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SUMMARY

This research addresses two related problems of
multivariate statistical analysis. First, the effects of a
multivariate time series on the MANOVA power function are
investigated through the use of an experimental design.
Second, a generalized procedure is developed for incorporating
the multivariate time series into the MANOVA power function
so that the effectiveness of ANOVA and MANOVA models in
evaluating command and control systems, on the basis of
powers of the tests, may be made.

In order to make the analysis possible, a procedure
to determine the power of MANOVA test was required. The
MANOVA power function is not known in a closed or usable
form; consequently, a Monte Carlo procedure was used to
determine the power of the MANOVA test. The maximum likeli-
hood form of the MANOVA test statistic was utilized due to
its ease of computation.?(“

Previous research has found the\following general
results to hold for the MANOVA power function:

1. Power is a decreasing function dfathe dimension

of the multiresponse. ;

2. Power is an increasing function of the size

departure from the null hypothesis. }

3. Power is an increasing function of sample size.

o i




#
E

TS —

viii

4. Power is an increasing function of the probability
of Type I error.
5. Power is an increasing function of -log |P|,
where P is the correlation matrix of the multi-
response.
An investigation of the effects of a multivariate time series
on the MANOVA power function would have little meaning
without simultaneously considering the other factors which

5 factorial

influence the power function. Two full 2
experiments, using the factors in 2-5 above and exponentially
decaying autocorrelated response vectors as factors, were
run and analyzed using ANOVA. The results verify statements
2-5 and indicate the MANOVA power is an increasing function
of the autocorrelation coefficient. In addition, many two
factor interactions were found to be significant indicating
an extremely complex interrelationship between the various
factors. '

The power of the MANOVA appears to be a decreasing
function of the dimension of the response, as in 1 above.
It was found that the dimension of the response could not be
separated from the other factors and thus the two experiments
were run with the dimension of the response, p, set at 2 and
3. There is a decrease in the power from p = 2 to p = 3,
with other factors held constant, lending support to the

hypothesis; however, there is no statistical evidence to

support the statement.

p s 4 ros Py (Y RRTI RO =SS EEREIER RSP TIPS T




To accomplish the second objective a procedure is

proposed which uses the MANOVA Monte Carlo procedure, for

comparing the effectiveness of the ANOVA with MANOVA for a
multivariate time series. An example of the use of this
procedure is given. A FORTRAN IV listing of the MANOVA

Monte Carlo power program is also included.




CHAPTER 1

INTRODUCTION

Background

Department of the Army Major Systems Acquisition Procedure

The acquisition of major defense systems by the
Department of Defense is accomplished through the use of a
well defined decision procedure with safeguards to prevent
the acquisition of unsatisfactory or unnecessary systems.

The procedure used by the Department of the Army closely
parallels that of the Department of Defense and is an
essential element of the Department of Defense acquisition
procedure. Measures are taken to insure that only those
systems for which a valid need exists are acquired by the
Department of Defense. The measures are discussed at some
length in various Department of Defense directives [7,22,23].

After the Army staff has determined a valid require-
ment exists for a proposed system, the system must pass
through three phases prior to full production. The first
phase is the conceptional development phase during which the
system hardware is in an experimental prototype configuration.
The second phase is the full scale development phase during

which the systems hardware is in an engineering development

prototype configuration. The third phase is the full scale




development phase during which the systems hardware is in a
production prototype configuration [7].

At each phase transition point the Secretary of
Defense may terminate the system, permit the system to proceed
to the next phase, or retain the system in its present phase
for remedial action [23]. To assist the Secretary of Defense
in these decisions a permanent advisory body, the Defense
Systems Acquisition Review Council (DSARC), is in being.

The DSARC provides information and recommendations to the
Secretary of Defense whenever program decisions become
necessary. A scheduled meeting of the DSARC precedes the
Secretary of Defense's decision concerning the disposition
of a system at each phase transition point.

Within the Department of the Army there exists a
permanent advisory body, the Army Systems Acquisition
Review Council (ASARC), which provides the DSARC with the
Army's recommendations at each phase in the acquisition
process. The ASARC is chaired by the Vice Chief of Staff of

the Army and has as its principal members the Commander

U. S. Army Material Command, the Commander U. S. Army

Training and Doctrine Command, the Chief of Research,
Development, and Acquisition, and various assistant
secretaries of the Army. Scheduled meetings of the ASARC
precede those of the DSARC.

Requirement for Testing

Normally three distinct Developmental Tests (DT) and
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Operational Tests (OT) are conducted for each major system.
One DT and OT is conducted prior to the three meetings of

the ASARC and DSARC. Results of the DT and OT at each phase

are reported directly to the ASARC for inclusion in its :
recommendations to the DSARC. The DT and OT are required to

be evaluated independently of each other [7].

DT is conducted to determine if the engineering design
and development is complete, to determine if design risks
have been minimized, and to determine if the system will
meet its specifications. OT is conducted to estimate the
system's military worth in comparison with competitor systems,
to determine its operational effectiveness and suitability
in its environment, and to determine if the system requires
modification [7]. This research will be concerned with OT
only.

Operational Testing

The U. S. Army Test and Evaluation Agency is desig-
nated as the agency responsible for OT on major defense
systems [5,6]. OT will emphasize the comparative evaluation
of the new system with existing systems and competitor
developmental systems. The OT agency is independent of the
developing/procuring and using organization. OT is accom-
plished using typical users/operators, crews, or units in as
realistic an operational environment as possible. OT is

conducted to provide the necessary data to estimate:

1. The military utility, operational effectiveness,




and operational suitability of the system.

2. The system's desirability, operational benefits,
and burdens from the user's viewpoint.

3. The need for modification of the system.

4. The adequacy of doctrine, organization, operating
techniques, tactics, and training for the system.

5. The adequacy of maintenance support for the system.

6. The systems performance in a countermeasures
environment.

Command and Control Systems

In recent years the U. S. Army has expended a great
deal of money and time to develop and deploy sophisticated
tactical command and control systems. Tactical command and

control systems currently under development include the

Tactical Operations System (TOS), a division level command

and control system; TSQ-73, an air defense command and control
system; and TACFIRE, air artillery fire control and fire
support command and control system.

Measures of effectiveness employed in the evaluation
of command and control systems vary; however, the measures
of effectiveness are rarely independent [58]. For instance,
the fraction of available time passed to subordinate echelons
and time required to prepare staff actions, two possible
measures of effectiveness, are highly correlated [58].

Both analysis of variance (ANOVA) and multivariate

analysis of variance (MANOVA) appear to be appropriate
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statistical methods to be used for analysis of command and
control experimental data. Recent research has developed a
methodology for determining which statistical method, or
combination of methods, is most appropriate for a particular
system [16]. This research has not, however, considered that
in addition to the various measures being correlated, that
in the case of computer assisted systems they may also
constitute a multivariate time series. A promising area of
research appears to exist in developing a methodology for
identifying, analyzing, and incorporating this additional
information into the methodology developed by Burnette for
determining the appropriateness and effectiveness of ANOVA
and MANOVA in the analysis of command and control systems
[16].

Objective, Procedure and Scope

The primary objective of this research is to investi-
gate the effects of a multivariate time series on the MANOVA
power function and develop a methodology for incorporating
time series information into the MANOVA power generator
previously developed by Burnette [16]. Using the methodology
developed by Burnetfe for comparing the effectiveness of
the ANOVA and MANOVA the methodology will be demonstrated.

The scope of this research will be limited by four
assumptions. First, due to the standard scenarios used in
OT, only the fixed effects model of the ANOVA and MANOVA will

be considered appropriate. Second, equal cell sample sizes
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only will be considered appropriate. Third, due to the

high cost and time factor in training more than one command

and staff group to operate each alternative command and

contreol system, operators of the alternative system will not

be considered a factor. Fourth, for practical reasons only

1 D TR TS

stationary multivariate time series will be considered. To
limit the computer programming involved only two factor
completely crossed designs will be considered. In addition,
only those elements of ANOVA necessary to demonstrate the
methodology will be reviewed. Burnette has an excellent
discussion of the ANOVA model if additional information is

required.




CHAPTER I1I

E | REVIEW OF APPLICABLE STATISTICAL
: RESULTS AND TECHNIQUES |

N T T Y

Introduction

Falaile 4 e K
e

This chapter is a brief review of statistical

‘? ‘E results and techniques necessary to develop a methodology

;3 for use in comparing the applicability of ANOVA with MANOVA.

g_ i - The essential elements of time series analysis necessary to

gg ? incorporate this information into the MANOVA power function

ﬁ; { k will also be reviewed.

b

é Univariate Analysis of Variance

:~ £ The appropriate univariate statistical model for

9' ; comparing several systems is analysis of variance (ANOVA).

ié : The model and assumptions for the two-factor case will be
reviewed. These results may be easily extended to the

5: é general case. Only completely crossed designs and fixed-

effects models will be considered.

E | Model and Required Assumptions

The two-factor fixed-effects ANOVA model is

- e A A A O G S S B T N T A HPETTIR AONCIIORIR TR PRI W O 0 SRR TV T o T i " e < < —
L v——— = s -




p is the mean effect common to all observations, oy is the 3
effect due to level i of factor A, Bj is the effect Que to

level j of factor B. y.. is the effect due to the inter-

3 ij

b3 . action of level i of factor A and level j of factor B.

? eijk is the effect due to random error in the k th observa-

bt g i
K - tion with factor A at level i and factor B at level j [34].

The following assumptions are necessary for estimation,

! inference and hypothesis testing.

a b
P ;s = 0= % By (2.2)
g L j=1 J
‘,é. a
F | ifl %5 =03 =1, + B (2.3) |
% b ; |
% jfl 55 = 01=1,.45 0 (2.4)
; .
;
i eijk are distributed independently N(O,oz) (2.5}
1




Hypothesis Testing

Appropriate hypotheses we may want to test include:

H No effect due to factor A or a; = SgE. By S5 ERGRR e

10°
against

H Not HlO

13

.
ATV R T ST

Hy,: No effect due to factor B or Bj Wil b 5% b0 B

against
# HZI: Not Hzo
- Hzo: No effect due to interaction or Yij * :
?l RS TN
2 g >
t : F W CEPRAGE
E | }
E | . against ]
i H31 = Not H30 :

The ANOVA test procedure consists of partitioning the
total variation in the observations into the contributions i

due to main effects, the interaction, and the error component.

A i S e i
I . NN S T T TR S et 1

E For the two factor model the partitioning is: i
: ] E
E ;
E | ,

g i - i
? % SSp = 8§, + SSp + SS,5 *+ SSp. (2.6) g
i
E | §
g ; Methods for determining the sums of squares are well known {
i and will not be elaborated on here [34]. ?
. The test statistic for use in the ANOVA model is ;
f' ' based upon the F distribution. The null hypothesis, say g
? ”10‘ no effect due to factor A, would be rejected if: i
l‘ %

SRS p— p—— o— —— i : - o~ e e
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SSA/(a—l)
Fo = 557861 * Fa,a-1,ab(n-1) (2.7)

where Fa,a-l,ab(n-l) is the upper (1-a) percentage point of
the F distribution with (a-1) numerator degrees of freedom

and ab(n-1) denominator degrees of freedom [34]. Similar

test statistics can be constructed for the other hypotheses.
When the ANOVA model is used the test for interaction

effect should be made first. If the interactions are not

o

found to be significant then we may test the hypothesis on

NRSDp—————

the main effects. However, if we reject the hypothesis of
no interaction effect then tests on main effects may have

little meaning. For a further discussion, see Press [43]. :

Power of the Analysis of Variance

When constructing hypotheses there are two probability
measures we are concerned with. First, the probability of
rejecting the hypothesis given it is true; or a. Second,
the probability of rejecting the hypothesis given it is
false, or the power of the test, (1-B). It has been shown
that the alternative hypothesis is distributed as a non-
central F distribution. Pearson and Hartley [34] have
constructed charts which plot the probability of type II

error (l-power) for various V1, V2, o, and parameter ¢,

where for the case of H10
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V1l = a-1
V2 = ab(n-1)
2.8)
SRR (
?° = =2
a
n -k alz
i i=1
Zo2
a
L Giz
Since 02 is seldom known the ratio of =1 which you
o}

desire to detect is normally used.

Multivariate Analysis of Variance

Model and Required Assumptions

The appropriate multivariate model for comparing
several multiresponse systems is the multivariate analysis
of variance (MANOVA). The model and assumptions for the
two-factor case will be reviewed and may easily be extended
to the general case. Only the fixed-effects model will be
considered.

The two-factor fixed-effects model is

Yigk = B *85 * By * Y35 * 844y (2.9)

(PX1) (PX1) (PX1) (PX1) (PX1) (PX1)

R i Pt A S g U RO BB S T T !




The vector p is the effect common to all observations.

~

The

vector a, is the effect due to level i of factor A, the

vector §j is the effect due to level j of factor B, and

the vector Iij is the interaction effect due to level i of
}; : factor A and level j of factor B. The vector eijk is the

effect due to the random error with factor A at level i and
factor B at level j on the k th observation [46,52].
Several assumptions are necessary for estimation,
inference, and hypothesis testing. The following assumptions

are made concerning the effects due to levels of factors

and interactions:

eijk are independently distributed N(¢,Z), I > ¢.

Hypothesis Testing

The hypotheses we might want to test include:
- Hloz No effect due to factor A or a; = ¢ L I8

against

Hllz Not HlO
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HZO: No effect due to factor B or Bj =¢j=1,

against
HZI: Not HZO
and
Hyp: No effect due to the interaction or Yij © ¢
i =1 o
=4, » b
against
H31: Not H30

There are three widely used MANOVA hypothesis testing
criteria. They are the likelihood ratio criterion, the
trace criterion, and the largest characteristic root [44].
The likelihood ratio criterion will be used due to its
ease of computation and attendant power considerations [54].
The likelihood ratio criterion requires, for the two-factor
case, that the dimension of the response, p < ab(n-1) [46].

The MANOVA hypothesis testing procedure consists of
partitioning the total variation of the observations in a
manner similar to the ANOVA partitioning. Specific computa-
tional formulae will not be given; however, relevant matrices
will be defined.

E --matrix of error sums of squares and cross products.

Hl--matrix of factor A sums of squares and cross

products.

H2--matrix of factor B sums of squares and cross

products.




H3--matrix of interaction sums of squares and cross
products.

The likelihood ratio test for HlO:

reject HlO 1

|E]

~

Tm-l—l- < Constant

~ ~

|E|
+

2

~

" } = Q{Up,ql,n}

where p is the dimension of the response, q = a-1, and
n = ab(n-1). Thus, we reject H10 if the test statistic 1is
less than Up’ ar, e The values of U are determined using
a second order x2 approximation developed by Box [10,46].
The test statistics for H20 and H30 are found similarly.
The hypothesis of no interaction effect is conducted
first. If we fail to reject this hypothesis, we would then
test the hypotheses on the main effects. If we reject the
hypothesis of no interaction effects, we must use other
techniques to determine if the main effects are significant
[46].

Power of the Multivariate Analysis of Variance

The power function of the MANOVA test criteria is not

available in closed form. Recently, the noncentral
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distributions of the largest characteristic root and likeli-

hood ratio statistics have been studied; however, to date
research has not yielded a useable power function for the
MANOVA tests. Roy, Mikhail [53], and others have shown that
the MANOVA power is a monotonically increasing function of
the noncentrality parameters of the criteria distribution
[53]. Gnanadisikan [54], using Monte Carlo methods, showed
that the MANOVA test power is monotonically decreasing with
increasing dimension of the response, p, and is monotoni-
cally increasing with increasing probability of type I

error. The lack of a usable power function has resulted in

most research being accomplished via Monte Carlo simulations.

Correlation Analysis

Simple Correlation

If multivariate statistical analysis is to be
appropriate it is necessary to have at least two measures
which are significantly correlated. The most elementary
expression of correlative structure involves the simple
correlation coefficient, p. Let Y1 Ya: cees Yp be n
independent observations of a p-dimensional random vector Y.
The covariance between the i th and j th component of Y,

Yi and Yj is

055 = coveyl,vdy = erori-evty (v -evd)) (2.14)

O
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where o,, is the variance of Y'. The pxp matrix of

population covariances is defined as
I = (cij) (2.15)

The correlation coefficient between Y' and Y) is defined as

C. .

= 1) -1 < y B3
P L Py % (2.16)
33 e wgh

& Bl §

The pxp matrix of population correlation coefficients is

defined as

) [2.17)

The sample covariance matrix, S, and the sample

~

correlation matrix, R, are found by replacing the population

~

covariances and correlations with their maximum likelihood

estimators. Thus, the sample correlation coefficient between

Yi and Yj is

Ss
o 1) = A Rl S |
Tij (S.. 5.2 T (2.18)
e St

where Sij is the maximum likelihood estimator of cij'

Fisher has shown that under the assumption of joint

normality the transformation




3 -1
Z tanh rij

produces an asymptotic normal variate with mean

Een. .
q % 1/2 log (y—5-2)
ij

and variance

Var (Z) = N§3

when N, the number of observations, becomes large.

Using the Z-transform it is possible to test

against
The hypothesis is rejected if

lZ-qol /N-3 Zy/2 (2.12)

where A is the z-transform of r = o and Zm/2 is the upper

100 (1-a/2) percentage point of the standard normal
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distribution [44].

Multiple Correlation

For a p-dimensional response vector the multiple
correlation coefficient, Pi’ of one response component, Pi’
with a linear combination of the other P-1 response

components is defined as

Pi = max corr (yi,g'X) (2.23)
where a is a P-1 dimensional contrast vector and X is the
vector of the other P-1 response variables. Pi is the
largest possible correlation between Yi and any linear
combination of the remaining P-1 response variables. The
sample multiple correlation coefficient may be determined
from either the sample correlation matrix or the sample
covariance matrix. To find the multiple correlation of

Yi, Ri, rearrange the appropriate matrix by replacing the

1st th

response with the i response and partition the matrix.
When using the sample covariance matrix the partitioning is

as follows

8 S12 (2.24)
512 S22

where S11 is now Sii’ §22 is the P-1 covariance matrix of

the remaining response components, and S12 i$ the P-1 vector

L
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of sample correlations between response i and the other P-1
response components. With the matrix so partitioned the

multiple correlation coefficient, R;, is defined as

-1

Ty s
3 -3 - is73g o)
R = R] T (2.25)

The appropriate hypothesis to determine if v g

independent of the remaining response components is to test

against

The hypothesis would be rejected if

Rf (n-p)

s F . . (2.26)
l—Rl? (p-1) a,p-1,n-p

where n is the number of observations, p is the dimension of
the response, and F is the upper 100 (1-a) percentage point
of the F distribution [46].

Independence of K Variates

To determine if a set of k multivariate normal




response variates are independent can be accomplished by

testing

against

where P is the k x k population correlation matrix and I is
the k x k identity matrix. The null hypothesis is rejected
if

2 2k+5 2
o Bttt ) log |R| > Xy ,1/2 k (k-1) L2280

where N is the number of independent observations, R is the
k x k sample correlation matrix, and XZ is the upper-tail XZ
distribution [44]. This test is appropriate prior to any
multivariate analysis.

Independence of k sets of Variates

In addition to determining if a set of k responses
are independent, it wili also be of interest to determine
if k sets of multivariate normal variates are mutually

independent. If the jth of the kth

sets contains Pj

variates, then the gross covariance matrix may be partitioned

into submatrices zij of dimension Pi X Pj‘ The appropriate
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. hypothesis to test is

Hy : Eij =8 for L1919
against

3 ‘ Hy : Eij # ¢ & 5P
For N independent observations from a multivariate normal
population, compute R, the sample correlation matrix, and

partition as above. To test H, use the test statistic

"“Ti_ﬁ,‘,‘w’: :&’,‘-‘ TR
-

4 0
i .
ﬁ v - IR (2.28)
£ = ; =
o IR11 TR o TRyl
?i It has been shown the statistic
| 53
B
:
ke, 2 N-1 2
&= T L;TT;L log ¥ ~ xa,f (2.29)
‘ where
(25;,+3S,)
B LS s Y (2.30)
L TIEN-IY
E I . £=35,/2
. k g
i S, = (2 Pi)J . X pg R 7 (2.31)
J i=1 k=1

e
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%

5 A . 2 2
H would be rejected if ; Xa, £ [10,44].

1 Stationary Multivariate Time Series

Multivariate Time Series

= TE T

When more than one measure of a time-varying process
} is required to properly describe its behavior, then the

process is called a multivariate (vector, multidimensional)
time series. Thus, the position or state of the process at
each instant of time can be represented by a vector of time

P dependent measurements

X, (t)

.
.

Xp(t)

only those multivariate time series for which the components
are univariate time series will be considered. This
restriction appears to have little effect on the current
investigation since it is reasonable to expect each component,
€ or subset of the components, to exhibit this characteristic.

Univariate Stationary Time Series

fi ‘ A stochastic process is said to be strictly stationary

I A A AP
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P(X(t1+1)ssl, Sy X(tn+r)ssn) =

P(X(tl)esl, P, X(tn)esn) (2.52)

for all t; <...<t , real events S1s oo Sn’ and T,-®<T<®,
Note that the distributions depend on the relative time
separations of the random variables and not their absolute
time locations.

When the mean and variance of the random variables

exist, it is easily established that stationarity implies
= = o< t<w
Ex(t) Ex(O) m t {(2.33)
and
EX(t+T1)x(t) = EX(t)x(0) = C(t) -<t <o (2.34)
Thus, the mean values are constant in time and the covariances
depend on the time displacement t, but not on t. The
function C(tr) is called the autocovariance function.
If condition (2.32) is discarded and we assume only
that the random variables of the process have the property

Var x(t) = C(U) € » (£.35)

and satisfy properties (2.33) and (2.34), then the process is
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said to be weakly stationary. Since the joint multivariate
normal distributions of a Gaussian process, sometimes called
a normal process, depend only on the mean vector and
covariance matrix of the random variables and these functions
have properties (2.33) and (2.34), the joint distributions
will have property (2.32). Thus, stationarity and weak
stationarity are equivalent for normal processes [41].

Identification of Time Series

There are a number of statistical tests available to
determine if a set of time indexed observations constitute
a significant autoregressive process or are pure white
noise [30]. Perhaps the simplest and most commonly used
procedure is periodogram analysis. Let

(av coSAt * bt sin xvt) + e (2.36)

t

where a bv’ and xvare real constants with 0 < Ay <

V,
and ey is pure white noise. We desire to detect the periods
2n/Av that have been masked by the random disturbances e,.

t
For this purpose the following statistic has been proposed.

n
I(A) = e I X, . %_-FAZ()\) + %-ﬂ- B2 (2.37)

where

5 S T AT P D TP ES
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n

A()) = 5 L Xg COs tA (2.38)
t=1
n

BV = y= I X, sin A (2.39)
t=

In(x) is calied the periodogram and is suggested by Fourier
analysis treating the time series as if it were just the
undisturbed trigometric sum.

R. A. Fisher developed a test procedure to determine
the significance of the periods of the periodogram. Fisher's
null hypothesis is that the process has no period, that is
Xe = €4 and the e's are distributed normally with unknown

- mean m and variance 02.

Let the number of observed values be odd, say n = 2m+l,
and consider the m values of the periodogram at points
Lr = 2nr/(2m+1), r=1, ..., m. Due to the orthogonality of

the trigometric coefficients (2.38) and (2.39), the

stochastic variables

A(Lr), Ti= 0k, viees- M
B(Lr)’ o L BN

are 2m independent normal variables with mean zero and

: 2
variance ¢ . Hence

2 2
Sr & A (Lr)+B (Lr)
;7' 2

g

T® 3, ssur B (2.40)

f
&

e Al AN,

e A T
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are independent Xz—variables. Define 3

max Si’ s [ N (0 (s |
g = (2.41)
(Si+Sz+...+Sm)

s i

) where the values of Si are computed using (2.40). The

distribution of g under the null hypotheses is

P(g>x) = m(1-x)™ 1 - ﬂiglll (1-2"1 + ,%
S LS R T (2.42) |

B g where the summation should be extended as lcng as the terms
in the brackets are positive. The null hypothesis, no
period present is rejected if g > gp, where gp is some
appropriate percentile of the distribution given by (2.42)
[30].

Parameterization and Estimation of Multivariate Time Series

Once it has been determined that a time series is not
only noise, it is important to determine the parameters
which fully describe the system. For a discrete time series

the system is adequately described by the matrix

Cl,l(T) Cl’ch) LU Cl’p(T)
C(T) = CZ,I(T) CZ,Z(T) R Cz’p(‘t) (2-43)

Cp,1(1) Cp,2(t) +oo Cy (1) ?

P ST “%m’mmwpm»,

A

- —
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‘?i f where ij(r) is the auto-covariance of the jth component
;5 ' and Cjk(T) is the cross-covariance of the jth and kth
E;; ; components. C(t) = [Cj,k(T)] is a positive definite matrix
f | [51].
%%, ! For the purpose of estimation usually at least 50
i; observations are necessary. In addition, for useful results |
;éi_ only the first K < N/4 autocovariance and crosscovariance
i{ coefficients are useful [38]. The theoretical autocorrelation
i for a p-dimensional multivariate time series is

b ! BT e - I
Ci; (1) = ELCX; (£)-1w) (X (t+1)-1) ] A e

The theoretical autocorrelation function is never known with
certainty and must be estimated. A satisfactory estimate of
Cii(r) is the sample autocorrelation function.

N-t

G (1) = = 1 (xy () Gy  (t+T))T
ol e ds P

=0, 1, (2.44)

where N is the number of observations, i is the component of
time time series, and 1 is the lag. The crosscorrelation

function may be estimated as follows

; N-

150 = g T G (8 O (ev)) (2.45)
T =08y
it
i:j_<__p




where N is the number of observations, i and j are the
components, and t is the lag.

Within the literature there are a number of statistical
tests available for the analysis of multivariate time series.
For example, test statistics similar to (2.19), simple '
correlation, and (2.26), multiple correlation, may be

constructed. However, these tests are based on spectral

distributions that are specified in the frequency domain and

are not particularly relevant to the current development.
If the reader is interested, an excellent discussion is

contained in [41].

Generation of Multivariate Time Series

Generation of Univariate Normal Random Variates

To investigate the MANOVA power function in the
presence of a multivariate time series it will be necessary
to generate a multivariate time series. In order to
generate these time series we require a procedure to generate
independent univariate normal deviates. A number of
procedures are available, however, the method proposed by
Box and Muller appears to be the most efficient [45]. Let
Uj and U,

I+l
distribution; these deviates can be obtained from any valid

be independent deviates from a uniform (0,1)

uniform deviate generator. To generate the N(u,oz) variates

the uniform deviates are transformed as follows:




u+(-202 log Uj)l/2 cos(Znt+1) (2.46)

TR u+(-20% log Uj)l/2 sin(2nlj, ;) (2.47)

Xj and Xj+1 will be independent variates from N(u,oz) {131,

» ,’,‘:—'4‘: P

LAl WY
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Generation of Multivariate Time Series

There are two specific cases under which we may
desire to generate multivariate time series. First, it may
be desired to generate a multivariate time series based on
a subjective estimate of the autoregression of X, on Xeo1-
This may occur when insufficient observations are available
to accurately determine the autocorrelation and cross-
correlation structure of the response but it is felt the
structure does exist. Second, sufficient observations are
available and all parameters have been determined. Each
procedure will be developed below.

When only a subjective estimate of the autoregressive
structure of the time series is available a rather simple
procedure may be developed for generating the time series.

In order to generate p-dimensional random vectors from the
multivariate normal population N(u,Z) we use a fundamental
theorem of multivariate analysis. If (Zl, ZZ’ o Zp) are

p independent observations from N(0,1), then the p-dimensional

vector, X from N(u,Z) may be represented as




where C is a unique lower triangular matrix satisfying

(2.49).

(2.49)

The matrix C may be computed by the routine reported by
Scheuer and Stoller [50].

We may generate autocorrelated vectors, each with the
same autoregressive structure and exponential decay, by a

simple change to the above procedure. For the univariate

case it is known that exponential smoothing is based on the

recursive relationship

Z{ = AZ{ g+ (1-0)Z, 0<x<l (2.50)
where Z, are mutually independent variables with mean zero
and variance 02. We may apply (2.50) to each component of
Z{ to obtain an autocorrelated vector time series. Thus, the

~

procedure is as follows:

Compute the C matrix.
Generate p independent variates from N(0,1) and
designate Zy-

Apply (2.48) to the above to get the 15t vector.
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4. Generate P independent variates from N(0,1) and
designate Zt’ o Rl
5. Apply (2.50) to each component of Zy and Zt-l to

get the tth

observation, Zi.

6. Repeat steps 2-5 until the desired number of

observations have been generated.

When sufficient information is available to estimate
all necessary information to fully describe the time series
a different approach may be used. We have shown that a
multivariate time series is adequately described by

C(t) (2.43). It is possible to construct a correlation matrix

to fully describe the first k observations of a discrete

multivariate time series as follows:

(2.51) i
P 1 s (o e 1 2 a :
P t 0 0 0 k it
0 1 plZ(O) v olp(O) sl °11(k) plz(k) s plp(k)
2 0 Looo o 0pp(0) wuv oy (k) ppy(K) wun pyp(K)
p 0 ;
1 k 2% 0 0
912( ) plp( )
2 k 1 0
; : 3 sz( )
P k X 1
L_ -
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J(T)

component at lag T.

where t is the time index, p is the component, and p,

is the correlation of the ith and jth

The k observations from the multivariate time series may

then be generated as follows:

1. Compute the matrix C such that C C” = I where

z is given by (2.51}).
2. Generate kp independent variates from N(0,1).
Apply (2.48) and separate the components to form
the multivariate time series.

These two procedures will be of great utility in studying

the effects of a multivariate time series on the MANOVA

power function.
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CHAPTER III

MANOVA POWER GENERATION

Introduction

To perform a meaningful analysis, we require a
procedure which will enable us to obtain the power of the
MANOVA test in a form useful to us in operational testing.
Previous research has addressed this problem and only those
points necessary for an adequate development will be reviewed.
If further information is desired an excellent development is

presented in [16].

MANOVA Power Criteria

Under the usual MANOVA assumptions we would be

interested in determining the power of the test,

P {Reject Ho | Ho is false} , (3.1)

in terms of the hypothesis we are testing. As in the case of
the ANOVA (2.8), the MANOVA power function appears to be
directly related to the departures you desire to detect.
Three useful forms of the departures have been proposed [16].
The departures may be specified in either euclidean
norm, supremum norm, or individual component departures.

Thus, the euclidean norm is




a (a})z a (GE)Z a (af)z
D = s L ey X E —E~——|‘ (3.2)
i=1 %11 " i=1 922 i=1 %pp

j th

where a% is the departure of the i level of factor A on

component j. The Supremum norm is
(a))? :
max = . (3.3)
}- d=1 i3
If individual component departures are to be specified we

would desire to detect

(ad)?

(3.4)
i=1 %jj

where the other p-1 component departures are set at levels
from the distribution uniform (0, Dj/R) where R = 1, 2, ..+,

to be selected.

Monte Carlo Power Generation

A Monte Carlo approach to determining the power of the
MANOVA appears appropriate and necessary since the MANOVA
power function is not available in a usable form. Our
general approach will be to generate random observations
which satisfy the MANOVA model, the multivariate time series,
and the size and type component departures we desire to
detect. Once we generate the observations, we compute the

MANOVA test to determine whether to reject the null hypothesis
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and record the results. We repeat this procedure a large
number of times and the power of the test is the ratio of
| the number of times we rejected the null hypothesis to the
; total number of tests conducted.

In addition to the usual MANOVA calculations, with
sample size n, and component departures we desire to detect,
we must be able to accomplish the following:

1. Randomly assign the p component departures in

' such a manner that they satisfy the MANOVA power

criteria we desire to use.

2. For each j =1, ..., p randomly assign the a

components, aJ, for each Dj such that
a (al)? TSR

z - = D, and L ui = 0.

=1 %5 J i=1

i

[ : 3. Obtain an estimate of the response correlation

structure in the form of a pxp correlation matrix.
4. Generate a p-dimensional multivariate time series 3
of error vectors.
Procedures to accomplish items 1 through 3 are covered in
detail by Burnette [16]. Item 4 has been previously

discussed in Chapter II.

MANOVA Power Generation Procedure

In order to simplify our computations, we will use

a standardization transformation on all responses. This

transformation is:
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P § 00 o
3 J_ J
yJ - X__E_TTZ (3.5)
B For original y distributed N(u,Z), the transformed y will

be distributed N(¢,P), where P is the population correlation
matrix. It should be noted at this point that the MANOVA
test procedure requires the population correlation matrix

and must be estimated from the transformed observations.

The observations will be generated such that they compose a

multivariate time series. This transformation will greatly

|
-
5.

:

¢
-

:
!

simplify the MANOVA power calculations and permit us to
express the component departures in standardized units of
component variances of 1.
The procedure we will use to determine the power of
the MANOVA test for a given probability of type I error, a,
sample size, n, is as follows:
1. Select the MANOVA model, for example, a completely
crossed, two factor, p-dimensional MANOVA model.
2. Estimate the multivariate time series parameters.
3. Select the hypothesis to be tested, for example,
no effect due to factor A.
4. Select the size and type component departures we
desire to detect.
5. Select the number of Monte Carlo iterations, NR,

we desire to run.

6. For each Monte Carlo iteration, randomly assign

| e -
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the component departures and component departure
levels, as appropriate.

7. For each model index combination, for example,
the two-factor MANOVA model above, generate an
error vector Eijk from the multivariate time
series and apply the model with all effects

levels zero except the effect being tested.

8. Compute the MANOVA test statistic, compare it with

the critical value of the test, and record the
results,
f 9. Repeat steps 5-8 NR-1 times.

¢ . 10. Compute the power of the MANOVA test:

power =

number of hypothesis rejected
NR

Previous experience has shown that NR 500 is adequate and
will be used unless otherwise specified.

A complete FORTRAN IV program with necessary
subroutines for use on the CDC CYBER 74 appears in Appendix A.
The program is a conversion of the program developed and
validated by Burnette for use on the UNIVAC 1108 [16]. The
program has been modified to generate autocorrelated error
vectors based on a subjective estimate of the autocorrelation
structure. The program may be easily modified to generate
error vectors when there is sufficient information to

i totally describe the multivariate time series.
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CHAPTER IV

INVESTIGATION OF THE EFFECTS OF A MULTIVARIATE
TIME SERIES ON THE MANOVA POWER FUNCTION

Introduction

We turn our attention now to a primary objective of
this research; that is, investigating the effects of a multi-
variate time series on the MANOVA power function. In
Chapters II and III we developed the procedures necessary to
determine the power of the MANOVA test criteria for a given
set of parameters. We have previously noted that the MANOVA
power function is also dependent upon a number of other
factors and any investigation would not be complete without
simultaneously considering all parameters which affect the
MANOVA power function.

Those factors which have been found are listed below
for easy reference. They are:

1. Power is a decreasing function of the dimension
of the multiresponse.

2. Power is an increasing function of the size
departure from the null hypothesis.

3. Power is an increasing function of sample size.

4. Power is an increasing function of the probability

of Type I error.

s et st e
o - . " TR T I
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5. Power is an increasing function of -log ]E|,
where P is the correlation matrix of the multiresponse.
We desire to construct an experiment which will enable us
to simultaneously consider all factors which affect the
MANOVA power function.

Analysis of Effects

It was decided that an appropriate method to simul-

taneously investigate the effects would be to use a

E factorial design and analyze the results by ANOVA. Prior
E% to selecting the design, either a Zk or a Sk, it was
£ | X necessary to determine if the main effects were linear or
of some higher order. Thus, six individual experiments were
' conducted to determine the nature of the main effects. In
each experiment the effect under investigation was varied
over the range of interest while the other effects were held
constant. In each case there appears to be a linear trend
in the main effect, with the exception of the response
dimension, and thus, it was felt that a Zk experimental
design would be appropriate.

The effect of the dimension of the response was
investigated by the procedure described above. We found that

the dimension of the response could not be separated from

the other factors and thus could not be included as a factor.

R It was then decided to run two full 2S factorial experiments

with the dimension of the response, p, set at 2 in the first

and 3 in the second. By this procedure we hoped to be able
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to determine visually if the power of the MANOVA did decrease
with the dimension of the response.

The experimental design is shown in Tables 1 and
2 with the high and low levels of each factor in each
experiment. The eculidean norm was specified in the MANO A
power generator and was adjusted so that the norm for P = 2
and P = 3 were of the same relative magnitude.

The experiments were run on the CDC Cyber 74 and
the complete ANOVA for each are in Tables 3 and 4. The
experiment was not replicated since the number of replications
of the MANOVA power generator, NR = 500, results in little
or no variation in the responses. The effects in each
experiment were plotted on normal probability paper, Figures
1 and 2, in accordance with the procedure outlined by
Montgomery in [43]. If the fourth and fifth order inter-
actions fall along that portion of the plot where the effects

may be represented by a straight line then ANOVA is appropriate. ?

P —

In both experiments this requirement is met and the error
sums of squares is estimated using the fourth and fifth order
interactions. The results of the ANOVA are given in Tables
3 and 4;

The analysis of both experimental designs verify that
all main effects are highly significant. We also note that

the results also indicate a number of second-order inter-

actions are significant while no third-order interactions are !

significant. However, if we examine the percentage of total
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Table 1. Experimental Design #1
Factor Response Sample Departure Probability Auto- Value
Level Dinensien - Size to of Type Correlation of
detect I Error Coefficient |[P]
p n D, a A |P|
Low 2 4 5 05 2 .4
High 2 6 1.0 .10 .9 -8
Table 2. Experimental Design #2
Factor Response Sample Departure Probability Auto-. Value
Level Dimension Size o of_Type Correlation . of
Detect I Error Coefficient |P]
p n D, a A [P]
Low 3 4 .61 .05 B | .4
High 3 6 1.225 .10 9 .8

o T—— = e e ——— it




Table 3. Complete ANOVA for Experiment 1

Probability of Type I

*
error, o 202.5 14.25

=

Autocorrelation Coefficient,
A

o 1 S ¥

1,430.4 100.63"
£.1  0.29

Norm to Detect, D 1,026.5 135.58"

2

a X D2 45.8 5.22

A x D 234.3  16.48"

2

o X A X D2 ol 0.22

Sample Size, n I46.5  52.52"

6.1 0.43

® %
1837 10.81

1
1
1
1
1
1
1
1
!}
1

g XX Xn 5.8 0.41

%%
D2 X n RS 8ead
a X D2 X1 il 0.01
A X D2 X : Z.18

ThT value of the Determinant, 159.56"
- y

a x |P| ; 3.72
A x [P 20.21"
& XX % [P 1.46
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W Table 3 (concluded)

Source df SS MS F

)

i‘ D, x |1~>I 1 246.0 246.0 17.31

13

a x D, x |P| 1 5.5 5.5 0.39

3 A x D, x |P| 1 18.0 18.0 1.26

* %

o n x |P| 3 92.4 92.4 6.50

= e x Nx |P] 1 3.8 3.8 0.27

Axnx |P| 1 52.0 52.0 3.66

2 &)

r D, X n x |P| 1 3.6 3.6 0.25

Error 6 85.3 14,2
*Indicates significance at the l-percent level.
® %
Indicates significance at the 5-percent level.

;‘
i
5
|
i
?'




e Table 4. Complete ANOVA for Experiment 2

Source daf SS MS F

a 1 948.7  948.7  209.20"

A 1 4,554.0 4,554.0 1,004.25"

E ax A £ s e
f% D, 1 2,842.6 2,842.6  626.85"
3 ax D, g T T e
; A x D 1 s4).6 - 5446 191

1 29, 5.10

n R A I R T

@ xn 1 72. 72.9 16.08"
1 94.30"

2.21

5 % Al 91. 91.2 20.11"

0w S

16.9 Sl

14.9 3.28

1,811.7  309.52"

13.9 3.07

*
A X |g| 348.1 348.1 78.76
2.7 0.60

D, x |P| 228,20 ° AME 28.26"
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. Table 4 (concluded)
Source df SS MS Fo
& @ x D, x |P] 1 6.7 6.7 1.48
A x D, x |P| 1 2.5 2.5 0.55
b * %
& n x |E| 1 40.8 40.8 9.00
@ xnx |P| 1 0.7 0.7 0.15
A xnx |P] 1 18.0 18.0 3.96
H =
5 D, x n x |P| 1 4.4 4.4 0.96
‘ ; Error 6 7.3 4.5
*
Indicates significance at the l-percent level.
* %
Indicates significance at the 5-percent level.
i
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Plot of the Effects for the First
Experimental Design on Normal

Probability Paper

Figure 1.




Jurtoq 938e3uU8d19(

47

Effect

Plot of the Effects for the Second

Experimental Design on Normal

Probability Paper
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variation explained by the main effects, their mean square,
and the amount of total variation explained by the second

order interactions we may infer that some of the second

JQ}EJEw*}“fi°?-f@:*N-
e it 4‘-,.,.» ,.“‘ 5 ,'

order interactions are not significant. The A x lgl,

e

D, x |P|, X x D, and the A x n interactions appear signifi-

P

cant in this perspective.
Additional information on the second-order inter-

actions can be acquired through their graphical represen-

tation. The interaction of the autocorrelation coefficient

with the other factors is graphically displayed in Figures

o Vo r

3 and 4 for Experiments 1 and 2, respectively. The graphical
results again confirm the interaction of the autocorrelation
coefficient with the other factors and also indicates that
the autocorrelation coefficient has its greatest effect on
the other factors when they are at their low levels. This
result is not surprising since we would expect the greatest
increase in the MANOVA power to occur when the MANOVA power
is low; that is, when the other factors are at their low
levels.

We may now make several general statements concerning
the factors which influence the MANOVA power function. They
are:

1. All five factors considered in the experimental
design significantly affect the MANOVA power function.

2. The numerous second-order interactions make an

interpretation of the effects of the factors on the MANOVA
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power function extremely difficult.
3. The autocorrelation coefficient, A, the determi-
. nant of the correlation matrix, |B|’ and the departure, DZ’
appear to have a very significant effect on the MANOVA

power function through second-order interactions.

4. The power of the MANOVA test statistic decreases

with the dimension of the response.

5. The autocorrelation coefficient, A, has a greater

effect on the MANOVA power function when the other factors

are at their low levels.

Conclusions

;

The above analysis of the experimental data leads us
to the conclusion that all five factors do in fact influence
the MANOVA power function. That is:

1. Power is a decreasing function of the dimension
of the response.

2. Power is an increasing function of the size
departure from the null hypothesis.

3. Power is an increasing function of sample size.

4. Power is an increasing function of the probability
of Type I error.

5. Power is an increasing function of -Log [P].

We also note that power is an increasing function of

. the autocorrelation structure of the response vector. That

is, power increases as the significance of the multivariate

time series increases.
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ij ] It is also noted that the large number of significant
second-order interactions make an interpretation of the

j - response difficult; however, we may note that 1, 2, 4, and

the autocorrelation account for a significant portion of

the interaction sum of squares. Thus, if subjective

; | estimates are to be made for either A or P great care must i
1 ‘ i
E& , be exercised due to their impact on the MANOVA power function. ;
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CHAPTER V

A METHODOLOGY FOR COMPARING ANOVA WITH MANOVA

Introduction

w

We now return to a primary objective of this research:
to develop a methodology for comparing the effectiveness of
ANOVA with MANOVA for use in the operational test and evalu-
ation of command and control systems. Clearly, MANOVA is the
preferred procedure for evaluating systems with correlated
measures of effectiveness since it provides a joint comparison
of the measures.

Burnette has developed a methodology for comparing
the ANOVA with MANOVA on a basis of power of the tests. It
was noted by Burnette that the powers of the tests appears
to be the only method for comparing the ANOVA and the MANOVA.
Our research has not indicated a more appropriate approach;
therefore, the essential elements of Burnette's research will

be reviewed.

Segregating the Measures of Effectiveness

Separation of Independent Measures

A comparison of the effectiveness of ANOVA with MANOVA
is not applicable for independent measures of effectiveness.

Our first task should be to separate all independent measures

from the rest. We may separate the measures of effectiveness




by an application of (2.25) and (2.26). For a system with

p measures of effectiveness we would compute the sample

multiple correlation coefficients, Ri’ o s SRR S

test the p hypothesis of the form

against

For those hypothesis which we fail to reject we assign the
measure to the set of mutually independent measures, I.

Grouping of Independent Sets of Measures

After separating the independent measures we would

like to group the remaining measures into k sets which are

correlated within sets, but independent between sets. Let
us designate the sets Ci’ I = Ay ooy Ko This grouping may

be accomplished using the procedure of (2.28) and (2.29).

In addition, we may test to insure that each set is

correlated using the procedure of (2.27).

For those k independent sets of correlated measures,

G i=1, ..., k, MANOVA is the appropriate procedure to

i’

utilize. For those measures which have been assigned to the

set of independent measures, I, only ANOVA is appropriate.
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Determining the Powers of the Tests

ANOVA Power

To determine the ANOVA power the following must be
specified:
1. a, the probability of Type I error.

2.: 1 the maximum sample size permitted.

an’

3. z ai/oz = D the component departure to detect.

i=1

4. (1-B), the power of the test desired.
Based on the above information the sample size required to
achieve the desired ANOVA power, B ova A2 determined. If
the desired power can not be achieved by a sample size B
then either the maximum sample size or the departure, or
both, must be reconciled. The above procedure is performed
for each measure of effectiveness.

MANOVA Power

In addition to the parameters provided for each
individual measure of effectiveness, for each independent
set of correlated measures, Ci’ i=1, ..., k, the following
must be specified.

1. a, the joint probability of Type I error.

2. (1-B), the joint power desired.

3. R, the ratio of the primary component departure

to the maximum departure of the other components.
The maximum sample sizes as well as the departures to detect

would have previously been specified.
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We will use the third form of the norm proposed in
Chapter III since it enables us to determine the power of

the MANOVA test for each component in the correlated set,

€

i’ for a specified departure, Dj’ probability of Type I

error, a, norm ratio, R, and sample size, n Here,

manova '’
is the minimum sample size required by MANOVA to

Mhanova’
achieve the desired power.

After completing the above procedure we would have
for each measure in the correlated set:

1. a, the probability of Type I error.

2. (1-B), the power desired.

3% Dj’ the departure to detect.

4, B the maximum sample size permitted.

S. ) e the ANOVA sample size required to achieve
the desired ANOVA Power.

6. B sn e’ the MANOVA sample size to achieve the

desired MANOVA power.

Trading Joint Inference for Power

For a correlated set of measures, Ci’ X ey ey
we are constrained by the minimum sample size in the set,

n_._ = min(n

B ), so far as MANOVA sample size is

anova j
concerned with the system as a whole. If we are unable to

achieve the desired MANOVA power for each of the p; measures

in the set using n then to increase the power, measures

min’?
may be deleted from the set p; to increase the power. These

measures will be deleted as follows:

SR S npEmp—-)



The measure corresponding to P will be

deleted first.

it

2. If two measures correspond to noin then the

v
%

AL

| measure with the smallest power will be deleted.

’

g

TR oA e

3. If there are only two measures in the set both

will be deleted.

Those measures deleted will be assigned to the set I for

which ANOVA is more effective than MANOVA.

Summary of the Methodology

A summary of the methodology for comparing the

effectiveness of the ANOVA with MANOVA is as follows:

1. Determine the correlation matrix for the measures
of effectiveness.
Separate the measures into mutually independent

measures, I, and correlated measures, Ci’

iy vy K

Determine the probability of Type I error, a,

and the power of the test, (1-8), to be utilized.

For each measure determine the maximum sample

size permitted, n

S and the univariate departure

to detect.
For each measure of effectiveness determine the

. sample size, n

achiev uired .
| Sncva’ 0 hieve the required power

For each set of correlated measures of effective-

ness, Ci’ i=1l, ..., k, perform the following.




(a) For each measure of effectiveness, YJ, § = 1

s Py determine the sample size, required to

"manova’
achieve the desired MANOVA power.

(b) . If the W atpgn R less than or equal to

Bgn ™ min (nanova j) for the desired power, stop; MANOVA is

more effective than ANOVA for the measures in the set.

{c)  Ef the ST greater than B in for one or

more measures in the set, remove from the set the measure

corresponding to P If more than one measure corresponds

to n remove from the set the measure with the lowest

min’

power which corresponds to n . Renumber the measures in

min
the set which remain; set P; = Pj.q- T Py = 1, stop; ANOVA
is more effective than MANOVA for all original measures in
the set Ci' Lt P; > 1, repeat steps a through c.

The methodology will be demonstrated in Chapter VI.
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CHAPTER VI

AN APPLICATION TO OPERATIONAL TESTING

Introducticn

In this chapter we shall apply the methodology
developed in Chapter V to an operational testing problem.

We will use the hypothetical command and control system
used by Burnette so that the results may be compared. The
hypothetical command and control system will be known as the
Brigade Antiarmor Command and Control System (BACCS). Two
competing forms of BACCS are under consideration for
acquisition and are designated BACCS-I and BACCS-II.

For OT-I1I, the commander, U. S. Army Operational Test
and Evaluation Agency (OTEA), has approved a comparative
operational test of the two systems consisting of three
scenarios. The commander has also approved seven measures
of effectiveness designated MOE-1 through MOE-7. In
addition, the commander has approved a completely crossed
two-factor experiment with equal numbers of observations per
cell. He desires to determine for which MOE MANOVA will be

most effective, powerwise, than ANOVA.

Correlation Structure of the MOE

An objective estimate of t correlation structure of

the MOE correlation matrix is:




OT-1 test results indicated that each response vector was
related to the previous response vector. However, insufficient
information was available to obtain an objective estimate;
therefore, a subjective estimate of the autocorrelation
coefficient, X = 0.3, was made by the BACCS project manager
and the U. S. Army Training and Doctrine Command.

Based upon a knowledge of BACCS, we feel that MOE-1 is

independent of all other MOE. We test the hypothesis

against

? P1 # 0

Using a computer program (Appendix B) we compute the sample

multiple correlation coefficient
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0.293452

and

-
[}

1 0.86114

applying (2.26) we obtain the test statistic

2 (n-p)
1 B} ¢ pssing) (az-7)

1-R;"(p-1)

R
0. 5515

We desire to test the hypothesis at o = 0.05 and determine
the critical value of the test is F.05,6,35 = 2,36 - The
test statistic is less than the critical value of the test;
hence, we fail to reject the hypothesis that MOE 1 is inde-
pendent of the other MOE. MOE-1 is assigned to the set of
mutually independent measures, I.

Our knowledge of BACCS indicates that MOE-2 and MOE-7
are correlated, but independent of the other MOE. We also
feel that MOE-3, MOE-4, MOE-5, and MOE-6 are correlated but
independent of the other MOE. We assign MOE-2 and MOE-7 to
correlated set Cl' We assign MOE-3, MOE-4, MOE-5, and MOE-6
to correlated set C,. The correlation matrix for the set ¢y

is now the 2 x 2 matrix
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and the correlation matrix for set C2 is now the 4 x 4

matrix

5 1.9 68 - 49 56
4 .68 0 ~ 2al Ry
5 < oS s L2 1.0 - .26
6 56 72 -~ .26 Lo

We desire to test the hypothesis that set ¢y and set

C2 are mutually independent using the procedures of (2.28)

;

and (2.29) with a = 0.05. Using a computer program

. (Appendix C), we determine the test statistic
Xg = 4.1630

and the critical value of the test

Z

x“ g5 g = 15.5072

[ The test statistic is less than the critical value of the
test; hence, we fail to reject the hypothesis of independence
and conclude that C1 and C2 are independent. We must now

E. check to determine if the MOE within the mutually independent
; ' sets Cy and C, are independent.

We observe that set C1 has only two MOE and thus has

a bivariate normal distribution. We may then make use of the
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Fisher Z-transformation and test the hypothesis |

H =0

10 * P27

against

Hiy ¢ pgp # 0.

Using (2.19) through (2.22) we find

S e S e A1

£ :

L z = tanh™1 (.76) = 0.638

e |

3 i

5 ' and the test statistic is

L

B |z| vN-3 = 0.638 v42-3 = 3.984.

E
The critical value of the test with o = .05 is 2 05 = 1.96;
The test statistic exceeds the critical value of the test;

hence, we reject HlO and conclude MOE-2 and MOE-7 are

correlated.

We test the following hypothesis

g0 S&2 g

against
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Hyy ¢ Bea # 1
to determine if MOE-3, MOE-4, MOE-5, and MOE-6 are correlated.
Using the results of (2.27) and a computer program (Appendix

D) we determine the test statistic

2 2k+5 2445 :
Xg = - (N-1 - 252) Log |R| = - (42-1 - £2%2) Log |R|
xg - 65.81137.

With o = .05 the eritical value of the test is

2 G
X.05,6 = 12.59120.

The test statistic exceeds the critical value of the test;
hence, we conclude the members of C2 are correlated.
The above tests have enabled us to separate the MOE

into three mutually independent sets:

I = MOE-1
C, = MOE-2, MOE-7
C2 = MOE-3, MOE-4, MOE-5, MOE-6.
T ANOVA is appropriate for MOE-1, the sole member offset I;

therefore, MOE-1 will not be used for a comparison of the ~

effectiveness of MANOVA with ANOVA.
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ANOVA Power/Sample Size for the MOE

The Commander of OTEA has specified the following
- probability levels be used for BACCS OT-II:
;3 Probability of Type I error, -.05
| Power of the test (1-8) -.75.
These parameters will apply to both ANOVA and MANOVA. In

addition, the maximum sample size, n , and the departure

max
to be detected, D, have been specified for each MOE. These

parameters are shown in Table 5.

Table 5. MOE Maximum Sample Sizes and Departures

B Maximum Departure

I MOE Sample Size to Detect
J? § nmax D
’ 1 6
2 6 1.5
5 l 3 4 2.0
| 4 6 1.5
E | 5 6 1.
| | 6 7 0
L 7 6 1.5

-———— A — = m— e - - ey e e <yt
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- Using the information in Table 5 we compute for each

MOE the minimum sample size, quired to achieve the

Manova’ T€
desired power. We accomplish this by using the results

reviewed in Chapter II. The results are shown in Table 6.

Table 6. MOE Sample Sizes for Required Power

Maximum Departure Minimum
MOE Sample Size to Detect Sample Size

max o Ranova
? 1 6 k.S 5
é 2 6 1.5 5
| ‘ 3 4 .0 4
4 6 e 5
5 6 1.5 5
‘, 1.0 j
7 6 1.% 5

Comparing the Effectiveness of MANOVA with ANOVA

For the two sets of correlated measures, C1 and C2’
we are now interested in determining for which members of
these sets MANOVA is more effective than ANOVA from the
standpoint of power. The Commander of OTEA has approved
a ratio R = 2 for use in setting the random levels of the

MOE in the sets other than those under consideration.

For set C; = {MOE-2, MOE-7} we find that Hain ™
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T g T

min {n 5 (Table 5). Using the two-

anova 2’ "anova 7} i
factor MANOVA program (Appendix A), we set levels of factor
A = 2, levels of factor B = 3, D = 1,5, sample size =
n. =5 x= .3, R= 2, Monte Carlo iterations = 500, and
correlation matrix gcl. The results are tabulated in
£ : Table 7 with the results of Burnette's research for ease of

comparison.

Table 7. MOE Power 1

é . MANOVA Departure Power Power
7? o MOE Sample Size to Detect Achieved by Achieved by
i K D Burnette this Research
i : manova

? 2 5 RS 3 52 .866

‘ 7 ) s .824 1.000

B

The MANOVA power is greater than the ANOVA power with
samble size nosin’ thus, MANOVA is more effective than ANOVA
for members of set Cl'

For set C2 = {MOE-3, MOE-4, MOE-5, MCE-6} we use the
same two factor MANOVA power program. We set a = .05,

levels of factor A = 2, levels of factor B = 3, Monte Carlo

iterations = 500, » = .3, and R = 2. For the four MOE

LS8 A deienid

fi_.. =4 =n We run the power program for each MOE

min anova 3°

= 4 and departures to detect, D = Dj’

ith sam i e
with sample size -




TR TR
1

j =3, 4, 5, 6. The results are shown in Table 8 for this

research and Burnette's for ease of comparison of results.

Table 8. MOE MANOVA Power 2

MANOVA Departure Power Power
MOE Sample Size to Detect Achieved by Achieved by

5 D Burnette this Research
manova

3 4 2.0 .614 .850

4 4 335 .482 .824

5 4 1.5 .496 <176

6 4 1.0 .452 .994

We note that again the MANOVA power exceeds the power
of the ANOVA for all components, therefore, we conclude that
MANOVA is more effective than ANOVA for all members of the
set CZ' In summary we have found that MANOVA is superior

to ANOVA for both sets C, = {MOE-2, MOE-7} and set

L
C, = {MOE-3, MOE-4, MOE-5, MOE-6}. This information would

2
be used in to aid in the design of BRACCS OT-II.

Although the example presented in this chapter is
hypothetical the methodology as demonstrated here may be
applied to any system so long as an estimate of the structure
of the response is available. We also note that the

introduction of autocorrelated vectors greatly influence the

MANOVA power function. Burnette was able to achieve joint

e RGN, < TR B0 A et

e ke L
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inference on only two MOE in set C, [16] at the specified

power. Our analysis, using the systems information, has
enabled us to achieve joint inference on all four MOE of

set C2 at the specified power level greatly enhancing the

analysis of the test results.
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CHAPTER VII

CONCLUSIONS AND RECOMMENDATIONS

Limitations of the Research

This research has been limited by the initial assump-
tions of two-factor, fixed-effects, crossed models, equal
sample sizes per cell, and no effects due to operators. In
addition, it was assumed that an estimate of the correlation
structure of the measure of effectiveness and the auto-
correlation coefficient or all the parameters of a multi-

variate time series are available.

Conclusions

This research has accomplished two objectives:
first, through the use of two experimental designs analyzed
by ANOVA it has been shown that:

1. The MANOVA power is a decreasing function of the
dimension of the response.

2. The MANOVA power is an increasing function of the
size of departure from the null hypothesis.

3. The MANOVA power is an increasing function of
sample size.

4. The MANOVA power is an increasing function of

the probability of Type I error.

5. The MANOVA power is an increasing function of
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-Log |P[, where P is the correlation matrix of the multi-
response.

6. The MANOVA power is an increasing function of
the significance of the time dependence of the response
vectors.

7. An extremely complex relationship exists between
statements 2-5 since most second order interactions were
found to be significant.

Second, it was found that the incorporation of the
time series into the MANOVA power function significantly
increased the MANOVA power for a given sample size. It was
also noted that a reduction in sample size, for a given
power, can be achieved when the time series information is

incorporated in the MANOVA power function.

Recommendations

Several recommendations for further research arose
during the course of this research. One recommendation is
to develop an exact statistical test for a multiresponse
system when the responses are time dependent. An experiment
could then be designed using the exact test and the current
procedure to determine if MANOVA is robust to independence
of observations. Another recommendation is to extend the

MANOVA power program so that it may handle nested, multi-

factor designs.

| S A AT % 4y
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APPENDIX A

This appendix contains a complete FORTRAN IV listing

of the two-factor MANOVA power program along with its use.

The program is entirely interactive and all input is made

in free-field format. This listing is a modification and

conversion of previous work [16].
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*% MANQVA POWER PROGRAM %

ENTER THE NR @F STARTUFP RUNS F@R UNIF
789 ' : ;

ENTER THE NR @F LEVELS @F FACT@R A
s - S s :

ENTER THE NR @F LEVELS @F FACT@R B
3 :

ENTER THE DIMENSI@N @F THE RESPONSE
4 ke 2 35

ENTER THE SAMPLE SIZE
4 :

ENTER ALPHA
«05

D@ Y@U DESIRE T@ SPECIFY ALL N@RM C@MP@NENTS?
YES x 3 i

ENTER THE NORM INDEX T@ BE SPECIFIED
Bt x s

WHAT NORM RATI@ D@ Y@U WANT T@ USE?
2.

ENTER THE SIZE NORM Y@U DESIRE T@ DETECT
2. ' g e ;

ENTER THE ITERATI®NS SAMPLE SIZE
500 PR } %

ENTER THE SIGMA MATRIX
101;680-049;056 ¥
.681 l .l‘.all‘.‘,z
-.493-;02.11105‘026
565072, =026,10

ENTER THE MEAN VECT@R
0¢5005046.00 )

ENTER LAMBDA, THE AUTOC@ORRELATISN C@EFFICIENT
3 : : :

*% STARTUP RUNS F@R UNIF= 789




LEVELS OF FACT@R A = 2

LEVELS @F FACT@R B = 3

SAMPLE SIZE =

4

VECT@R DIMENSI@N 1s 4

ITERATI@NS SAMPLE SIZE = 500

#% ALPHA = .0S

**THE VALUE OF LAMBDA 15 .30

*% SIZE NORM T@ DETECT IS 2.00

*% N@RM | IS SPECIFIED

** NORM RATIQ IS
** SIGMA MATRIX

1.00000 - 68000

+68000 1.00000

-+49000 -+21000
56000 +72000
MATRIX %

1.00000 0.00000
+68000 .73321
-.49000 16803

456000 46262

2.00

=+49000
-021000
1.00000

e 026000

0.00000
0.00000
«85538

-.07404

«56000
72000

- .26000

1.00000

0.00000

0.00000

0.00000

.68330
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.
1' *% MEAN VECTOR =*» I
: | 0.00000 0.00000 0.00000 0.00000
; | . [
O : IS YQUR INPUT C@RRECT ? ;
| ? YES i ; 5 i
| %

%% P@WERS @F THE TESTS

SAMPLE SIZE POVER @F TEST

| 4 .81400

b
-  #4 D@ YOU DESIRE T@ MAKE ANSTHER RUN?
k¢ ? N@ :
E ¢ ‘ 40.234 CP SECONDS EXECUTI@N TIME
i .
;




p ’

P

o

Rl L i e
WP

¥

TR e

i e

|
o

0101
0103
0105
olie2
Olla
0116
0118
0120
o121
o122

0123.

0124
o125
0127
o128
0131
0133
0137
0139
0141
0143
Ol4a
0145
0l46
0147
0148

0149
0150
0151
0152
0153
0154
0155
0157
0158
0159
0160
0161
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PROGRAM MANQVACINPUT, QUTPUT, TAPES=INPUT, TAPE6=QUTPUT)
REAL LAMBDA

INTEGER ERRQR

CPMMON /ONE/ E(20,20),H1¢(20,20),HD(20,20)

CeMMBN /TW@/ NL

COMMBN /THREE/ K@RD(20)

CPMM3N /FQUR/ KUSED(20)

C@MM@N /FIVE/ SIGMA(20,20)

COMM@BN /S1X/ CMAT(20,20)

COMMBN /SEVEN/ ZVEC(20),UC20),XVEC(20),BUF(20)

CPMM@N /NINE/ FAC(20)

COMMON /ELEVEN/ NI

CoMMON /TWEL/ LAMBDA

DIMENSI@N DC@M(20) :

DIMENSION A(3,5),C(3,5,20),T(5,20),R(3,20)

DIMENSI@N Y!A(5,100,20),Y2A(5,100,20),Y3A(5,100,20)
DIMENSI@N G(20).,JD(20),H2(20,20),H3¢(20,20),2¢20,20),1IPR(20)
DIMENSI@N 1EUC(2),ISUP(2)

EXTERNAL UNIF,RN@RMI1,CNMATI,PICHI,VIPDA,CHIPRB

- DATA KNORM/6HEUC /

DATA ISUP /6HSUPREM,6H@OM /

DATA 1EUC /6HEUCLID,6HEAN /

FORMATC1H1,2%,*" ERROR**READ PAST END @F FILEx*%")
FORMAT(1H1,2X,"ERROR**PREGELEM IN CHI SQUARED RQUTINE=*x*")
FORMATC(1H1,2X," ERRER**PROBLEM IN GJR ROUTINE*%*)
FORMAT(IHI,10X,%%* MANOVA PPWER PROGRAM *x%')
FORMAT(//,10X,"*%x ALPHA =",F5.2) X
FORMAT(//,10X,"*x%x VECTAR DIMENSI@N 1S ",12)
FPRMAT(//,10X,"%%x P@WERS @F THE TESTS")
FORMAT(//,10X,"*x SIZE NEGRM T@ DETECT IS *,F5.2)
F@RMAT(//,10X,*"*x* LEVELS @F FACTPR A = ",13)
FORMATC /74 10X, " SAMPLE SIZE",9X,“POWVER @F TEST")
FORMAT(//,10X,"%* LEVELS @F FACT@R B = ",13)
FORMAT(/,14X,13,16X,F10.5)

FORMAT(//,10X,"%*%x SAMPLE SIZE = ",1I3)

FPRMAT(//,10X,%"%%x ITERATI@NS SAMPLE SIZE = *“,13)
FORMAT(//,10X,"*%x MEAN VECT@R =*x") = !

FORMATC //,10X,"%% SIGMA MATRIX =*s%)

FORMAT(//,10X,"%% C MATRIX *%x")

FORMAT(//,2X,"ENTER THE SIGMA MATRIX")

F@RMATC //,2Xs"ENTER THE MEAN VECT@R™)
FORMAT(//,2X,5(2X,F10.5)) % ‘

FORMAT(//,2X,"1S YBUR INPUT CBRRECT 2%

FORMAT( /,2X,"ENTER THE TYPE N@RM YQU DESIRE T@ USE:EITHER")
F@RMAT(,2X,"EUC FPR EUCLIDEAN @R SUP F@R SUPREMUM")
FBRMATC /,10X,"**x N@GRM USED IS *,2A6)

FORMATC //,2%X,"é## D@ YOU DESIRE T@ MAKE AN@THER RUN?")
FBRMAT( /,2X,"D@ YBU DESIRE T@ CHANGE @NLY SAMPLE SIZE,ALPHA.,
1 NORM?") :
FBRMAT( /,2X,"ENTER THE SAMPLE SIZE“)

FBRMAT( /,2X,“ENTER ALPHAY) P

FORMAT(AG6) ;

F@RMAT( /,2X,"ENTER THE SIZE NORM Y@U DESIRE T@ DETECT")
FORMAT( /,2X,“ENTER THE NR @F LEVELS @F FACTER A")
FORMAT( /,2X,"ENTER THE NR @F LEVELS @F FACT@R B")
FORMAT( /,2X,"ENTER THE DIMENSI@N O@F THE RESP@NSE")
FBRMATC /,2X,"ENTER THE ITERATISGNS SAMPLE SIZE™)

FORMAT( /,2X,“ENTER THE NR @F STARTUP RUNS FgR UNIF")
FORMATC /,10X,"*x STARTUP RUNS F@R UNIF= *,15)
FORMAT(/,2X,"D@ Y@U DESIRE T@ SPECIFY ALL N@RM COMP@NENTS?™)
FBRMAT(/,2X,"ENTER THE N@RM INDEX T@ BE SPECIFIED"™)



cie2
0163
Olé64
0165
0l66
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20

0800

0900

21

22

23

24

25

0902

0904

26

0908

FORMAT(/,10X,"%x DCOM(",12,%) =",F5.2)
FORMAT(/,10X,%%%x N@GRM “,12," 1S SPECIFIED")
FORMAT(/,2X,"WHAT NPRM RATI® D@ YPU WANT T@ USE?*™)
FORMAT(/,10X," %% N@RM RATI@ 1S "F5.2)
FORMAT(/,2X,"ENTER LAMBDA, THE AUTBCORRELATIEN COEFFICIENT")
FORMAT(/,10X,"*xTHE VALUE @F LAMBDA IS" FS.8) -
DATA IRES/6HYES /

INPUT SECTION #*

WRITE(6,0112)
WRITE(6,0158)
READ(S.%) KSU
IFC(EQF(5); 9791.,20
Dg 0800 I=j,KSU
ZSU=UNLF(A)
CONTINUE
WRITE(6,0153)
READ(S5,%) NI
IFCEGF(S5)) 9791.,21
WRITE(6,0154)
READ(5, %) NJ
IFCEQF(5)) 9791.,22
WRITE(6.,0155)
READ(5,%) NL
IFCEBF(5)) 9791.23
WRITE(6,0149)
READ(5,%) NIa
IFCEQF(5)) 9791.,24
WRITE(6,0150)
READ(5,*) ALPHA
IFCE@F(5)) 9791.,25
WRITE(6,0160)
READ(5,0151) LN@R
IFCLNGR.NE.IRES) G@ T@ 0902
VRITE(6,0161)
READ(5,%) IDX
WRITE(6,0164)
READ(5,%) RATI®
WRITE(6,0152)
READ(S,%) DC
IFCE@GF(5)) 9791,0904
WRITE(6,0157)
READ({5,*) NN
IFCEBF(5)) 9791.26
IF(LNGR.EQ.IRES) G@ T@ 0908
WRITE(6,0144) '
WRITE(6,0145)
READ{5,0151) N@RM
WRITE(6,0137)
READ(S:#)((SlGHA(loJ)oJ'loNL):l-loNL)




Rt Rt

P

27

28

41
0910

29

40

30

31

0915

0916

0917

0920

0930

940

950

IFCE@QF(S)) 9791.,27
VRITE(6,0139)
READ(S,*)(UCI),I=1,NL)
IFCEBF(5)) 9791,28
WRITE(6,0166)
READ(S,=%=) LAMBDA
IFCEPF(S)) 9791.,41
G@ Te 0915
WRITE(6.,0149)
READ(S.,*) NI14
IFCEBF(5)) 9791.,29
WRITE(6,0166)
READ(5,*) LAMBDA
IFCE@F(5)) 9791,40
WRITE(6,0150)
READ(5,*) ALPHA
IFCEPF(5)) 9791,30
WRITE(6,0152)
READ(5,%) DC
IFCEBF(5)) 9791.,31
WRITE(6,0161)
READ(5,%) IDX
IFCE@BF(5)) 9791.,0915
CALL CMATI
WRITE(6,0159) KSU
WRITE(6,0121) NI
WRITE(6,0123) NJ
WRITE(6,0125) NI4
WRITE(6,0116) NL
WRITE(6,0127) NN
WRITE(6,0114) ALPHA
WRITE(6,0167) LAMBDA
WRITE(6,120) DC

‘xrthn.sn.;RES) G@ TG 916

Ge T8 917

WRITE(6,0163) IDX

WRITE(6,0165) RATI®

G@ T@ 0930 i
IF(NORM.NE.KN@RM) GO& T@ 0920
WRITEC6,0146) 1EUC

G@ T@ 0930 o

WRITE(6,0146) ISUP

C@ONTINUE o

WRITE(6,0131)

D@ 940 I=],NL
WRITE(6,0141)(SIGMACI,J),J=]1,NL)
CONTINUE TR e -
WRITE(6,0133)

D@ 950 I=1,NL
WRITE(6,0141)(CMATC(I,J)sJ=1,NL)
COZNTINUE A :

g R L
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WRITE(6.,0128)
WRITE(6,0141)(UCL),1I=1,NL)
WRITE(6,0143) P ;
READ(5,0151) 1Z
IFCIZ.NE.IRES) G@ T@ 0900
PAVER=0.0

COMPUTE THE CRITICAL VALUE @F THE TEST STATISTIC =**

CALL CRIT(NI,NJ,N14,NL,ALPHA,PICHI,CHIPRE,CRITV,ERROR)
IFCERROR.EQ.1) G@ TO 9795 AR

LegP @N REPLICATI@N F@R THIS N@RM %%

D@ 850C 12=1,NN
IF(LN@R.EQ.IRES) Gg@ T@ 0990
CALL @RDER(NL,UNIF)
IF(NGRM.NE.KN@GRM) G@ T@ 0970
CALL ASGN@R(DC,DC@M,UNIF)

G@ Te 0990 :

CALL ASGMAX(DC,DC@M,UNIF)

LBGP @N ITERATIONS *x

IFCLN@GR.NE.IRES) G@ T@ 1020
D@ 1000 LL=1,NL
IF(LL.ER.IDX) G2 T 0995
DCBMC(LL)=UNIFCA)*DC/RATIP
G@ T@ 1000 - ' y
DC@M(LL) =DC

CONTINUE

D@ 1050 13=1,NL

CALL QRDER(NI,UNIF)

CALL FAC@M(DCBM(13))

D@ 1030 III=],NL’

D@ 1029 JdJdd=1,NI
A(JJJ,111)=0.0

CONTINUE

CONTINUE

D@ 1040 KC=1,NI
JR=K@RD(KC)

ACJR, 13)=FACCKC)

CONTINUE

CONTINUE

GENERATE THE @BSERVATIONS #%

D@ 1500 1I=1,NI
D8 1490 Jd=1,NJ
DB 1480 KK=1,NI4
IREPS =KK




CALL XVEC!(RN@RMI,UNIF, IREPS)

D@ 1470 LL=1,NL s

IFC(11.NE.1) GO T@ 1501

Y1ACJJ, KK, LLY=A (I I, LL)+XVEC(LL)

IFC(I1.NE.2) G@ T@& 1502 :

Y2A(JJ,KK,LL) =ACI1,LL)+XVEC(LL)
" IFCII.NE.3) G@ T@ 1470

Y3A{JJ,KK,LL)=ACII,LL)+XVEC(LL)

CONTINUE f i

CONTINUE

CONTINUE

CONTINUE

COMPUTE THE MANBVA  **
COMPUTE THE CELL MEANS **

D@ 1600 IC=1,NI

DB 1590 JC=1,NJ

D@ 1580 LC=1,NL
SUM=0.0 =~

D@ 1570 KC=1,Nl4
IFCIC.NE.l) G& T8 1571
SUM=SUM+Y1ACJC,KC,LC)
IFCIC.NE.2) G@ T™® 1572
SUM=SUM+Y2A(JC,KC,LC)
IFCIC.NE.3) G@ T@ 1570
SUMaSUM+Y3A(JC,KC,LC)
CONTINUE 3 3
CCIC,JC,LC)=SUM
C@NTINUE

CBNTINUE

CONTINUE

COMPUTE THE COLUMN TREATMENTS

D@ 17006 JC=1,NJ

D@ 1690 LC=1,NL
SUuM=0.0

D@ 1680 IC=1,NI

D@ 1670 KC=1,Nl4
IFCIC.NE.1) GO T@ 1671
SUM=SUM+Y1A(JC,KC,LC)
IFCIC.NE.2) G@ T@ 1672
SUMaSUM+Y2A(JC,KC,LC)
IFCIC.NE.3) G& T@ 1670
SUM=SUM+Y3A(JC,KC,LC)
CBNTINUE s o
CONTINUE

TC(JC,LC)=5UM

CONTINUE
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1980

COMPUTE THE ROW TREATMENTS %

'D@ 1800 1C=1,NI

D@ 1790 LC=1,NL

SUM=0 «0

D@ 1780 JC=1,NJ

D@ 1770 KC=1,NI4&
IFCIC.NE.1) G@ T@ 1771
SUM=SUM+Y1A(CJC,KC,LC)
IFCIC.NE.2) G& T@. 1772
SUM=SUM+Y2A (JC,KC,LC)
IFCIC.NE.3) GO T@ 1770
SUM=SUM+Y3A (JC,KC, LC)
CONTINUE e e
CONTINUE

RCIC,LC)=SUM

CONTINUE

CONTINUE

COMPUTE THE GRAND T@TALS. **

D@ 1900 LC=1,NL
SUM=0 .0 (R

D@ 1890 KC=1,Nl4

Dg 1880 JC=1,NJ

D@ 1870 1C=1,NI
IFCIC.NE.1) G@ T@® 1871
SUM=SUM+Y1A(JC,KC,LC)
IFCIC.NE.2) G& TP 1872
SUM=SUM+Y2A(JC,KC,LC)
IFC(IC.NE.3) G@& T¢ 1870
SUM=5UM+Y3A(CJC,KC,LC)
CONTINUE s ]
CONTINUE

CeNTINUE

GCLCI=5UM

CONTINUE

COMPUTE THE H1 MATRIX %%

D@ 2000 1L=1,NL

D@ 1990 JL=1,NL

SUM=0 .0

DG 1980 IC=1,NI :
SUM=SUM+R(IC,IL)*RC(IC,JL)
CONTINUE

NJK=NJ*NI14

Yi=NJK =

SUM=SUM/Y1




1990
2000

C  *x%

2041
2042
2040

2050
2060

2070

2080

2090
2100

* %k

aaa0

2180

2190

2200
c
C *x

AV e WEARTEY & TAVY TIVA "8

Y1=NIJK
HICIL,JL)=SUM~GCIL)*G(JL) /Y]
CONTINUE" i :
CONTINUE

COMPUTE THE E MATRIX *x

D@ 2100 IL=1,NL

D@ 2090 JL=1,NL

SUMI -0 -O

D@ 2060 IC=1,NI1

D@ 2050 JC=1,NJ

D@ 2040 KC =1,Nla

IFCIC.NE.1) G@ T@ 2041l
SUMI=SUMI+Y1ACJC,KC, IL)*Y1A(JC,KC,JL)
IFCIC.NE.2) G@ T@ 2042
SUMI=SUMI+Y2A(JC,KC, IL)*Y2A(JC,KC,JL)
IFC(IC.NE.3) GB T@ 2040

SUMI=SUMI +Y3ACJC,KC, ILY*Y3A(JC,KC,JL)
CONTINUE® 3 S 3 ; :
CONTINUE

CONTINUE

SUM2=0.0

D@ 2080 IC=1,Nl

D@ 2070 JC=1,NJ

SUM2=SUM2+C(IC,JC, IL)*C(IC,JC,JL)
ERNEIMRIR T e SRR :
CONTINUE

Yi=Nl4

ECIL,JL)=SUMI -SUM2/Y!

CBNTINUE

CONTINUE

IF(NI4.NE.1) G@ T@ 2600

COMPUTE THE H2 MATRIX %

D@ 2200 IL=l1,NL

D@ 2190 JL=1,NL

SUM=0.0

D@ 2180 JC=1,NJ

SUM=SUM + T(JC,L,IL)*T(JC,JL)
CONTINUE S g :
Yi=(NI%*NI4)

SUM=SUM/Y!1

Y1=(NIkNJ%NI4)
H2(IL,JL)=SUM = GCIL)*G(JL)/Y!
CONTINUE ; :
CEeNTINUE

COMPUTE THE T@TALS MATRIX ==
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D@ 2300 IL=1,NL

D9 2290 JL=1,NL

SUM!=0.0 :

D@ 2260 1I1C=1,Nl

D@ 2250 JC=1,NJ

D@ 2240 KC=1,N14

IFCIC.NE.1) G& T@ 2241
SUMI-SUMI+YIA(JC.KCalL)tYlA(JCoKCaJL)
IFCIC.NE.2) G@ TO 2242
SUHI-SUMI+?2A(JC;KC;IL)*Y2A(JC;KC;JL)
IFC(IC.NE.3) G@ T@ 2240
SUHI-SUMI+?3A(JC:KC;IL)*Y3A(JC;KC;JL)
CONTINUE

CONTINUE

CONTINUE

Yi=(NI*NJ*NI14)

ZC(IL,JL) = S5UMI - GCIL)*%G(JL)/YI
CBNTINUE ; Z 5
CeNTINUE

COMPUTE THE H3 MATRIX #»

D8 2400 IL=1,NL
D@ 2390 JL=1,NL
H3CIL,JL)=ZCIL,JL) =K1 (1L, JL) =H2(1IL,JL) ~ECIL,JL)
CONTINUE

CONTINUE

REPLACE E MATRIX WITH H3 MATRIX

D@ 2500 IL=l,NL
D@ 2490 JL=1,NL
ECIL,JL)=H3CIL,JL)
CONTINUE
CONTINUE

COMPUTE THE TFST'SthT!Sng OF THE MAN@VA

CALL MATADD

CALL DEC@M(E,20,NL,JD, IPR,D1,VIPDA)
DET=D1 -

D@ 10 1=],NL

DET=DET#*E(I,1)

ED=DET

CALL DEC@M(HD,20,NL,JD,IPR,DI1,VIPDA)
DET-DI '

Do 11 I=l,NL

DET=DET*HD(I,1)
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3000
8500
C

C =*x
c
9791
9793
9795
c

C *x
c
9801
C

C =*x
c

35

36
9990

HT=DET
CV=ED/HT

TEST THE CRITICAL VALUE @F THE TEST STATISTIC *»

IF(CV.GT.CRITV) G@ T@ 3000
POVER=PBWER + 1.0

CENTINUE j

CoONTINUE

Gé Te 9801

ERR@R MESSAG;S %

WRITE(6,0101)
Go Te 9801
WRITE(6.,0105)
Go To 9801

VRITE(6,0103)
G@ TP 9801

COMPUTE THE POVERS BY SAMPLE SIZE *x

W=NN
POVER=POVWER/W

BUTPUT SECTION *x*

WRITE(6,0118)
WVRITE(6,0122)
WRITE(6,0124) NI4,POVER
WRITE(6,0147) ~
READ(5,0151) 12
IFCEQF(S)) 9791,35
IF(IZ.NE.IRES) G@ T@ 9990
URITE(6.0148)
READ(5,0151) 12z
IFCEPF(5)) 9791,36 :
IF(I1Z.NE.1RES) G# T@ 0900
Go Te 0910 ;

CONTINUE

STeP”

END
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SUBROUTINE CRIT(NI,NJ,14,NL,ALPHA,PICH1,CHIPRB,CRITV,ERRSR)
THI1S SOBREUTINE COMPUTES THE SEC@ND-@RDER APPROXIMATION
OF THE CRITICAL VALUE @F THE MAN@VA TEST USING THE B@X

METH@D BY MEANS @F A NONLINEAR SEARCH @PTIMIZATISN

ROUTINE F@R A GIVEN PROBABILITY @F TYPE 1 "ERROR, ALPHA.

INTEGER ERR@R
S'l o - ALPHA
KOUNT=]

DEL-.OX
P=NL
Ql=(NI-1)

N-(Nltﬂdt(la-l))
IF(IG.EO.I) SN-(NI l)t(NJ-l)
2R=NI
BN=SN+ZR
Q2=ZR-Ql
CM=BN=-Q2-.5%(P+Ql+l.)

G=(P*Ql X (Px%2+Q ] %%2=5, ))/AB.
KDF1=NL*{(NI1-1)

KDF2=KDFI+4

AKDF 1 =KDF 1

AKDF2=KDF2
X=PICHI(S,AKDFl,1R)

IFCIR.EQ.1.0R.IR.EQ.2) G@ TO 900
APT=CHIPRB(X,AKDFl,IR)
BPT=CHIPRB(X,AKDF2,IR)
2=APT+(BPT-APT)*G/( CM**2)
IFC(IR.EQ. 1.03.:3.30.2: GO T@ 900
XEWF=S-Z
IP(XEWF «LTe0.0) XEWF=-XEWF
IF(K@UNT.NE.1) G@ T@ 200
KBUNT=K@UNT+1 " .

Y=X
X=Y+DEL
PGLDF=XEWF
G@é To 100

IF(XEWF-QLDF)201,201,202
IF(xEvF.LT..OOOOl> Go T 800
DEL=DEL#3.0
OLDF =XEWF
Go T8 150
DEL-DEL*(-.S)

X=Y

XEVWF =gLDF
GO Te 150
CRITVOEXP(XIC-CH))
G@ T@ 950
ERROR=]
Go Te 990
ERR@R=2
CONTINUE
RETURN
END
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SUBROUTINE ORDER(N,UN1F)
TH1S SUBROUTINE RANDOMLY ASSIGNS @GRDER TO A P'D‘“ﬂ"“.“‘&
VECTOR'S CPMPONENTS.

COMM@ON 7THREE/ K@RD(20)

CoMMBN /FQUR/ KUSED(20)

DB 100 I=1,N

KBRD(1)>=0

KUSED(1)=0.

CONTINUE

LEFT=N ~

D@ S00 J=I,N

X=UNLIF(X)

D@ 400 K=l,LEFT

Y=FLOATC(KY

Y=Y/FLOAT(LEFT)

IF(X. GT-Y’ Gﬂ TQ 400

Lu=0

D@ 300 M=l,N
lF(KUSED(H).NE.O) G@ Te 300

LUSLU+1 ~ ~
IFCLUNE.K) G& T@ 300

KUSED(M)=]"

K@RD(J)=M

GP T@ 450 . .

CONTINUE

CONTINUE
LEFTSLEFT-1

CONTINUE

RETURN

END

SUBREGUTINE MATADD

COMMBN /@NE/ 5(20020);"1120090)0“0(20:20)
CoMMON /TWB/ NL

DB 100 1=1,NL

D@ 90 J=1,NL

HD((OJ)'E(I)J)*K[(< a9

CONTINUE - :

CONTINUE

RETURN

END ]

FUNCTIGN RNGRMI(UNIF,RNGRM2,U,S1G2)

TH1S FUNCTISN PRODUCES INDEPENDENT ‘N@RMAL VARIATES WITH MEAN j
U AND VARIANCE SIG2 BY MEANS @F THE B@X AND MULLER ~
TRANSFORMATIBN OF UN!FBRH(O.I) DSVXAT!S. ¢
TP1=6.2831852
A=UNIF(X)’
B=UNIF(X)

RNGRMI=U+ SQRTC(~2.0%SIG2#ALABGCA) )*CAS(TPI=*B)
RNORH2-U¢SORT(-2-0#5!62‘AL'G(A))#SXH(TPIQD’
RETURN

END
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SUBROUTINE ASGMAX(DODCBH‘UNIF,
TH1S SUBRQUTINE RANDOMLY ASSIGNS THE C@MPONENTS @F A SUPREMUM
NORM SUCH TﬂAT THE COMPUNENTS ARE !N N@RM EQUAL T@ THE BRlGINﬁL
NORM. i
CoMMBN /TWO/ N
CoMMEN /THREE/ K@RD(20) .
DIMENSIBN’ DCCM(QO) F »
MEN~1
D@ 100 I=1,M
J=K@RD(1)~
DCGM(J"D*UNIF(A’ ;
CONTINOE :
J=KBRD(N)
DCoM{JI=D
RETURN ™ ~
END

SUBROUTINE XVECIC(RN@GRMI,UNIF, IREPS)
THIS SUBROUTINE GENERATES MULTIVARIATE N@RMAL AUT@C@RRELATED
VECTORS USING THE TRANSFZRMATION Y=CX+U, WHERE C IS THE
MATRIX FROM SUBRPUTINE CMAT, LAMBDA 1S THE AUT@CORRELATIGN
CEEFFICIENT, AND X 1S A P-DIMENSI@NAL VECTZR FROM NCO, 1),
COMMON /TVWB/ N

CeMMON /S1X/ CMAT(20,20)

CoMMBN /SEVEN/ ZVEC(20);U(20)oXVEC(ZO)aBUF(QO)

CeMMON /TVEL/ LAMBDA

DIMENSI@N ﬂLDVEC(20)aVECNEU<20)

IFCIREPS.NE.1) G4 T8 90

DO 27 1=1,N,2°

ZVEGCISSRNEBHl(UNIF.RNGRHeoO.Oal 0

11=1+]

ZVEC(C11)=RNORM2

CONTINUE

68 T 1000

DO 1 I=1,N

nLDVEC(I)=ZVEC(1)

CONTINUE"

Do 28 1=1,N,2

VECNEV(l)tﬁNcRul(UNIF;RNBRHQ;0.0;I-O)

II=I+1

VECNEW( 11)=RNORM2

CONTINVE -~

DB 29 I=1,N

ZVEC(I)-LAMBDA#GLDVEC(1)+(1--LAHBDA)#VECNEV(I)

CONTINUE

DB 121 I=],N

SUM=0.0"

DP 111 J=1,N

SUM-SUM+CHAT(loJ)tZVEC(J)

CONTINUE

BUF(1)=SUM

CONTINUE

D@ 131 R=1,N

xvac<R)-BUF<K)+U(x)

CeNTINUE o

RETURN ~

END




& C *=
C ==
9 %

200

C ==
C *x
9 *%

81
91

i 93
95
97

4 104
f , 105
"e

SUBROUTINE ASGNOR(D,DC@M,UNIF)
THIS SUBRPUTINE RANDOMLY ASSIGNS THE COMPBNENTS OF A EUCLIDEAN
NORM sucg THAT THE cluPlNENTS aas xu NORM EGUAL TO Tut CBIGINAL
NBRM.

CoMMON /TWA/ N

CoMMON /THREE/ KORD(20)

DIMENSION’ DCeMC20)

R&=D%k#2"

M=N=-1

D@ 100 I=l,M

J=KORD( 1)

DCOM(J)=RxUNIFCA)

R=R-DCOMCJ) =~ ~ °

CBNTINUE

J=K@RD(N) »

DCeM(J) =R

DB 200 K=],N

DC@M(K) =SQRT(DCAM(K))

CONTINUE .

RETURN

END

SUBROUTINE CMATI

THIS SUBROUTINE Ce@MPUTES THE C-MATRIX REGUIRED T@ GENERATE
MULTIVARIATE NORMAL RAND@M VECTORS, SUCH THAT CC"S!GHA;
WHERE S1GMA 1S THE POPULAT!CN C.VARXANCE HﬁTRIx.
cemMeN /Twas N 5

CoMMON /FIVE/ SIGMA(20,20)

CeMMON /S1Xs CHﬁT(ﬂﬂaﬁo) z

Do 110 J=I,N °

1F(J.GE.2) G@ Te 91

D2 81 1I=1,N

cnﬂr(lol)ISXGHﬁCIJI)/SQRT(SIGH&(I:I))

CONTINUE"

Go T@ 110

D@ 105 !=],N

IF(J+GE.1I+1) G2 T@ 104

IF(J.NE«.1) GO TO 95

SUB1=0.0 -

L=i=~}

DP 93 K=l,L :

SUB1=SUB1+CMATC(1,K)#=2

CONTINUE

cnﬁT(laJ)'SOﬂT(SIGﬂﬁ(10J)-SUBI)

GO TE 105 )
SUB2=0.0

LeJ=-1 ~

D@ 97 K=i,L

SUBQ-SUBQOCHAT(loK)lCHAT(JoK)

CONTINUE

CHAT{loJ)-(S!GHﬁ(‘oJ) SUBQ)ICH‘T(JOJ)

Ge T8 105 -

CMAT(1,J)=0.0

CONTINUE

CONTINUE

RETYURN ~

END




SUBRQUTINE FACOM(D)
COMM@N /NINE/ X<20)

- C@MMON /ELEVEN/ NI1°

Do SO I=], NI~ 7
X¢1)=0.0" ~

CUNTINUE

iMeDaQ -

¥=N1

NN=R1
IFCAMED(Y,24)¢GTeel) IMBD=]
IFCIM@DEQ.1) NN=NN=-1"
Y=NN : s
R=D/Y

R=SQRT(R)

Do 100 1=1,NN,2
XC1)=R =~

1I=1+]

Xt11)=-R

CBNTINUE

1FC(IMPD.EQ.1) X(N1)=0.
END

FUNCTIBN UNIFCA)

DATA 1U/31415926531/
UMX=20007777777777777777B
IX=16777213

lU=1U*iX

U=10

U={U/UMX)
IFCU.LT.0) U=U+l.
ONIF=U L
RETURN

END




APPENDIX B

This appendix contains a complete FORTRAN IV listing

of the program which computes the multiple correlation
coefficients of a set of responses, given the sample
correlation or covariance matrix. The program is interactive
and input is free-field format. An example of its use is

also given.




Tj 92
i
b+ #%% MULTIPLE CORRELATI@N CQEFFICIENT PROGRAM ##x
3 ENTER THE DIMENSI@N OF THE RESP@NSE
a% 7 x 2 ety P P ’
| ENTER THE SAMPLE COVARIANCE MATRIX
P | { 1¢5000,-¢064,-012,.00,-:174416 »
| | ¢00s1ese010=0114:01,-¢04,.76
f «006,¢0T010s068s=049,56,.07
! ~2125=01150685100=e21,472,-.04
i 000,¢01,=049,=e21s10s=e26s=.11
i =e1T70=0048,0565072,=e26,10,~.08
| ] 01650765 ¢075-e045-011,-.08,1. .
| | 50 s G be o
7] RCI)#s2 =  .086114
E RC(1) =  .293452
E,
{ R(2)%%2 =  .623385
& R(2) =  .789547
- ; R(3)##2 =  .597057
; : R(3) = .772694
i i RCAI*#2 = 665777
1 i RC4) =  .815951
4 % g
o ;
2 i R(S)*%2 =  ,303452
‘*‘ £ R(S? = « 550865
& % ‘
"; ; U .
! R(6)%%2 = + 558023
e ! [ ' .
e ? R(6) = 747010 ; ]
3 €6) : : :
3 . |
A R(7)*%2 =  .632303
3 RCT) = 2795175
DETERMINANT 1S «06341 ' '
" +487 CP SEC@NDS EXECUTI@N TIME :
.‘




PROGRAM HLTcoR(xNPUT.oUTPUT.TAPss-INPUT.TAP£6-OUTPUT)
INTEGER P@S(20)°

DIMENSI@N S(¢(20,20),C¢20,20),512(¢20,20),512T(20,20),522¢20,20)
DIMENSI@ON JD(20),A(20,20),B(20,20),1PR(20)
DIMENS10ON UL(20,20),RR(20,20),X¢20,20)
EXTERNAL VIPDA

VRITE(6,101) '

FORMAT(/, SX,"%*% MULTIPLE CORRELATI@N cazrrtcxsur PROGRAM *x&*)
WRITEC6.,103)

FORMAT( /,2X,"ENTER THE DIMENSI@N ar THE RESP@NSE™)
READ(S,*) NL

WRITE(6,105)

FORMAT(/,2X,"ENTER. THE SAMPLE C@VARIANCE MATRIX")
READ(S,#)((C(1,J),J=1,NL),1=1,NL)

N2=NL~-1]

Ni=}

D@ 900 IP=1,.

IFCIP.NE.1) Go T® 175

D@ 150 IC=1,NL

P@SCIC)=IC

CONTINUE -

Ge Te 200

P@SC1)=1IP

PBS(2)=]

1K=2

D@ 190 IC=3,NL

IFCIP.EQ. 1K) IK=1K+l

P@SCIC)=1K

IK=1K+]

CONTINUE

CONTINUE ,

D8 250 IC=1,NL

1A=P@S(1C)

D@ 240 JC=1,NL

JA=P@S(JC)

SCIC,JC)I=CCIA,JA)

C@NTINUE

CONTINUE

D@ 300 IC=1,N2

IA=1C+]

D@ 290 JC=i,N2

JA=JC+]

$22(1C,JCI=S(1A,JA)

CONTINUE’

CONTINUE

D@ 320 JC=1,N2

JA=JC+]

S12T¢1,JC)=SC1,JA)

CONTINUE

D@ 340 IC=1,N2

1A=1C+1

$12¢IC,1)=5C1A,1).

C@NTINUE 5

L=0 - i

CALL INVITR(S22,UL,20,N2., lPR:RRleDloLoDXJKD)
IF(D1.EQ.0) G& T@ 950

CALL FMMX(S12T,X,A,N1,N2,20,20,20,N2)
CALL FMMX(CA,S12,B,N1,N2,20,20,20,N1)"
R=B(1,1)/5¢C1,1)

VRITE(6,109) IPLR
FORMATC//,2%K,"RC",11,")%%2 =" ,F10.6)




|
{
8
i
i
{
£
i
?
{
]

e A SR S AR TP 5,3 ey

R=SQRT(R)
WRITEC6,111) IP,R |
F@RMAT(C/,2X, "RC(™, 11,") =",F10.6)
ceNTINUE 7 5 '
CALL DEC@M(C,20,NL,JD, IPR,D1,VIPDA)
DET=D1 :

D@ 10 I=1,NL

DET=DET#C(I,I)

pepeT @

WRITEC6,113) D
FORMAT(//,2X,"DETERMINANT IS *,F10.5)
CENTINUE ik ; :

END
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APPENDIX C

= This appendix contains a complete FORTRAN IV listing
of a program which computes the test statistic used to test
if two sets of responses are independent. The program is
interactive and the input is in free-field format. An

example of its use is also given.
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imt—"

**TEST FOR INDEPENDENCE OF 2 SETS OF VARIATES*#

ENTER THE DIMENSI@ON OF THE RESP@NSE
6 . . z

ENTER THE NUMBER @F VARIATES IN 1ST SET
& " : 2 =

ENTER THE NUMBER @F VARIATES IN 2ND SET
2 T30 -

' ENTER THE SAMPLE CBVARIANCE MATRIX

lese00s=ellse01,~004,.76
00151050685 =049,.565407
“ellse68sles=e2l,.72,-.04
Ool;-oa9o;oalll;1-0260'011
‘-04; 0560 0121;;26J100-¢°8 .
¢7650075=e04,-511,-e08,1,

ENTER THE INDEX NRS @F 1ST SET @F VARIATES
1,6 e 3 g

ENTER THE INDEX NRS @F 2ND SET @F VARIATES
853,485 T 5 t

ENTER THE SAMPLE SIZE .
a4 - : 5 Mk :

ENTER ALPHA
05

** DIMENSI@N @F THE RESP@NSE = 6

** NR @F VAR;ATES ;N !ST SET = 2

*x NR @F VARIATES IN 2ND SET = 4

*% SAMPLE SIZE = 42

*% ALPHA =_-.05

#% REARRANGED COVARIANCE MATRIX x*#
1.0000 :7600 0:0000 -,!lOO <0100
«7600 1.0000 «0700 -,0400 -fIQOO
«0100 «0700 1.0000 f6800 -+4900
~«1100 , ~-+0400 «6800 1.0000 -.2100
«0100  =.1100  =.4900 -.2100  1.0000

-.0400  -.0800  +5600  .7200 =-.2600
#& TEST STATISTIC =  4.1630

*%x CRITICAL VALUE = 15.5072

** HENCE FAIL T@ REJECT INDEPENDENCE #
232 CP SECONDS EXECUTION TIME

=+0400
-«0800
+5600
« 7200
~-+2600
1.0000

96




g
1
:

101

103

20
105

2l
107

22
109

23
111

24
113

25
115

26
117

27

290
300

121

122

123
124
125

126
127

PRAGPAM INDSET(INPUTJGUTPUT&TAPES'INPUT&TAP£6-¢UTPUT)
INTEGER P@5(20)

DIMENSION R11(¢20,20),R22¢(20,20)

DIMENSI@N R(20,20),C<20,20),JD¢20),1PR(20)

EXTERNAL VIPDA

WRITE(6.,101)

97

FORMAT(1H!,2X,"*«xTEST FOR INDEPENDENCE @F 2 SETS OF VARIATES#*x")

WRITE(6,103)

FORMAT(/,2X,"ENTER THE DIMENSI@N @F THE RESPONSE")
READ(S,*) NL

IFC(E@F(S)) 995,20

WRITE(6.,105)

FORMAT(/,2X,"ENTER THE NUMBER @F VARIATES IN 1ST SET")
READ(S,*) NI

IFCEQF(5)) 995,21

WVRITE(6,107)

FORMAT(/,2X,"ENTER THE NUMBER BF VARIATES 1IN 2ND SET™)
READ(S,*) N2

IFCE@QF(S)) 995,22

WRITE(C6,109)

FORMAT( /,2X,"ENTER THE SAMPLE C@VARIANCE MATRIX")
READ(S, %) ((R(1,J),J=1,NL),1I=1,NL)

IFCE@GF(5)) 995,23

VRITE(C6,111)

FORMAT(/,2X,"ENTER THE INDEX NRS @F I1ST SET @F VARIATES™)

READ(S5, *) (P@5C1),1=1,N1)

IFCE@GF(S)) 995,24

" WRITE(6,113)

FERHAT(/JZXJ"ENTER THE INCEX NRS @F 2ND SET @F VARIATES")
N3=N]+1]

READ(S5,*)(PBS(1),1=N3,NL)

IFCEBF(S)) 995,25

WRITE(6,115)

FORMAT(/,2X,"ENTER THE SAMPLE SIZE")

READ(S,%*) NS

IFCE@GF(5)) 995,26

WRITE(6,117)

FORMAT(/,2X,"ENTER ALPHA")

READ(S,%) ALFPHA

IFCE@F(S)) 995,27

D@ 300 IC=1],NL

1A=P@S(C1C)

D@ 29C JC=1,NL

JA=PBS(JC)

CCIC,JCI)=R(IA,JA)

CONTINUE X

CONTINUE

WRITE(6,121) NL

FORMAT(/,5X,"*% DIMENSI@GN @F THE RESP@NSE =",12)
WRITE(6,122) NI

FORMAT(/,5X,'"*x NR @F VARIATES IN IST SET =",12)
WRITE(6,123) N2 ’ ' i

FERMAT(/,5X,"** NR BF VARIATES IN 2ND SET =", 12)
WRITE(6,124) NS

FORMAT(/,5X,"*% SAMPLE SIZE =",13)

WRITE(C6,125) ALPHA

FORMAT(/,S5X,"*%x ALPHA ='",F3.2)

WRITE(6,126)

FORMAT(/,SX,"%* REARRANGED COVARIANCE MATRIX =)
FORMAT(/,2X,8C1X,F8.4))

D@ 200 I=1,NL




WRITE(6,127)CC(1,Jd).J=]1,NL)
CONTINUE :

DO 400 1C=1,Nl

D@ 390 JC=1,NI

R11¢IC,JC)=C(CIC,JC)

. CONTINUE

CONTINUE

D@ S00 IC=1,N2

IA=N1+I1C

D@ 490 JC=1,N2

JA=N] +JC

R22(CIC,JC)=C(IA,JA)

CONTINUE

CONTINUE

YN1=NI

YNS=NS

YN2=N2

Vi=YNS=-CYNIl+YN2+l ) /2.

CALL CHSDEC(C,20,NL,JD,DI1,VIPDA)
DET=DI =

D@ 10 1I=],NL

DET=DET*JD(1)

T=]./C(DET*DET)

CALL CHSDEC(R!1,20,N1,IPR,D1,VIPDA)
DET=DI]

Dg 11 1=1,Nl

DET=DET*1PR(1)

El=] ./(DET*DET)

CALL CHSDEC(R22,20,N2,IPR,DI,VIPDA)
DET=D]

D@ 12 I=1,N2

DET=DET*IPR(1)

B2=1./(DET*DET)

CVT=-ALBG(T/(Bl1%B2 ))xV]

Al1DF=N1*N2

ALPHA=] « -ALPHA
CRIT=PICHICALPHA,L,AIDF, IR)
IFCIR.EQ.l .@R.IR.EC.2) GO TO@ 995
WRITE(6,131) CUT

FORMAT(/,5X,"%%x TEST STATISTIC =",Fl10.4)
WRITE(6,133) CRIT

FORMAT(/,5X,"%*x CRITICAL VALUE =",Fl0.4)
IF(CVT.GT.CRIT) G® T® 800
WRITE(6,135)

FORMAT(/,5X,"*%x HENCE FAIL T@ REJECT INDEPENDENCE =*x%*")
G@ T@ 900 S :
WRITE(C6,137)

FPRMAT(/,5X,"*% HENCE REJECT INDEPENDENCE *x")
CONTINUE '

C@NTINUE

END

e 1) e A S e
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APPENDIX D

This appendix contains a complete FORTRAN IV listing

of a program used to test whether a set of responses is
independent using the results of (2.27). The program is
interactive and the input is in free-field format. An

example of its use is also given.




#s TEST FOR COMPLETE INDEPENDENGE »#

ENTER DIMENSI@GN @F THE RESPONSE

A - - - ; - : -
ENTER THE SAMPLE CORRELATI@N MATRIX
lol;“o‘;490056‘ % e 7
e88s140=e21,.72

~el9,-e2151e,-026

0560 0720;0260 ! ®

ENTER THE SAMPLE SIZE
42 25 % 4

ENTER ALPHA
.0S

*% DIMENSI@N @F THE RESP@NSE = 4
** SAMPLE SIZE = 42

*k ALP“A =3050

#* CORRELATION MATRIX »%
1.0000 +6800 -.4900 .5600
6800 1.0000 -.2100 47200
=+4900 -.2100 1.0000 -.2600
5600 .7200 ~.2600 1.0000
THE VALUE OF THE TEST STATISTIC =
THE CRITICAL VALUE = 12.59120

#*% HENCE REJECT INDEPENDENCE **
075 CP SEC@NDS EXECUTION TIME

65.81137

100




PROGRAM INDEP(INPUT,QUTPUT, TAPES=INPUT, TAPE6=QUTPUT)
DIMENSION R(20.20),JD¢20),IPR(20)

EXTERNAL VIPDA

VRITE(6.,101)

FORMATC1H1,5X,"*% TEST FPR COMPLETE INDEPENDENCE *x')
VRITE(6.,103) '

FORMAT( /,2X,"ENTER DIHENSIDN @F THE RESP@NSE")

READ(S5., %) NL

IFCE@QF(S)) 999,90

UYRITE(6.,105)

FORMAT(/,2X,"ENTER THE SAMPLE CBRRELATICN MATRIX")
READ(S,#)((RC(1,J)osJ=l,NL),1I=],NL)

IFCEQF(5)) 999,93

WRITE(6,107)

FORMAT(/,2X,"ENTER THE SAMPLE SIZE")
READ(S, %) NK

IFCEQF(S)) 999,91

WVRITE(6,109)

FORMAT(/,2X,"ENTER ALPHA")

READ(S5,%) ALPHA

IFCE@BF(S5)) 999,92

WRITE(6,121) NL

FORMAT(/,5X,"**x DIMENSION OF THE RESP@NSE =",12)

WRITE(6,125) NK .
FORMAT(/,5X,**%x SAMPLE SIZE =%,14)
WRITE(6,127) ALPHA

FORMAT(/,5X,"*% ALPHA =" ,F4.3)

WRITE(6,122) : ;
FORMAT(//,5X,"** CORRELATION MATRIX *x")

Do 200 I=]1,NL :

WRITE(6,123)C(R(1,J)su=]l,NL)
FORMAT(/.2X,10C1X,F6.4))

CeNTINUE

ALPHA=] .-ALPHA

CALL DECOMC(R,20,NL,JD,IPR,DI1,VIPDA)

DET=DI

D@ 10 1=],NL

DET=DET*R(1,1)

ED=ALOGC(DET)

YN=NK=-1]

YM=(2%NL+5)

YM=YM/6.

YN==(YN=-YM)

CHISQ=YN=%ED

AIDF=(NL*(NL~-1))/2.

CV=PICHICALPHAL,AIDF, IR)
IFCIR.EQ.1.0R.IR.EQ.2) GO TO 900

WRITE(6,111) CHISQ

FORMAT(/,5X,"THE VALUE PF THE TEST STATISTIC =",F10.5)

WRITE(6,113) CV

FORMAT(/,5X,"THE CRITICAL VALUE =",Fl10.5)
IF(CHISQ.GE.CV) G@® Te 800




WRITEC6,115) : :
F@RMAT(/,S5X,%s# HENCE FAIL T@ REJECT INDEPENDENCE ##")
G T@ 900

WRITEC6,11T)

FORMAT(/,S5X,"#** HENCE REJECT INDEPENDENCE ")
C@NTINUE ' : el Al :

CONTINUE

END
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