * * L] * L » L] L) 34.

3. Typical Power Function Utilities for
c > 1 . . L] L) . L . L] * L L] . L] L[4 L] . . L] L4 L] . * . L] L] . o * 35

4. Linear Utility Functions . . L] . L] . L] - - . L] . . . . L . * . 40

b e e

T a



PR
'&mi

’
-

K¥
AR
e TR

e e
i

)

N i

P &
< 5y N AT I
57 e AT ST 2
TET Qk“‘!’% '«*.‘9'{‘:‘81: (]@;

o

¥

0 #

R j
PR WP
<

4
e

" &f

6\\?

&

W
&

vii

SUMMARY

This research is devoted to investigating how Bayesiaﬁ statistical
procedures might be used to improve the design of operational tests being
conducted by the U.S. Army Operational Test and E;aluation Agency. The
specific aspect of the design process which is of concern is the calcula-
tion of required sample sizes., Basically, three changes are suggested in
the methods currently being employed.

First, it is shown that the problem can be reformulated in a manner
which is believed to be more closely aligned with the objectives of opera-
tional testing, in so doing, it is possible to capitalize on the compara-
tive natvre of the testing.

The problem is then analyzed using Bayes' theorem and Bayesian
inference techniques. It is felt that the application of Bayes' theorenm
can provide for a more efficient use of information available to test
design personnel and that this may result in a reduction in required
sample sizes when compared to methods presently being utilized. Formulas
are then derived for calculating the sample size required to reduce the
expected value of selected measures of tightness of the posterior dis-
tribution.

Finally, a method is proposed for utilizing these procedures in
the presence of economic considerations such as budget constraints and
sampling costs. This method attempts to find the economically optimal
sample size by systematically comparing the cost of experimentation with

the value of the information expected to be obtained from that experimen-

tation.
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CHAPTER 1

INTRODUCTION

Babkground

The impetus for this 'study was provided by the interest of the
U.S. Army “perational Test and ﬁvaluation Agency (OTEA) to investigate
the possible application of Bayesian statistical analysis and decision
theory to sample size determination for operational testing. In order to
understand some of the procedures discussed later in this study, a basic
know}edge of the nature of operational testing as performed by OTEA is
necessary. The purpose of operational testing is to provide a source of
data from which estimates may be developed as to the military utility,
operational effectiveness and operational suitability of new weapon sys-
tems., This data is obtained through a sequence of three operationai tests;
each test in the sequence is completed and the results analyzed prior to
beginning the next test. For ease of reference, these tests will be re-
ferred to as Operational Test I (OT I), Operational Test II (OT II) and
Operationzl Test III (OT III). Once the data has been collected and the
estimates de&eloped an assessment is made of the new system's desirability

as compared to systems which are already available .

The overall assessment procedure parallels closely that proposed

by Miller in his book, Professional Decision Making [10]. Initially,

certain issues concerning the system's capability are identified for

further examination before any assessment of the overall desirability is
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made. These issues are general in nature and cannot be resolved directly,
For example, a system's fire power may be an issue of interest. This
cannot be represented by any single, physically measurable quantity.
Therefore, it is necessary t~ refine the issues into a number of param-
eters which adequately represent the issue and which can be measured
quantitatively. These quantities are known in OTEA as measures of effec-
tiveness (MOE). ~ror the example given above, the MOE might include such
things as percent of targets hit, mean miss distance, percent of fire
requests which are met, proportions of rounds requested fired and so on
[11]. Once these MOE are identified, an operational test is designed to
nrovide for a side-by-side comparison of the competing systems with re-
spect to each MOE,

Given a fixed test design, the sample size problem becomes one of
determining the minimum number of replicates required for each set of ex-
perimental conditions in order to produce sufficient sample information
upon which to base statistically valid inferences. Th’s problem can be-
come quite complex since a single operational test may involve as many
as a hundred MOE.

An approach which has been recommended to reduce the computational
burden is to rank-order the MOE based on their relative importance and
then to calculate the sample size requirements using only two or three of
the more impcrtant MOE. These calculations are presently based on class~

ical statistical procedures [11].

e en S RA—————————
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Objectives of Research

In reviewing these procedures, two areas of possible improvement
were identified. The first is concerned with making efficient usé of
all available data. As noted earlier, the operational testing program
is sequential in nature and, many times, the same measure of effective-
ness may be examined in .ore thén one test. When this occurs, the data
from the previous test is sometimes used in the design of the subsequent
test in that it serves as a basis for the formulation of hypotheses and
as a source of variance estimates for sample size calculations. This
data is not, however, being combined with the data obtained during later
tests in the final statistical analysis. By not doing this, it is felt
that valuable information is being wasted. In fact, it is believed that,
if this information were used to its fullest extent, a reduction in the
required sample size would be possible. One method of combining prior
information with sample results is provided by Bayes' theorem. The next
chapter is devoted to investigating how Bayes' :heorem might be applied
in the operational testing enviroument and what effect this would have on
the calculation of required sample sizes.

The second area identified for possible improvement is concerned
with the ecomomics involved in experimentation., Presently the costs
associated with proposed experiments are aot directly considered in
sample size calculations., Additionally, there is no evidence of a quan-
titative assessment of the expected value of the sample information to
be obtained from a particular experiment, Considering this, it is doubt-~
ful that the money available for testing is being allocated to the various

experiments in an optimal fashion. It is felt that this problem might
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bast be analyzed using the concepts of Bayesian statistical decision
theory. In this manner, the economics of testing could be considered
explicitly and the economically optimal sample size could be determined
for each experiment. In Chapter IIX, the application of these ideas to

operational testing will be examined.

Fundamentals of Bayesian Analysis

Because OTEA is currently using classicai statistical methods, the
discussion presented here will be comparative in nature. That is, the
Rayesian ildeas will be contrasted with classical statistical ideas, and
similarities and differences highlighted. From the outset, there are
some fundamental conceptual differences requiring discussion. Consider
the situation in which a particular data-generating process may be modeled
by the normal process with unknown mean and variance. Then the probabil-

ity density function associated with such a process is the normal density

-

with mean, i, and variance, 02. The classical statistician would view
these parameters as unknown constants. He might decide to estimate them
by taking a sample from the data-generating process (or an appropriate
model thereof) and use the sample statics X and s2 as estimates of p and
02, respectively. If he is interested in constructing a confidence in-
terval on x, he could substitute these estimates into the normal density
function making it possible to compute the probability that a particular
observation would lie within a specified interval, i.e., P(x1 £Exs x2)

= p. This probability would then be interpreted in the relative frequency
sense. That is, if a large number of observations were taken it would be

expected that x would lie on the interval (x;,X,), "p" percent of the
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time [8]. On the other hand, the Bayesian analyst would view the unknown
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parameters, p, and § , as random variables (throughout this paper, a

.
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"tilde" will be used to denote a random variable). As such, he would not

.546_.

attempt initially to obtain a point estimate of these parameters. In-

stead, he would ascribe to them a probability distribution. Prior to
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sampling from the process, such a probability distribution must be con-

structed based on the analyst's prior beliefs concerning the joint occur-
rence of } and 82. A probability distribution constructed in this manner
reflects the analyst's subjective probabilities on {i and 82. It will be
shown later how thesg probabilities may be combined with sample informa-
tion to produce new distributions on the unknown parameters. The concep-
tual differences discussed here play important roles in interpreting the

- results of an analysis [23].

As mentioned above, Bayesian analysis can be used to combine sample
information with prior beliefs in an effort to develop a probability dis-
tribution for a random variable. This combination is achieved by using
Bayes' theorem. For a continuous random variable, say §, Bayes' ti.=orem

may be written as

£'(®)£(y]0) (1-1)

f"(el}’) =
J:f%e)ﬂyle)de

%
In this notation, a single prime superscript (') denotes a prior distri-

bution or parameter, a double prime (") denotes a posterior distribution

*

The notation used in this study is similar to that usad by Raiffa
and Schlaifer {18]. At times it can become quite intricate; therefore, a
detailed explanation of this notation is presented in Appendix III.



or parameter and no superscript designates a sampling distribution or
parameter. Therefore, in equation (l-1), £'(6) is the prior distribution
of § representing the decision maker's beliefs regarding 8 prior to samp-
ling, f(yle) represents the likelihood function chosen to describe the
sampling process and £"(8|y) is the posterior distribution of § which re-
flects the decision maker's beliefs regarding § after the sample has been
taken {23]. An analogous form of the theorem may be written for discrete
random variables by substituting probability mass functions for the prob-
ability density functions and a summation sign for the integral sign. A
derivation of Bayes' theorem from conditional probability formulas is
given by Winkler [23]. 1In the application of Bayes' theorem the major
difficulties lie in the assessment of the pxrilor distribution and the
likelihood function and, in the continuous case, in the avaluation of the
integral appearing in the denominator of ghe formula, Suggested.methods

for handling these difficulties are discussed in the next chapters.



CHAPTER II

AN INFERENTIAL APPROACH

Bayesian Inference

Statistical inference is the process of forming reasonable
conclusions about some aspect of a random phenomenon. For example, in
considering the mean, y, of a normal distribution, the classical statis-~
tician may attempt to estimate the true value of  based on sample infor-
mation. Alternatively, he may construct a confidence interval on y of
the form described in Chapter I. The Bayesian statistician also makes
inferential statemen.s regarding {I. These statements, however, are de-
veloped in a different manner and have different interpretations than their
classical counterparts.

As pointed out in Chapter I, the Bayesian considers {i to be a ran-
dom variable and assigns to it some probability distribution. Inferential
statements concerning {i are then based on this distribution. For in-
stance, while the classical statistician may estimate the true value of
i, the Bayesian may be interested in an estimate of the most likely value
of 1 and may use as a point estimate the mode of the distribution [23].

In making interval estimates of [I, the Bayesian attempts to define an
interval [a,b] such that the probability that {i will take on values be-
tween a anu b is some number "p."

Thus, Bayesian inference revolves around the distribution of the

unknown quantity of interest. If the analyst's present state of knowledge
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about this unknown quantity is sufficient to develop a well-defined prio
distribution, then this distribution may be used for the analysis. On
the other hand, if the analyst's prior knowledge is vague, he may con-
sider gathering sample informatirm in order to produce a posterior distsx
bution upon which to base his i.ferences. In this case, the problem is
determine how much sample information is necessary to produce a suitable
posterior distribution. Two possible approaches to solving this problem
are presented later in this chapter., First, hovever, the two required
inputs to Bayes' theorem, i.e., the likelihood function and the prior

distribution, will be discussed in the context of operational testing.

The Likelihood Function

In operational testing, the value of the MOE under consideration
may be thought of as the uncertain state of nature and may be represente
by 8. If y is a sufficient statistic for a sample from the data-generat
process, then prior to sampling, ¥ is also a random variable. The proba
bility distribution of y is assumed to depend on 6, and the conditioned
probability distribution of y given 8§ will be denoted by f(yle) and
called the "likelihood" function. In order to proceed with the analysis
it is necessary to mathematically describe this function. In doing this
subjective probability assessments could be made for each data-genaratin
process encountered and unique likelihood functions constructed. This
could prove extremely cumbersome considering the number of MOE involved
in a single operational test. A better approach, and one used more fre-
quently in practice, is to attempt to "fit" one of the more cormon sta-

tistical models to the process. As pointed out by Winkler [23], this
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does not eliminate the subjectivity involved in assessing the likelihood
function, although it may make it somewhat less controvensial.

In choosing a likelihood function to be used in this study, it was
desired to select a function which would realistically represent a broad
class of MOE. The univariate normal with unknown mean and variance is
such a function. Its applicability to a wide range of MOE is supported
by the fact that it is currently being used by OTEA as the basic model
for sample size determination for both measurement and attribute data
{11]. It should be stressed, however, that this likelihood function should
not be used indiscriminately but only when the decision maker's prior be-
liefs concerning the data-generating function suggest that it would be an

appropriate model.

The Prior Distribution

Before any operational testing is conducted, the prior distribution
would have to be assessed based on the decision maker's prior notions con-
cerning [ or, in the case of a totally informationless situation, would
have to be represented by a diffuse distribution, which will be discussed
later. After at least one operational test has been conducted, these
sample results might be used in constructing the priorxs for similar MOL
in later tests [11].

In selecting a prior distribution, several desirable characteris-
tics should be considered. First, and most important, the distribution
should adequately reflect the decision maker's prior beliefs. Second, it
should be of such a form as to be mathematically tractable when combined

with the likelihood function in Bayes' theorem. And, finally, it would
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be desirable to have the resulting posterior distribution be of the same
form as the prior so as to reduce the computational burden in sequential
analysis.

By choosing a prior distribution from the ngtural conjugate family
of distributions it is possible to guarantee that the second and third
conditions above are met (for a definition and complete discussion of
natural conjugate distributions see Raiffa aad Schlaifer [18], Chapter 3).
While the first condition is not guaranteed to be satisfied, it is pro-
vided for by the fact that natural conjugate families are generally "rich"
and through proper parameterization can be made to represent a wide var-
iety of distributions.

The choice of a natural conjugate family is determined by the form
of the likelihood function. Since the likelihood function used here is
normal with unknown mean and variance, the appropriate conjugate family
is the normal-gamma distribution [18]. Which member of this family, if
any, will be appropriate depends on the amount aud substance of the de-
cision maker's prior beliefs concerning the specific MOE under considera-
tion. Certain peculiarities of operational testing wiil allow for sgme
general statements to be made concerning the decision maker's prior state
of knowledge. First is the requirement, imposed by the Department of the
Army, that operational testing be independent of all other testing. This
severely limits the use of any prior knowledge on 8. For all practical
purposes, prior to OT I there exists a self-imposed, totally information-
less situation. In such cases, the prior information, or lack thereof,
should be represented by a diffuse prior distribution,

In general, a diffuse distribution need not be limited in its use




to a totally informationless situation, but may be used whenever the
decision maker's prior information is diffuse relative to that which can

be obtained through sampling. As a rule, diffuse distributioas are char-
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acterized by large varianca2s as compared to that of the data-generating
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funciion, they are relatively flat in the region where the likelihood
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function takes on significant values, and they are given littl2 weight ir

comparison to the sampling distribution when computing the posterior dis-

O

tribution [23]. The real objective in selecting a diffuse distwibution

RO

is to choose one which will have no effect oa the posterior distribuvtion
[23]. With this objective in mind, the actuil form of a diffuse pricr
is of little importance, in fact, it need not even be a proper probability

distribution [23]. Tnus, it is only ra*.oral to choose a diffuce distri-

e b et e b

bution from the family of natural conjugate distributions, in this case,
; the normal-gamma family. This family of distributions is of tia follow-
;
f ing form [18],
% fN.(ﬁ,EIm',v',n’,v') - ﬁ-ﬁﬁn'(ﬁ-m')z ﬁ% e‘%ﬁvtvt ﬁ%v"l
|
where i and h are random variables such that
=® <<y
h>o0
and m', v', n', v' are parameters such that
: 4 vi,n', vi>0

~-o<m <»

The above param:ters may Le interpreted as previous sample results assc-

ciated with some actual or hypothetical experiment [23]. Using this
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interpretation, m' would be equivalent to the sample mean, v' would be
the sample variance, n' the size of the previous sample and v' equal to
n' minus one (usually called the number of dejrees of freedom for v').

By the properties of natural conjugate distributions, it is known

that the posterior distribution will be of the same form. Raiffa and
Schlaifer [18] have shown that the posterior parameter (m",v",n",v") is

given by

1.1
] nm + nm
oz (2-1)

=n' +n

2 2
n_ v'v! + a'n'? + w + om® - o"m"

v+ 8@') + v+ §() - 5"

vi =y + 5@ + v+ s(m) - s

where §(Y) is an indicator variable defined by

! lify>0
: 8(Y) =
0ify=0

and (ﬁ,v,n,v) is the statistic resulting from a sample of size n and is

given by
ZX,
i
m = —
n
V= n-1
v = n-1

It is shown in reference 18, p. 300 that, if n'=y'=0, the posterior

parameter (m",v",n",v") equals the sampling statistic (m,v,n,v). There-
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fore, any normal-gamma distribution can be used as a diffuse prior so
long as n'=y'=0,

Now, consider the case where at least one operational test has
alreedy been conducted. This will provide usable data on a number of MOE.
Commonly, several of these MOE will be subject to further examination in
subsequent operational tests. Under these circumstances the posterior
aistribution of the earlier test may be used as the prior distribution
for the later test. This is especially useful if the distributions in-
volved are natural conjugates of the likelihood function.

Even if the MOE to be evaluated in later tests have not been ex-
amined previously, they may possess strong similarities to MOE which have.
In such cases, it might be possible to construct prior distributions
based on subjective probability notions deriveda from data on th: earlier
MOE.

In summary, if there is no internally-generated data available
from which to develop prior distributions, a diffuse normal-gamma prior
will be used. If the available data is of the form of a previous sample
from the same data-generating process, then the posterior distribution of
the earlier test will be used as the prior for the later test. Finally,
if the available data is of the form of a sample from a similar data-
generating process, then this posterior distribution will be used in mak-
ing a subjective assessment of the prior distribution to be us:4 in the

later test.
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The General Problem

As noted in Chapter I, operational tests are designed to provide
a side-by-side comparison of competing weapons systems. The overall ob-
jective of this testing is not so much to estimate the performance char-
acteristics of either of the systems, but rather to make inferences
regarding the difference in these performance characteristics. In this
context, thc observations may be considered to be paired observations and
the difference in the observations may be viewed as a random variable with
its own probability distribution. Ccnsider, as a hypothetical example,
the problem of determining whether a new weapons system has a greater
range than that of the existing system which it has been designed to re-
place. Let the range of the existing system be denoted by il and that of
the new system by §2' Assume that the prior information on il and 22 is
such that both may be modeled by the normal process with unknown mean and
variance. Then, the differencc . the range of the two systems is also a

random variable, 5, given by

P=%x -% (2-2)

From equation (2-2), D is merely the linear combination of two
independent, normally distributed random variables, which implies that D
is also normally distributed [8] with unknown mean and variance, say "
and 62, respectively. Using this distribution of ﬁ, the family of natural
conjugate prior distributions is normal-gamma. The mathematics involved
in working with this particular family of distributions can be quite com-
plex, fortunately, this may not be necessary. What is of particular im-

portance in this testing is the mean difference, {i, between the two
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systems. Since [ is itself a random variable, it follows a particular
probability distribution. It has been shown that this distribution is

Student's t distribution and can be represented by the density (18]
f(ﬁlm,v,n,v) = fs(ﬁ|m,n/v,v) (2-3)

Formulated in this manner, the problem becomes one of determining
the minimum sample size which can be expected to produce a posterior dis-
tribution suitable for making meaningful probability statements regarding
fi. One approach to solving this problem is to identify some measure on
the posterior distribution which is a funct%on of the sample size, derive
the expected value of this measure, equate this expected value to some
desirable value and solve for the sample size. Solution procedures util-

izing two such measures have been developed and are presented inm the next

two sections.

11e Solution Using the Standard Deviation

Given that {j has the density described by equation (2-3), then [18]
Ef|m,v,n,v) =g =m , .v>1

V(ﬁ|myv s ’V) = :L

it
o (<

C¥§ s v>2

Under the prior distribution of {i, the value of ﬁ' is given by

vy

1 H
%7 ;'\:’-_—5 s vi>2 (2-4)
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fhis value may then be used to calculate the prior standard deviation of
T i.e.,\/ﬁﬁj . If the prior standard deviation is large relative to
1!, then the prior distribution may not be "tight" enough to reach any
meaningful conclusions about {i. In this sktuation, it may be necessary
to obtain additional information about fi through sampling. The objective
of this sampling would be to produce a value for the posterior standard
deviation which would be small enough to allow inferences to be made
about Y.

Suppose that it is felt a posterior standard deviation equal to
some specific fraction of the prior standard deviation would be satisfac-

tory. Mathematically, this relatiomship is

\/ﬁ,"=3\/|,‘1", 0<ss1, (2-5)

Prior to sampling, the posterior standard deviation is a random variable
and, therefore, it is necessary to think in terms of its expected value,
This has been shown to be [18]

(2-5a)
ELVE™ |n',v" 0" 0" 5n,9) =We-3/8((1/1/2 v'-1)-(1/1/2 v"-l))‘

In deriving the above equation, it was necessary to use Stirling's second
approximation for the following two values

(2-5b)

/2 vi-1)t » @ M2z ooy /200D - (1/2 vI-D+ (/12172 v'-1)))

Y

(2-5¢)

1/2 v%-1)¢ = (2m) 1/2(1/2 V1) 1/2(\,"-1)8-(1/2 v'-1)+(1/(12(1/2 v"-1))) )

n
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It has been suggested [18,p. 308]) that, if Stirling's first approximation

were used, the second term in the exponent of "e,”

in both equations
(2-5b) and (2-5c¢), would be omitted and the expected value would then

become

ELVET Wm',v',n',v';n,v] = \/(@'/n u' . (2-6)

Thus, in using Stirling's first approximation, some information is sacri-
ficed in order to obtain a less complex mathematical expression for the
expected value of the posterior standard deviation. The question then
becomes one of how much information is lost and is this loss justified.

A problem similar to this is encountered in classical statistics
when attempting to arrive at an unbiased estimator of the standard devia-
tion. One solution to this problem is to multiply the sample standard
deviation by an appropriate correction factor. Gurland and Tripathi have
shown that this correction factor approaches one as the size of the sample
increases.* In fact, for a sample of size 20, the correction factor is
1.0132, implying that the sample standard deviation varies from the un-
biased estimator of the population standard deviation by only slightly
more than one percent.

It is felt that the problem of approximating equation (2-5a) by
equation (2-6) may be viewed in a similar fashion where the exponential
term in equation (2-5a) is analogous to the correction factor discussed

above. Therefore, the percent e.ror induced by the approximation can be

*

Gurland, J., and Tripathi, R, C., "A Simple Approximation for
Unbiased Estimation of the Standard Deviation," The American Statistician,
Vol. 25, 1971, pp. 30-32,
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expressed as

e-3/8((1/1/2 vi-1) - (1/1/2 v"-1)) (2-62)

% error = 1 -

Note that, using the relationships [18])
vi=vi 4+ v+l
and

v=n-1,

equation (2-6a) may be rewritten as

o~3/8((1/1/2 v'=1) - (1/1/2(v"+n)-1))

% error = 1 -

_q . o8/8(A/N-2) - (1v'4n-2))

This equation was used to calculate the percent error of approximation

for selected values of n and v', and the results are presented in Table 1.
Notice that, for a given value of v', the accuracy of the approximation
decreases to a limit as the sample size approaches infinity. This phe-
nomenon makes it possible to establish an upper bound on the approxima-
tion error for any given value of v'. For the values of v' considered in
Table 1, this upper bound is shown in the last ruw of the table. From
this information it can be seen that the approximation is reasonably accu-
rate for values of v' greater _han or equal to 35 regardless of the size
of the sample. For values of y' less than 35, the decision about whether
or not to use the approximation would have to be made based on a compari-
son of the percent error induced in the calculations versus the desired

accuracy of the results.



19

Table 1. Percent Error in Approximating the Expected
Posterior Standard Deviation

Ny
n\ 5 10 15 20 25 30 35 40 45 50
5 14 4 2 1 1 0 V) 0 0 0
10 17 5 2 1 1 1 1 0 0 0
15 19 6 3 2 1 1 1 1 0 0
20 19 6 3 2 2 1 1 1 1 0
25 20 7 4 2 2 1 1 1 1 1
30 20 7 4 3 2 1 1 1 1 1
35 20 7 4 3 2 1 1 1 1 1
40 21 8 4 3 2 2 1 1 1 1
45 21 8 4 3 2 2 1 1 1 1
® 22 9 6 4 3 3 2 2 2 2

The procedures developed in the remainder of this study utilize
the approximate expression for the expected value of the posterior stand-
ard deviation. It is believed that this approximation will be acceptable
in the design of a large percentage of operational tests. When it is not
acceptable, the methodology presented in this study might still be appli-
cable, although the specific results would not be. For example, it may
be possible to use the exact expression given by equation (2-5a). Al-
though this equation cannot be solved explicitly for n, it can be solved
iteratively. In the iterative solution, it is suggested that the analyst
use equation (2-6) to calculate a first approximation for n.

Returning tco the development of the methodology, if equation (2-6)

is used in place of the posterior standard deviation in equation (2-5),
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then ) \/(nl/n")ﬁylj = S\/ﬁ" v

Squaring both sides

n.—:(___i_l)n', 0<ss1. (2-7)

In essence, the above equation states that a sample of size n can be ex-
pected to reducé the prior standard deviation of {i by some factor s.
This has a certain amount of intuitive appeal. Notice that, if
=1, indicating that the prior standard deviation is satisfactory, the
sample size is zero regardless of the value of n'. Additionally, if n'
is interpreted to be the "weight" assigned the prior distribution, as
suggested by Winkler [23], then as the prior distribution is given more
weight in the analysis, the sample size increases. This is reasonable
since the weight the analyst assigns to the prior distribution reflects
his confidence in that distribution. Thus, if he has a great deal of
confidence in the prior, it would take a large amount of sample informa-

tion to significantly alter his beliefs,

The Solution Using a Bayesian Interval

Suppose that the decision maker would prefer to use some other
mcasure of the posterior distribution. A reasonable measure would be a

Bayesian prediction interval, The development of the solution procedure
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is similar to the previous section. A Bayesian prediction interval is an
interval having a stated probability, e.g., (1-o), containing the vari-
able of interest. In Figurel, " is the mean of the posterior distribu-
tion, & is the lower prediction limit, b is the upper prediction limit,

and the shaded area represents the probability that a = {f = b.

(1-o)

'1_1'"
Figure 1. Generalized Bayesian Interval on {i"

Now, assuming that the interval is centered on ", then the dis-

tance, d", from a to b is given by [8]

d" = 2td/2 \l"\/&-"_l . (2"8)

b

Prior to sampling, the decision maker would be interested in the expected

value of d", which can be expressed as

E(d“) = 2td/2,\)" E(\/En ).

Using equation (2-6) this becomes

E@") = ZtQ/Z’Vu\/(n'7n")§£' "



Squaring both sides gives
1" 2 - 2 t V3
E@D =4t s, o @ /ML .

This equation can then be solved for n yielding

2t 1m 2
n = [__Q’Z_‘?',.z.y_] rb'n' -n! . (2-9)

E(d")

The above equation parallels closely a result obtained by Cordova (6]

where he shows that the minimum sample size required to establish a Bay-

[V A

esian interval of expected width k about the mean of a sampling distribu-

, . , . . 2 . .
ticn when the variance of that distribution, ¢ , is known is

He goes on to demonstrate that the quantity (sz/zo-/k)2 is equivalent to

the classical solution to the same problem.

E Note that (2-9) cannot be solved explicitly for n. It is suggested.

that it be solved by the trial and error method. A good first approxima-
tion for n may be found bv using Za/z in place of ta/2,v" and solving for

1 n.

= Illustrating the Procedures

In this section, an example will be given of how each of the solu-
1 tion procedures may be applied in a realistic situation. It was decided
+ vic the procedures in the context of an actual operational test. The

test selected was 0T II for the Lightweight Company Mortar System (LWCMS).
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The LWCMS is being considered as a replacement for the M29 81mm mortar
currently beiﬁg used by the Army. The purpose of the test is to provide
comparative data on the two types of morﬁérs for assessing the relative
operational performance and military utility of the IWCMS [14]. One of
the MOE un&er consideration in this test is the time required for an indi-
vidual to complete the gunner's examination. The gunner's examination is
a practical test designed to measure how quickly an individual can per-
form certain essential operations in preparing a mortar to fire.

This MOE was previously examined during OT I. In that test, 14
individuals were giver the gunner's exam using the 8lmm mortar. They
were then presented with two weeks of instruction on the LWCMS, after
which ghny once more took the gunner's exam, this time using the LWCMS.
The results of this test are contained in Appendix I. The format for the
experiment in OT II is the same. The sample size problem is to determine
the number of individuals to be used in that experiment. The first solu-
tion procedure to be illustrated will use the standard deviation as the
measure on the posterior distribution.

The initial step in the procedure is to determine the value of the
prior standard deviation of {i. For notatioﬁal purposes, the sample data
relevant to the 8lmm mortar will be denoted by Xli’ i=1,2, ..., 14
and that associated with the LWCMS by X2i’ i=1,2, .. ., 4. To compute
the value of \/ET it is necessary to know n', v', and v' of the prier
distribution. Since this MOE was examined previously, the prior distri-
bution for OT II may be equated to the posterior distribution of OT I.

As pointed out in Chapter II, prior to OT I there is usually no internally

generated data available; therefore, a diffuse prior distribution is ap-
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propriate. Thus, the posterior distributions associated with OT 1 are
based solely on sample i-~formation. Considering this, the posterior

parameters relative to OT I are given by [18, p. 298]

©.D
m"=mE 1 1
n
2
" z(D, -m)
vi=vE
n
n =n
" = p"-1 = n-1
where
D o= -
B TR ST

Using the data from Appendix I, the following values were calculated:

n=1
n' = 14
n" = 17.6 sec

v" = 2040.5 sec2

]

v'=13 .

The above values may now be used as the parameters of the prior distribu-
tion relative to OT II.

At this point it is possible to calculate an upper bound for the
error induced by using equation (2-6) as an approximation for the expected
standard deviation. With v' equal to 13, this upper bound is six percent.
If it is felt that a possible error of this magnitude is critical, then
the approximation should not be used. It will be assumed here that such
an error is not critical. The next step, then, is to calculate the value

of the prior variance of [j. Using equation (2-4)
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ve _ /2040.5)( 13 >
B =\T1% A13-2

N0 o= 172,25 sec? .

This produces a prior standard deviation of

A" = 13,12 sec .

The fact that this MOE is again being considered in OT II implies the
above standard deviation is too large to formulate meaningful conclusions
regarding {i. What specific value of the posterior standard deviation
would be acceptable is something which must be determined by the OTEA
test designers. To assist in this decision, Table 2 depicts the sample
sizes required to produce various expected values for the posterior

standard deviation.

Table 2. Required Sample Sizes for Values of the Expected
Posterior Standard Deviation (in seconds)

E(\/ﬁ' ) | 12,0 |11.0 [10.0 [9.0 {8.0 {7.0 {6.0 |5.0 }4.0 ]3.0 }2.0 |1.0

n 3 6 11 16 (24 36 |53 83 {137 |254 |589 |2396

The values of n were found by using equation (2-7) with

ECGVET)
T 13,12
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All that remains is for the analyst to select the desirable value for the
expected posterior standard deviation and obtginﬂthe required sample size
from Table 2,

Now consider the solution procedure which uses a Bayesian interval
on the posterior distribution as a measure. Based on the prior distribu-
tion, the length of an interval, centered on the mean, containing 90% of

the probability is given by

dl

Zta/Z.,\)" \/ﬁ_"

2(1.761) (13.12)

]

46,21 sec .
Suppose that it is desired to have the expected width of the Bayesian
interval, with respect to the posterior distribution, be equal to
"E@"™ = 20.00 sec ,
then
E@"? = 400.00 sec?
Using equation (2-9)

(25 05 vn)2(172.25)

n = 700 (14) - 14 .

To obtain a first approximation for n, Z 05 is substituted for t 05."
. . 3’

giving

L 6(1.645)2(172.25)
400

(14) - 14

n = 51.26 .,
Rounding this up to the next greatest integer gives an initial value for

n of 52. Using this sample size, n'" would equal 66, with the correspond-
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ing value of t 05.65 being 1.6686. Substituting this value in equation

(2-9). and solving for n gives

L 4(1.6686)°(172.25)
B 400

(16 - 14
n = 53.14 .
From this result it appears that the optimal n will lie somewhere between

52 and 54. Setting n equal to 53 and using the appropriate value for

td/z’vu gives

2
_ 4(1.6683)"(172.25)
n= 400 (14) - 14

n = 53.12 .
Therefore, a sample of size 54 would reduce the expected width of a 90%
Bayesian prediction interval to 20.

The procedures developed in this chaptexr have not considered any
monetary constraints associated with the cost of sampling.. In reality,
however, such constraints play an important role in the determination of
the optimal sample size. For example, it may be desirable to have an
expected posterior standard deviation equal to one; however, the cost of
having 2396 individuals involved in the experiment may be prohibitive.

Therefore, it is necessary to achieve some balance between the E( /p" )

and the cost of sampling, This is the subject of the next chapter.
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CHAPTER III

A DECISION THEORETIC APPROACH

I

i

|

] Introduction

1 The problem which was examined in Chapter II will now be expanded

! to include economic considerations. The objective of this chapter will
be to develop a procedure for determining the economically optimal sample
size in the presence of monetary comstraints. Initially, it appears that
this problem could best be handled using Bayesian preposterior analysis.
In Bayesian preposterior analysis, the decision maker examines each ex-

. periment available to him in an effort to determine if the expected value
of the sample information is sufficient to justify the expected cost of
the experiment. If more than one experiment satisfies this criterion,

he then chooses the experiment which gives him the greatest expected net

gain from sampling, where the expected net gain from sampling is equal to

the expected value of sample information minus the expected cost of samp-
ling [18].

The problem in this approach, however, is in describing the termi-
nal utilities involved. The posterior distribution of i, with respect to
any single MOE, is not used by itself as a basis for any terminal action.

Rather, this distribution is considered along with the posterior distri-

butions associated with many other MOE in the overall assessment procedure.
Raiffa and Schlaifer have suggested a method for handling this type of

problem [18].

c e —— e - A
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If this [sample information] is ultimately to be used in a

| number of second-stage action problems, then the immediate

1 result of the experiment will presumably be a posterior dis-
| tribution of ® [the variable of interest] in one guise or

i another. But how does this help to decide on sample size?

| One possible approach is to define some index of "tightness"
E of the posteriotr distribution (such as the variance if the

y distribution is symmetric} and then to decide on a substitu-
l tion rate between the index of tightness and the cost of
sampling.

It is a solution procedure similar to this which will be used here. In-

herent in this approach is the idea of assigning an appropriate utility

to each vdlue of the index of tightness referred to above. Utility, as
used here, is an expression of the relative worth to the decision maker

of a particular value of that index.

The Solution Procedure

. One logical choice for the index of tightness to be used in this
study is the expected value of the posterior standard deviation. Assign-
ing a utility to the values of E(Vfﬁ“3 may be difficult in the absolute
sense, It may be considerably easier to assess the utilities relative to
the total money available for testing, say Kt’ For example, the decision
maker may feel that an expected posterior standard deviation equal to
one-half of the prior standard deviation may be worth omne-half of Kt.
This last stavement suggests the possibkility of another index of
vightness, that is the value of s, where s is the ratio of the expected

posterior standard deviation to the prior standard deviatiom. Thiz can

be represented as a simpler function of n, which will be important later,

and it seems to be more readily adaptable to assessing utilities. For

SRR

these reasons, it will be used as the index of tightness for this study.

Since s can assume any value on the interval (0,1], it will be necessary
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" to define the utility of s using some continuous function, say U(s).

Assume, for the moment, that this is possible.
The cost of sampling may also be thought of in terms of utility.
If the cost of sampling is additive with fixed cost, Kf, and variable

cost, Kr’ then the total cost of sampling, Ks’ may be represented by

The utility of the cost of sampling can be expressed as

U(KS) = - KS .
Then the utility of any experiment, e s where n refers to the sample size

of the experiment, is given by

U(en) = U(s) - KS . (3-2)

Using the optimization criterion of maximizing utility, the solution to
the sample size problem becomes one of finding the value of n which maxi-
mizes equation (3-2). What method may be used to find this optimum value
of n clearly depends on the nature of U(s). Several different methods

are examined in the following two sections.

Linear Utilities

In this section, the problem will be considered where U(s) is

linear with respect to s. In this case
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U(en) = as+b - Ks . (3-3)
Now, equation (2-7) may be solved fer s in terms of n and n' yielding
s = (n')l/z(n’+n)-1/2. (3-4)

Using the above expression for s and equation (3-1) for L equation

(3-3) may be written
U(en) = a(n')l/z(n'+n)-1/2+b - K. -Kn.

Differentiating with respect to n gives

dU(en)
dn

2 2(1/2) ()2 . K,

1/2(n'+n)-3/2 - K. .

s

- (a/2)(n")

It does nut appear that this can be readily optimized by equating
the first derivative to zero and solving for n. Perhaps an easier way
would be to use a nonlinear one-dimensional search such as the golden
section search. To do this, the objective function must be unimodal and
continuous [3). One way of checking for these properties is to investi-
gate the convexity, or concavity, of the function. If the function is
either convex or concave, the properties of unimodality and continuity
are guaranteed [3]. This will be done by examining the sign of the second

derivative.

- PRI
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2
d U(en)

- @/2) "2 (3/2) (tamy =32

dn

Ga/ty @' Mty 52 .

Since n' and n are both greater than or equal to zero, the sign of
the second derivative depends solely on the sign of a. The value of a
represents the slope of U(s). If the slope is positive, the decision

maker is expressing a greater preference for larger values of s than for

v a1 v £ S« = spirmn,

smaller ones. This does not seem to be reasomable. Therefore, it is
felt that a can be required to be less than zero with no loss of general-
ity. With this restriction, the function is concave and the golden sec-
tion method is applicable. A computer program designed to solve this

é problem is contained in Appendix II.

Power PBunction Utilities

Now suppose that U(s) is of the form
u(s) = (1-8)° K, (3-5)

then

c
U(en) = (1-s) Kt - K.

1

Substituting for s and KS gives

1/2 -1/2 "
U(en) =[1 - (n') / (r:'+n) / ]c Kt - Kf - krn .
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Differentiating once with respect to n gives

dte ) o )
2 cKttl—(n')l/z(n'+.)‘*/2}° Ly Y2 1/2) remy =2 - K

) .
=t @ Y2010 2 rany Y21 ) 32 Lk

Once more it appears that the golden section method may be the
best solution approach. Checking for concavity again involves taking the

second derivative.

d U(e )

c-1 ;
- @45 { [1-en 2 Y o a0
b e 2 e - Y2 @y 2102 (1) @y M2

x (-1/2) (nemy "2}

= (n')l/2 (—EE) {(-3/2)[1-—(n')1/2(11'+n)“1/2]c"1(n'+n)-5/2

¥ (c-1)(1/2) (n')1/2[1-(n')1/2(n'+n)‘1/2]°'2(n'+n)'3} .

Determining the sign of the second derivative, using equation
(3-6), is not as straightforward as in the case of the linear utility
functions. Clearly, this sign depends on the sign of the parameter c,
but also it depends on the relative magnitudes of the two terms inside the
brackets. First, consider values of ¢ such that 0 < c = 1, This makes
both terms inside the brackets negative while the term outside -the brack-

ets is positive, thereby making the sign of the entire expression negative.
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Thus, for these values of c, the function is concave. Figure 2 shows

some typical members of this family of functions.

C(s) 4

4 5 8 1.0 57

Figure 2, Typical Power Function Utiiities for 0 < ¢ =1

Next, consider values of ¢ which are less than zero. In this case,
the factor outside the brackets, as well as the terms inside the brackets,
are negative. Therefore, the function will be convex for all negative
values of c. N;te that, if ¢ is negative, equation (3-5) may be rewrit-

ten as
q
(1
U(s) = (l-s) Ke

where q is equal to minus ¢ and is, therefore, a positive quantity. It
is obvious from this equation that U(s) increases as the value of s in-
creases. This would indicate that the decision maker has a greater pref-

erence for large values of s than he does for small ones. Such a prefer-
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ence would be inconsistent with the objectives of the testing and,
therefore, will not be considered in this étudy.

Finally, for values of c greater than one, the family of utility
functions wculd be combrised of functions similar to those shown in
Figure 3.

UGs)

1.0Kt

.2 A .6 .8 1.0 s’

Figure 3. Typical Power Function Utilities for ¢ > 1

Functions such as these could be very useful since they would allow the
decision maker to express a greater preference for small values of s in
comparison to larger values. Unfortunately, no general statement can be
made as to whether they are unimodal or not. This does not mean, however,
that they cannot be optimized. Bazaraa and Shetty [3] suggest that the
golden section search may still be used for non-unimodal functions by
subdividing the interval of uncertainty into a number of smaller intervals

and searching over these smaller intervals. The object is to select the
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size of the smaller intervals so that it is reasonably certain that the
function is unimodal over that interval, This procedure will be illus-

trated in the next section.

Illustrating the Procedure

The solution procedure will now be illustrated using both types
of utility functions described previously. Before doing this, however,
the computer program used in the analysis will be discussed briefly.

This program is shown in Appendix II. It is designed to perform a golden
section search using either the linear or power function utilities. The
golden section method determines the optimum value for unimodal, continu-
ous functions by successively reducing the size of an interval of uncer-
tainty [3]. fTherefore, it is necessary to initially determine some inter-
val of values for the sample size which is believed to contain the optimal
value. This is done in the program by setting the lower bound of the in-
terval equal to zero ana the upper bound equal to the largest sample size
allowable under the existing budget constraint. If the function is uni-
modal, this interval is then systematically reduced until it is less than
or equal to one. If the function is not unimodal, the decision maker is
then required to subdivide the interval of uncertainty and then each of
the smaller intervals is searched.

The same experiment used in Chapter II will be used for this illus-
tration. In order to do this, however, several additional inputs are
necessary, specifically, the budget constraint, Kt’ the sampling costs,

Kf and Kr’ and the utility function, U(s).
To think of a budget constraint and a cost of sampling associated

with a single MOE may be somewhat unrealistic., In practice, a single
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experiment will produce data on many different MOE, Most of the time,

the only budget and cost figures associated with the test are aggregate
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amounts in the form depicted in Table 3. Therefore, rather than attempt-
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ing to determine the sampling cost for a specific MOE and the total money
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; ' available for testing that MOE, it may be much more realistic to allocate
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to each MOE some proportion of the aggregate budget and estimated costs.

This is nof" currently being done, so it will be necessary to approximate

-

AP A

these values,

Table 3. Total Cost Estimates (Direct Costs) [14]

Elements of Cost Estimated Cost
. (In Thousands
of Dollars)

i . 1. Test Directorate Operating Costs 19.1

« § 2, Player Participants 22,1

J % 3. Test Facilities 30.0

g - 4, Items to Be Tested 5

% 5. Data Collection, Processing and Analysis 6.4

‘ 6. Ammunition 145.4

%’ 7. Pre-Test Training 2.1

3 ; 8. Photographic Support 15.0
) : 9. Other Costs 4.5

. Total 245.1

——

It is suggested that the proportion of the aggregate budget to be

; assigned to a specific MOE be commensurate with that MOE's relative
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importance. The OTEA already assesses the relative importance of MOE in
qualitative terms [11]. All that is required then is to quantify this
assessment, perhaps through a series of weighting functions. It is not
anticipatad that this requirement would represent a major problem to OTEA
test design personnel who have detailed information on the relationship
between the data requirements and the operational issues being examined.

Since this type of information is not presently available, a very
simplistic approach was taken to the allocation problem. Each of the MOE
was weighted equally in determining the individual budget constraint.
Based on an imposed test budget constraint of $250,000.00, the individual
budget constraint for each MOE, Kt, was derived to be $1,724.00.

The derivation of values for the fixed and variable costs was ac-
complished in a slightly different manner. The aggregate estimated fixed
cost was defined to be the sum of all those costs in Table 3 except the
costs of player participants and ammunition. This resulted in .* total
figure of $77,600.00. This figure was then divided by the length of the
test in weeks to yield a fixed cost per week of $5,969.00. Using this
weekly cost estimate, each phase of the test was assigned a fraction of
the total estimated fixed cost based on the time required to conduct that
particular phase., The fixed cost associated with each phase was then dis-
tributed equally among the MOE being examined in that phase. Table 4 pre-
sents the results of this process.

The variable costs are of two types, those associated with & sample
size requirement for & certain number of different individuals and those
associated with the requirement for the expenditure of a specified number

of rounds of ammunition. 3Both of these variable costs were approximated
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by dividing the appropriate total estimated cost figures presented in
; Table 4 by the total estimated requirements for that resource [14]. This
! resulted in a variable cost for personnel of $57,00 per week per man and

a cost of ammunition of $13.00 per round.

Table 4. Allocation of Estimated Fixed Costs

Phase Length of Fixed Cost No. MOE Fixed Cost
Phase for Phase Examined per MOE
(weeks) ® - %

1. Training 2 11,938 23 426

2. Pilot Test 1 5,969 0 0

3. Field Exercise 3 17,908 73 245

4, Live Fire 6 35,815 36 995

5. Parachute Delivery 1 5,969 8 746

Demonstration

The MOE of interest in this illustration is to be examined during
the training phase so the fixed cost, Ke, is $426.00., The test design

calls for using the same number of individuals throughout the training

phase. Therefore, the variable cost, Kr’ was derived by multiplying the
cost per man per week by the number of weeks required to complete the
3 P training phase and then dividing the result by the number of MOE examined
Fé ’ during this phase. This process resulted in a value of $4.00 for Kr‘

The above methods for approximating budget constraints and sampling

costs are .ot necessarily being advocated for use by OTEA; they were used

here to provide a starting point for the demonstration. This being accom-
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plished, it remains to select an appropriate function for U(s).
The first case to be considered is that of a linear utility func-

tion. The form of this function is

1A
o

a
U(s) =as + b
0<s

A
=t

Consider Figure 4 below, by varying the values of the parameters a and b,
it is possible to represent U(s) by any negatively sloped straight line
which intersects the s-axis between zero and one. This provides the deci-
sion maker with a rich family of linear functions from which to choose,

The one chosen for this illustration is the one depicted in Figure 4.

uGs)

Kt-

, AN

1 s’

Figure 4, Linear Utility Function

The equation for tnis function is
U(s) = - Kts + Kt = Kt(l-s)

Using this utility function and the budget constraint and sampling

cost previously derived, the objective function becomes
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This objective function was used in the computer analysis, the results of
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which are presented in Table 5. The economically optimal sample size is
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73. This will reduce the magnitude of the prior standard deviation by a
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factor of approximately four-tenths.
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Table 5. Computer Analysis Using Linear Utility

P
> 'm!#-’

Lower Upper N1 N2 u(Nl) U(N2)
; Limit Limit
. 0.00 324.50 123.93 200.54 .253 .055
0.00 200.54 © 76.61 123.93 314 .53
. 0.00 123.93 47.33 76.61 285 .34
47.33 123.93 76.61 94.66 .34 .301
) 47.33 94.66 65.38 76.61 312 .34
s 65.38 94,66 76.61 83.43 314 .311
' 65.38 83.43 72.19 76.61 .314 .314
65.38 76.61 69.79 72,19 314 314
69.79 76.61 72.19 74,20 .34 .34
69.79 74.20 71.79 72.19 .314 314
71.79 74.20 72.19 73,80 .34 314
71.79 73.80 72.19 73.40 .314 314
72.19 73.80 72.60 73.40 .314 314

This same analysis will now be conducted using two power function

utilities. The first will be defined by

) = (1-s)/2 ¢ 0O<ss=l

t
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X Using this utility, the objective function is

.

it

2

ek
«

- _ 1/2
~(en) = (l-8) Kt - Kf - Krn 0<s=s1

* A
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sy

This function was entered into the computer program giving the results

,.,~
el

shown in Table 6. As seen from this table, the economically optimal

sample size is 52. This .3 a smaller sample size than obtained by using
the linear utility function. This result is to be expected since this

powver function gives more weight to larger values of s.

4

Table 6. Computer Analysis Using Power Function with ¢ = 1/2

t Lower Upper N1 N2 U(N1) U(N2)

P Limit Limit
o 0.00 324.50 123.93 200.54 .501 .259
o 0.00 200.54 76.61 123.93 611 .501
f 0.00 123.93 47.33 76.61 .631 611
i 0.00 76.61 29.28 47.33 .589 .631
i 29.28 76.61 47.33 58.56 .631 .631
‘ 47.33 76.61 58.56 65.38 .631 .625
» 47.33 65.38 54.15 58.56 .632 .631
;y | 7.33 58.56 51.74 54,15 .632 .632
| 47.53 54,15 49.73 51.74 .632 .632
2 49.73 54,15 51.74 52.14 .632 .632
. 51.74 54,15 52.14 53.74 .632 .632
51.74 55.74 52.14 53.34 .632 .632
3 51.74 53.34 52.14 52.94 .632 .632
. 51.74 52.94 52.14 52.54 .632 .632
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The second power function utility to be considered has the param-
eter ¢ aqual to 1.5. This function is shown in Figure 3. Since this par-
ticular function is not guaranteed to be unimodal over all n, the méthod
of subdividing the interval of uncertainty into a number of smaller inter-
vals was employed. The interval of uncertainty, based on the budget con-
straint, is (0.00, 324.50). This intexrval was searchedrusing subintervals
of length 20, The results are shown in Table 7. As can be seen from this
table, the optimal sample size is 83. ©Note that the utility of the ex

periment steadily increases until the optimal sample size is reached and

then steadily declines over the remaining vaiues of n. Thus, it is rea-

sonably certain that a sample of size 83 is, in fact, a global optimal.

Table 7. Results of Computer Analysis Using Power
Function Utility with ¢ = 1.5

Subinterval Optimal Sample Utility of
Size for Experiment
Subinterval
0-20 20 -.144
20 - 40 40 .004
40 - 60 60 .065
60 - 80 80 .083
80 - 100 83 .084
100 - 120 100 .076
120 - 140 120 .053
140 - 160 140 .019
160 - 180 160 .022
180 - 200 180 -.069
200 - 220 200 -.121
220 - 240 220 -.176
240 - 260 240 -.234
260 - 280 269 -.356

300 - 320 300 -.420
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CHAPTER IV
CONCLUSIONS AND RECOMMENDATIONS

Conclusions

The procedures developed in this study have been structured around
Bayesian inference and decision theory. The demonstration of these pro-
cedures has been confined to instances where the prior distributions have
been developed using only objective prior data., This was done to show
that the procedures could be beneficial regardless of the strict limita-
tions imposed on the use of any subjective prior information. Considered
in this context, however, the analysis is not Bayesian in the purest
sense, nor would such an approach be appropriate when the use of subjec-
tive information is disallowed. |

Nonetheless, it is felt that the inference approach presented in
Chapcer II represents a viable solution to the sample size determination
problem currently faced by OTEA test designers. Its major advantage over
the presently employed procedures is that it has been specifically designed
to address the problem of making statistically valid inferences regarding
the difference in two random variables,

The decision theoretic approach, described in Chapter III, provides
the decision maker with a quantitative procedure for comparing the expected
results of an experiment to the cost of that experiment. If the decision
maker is willing to accept the concepts of utility theory, and to apply

them, this procedure will provide the economically optimal sample size.
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Finally, should the limitations imposed on the use of subjective
information be relaxed, the methodology presented in this study could be

used in conducting a completely Bayesian analysis.

Recommendations

The greatest limitation to the methodology developed in this study
is that it is applicable only to the case of sizing an experiment for a
single MOE. The logical extension of this is to the case of multiple
MOE. There are at least two approaches to analyzing this case. One would
be to apply multivariate Bayesian statistical theory combined with multi-
dimensional nonlinear programming algorithms. A second approach would be
to view the money required to perform each of the experiments involved in
an operational test as a capital investment and the utility of each of
the experiments as the return on that investment. Formulated in this
manner the problem might be solved utilizing capital budgeting techniques,
If it is possible to extend the methodology to include multiple MOE, then
it may be possible to use it in multifactor experimental design problems.

Aside from extending the methodology, several other areas warrant
further investigation, First, is the assumption that the normal process
may be used as a reasonable model for a large number of operational test-
ing problems. Closely associated with this would be an investigation of
the variation in results when the sampling process is not normal.

As a final recommendation, it is suggested that the procedures out-
lined in this study be utilized in designing a number of operational
tests and that these results be compared to the results obtained using

the presently employed methods.
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System
Test 81 mm LWCMS Difference in
Participant (sec) (sec) Performance
1 358.0 303.4 54.6
2 367.0 350.8 16.2
3 299.0 330.0 - 31.0
4 261.0 147.5 113.5
5 380.0 313.0 67.0
6 226.8 250.0 - 23.2
7 272.0 247.0 25.0
8 239.8 273.0 - 33.2
9 235.0 258.0 - 23.0
10 247.5 244.8 2.7
11 279.1 242.7 36.4
12 303.0 234,2 68.8
13 240.9 250.7 - 9.8
14 279.0 296.9 - 17.9



47

APPENDIX II

FORTRAN PROGRAM FOR THE GOLDEN SECTION SEARCH TECHNIQUE
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SEE IF THE FUNCTION IS UNIMODAL.
WRITE(6,202) )

READ{5,107% IANS

IF{IANS.EQ.KANS) GO 70 501

DETERMINE WHAT SUBINTERVAL IS TO BE SEARCHED.

WRITE(65203) SUBLIM(K) s UPLIMI(K)

502 K=1

920

40
21

30

WRITE{6,204)
READ(5,%) SUBLIM(K),UPLIM(K)

CALGCULATE INITIAL VALUES FOR XN1 AND XN2.

XN1(K)=¢381924* (UPLIM(K) ~SUBLIM{K)) +SUBLIM(K)
XN2{K}=+ 61 8% (UPLIM{K) -SUBLIM{K) ) +SUBLIN(K)

WRITE COLUMN HEADINGS.
WRITE(6,201)
CALCULATE UTILITIES.,

RI=XNP/Z {XNP+XNL1{K))

S1=SQRT{R1)}

R2=XNP/7 (XNP#XN2(K))

S2=5QRT{R2)

IF(IP+EQ.1) GO TO 40
UE1(K)=€1.0-511¥*C¥AKT-AKF-AKR*XN1 (K)
ggZ#%);{i.D-SZ)*‘C*AKT-AKF-AKR*XNZ(K)
UEL(K)=A*¥S1+B~AKF~AKR¥XN1 {K)
UE2T{K)=A¥S2+B~AKF-AKR*XN2 (K)

IF (XN1IK)oLE« XN2{K)) GO TO 30
A1=XN1i{K)

AZ2=XN2{K)

XN1{K)=A2

XN2(K)=A1

WRITE RESULTS.

WRITE{(69200) KsSUBLIM(K) yUPLIMIK) »XNL(K)3XNZ2(K},
¥UEL(K) 4 UE2(K)

COMPARE UTILITIES.,
IF(UELIK) JLE.UE2(K) ) GO TO 934
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APPENDIX III

EXPLANATION OF NOTATION

Chapter I
1 mean of normal density function
52 variance of normal density function
X sample mean
2
s sample variance

£'(0) prior distribution of §

f(y|6) likelihood function for § given 0

£"(0]y) posterior distribution of §

Chapter II
fNy(ﬁ,ﬁlm',v',n',v') normal-gamma density function
h inverse of 02
m',v',n' v’ prior parameters for a normal-gamma density function

(these are interpreted on page 11)

m",v",n",y" posterior parameters for a normal-gamma density
function (these are defined mathematically on page 12)

m,v,n,y parameters of a normal sampling distribution (these

are defined mathematically on page

fs(ulm,n/v,v) density function for Student's t distribution
m expected value of {

n variance of i

n prior variance of {I
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\/}fﬂ prior standard deviation of i

™ prior mean value of [

\fﬁﬂ1 posterior standard deviation

s ratio of the expected posterior standard deviation

to the pricr standard deviation

L posterior variance of {j
" posterior mean value of
a" length of a (l-¢) Bayesian prediction interval on
the posterior distribution
d’ length of a (l-¢) Bayesian prediction interval on
. the prior dietribution
. Chapter III
Kt total money allocated to testing
KS total cost of sampling
) Kf fixed cost of sampling
» : | Kr variable cost of sampling

‘ U(s) utility function for s
U(KS) utility function for the cost of sampling

e experiment with sample size of n

U(en) utility function for an experiment of sample size n
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