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SUMMARY

This research is devoted to investigating how Bayesian statistical

proceduree might be used to improve the design of operational tests being

conducted by the U.S. Army Operational Test and E aluation Agency. The

specific aspect of the design process which is of concern is the calcula-

tion of required sample sizes. Basically, three changes are suggested in

the methods currently being employed.

First, it is shown that the problem can be reformulated in a manner

which is believed to be more closely aligned with the objectives of opera-

tional testing, in so doing, it is possible to capitalize on the compara-
A"

tive natere of tha testing.

The problem is then analyzed using Bayes' theorem and Bayesian

inference techniques. It is felt that the application of Bayes' theorem

can provide for a more efficient use of information available to test

design personnel and that this may result in a reduction in required

sample sizes when compared to methods presently being utilized. Formulas

are then derived for calculating the sample size required to reduce the

expected value of selected measures of tightness of the posterior dis-

tribution.

Finally, a method is proposed for utilizing these procedures in

the presence of economic considerations such as budget constraints and

sampling costs. This method attempts to find the economically optimal

sample size by systematically comparing the cost of experimentation with

che value of the information expected to be obtained from that experimen-

tation.
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CHAPTER I

INTRODUCTION

C Background

The impetus for this 'study was provided by the interest of the

U.S. Army ,perational Test and Evaluation Agency (OTEA) to investigate

- ,the possible application of Bayesian statistical analysis and decision

theory to sample size determination for operational testing. In order to

I understand some of the procedures discussed later in this study, a basic

knowledge of the nature of operational testing as performed by OTEA is

necessary. The purpose of operational testing is to provide a source of

data from which estimates may be developed as to the military utility,

operational effectiveness and operational suitability of new weapon sys-

o : tems. This data is obtained through a sequence of three operational tests;

each test in the sequence is completed and the results analyzed prior to

beginning the next test. For ease of reference, these tests will be re-

ferred to as Operational Test I (OT I), Operational Test II (OT II) and

Operational Test III (OT III). Once the data has been collected and the

estimates developed an assessment is made of the new system's desirability

as compared to systems which are already available

The overall assessment procedure parallels closely at proposed

by Miller in his book, Professional Decision Making (lOJ. In tially,

certain issues concerning the system's capability are identifie for

further examination before any assessment of the overall desirab lity is



2

made. These issues are general in nature and cannot be resolved directly.

!I For example, a system's fire power may be an issue of interest. This

cannot be represented by any single, physically measurable quantity.

Therefore, it is necessary t- refine the issues into a number of param-

1 eters which adequately represent the issue and which can be measured

quantitatively. These quantities are known in OTEA as measures of effec-

tiveness (MOE). For the example given above, the MOE might include such

things as percent of targeto hit, mean miss distance, percent of fire

requests which are met, proportions of rounds requested fired and so on

[11]. Once these MOE are identified, an operational test is designed to

provide for a side-by-side comparison of the competing systems with re-

spect to each MOE.

Given a fixed test design, the sample size problem becomes one of

determining the minimum number of replicates required for each set of ex-

perimental conditions in order to produce sufficidnt sample information

Iupon which to base statistically valid inferences. Thf.s problem can be-

come quite complex since a single operational test may involve as many

as a hundred MOE.

An approach which has been recommended to reduce the computational

burden is to rank-order the MOE based on their relative importance and

then to calculate the sample size requirements using only two or three of

the more important MOE. These calculations are presently based on class-

ical statistical procedures [111.

V~

V.
F
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Objectives of Research

In reviewing these procedures, two areas of oossible improvement

were identified. The first is concerned with making efficient use of

all available data. As noted earlier, the operational testing program

is sequential in nature and, many times, the same measure of effective-

ness may be examined in nore than one test. When this occurs, the data

:r' from the previous test is sometimes used in the design of the subsequent

test in that it serves as a basis for the formulation of hypotheses and

as a source of variance estimates for sample size calculations. This

data is not, however, being combined with the data obtained during later

tests in the final statistical analysis. By not doing this, it is felt

that valuable information is being wasted. In fact, it is believed that,

if this information were used to its fullest extent, a reduction in the

required sample size would be possible. One method of combining prior

information with sample results is provided by Bayes' theorem. The next

chapter is devoted to investigating how Bayes' .heorem might be applied

in the operational testing environment and what effect this would have on

the calculation of required sample sizes.

The second area identified for possible improvement is concerned

with the economics involved in experimentation. Presently the costs

associated with proposed experiments are not directly considered in

sample size calculations. Additionally, there is no evidence of a quan-

r titative assessment of the expected value of the sample information to

be obtained from a particular experiment. Considering this, it is doubt-

ful that the money available for testing is being allocated to the various

experiments in an optimal fashion. It is felt that this problem might

V7
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I: best be analyzed using the concepts of Bayesian statistical decision

theory. In this manner, the economits of testing could be considered

explicitly and the economically optimal sample size could be determined

for each experiment. In Chapter III, the application of these ideas to

operational testing will be examined.

Fundamentals of Bayesian Analysis

Because OTEA is currently using classical statistical methods, the

discussion presented here will be comparative in nature. That is, the

Bayesian ideas will be contrasted with classical statistical ideas, and

EL similarities and differences highlighted. From the outset, there are

1): some fundamental conceptual differences requiring discussion. Consider

the situation in which a particular data-generating process may be modeled

by the normal process with unknown mean and variance. Then the probabil-I iy density function associated with such a process is the normal density.2

" with mean, p, and variance, Y . The classical statistician would view

Lthese parameters as unknown constants. He might decide to estimate them

by taking a sample from the data-generating process (or an appropriate

model thereof) and use the sample statics x and s2 as estimates of p and

a 2, respectively. If he is interested in constructing a confidence in-I. terval on x, he could substitute these estimates into the normal density

function making it possible to compute the probability that a particular

observation would lie within a specified interval, i.e., P(x I :_5 x x2)

-p. This probability would then be interpreted in the relative frequency

* sense. That is, if a large number of observations were taken it would be

expected that x would lie on the interval (xlX 2), p percent of the

• i2



time (8]. On the other hand, the Bayesian analyst would view the unknown

-2
parameters, 5 and a as random variables (throughout this paper, a

"tilde" will be used to denote a random variable). As such, he would not

attempt initially to obtain a point estimate of these parameters. In-

stead, he would ascribe to them a probability distribution. Prior to

sampling from the process, such a probability distribution must be con-

structed based on the analyst's prior beliefs concerning the joint occur-

2
rence of and 2 A probability distribution constructed in this manner

reflects the analyst's subjective probabilities on j and a . It will be

shown later how these probabilities may be combined with sample informa-

tion to produce new distributions on the unknown parameters. The concep-

tual differences discussed here play important roles in interpreting the

results of an analysis (23].

As mentioned above, Bayesian analysis can be used to combine sample

information with prior beliefs in an effort to develop a probability dis-

tribution for a random variable. This combination is achieved by using

Bayes' theorem. For a continuous random variable, say A, Bayes' tL.-orem

may be written as

f"(e ly) = (O )-)
! :ff' (e)f(yjo)de

in this notation, a single prime superscript (') denotes a prior distri-

bution or parameter, a double prime (") denotes a posterior distribution

The notation used in this study is similar to that used by Raiffa
and Schlaifer [18]. At times it can become quite intricate; therefore, a
detailed explanation of this notation is presented in Appendix III.
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or parameter and no superscript designates a sampling distribution or

parameter. Therefore, in equation (1-1), f'(9) is the prior distribution

of g representing the decision maker's beliefs regarding g prior to samp.

ling, f(yIG) represents the likelihood function chosen to describe the

sampling process and f"(01y) is the posterior distribution of which re-

flects the decision maker's beliefs regarding after the sample has been

taken [23]. An analogous form of the theorem may be written for discrete

random variables by substituting probability mass functions for the prob-

ability density functions and a summation sign for the integral sign. A

derivation of Bayes' theorem from conditional probability formulas is

_ ,given by Winkler [23). In the application of Bayes' theorem the major

difficulties lie in the assessment of the prior diGtribution and the

likelihood function and, in the continuous case, in the evaluation of the

integral appearing in the denominator of the formula. Suggested methods

for handling these difficulties are discussed in the next chapters.



CHAPTER II

AN INFERENTIAL APPROACH

Bayesian Inference

Statistical inference is the process of forming reasonable

conclusions about some aspect of a random phenomenon. For example, in

considering the mean, p., of a normal distribution, the classical statis-

tician may attempt to estimate the true value of p based on sample infor-

mation. Alternatively, he may construct a confidence interval on p of

the form described in Chapter I. The Bayesian statistician also makes

inferential statements regarding P. These statements, however, are de-

veloped in a different manner and have different interpretations than their

classical counterparts.

As pointed out in Chapter I, the Bayesian considers j to be a ran-

dom variable and assigns to it some probability distribution. Inferential

statements concerning g are then based on Lhis distribution. For in-

stance, while the classical statistician may estimate the true value of

p, the Bayesian may be interested in an estimate of the most likely value

of ft and may use as a point estimate the mode of the distribution 123).

In making interval estimates of P, the Bayesian attempts to define an

interval [a,b] such that the probability that 5 will take on values be-

tween a an b is some number "p."

Thus, Bayesian inference revolves around the distribution of the

unknown quantity of interest. If the analyst's present state of knowledge
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about this unknown quantity is sufficient to develop a well-defined pric

distribution, then this distribution may be used for the analysis. On

[the other hand, if the analyst's prior knowledge is vague, he may con-

sider gathering sample infornatin in order to produce a posterior distX

bution upon which to base his i.,ferences. In this case, the problem is

determine how much sample information is necessary to produce a suitable

posterior distribution. Two possible approaches to solving this problem

are presented later in this chapter. First, hoWever, the two required

inputs to Bayes' theorem, i.e., the likelihood function and the prior

distribution, will be discussed in the context of operational testing.

The Likelihood Function

In operational testing, the value of the MOE under consideration

may be thought of as the uncertain state of natur( and may be represente

by 0. If y is a sufficient statistic for a sample from the data-geuerat

process, then prior to sampling, Y is also a random variable. The proba

bility distribution of y is assumed to depend on 0, and the conditioned

probability distribution of y given 9 will be denoted by f(y16) and

called the "likelihood" function. In order to proceed with the analysis

it is necessary to mathematically describe this function. In doing this

subjective probability assessments could be made for each data-generatin

process encountered and unique likelihood functions constructed. This

could prove extremely cumbersome considering the number of MOE involved

in a single operational test. A better approach, and one used more fre-

quently in practice, is to attempt to "fit" one of the more common sta-

tistical models to the process. As pointed out by Winkler [23), this
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does not eliminate the subjectivity involved in assessing the likelihood

function, although it may make it somewhat less controve):sial.

I In choosing a likelihood function to be used in this study, it was

desired to select a function which would realistically represent a broad

1 class of MOE. The univariate normal with unknown mean and variance is

such a function. Its applicability to a wide range of MOE is supported

by the fact that it is currently being used by OTEA as the basic model

for sample size determination for both measurement and attribute data

[11]. It should be stressed, however, that this likelihood function should

not be used indiscriminately but only when the decision maker's prior be-

liefs concerning the data-generating function suggest that it would be an

appropriate model.

The Prior Distribution

Before any operational testing is conducted, the prior distribution

would have to be assessed based on the decision maker's prior notions con-

cerning 0 or, in the case of a totally informationless situation, would

have to be represented by a diffuse distribution, which will be discussed

later. After at least one operational test has been conducted, these

sample results might be used in constructing the priors for similar MOE

in later tests 11].

In selecting a prior distribution, several desirable characteris-

tics should be considered. First, and most important, the distribution

should adequately reflect the decision maker's prior beliefs. Second, it

should be of such a form as to be mathematically tractable when combined

with the likelihood function in Bayes' theorem. And, finally, it would
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I :be desirable to have the resulting posterior distribution be of the same

form as the prior so as to reduce the computational burden in sequential

analysis.

• I By choosing a prior distribution from the natural conjugate family

of distributions it is possible to guarantee that the second and third

conditions above are met (for a definition and complete discussion of

natural conjugate distributions see Raiffa aad Schlaifer [183, Chapter 3).

While the first condition is not guaranteed to be satisfied, it is pro-

j A vided for by the fact that natural conjugate families are generally "rich"

and through proper parameterization can be made to represent a wide var-

iety of distributions.

The choice of a natural conjugate family is determined by the form

of the likelihood function. Since the likelihood function used here is

normal with unknown mean and variance, the appropriate conjugate family

is the normal-gamma distribution [18). Which member of this family, if

any, will be appropriate depends on the amount aad substance of the de-

cision maker's prior beliefs concerning the specific MOE under considera-

tion. Certain peculiarities of operational testing will allow for some

general statements to be made concerning the decision maker's prior state

of knowledge. First is the requirement, imposed by the Department of the

Army, that operational testing be independent of all other testing. This

severely limits the use of any prior knowledge on e. For all practical

purposes, prior to OT I there exists a self-imposed, totally information-

less situation. In such cases, the prior information, or lack thereof,

should be represented by a diffuse prior distribution.

In general, a diffuse distribution need not be limited in its use



to a totally informationless situation, but may be used whenever the

decision maker's prior information is diffuse relative to that which can

be obtained through sampling. As a rule, diffuse distributions are char-

acterized by large varianc3s as compared to that of the dat-i-generating

funcLion, they are relatively flat in the region where the likelihood

function takes on significant values, and they are given littla weight in

comparison to the sampling distribution when computing the posterior dis-

tr'bution [23). The real objective in selecting a diffuse dist5ibutton

is to choose one which will have no effect on the posterior distribution

[23). With this objective in mind, the actuil form of a diffuse prior

is of little importance, in fact, it need .,;t even be a proper probability

distribution [23). Tnus, it is only rat.oral to choose a diffuse distri-

bution from the family of natural conjugate distributions, in this case,

the normal-gamma family. This family of distributions is of ti"e follow-

ing form [18),

fN,( hlm',v''n''') *h(-m') 2  elh'v' h"v'-l

where i and are random variables such that

and m', v1, nt Vt are parameters such that

vn V >0

The above paramjters may be interpreted as previous sample results asso-

ciated with some actual or hypothetical experiment [23]. Using this
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interpretation, m' would be equivalent to the sample mean, v' would be

the sample variance, n' the size of the previous sample and v' eqtual to

n minus one (usually called the number of de6rees of freedom for v').

, By the properties of natural conjugate distributions, it is known

that the posterior distribution will be of the same form. Raiffa and

Schlaifer [18] have shown that the posterior parameter (m",v",n",v") is

given by

a~ IV. I n + +nmM n +n (2-1)

n n + n
2 ,,m,,2

v" vY + nm '2 + v + nm2 -nm
v' + 8(n') + v + 6(n) -(n)

V v= ' + 8(n') + v + 6(n) - 6(n")

where 8(y) is an indicator variable defined by

1 if y > 0
8(y) =

0 if y =0

and (m,v,n,v) is the statistic resulting from a sample of size n and is

given by
Ex.
n

4 : (X -M ) 2

n1
V= n-l

v =n-l

It is shown in reference 18, p. 300 that, if n'=v'--O, the posterior

parameter (m",v",nit)") equals the sampling statistic (m,v,n,v). There-
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fore, any normal-gamma distribution can be used as a diffuse prior so

long as n'=v=O.

Now, consider the case where at least one operational test has

already been conducted. This will provide usable data on a number of MOE.

Commonly, several of these MOE will be subject to further examination in

subsequent operational tests. Under these circumstances the posterior

aistribution of the earlier test may be used as the prior distribution

for the later test. This is especially useful if the distributions in-

volved are natural conjugates of the likelihood function.

Even if the MOE to be evaluated in later tests have not been ex-

amined previously, they may possess strong similarities to MOE which have.

In such cases, it might be possible to construct prior distributions

* based on subjective probability notions derivea from data on th! earlier

MOE.

* In summary, if there is no internally-generated data available

from which to develop prior distributions, a diffuse normal-gamma prior

will be used. If the available data is of the form of a previous sample

from the same data-generating process, then the posterior distribution of

the earlier test will be used as the prior for the later test. Finally,

if the available data is of the form of a sample from a similar data-

generating process, then this posterior distribution will be used in mak-

ing a sub'ective assessment of the prior distribution to be uZA in the

later test.
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The General Problem

As noted in Chapter I, operational tests are designed to provide

a side-by-side comparison of competing weapons systems. The overall ob-

jective of this testing is not so much to estimate the performance char-

acteristics of either of the systems, but rather to make inferences

regarding the difference in these performance characteristics. In this

context, thL observations may be considered to be paired observations and

the difference in the observations may be viewed as a random variable with

its own probability distribution. Consider, as a hypothetical example,

the problem of determining whether a new weapons system has a greater

range than that of the existing system which it has been designed to re-

place. Let the range of the existing system be denoted by XI and that of
the new system by X2 " Assume that the prior information on XI and X2 is

such that both may be modeled by the normal process with unknown mean and

variance. Then, the differenpe 1, the range of the two systems is alao a

random variable, D, given by

D= X - X (2-2)
1 2

From equation (2-2), D is merely the linear combination of two

independent, normally distributed random variables, which implies that D

is also normally distributed [8] with unknown mean and variance, say

and , respectively. Using this distribution of D, the family of natural

conjugate prior distributions is normal-gamma. The mathematics involved

in working with this particular family of distributions can be quite com-

plex, fortunately, this may not be necessary. What is of particular im-

portance in this testing is the mean difference, j, between the two
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systems. Since j is itself a random variable, it follows a particular

probability distribution. It has been shown that this distribution is

Student's t distribution and can be represented by the density [181

f(91mvnv) f (gjmn/vv) (2-3)

Formulated in this manner, the problem becomes one of determining

the minimum-sample size which can be expected to produce a posterior dis-

tribution suitable for making meaningful probability statements regarding

S±. One approach to solving this problem is to identify some measure on

the posterior distribution which is a function of the sample size, derive

the expected value of this measure, equate this expected value to some

desirable value and solve for the sample size. Solution procedures util-

izing two such measures have been developed and are presented in the next

two sections.

Tie Solution Using the Standard Deviation

Given that g has the density described by equation (2-3), then (181

E(glm,v,n,v) = m , v > I

V(5Im,v,n,v) =v v>2
n v-2

Under the prior distribution of , the value of ' is given by

nt v'-2 ' Y > 2 (2-4)
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A4
This value may then be used to calculate the prior standard deviation of

S, i.e.,\ 7 p . If the prior standard deviation is large relative to

S ', then the prior distribution may not be "tight" enough to reach any

meaningful conclusions about 5. In this situation, it may be necessary

to obtain additional information about 5 through sampling. The objective

of this sampling would be to produce a value for the posterior standard

4 deviation which would be small enough to allow inferences to be made

about .

Suppose that it is felt a posterior standard deviation equal to

some specific fraction of the prior standard deviation would be satisfac-

ory. Mathematically, this relationship is

- \" ='s , 0 < s 1 (2-5)

* .Prior to sampling, the posterior standaid deviation is a random variable

and, therefore, it is necessary to think in terms of its expected value.

This has been shown to be (18)

(2-5a)i E m [',v'n',%';n%)) (n'n") 'e 3 / 8 ( ( 1/ 1 / 2 %)'-I)-(1/i/2 %)"-1)).

In deriving the above equation, it was necessary to use Stirling's second

approximation for the following two values

Vi (2-5b)
¢ 1/2 '-): ( )I2/2 1'I~/2(v"i)e-(1/2 v'-I)+(i/(12(I/2 v'-i)))

(2-5c)

(1/2 v"-i). z (21 1/2(1/2 v"-Il)i/2(v"1)e(1/2 v"-l)+(i/(12(i/2 v"-1)))
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It has been suggested (18,p. 308) that, if Stirling's first approximation

were used, the second term in the exponent of "e," in both equations

(2-5b) and (2-5c), would be omitted and the expected value would then

become

= N(E[)m',v',n' v . ' . (2-6)

J Thus, in using Stirling's first approximation, some information is sacri-

ficed in order to obtain a less complex mathematical expression for the

expected value of the posterior standard deviation. The question then

becomes one of how much information is lost and is this loss justified.

A problem similar to this is encountered in classical statistics

when attempting to arrive at an unbiased estimator of the standard devia-

tion. One solution to this problem is to multiply the sample standard

deviation by an appropriate correction factor. Gurland and Tripathi have

shown that this correction factor approaches one as the size of the sample

increases. In fact, for a sample of size 20, the correction factor is

1.012, implying that the sample standard deviation varies from the un-

biased estimator of the population standard deviation by only slightly

more than one percent.

It is felt that the problem of approximating equation (2-5a) by

equation (2-6) may be viewed in a similar fashion where the exponential

term in equation (2-5a) is analogous to the correction factor discussed

above. Therefore, the percent e~ror induced by the approximation can be

Gurland, J., and Tripathi, R. C., "A Simple Approximation for
Unbiased Estimation of the Standard Deviation," The American Statistician,

Vol. 25, 1971, pp. 30-32.
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expressed as

error = 1 - e - 3 / 8 ( ( 1 / 1/ 2  '-I) (1/1/2 v"-l)) (2-6a)

Note that, using the relationships [18]

v I +V+i

and

equation (2-6a) may be rewritten as

7ero,1 e3/8((1/1/2 v'-l) - (1/l/2(v'+n)-l))' % error =I-e-

= - e/8((/v'2) (1/v'+n-2))

This equation was used to calculate the percent error of approximation

for selected values of n and v', and the results are presented in Table 1.

Notice that, for a given value of v', the accuracy of the approximation

decreases to a limit as the sample size approaches infinity. This phe-

nomenon makes it possible to establish an upper bound on the approxima-

tion error for any given value of v'. For the values of v' considered in

Table 1, this upper bound is shown in the last row of the table. From

this information it can be seen that the approximation is reasonably accu-

rate for values of v' greater .han or equal to 35 regardless of the size

of the sample. For values of v' less than 35, the decision about whether

or not to use the approximation would have to be made based on a compari-

son of the percent error induced in the calculations versus the desired

accuracy of the results.
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Table 1. Percent Error in Approximating the Expected
Posterior Standard Deviation

n \ 5 10 15 20 25 30 35 40 45 50

5 5 14 4 2 1 1 0 0 0 0 0

10 17 5 2 1 1 1 1 0 0 0

15 19 6 3 2 1 1 1 1 0 0

20 19 6 3 2 2 1 1 1 1 0'

25 20 7 4 2 2 1 1 1 1 1

30 20 7 4 3 2 1 1 1 1 1

35 20 7 4 3 2 1 1 1 1 1

40 21 8 4 3 2 2 1 1 1 1

45 21 8 4 3 2 2 1 1 1 1

22 9 6 4 3 3 2 2 2 2

The procedures developed in the remainder of this study utilize

the approximate expression for the expected value of the posterior stand-

ard deviation. It is believed that this approximation will be acceptable

in the design of a large percentage of operational tests. When it is not

acceptable, the methodology presented in this study might still be appli-

cable, although the specific results would not be. For example, it may

be possible to use the exact expression given by equation (2-5a). Al-

though this equation cannot be solved explicitly for n, it can be solved

iteratively. In the iterative souLiu i it is suggested that the analyst

use equation (2-6) to calculate a first approximation for n.

Returning to the development of the methodology, if equation (2-6)

is used in place of the posterior standard deviation in equation (2-5),
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then -- '

Squaring both sides

Using equation (2-1), this may now be solved for n giving

n - )n' , o<s 1 (2-7)

i2I In essence, the above equation states that a sample of size n can be ex-

pected to reduce the prior standard deviation of P by some factor s.

[This has a certain amount of intuitive appeal. Notice that, if

s=l, indicating that the prior standard deviation is satisfactory, the

Iii ,sample size is zero regardless of the value of n'. Additionally, if n'

--- is interpreted to be the "weight" assigned the prior distribution, as

12 suggested by Winkler (23), then as the prior distribution is given more

weight in the analysis, the sample size increases. This is reasonable

since the weight the analyst assigns to the prior disf-ribution reflects

his confidence in that distribution. Thus, if he has a great deal of

confidence in the prior, it would take a large amount of sample informa-

tion to significantly alter his beliefs.

The Solution Using a Bayesian Interval

Suppose that the decision maker would prefer to use some other

mcasure of the posterior distribution. A reasonable measure would be a

- Bayesian prediction interval. The development of the solution procedure
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is similar to the previous section. A Bayesian prediction interval is an

interval having a stated probability, e.g., (I-a), containing the vari-

able of interest. In Figure 1, j' is the mean of the posterior distribu-

tion, a is the lower prediction limit, b is the upper prediction limit,

and the shaded area represents the probability that a 9 b.

a b

Figure 1. Generalized Bayesian Interval on

Now, assuming that the interval is centered on then the dis-

tance, d", from a to b is given by [83

d" = 2t /2,/ " (2-8)

Prior to sampling, the decision maker would be interested in the expected

value of d", which can be expressed as

I. E(d") = 2t/ 2 ,U E(vr )"

Using equation (2-6) this becomes

E(d") = 2t / 2 ,/".!/
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Squaring both sides gives

2

d 4 t/2 v"

This equation can then be solved for n yielding

2t

= E(d") j 'n t - n' . (2-9)

The above equation parallels closely a result obtained by Cordova [6]

where he shows that the minimum, sample size required to establish a Bay-

esian interval of expected width k about the mean of a sampling distribu-

2.
tion when the variance of that distribution, 2 , is known is

n n

He goes on to demonstrate that the quantity (2Z /2 a/k)
2 is equivalent to

the classical solution to the same problem.

Note that (2-9) cannot be solved explicitly for n. It is suggested.

that it be solved by the trial and error method. A good first approxima-

tion for n may be found by using Z /2 in place of t /2 , ,, and solving for

n.

Illustrating the Procedures

In this section, an example will be given of how each of the solu-

tion procedures may be applied in a realistic situation. It was decided

u c the procedures in the context of an actual operational test. The

test selected was OT II for the Lightveight Company Mortar System (LWCMS).
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i. i The LWCMS is being considered as a replacement for the M29 81mm mortar

currently being used by the Army. The purpose of the test is to provide

comparative data on the two types of mortars for assessing the relative

operational performance and military utility of the LWCMS (14). One of

the MOE under consideration in this test is the time required for an indi-

vidual to complete the gunner's examination. The gunner's examination is

a practical test designed to measure how quickly an l,,'IvIual can per-

form certain essential operations in preparing a mortar to fire.

This MOE was previously examined during OT I. In that test, 14

individuals were given the gunner's exam using the 81mm mortar. They

were then presented with two weeks of instruction on the LWCMS, after

which thoy once more took the gunner's exam, this time using the LWCMS.

The results of this test are contained in Appendix I. The format for the

experiment in OT II is the same. The sample size problem is to determine

the number of individuals to be used in that experiment. The first solu-

tion procedure to be illustrated will use the standard deviation as the

measure on the posterior distribution.

The initial step in the procedure is to determine the value of the

prior standard deviation of . For notational purposes, the sample data

relevant to the 81mm mortar will be denoted by Xl,, i = 1,2, . .. , 14

and that associated with the LWCMS by X2V i = 1,2, 14. To compute

the value of pT it is necessary to know n', v', and v' of the prior

distribution. Since this MOE was examined previously, the prior distri-

bution for OT II may be equated to the posterior distribution of OT I.

As pointed out in Chapter II, prior to OT I there is usually no internally

generated data available; therefore, a diffuse prior distribution is ap-
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propriate. Thus, the posterior distributions associated with OT I are

based solely on sample information. Considering Lhis, the posterior

parameters relative to OT I are given by [18, p. 298]

s.D.

m" =m--
-n

• : )2
E (D -m )

:i
n1-l

n ~n

V) n"-i n-i

where

'. i li 2i

Using the data from Appendix I, the following values were calculated:

n= 14

l = 14

m" = 17.6 sec

2
v" = 2040.5 sec

} II 13

The above values may now be used as the parameters of the prior distribu-

tion relative to OT II.

At this point it is possible to calculate an upper bound for the

error induced by using equation (2-6) as an approximation for the expected

standard deviation. With v' equal to 13, this upper bound is six percent.

If it is felt that a possible error of this magnitude is critical, then

the approximation should not be used. It will be assumed here that such

an error is not critical. The next step, then, is to calculate the value

of the prior variance of j. Using equation (2-4)

V/ -i
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'I"

=172.25 sec

This produces a prior standard deviation of

, " 13,12 sec

The fact that this MOE is again being considered in OT II implies the

above standard deviation is too large to formulate meaningful conclusions

regarding j. What specific value of the posterior standard deviation

would be acceptable is something which must be determined by the OTEA

test designers. To assist in this decision, Table 2 depicts the sample

sizes required to produce various expected values for the posterior

standard deviation.

Table 2. Required Sample Sizes for Values of the Expected
Posterior Standard Deviation (in seconds)

E(V' ) 12.0 11.0 10.0 9.0 8.0 7.0 16.0 5.0 4.0 3.0 2.0 1.0

n 3 6 11 16 24 36 53 83 137 254 589 2396

The values of n were found by using equation (2-7) with

13.12
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All that remains is for the analyst to select the desirable value for the

expected posterior standard deviation and obtain the required sample size

from Table 2.

Now consider the solution procedure which uses a Bayesian interval

on the posterior distribution as a measure. Based on the prior distribu-

tion, the length of an interval, centered on the mean, containing 90% of

the probability is given by

d' = 2t/ 2.,y,,'

= 2(1.761) (13.12)

= 46.21 sec

Suppose that it is desired to have the dxpected width of the Bayesian

• interval, with respect to the posterior distribution, be equal to

E(d") =20.00 sec

then

E(d) 400.00 sec

Using equation (2-9)

_ (25.0 ,) 2(172.25)
00 (14) - 14. 400"

To obtain a first approximation for n, Z is substituted for t.0 5 ,,

.05 0,

giving

n 4(1.645) (172.25) (14) - 14: i n =400

n 51.26

Rounding this up to the next greatest integer gives an initial value for

n of 52. Using this sample size, n" would equal 66, with the correspond-



) 27

ing value of t being 1.6686. Substituting this value in equation
k .05,65

(2-9), and solving for n gives

4(l1.6686) 2 (172.25)
n = 400 (14-) 14

n - 53.14

From this result it appears that the optimal n will lie somewhere between

52 and 54. Setting n equal to 53 and using the appropriate value for

?i t x/2, gives

2
n = 4(1.6683) (172.25) (14) - 141 400

n = 53.12

Therefore, a sample of size 54 would reduce the expected width of a 90%

Bayesian prediction interval to 20.

The procedures developed in this chapter have not considered any

monetary constraints associated with the cost of sampling.. In reality,

however, such constraints play an important role in the determination of

the optimal sample size. For example, it may be desirable to hive an

expected posterior standard deviation equal to one; however, the cost of

having 2396 individuals involved in the experiment may be prohibitive.

Therefore, it is necessary to achieve some balance between the E( / )

and the cost of sampling. This is the subject of the next chapter.
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CHAPTER III

A DECISION THEORETIC APPROACH

Introduction

The problem which was examined in Chapter II will now be expanded

to include economic considerations. The objective of this chapter will

be to develop a procedure for determining the economizally optimal sample

size in the presence of monetary constraints. Initially, it appears that

this problem could best be handled using Bayesian preposterior analysis.

In Bayesian preposterior analysis, the decision maker examines each ex-

- -periment available to him in an effort to determine if the expected value

of the sample information is sufficient to justify the expected cost of

the experiment. If more than one experiment satisfies this criterion,

he then chooses the experiment which gives him the greatest expected net

gain from sampling, where the expected net gain from sampling is equal to

the expected value of sample information minus the expected cost of samp-

ling (181.

The problem in this approach, however, is in describing the termi-

nal utilities involved. The posterior distribution of j, with respect to

any single MOE, is not used by itself as a basis for any terminal action.

Rather, this distribution is considered along with the posterior distri-

butions associated with many other MOE in the overall assessment procedure.

Raiffa and Schlaifer have suggested a method for handling this type of

problem [18].
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If this (sample information] is ultimately to be used in a
number of second-stage action problems, then the immediate
result ot the experiment will presumably be a posterior dis-
tribution of b [the variable of interest] in one guise or
another. But how does this help to decide on sample size?
One possible approach is to define some index of "tightness"
of the posterior distribution (such as the variance if the
distribution is symmetric) and then to decide on a substitu-
tion rate between the index of tightness and the cost of
sampling.

It is a solution procedure similar to this which will be used here. In-

j, herent in this approach is the idea of assigning an appropriate utility

to each value of the index of tightness referred to above. Utility, as

- - used here, is an expression of the relative worth to the decision maker

of a particular value of that index.

The Solution Procedure

One logical choice for the index of tightness to be used in this

study is the expected value of the posterior standard deviation. Assign-

ing a utility to the values of E( V7- ) may be difficult in the absolute

sense. It may be considerably easier to assess the utilities relative to

the total money available for testing, say Kt. For example, the decision

maker may feel that an expected posterior standard deviation equal to

one-half of the prior standard deviation may be worth one-half of Kt .

This last statement suggests the possibility of another index of

tightness, that is the value of s, where s is the ratio of the expected

posterior standard deviation to the prior standard deviation. This can

he represented as a simpler function of n, which will be important later,

and it seems to be more readily adaptable to assessing utilities. For

these reasons, it will be used as the index of tightness for this study.

Since s can assume any value on the interval (0,11, it will be necessary
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f - to define the utility of s using some continuous function, say U(s).

Assume, for the moment, that this is possible.

The cost of sampling may also be thought of in terms of utility.

If the cost of sampling is additive with fixed cost, Kf, and variable

cost, Kr, then the total cost of sampling, Ks, may be represented by

K1 K= Kf + K n • (3-1)

I The utility of the cost of sampling can be expressed as

i U(Ks) Ks "V

Then the utility of any experiment, en where n refers to the sample size

of the experiment, is given by

U (e ) =U(s) - K . (3-2)

Using the optimization criterion of maximizing utility, the solution to

the sample size problem becomes one of finding the value of n which maxi-

mizes equation (3-2). What method may be used to find this optimum value

of n clearly depends on the nature of U(s). Several different methods

are examined in the following two sections.

Linear Utilities

In this section, the problem will be considered where U(s) is

linear with respect to s. In this case
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U(en) =as+b - K . (3-3)
n S

Now, equation (2-7) may be solved for s in terms of n and n' yielding

sn)1/2 -1/2
s (n (n'+n) . (3-4)

Using the above expression for s and equation (3-1) for Ks, equation

(3-3) may be written

U(e) =a(n)1/2 (n'+n) 1/2+b K Krn
n f r

Differentiating with respect to n gives

dU(en) ,1 2-32dn = a (n (-I/2) (n '+n)- 3/ Kr

~I~jn -K

= - (a/2)(n')/2(n'+n)-3/2 K

It does nut appear that this can be readily optimized by equating

the first derivative to zero and solving for n. Perhaps an easier way

would be to use a nonlinear one-dimensional search such as the golden

section search. To do this, the objective function must be unimodal and

continuous [3). One way of checking for these properties is to investi-

gate the convexity, or concavity, of the function. If the function is

either convex or concave, the properties of unimodality and continuity

are guaranteed [33. This will be done by examining the sign of the second

derivative.
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2d U(en)
= (a/2) (n (-3/2)(n'+n)

dn2

L = (3a/4) (n) l/2 (n+n) -5/2

Since n' and n are both greater than or equal to zero, the sign of

the second derivative depends solely on the sign of a. The value of a

represents the slope of U(s). If the slope is positive, the decision

maker is expressing a greater preference for larger values of s than for

smaller ones. This does not seem to be reasonable. Therefore, it is

felt that a can be required to be less than zero with no loss of general-

ity. With this restriction, the function is concave and the golden sec-

tion method is applicable. A computer program designed to solve this

o problem is contained in Appendix II.

' 'Power Function Utilities

Now suppose that U(s) is of the form

U(s) = (1-s) c Kt , (3-5)

then

c
U(en) (l-s) K K

n t 5

Substituting for s and K gives

U(e) = [i - (n')l/2(n'+n) '/2]c ( - K - K n
n t f r
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Differentiating once with respect to n gives

i ~dU(en ) 2.
i ! n (-)('//2nn -3/ K

dUe cKt (1-(n'/ (n'+n) k)n/2(-l/2 )(n+n)/ r

t "= (n') 1 / 2 [ 1 ( n ' ) V2( n /1CI ( n ' + n ) ' 3 / 2 -KrA2

Once more it appears that the golden section method may be the

best solution approach. Checking for concavity again involves taking the

second derivative.

d 2U(en I /2 ){[l(tl2nlnl]c .32n +)5/ (-6n /) 1/2 /2/2

+ (n1+n) 3/2 (c- ) (n') 1/2 (n'+n) 1/2]c-2 (-)(n')1/2

/23/2- nn
X 1/2) (n '+n)3/2/

(c-I)(1/2)(n') 1/2[1 (n )/2 (n+n) -1/2]c-2(n'+n) 3.

Determining the sign of the second derivative, using equation

(3-6), is not as straightforward as in the case of the linear utility

functions. Clearly, this sign depends on the sign of the parameter c,

but also it depends on the relative magnitudes of the two terms inside the

brackets. First, consider values of c such that 0 < c 9 1. This makes

both terms inside the brackets negative while the term outside the brack-

ets is positive, thereby making the sign of the entire expression negative.
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L

Thus, for these values of c, the function is concave. Figure 2 shows

L " t some typical members of this family of functions.

U(s)

OKt c=.l

.8K
~1K t

.6Kc
t

.4K

t~.2K t

.2 .4 .6 .8 1.0 s

Figure 2. Typical Power Function Utilities for 0 < c _ 1

Next, consider values of c which are less than zero. In this case,

the factor outside the brackets, as well as the terms inside the brackets,

are negative. Therefore, the function will be convex for all negative

values of c. Note that, if c is negative, equation (3-5) may be rewrit-

ten as

U(s) (~ Kt

where q is equal to minus c and is, therefore, a positive quantity. It

is obvious from this equation that U(s) increases as the value of s in-

creases. This would indicate that the decision maker has a greater pref-

erence for large values of s than he does for small ones. Such a prefer-
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ence would be inconsistent with the objectives of the testing and,

therefore, will not be considered in this study.

Finally, for values of c greater than one, the family of utility

functions wculd be comprised of functions similar to those shown in

Figure 3.

1.0K

= .. 8Kt

.6Kt t c=1.5

.4Kt

.2Kt

Lc=8

.2 .4 .6 .8 1.0 s

Figure 3. Typical Power Function Utilities for c > I

Functions such as these could be very useful since they would allow the

decision maker to express a greater preference for small values of s in

comparison to larger values. Unfortunately, no general statement can be

made as to whether they are unimodal or not. This does not mean, however,

that they cannot be optimized. Bazaraa and Shetty [3) suggest that the

golden section search may still be used for non-unimodal functions by

subdividing the interval of uncertainty into a number of smaller intervals

and searching over these smaller intervals. The object is to select the
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size of the smaller intervals so that it is reasonably certain that the

function is unimodal over that interval. This procedure will be illus-

trated in the next section.

Illustrating the Procedure

The solution procedure will now be illustrated using both types

of utility functions described previously. Before doing this, however,

the computer program used in the analysis will be discussed briefly.

This program is shown in Appendix II. It is designed to perform a golden

section search using either the linear or power function utilities. The

golden section method determines the optimum value for unimodal, continu-

ous functions by successively reducing the size of an interval of uncer-

tainty [3]. Therefore, it is necessary to initially determine some inter-

val of values for the sample size which is believed to contain the optimal

value. This is done in the program by setting the lower bound of the in-

terval equal to zero ana the upper bound equal to the largest sample size

allowable under the existing budget constraint. If the function is uni-

modal, this interval is then systematically reduced until it is less than

or equal to one. If the function is not unimodal, the decision maker is

then required to subdivide the interval of uncertainty and then each of

the smaller intervals is searched.

The same experiment used in Chapter II will be us.d for this illus-

tration. In order to do this, however, several additional inputs are

necessary, specifically, the budget constraint, Kt, the sampling costs,

Kf and Kr$ and the utility function, U(s).

To think of a budget constraint and a cost of sampling associated

with a single MOE may be somewhat unrealistic. In practice, a single



experiment will produce data on many different MOE. Most of the time,

the only budget and cost figures associated with the test are aggregate

amounts in the form depicted in Table 3. Therefore, rather than attempt-

IA;
ing to determine the sampling cost for a specific MOE and the total money

available for testing that MOE, it may be much more realistic to allocate

to each MOE some proportion of the aggregate budget and estimated costs.

This is nof" currently being done, so it will be necessary to approximate

q Ithese values.

Table 3. Total Cost Estimates (Direct Costs) [14]

Elements of Cost Estimated Cost
(In Thousands
of Dollars)

1. Test Directorate Operating Costs 19.1

2. Player Participants 22.1

3. Test Facilities 30.0

4. Items to Be Tested .5

5. Data Collection, Processing and Analysis 6.4

6. Ammunition 145.4

7. Pre-Test Training 2.1

8. Photographic Support 15.0

9. Other Costs 4.5

Total 245.1

It is suggested that the proportion of the aggregate budget to be

assigned to a specific MOE be commensurate with that MOE's relative

&
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importance. The OTEA already assesses the relative importance of MOE in

- qualitative terms (ii]. All that is required then is to quantify this

assessment, perhaps through a series of weighting functions. It is not

anticipated that this requirement would represent a major problem to OTEA

test design personnel who have detailed information on the relationship

between the data requirements and the operational issues being examined.

Since this type of information is not presently available, a very

simplistic approach was taken to the allocation problem. Each of the MOE

C was weighted equally in determining the individual budget constraint.

Based on an imposed test budget constraint of $250,000.00, the individual

budget- constraint for each MOE, Kt, was derived to be $!,724.00.

The derivation of values for the fixed and variable costs was ac-

* complished in a slightly different manner. The aggregate estimated fixed

cost was defined to be the sum of all those costs in Table 3 except the

I costs of player participants and ammunition. This resulted in , total

figure of $77,600.00. This figure was then divided by the length of the

test in weeks to yield a fixed cost per week of $5,969.00. Using this

weekly cost estimate, each phase of the test was assigned a fraction of

the total estimated fixed cost based on the time required to conduct that

particular phase. The fixed cost associated with each phase was then dis-

tributed equally among the MOE being examined in that phase. Table 4 pre-

sents the results of this process.

The variable costs are of two types, those associated with a sample

size requirement for a certain number of different individuals and those

associated with the requirement for the expenditure of a specified number

of rounds of ammunition. Botn of these variable costs were approximated
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by dividing the appropriate total estimated cost figures presented in

Table 4 by the total estimated requirements fok that resource [14]. This

resulted in a variable cost for personnel of $57,00 per week per man and

a cost of ammunition of $13.00 per rodnd.

Table 4. Allocation of Estimated Fixed Costs

Phase Length of Fixed Cost No. MOE Fixed Cost
Phase for Phase Examined per MOE
(weeks) ($) ($)

1. Training 2 11,938 28 426

2. Pilot Test 1 5,969 0 0

3. Field Exercise 3 17,908 73 245

4. Live Fire 6 35,815 36 995

5. Parachute Delivery 1 5,969 8 746
Demonstration

The MOE of interest in this illustration is to be examined during

the training phase so the fixed cost, Kf, is $426.00. The test design

calls for using the same number of individuals throughout the training

phase. Therefore, the variable cost, Kr, was derived by multiplying the

cost per man per week by the number of weeks required to complete the

training phase and then dividing the result by the number of MOE examined

during this phase. This process resulted in a value of $4.00 for K
r

The above methods for approximating budget constraints and sampling

costs are .ot necessarily being advocated for use by OTEA; they were used

here to provide a starting point for the demonstration. This being accom-

-F- -. -
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plished, it remains to select an appropriate function for U(s).

The first case to be considered is that of a linear utility func-

tion. The form of this function is

U(s) = as + b, O < s ~ 1

Consider Figure 4 below, by varying the values of the parameters a and b,

it is possible to represent U(s) by any negatively sloped straight line

which intersects the s-axis between zero and one. This provides the deci-

sion maker with a rich family of linear functions from which to choose.

The one chosen for this illustration is the one depicted in Figure 4.

u(s)

K

0 s

Figure 4. Linear Utility Function

The equation for tnis function is

U(s) = - K s + Kt = K (l-s)
tt t

Using this utility function and the budget constraint and sampling

cost previously derived, the objective function becomes
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U(en) K [1-(n')i 2 (n'+n) ] -Kf K r
n tf r

This objective function was used in the computer analysis, the results of

which are presented in Table 5. The economically optimal sample size is

73. This will reduce the magnitude of the prior standard deviation by a

factor of approximately four-tenths.

Table 5. Computer Analysis Using Linear Utility

Lower Upper Nl N2 U(Ni) U(N2)
Limit Limit

* 0.00 324.50 123.93 200.54 .253 .055

0.00 200.54 76.61 123.93 .314 .'53

. 0.00 123.93 47.33 76.61 .285 .314

47.33 123.93 76.61 94.66 .314 .301

47.33 94.66 65.38 76.61 .312 .314

65.38 94.66 76.61 83.43 .314 .311

65.38 83.43 72.19 76.61 .314 .314

65.38 76.61 69.79 72.19 .314 .314

69.79 76.61 72.19 74.20 .314 .314

69.79 74.20 71.79 72.19 .314 .314

71.79 74.20 72.19 73.80 .314 .314

71.79 73.80 72.19 73.40 .314 .314

72.19 73.80 72.60 73.40 .314 .314

This same analysis will now be conducted using two power function

utilities. The first will be defined by

"U(s) tK 0ls)/ SKt
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Using this utility, the objective function is

-(e ) = (l-s) i / Kt  Kf K n 0 < S 9 1

This function was entered into the computer program giving the results

shown in Table 6. As seen from this table, the economically optimal

0 ,sample size is 52. This 3 a smaller sample size than obtained by using

* . the linear utility function. This result is to be expected since this

power function gives more weight to larger values of s.

Table 6. Computer Analysis Using Power Function with c = 1/2

Lower Upper NI N2 U(NI) U(N2)
Limit Limit

0.00 324.50 123.93 200.54 .501 .259

0.00 200.54 76.61 123.93 .611 .501

0.00 123.93 47.33 76.61 .631 .611

0.00 76.61 29.28 47.33 .589 .631

29.28 76.61 47.33 58.56 .631 .631

47.33 76.61 58.56 65.38 .631 .625

47.33 65.38 54.15 58.56 .632 .631

47.33 58.56 51.74 34.15 .632 .632

47.53 54.15 49.73 51.74 .632 .632

49.73 54.15 51.74 52.14 .632 .632

51.74 54.15 52.14 53.74 .632 .632

51.74 5.74 52.14 53.34 .632 .632

51.74 53.34 52.14 52.94 .632 .632

51.74 52.94 52.14 52.54 .632 .632
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The second power function utility to be considered has the param-

eter c equal td 1.5. This function is shown in Figure 3. Since this par-

ticular function is not guaranteed to be unimodal over all n, the method

of subdividing the interval of uncertainty into a number of smaller inter-

vals was employed. The interval of uncertainty, based on the budget con-ll straint, is (0,00, 324.50). This interval was searched using subintervals

of length 20. The results are shown in Table 7. As can be seen from this

table, the optimal sample size is 83. Note that the utility of the ex

periment steadily increases until the optimal sample size is reached and

then steadily declines over the remaining va'lies of n. Thus, it is rea-

sonably certain that a sample of size 83 is, in fact, a global optimal.

Table 7. Results of Computer Analysis Using Power
Function Utility with c 1.5

Subinterval Optimal Sample Utility of

Size for Experiment
Subinterval

0 - 20 20 -.144
20 - 40 40 .004
40 - 60 60 .065
60 - 80 80 .083
80 - 100 83 .084
100 - 120 100 .076
120 - 140 120 .053
140 - 160 140 .019
160 - 180 160 .022
180 - 200 180 -.069
200 - 220 200 -.121
220 - 240 220 -.176
240 - 260 240 -.234

260 - 280 260 -.356
300 - 320 300 -.420



CHAPTER IV

CONCLUSIONS AND RECOMMENDATIONS

Conclusions

The procedures developed in this study have been structured around

Bayesian inference and decision theory. The demonstration of these pro-

cedures has been confined to instances where the prior distributions have

been developed using only objective prior data. This was done to show

that the procedures could be beneficial regardless of the strict limita-

tions imposed on the use of any subjective prior information. Considered

in this context, however, the analysis is not Bayesian in the purest

sense, nor would such an approach be appropriate when the use of subjec-

tive information is disallowed.

Nonetheless, it is felt that the inference approach presented in

Chapcer II represents a viable solution to the sample size determination

problem currently faced by OTEA test designers. Its major advantage over

the presently employed procedures is that it has been specifically designed

to address the problem of making statistically valid inferences regarding

the difference in two random variables.

The decision theoretic approach, described in Chapter III, provides

the decision maker witb a quantitative procedure for comparing the expected

results of an experiment to the cost of that experiment. If the decision

maker is willing to accept the concepts of utility theory, and to apply

them, this procedure will provide the economically optimal sample size.
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U4' Finally, should the limitations imposed on the use of subjective

information be relaxed, the methodology presented in this study could be

used in conducting a completely Bayesian analysis.

A Recommendations

I The greatest limitation to the methodology developed in this study

" I is that it is applicable only to the case of sizing an experiment for a

single MOE. The logical extension of this is to the case of multiple

MOE. There are at least two approaches to analyzing this case. One would

be to apply multivariate Bayesian statistical theory combined with multi-

dimensional nonlinear programming algorithms. A second approach would be

to view the money required to perform each of the experiments involved in

an operational test as a capital investment and the utility of each of

the experiments as the return on that investment. Formulated in this

S. manner the problem might be solved utilizing capital budgeting techniques.

If it is possible to extend the methodology to include multiple MOE, then

it may be possible to use it in multifactor experimental design problems.

Aside from extending the methodology, several other areas warrant

further investigation. First, is the assumption that the normal process

may be used as a reasonable model for a large number of operational test-

ing problems. Closely associated with this would be an investigation of

the variation in results when the sampling process is not normal.

As a final recommendation, it is suggested that the procedures out-

lined in this study be utilized in designing a number of operational

tests and that these results be compared to the results obtained using

the presently employed methods.
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APPENDIX I

LIGHTWEIGHT COMPANY MORTAR SYSTEM OT I TEST DATA

Gunner's Examination Times [13)

System

Test 81 mm LWCMS Difference in
Participant (sec) (sec) Performance

1 358.0 303.4 54.6

2 367.0 350.8 16.2

3 299.0 330.0 - 31.0

4 261.0 147.5 113.5

5 380.0 313.0 67.0

6 226.8 250.0 - 23.2

7 272.0 247.0 25.0

8 239.8 273.0 - 33.2

9 235.0 258.0 - 23.0

10 247.5 244.8 2.7

12 279. 242.7 36.4

12 303.0 234.2 68.8

13 240.9 250.7 - 9.8

14 279.0 296.9 - 17.9
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APPENDIX II

FORTRAN PROGRAM FOR THE GOLDEN SECTION SFARCH TECHNIQUE

PROGRAM MAIN(INPUTOUTPUT,TAPE5=INPUTTAPE6=OUTPUT)
C
C THIS PROGRAM PERFORMS A NONLINEAR,
C ONE-DIMENSIONAL SEARCH USING THE GOLDEN
C SECTION METHOD,
C
C
C LIST OF VARIABLES.
C
C AKT - TOTAL MONEY ALLOCATED TO TESTING
C THIS MOE (BUDGET CONSTRAINT).
C AKF - FIXED COST OF TESTING.
C AKR - VARIABLE COST OF TESTING,
C NP -- WEIGHT GIVEN TO PRIOR INFORMATION.
C XNP - TRANSFORM ON NP TO MAKE IT A
C REAL VARIABLE.

- C IP - INDICATOR VARIABLE USED TO DESIGNATE
C TYPE OF UTILITY FUNCTION.
C AB - SLOPE AND INTERCEPT OF LINEAR UTILITY
C FUNCTION.
C C - EXPONENT OF POWER UTILITY FUNCTION.
C K - COUNTER DESIGNATING NUMBER OF
C ITERATIONS USED IN THE SEARCH.
C SUBLIM - LOWER LIMIT ON THE INTERVAL OF

. C UNCERTAINTY.
C UPLIM - UPPER LIMIT ON THE INTERVAL OF
C UNCERTAINTY.
C XN1,XN2 - POINTS ON THE INTERVAL OF UNCERTAINTY
C BEING EXAMINE3.
C UEl - UTILITY OF EXPERIMENT OF SIZE
C XNI.
C UE2 - UTILITY OF EXPERIMENT OF SIZE
C XN2.
C ICHECK - VARIABLE USLD TO CHECK FOR
C TERMINATION,
C~C

DIMENSION SUBLIM{20),UPLIM(20),UEI(20),UE2(20),
*XNI(20) ,XN2(20,VP(2)
REAL MP(2)
INTEGER IANSKANSJANS

100 FORMAT(///*ENTER THE TOTAL AMOUNT OF MONEY WHICH '/
**YOU WISH TO ALLOCATE TO TESTING THIS MGE./)

S01 FORMAT(///*ENTER THE SET-UP AND REPLICATION COSTS IN*/
S* THAT ORDER.*,'l

102 FORMATI///*ENTER WEIGHT OF PRIOR INFORMATION./)
103 FORMAT(///*ENTER TYPE OF UTILITY FUNCTION TO BE USED*/

**(ENTER I FOR LINEAR AND 2 FOR POWER)**/)
104 FORMAT(///*ENTER SLOPE AND INTERCEPT, *,

**IN THAT ORDER*/)



105 FORMAT(///*ENTER EXPONENT.*/)
107 FORM1AT(A6)

~iI 200 FORMATEI2,5XF7.2,5XF7.2,5XF7.2,5XF7.2,5X,2F8.3)
201 FORMAT(///9X,*LOWER~t6X,*UPPER*,9X,*LIMIYT,

*3X9*U(N2)*)
202 FORMAT(///*IS THE OBJECTIVE FUNCTION UNIMODAL?*/)
203 FORMATf///*THE INTERVAL OF UNCERTAINTY IS (',*F~~v~~qF.2t)*/
204 FORMAT(//f*ENTER LOWER AND UPPER BOUNDS*,

*FOR SUBINTSRVAL.*/)
205 FORMA (f///#D YOU WISH TO SEARCH ANOTHER %s

**SUB3INTERVAL?*/)
DATA KANSf6HYES/

c
C ENTER THE BUDGET CONSTRAINT,
C

WRITE(6, £00)
REAO(5t*) AKI

C ENTER ESTIMATED COSTS,
C

WRITE(6, 10£)
REAO45v*) AKFAKR

C ENTER WEIGHT OF PRIOR INFORMATION.
C

WRITE (6v,102)
READ(5v*) NP
XNP=NP

C
C DETERMINE TYPE OF UTILITY FUNCTION TO BE USED.
C

WRITE (6, 10.3)
READ(59#) IP

C
C READ UTILITY FUNCTION PARAMETERS.

GO TO £0

C SET UPINITIAL INTERVAL OF UNCERTAINTY.

20KK
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C SEE IF THE FUNCTION IS UNItIODAL.
WRITE (6,20 2). OT~

C DETERMINE WHAT SUBINTERVAL IS TO BE SEARCHED.

WRITE(6,203) SUI3LIt(K)tUPLIM(K)
502 Kil

WRITE (6,204)
REAiI(5t*) SUBLIM(K),UPLIM(K)

C CALCULATE INITIAL VALUES FOR XNI AND XN2.
C501 XNi(K)=.381924*(UPLIM(K)-SUBLIM(K)) +SUBLIM(K)

XN2(K)=s615U(UPLIM(K)-SUBLIMIK))+SUBLIM (K)

WRITE (6,20 IA

C CALCULATE UTILITIES.

920 Ri=XNP/(XNP+XNi(K))
SI=SQRTIRI)

R2=XNP/(XNP+XN2(K))
S2=SQRTIR2)
IF(IP;EQ.1) GO TO 40
UEI(K)=(i. S)*CAK-KFAR (K()
UE2(K)=(1. 2)**ATAF-K*X2K
GOTO2

UE2(K)=A*S2+B-AKF-AKR*XN2 (K)
21 IF(XNi(K)eLE.XN2(K)) GO TO 30

Ai=XNI(K)
A2=XN2LK)
X Ni1(K)=A 2
XNZ (K)=Ai

c WRITE RESULTS.

30 WRITE(69200) KSUBLIM(K),UPLIM(K),XNI(K),XN2(K),
*UEi(K) ,UE2 (K)

C COMPARE UTILITIES.

IF(UEI(K).LE.,UE2(K)) GO TO 934
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C SET UP NEW INTERVAL OF UNCERTAINTY*

-> UPLItI(Kti)=XN2 (K)
SUBLIM (K+I)=SUBLIMI(K)
XN2(K+i)"XNI(K)
XNi(K~i)=UPLIM(K~i)-XN2 (K+1)+SUBLIM(K+i)
GO T0 944K934 ULM(+i ULI K
SUBLItI(K+i)=XNi(K)
XNi(Kfi)=XN2(K-)
XN2(K+1J=UPLIM(K4-I)-XNI (K+1)+SU8LIt1(K+i*.

C CHECK FOR TERMINATION.

944 ICHECK=SUBLIM(K)+2
IFIICHECK.GEUPLiHMK.,OR.K.G1.20' GO TO 930

GO TO 920
930 CONTINUE
C IF(IANS*EQ.KANS) GO TO 931

C SEE IF ANOTHER SUBINTERVAL IS TO BE SEARCHED.

WRITE (69205)
READ(5,107) JANS
IF(JANS.EQ.KANS) GO TO 502

931 CONTINUE
ST OP

END
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APPENDIX III

EXPLANATION OF NOTATION

Chapter I

mean of normal density function

2
a variance of normal density function

sample mean

2
s sample variance

f'(0) prio.r distribution of

f(yte) likelihood function for given e

f"(ojy) posterior distribution of

Chapter II

fN normal-gamma density function

2
h inverse of a

m' v' ,n' ,v' prior parameters for a normal-gamma density function

(these are interpreted on page 11)
II II t II

m ,v ,n ,v posterior parameters for a normal-gamma density

function (these are defined mathematically on page 12)

m,v,n,v parameters of a normal sampling distribution (these

are defined mathematically on page

fs(pIm,n/v,v) densit:y function for Student's t distribution

expected value of

variance of

prior variance of
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1' }4,:prior standard deviation of

Sprior mean value of

",, iposterior standard deviation

s ratio of the expected posterior standard deviation

to the prior standard deviation

posterior variance of

posterior mean value of

d" length of a (i-a) Bayesian prediction interval on

the posterior distribution

d' length of a (1-a) Bayesian prediction interval on

the prior distribution

Chapter III

K total money allocated to testing
t

Ks  total cost of sampling

K fixed cost of sampling
f

Kr variable cost of sampling

U(s) utility function for s

U(Ks) utility function for the cost of sampling

en experiment with'sample size of n

U(e n) utility function for an experiment of sample size n
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